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Abstract. We first present a fixed-parameter algorithm for the NP-
hard problem of deciding if there are two matchings M1 and M2 in a
given graph G such that |M1| + |M2| is no less than a given number

k. The algorithm runs in O
(
m+ k · k! · (2√2

)k · n2 log n
)
time, where

n (respectively, m) is the number of vertices (respectively, edges) in G.
We then present a combinatorial approximation algorithm for the NP-
hard problem of finding two disjoint matchings in a given edge-weighted
graph G so that their total weight is maximized. The algorithm achieves
an approximation ratio of roughly 0.76 and runs in O

(
m+ n3α(n)

)
time,

where α is the inverse Ackermann function.

Keywords: Fixed-parameter algorithms, approximation algorithms,
graph algorithms, matchings, NP-hardness.

1 Introduction

Throughout this paper, a graph means an undirected graph that may have par-
allel edges but no self-loops. A graph is simple if it has no parallel edges. A
matching in a graph G is a set F of edges in G such that no two edges in F share
an endpoint. A maximum matching in G is a matching in G whose cardinality
is maximized over all matchings in G. Given a graph G, the maximum matching
problem (MM for short) requires the computation of a maximum matching in
G. MM is very fundamental in many areas and has been extensively studied in
the literature.

In this paper, we consider a generalization of MM, called the maximum two-
matching problem (MTM for short). Given a graph G, MTM requires the
computation of two disjoint matchings in G whose total cardinality is maxi-
mized. Motivated by call admittance issues in satellite based telecommunication
networks, Feige et al. [5] introducedMTM (among others) and showed its APX-
hardness. They also observed that MTM is obviously a special case of the well-
known maximum coverage problem (see [10]): We wish to cover the maximum
number of edges of a given graph G with two sets each of which is a matching
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of G. Since this special case of the maximum coverage problem can be approxi-
mated by a greedy algorithm within a ratio of 0.75 [10], so can be MTM. They
then gave a randomized approximation algorithm for MTM that achieves an
expected ratio of 10

13 ≈ 0.769. Their algorithm is based on an LP approach and
random rounding. In particular, their LP has an exponential number of con-
straints and hence can only be solved by using the ellipsoid method together
with a separation oracle. Hence, their algorithm is extremely slow although its
running time is polynomial.

The simple case of MTM (SMTM for short) where the input graph is simple
has been studied recently [5,12,3,2,11,1]. Feige et al. [5] gave a simple approxi-
mation algorithm for SMTM that achieves a ratio of 0.8. This ratio was then
improved in a series of papers [12,3,2,11,1]. The best known ratio achieved by
a polynomial-time approximation algorithm for SMTM is roughly 0.842 [1].
All known approximation algorithms for SMTM start by using Hartvigsen’s
polynomial-time algorithm [8] to compute a maximum-sized subgraph H of the
input graph such that the degree of each vertex in H is at most 2 and there is
no cycle of length 3 in H . Unfortunately, Hartvigsen’s algorithm only works for
simple graphs.

In this paper, we first consider the parameterized complexity of MTM. We
show that MTM is fixed-parameter tractable by designing an algorithm that

checks, in O
(
m+ k · k! · (2√2

)k · n2 logn
)

time, if a given n-vertex m-edge

graph G contains two disjoint matchings M1 and M2 such that |M1| + |M2| is
no less than a given number k. Our algorithm first reduces the problem for a
given input (G, k) to the problem for (G′, k) such that G′ has a vertex set U
with |U | < k and G′ − U is edgeless. It then solves the problem for (G′, k) with
the help of Gabow’s algorithm [7] for the maximum-weight degree-constrained
subgraph problem.

We then consider the weighted version of MTM (MWTM for short), where
each edge of the input graph G is given a nonnegative weight and the goal is
to find two disjoint matchings whose total weight is maximized. MWTM is
also a special case of the maximum coverage problem: We wish to cover the
maximum-weight set of edges of a given graph G with two sets each of which is
a matching of G. Since this special case of the maximum coverage problem can
be approximated by a greedy algorithm within a ratio of 0.75 [10], so can be
MWTM. However, all the ideas used in the known approximation algorithms
[5,12,3,2,11,1] for MTM cannot be applied to MWTM because the algorithms
call Hartvigsen’s algorithm [8] which only works for nonweighted simple graphs.

