
Peter Widmayer
Yinfeng Xu
Binhai Zhu (Eds.)

 123

LN
CS

 8
28

7

7th International Conference, COCOA 2013
Chengdu, China, December 2013
Proceedings

Combinatorial
Optimization
and Applications

Lecture Notes in Computer Science 8287
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Peter Widmayer Yinfeng Xu Binhai Zhu (Eds.)

Combinatorial
Optimization
and Applications
7th International Conference, COCOA 2013
Chengdu, China, December 12-14, 2013
Proceedings

13

Volume Editors

Peter Widmayer
ETH Zürich, Institut für Theoretische Informatik
Universitätstr. 6, 8092 Zürich, Switzerland
E-mail: widmayer@inf.ethz.ch

Yinfeng Xu
Sichuan University, School of Management
Chengdu, Sichuan 610000, China
E-mail: yfxu@scu.edu.cn

Binhai Zhu
Montana State University, Department of Computer Science
Bozeman, MT 59717, USA
E-mail: bhz@cs.montana.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-03779-0 e-ISBN 978-3-319-03780-6
DOI 10.1007/978-3-319-03780-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954447

CR Subject Classification (1998): F.2, G.2.2, G.2, G.1.6, I.2.8, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The papers in this volume were presented at the 9th International Conference
on Combinatorial Optimization and Applications (COCOA 2013), held during
December 12–14, 2013, in Chengdu, China. It is expected that starting this
year, the COCOA conferences will be held in winter instead of summer. The
topics cover most areas in algorithms, combinatorial optimization, and their
applications.

Submissions to the conference this year were conducted electronically. A total
of 72 papers were submitted, of which 36 were accepted. The papers were eval-
uated by an international Program Committee overseen by the Program Com-
mittee co-chairs: Peter Widmayer, Yinfeng Xu, and Binhai Zhu. The Program
Committee consists of Tatsuya Akutsu, Laurent Bulteau, Yongxi Cheng, Marek
Chrobak, Shantanu Das, Bhaskar DasGupta, Yucheng Dong, Thomas Erlebach,
Zhiping Fan, Mordecai Golin, Jiong Guo, Xiaodong Hu, Haitao Jiang, Iyad Kanj,
Naoki Katoh, Adrian Kosowski, Elias Koutsoupias, Michael Langston, Guohui
Lin, Xiaowen Liu, Bernard Mans, Matus Mihalak, Nicola Santoro, Jianxin Wang,
Hamid Zarrabi-Zadeh, and Shanfeng Zhu. It is expected that most of the ac-
cepted papers will appear in a more complete form in scientific journals.

The submitted papers were from 25 countries/regions: Australia, Brazil,
Canada, China, Denmark, France, Germany, Hong Kong, India, Iran, Japan,
Korea, Lebanon, Malaysia, The Netherlands, Philippines, Poland, Singapore,
Spain, Switzerland, Taiwan, Tunisia, Turkey, UK and USA. On average, each
paper was evaluated by three Program Committee members, assisted in some
cases by sub-reviewers. In addition to the selected papers, the conference also
included two invited presentations by Franz Aurenhammer and Dimitrios Thi-
likos.

We thank all the people who made this meeting possible: the authors for
submitting papers, the Program Committee members and external reviewers
(listed in the proceedings) for their excellent work, and the two invited speakers.
Finally, we thank NSF of China and Sichuan University for their support and
the local organizers and colleagues for their assistance.

December 2013 Peter Widmayer
Yinfeng Xu
Binhai Zhu

Organization

Program Committee Co-chairs

Peter Widmayer ETH Zurich, Switzerland
Yinfeng Xu Sichuan University, China
Binhai Zhu Montana State University, USA

Program Committee Members

Tatsuya Akutsu Kyoto University, Japan
Laurent Bulteau Université de Nantes, France
Yongxi Cheng Xi’an Jiao Tong University, China
Marek Chrobak University of California at Riverside, USA
Shantanu Das Aix-Marseille Université, France
Bhaskar DasGupta University of Illinois at Chicago, USA
Yucheng Dong Sichuan University, China
Thomas Erlebach University of Leicester, UK
Zhiping Fan Northeasten University, China
Mordecai Golin HKUST, Hong Kong
Jiong Guo Universität des Saarlandes, Germany
Xiaodong Hu Chinese Academy of Sciences, China
Haitao Jiang Shandong University, China
Iyad Kanj DePaul University, USA
Naoki Katoh Kyoto University, Japan
Adrian Kosowski Inria Bordeaux, France
Elias Koutsoupias University of Athens, Greece
Michael Langston University of Tennessee, USA
Guohui Lin University of Alberta, Canada
Xiaowen Liu Indiana University-Purdue University

Indianapolis, USA
Bernard Mans Macquarie University, Australia
Matus Mihalak ETH Zurich, Switzerland
Nicola Santoro Carleton University, Canada
Jianxin Wang Central South University, China
Hamid Zarrabi-Zadeh Sharif University of Technology, Iran
Shanfeng Zhu Fudan University, China

VIII Organization

Organizing Committee

Jiuping Xu Sichuan University, China
Xin Gu Sichuan University, China
Guanqun Ni Sichuan University, China

Additional Reviewers

Sepehr Assadi Mostafa Nouri Baygi Michael Borokhovich
Yixin Cao Arnaud Casteigts Janos Csirik
Ehsan Emamjomeh-Zadeh Guillaume Fertin Florent Foucaud
Emanuele G. Fusco Emmanuel Godard Ronald Hagan
Yuya Higashikawa Yasushi Kawase Naoyuki Kamiyama
Christian Komusiewicz Miroslaw Korzeniowski Arnaud Labourel
Akaki Mamageishvili Euripides Markou Monaldo Mastrolilli
Luke Mathieson Yoshio Okamoto Yota Otachi
Linda Pagli Dominik Pajak Guillem Perarnau
Charles Phillips Chung Keung Poon Maurice Queyranne
Andre van Renssen Gary Rogers Rahmtin Rotabi
Kaveh Shahbaz Farhad Shahmohammadi Zuzanna Stamirowska
Weitian Tong Yushi Uno Przemyslaw Uznanski
Giovanni Viglietta Kai Wang Tony Wirth
Xingang Wen Yongjie Yang

Invited Lectures

Theory and Applications of Bidimensionality�

Dimitrios M. Thilikos1

AlGCo project-team, CNRS, LIRMM

Department of Mathematics, National and Kapodistrian University of Athens

Bidimensionality Theory is a meta-algorithmic theory whose main ingredients
are the Grid Exclusion Theorem of the Graph Minors series of Robertson and
Seymour and the celebrated Courcelle’s Theorem. The grid exclusion theorem
states that if a graph excludes a bidimensional grid as a minor (a graph H is
a minor of a graph G if H can be obtained by some subgraph of G by con-
tracting edges) then its structure topologically resembles the structure of a tree
(in technical terms, it has small treewidth). Intuitively, this result says that the
absence of the bidimensional structure of a grid implies that a graph has the
“mono-dimensional” structure of a tree. On the other side, Courcelle’s theorem
states that if a problem on graphs is expressible in Monadic Second Order Logic
(MSOL), then it is possible to solve it in linear time when the treewidth of their
input graphs is fixed. Intuitively, this theorem expresses the fact that the mono-
dimensional structure of a tree (i.e., small treewidth) makes it possible to treat
a graph as the input string of a finite-state tree automaton, where the finiteness
of its states is guaranteed by the MSOL-expressibility of the problem. Combin-
ing these two results together, we derive that the absence of the bidimensional
structure of a grid, enables the applicability of the “divide-and-conquer” tech-
nique for problems of certain descriptive complexity. It appears that for many
graph theoretic problems the existence of a grid-minor (or other bidimensional
strucures) on the input graph provides a certificate for an immediate negative
(or positive) answer and, for the remaining instances, a dynamic programming
approach on graphs of bounded treewidth may give an answer to the problem.
This phenomenon reveals fruitful interleave between graph structure and logic
in graph algorithms. Bidimensionality Theory aims at systematizing this idea
and extending its applicability in diverse paradigms of algorithm design.

The notion of problem bidimensionality was proposed for the first time in [2].
Given some graph invariant p, we denote by Πp the problem of asking, for some
pair (G, k), whether p(G) ≤ k and we say that Πp is minor bidimensional if

i) p is minor closed, i.e. if G1 is a minor of G2, then p(G1) ≤ p(G2).

ii) for every k, p(Lk) = Ω(k2) (here, Lk is the (k × k)-grid).

* This work was co-financed by the European Union (European Social Fund - ESF)
and Greek national funds through the Operational Program “Education and Life-
long Learning” of the National Strategic Reference Framework (NSRF) - Research
Funding Program: “Thales. Investing in knowledge society through the European
Social Fund.

XII D.M. Thilikos

Some of the main meta-algorithmic results of Bidimensionality Theory can
be summarized as follows: Let Πp be a minor bidimensional problem and let G
be a class of graphs where

∀G∈G treewidth(G) = O(max{k | Lk is a minor of G}). (1)

Let ΠG
p be the restriction of Πp to the graphs in G. Then the following hold:

1. If p(G) can be computed in 2O(treewidth(G)) ·nO(1) steps, then there exists an
algorithm that decides, given a graph G in G as input, whether p(G) ≤ k,

in 2O(
√
k) · nO(1) steps (see [2]).

2. If p satisfies some separability property (see [3, 5] for the definition) and
p(G) ≤ k ⇐⇒ ∃S ⊆ V (G) : |S| ≤ k and (G,S) |= ψ where ψ is a MSOL
sentence, then the problem Πp admits a linear kernel, i.e., there exists a
polynomial algorithm reducing every instance (G, k) of Πp to an equivalence
instance (G′, k′) where |V (G′)| = O(k) and k′ ≤ k (see [5]).

3. If p satisfies some separability property and is reducible (in the sense these
notions are defined in [7]), then there is an EPTAS for computing p(G) on
the graphs in G (see [3, 7]).

According to [4], every graph class excluding some fixed graph as a minor satis-
fies (1). Further extensions of the applicability of the above theory on geometric
graphs have been given in [8] and [1].

All above results concern only minor-closed parameters. The counterpart of
the above theory for contraction-closed parameters is based on the notion of
contraction bidimensionality, uses slightly different versions of Conditions i, ii,
and (1), and its algorithmic potential is investigated in [6]. Currently the com-
binatorial challenge of Bidimensionality Theory is to broaden its applicability
by detecting graph classes where (1) holds or to suitable adapt/extend/modify
Conditions i, ii, and (1) so that similar results can be derived for wider families
of graph theoretic problems.

References

1. D.M. Thilikos, A. Grigoriev, A. Koutsonas. Bidimensionality of geometric intersec-
tion graphs. CoRR, arXiv:1308.6166, August 2013.

2. E.D. Demaine, F.V. Fomin, M. Hajiaghayi, and D.M. Thilikos. Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs.
Journal of the ACM, 52(6):866–893, 2005.

3. E.D. Demaine andM. Hajiaghayi. Bidimensionality: new connections between FPT
algorithms and PTASs. In 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2005), pages 590–601, 2005.

4. E.D. Demaine andM. Hajiaghayi.Linearity of gridminors in treewidth with applica-
tions through bidimensionality.Combinatorica, 28(1):19–36, 2008.

5. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D.M. Thilikos. Bidimensionality and
kernels. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pages 503–510. ACM-SIAM, 2010.

Theory and Applications of Bidimensionality XIII

6. F.V. Fomin, P.A. Golovach, and D.M. Thilikos. Contraction obstructions for
treewidth. J. Comb. Theory, Ser. B, 101(5):302–314, 2011.

7. F.V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality and
EPTAS. In 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011),
pages 748–759, 2011.

8. F. V. Fomin, D. Lokshtanov, and S. Saurabh. Bidimensionality and geometric
graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA 2012), pages 1563–1575, 2012.

Recent Trends on Voronoi Diagrams

Franz Aurenhammer

Institute for Theoretical Computer Science,
University of Technology, Graz, Austria

auren@igi.tugraz.at

The Voronoi diagram is a versatile geometric graph whose usefulness as a geo-
metric data structure is widely appreciated; see e.g. [1]. Given a set of n point
sites in the Euclidean plane, their Voronoi diagram allots to each site the region
of the plane at closest distance to it. These regions are bordered by edges that
form a planar straight-line graph of size only O(n), which can be computed in
optimal time O(n log n) with various algorithmic techniques.

Voronoi diagrams have been a topic of ongoing interest, within and outside
computer science. After reviewing some of their basic properties and methods
for computing them, we present recent developments on this structure and its
relatives. These include new construction methods, as well as generalizations
which lead to scenarios quite different from the classical concept.

We discuss a novel divide & conquer approach to computing Voronoi dia-
grams, which actually delivers the medial axis of a planar shape, but directly
applies to Voronoi diagrams for point sites, and also to sites of rather gen-
eral shape. We then turn to the circle offset model (or growth model) of the
Voronoi diagram, which captures the concept of weighting the sites, and leads to
complex phenomena that recently have been dealt with using so-called abstract
Voronoi diagrams. Non-circular offset models even lead to ‘non-Voronoi’ straight-
line graphs, known as the straight skeleton, where we will mainly consider the
three-dimensional case with its peculiarities concerning offsets of polytopes, and
recent solutions. We conclude with some new results on visibility Voronoi dia-
grams, where distances to the sites are influenced by visibility constraints. Such
constraints may stem from prespecified geometric objects, or may be implicit in
the definition of the distance function. The latter case arises for quasi-Euclidean
distances, which have a physical meaning in relativity theory.

Reference

1. F. Aurenhammer, R. Klein, and D.T. Lee. Voronoi Diagrams and Delaunay
Triangulations. World Scientific, Singapore, 2013.

Table of Contents

Contributed Papers

Parameterized and Approximation Algorithms for Finding Two Disjoint
Matchings . 1

Zhi-Zhong Chen, Ying Fan, and Lusheng Wang

Discretely Following a Curve . 13
Tim Wylie

NF-Based Algorithms for Online Bin Packing with Buffer and Item
Size Limitation . 25

Feifeng Zheng, Li Luo, and E. Zhang

A Comparative Study of Multi-objective Evolutionary Algorithms for
the Bi-objective 2-Dimensional Vector Packing Problem 37

Nadia Dahmani, Saoussen Krichen, François Clautiaux, and
El-Ghazali Talbi

Approximation Algorithms for the Maximum Multiple RNA Interaction
Problem . 49

Weitian Tong, Randy Goebel, Tian Liu, and Guohui Lin

On the Clustered Steiner Tree Problem . 60
Bang Ye Wu

Integrated Job Scheduling with Parallel-Batch Processing and Batch
Deliveries . 72

Xin Feng and Feifeng Zheng

The Fractional Strong Metric Dimension of Graphs 84
Cong X. Kang and Eunjeong Yi

Online Scheduling on Two Parallel Machines with Release Times and
Delivery Times . 96

Peihai Liu and Xiwen Lu

Parallel Machine Scheduling with a Single Server: Loading and
Unloading . 106

Jueliang Hu, Qinghui Zhang, Jianming Dong, and Yiwei Jiang

Prompt Mechanism for Online Auctions with Multi-unit Demands 117
Xiangzhong Xiang

XVI Table of Contents

Using Basis Dependence Distance Vectors to Calculate the Transitive
Closure of Dependence Relations by Means of the Floyd-Warshall
Algorithm . 129

W�lodzimierz Bielecki, Krzysztof Kraska, and Tomasz Klimek

A Nash Equilibrium Based Algorithm for Mining Hidden Links in
Social Networks . 141

Huan Ma, Zaixin Lu, Lidan Fan, Weili Wu, Deying Li, and
Yuqing Zhu

An Improved Exact Algorithm for Undirected Feedback Vertex Set 153
Mingyu Xiao and Hiroshi Nagamochi

An Inductive Construction of Minimally Rigid Body-Hinge Simple
Graphs . 165

Yuya Higashikawa, Naoyuki Kamiyama, Naoki Katoh, and
Yuki Kobayashi

On Complexities of Minus Domination . 178
Luérbio Faria, Wing-Kai Hon, Ton Kloks, Hsiang-Hsuan Liu,
Tao-Ming Wang, and Yue-Li Wang

A Linear-Time Algorithm for Reconciliation of Non-binary Gene Tree
and Binary Species Tree . 190

Yu Zheng, Taoyang Wu, and Louxin Zhang

On Some Proximity Problems of Colored Sets . 202
Chenglin Fan, Jun Luo, and Farong Zhong

An Extended Strange Planet Protocol . 214
Jin Liu, Zhenhua Duan, and Cong Tian

Online Bin Covering: Expectations vs. Guarantees 226
Marie G. Christ, Lene M. Favrholdt, and Kim S. Larsen

Map of Geometric Minimal Cuts for General Planar Embedding 238
Lei Xu, Evanthia Papadopoulou, and Jinhui Xu

A New Approach to the Upper Bound on the Average Distance from
the Fermat-Weber Center of a Convex Body . 250

Xuehou Tan and Bo Jiang

Parameterized Complexity of Control and Bribery for d -Approval
Elections . 260

Jianxin Wang, Min Yang, Jiong Guo, Qilong Feng, and Jianer Chen

Circular Convex Bipartite Graphs: Feedback Vertex Set 272
Zhao Lu, Min Lu, Tian Liu, and Ke Xu

Table of Contents XVII

The Multi-parameterized Cluster Editing Problem 284
Faisal N. Abu-Khzam

Fast Order-Preserving Pattern Matching . 295
Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim

Scheduling for Electricity Cost in Smart Grid . 306
Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu,
Prudence W.H. Wong, and David K.Y. Yau

Uniform-Circuit and Logarithmic-Space Approximations of Refined
Combinatorial Optimization Problems . 318

Tomoyuki Yamakami

An Optimal Single-Machine Scheduling with Linear Deterioration Rate
and Rate-Modifying Activities . 330

Sheng Yu

A Loopless Algorithm for Generating Multiple Binary Tree Sequences
Simultaneously . 340

Ro-Yu Wu, Jou-Ming Chang, Hung-Chang Chan, and Kung-Jui Pai

Touring Disjoint Polygons Problem Is NP-Hard . 351
Arash Ahadi, Amirhossein Mozafari, and Alireza Zarei

Walking in Streets with Minimal Sensing . 361
Azadeh Tabatabaei and Mohammad Ghodsi

Robust Optimization for the Hazardous Materials Transportation
Network Design Problem . 373

Chunlin Xin, Qingge Letu, and Yin Bai

Online Bin Packing with (1,1) and (2,R) Bins . 387
Jing Chen, Xin Han, Kazuo Iwama, and Hing-Fung Ting

Disclosing Barriers: A Generalization of the Canonical Partition Based
on Lovász’s Formulation . 402

Nanao Kita

A Portable Parallel Implementation of the lrs Vertex Enumeration
Code . 414

David Avis and Gary Roumanis

Author Index . 431

Parameterized and Approximation Algorithms

for Finding Two Disjoint Matchings

Zhi-Zhong Chen1, Ying Fan2, and Lusheng Wang2

1 Division of Information System Design, Tokyo Denki University,
Hatoyama, Saitama 350-0394, Japan

zzchen@mail.dendai.ac.jp
2 Department of Computer Science, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong SAR
yingying1988@gmail.com, lwang@cs.cityu.edu.hk

Abstract. We first present a fixed-parameter algorithm for the NP-
hard problem of deciding if there are two matchings M1 and M2 in a
given graph G such that |M1| + |M2| is no less than a given number

k. The algorithm runs in O
(
m+ k · k! · (2√2

)k · n2 log n
)
time, where

n (respectively, m) is the number of vertices (respectively, edges) in G.
We then present a combinatorial approximation algorithm for the NP-
hard problem of finding two disjoint matchings in a given edge-weighted
graph G so that their total weight is maximized. The algorithm achieves
an approximation ratio of roughly 0.76 and runs in O

(
m+ n3α(n)

)
time,

where α is the inverse Ackermann function.

Keywords: Fixed-parameter algorithms, approximation algorithms,
graph algorithms, matchings, NP-hardness.

1 Introduction

Throughout this paper, a graph means an undirected graph that may have par-
allel edges but no self-loops. A graph is simple if it has no parallel edges. A
matching in a graph G is a set F of edges in G such that no two edges in F share
an endpoint. A maximum matching in G is a matching in G whose cardinality
is maximized over all matchings in G. Given a graph G, the maximum matching
problem (MM for short) requires the computation of a maximum matching in
G. MM is very fundamental in many areas and has been extensively studied in
the literature.

In this paper, we consider a generalization of MM, called the maximum two-
matching problem (MTM for short). Given a graph G, MTM requires the
computation of two disjoint matchings in G whose total cardinality is maxi-
mized. Motivated by call admittance issues in satellite based telecommunication
networks, Feige et al. [5] introduced MTM (among others) and showed its APX-
hardness. They also observed that MTM is obviously a special case of the well-
known maximum coverage problem (see [10]): We wish to cover the maximum
number of edges of a given graph G with two sets each of which is a matching

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 1–12, 2013.
c© Springer International Publishing Switzerland 2013

2 Z.-Z. Chen, Y. Fan, and L. Wang

of G. Since this special case of the maximum coverage problem can be approxi-
mated by a greedy algorithm within a ratio of 0.75 [10], so can be MTM. They
then gave a randomized approximation algorithm for MTM that achieves an
expected ratio of 10

13 ≈ 0.769. Their algorithm is based on an LP approach and
random rounding. In particular, their LP has an exponential number of con-
straints and hence can only be solved by using the ellipsoid method together
with a separation oracle. Hence, their algorithm is extremely slow although its
running time is polynomial.

The simple case of MTM (SMTM for short) where the input graph is simple
has been studied recently [5,12,3,2,11,1]. Feige et al. [5] gave a simple approxi-
mation algorithm for SMTM that achieves a ratio of 0.8. This ratio was then
improved in a series of papers [12,3,2,11,1]. The best known ratio achieved by
a polynomial-time approximation algorithm for SMTM is roughly 0.842 [1].
All known approximation algorithms for SMTM start by using Hartvigsen’s
polynomial-time algorithm [8] to compute a maximum-sized subgraph H of the
input graph such that the degree of each vertex in H is at most 2 and there is
no cycle of length 3 in H . Unfortunately, Hartvigsen’s algorithm only works for
simple graphs.

In this paper, we first consider the parameterized complexity of MTM. We
show that MTM is fixed-parameter tractable by designing an algorithm that

checks, in O
(
m+ k · k! · (2√2

)k · n2 logn
)

time, if a given n-vertex m-edge

graph G contains two disjoint matchings M1 and M2 such that |M1| + |M2| is
no less than a given number k. Our algorithm first reduces the problem for a
given input (G, k) to the problem for (G′, k) such that G′ has a vertex set U
with |U | < k and G′ − U is edgeless. It then solves the problem for (G′, k) with
the help of Gabow’s algorithm [7] for the maximum-weight degree-constrained
subgraph problem.

We then consider the weighted version of MTM (MWTM for short), where
each edge of the input graph G is given a nonnegative weight and the goal is
to find two disjoint matchings whose total weight is maximized. MWTM is
also a special case of the maximum coverage problem: We wish to cover the
maximum-weight set of edges of a given graph G with two sets each of which is
a matching of G. Since this special case of the maximum coverage problem can
be approximated by a greedy algorithm within a ratio of 0.75 [10], so can be
MWTM. However, all the ideas used in the known approximation algorithms
[5,12,3,2,11,1] for MTM cannot be applied to MWTM because the algorithms
call Hartvigsen’s algorithm [8] which only works for nonweighted simple graphs.

We can observe that the algorithm of Feige et al. [5] for MTM can be slightly
modified into a randomized approximation algorithm for MWTM that achieves
an expected ratio of 10

13 ≈ 0.769. However, as mentioned before, Feige et al.’s
algorithm is extremely slow. So, in this paper, we present a completely new
(deterministic) approximation algorithm for MWTM that achieves a ratio of
roughly 0.76. Our new algorithm is combinatorial and runs in O(m + n3α(n))
time, where α is the inverse Ackermann function. The algorithm is motivated
by the approaches developed in [14,9,4] for the maximum traveling salesman

Finding Two Disjoint Matchings 3

problem which is the problem of finding a maximum-weight Hamiltonian cycle
in a given edge-weighted complete graph.

Due to lack of space, some proofs are omitted.

2 Basic Definitions

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge
set of G by E(G). For a subset U of V (G), G − U denotes the graph obtained
from G by removing the vertices in U (together with the edges incident to them).
For a subset F of E(G), G−F denotes the graph obtained from G by removing
the edges in F . The degree of a vertex v in G is the number of edges incident to
v in G. Two edges of G are adjacent if they have at least one common endpoint.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2.
A path in G is either a single vertex of G or a connected subgraph of G in which
exactly two vertices are of degree 1 and the others are of degree 2. The length of
a cycle or path C is the number of edges in C and is denoted by |C|. A k-cycle is
a cycle of length k. If the length of a cycle or path P is odd, then we say that P
is odd; otherwise, we say that P is even. A 2-matching of G is a subgraph H of
G with V (H) = V (G) in which the degree of each vertex is at most 2. Note that
each connected component of a 2-matching is a path or cycle. A 2-matching C
of G is even if each cycle in C is even. A semi-path set of G is a set F of edges
in G such that each connected component of the graph (V (G), F) is a path or a
2-cycle. A matching of G is a (possibly empty) set of pairwise nonadjacent edges
of G. A perfect matching of G is a matching M of G such that each vertex of G
is incident to an edge in M . An independent set of G is a set of vertices no two
of which are adjacent in G.

3 The Parameterized Algorithm for MTM

Throughout this section, fix a graph G and a nonnegative integer k. We want
to decide if G has two disjoint matchings M1 and M2 with |M1| + |M2| ≥ k.
In other words, we want to decide if G has an even 2-matching with at least k
edges. To this end, we first perform the following five steps:

1. For each pair {u, v} of vertices in G such that G has more than two edges
between u and v, remove all but two edges between u and v from G. (Com-
ment: This step removes redundant edges from G because a 2-matching of
G uses at most two edges between each pair of vertices in G. After this step,
G has O

(
n2
)

edges, where n is the number of vertices in G.)
2. Initialize b = k, H = G, and C = (V (G), ∅).
3. While b > 0 and H has at least one edge, perform the following two steps:

(a) Add an arbitrary edge {u, v} of H to C, delete {u, v} from H , and de-
crease b by 1.

(b) Delete from H all edges e such that the graph obtained from C by adding
e has a connected component that is not a path.

4 Z.-Z. Chen, Y. Fan, and L. Wang

4. If b = 0, then output “yes” and halt.
5. Obtain a set I of vertices in C by initializing I = ∅ and then for each

connected component P of C, adding to I an arbitrary vertex of P whose
degree in C is at most 1. (Comment: I contains all vertices of degree 0 in C.)

Obviously, if our algorithm halts in Step 4, then C is an even 2-matching
(indeed, a collection of vertex-disjoint paths) of G with k edges. So, for further
discussion, we assume that our algorithm does not halt in Step 4.

Lemma 1. I is an independent set of G.

Lemma 2. Let U = V (G) − I. Then, U contains at most k − 1 vertices.

Our algorithm then constructs an edge-weighted graph by performing the
following step:

6. Let U be the edge-weighted graph whose vertex set is U and whose edge set
is constructed as follows.
(a) For each edge e of G between two vertices of U , add e to U and assign

a weight of 1 to e.
(b) For each vertex v ∈ I and for each (unordered) pair {u1, u2} of distinct

vertices in U such that both u1 and u2 are adjacent to v in G, add an
edge between u1 and u2 to U and assign a weight of 2 to it.

Note that since U may have parallel edges, we need to assign distinct labels
to the edges of U in order to distinguish them. So, each edge e of U has two end-
points, a weight, and a label. For convenience, we say that two even 2-matchings
C1 and C2 of U are the same if ignoring the labels of edges of C1 and C2 yields
the same graph. If P is a path or cycle in U , then the weight of P is the total
weight of edges in P . A 2-matching C in U is even if the weight of each cycle of
C is even, and is properly marked if no vertex of degree at least 1 in C is marked
but zero or more vertices of degree 0 in C are marked.