We can observe that the algorithm of Feige et al. [5] for MTM can be slightly
modified into a randomized approximation algorithm for MWTM that achieves
an expected ratio of 10

13 ≈ 0.769. However, as mentioned before, Feige et al.’s
algorithm is extremely slow. So, in this paper, we present a completely new
(deterministic) approximation algorithm for MWTM that achieves a ratio of
roughly 0.76. Our new algorithm is combinatorial and runs in O(m + n3α(n))
time, where α is the inverse Ackermann function. The algorithm is motivated
by the approaches developed in [14,9,4] for the maximum traveling salesman
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problem which is the problem of finding a maximum-weight Hamiltonian cycle
in a given edge-weighted complete graph.

Due to lack of space, some proofs are omitted.

2 Basic Definitions

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge
set of G by E(G). For a subset U of V (G), G − U denotes the graph obtained
from G by removing the vertices in U (together with the edges incident to them).
For a subset F of E(G), G−F denotes the graph obtained from G by removing
the edges in F . The degree of a vertex v in G is the number of edges incident to
v in G. Two edges of G are adjacent if they have at least one common endpoint.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2.
A path in G is either a single vertex of G or a connected subgraph of G in which
exactly two vertices are of degree 1 and the others are of degree 2. The length of
a cycle or path C is the number of edges in C and is denoted by |C|. A k-cycle is
a cycle of length k. If the length of a cycle or path P is odd, then we say that P
is odd; otherwise, we say that P is even. A 2-matching of G is a subgraph H of
G with V (H) = V (G) in which the degree of each vertex is at most 2. Note that
each connected component of a 2-matching is a path or cycle. A 2-matching C
of G is even if each cycle in C is even. A semi-path set of G is a set F of edges
in G such that each connected component of the graph (V (G), F ) is a path or a
2-cycle. A matching of G is a (possibly empty) set of pairwise nonadjacent edges
of G. A perfect matching of G is a matching M of G such that each vertex of G
is incident to an edge in M . An independent set of G is a set of vertices no two
of which are adjacent in G.

3 The Parameterized Algorithm for MTM

Throughout this section, fix a graph G and a nonnegative integer k. We want
to decide if G has two disjoint matchings M1 and M2 with |M1| + |M2| ≥ k.
In other words, we want to decide if G has an even 2-matching with at least k
edges. To this end, we first perform the following five steps:

1. For each pair {u, v} of vertices in G such that G has more than two edges
between u and v, remove all but two edges between u and v from G. (Com-
ment: This step removes redundant edges from G because a 2-matching of
G uses at most two edges between each pair of vertices in G. After this step,
G has O

(
n2

)
edges, where n is the number of vertices in G.)

2. Initialize b = k, H = G, and C = (V (G), ∅).
3. While b > 0 and H has at least one edge, perform the following two steps:

(a) Add an arbitrary edge {u, v} of H to C, delete {u, v} from H , and de-
crease b by 1.

(b) Delete from H all edges e such that the graph obtained from C by adding
e has a connected component that is not a path.
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4. If b = 0, then output “yes” and halt.
5. Obtain a set I of vertices in C by initializing I = ∅ and then for each

connected component P of C, adding to I an arbitrary vertex of P whose
degree in C is at most 1. (Comment: I contains all vertices of degree 0 in C.)

Obviously, if our algorithm halts in Step 4, then C is an even 2-matching
(indeed, a collection of vertex-disjoint paths) of G with k edges. So, for further
discussion, we assume that our algorithm does not halt in Step 4.

Lemma 1. I is an independent set of G.

Lemma 2. Let U = V (G)− I. Then, U contains at most k − 1 vertices.

Our algorithm then constructs an edge-weighted graph by performing the
following step:

6. Let U be the edge-weighted graph whose vertex set is U and whose edge set
is constructed as follows.
(a) For each edge e of G between two vertices of U , add e to U and assign

a weight of 1 to e.
(b) For each vertex v ∈ I and for each (unordered) pair {u1, u2} of distinct

vertices in U such that both u1 and u2 are adjacent to v in G, add an
edge between u1 and u2 to U and assign a weight of 2 to it.