Lemma 3. U has at most (k − 1)! · (2√2
)k−1

distinct properly marked even
2-matchings.

Proof. A simple way of enumerating all properly marked even 2-matchings in U
is as follows.

First, we enumerate all partitions of U into cyclically ordered subsets. It is
widely known that there are exactly |U |! such partitions. So, there are at most
(k − 1)! such partitions for |U | < k.

Next, for each partition P of U into cyclically ordered subsets, we try all
possible ways to transform P into a properly marked even 2-matching of U . To
see the details, let s be the number of singleton subsets in P , and S1, . . . , Sh

be the nonsingleton subsets in P . Consider an arbitrary i ∈ {1, . . . , h} and let
ni = |Si|. Since Si is cyclically ordered, we can view Si as a cycle. Note that
we can transform Si into a path or a cycle of U . To transform Si into a cycle of
U , we have at most 2ni ways because Si has ni edges and we have at most two
choices to handle each edge e with endpoints u1 and u2 in Si as follows:

Finding Two Disjoint Matchings 5

– If either U has no edge with endpoints u1 and u2, or U has only one edge with
endpoints u1 and u2 but Si is a 2-cycle, then there is no way to transform
Si into a cycle of U .

– If all edges with endpoints u1 and u2 in U have the same weight, then the
only choice is to let e have the same weight as the edges.

– If U has two edges f1 and f2 with endpoints u1 and u2 such that f1 and
f2 have different weights (namely, 1 and 2), then we have two choices of
assigning a weight (namely, 1 or 2) to e.

Note that even if we obtain a cycle Ci of U after handling each edge e of Si as
above, Ci may not be an even cycle and we just discard it if so.

To transform Si into a path of U , we first have ni choices to break Si into
a path Pi, and then have at most 2ni−1 ways to transform Pi into a path of U
because Pi has ni−1 edges and we have at most two choices to handle each edge
e of Pi as in the case of transforming Si into a cycle of U .

In total, there are at most 2ni + 2ni−1ni ways to transform Si into a path
or an even cyle of U . Thus, in total, there are at most

∏h
i=1

(
2ni + 2ni−1ni

) ≤
2k−1−s

∏h
i=1

(
1 + ni

2

)
ways to transform P into an even 2-matching of U , where

the inequality holds because
∑h

i=1 ni ≤ |U | − s < k − s.

Recall that for each i ∈ {1, . . . , h}, ni ≥ 2. Moreover,
∑h

i=1 ni ≤ k−1−s. We

claim that these facts imply that
∏h

i=1

(
1 + ni

2

) ≤ 2
k−1−s

2 if k − 1 − s is even,

while
∏h

i=1

(
1 + ni

2

) ≤ 2.5 · 2
k−4−s

2 if k − 1 − s is odd. To see this claim, first

note that for every even integer m ≥ 2, 1 + m
2 ≤ (1 + 2

2

)m
2 . Moreover, for every

odd integer m ≥ 3, 1 + m
2 ≤ (1 + 2

2

)m−3
2
(
1 + 3

2

)
. Thus, under the conditions

that n1 ≥ 2, . . . , nh ≥ 2, and
∑h

i=1 ni ≤ k − 1 − s, the value of
∏h

i=1

(
1 + ni

2

)
is maximized

– at (n1, n2, . . . , nh) = (2, 2, . . . , 2) if k − 1 − s is even,
– at (n1, n2, . . . , nh) = (3, 2, . . . , 2) if k − 1 − s is odd.

Therefore, the claim holds. By the claim,
∏h

i=1

(
1 + ni

2

) ≤ 2
k−1−s

2 no matter

whether k − 1 − s is even or odd. Hence, there at most
(
2
√

2
)k−1−s

ways to
transform P into an even 2-matching of U . Obviously, for each properly marked
even 2-matching C transformed from P , there are exactly 2s ways to properly

mark C. So, there are at most
(
2
√

2
)k−1−s · 2s ≤ (2√2

)k−1
ways to transform

P into a properly marked even 2-matching of U . Now, since there are (k − 1)!
P ’s in total, the lemma holds.

Finally, our algorithm uses U to check if G has an even 2-matching with at
least k edges by performing the following two steps:

7. For each properly marked even 2-matching C of U , perform the following
steps:

(a) Construct an edge-weighted simple bipartite graph BC as follows:

6 Z.-Z. Chen, Y. Fan, and L. Wang

– The vertex set of BC is I ∪ U0 ∪ U1 ∪ U2, where U0 (respectively,
U1) consists of all u ∈ U whose degree in C is 0 (respectively, 1) and
U2 = {ue | e is an edge of weight 2 in C}.

– For each edge e of weight 2 in C and for each vertex v ∈ I such that
v is adjacent to both endpoints of e in G, BC has an edge of weight 0
between v and ue.

– For each edge e of G such that one endpoint of e is in I and the
other is a vertex of U1 or an unmarked vertex of U0, BC has an edge
of weight 1 between the endpoints of e.

– For each 2-cycle C of G such that one vertex of C is in I and the
other is a marked vertex of U0, BC has an edge of weight 2 between
the vertices of C.

(b) Compute a maximum-weight subgraph SC of BC such that (1) the degree
of each vertex v ∈ I ∪U1 in SC is at most 1, (2) the degree of ue in SC is
exactly 1 for each edge e of weight 2 in C, (3) the degree of each marked
vertex u ∈ U0 in SC is exactly 1, and (4) the degree of each unmarked
vertex u ∈ U0 in SC is at most 2.

(c) If SC was found in Step 7b and the sum of the weights of C and SC is at
least k, then output “yes” and halt.

8. Output “no” and halt.

Lemma 4. G has an even 2-matching with at least k edges if and only if our
algorithm outputs “yes” in Step 7c for some properly marked even 2-matching C
of U .

Theorem 1. Given a nonnegative integer k and a graph G with n vertices and

m edges, it takes O
(
m+ k · k! · (2√2

)k
n2 logn

)
time to decide whether G has

two disjoint matchings M1 and M2 such that |M1| + |M2| ≥ k.

4 The Approximation Algorithm for MWTM

Throughout this section, fix an instance (G,w) of MWTM, where G is an n-
vertex m-edge graph and w is a function mapping each edge e of G to a nonneg-
ative real number w(e). After a simple O(m + n2)-time preprocessing, we can
assume that for every two vertices u and v of G, there are exactly two edges
between u and v in G. To see that no generality is lost with this assumption,
first observe that if there are three or more edges between two vertices u and v
in G, then we can delete all but the heaviest two edges between u and v from
G. On the other hand, if there is at most one edge between two vertices u and
v in G, then we can add one or more edges of weight 0 between u and v so
that G has exactly two edges between them. The mate of an edge e in G is
the other edge in G that has the same endpoints as e. We may further assume
that n is even, because if n is odd, we can add a new vertex and connect it to
each of the other vertices with two edges of weight 0. For a subset F of E(G),
w(F) denotes

∑
e∈F w(e). The weight of a subgraphH of G is w(H) = w(E(H)).

Finding Two Disjoint Matchings 7

Note that MWTM is equivalent to the problem of computing a maximum-weight
even 2-matching of a given graph.

For a random event A, Pr[A] denotes the probability that A occurs. For two
random events A and B, Pr[A | B] denotes the (conditional) probability that A
occurs given the known occurrence of event B. For a random variable X , E [X]
denotes the expected value of X .

In the remainder of this section, we first design a randomized approximation
algorithm for MWTM and then derandomize it. Section 4.1 gives an outline of
the randomized algorithm. Section 4.2 then describes the details that are miss-
ing in the outline. Section 4.3 estimates the time complexity and the expected
approximation ratio achieved by the randomized algorithm. Finally, Section 4.4
derandomizes the algorithm.

4.1 Outline of the Algorithm

Our algorithm starts by computing a maximum-weight 2-matching C and a
maximum-weight matching M of G. We may assume that M is a perfect match-
ing of G because n is even. Our algorithm then uses C and M to perform a
preprocessing as follows.

1. Construct a graph K as follows: Initially, K is the graph (V (G),M). Next,
for every 2-cycle C in C, add the heavier edge of C to K. (Comment: Each
connected component of K is a path, a 2-cycle, or an even cycle of length 4
or more.)

2. Modify C by performing the following step for every cycle C′ of K with
|C′| ≥ 4:

(a) Delete all 2-cycles C from C such that one edge of C appears in C′.
(b) Add C′ to C.

Obviously, C remains to be a 2-matching of G after the preprocessing. So, the
preprocessing does not increase w(C) because C was originally a maximum-weight
2-matching of G. The preprocessing does not decrease w(C) either, because oth-
erwise we would be able to obtain a heavier matching of G than M by modifying
it by deleting the edges added to C in the preprocessing while adding the edges
deleted from C in the preprocessing.

We hereafter assume that our algorithm has done the preprocessing. If C is
now even, then our algorithm just outputs C and stops. In the remainder of this
paper, we assume that C is not an even 2-matching of G. Then, C has at least two
connected components. Suppose that T is a maximum-weight even 2-matching
of G. Let Tint denote the set of all edges {u, v} of T such that some cycle C in
C contains both u and v. Let Text denote the set of edges in T but not in Tint.
Let β = w(Tint)/w(T).

Our algorithm then computes three even 2-matchings T1, T2, T3 of G, outputs
the heaviest one among them, and stops. T1 is computed by modifying the odd
cycles in C as follows. Fix a parameter 0 < ε < 1. For each odd cycle C in C, if
C has more than ε−1 edges, then remove the minimum-weight edge; otherwise,

8 Z.-Z. Chen, Y. Fan, and L. Wang

replace C by a maximum-weight even 2-matching of the graph obtained from G
by deleting all vertices not in C. Then, C becomes an even 2-matching. Obviously,
we have the following fact:

Fact 2. w(T1) ≥ (1 − ε)w(Tint) = (1 − ε)βw(T).

When w(Text) is large, w(Tint) is small and w(T1) may be small, too. The
two even 2-matchings T2 and T3 together are aimed at the case where w(Text)
is large. Their computation is given in the next subsection.

4.2 Computation of T2 and T3

To compute T2 and T3, we first perform the following two steps:

1. Compute a maximum-weight matching M ′ in an auxiliary graph H , where
V (H) = V (G) and E(H) consists of those {u, v} ∈ E(G) such that u and v
belong to different connected components of C.

2. Fix an arbitrary ordering C1, . . . , Cr of the connected components of C such
that the 2-cycles precede the others. (Comment: Since C is a maximum-
weight 2-matching of G and the weight of each edge in G is nonnegative, the
weight of the edge between the endpoints of each path P that is a connected
component of C is 0. So, we can change P into a cycle by adding the edge
between its endpoints without changing its weight. In the remainder of this
paper, for ease of explanation, we assume that each connected component of
C is a cycle.)

We then process the cycles C1, . . . , Cr in turn. Roughly speaking, the process-
ing can be sketched as follows:

3. For i = 1, 2, . . . , r (in this order), process Ci by performing the following:

(a) Mark some suitable edges {u, v} ∈M ′ with {u, v} ∩ V (Ci) �= ∅.
(b) Move some suitable edges of Ci to M while always maintain that M is

a semi-path set of G.

To detail Substeps 3a and 3b, we need several definitions and lemmas. In the
remainder of this paper, for each integer i ∈ {1, . . . , r}, the phrase “at time i”
means the time at which C1, . . . , Ci−1 have been processed and Ci is the next
cycle to be processed. For each integer i ∈ {1, . . . , r}, let Mi be the set M at
time i. For convenience, let Mr+1 and Cr+1 be the values ofM and C immediately
after Step 3, respectively.

A set F of edges in G is available at time i if F ⊆ E(Ci), F ∩M1 = ∅, and
Mi ∪F is a semi-path set of G. Since M1 ⊆Mi and M1 is a perfect matching of
G, each set available at time i is a matching in Ci. A matching-pair in Ci is an
(unordered) pair {A,B} such that both A and B are (possibly empty) matchings
in Ci. An available matching-pair at time i is a matching-pair {A,B} in Ci such
that both A and B are available at time i. A matching-pair {A,B} in Ci covers
a vertex u of Ci if at least one edge in A ∪B is incident to u.

Finding Two Disjoint Matchings 9

If Ci is a 2-cycle, then we can obtain an available matching-pair {Ai, Bi} at
time i that covers both vertices of Ci, by simply letting Ai consist of one of
the edges of Ci and letting Bi consist of the other. {Ai, Bi} is available because
every cycle Cj of C with j < i is a 2-cycle and we have done the preprocessing.
Thus, if Ci is a 2-cycle, the details of Substeps 3a and 3b are as follows (i.e.,
they are replaced by the following three substeps):

(a) Compute an available matching-pair {Ai, Bi} at time i by letting Ai consist
of one of the edges of Ci and letting Bi consist of the other.

(b) For each v ∈ V (Ci), if some edge e of M ′ is incident to v, then mark e.
(c) Select one of Ai and Bi uniformly at random and move its edges from C

to M .

If Ci is a cycle of length 3 or more, then it is easy to modify the proof of
Lemma 1 in [9] to obtain a subroutine for computing an available matching-pair
at time i that covers all vertices of Ci. Moreover, using the famous union-find
data structure, we can implement this subroutine in O (|Ci| · α(n)) time. The
following lemma summarizes this result:

Lemma 5. If Ci is a cycle of length 3 or more, then we can compute an available
matching-pair {Ai, Bi} at time i in O (|Ci| · α(n)) time that covers all vertices
of Ci.

A maximal available set at time i is a set F available at time i such that for
every e ∈ E(Ci) − F , F ∪ {e} is not available at time i. Now, we are ready to
describe the details of Substeps 3a and 3b for those cycles Ci of C with |Ci| ≥ 3.
Indeed, they are replaced by the following four substeps:

(a) Compute an available matching-pair {Ai, Bi} at time i in O (|Ci| · α(n)) time
that covers all vertices of Ci.

(b) Extend both Ai and Bi to maximal available sets at time i. (Comment:
Using the famous union-find data structure, we can implement this substep
in O (|Ci| · α(n)) time by scanning the edges of Ci in an arbitrary order and
checking if each of them can be added to Ai and/or Bi.)

(c) For each vertex v ∈ V (Ci) such that both Ai and Bi have an edge incident
to v, if some edge e of M ′ is incident to v, then mark e.