Note that since U may have parallel edges, we need to assign distinct labels
to the edges of U in order to distinguish them. So, each edge e of U has two end-
points, a weight, and a label. For convenience, we say that two even 2-matchings
C1 and C2 of U are the same if ignoring the labels of edges of C1 and C2 yields
the same graph. If P is a path or cycle in U , then the weight of P is the total
weight of edges in P . A 2-matching C in U is even if the weight of each cycle of
C is even, and is properly marked if no vertex of degree at least 1 in C is marked
but zero or more vertices of degree 0 in C are marked.

Lemma 3. U has at most (k − 1)! · (2√2
)k−1

distinct properly marked even
2-matchings.

Proof. A simple way of enumerating all properly marked even 2-matchings in U
is as follows.

First, we enumerate all partitions of U into cyclically ordered subsets. It is
widely known that there are exactly |U |! such partitions. So, there are at most
(k − 1)! such partitions for |U | < k.

Next, for each partition P of U into cyclically ordered subsets, we try all
possible ways to transform P into a properly marked even 2-matching of U . To
see the details, let s be the number of singleton subsets in P , and S1, . . . , Sh

be the nonsingleton subsets in P . Consider an arbitrary i ∈ {1, . . . , h} and let
ni = |Si|. Since Si is cyclically ordered, we can view Si as a cycle. Note that
we can transform Si into a path or a cycle of U . To transform Si into a cycle of
U , we have at most 2ni ways because Si has ni edges and we have at most two
choices to handle each edge e with endpoints u1 and u2 in Si as follows:
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– If either U has no edge with endpoints u1 and u2, or U has only one edge with
endpoints u1 and u2 but Si is a 2-cycle, then there is no way to transform
Si into a cycle of U .

– If all edges with endpoints u1 and u2 in U have the same weight, then the
only choice is to let e have the same weight as the edges.

– If U has two edges f1 and f2 with endpoints u1 and u2 such that f1 and
f2 have different weights (namely, 1 and 2), then we have two choices of
assigning a weight (namely, 1 or 2) to e.

Note that even if we obtain a cycle Ci of U after handling each edge e of Si as
above, Ci may not be an even cycle and we just discard it if so.

To transform Si into a path of U , we first have ni choices to break Si into
a path Pi, and then have at most 2ni−1 ways to transform Pi into a path of U
because Pi has ni−1 edges and we have at most two choices to handle each edge
e of Pi as in the case of transforming Si into a cycle of U .

In total, there are at most 2ni + 2ni−1ni ways to transform Si into a path
or an even cyle of U . Thus, in total, there are at most

∏h
i=1

(
2ni + 2ni−1ni

) ≤
2k−1−s

∏h
i=1

(
1 + ni

2

)
ways to transform P into an even 2-matching of U , where

the inequality holds because
∑h

i=1 ni ≤ |U | − s < k − s.

Recall that for each i ∈ {1, . . . , h}, ni ≥ 2. Moreover,
∑h

i=1 ni ≤ k−1−s. We

claim that these facts imply that
∏h

i=1

(
1 + ni

2

) ≤ 2
k−1−s

2 if k − 1 − s is even,

while
∏h

i=1

(
1 + ni

2

) ≤ 2.5 · 2 k−4−s
2 if k − 1 − s is odd. To see this claim, first

note that for every even integer m ≥ 2, 1 + m
2 ≤ (

1 + 2
2

)m
2 . Moreover, for every

odd integer m ≥ 3, 1 + m
2 ≤ (

1 + 2
2

)m−3
2

(
1 + 3

2

)
. Thus, under the conditions

that n1 ≥ 2, . . . , nh ≥ 2, and
∑h

i=1 ni ≤ k − 1 − s, the value of
∏h

i=1

(
1 + ni

2

)
is maximized

– at (n1, n2, . . . , nh) = (2, 2, . . . , 2) if k − 1− s is even,
– at (n1, n2, . . . , nh) = (3, 2, . . . , 2) if k − 1− s is odd.

Therefore, the claim holds. By the claim,
∏h

i=1

(
1 + ni

2

) ≤ 2
k−1−s

2 no matter

whether k − 1 − s is even or odd. Hence, there at most
(
2
√
2
)k−1−s

ways to
transform P into an even 2-matching of U . Obviously, for each properly marked
even 2-matching C transformed from P , there are exactly 2s ways to properly

mark C. So, there are at most
(
2
√
2
)k−1−s · 2s ≤ (

2
√
2
)k−1

ways to transform
P into a properly marked even 2-matching of U . Now, since there are (k − 1)!
P ’s in total, the lemma holds.

Finally, our algorithm uses U to check if G has an even 2-matching with at
least k edges by performing the following two steps:

7. For each properly marked even 2-matching C of U , perform the following
steps:

(a) Construct an edge-weighted simple bipartite graph BC as follows:
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– The vertex set of BC is I ∪ U0 ∪ U1 ∪ U2, where U0 (respectively,
U1) consists of all u ∈ U whose degree in C is 0 (respectively, 1) and
U2 = {ue | e is an edge of weight 2 in C}.

– For each edge e of weight 2 in C and for each vertex v ∈ I such that
v is adjacent to both endpoints of e in G, BC has an edge of weight 0
between v and ue.

– For each edge e of G such that one endpoint of e is in I and the
other is a vertex of U1 or an unmarked vertex of U0, BC has an edge
of weight 1 between the endpoints of e.

– For each 2-cycle C of G such that one vertex of C is in I and the
other is a marked vertex of U0, BC has an edge of weight 2 between
the vertices of C.

(b) Compute a maximum-weight subgraph SC of BC such that (1) the degree
of each vertex v ∈ I ∪U1 in SC is at most 1, (2) the degree of ue in SC is
exactly 1 for each edge e of weight 2 in C, (3) the degree of each marked
vertex u ∈ U0 in SC is exactly 1, and (4) the degree of each unmarked
vertex u ∈ U0 in SC is at most 2.

(c) If SC was found in Step 7b and the sum of the weights of C and SC is at
least k, then output “yes” and halt.

8. Output “no” and halt.

Lemma 4. G has an even 2-matching with at least k edges if and only if our
algorithm outputs “yes” in Step 7c for some properly marked even 2-matching C
of U .
Theorem 1. Given a nonnegative integer k and a graph G with n vertices and

m edges, it takes O
(
m+ k · k! · (2√2

)k
n2 logn

)
time to decide whether G has

two disjoint matchings M1 and M2 such that |M1|+ |M2| ≥ k.

4 The Approximation Algorithm for MWTM

Throughout this section, fix an instance (G,w) of MWTM, where G is an n-
vertex m-edge graph and w is a function mapping each edge e of G to a nonneg-
ative real number w(e). After a simple O(m + n2)-time preprocessing, we can
assume that for every two vertices u and v of G, there are exactly two edges
between u and v in G. To see that no generality is lost with this assumption,
first observe that if there are three or more edges between two vertices u and v
in G, then we can delete all but the heaviest two edges between u and v from
G. On the other hand, if there is at most one edge between two vertices u and
v in G, then we can add one or more edges of weight 0 between u and v so
that G has exactly two edges between them. The mate of an edge e in G is
the other edge in G that has the same endpoints as e. We may further assume
that n is even, because if n is odd, we can add a new vertex and connect it to
each of the other vertices with two edges of weight 0. For a subset F of E(G),
w(F ) denotes

∑
e∈F w(e). The weight of a subgraphH of G is w(H) = w(E(H)).
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Note thatMWTM is equivalent to the problem of computing a maximum-weight
even 2-matching of a given graph.

For a random event A, Pr[A] denotes the probability that A occurs. For two
random events A and B, Pr[A | B] denotes the (conditional) probability that A
occurs given the known occurrence of event B. For a random variable X , E [X ]
denotes the expected value of X .

In the remainder of this section, we first design a randomized approximation
algorithm for MWTM and then derandomize it. Section 4.1 gives an outline of
the randomized algorithm. Section 4.2 then describes the details that are miss-
ing in the outline. Section 4.3 estimates the time complexity and the expected
approximation ratio achieved by the randomized algorithm. Finally, Section 4.4
derandomizes the algorithm.