(d) Select one of Ai and Bi uniformly at random and move its edges from C
to M .

We finish computing T2 and T3 by performing the following three steps:

4. Add to C those edges {u, v} ∈ M ′ such that both u and v are of degree at
most 1 in C. (Comment: Let M ′

4 denote the set of edges in M ′ that are added
to C at this step. For each cycle C in C, |E(C) ∩M ′

4| ≥ 2.)
5. For each odd cycle C in C, if |E(C)∩M ′| = 2 and exactly one edge in E(C)∩
M ′ is marked, then delete one edge in E(C)∩M ′ from C at random in such
a way that the marked edge is deleted with probability 2/3; otherwise, select
one edge in E(C)∩M ′ uniformly at random and delete it from C. (Comment:
Let M ′

5 denote the set of edges in M ′ that remain in C immediately after
this step.)

6. Set T2 and T3 to be C and the graph (V (G),M), respectively.

10 Z.-Z. Chen, Y. Fan, and L. Wang

4.3 Analysis of the Approximation Ratio

Our algorithm is clearly correct. We next analyze its approximation ratio.

Lemma 6. Let F be an available set at time i. Suppose that e1 = {u1, u2} and
e2 = {u2, u3} are two adjacent edges in Ci such that F contains no edge incident
to u1, u2, or u3. Then, F ∪ {e1} or F ∪ {e2} is available at time i.

Corollary 1. Suppose that F is a maximal available set at time i. Then, Ci−F
is a collection of vertex-disjoint paths each of length 1, 2, or 3.

A matching-pair {A,B} in Ci favors a vertex u of Ci if A contains an edge
e1 ∈ E(Ci) incident to u and B contains an edge e2 ∈ E(Ci) incident to u
(possibly e1 = e2). An available set F at time i is dangerous for an (unordered)
pair {e1, e2} of edges in M ′ if Ci − F contains a connected component that is a
length-2 path one of whose endpoints is an endpoint of e1 and the other is an
endpoint of e2.

Lemma 7. Let {A,B} be an arbitrary matching-pair in Ci that covers all ver-
tices of Ci. If A (respectively, B) is dangerous for a pair {e1, e2} of edges in
M ′, then {A,B} favors exactly one endpoint of the length-2 path in Ci − A
(respectively, Ci −B) between an endpoint of e1 and an endpoint of e2.

A maximal available matching-pair at time i is an available matching-pair
{A1, A2} at time i such that both A1 and A2 are maximal available sets at
time i.

Lemma 8. Let e = {v1, v2} be an edge in M ′. Then, Pr[e ∈M ′
5] ≥ 1

6 .

Recall T , Tint, Text, and β (they are defined in Section 4.1).

Lemma 9. Let δw(T) be the expected total weight of edges moved from
C to M at Step 3. Then, E [w(T3)] ≥ (0.5 + δ)w(T) and E [w(T3)] ≥(
(1 − δ) + 1

12 (1 − β)
)
w(T).

Theorem 3. For any fixed ε > 0, there is an O(m + n3)-time randomized ap-
proximation algorithm for MWTM achieving an expected approximation ratio

of 19(1−ε)
25−24ε .

Proof. We first estimate the running time of our algorithm. The computation of
C, M , and M ′ can be done in O(n3) time [7]. Step 3 can be done in O(n · α(n))
total time. The other steps take O(n) time. Thus, the time complexity is O(n3).

We next estimate its approximation ratio. By Fact 2 and Lemma 9, we have
the following three inequalities:

w(T1) ≥ (1 − ε)βw(T), (1)

E [w(T2)] ≥
(

(1 − δ) +
1

12
(1 − β)

)
w(T), (2)

E [w(T3)] ≥ (0.5 + δ)w(T). (3)

Finding Two Disjoint Matchings 11

Adding Inequalities 2 and 3, we have

E [w(T2)] + E [w(T3)] ≥
(

1.5 +
1

12
(1 − β)

)
w(T). (4)

Multiplying both sides of Inequality 4 by 12(1 − ε) and adding the resulting
inequality to Inequality 1, we get

w(T1) + 12(1 − ε)(E [w(T2)] + E [w(T3)]) ≥ 19(1 − ε)w(T). (5)

By Inequality 5, we have

E [max{w(T1), w(T2), w(T3)}] ≥ 19(1 − ε)

25 − 24ε
· w(T). (6)

Therefore, the algorithm achieves an expected approximation ratio of 19(1−ε)
25−24ε .

4.4 Derandomization

The above randomized algorithm makes random choices only in Substep 3d and
Step 5. To derandomize Step 5, we just modify it as follows:

5. For each odd cycle C in C, delete one edge e ∈ E(C)∩M ′ from C such that
the weight e is minimized over all edges in E(C) ∩M ′.

When processing cycle Ci in Step 3, we need one random bit in Substep 3d.
So, Step 3 needs r random bits in total. In the above analysis of the randomized
algorithm, only the proof of Lemma 8 is based on the mutual independence
between these random bits. Indeed, by carefully inspecting the proof, we can see
that the proof is still valid even if the random bits are only pairwise independent.
So, we can derandomize it via conventional approaches. Therefore, we have the
following theorem:

Theorem 4. For any fixed ε > 0, there is an O(m+n3α(n))-time approximation

algorithm for MWTM achieving a ratio of 19(1−ε)
25−24ε .

5 Open Problems

An obvious question is to ask if we can improve the running time of our parame-
terized algorithm for MTM. Preferably, we want a parameterized algorithm for
MTM such that the exponent of the exponential factor in the time bound of the
algorithm is linear in k. Another obvious question is to ask if we can design a
combinatorial approximation algorithm for MWTM that achieves a better ratio
than 0.769.

Feige et al. [5] have considered the problem of computing t disjoint matchings
in a given graph G such that the total number of edges in the matchings is
maximized, where t is a fixed positive integer. The special case of this problem
where t = 3 and the input graph is simple has been considered by Kosowski [11]
and Rizzi [13]. It seems interesting to design parameterized or approximation
algorithms for this problem and its special cases.

12 Z.-Z. Chen, Y. Fan, and L. Wang

References

1. Chen, Z.-Z., Konno, S., Matsushita, Y.: Approximating Maximum Edge 2-Coloring
in Simple Graphs. Discrete Applied Mathematics 158, 1894–1901 (2010); A prelim-
inary version appeared in Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 78–89.
Springer, Heidelberg (2010)

2. Chen, Z.-Z., Tanahashi, R.: Approximating Maximum Edge 2-Coloring in Simple
Graphs via Local Improvement. AAIM 2008 410, 4543–4553 (2009); A preliminary
version appeared in Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034,
pp. 84–96. Springer, Heidelberg (2008)

3. Chen, Z.-Z., Tanahashi, R., Wang, L.: An Improved Approximation Algorithm for
Maximum Edge 2-Coloring in Simple Graphs. Journal of Discrete Algorithms 6,
205–215 (2008); A preliminary version appeared in Kao, M.-Y., Li, X.-Y. (eds.)
AAIM 2007. LNCS, vol. 4508, pp. 27–36. Springer, Heidelberg (2007)

4. Chen, Z.-Z., Wang, L.: An Improved Randomized Approximation Algorithm for
Max TSP. Journal of Combinatorial Optimization 9, 401–432 (2005)

5. Feige, U., Ofek, E., Wieder, U.: Approximating Maximum Edge Coloring in Multi-
graphs. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS,
vol. 2462, pp. 108–121. Springer, Heidelberg (2002)

6. Gabow, H.: Implementation of Algorithms for Maximum Matching on Nonbipar-
tite Graphs. Ph.D. Thesis, Department of Computer Science, Stanford University,
Stanford, California (1973)

7. Gabow, H.: An Efficient Reduction Technique for Degree-Constrained Subgraph
and Bidirected Network Flow Problems. In: Proceedings of the 15th Annual ACM
Symposium on Theory of Computing (STOC 1983), pp. 448–456. ACM (1983)

8. Hartvigsen, D.: Extensions of Matching Theory. Ph.D. Thesis, Carnegie-Mellon
University (1984)

9. Hassin, R., Rubinstein, S.: Better Approximation for Max TSP. Information Pro-
cessing Letters 75, 181–186 (2000)

10. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publish-
ing Company, Boston (1997)

11. Kosowski, A.: Approximating the Maximum 2- and 3-Edge-Colorable Subgraph
Problems. Discrete Applied Mathematics 157, 3593–3600 (2009)

12. Kosowski, A., Malafiejski, M., Zylinski, P.: Packing [1,Δ]-Factors in Graphs of
Small Degree. Journal of Combinatorial Optimization 14, 63–86 (2007)

13. Rizzi, R.: Approximating the Maximum 3-Edge-Colorable Subgraph Problem. Dis-
crete Mathematics 309, 4166–4170 (2009)

14. Serdyukov, A.I.: An Algorithm with an Estimate for the Traveling Salesman Prob-
lem of Maximum. Upravlyaemye Sistemy 25, 80–86 (1984) (in Russian)

Discretely Following a Curve

Tim Wylie

Department of Computer Science, The University of Alberta, Edmonton, AB, Canada T6G-2E8
twylie@cs.ualberta.ca

Abstract. Finding the similarity between paths is an important problem that
comes up in many areas such as 3D modeling, GIS applications, ordering, and
reachability. Given a set of points S, a polygonal curve P , and an ε > 0, the
discrete set-chain matching problem is to find another polygonal curve Q such
that the nodes of Q are points in S and dF (P,Q) ≤ ε. Here, dF is the discrete
Fréchet distance between the two polygonal curves. For the first time we study
the set-chain matching problem based on the discrete Fréchet distance rather than
the continuous Fréchet distance. We further extend the problem based on unique
or non-unique nodes and on limiting the number of points used. We prove that
three of the variations of the set-chain matching problem are NP-complete. For
the version of the problem that we prove is polynomial, we give the optimal sub-
structure and the recurrence for a dynamic programming solution.

1 Introduction

Matching geometric objects and finding paths through designated points are common
problems in many areas of research such as pattern matching, computer vision, map
routing, protein structure alignment, ordering, etc. Some of these path problems are
fundamental, and are used to define complexity classes and completeness. A problem
closely related to our study here is map matching where the goal is to find a path through
an embedded graph that minimizes the distance from a given polygonal curve [4]. This
has several useful applications, as mentioned by Alt et al., such as determining the path
of a vehicle on a road network (graph) given noisy approximate GPS data (polygonal
curve). For map matching, the distance measure used is the Fréchet distance.

The Fréchet distance was originally defined by Maurice Fréchet in 1906 as a measure
of similarity between two parametric curves [9]. In the early 1990s, the Fréchet distance
between polygonal curves was studied by Alt and Godau [5] who presented efficient
algorithms and time bounds of O(mn logmn), where m,n are the number of vertices
in the polygonal curves. Following in 1994 Eiter and Mannila [7] defined the discrete
Fréchet distance as an approximate solution to the Fréchet distance based on polygonal
curves where only the nodes are taken into consideration.

With the continuous Fréchet distance, the time complexity of map matching on a
complete graph was further improved upon in [12] where a new problem was introduced-
which we will call set-chain matching (it was unnamed in this work). Given a polygonal
curveP , a set of pointsS, and a maximum distance ε > 0, the problem is to find another
polygonal curve,Q, through the set of points such that the Fréchet distance between the
new curve and the original are within an allowed distance, dF (P,Q) ≤ ε.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 13–24, 2013.
c© Springer International Publishing Switzerland 2013

14 T. Wylie

Fig. 1. An instance of the set-chain matching problem in 2D with one solution of k ≥ 11

Beyond the original work, we investigate many variations. We look at the complexity
of set-chain matching based on the discrete Fréchet distance, and although the original
definition allowed points in the set to be reused in the path, we now consider both unique
and non-unique points. We show that the unique point versions are NP-complete, and
the non-unique point versions are NP-complete when restricting the size of the set of
points used, but polynomial when limiting the size of the path. Figure 1 shows a simple
instance of the set-chain matching problem, which is formally defined at the beginning
of Section 3.

The variations of discrete set-chain matching have many applications. Suppose we
have intermittent lossy GPS vehicle data where we can not guarantee the path of the
vehicle between our data points. We can find the shortest (and arguably the most plau-
sible) path of the vehicle based on the discrete Fréchet distance. If the points in our set
represent signal towers (cellular, radio, etc.), which generally have a spherical range,
then we can also consider several coverage problems. Assuming we know the path of a
vehicle, what is the minimum number of towers needed to ensure that the signal is not
lost. Simply knowing whether the path is covered is important, but optimizing it along
multiple roads and areas is crucial. These types of problems are studied in many areas
related to wireless sensor networks, graphics, scheduling, and ordering.

We first provide some background and related work in Section 2. We then cover
the definitions and variations of the discrete set-chain matching problem in Section 3.
Sections 4, 5, and 6 follow with the actual results of the problems. Finally, we conclude
in Section 7 and give some future work related to this research.

2 Background

With respect to map matching, the problem of finding a path in a graph given a polyg-
onal line was first posed by Alt et al. [4] as follows: Let G = (V,E) be an undirected
connected planar graph with a given straight-line embedding in R2 and a polygonal line
P , find a path π in G which minimizes the Fréchet distance between P and π. They
give an efficient algorithm which runs in O(pq log q) time and O(pq) space where p
is the number of line segments of P and q is the complexity of G, but it also allowed
vertices and edges to be visited multiple times.

The recent work by Maheshwari et al. improved the running time for the case of
a complete graph [12]. The original algorithm decides the map matching problem in

Discretely Following a Curve 15

O(pk2 log k) where k is the number of vertices in the graph, and the new algorithm
solves it in O(pk2). Although they do not specify the name for the problem, we refer
to it as set-chain matching to avoid confusion with other matching problems. Formally,
the set-chain matching problem is defined as: Given a point set S and a polygonal curve
P in Rd (d ≥ 2), find a polygonal curveQ with its vertices chosen from S, which has a
minimum Fréchet distance to P . They decide this problem in O(pk2), and also give an
algorithm to find the minimal Fréchet distance in O(pk2 log pk).