4.1 Outline of the Algorithm

Our algorithm starts by computing a maximum-weight 2-matching C and a
maximum-weight matching M of G. We may assume that M is a perfect match-
ing of G because n is even. Our algorithm then uses C and M to perform a
preprocessing as follows.

1. Construct a graph K as follows: Initially, K is the graph (V (G),M). Next,
for every 2-cycle C in C, add the heavier edge of C to K. (Comment: Each
connected component of K is a path, a 2-cycle, or an even cycle of length 4
or more.)

2. Modify C by performing the following step for every cycle C′ of K with
|C′| ≥ 4:

(a) Delete all 2-cycles C from C such that one edge of C appears in C′.
(b) Add C′ to C.

Obviously, C remains to be a 2-matching of G after the preprocessing. So, the
preprocessing does not increase w(C) because C was originally a maximum-weight
2-matching of G. The preprocessing does not decrease w(C) either, because oth-
erwise we would be able to obtain a heavier matching of G than M by modifying
it by deleting the edges added to C in the preprocessing while adding the edges
deleted from C in the preprocessing.

We hereafter assume that our algorithm has done the preprocessing. If C is
now even, then our algorithm just outputs C and stops. In the remainder of this
paper, we assume that C is not an even 2-matching of G. Then, C has at least two
connected components. Suppose that T is a maximum-weight even 2-matching
of G. Let Tint denote the set of all edges {u, v} of T such that some cycle C in
C contains both u and v. Let Text denote the set of edges in T but not in Tint.
Let β = w(Tint)/w(T ).

Our algorithm then computes three even 2-matchings T1, T2, T3 of G, outputs
the heaviest one among them, and stops. T1 is computed by modifying the odd
cycles in C as follows. Fix a parameter 0 < ε < 1. For each odd cycle C in C, if
C has more than ε−1 edges, then remove the minimum-weight edge; otherwise,
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replace C by a maximum-weight even 2-matching of the graph obtained from G
by deleting all vertices not in C. Then, C becomes an even 2-matching. Obviously,
we have the following fact:

Fact 2. w(T1) ≥ (1− ε)w(Tint) = (1− ε)βw(T ).

When w(Text) is large, w(Tint) is small and w(T1) may be small, too. The
two even 2-matchings T2 and T3 together are aimed at the case where w(Text)
is large. Their computation is given in the next subsection.

4.2 Computation of T2 and T3

To compute T2 and T3, we first perform the following two steps:

1. Compute a maximum-weight matching M ′ in an auxiliary graph H , where
V (H) = V (G) and E(H) consists of those {u, v} ∈ E(G) such that u and v
belong to different connected components of C.

2. Fix an arbitrary ordering C1, . . . , Cr of the connected components of C such
that the 2-cycles precede the others. (Comment: Since C is a maximum-
weight 2-matching of G and the weight of each edge in G is nonnegative, the
weight of the edge between the endpoints of each path P that is a connected
component of C is 0. So, we can change P into a cycle by adding the edge
between its endpoints without changing its weight. In the remainder of this
paper, for ease of explanation, we assume that each connected component of
C is a cycle.)

We then process the cycles C1, . . . , Cr in turn. Roughly speaking, the process-
ing can be sketched as follows:

3. For i = 1, 2, . . . , r (in this order), process Ci by performing the following:

(a) Mark some suitable edges {u, v} ∈ M ′ with {u, v} ∩ V (Ci) 
= ∅.
(b) Move some suitable edges of Ci to M while always maintain that M is

a semi-path set of G.

To detail Substeps 3a and 3b, we need several definitions and lemmas. In the
remainder of this paper, for each integer i ∈ {1, . . . , r}, the phrase “at time i”
means the time at which C1, . . . , Ci−1 have been processed and Ci is the next
cycle to be processed. For each integer i ∈ {1, . . . , r}, let Mi be the set M at
time i. For convenience, letMr+1 and Cr+1 be the values ofM and C immediately
after Step 3, respectively.

A set F of edges in G is available at time i if F ⊆ E(Ci), F ∩M1 = ∅, and
Mi ∪F is a semi-path set of G. Since M1 ⊆ Mi and M1 is a perfect matching of
G, each set available at time i is a matching in Ci. A matching-pair in Ci is an
(unordered) pair {A,B} such that both A and B are (possibly empty) matchings
in Ci. An available matching-pair at time i is a matching-pair {A,B} in Ci such
that both A and B are available at time i. A matching-pair {A,B} in Ci covers
a vertex u of Ci if at least one edge in A ∪B is incident to u.



Finding Two Disjoint Matchings 9

If Ci is a 2-cycle, then we can obtain an available matching-pair {Ai, Bi} at
time i that covers both vertices of Ci, by simply letting Ai consist of one of
the edges of Ci and letting Bi consist of the other. {Ai, Bi} is available because
every cycle Cj of C with j < i is a 2-cycle and we have done the preprocessing.
Thus, if Ci is a 2-cycle, the details of Substeps 3a and 3b are as follows (i.e.,
they are replaced by the following three substeps):

(a) Compute an available matching-pair {Ai, Bi} at time i by letting Ai consist
of one of the edges of Ci and letting Bi consist of the other.

(b) For each v ∈ V (Ci), if some edge e of M ′ is incident to v, then mark e.
(c) Select one of Ai and Bi uniformly at random and move its edges from C

to M .

If Ci is a cycle of length 3 or more, then it is easy to modify the proof of
Lemma 1 in [9] to obtain a subroutine for computing an available matching-pair
at time i that covers all vertices of Ci. Moreover, using the famous union-find
data structure, we can implement this subroutine in O (|Ci| · α(n)) time. The
following lemma summarizes this result:

Lemma 5. If Ci is a cycle of length 3 or more, then we can compute an available
matching-pair {Ai, Bi} at time i in O (|Ci| · α(n)) time that covers all vertices
of Ci.

A maximal available set at time i is a set F available at time i such that for
every e ∈ E(Ci) − F , F ∪ {e} is not available at time i. Now, we are ready to
describe the details of Substeps 3a and 3b for those cycles Ci of C with |Ci| ≥ 3.
Indeed, they are replaced by the following four substeps:

(a) Compute an available matching-pair {Ai, Bi} at time i in O (|Ci| · α(n)) time
that covers all vertices of Ci.

(b) Extend both Ai and Bi to maximal available sets at time i. (Comment:
Using the famous union-find data structure, we can implement this substep
in O (|Ci| · α(n)) time by scanning the edges of Ci in an arbitrary order and
checking if each of them can be added to Ai and/or Bi.)

(c) For each vertex v ∈ V (Ci) such that both Ai and Bi have an edge incident
to v, if some edge e of M ′ is incident to v, then mark e.

(d) Select one of Ai and Bi uniformly at random and move its edges from C
to M .

We finish computing T2 and T3 by performing the following three steps:

4. Add to C those edges {u, v} ∈ M ′ such that both u and v are of degree at
most 1 in C. (Comment: Let M ′

4 denote the set of edges in M ′ that are added
to C at this step. For each cycle C in C, |E(C) ∩M ′

4| ≥ 2.)
5. For each odd cycle C in C, if |E(C)∩M ′| = 2 and exactly one edge in E(C)∩

M ′ is marked, then delete one edge in E(C)∩M ′ from C at random in such
a way that the marked edge is deleted with probability 2/3; otherwise, select
one edge in E(C)∩M ′ uniformly at random and delete it from C. (Comment:
Let M ′

5 denote the set of edges in M ′ that remain in C immediately after
this step.)

6. Set T2 and T3 to be C and the graph (V (G),M), respectively.
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4.3 Analysis of the Approximation Ratio

Our algorithm is clearly correct. We next analyze its approximation ratio.

Lemma 6. Let F be an available set at time i. Suppose that e1 = {u1, u2} and
e2 = {u2, u3} are two adjacent edges in Ci such that F contains no edge incident
to u1, u2, or u3. Then, F ∪ {e1} or F ∪ {e2} is available at time i.

Corollary 1. Suppose that F is a maximal available set at time i. Then, Ci−F
is a collection of vertex-disjoint paths each of length 1, 2, or 3.

A matching-pair {A,B} in Ci favors a vertex u of Ci if A contains an edge
e1 ∈ E(Ci) incident to u and B contains an edge e2 ∈ E(Ci) incident to u
(possibly e1 = e2). An available set F at time i is dangerous for an (unordered)
pair {e1, e2} of edges in M ′ if Ci − F contains a connected component that is a
length-2 path one of whose endpoints is an endpoint of e1 and the other is an
endpoint of e2.