We originally noted the complexity of discrete set-chain matching with unique nodes,
without the actual proof, in [18]. We not only prove it here, but we also show that the
continuous version of the problem with unique points is NP-complete. This paper is
a continuation of our earlier work, but the result was also independently proven by
Accisano and Üngür [1] and Shahbaz proved it for non-unique points [15].

A variation of the discrete set-chain matching problem is also related to the discrete
unit disk cover (DUDC) problem when limiting the number of points from S used.
The DUDC problem is known to be NP-Hard, and is also difficult to approximate with
the most recent results being an 18-approximation algorithm [6], a 15-approximation
algorithm [8], and a (9 + ε)-approximation algorithm [2]. Nearly all of the constant
factor approximations have been within the last decade. The problem does admit a
PTAS [14], but this is infeasible for most instances of the problem. DUDC does not
admit a Fully Polynomial Time Approximation Scheme (FPTAS) unless P=NP.

The discrete Fréchet distance was originally defined by Eiter and Mannila [7] in
1994, and was further expanded on theoretically by Mosig et. al. in 2005 [13]. Given
two polygonal curves, we define the discrete Fréchet distance as follows. We use d(a, b)
to represent the euclidean distance between two points a and b, but it could be replaced
with other distance measures depending on the application.

Definition 1. The discrete Fréchet distance dF between two polygonal curves f : [0,m]
→ Rk and g : [0, n] → Rk is defined as:

dF (f, g) = min
σ:[1:m+n]→[0:m],β:[1:m+n]→[0:n]

max
s∈[1:m+n]

{
d
(
f(σ(s)), g(β(s))

)}
where σ and β range over all discrete non-decreasing onto mappings of the form σ :
[1 : m+ n] → [0 : m], β : [1 : m+ n] → [0 : n].

The continuous Fréchet distance is typically explained as the relationship between
a person and a dog connected by a leash walking along the two curves and trying to
keep the leash as short as possible. However, for the discrete case, we only consider
the nodes of these curves, and thus the man and dog must “hop” along the nodes of
the curves. Consider the scenario in which a person walks along A and a dog along B.
Intuitively, the definition of the paired walk is based on three cases:

1. |Bi| > |Ai| = 1: the person stays and the dog hops forward;
2. |Ai| > |Bi| = 1: the person hops forward and the dog stays;
3. |Ai| = |Bi| = 1: both the person and the dog hop forward.

By giving a dynamic programming solution for finding the discrete Fréchet distance
between two polygonal curves, Eiter and Mannila proved:

16 T. Wylie

Theorem 1. The discrete Fréchet distance between two polygonal curves, with m and
n vertices respectively, can be computed in O(mn) time [7].

Figure 2 shows the relationship between the discrete and continuous Fréchet dis-
tances. In Figure 2(a), we have two polygonal curves (or chains) 〈a1, a2, a3〉 and 〈b1, b2〉,
the continuous Fréchet distance between the two is the distance from a2 to segment
b1b2, i.e., d(a2, o). The discrete Fréchet distance is d(a2, b2). The discrete Fréchet dis-
tance could be quite larger than the continuous distance. On the other hand, with enough
sample points on the two curves, the resulting discrete Fréchet distance, i.e., d(a2, b)
in Figure 2(b), closely approximates d(a2, o).

(a) (b)

Fig. 2. The relationship between the discrete and continuous Fréchet distance where o is the
continuous and the dotted line between nodes is the discrete. (a) shows a case where the curves
have fewer nodes and a larger discrete Fréchet distance, while (b) is the same basic path with
more nodes, and thus provides a better approximation of the Fréchet distance.

3 Discrete Set-Chain Matching

We begin with the formal definitions of the problem and the variations as well as some
terminology. It is important to note that, as in the continuous version, we make no
requirements that P or Q be planar. For discussion, we will refer to the number of
nodes in a polygonal curve as the “size” of the curve and it will be denoted as |A| for a
polygonal curve A.

Definition 2 (The Discrete Set-Chain Matching Problem)
Instance: Given a point set S, a polygonal curve P in Rd (d ≥ 2), an integerK ∈ Z+,
and an ε > 0.
Problem: Does there exist a polygonal curve Q with vertices chosen from S′ where
S′ ⊆ S, such that T ≤ K and dF (P,Q) ≤ ε?

T is defined in two ways. When limiting the number of nodes in the curve, T = |Q|,
and if restricting the number of points used then T = |S′|. Figure 3 shows an example
demonstrating the difference between minimizing |Q| or |S′|. Here, minimizing |Q|
will always yield |Q| = 3 regardless of the points chosen. However, minimizing |S′|
will return |S′| = 2 and |Q| = 3, which is the only set of points that is minimal.

We look at three variations of discrete set-chain matching. They vary whether there
is a uniqueness constraint on s ∈ S being used as a node in Q (if points may be used
more than once), and whether our goal is to limit the size of the curve Q or the set S′.
We distinguish the problems as Unique/Non-unique(U/N) Set-Chain(S) Matching(M)

Discretely Following a Curve 17

Fig. 3. The difference between minimizing |Q| and |S′|. Minimizing |S′| gives Q = 〈s1, s2, s1〉
where |S′| = 2 and |Q| = 3, but minimizing |Q| will yield |Q| = 3 whether it uses the sequence
〈s1, s2, s1〉 or 〈s1, s2, s3〉

with a k Subset/Curve(S/C). The variants are thus NSMS-k, NSMC-k, and USM-k.
When looking at unique nodes, limiting |Q| is equivalent to limiting the set of points
used, |S′|, since they can only be used once, so we do not separate the cases.

4 Set-Chain Matching with T = |Q| (NSMC-k)

The original set-chain matching work dealt with the continuous version of NSMC-k.
The discrete version is decidable with a straightforward dynamic programming solu-
tion. We first overview the recurrence relation and algorithm to solve the optimization
version, and show that that NSMC-k exhibits an optimal substructure.

Figure 3 demonstrates that we must find at least one point si ∈ S for every pj ∈ P .
The recurrence relation is shown in Equation 1. It assumes a 2D array, M , of size
|S|× |P | where the columns represent the nodes in the polygonal curve P and the rows
represent points in the set S. The initial condition assumes a column zero populated
with 0’s in every row. The recurrence can then be processed column by column until
finished. The final optimal value will beOpt = min

|S|
k=1(M [k, |P |]). This can be solved

in O(mn) time. A straightforward iterative algorithm that implements this method and
solves the optimization version of the problem is easy to construct. The optimal result
is then used to decide NSMC-k.

M [i, j] = min

⎧⎪⎨⎪⎩
M [i, j − 1], if d(si, pj) ≤ ε,M [i, j − 1] �= ∅
min

|S|
k=1(M [k, j − 1]) + 1, if d(si, pj) ≤ ε,M [i, j − 1] = ∅

∅, if d(si, pj) > ε

(1)

Theorem 2 (Optimal Substructure of NSMC-k). LetP = 〈p1, ..., pn〉 be a polygonal
chain, and S = {s1, ..., sm} be a set of points such that there exists a Q = 〈q1, ..., qk〉
through a set S′ ⊆ S which is a minimum sequence such that dF (P,Q) ≤ ε.
(1) If d(pn−1, qk) ≤ ε and d(pn−1, qk−1) > ε, then Qk is an optimal solution for
Pn−1.
(2) If d(pn−1, qk−1) ≤ ε, then Qk−1 is an optimal solution for Pn−1.
(3) If d(pn−1, qk) > ε, then Qk−1 is an optimal solution for Pn−1.

Proof. (1) If d(pn, qk) ≤ ε and d(pn−1, qk) ≤ ε, then the point qk covers both points
by an ε-ball. However, qk−1 does not cover pn−1. Thus,Qk is still the optimal solution.

18 T. Wylie

(2) If d(pn−1, qk−1) ≤ ε, then qk only covers pn. If d(pn, qk−1) ≤ ε, thenQk−1 would
be an optimal solution, but by definition Q was minimal so this can not be true. (3) If
d(pn−1, qk) > ε, then we have the same argument with pn only covered by qk, and
thus Qk−1 must be optimal for Pn−1. �
Theorem 3. The discrete non-unique set-chain matching problem where T = |Q| is
polynomial, i.e., NSMC-k ∈ P.

Proof. Since we have shown that NSMC-k has an optimal substructure, given P, S, and
K , we can find an optimal K ′ from a dynamic programming algorithm based on the
recurrences (Equation 1). Then we decide NSMC-k by comparing whetherK ≤ K ′. �

5 Set-Chain Matching with T = |S′| (NSMS-k)

The discrete non-unique set-chain matching problem where we limit the number of
points from S used as nodes inQ turns the problem into a coverage issue. This problem
is equivalent to the discrete unit disk cover (DUDC) problem, which is known to be
NP-Hard and is difficult to approximate.

Theorem 4. The discrete non-unique set-chain matching (NSMS-k) problem where
T = |S′| is NP-complete.

Proof. This can be shown via a straightforward reduction from the discrete unit disk
cover (DUDC) problem which is NP-Hard [6]. Formally, we are given a set of points
P and a set of disks D = {D1, D2, ..., DN} with centers C = {c1, c2, ..., cN} with all
disks of radius r.

Now, let P ′ be a polygonal curve made of all points in P in any order. Let S = C
and ε = r. Now, ∃ a minimum-cardinality subset D′ ⊆ D with centers C′ such that
∀ p ∈ P , ∃ a Di ∈ D′ that contains p if and only if ∃ a polygonal curve Q where the
vertices are from points in S′ ⊆ S such that |S′| = |D′| and dF (P ′, Q) ≤ ε.

We first prove the forward direction. Given an instance I ⊆ D that is a minimum
covering for all points in P . We construct P ′ by connecting all points in P in any order.
Making a polygonal curve Q with the set of centers (CI) of I is straightforward. We
constructQ by finding the disk (Di) that covers p1 ∈ P ′, and we set q1 = ci where ci is
the center of disk Di. Similarly, we walk through each pi ∈ P ′ and set the center of the
disk Dj ∈ I covering point pi as qi = cj . Every ordered node in P ′ is now still within
ε of a node in Q, thus dF (P ′, Q) ≤ ε, and the set of nodes used, |S′|, is equal to |I|.

In the other direction, if we have a polygonal curve Q = {q1, q2, . . . , qN} such
that the number of unique locations used for vertices is of minimum cardinality and
dF (P ′, Q) ≤ ε. Suppose the set of unique locations S′ that Q is made of is not a
minimal disk cover of all the vertices of P ′ viewed as points in a set P . This implies
there exists at least one qi that is unnecessary for a covering by C, and there is a point
pj that can be covered by another ck. Let C′ be this smaller covering. Using the same
construction as above we can build a P ′′ and Q′. This would mean |C′| < |S′| which
contradicts our assumption that S′ in minimal. Thus, every node pi ∈ P ′ is within ε of
at least one node qj ∈ Q, and S′ is a minimum cover.

Finally, we show the problem is in NP. Given an instance I we can check whether
dF (P, I) ≤ ε in O(mn) time via Theorem 1. �

Discretely Following a Curve 19

6 Unique Set-Chain Matching (USM-k)

We now address unique set-chain matching where any point from the set can be used
at most once, and show that this problem is NP-complete via a reduction from planar
3-SAT [11]. Planar 3-SAT is any 3-SAT formula that can be drawn as a planar graph
with vertices representing clauses and variables. This is a convenient form of 3-SAT for
geometric reductions since a crossover gadget is unnecessary.

By standard convention, we first introduce several planar “gadgets” that we then
arrange in our reduction. We will build up the gadgets in a piecewise manner, and then
show how they are connected to form a single polygonal curve. Due to the length of this
section, we cover the gadgets and then formally do the reduction with the assumption
of their correctness.

Let ϕ be the 3-SAT formula represented by the input instance of planar 3-SAT with
N variables andM clauses. Given an ε > 0, we construct a point set S and a polygonal
curve P and let K = |Sε| = |S| requiring all points to be used. Here, Sε = {s ∈ S|p ∈
P and d(p, s) ≤ ε} and referred to as the set of reachable points. We show that ϕ is
satisfiable if and only if with our construction there exists a polygonal curve Q with
unique nodes from the set S such that dF (P,Q) ≤ ε, i.e. |Q| = |S| ≤ K .

6.1 Choices and Chains

We first look at the main building block for our gadgets in this reduction, which is
the choice gadget shown in Figure 4(a). There are two ways for a new curve to be
constructed starting at a and using the points {a, b, c} in order to “cover” the nodes of
the curve 〈x, y, z〉. We label the curve 〈a, b, c〉 as true, and the curve 〈a, c, b〉 as false.
This is because the second curve violates our ε constraint since d(b, z) > ε.

(a) (b) (c)

Fig. 4. (a) A choice gadget. (b) A chain with a false connection. (c) A variable gadget.

Choice gadgets are linked together to make a chain. Chain gadgets are important
because they force a new curve to stay in a true or false orientation, and therefore
transfer information. An example of a chain with a false curve is shown in Figure 4(b).

6.2 The Variable Gadget

The base of the variable gadget is shown in Figure 4(c). A true setting begins the new
chain as 〈s1, s2, s3, s6〉 while a false setting begins 〈s1, s3, s2, s4, s5〉. The different set-
tings change whether s4 is needed to keep dF (P,Q) ≤ ε. A true setting does not need
the extra node while the false does. This free node is what is propagated to the clause

20 T. Wylie

Fig. 5. Variable gadgets linked together for variable xi where xi is set to false (si4 is used) and
thus ¬xi is true (si7 is free)

gadget. Figure 5 shows the full variable gadget. As is standard in many reductions, each
variable is repeated some finite length while alternating between x and ¬x based on
what is needed in the equation.

Unfortunately, the variable gadget alone will not ensure that the new curve alternates
between true and false configurations, which we need for a variable and its comple-
ment. Therefore, the variable gadget has a “switch” component, which makes the free
point necessary at every other variable gadget, and thus alternates Q between true and
false paths. It is important to note that these switch segments will not be connected to
the variable gadgets within ε. Note in Figure 5 that the first and last instance of the
variable gadget do not have the full switch component.

For our planar 3-SAT instance, there may be edges which need to connect from the
top and the bottom of the variable gadget. Although an example is not given, this is
possible with our variable gadget. Looking at Figure 5, imagine everything is rotated
in the gadget from si7 to siE around that vector. This flips the variable and half of the
switch component without changing the reduction, which allow attaching chains onto
the other side of the variable gadget. The following switch component would also have
to be below and then flip back up.