Lemma 7. Let {A,B} be an arbitrary matching-pair in Ci that covers all ver-
tices of Ci. If A (respectively, B) is dangerous for a pair {e1, e2} of edges in
M ′, then {A,B} favors exactly one endpoint of the length-2 path in Ci − A
(respectively, Ci −B) between an endpoint of e1 and an endpoint of e2.

A maximal available matching-pair at time i is an available matching-pair
{A1, A2} at time i such that both A1 and A2 are maximal available sets at
time i.

Lemma 8. Let e = {v1, v2} be an edge in M ′. Then, Pr[e ∈ M ′
5] ≥ 1

6 .

Recall T , Tint, Text, and β (they are defined in Section 4.1).

Lemma 9. Let δw(T ) be the expected total weight of edges moved from
C to M at Step 3. Then, E [w(T3)] ≥ (0.5 + δ)w(T ) and E [w(T3)] ≥(
(1− δ) + 1

12 (1− β)
)
w(T ).

Theorem 3. For any fixed ε > 0, there is an O(m + n3)-time randomized ap-
proximation algorithm for MWTM achieving an expected approximation ratio

of 19(1−ε)
25−24ε .

Proof. We first estimate the running time of our algorithm. The computation of
C, M , and M ′ can be done in O(n3) time [7]. Step 3 can be done in O(n · α(n))
total time. The other steps take O(n) time. Thus, the time complexity is O(n3).

We next estimate its approximation ratio. By Fact 2 and Lemma 9, we have
the following three inequalities:

w(T1) ≥ (1− ε)βw(T ), (1)

E [w(T2)] ≥
(
(1− δ) +

1

12
(1− β)

)
w(T ), (2)

E [w(T3)] ≥ (0.5 + δ)w(T ). (3)
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Adding Inequalities 2 and 3, we have

E [w(T2)] + E [w(T3)] ≥
(
1.5 +

1

12
(1− β)

)
w(T ). (4)

Multiplying both sides of Inequality 4 by 12(1 − ε) and adding the resulting
inequality to Inequality 1, we get

w(T1) + 12(1− ε)(E [w(T2)] + E [w(T3)]) ≥ 19(1− ε)w(T ). (5)

By Inequality 5, we have

E [max{w(T1), w(T2), w(T3)}] ≥ 19(1− ε)

25− 24ε
· w(T ). (6)

Therefore, the algorithm achieves an expected approximation ratio of 19(1−ε)
25−24ε .

4.4 Derandomization

The above randomized algorithm makes random choices only in Substep 3d and
Step 5. To derandomize Step 5, we just modify it as follows:

5. For each odd cycle C in C, delete one edge e ∈ E(C)∩M ′ from C such that
the weight e is minimized over all edges in E(C) ∩M ′.

When processing cycle Ci in Step 3, we need one random bit in Substep 3d.
So, Step 3 needs r random bits in total. In the above analysis of the randomized
algorithm, only the proof of Lemma 8 is based on the mutual independence
between these random bits. Indeed, by carefully inspecting the proof, we can see
that the proof is still valid even if the random bits are only pairwise independent.
So, we can derandomize it via conventional approaches. Therefore, we have the
following theorem:

Theorem 4. For any fixed ε > 0, there is an O(m+n3α(n))-time approximation

algorithm for MWTM achieving a ratio of 19(1−ε)
25−24ε .

5 Open Problems

An obvious question is to ask if we can improve the running time of our parame-
terized algorithm for MTM. Preferably, we want a parameterized algorithm for
MTM such that the exponent of the exponential factor in the time bound of the
algorithm is linear in k. Another obvious question is to ask if we can design a
combinatorial approximation algorithm for MWTM that achieves a better ratio
than 0.769.

Feige et al. [5] have considered the problem of computing t disjoint matchings
in a given graph G such that the total number of edges in the matchings is
maximized, where t is a fixed positive integer. The special case of this problem
where t = 3 and the input graph is simple has been considered by Kosowski [11]
and Rizzi [13]. It seems interesting to design parameterized or approximation
algorithms for this problem and its special cases.
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