6.3 The Clause

A clause gadget is straightforward. As shown in Figure 6(a), three chains meet within
ε of each other (ci1 , ci2 , ci3), and there are only two points between them. Each chain
is connected at the other end (vi1 , vi2 , vi3) to variable gadgets. The true or false setting
from the variable is propagated up to the clause gadget and at least one of the chains
must have the new curve in a true position. Only two of the chains can have a false
setting or else one of the end nodes (Cki) in the clause gadget will not be within ε of
any available point, which is equivalent to the clause being false in 3-SAT. Also note
that in the clause gadget, if either point is not needed, they can be used by a true chain
so that all points are used.

The chains from the clause gadgets are attached to the variable gadgets in the high-
lighted area of Figure 6(b). There is one point between the ends of the three chains. A
segment is added from the clause endpoint vky (for clause ck where 1 ≤ y ≤ 3) to the

Discretely Following a Curve 21

(a) Clause Gadget (b) Variable Connection

Fig. 6. (a) The clause gadget. (b) The connection point between a variable gadget and a chain to
the clause gadget.

opposite side of the switch component of the variable (or complement) desired, e.g., if
x1 is the third variable in the clause ck and the connection point is n1i(x1) or n1j (¬x1),
then a segment is placed connecting the chain vk3 to n1j (¬x1).

6.4 Connecting the Gadgets

Although the polygonal curve P does not have to be planar, it must be a single con-
tinuous curve. Here, we will show that all the gadgets and segments can be connected
to form P . The non-planarity allows us to focus on a single clause gadget to show one
way in which everything can be connected. We have to be careful that we do not con-
nect two nodes that would change the reduction such as connecting two end nodes at a
clause– ck1 , ck2 , ck3 for clause Ck. For simplicity, we can connect all variables together
and all the beginning and end switch points. Let q1 = p11 and then connect the variable
gadgets by adding in the edge pkF pk+11

for all variables 1 ≤ k ≤ N − 1, and the last
variable node pNF connects to a vertex in C1.

We show a simple example of three variables and a clause in Figure 7 without the
connecting segments between gadgets. Let this be clause Ck, and the connected vari-
ables be x1, x2, x3, at nodes nti or ntj where 1 ≤ t ≤ 3 and let ntj be the end node of

Fig. 7. Example USM-k clause with three variables Ck = (¬x1 ∪ x2 ∪ ¬x3)

22 T. Wylie

the curve beginning with nti (this will be either nti−1 or nti+1). We are only concerned
about the end nodes of curves connected to the clause gadget. The other chains will
be taken care of separately, including those which we will ignore for now (the switch
component chains n13 to n14 and n33 to n34 in our example).

The end nodes of the curves that need to be connected are ck1 , ck2 , ck3 , n1j (n11),
n2i(n24), n3j (n31). These can be connected as a single chain, with every edge longer
than ε, by creating the segments n1jck2 , n2in3j , and then ck1 and ck3 are the end nodes
of the new curve. If we do this for all clauses, then we can connect the clauses with the
segments ck3ck+11

for 1 ≤ k ≤M − 1.
The only remaining unconnected curves are the switch components that are not tied

to a clause gadget. These can be connected in any order provided the end nodes are not
within ε, and we do not introduce a loop. This is straightforward by connecting every
other switch component curve (never creating the segments nti−1nti or ntinti+1 for
1 ≤ t ≤ N), and then connecting all the skipped curves.

6.5 The Reduction

Theorem 5. The discrete unique set-chain matching (USM-k) problem is NP-complete.

Proof. We are given a planar 3-SAT instance Gϕ = {V,E} with vertices V = X ∪ C
such that the vertices represent variables X = {x1, x2, . . . , xN} and clauses C =
{C1, C2, ..., CM}, and the edges E = {e1, e2, . . . , eZ} connect variables to clauses
with the degree of each Ci ∈ C being three. Given the planar 3-SAT instance Gϕ, we
construct a polygonal curve P and a point set S using an ε > 0 based on the method
described. This construction takes O(|C| + |X | + |E|) for constructing P and S and
is thus polynomial. The sizes of P and S are dependent on ε and the metric space. In
general, for any edge ei ∈ E in the space, where ‖ei‖ is the length of the edge, there
are �‖ei‖/ε� points in S and nodes of P used to transfer information along that edge.

We also refer to the 3-SAT equation ϕ derived from Gϕ for the satisfiability of Gϕ.
The planar 3-SAT equation ϕ derived from Gϕ is satisfiable if and only if there exists
a polygonal curve Q with nodes from the set S such that dF (P,Q) ≤ ε and each point
represents a unique node in Q.

In the forward direction, we look at the value of ϕ. First, we assume ϕ is satisfiable.
For every clause, there is at least one variable which has a true value. In our construction
this means at least one chain does not need a point from the center of the clause gadget,
and thus we can easily find a Q such that dF (P,Q) ≤ ε.

If ϕ is unsatisfiable, then there is at least one clause where all three variables have
a false value. This means there is a clause gadget in our construction where all three
chains are in a false setting, and all need a point in the clause gadget center (Figure
6(a)). However, since there are only two points within ε of the clause gadget chains (the
points ci1 , ci2 , ci3 for clause gadget Ci), one chain must use a point outside the clause
gadget. This causes dF (P,Q) > ε.

In the other direction, assume there exists a path Q through S′ ⊂ S such that
dF (P,Q) ≤ ε. There must be at least one true chain at each clause gadget, and since
the three chains propagate this setting from the variable, we know at least one vari-
able (or complement) was true. Thus, for every variable attached to a clause, it has the

Discretely Following a Curve 23

correct true or false setting. Therefore, if dF (P,Q) ≤ ε, then the current assignment
of each variable also satisfies ϕ.

If no path Q exists such that dF (P,Q) ≤ ε, then there is at least one clause gadget
where all three chains had false settings and needed an extra point for Q within the
clause gadget. Since the variable gadgets and switch components always have a path
within ε, the problem must occur in a clause. Again, this only happens if all three chains
have a false setting, and similarly to the previous example, these propagated along the
chains from the attachments to the variable gadgets. Thus, there must also exist a clause
in ϕ where all three variables are false.

Last, we know the problem is in NP. Given an instance I we can check whether
dF (P, I) ≤ ε in O(mn) time via Theorem 1. �

Our reduction is based on the discrete Fréchet distance, but our construction also
ensures that any resulting path Q is within ε of P along the edges as well. Thus, our
reduction can be adapted to prove that USM-k is also NP-complete for the continuous
Fréchet distance. This result was also recently proven independently and with a unique
reduction in [1]. Due to this result being known and for space concerns, we only supply
the basic outline of the proof.

Corollary 1. The unique set-chain matching (USM-k) problem based on the continu-
ous Fréchet distance is NP-complete.

Proof. This can be proven based on the polygonal curves P and Q being constructed
of straight line segments. Given two line segments a = 〈p1, p2〉 and b = 〈p′1, p′2〉,
it is straightforward to see that if d(p1, p

′
1) ≤ ε and d(p2, p

′
2) ≤ ε, then under the

continuous Fréchet distance dF(a, b) ≤ ε.
Further, it is known that for any two polygonal curves, dF(P,Q) ≤ dF (P,Q) [7].

Thus, if both P and Q are polygonal curves and the problem is NP-complete for the
discrete Fréchet distance within ε, it will also hold for the continuous Fréchet distance
within an ε′ ≤ ε and an instance can be verified in O(mn logmn) [5]. �

7 Conclusion

In this paper we have outlined and extended the discrete set-chain matching problem
and other variations based on restricting our selection to unique nodes, the number of
nodes allowed in the curve, or the number of points to choose from. We proved that
two variations are NP-complete, and the unique point variation is still NP-complete
when based on the continuous Fréchet distance. We proved that the other variation is
polynomial, and gave the recurrences for a dynamic programming implementation. We
conclude with some open problems and further research directions for this work.

(1) What are the complexities based on maximizing the number of vertices in Q?
(2) We can also reverse the problem– if we are given a set size for Q, can we mini-

mize the discrete Fréchet distance between P,Q, i.e., dF (P,Q) ≤ ε?
(3) What are the complexities with imprecise input? How difficult is it to find the

minimum and maximum length Q while respecting the discrete Fréchet distance? This
builds off computing the discrete Fréchet distance with imprecise input in general [3].

(4) What are the approximation bounds for the optimization versions? We know
NSMS-k is equivalent to DUDC which generally only admits high approximations.

24 T. Wylie

References

1. Accisano, P., Üngör, A.: Hardness results on curve/point set matching with Fréchet dis-
tance. In: Proc. of the 29th European Workshop on Computational Geometry, EuroCG 2013,
pp. 51–54 (March 2013)

2. Acharyya, R., Manjanna, B., Das, G.K.: Unit disk cover problem. CoRR, abs/1209.2951
(2012)

3. Ahn, H.-K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing the discrete
Fréchet distance with imprecise input. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010, Part II. LNCS, vol. 6507, pp. 422–433. Springer, Heidelberg (2010)

4. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49(2), 262–283
(2003)

5. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Interna-
tional Journal of Computational Geometry and Applications 5, 75–91 (1995)

6. Das, G.K., Fraser, R., Lòpez-Ortiz, A., Nickerson, B.G.: On the discrete unit disk cover
problem. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 146–157.
Springer, Heidelberg (2011)

7. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical Report CD-TR 94/64,
Information Systems Department, Technical University of Vienna (1994)

8. Fraser, R., Lòpez-Ortiz, A.: The within-strip discrete unit disk cover problem. In: Proc. of
the 24th Canadian Conf. on Computational Geometry, CCCG 2012, pp. 53–58 (2012)

9. Fréchet, M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico
di Palermo (1884 - 1940) 22(1), 1–72 (1906)

10. Jiang, M.: Map Labeling with Circles. PhD thesis, Montana State University (2005)
11. Lichtenstein, D.: Planar Formulae and Their Uses. SIAM Journal on Computing 11(2),

329–343 (1982)
12. Maheshwari, A., Sack, J.-R., Shahbaz, K., Zarrabi-Zadeh, H.: Staying close to a curve. In:

Proc. of the 23rd Canadian Conf. on Computational Geometry, CCCG 2011, August 10-12
(2011)

13. Mosig, A., Clausen, M.: Approximately matching polygonal curves with respect to the
Fréchet distance. Computational Geometry: Theory and Applications 30(2), 113–127 (2005)

14. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete and
Computational Geometry 44(4), 883–895 (2010)

15. Shahbaz, K.: Applied Similarity Problems Using Fréchet Distance. PhD thesis, Carleton Uni-
versity (2013)

16. Wolff, A.: A simple proof for the NP-hardness of edge labeling. Technical Report W-SPNPH-
00, Institut für Mathematik und Informatik, Universität Greifswald (2000)

17. Wylie, T.: The Discrete Fréchet Distance with Applications. PhD thesis, Montana State Uni-
versity (2013)

18. Wylie, T., Zhu, B.: Discretely following a curve (short abstract). In: Computational Geome-
try: Young Researchers Forum, CG:YRF 2012, pp. 33–34 (2012)

NF-Based Algorithms for Online Bin Packing

with Buffer and Item Size Limitation

Feifeng Zheng1, Li Luo2, and E. Zhang3

1 Glorious Sun School of Business and Management,
Donghua University, Shanghai, 200051, P.R. China

2 Business School of Sichuan University, Chengdu, 610064, P.R. China
3 School of Information Management and Engineering,

Shanghai University of Finance and Economics, Shanghai, 200433, P.R. China
ffzheng@dhu.edu.cn

Abstract. This paper studies a variation of online bin packing where
there is a capacitated buffer to temporarily store items during packing,
and item size is within interval (α, 1/2] for some 0 ≤ α < 1/2. The prob-
lem is motivated by surgery scheduling such that we regard the planned
uniform available time interval in each day as a unit size bin and surg-
eries as items to be packed. We investigate the asymptotic performance
of algorithm NF (Next Fit) and NF-based online algorithms. The clas-
sical NF algorithm without use of the buffer is proved to be asymptotic

2
1+α

-competitive. We mainly propose an NF-based algorithm which uses
the buffer and has an asymptotic competitive ratio of 13/9 for any con-
stant buffer size not less than one. We also prove a lower bound of 4/3.
Experimental results further reveal that the proposed algorithm using
buffer is of effective practical performance.

Keywords: Bin packing, Online algorithm, Asymptotic competitive
ratio.

1 Introduction

This paper studies the following scenario of online bin packing problem. A set of
items, which are with lower and upper bounds of size, are released over list and
to be packed into unit size bins. Released items are required to be temporarily
stored in a capacitated buffer before packing into bins. The problem is motivated
in the area of OR (Operating Room) scheduling. In each day there is a uniform
time interval available for an OR to process surgical operations. Each surgical
request with specific planned operation time is temporarily stored in a request
waiting pool after its arrival. In each day, a surgery scheduler selects in the
pool a subset of requests to be processed in the OR on the next day, satisfying
that the total planned operation time of selected requests cannot exceed the
length of available time of the OR in the day. To improve its running efficiency,
an OR is generally used to process surgeries from a single department, such as
urological surgeries from department of urology. These surgeries are of similar

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 25–36, 2013.
c© Springer International Publishing Switzerland 2013

26 F. Zheng, L. Luo, and E. Zhang

planned operation time, and it is reasonable to assume lower and upper bounds
of operation time for surgical requests. We may regard the uniform available time
interval in a day as the unit size space of a bin, the surgical requests as items,
and the request waiting pool as a buffer. Focusing on the task to assign efficiently
an available combination of waiting requests to each day and disregarding other
uncertainties, we describe the above OR scheduling problem as online bin packing
with buffer and item size limitation.

Online bin packing problem was first studied by Ullman [1] and has been
extensively investigated in recent decades (see Galambos and Woeginger [2] and
Seiden [3]). In one-dimension online bin packing problem, each item with size
at most one is released over list such that it has to be packed irrecoverably
into unit size open bins on its arrival without knowledge of any future items.
Johnson [4] proved that NF(Next Fit) algorithm has a worst-case ratio of 2. NF
keeps exactly one bin open at any time during packing, closing a current open
bin to open the next one provided that a released item cannot be packed into
the current open bin. Simchi-Levi [5] proved that FF (First Fit) and BF (Best
Fit) algorithms have a worst-case ratio of no more than 7/4. Zhang et al. [6]
presented a 7/4-competitive online algorithm that runs in linear time and keeps
at most four bins open at any time.

Some authors studied long term performance of online algorithms which is
measured by parameter ACR (asymptotic competitive ratio). We define ACR
as follows. For any item input instance σ, let nA(σ), n∗(σ) be the number of
bins used by an online algorithm A and by an optimal offline algorithm OPT
respectively. The algorithm A is defined as

R∞
A = lim

u→∞ sup
σ

{
nA(σ)

n∗(σ)
|n∗(σ) = u

}
.

We also say A is asymptotic R∞
A -competitive. For online bin packing algorithms,

Johnson et al. [7] defined an ANY FIT class such that a new bin is never opened
unless one released item cannot be packed into any of current open bins, and
showed that any algorithm in the ANY FIT class cannot have an ACR smaller
than 1.7. Note that NF, FF and BF are all in the ANY FIT class. Yao[8] pre-
sented a revised FF algorithm that is not in the ANY FIT class and has an ACR
of 5/3. Ramanan et al. [9] provided a linear time online algorithm Modified Har-
monic (MH) with ACR strictly less than 1.615. Seiden [3] developed an online
algorithm named Harmonic++ which has an ACR of 1.58889. The best known
lower bound 1.5403 of ACR is due to Balogh et al. [10].

Since NF keeps at most one bin open at any time and runs in O(u) time and
O(1) space for processing u items, it is probably the simplest and definitely one
of the fastest online algorithms. This implies that NF is an easiest algorithm to
operate in practice. Thus, we focus on the performance of NF-based algorithms
with the use of buffer for the problem considered in this paper.

NF-Based Algorithms for Online Bin Packing 27

1.1 Related Work

Galambos [11] studied an online bin packing problem with unit size buffer-bins,
which are used to temporarily store released items before they are packed into
open bins, and proposed an online algorithm using two buffer-bins. This idea
was further developed by Galambos and Woeginger [12] for an algorithm that
uses three buffer-bins and has an ACR of

∏
∞ ≈ 1.69103. They showed that any

bounded-space online algorithm with repack has an ACR not less than
∏

∞.
Another related variation of online bin packing is allowed to repackage a finite

number of already packed items among open bins (see Gambosi et al. [13], and
Balogh and Galambos [14]). Gambosi et al. [13] presented two algorithms with
ACR of 3/2 and 4/3 respectively. The first algorithm is allowed to move some
small items only one time for each, while the second one is allowed to move each
item more than one time. Balogh et al. [15] studied the case where at most k
items can be repackaged at any time during packing. They proved that as k goes
to infinity, both upper and lower bounds of ACR approach 3/2.

Some authors studied various scenarios on the constraint of item size. Gutin et
al. [16] considered a special case where there are exactly two possible item sizes
and both item sizes are bounded from above by 1/k for some natural number k.
They proposed an optimal 4/3-competitive online algorithm. Epstein and Levin
[17] gave a further study on specific k and presented an online algorithm with

optimal competitive ratio of at most (k+1)2

k2+k+1 . Coffman et al. [18] investigated the
asymptotic performance of FF algorithm in a dynamic bin packing model where
items are released over time and are of size at most 1/k where k is a natural
number. Han et al. [19] reinvestigated FF algorithm in the case with item size
1/i where i is a natural number not less than k.

In this paper we study an online bin packing scenario with a capacitated buffer
and item size limitation. The rest of the paper is organized as follows. Section
2 describes the problem formally and gives some results on the asymptotic per-
formance of NF algorithm. Sections 3 presents an NF-based online algorithm as
well as its asymptotic competitive analysis. In Section 4 we present experimental
results on practical performance of the two online algorithms. Finally Section 5
concludes this paper.

2 Basic Description and Analysis of NF Algorithm

2.1 Problem Description

There are sufficient unit size bins to pack a set of items {J1, J2, . . .}. Items are
released over list such that the decision on packing each item into some open
bin has to be made on its arrival. There is an auxiliary buffer S with capacity
|S| ≥ 1, and each released item is temporarily stored in the buffer before it is
moved into one of current open bins. The decision on packing each released item
into an open bin is thus delayed to some extent due to the use of the buffer. It is
assumed that the size sj of any item Jj satisfies sj ∈ (α, 1/2] where 0 ≤ α < 1/2
due to the observation that for some specific departments, the planned operation

28 F. Zheng, L. Luo, and E. Zhang

time of any surgery cannot be arbitrarily small and is generally less than half
of the length of available time interval in a day. We also assume that there is at
most one bin open for loading items at any time, that is, the NF rule is adopted
during bin packing. Items can be exchanged between an open bin and the buffer
during packing. The objective is to minimize the total number of used bins for
packing all the released items.

We observe that if 1/3 ≤ α < 1/2, then each item is of size within (1/3, 1/2].
This is a trivial case since any algorithm may produce an optimal solution
by packing exactly two items into each open bin. Thus, it is assumed that
0 ≤ α < 1/3 in the remaining of this paper. For any item input instance, let
(B1, B2, . . . , Bn) be the bins used by an online algorithm and indexed according
to their opening order. Let li be the final load of each bin Bi (1 ≤ i ≤ n). By
the assumption that each item is of size within (α, 1/2], the following lemma is
straightforward.

Lemma 1. Given that item size is within (α, 1/2] where 0 ≤ α < 1/3. For any
online algorithm, each bin Bi (1 ≤ i < n) contains at least two items, and its
load li > 1/2.

2.2 Algorithm NF and Its ACR Analysis

Johnson [4] proved that NF has a worst-case ratio of 2 when item size is within
(0, 1]. We observe that the algorithm has an ACR of 2, even if item size is within
(0, 1/2]. This can be verified by a constructed instance, in which there are u
copies of two items with sizes {1/2, ε} where 0 < ε < 1/u and u is an arbitrarily
large even number. NF spends u bins while an optimal offline algorithm OPT
spends exactly u/2 + 1 bins, implying an ACR of 2. Below we restate the algo-
rithm, and then prove its ACR in the case with a tighter item size limitation
(α, 1/2].

Algorithm NF:
On the release of the first item J1, open a bin B1 to pack the item. On
the release of any item Jj (j = 2, 3, . . .), pack the item into the current
open bin Bi (i ≥ 1) if its current load is at most 1 − sj before packing
Jj ; otherwise close Bi and open the next bin Bi+1 to pack Jj .

Note that NF does not make use of the buffer S. The following theorem shows
the asymptotic competitiveness of NF with item size limitation.

Theorem 1. For the online bin packing problem with buffer S and item size in
(α, 1/2] where 0 ≤ α < 1/3, NF has an ACR of 2

1+α .

Proof. For an arbitrary item input instance σ, assume that NF spends totally n
bins to pack all the items. By Lemma 1, there are at least two items in bin Bi

for 1 ≤ i < n. Let Ji,1, Ji,2 be the first and second packed items in Bi, and their
sizes satisfy α < si,j ≤ 1/2 (j = 1, 2).

NF-Based Algorithms for Online Bin Packing 29

By the description of algorithm NF, we conclude that for 1 < i ≤ n, the first
packed item in Bi, i.e., Ji,1, can not be packed into the preceding bin Bi−1. This
implies for 1 ≤ i < n that

li + si+1,1 > 1.

The load of Bi satisfies li ≥ si,1 + si,2 ≥ si,1 + α for 1 ≤ i < n. Combining
ln ≥ sn,1 ≥ α with l1 > 1/2 by Lemma 1, we have

2

n∑
i=1

li ≥
n∑

i=1

li + l1 +

n−1∑
i=2

(si,1 + α) + sn,1

= ln + l1 +

n−1∑
i=1

(li + si+1,1) + (n− 2)α

> α+ 1/2 + (n− 1) + (n− 2)α

= (1 + α)n+ 1/2 − α.

Thus
∑n

i=1 li > (1 +α)n/2 + 1/4−α/2, which is the least number of bins spent
by an optimal algorithm OPT for instance σ. The ratio between the number
of bins used by NF and that by OPT is equal to n

(1+α)n/2+1/4−α/2 → 2
1+α as

n→ ∞. The theorem follows. ��
Below we further provide a lower bound of NF’s ACR.

Theorem 2. For the online bin packing problem with buffer S and item size in
(α, 1/2] where 0 ≤ α < 1/3, NF has an ACR of at least 2

1+3α/2 .

Proof. It suffices to construct an item input instance σ to make NF be at best
asymptotic 2

1+3α/2 -competitive. The instance σ consists of u copies of the follow-

ing four items {1/2, α, (1 − α)/2, α} where u > 0 is an arbitrarily large natural
number. NF spends two bins for packing the four items in each copy, spending 2u
bins in total. OPT spends u/2 bins for packing the u items with size 1/2, and u/2
bins to pack the u items with size (1−α)/2 together with u/2 items with size α.
The rest 2u−u/2 = 3u/2 items with size α consumes totally �3uα/2� < 3uα/2+1
bins. Thus OPT spends at most u/2 + u/2 + 3uα/2 + 1 = u + 3uα/2 + 1 bins.
It implies an ACR of at least 2u/(u+ 3uα/2 + 1) → 2/(1 + 3α/2). ��

By Theorems 1 and 2, both upper and lower bounds of NF’s ACR approaches
2 as α → 0. As α → 1/3, the upper bound and lower bound approach 3/2 and
4/3 respectively.

3 An NF-Based Algorithm and Its ACR Analysis

In this section, we present an NF-based algorithm called NFB (NF with Buffer)
that makes use of buffer S. The basic idea of the algorithm is that each bin is
loaded with the largest items in the buffer and it is closed given that its load as
well as any packed item in the bin is sufficiently large; otherwise it is repackaged
with relatively small items in the buffer. On the release of each item Jj (j ≥ 1),

30 F. Zheng, L. Luo, and E. Zhang

let Bi (i ≥ 1) be the current open bin, and τi the set of items in Bi, S and {Jj}.
The number of items in τi increases over the release of items during Bi is open.

We first consider a special case where |S| = 1, and prove the ACR of algorithm
NFB. The result is then extended to the general case where S is of any constant
capacity, i.e., |S| ≥ 1. The algorithm is formally described as follows.

Algorithm NFB:

Step 0. Open the first bin B1 on the release of the first item J1 which
is packed into the buffer temporarily.
Step 1. Repeatedly pack each released item into the buffer S. If there
are no more items to be released, go to Step 4. Once a released item Jj
cannot be packed into the buffer, move the largest item, denoted by J ,
in S and {Jj} into the current open bin Bi (i ≥ 1) and store the rest
items in S. Repeat this step until the J cannot be packed into Bi on the
release of some Jj .
Step 2. Exchange the items between the open bin Bi and the buffer S.
Let Si be the set of items in S currently, and δi = {Ji,1, Ji,2, . . . , Ji,ni}
the set of items in both S and Bi. The items in δi are indexed in non-
increasing order of item size such that si,j+1 ≤ si,j for 1 ≤ j ≤ ni − 1.
Consider three cases.

– Case 1. There are exactly two items Ji,1 and Ji,2 in Bi, and si,2 >
1/3. Further pack the items in S into Bi as many as possible in non-
increasing order of item size.

– Case 2. There are exactly two items Ji,1 and Ji,2 in Bi and si,2 ≤
1/3. In this case Bi is completely re-packed by the items in δi/{Ji,1}
in non-increasing order of item size.

– Case 3. There are at least three items Ji,1, Ji,2, Ji,3 in Bi. Further
pack the items in S into Bi in non-increasing order of item size.

Step 3. Close Bi and open the next bin Bi+1. Go back to Step 1.
Step 4. Pack the rest items in S into the current open bin in arbitrary
order and close the bin, and finally pack all the rest items in S, if any,
into another open bin.

Assume that NFB uses totally n bins for any item input instance. By Step
1 of the algorithm, if an item J is packed into Bi in the step, then J is of size
not less than any other items in S at the time, which implies that the items in
Bi contains the largest items in δi at the beginning of Step 2. Moreover, at each
time packing J into Bi in Step 1, the total size of J and the rest items in S is
strictly larger than |S| = 1; otherwise J is temporarily stored in the buffer. We
conclude that the total size of items in Si and the smallest item in Bi is strictly
larger than one at the beginning of Step 2.

NF-Based Algorithms for Online Bin Packing 31

Lemma 2. If Bi (1 ≤ i ≤ n − 2) is closed by Case 1 in Step 2, then li > 2/3;
otherwise if it is closed by either Case 2 or Case 3 in Step 2, then li > 3/4.

Proof. First, Bi contains at least the largest two items in δi at the beginning
of Step 2 by Lemma 1 and Step 1 of the algorithm. If Bi is closed by Case
1 in Step 2, then Bi contains at least the largest two items Ji,1 and Ji,2 with
li > si,1 + si,2 > 1/3 + 1/3 = 2/3.

If Bi is closed by Case 2 in Step 2, we already have by previous analysis that
the total size of items in δi/{Ji,1} is strictly larger than one, i.e.,

∑ni

j=2 si,j > 1,
at the beginning of Step 2. Since si,j ≤ si,2 ≤ 1/3 for 3 ≤ j ≤ ni, we conclude
ni ≥ 5, and Bi contains at least the largest three items Ji,2, Ji,3, Ji,4 in δi/{Ji,1}
after repack. Assume that Ji,2, Ji,3, . . . , Ji,k are repackaged into Bi while Ji,k+1

cannot be repackaged into the bin where k ≥ 4. We claim that si,2 + . . .+ si,k >
(k−1)/k since otherwise si,k+1 ≤ si,k ≤ 1/k, implying that Ji,k+1 can be further
repackaged into Bi. A contradiction. Since k ≥ 4, (k − 1)/k ≥ 3/4.

For the case where Bi is closed by Case 3 in Step 2, the analysis is similar to
the previous case. Assume that Ji,1, Ji,2, . . . , Ji,k are packed into Bi while Ji,k+1

cannot be further packed into Bi where k ≥ 3. We claim that si,1 + . . .+ si,k >
k/(k + 1) since otherwise si,k+1 ≤ si,k ≤ 1/(k + 1), implying that Ji,k+1 can be
further packed into Bi. A contradiction. Since k ≥ 3, k/(k + 1) ≥ 3/4.

The lemma follows. ��
According to the above lemma, we observe that each bin Bi (1 ≤ i ≤ n− 2)

has a final load li > 2/3. For 1 ≤ i ≤ n − 2, Bi is defined as a light bin if
li ∈ (2/3, 3/4]; otherwise it is a heavy bin if li ∈ (3/4, 1]. We further define an
item with size strictly larger than 1/3 as a large item; otherwise it is a small
item if its size is at most 1/3. By Lemma 2, a light bin is due to Case 1 in Step
2 of the algorithm, and it contains exactly two large items by the description of
Case 1 in Step 2.

Theorem 3. For the online bin packing problem with buffer S and item size in
(α, 1/2] where 0 ≤ α < 1/3, if the buffer size |S| = 1, NFB has an ACR of 13/9.

Proof. Given an arbitrary item input instance σ. Assume that NFB produces
a packing solution Γ = {B1, B2, . . . , Bn} such that except the last two bins
Bn−1, Bn there are x light bins and y heavy bins. Thus x + y = n − 2. We
already have that in each light bin, there are exactly two large items. So there
are totally 2x large items in the x light bins. Let X be the set of the 2x large
items, and Y the set of all the items in the y heavy bins. Note that there may
be some small items in the x light bins.

We observe that any three large items in X are of a total size strictly larger
than 1 and cannot be packed into one bin by any algorithms. Hence, an optimal
algorithm OPT either assigns two large items in X to one bin, resulting in a rest
room less than 1/3 in the bin for other items, or assigns only one large item in
X to one bin. Assume that for instance σ, OPT produces an optimal packing
solution Γ ∗, in which there are u bins each of which contains two large items in
set X , v bins each of which contains only one large item in X , and w bins that
contain no large items in X . So, 2u+ v = 2x.

32 F. Zheng, L. Luo, and E. Zhang

Now we need to bound from above the number of heavy bins by NFB, i.e., the
value of y, in the worst case. First, each item in the w bins in Γ ∗ is from either
set Y or one of the x light bins. At most � w

3/4� < 4w
3 +1 bins among the y heavy

bins are used to pack the items in the w bins. Now consider each of the u bins in
Γ ∗ that contains two large items in X . Since there is a room less than 1/3 in each
bin for OPT to pack small items from set Y , we conclude that the u bins contain

small items with a total size less than u/3. NFB spends at most �u/3
3/4 � < 4u

9 + 1

bins among the y heavy bins to pack the small items. With similar reasoning,
for each of the v bins in Γ ∗, there is a room less than 1− 1/3 = 2/3 for OPT to

pack other items from set Y . Hence, at most � 2v/3
3/4 � < 8v

9 + 1 bins among the y

heavy bins are used to pack the items from Y in the v bins. It is concluded that
y < (4w3 + 1) + (4u9 + 1) + (8v9 + 1) = 4u+8v+12w

9 + 3.
OPT spends totally u+v+w bins, and u+v+w → ∞ in terms of asymptotic

measure. NFB spends totally n = x + y + 2 bins. Together with u + v/2 = x,
the ratio between the number of bins spent by NFB and by OPT is bounded as
follows.

n

u+ v + w
<

(u+ v/2) + (4u+ 8v + 12w)/9 + 3 + 2

u+ v + w

=
13u/9 + 25v/18 + 4w/3 + 5

u+ v + w

≤ 13

9
, as u+ v + w → ∞.

The theorem follows. ��
We observe that for the general case where |S| ≥ 1, Lemma 2 still holds for

each bin Bi (1 ≤ i < n − �|S|� − 1). With similar analysis as in the proof of
Theorem 3, we have the following corollary.

Corollary 1. For the online bin packing problem with buffer S and item size in
(α, 1/2] where 0 ≤ α < 1/3, if the buffer size |S| ≥ 1, NFB has an ACR of 13/9.

The following theorem shows that any online algorithm cannot have an ACR
less than 4/3.

Theorem 4. For the online bin packing problem with buffer S and item size in
(α, 1/2] where 0 ≤ α < 1/3 and the buffer size |S| ≥ 1, any online algorithm
cannot have an ACR less than 4/3.

Proof. We first consider the case where |S| = 1. It suffices to construct an
item input instance σ with 3u items in total such that the ratio between the
number of bins used by any online algorithm A and that of OPT approaches
4/3 asymptotically. In σ, the first 2u items are with uniform size 1/3 + ε and
the rest u items are with uniform size 1/3 − 2ε, where ε > 0 is arbitrarily small
and satisfies 1/3 − 2ε ≥ α. Since any three of the first 2u items are of a total
size strictly larger than one, A spends (u− 1) bins for packing the first 2(u− 1)
items with a load of 2/3 + 2ε in each bin. For the rest u + 2 items, A packs

NF-Based Algorithms for Online Bin Packing 33

exactly three of them into each bin. The total number of bins used by A is equal
to �(u− 1) + (u+ 2)/3� ≥ 4u/3− 1/3. For an optimal offline algorithm OPT, it
consumes totally u bins to pack all the 3u items, each of which contains two items
with size 1/3+ ε and one item with size 1/3− 2ε. The ratio between the number

of bins used by A and that by OPT is at least 4u/3−1/3
u , which approaches 4/3

as u→ ∞.
For the other case where |S| > 1, the same instance is contructed. Similarly

A spends (u− �|S|�/2) bins for packing the first 2u− �|S|� items with a load of
2/3+ 2ε in each bin. For the rest u+ �|S|� items, A packs exactly three of them
into each bin. The total number of bins used by A is equal to �(u − �|S|�/2) +
(u+ �|S|�)/3� ≥ 4u/3 − �|S|�/6. OPT spends u bins to pack all the items. The
ratio approaches 4/3 again as u→ ∞.

The theorem follows. ��
By Theorems 3 and 4, we observe that provided that |S| ≥ 1, the size of the

buffer does not affect the ACR of online algorithms. That is, a larger size of the
buffer cannot improve the asymptotic performance of algorithm NFB. In other
words, a smallest size of one is enough for the buffer S during bin packing in
algorithm NFB.

4 Computational Tests

In this section, we present experimental results of algorithms NF and NFB, to
get an impression of their practical performance. We set the buffer size |S| = 1,
and assume that item size follows the uniform distribution in (α, 1/2] where
0 ≤ α < 1/3.

Let (nitem, nrepe) represent an experiment setting where for any given lower
bound α (0 ≤ α < 1/3) of item size, we produce nrepe instances each of which
contains nitem randomly produced items with size in (α, 1/2]. For each instance,
we calculate the ratio between the number of bins used by algorithm NF (or
NFB) and that of an optimal algorithm OPT. The average performance of al-
gorithm NF (or NFB) is then measured by an average of ratios over the nrepe

instances. For each setting combination (nitem, nrepe), we test the performance
of the two online algorithms for various α.

Since it is well-known that the classical offline bin packing problem is NP-
hard and it is almost impossible to obtain exact solutions for instances with
large input scale. In the experiment, the number of bins used by OPT in each
instance is replaced by its lower bound via rounding-up the total size of the
nitem items. Thus, as α is relatively large, say α > 1/4, the error between the
theoretical optimal number of bins and the experimental value by the above
rounding-up method is not negligible, and it results in inexact experimental ra-
tios. In especial, we has previously mentioned that any online algorithms perform
optimally provided that α ≥ 1/3, while experimental results show that both al-
gorithms have an experimental average ratio of 6/5 when α = 1/3. Below we
set α = 0, 0.0125, 0.025, . . . , 0.2375, 0.25, and test the variation of the average
performance of both online algorithms for different α.

34 F. Zheng, L. Luo, and E. Zhang

We first test the performance stability of algorithms NF and NFB in ran-
domly generated instances with any given α. We test four setting combinations
(nitem, nrepe) = (5000, 20), (5000, 50), (10000, 20), (10000, 50) as well as some
other combinations, and observe that when nitem is large, say nitem ≥ 5000,
the ratio between the number of bins used by online algorithm NF (or NFB)
and that of bins by OPT varies little for any specific value of α ∈ [0, 1/4]. Fig-
ure 1 is an illustration of the experimental ratios of algorithms NF and NFB
in 20 instances where α = 1/10 and nitem = 10000. The ratio for algorithm
NF varies around 1.2, and it varies around 1.03 for NFB. All these ratios are
much smaller than their respective theoretical ratios. By Theorems 1 and 3, the
ACRs of NF and NFB are equal to 20/11 and 13/9 respectively when α = 1/10.
Figure 1 also reveals that algorithm NFB has much better practical perfor-
mance than the classical algorithm NF with the help of buffer. When α = 1/10,
for instance, the use of buffer makes experimental ratios improved by around
0.17(= 1.2 − 1.03).

We next investigate the average performance of algorithms NF and NFB.
Again experiment results show that both algorithms perform stably for any
α. Figure 2 illustrates the average ratios of the online algorithms. Each point
in the figure represents an average ratio over 20 randomly generated instances
with (nitem, nrepe) = (10000, 20). As the value of α increases from zero to 0.25,
the ratios of both algorithms rise gradually. One reasonable explanation is the
computational error of the optimal number of bins used by OPT rises as α
increases, as mentioned previously. For any α ∈ [0, 1/4], the average ratio of
NFB is much smaller than that of NF, i.e., a difference of at least 0.14. We
conclude by the above experimental results that the use of buffer makes NF-
based algorithms perform much better in asymptotic competitiveness.

Fig. 1. A comparison of experimental ratios between algorithms NF and NFB in 20
instances (α = 1/10, nitem = 10000)

NF-Based Algorithms for Online Bin Packing 35

Fig. 2. A comparison of average ratios between algorithms NF and NFB
((nitem, nrepe) = (10000, 20))

5 Conclusion

This paper investigates an scenario of online bin packing problem with a capac-
itated buffer and lower and upper bounds of item size. We mainly propose an
NF-based online algorithm with an ACR of 13/9, and prove a lower bound of
4/3 as well, leaving a gap of 1/9 between the upper and lower bounds of ACR
in the considered problem. Both theoretical and experimental results show that
using buffer really helps in improving asymptotic competitive performance of
NF-based algorithms. One interesting related problem is how much the buffer
helps in asymptotic competitive performance of other packing rules in the ANY
FIT class, where it is allowed to keep a finite number of bins other than a single
bin open at any time.

Acknowledgements. This work was partially supported by the National Natu-
ral Science Foundation of China under Grants 71172189, 71071123 and 61221063,
Program for New Century Excellent Talents in University (NCET-12-0824), and
the Fundamental Research Funds for the Central Universities.

References

1. Ullman, J.D.: The performance of a memory allocation algorithm. Tech. Rep. 100,
Princeton University, Princeton (1971)

2. Galambos, G., Woeginger, G.J.: On-line Bin Packing-A Restricted Survey. Math-
ematical Methods of Operations Research 42, 25–45 (1995)

3. Seiden, S.S.: On the online bin packing problem. Journal of the ACM 49(5),
640–671 (2002)

4. Johnson, D.S.: Fast algorithms for bin packing. Journal of Computer and System
Sciences 8, 272–314 (1974)

36 F. Zheng, L. Luo, and E. Zhang

5. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Re-
search Logistics 41(4), 579–585 (1994)

6. Zhang, G.C., Cai, X.Q., Wong, C.K.: Linear time-approximation algorithms for
bin packing. Operations Research Letters 26, 217–222 (2000)

7. Johnson, D.S., Demers, A., Ullman, J.D., et al.: Worst-case performance bounds
for simple one-dimensional packing algorithms. SIAM Journal on Computing 3,
256–278 (1974)

8. Yao, A.C.C.: New algorithms for bin packing. Journal of the ACM 27, 207–227
(1980)

9. Ramanan, P., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear time.
J. Algorithms 10, 305–326 (1989)

10. Balogh, J., Békési, J., Galambos, G.: New Lower Bounds for Certain Classes of
Bin Packing Algorithms. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS,
vol. 6534, pp. 25–36. Springer, Heidelberg (2011)

11. Galambos, G.: A new heuristic for the classical bin packing problem. Tech. Rept
82, Institut für Mathematik, Universität Augsburg (1985)

12. Galambos, G., Woeginger, G.J.: Repacking helps in bounded space on-line bin
packing. Computing 49, 329–338 (1993)

13. Gambosi, G., Postiglione, A., Talamo, M.: Algorithms for the relaxed online bin-
packing model. SIAM Journal on Computing 30, 1532–1551 (2000)

14. Balogh, J., Galambos, G.: Algorithms for the on-line bin packing problem with
repacking. Alkalmazott Matematikai Lapok 24, 117–130 (2007)

15. Balogh, J., Békési, J., Galambos, G., et al.: On-line bin packing with restricted
repacking. Journal of Combinatorial Optimization (published online, 2013)

16. Gutin, G., Jensen, T., Yeo, A.: Optimal on-line bin packing with two item sizes.
Algorithmic Operations Research 1(2), 72–78 (2006)

17. Epstein, L., Levin, A.: More on online bin packing with two item sizes. Discrete
Optimization 5, 705–713 (2008)

18. Coffman, E.G., János, J., Rónyai, C.L., et al.: Dynamic bin packing. SIAM Journal
of Computing 12(2), 227–258 (1983)

19. Han, X., Peng, C., Ye, D., et al.: Dynamic bin packing with unit fraction items
revisited. Information Processing Letters 110, 1049–1054 (2010)

A Comparative Study of Multi-objective

Evolutionary Algorithms for the Bi-objective
2-Dimensional Vector Packing Problem

Nadia Dahmani1, Saoussen Krichen1, François Clautiaux2,
and El-Ghazali Talbi2

1 Institut Supérieur de Gestion de Tunis, LARODEC, 41 Avenue de la Liberté,
Cité Bouchoucha, 2000 Le Bardo, Tunisie

2 Université de Lille 1, LIFL CNRS UMR 8022, INRIA Lille-Nord Europe,
Parc de la Haute Borne, 59655 Villeneuve d’Ascq, France

Abstract. This paper presents a comparative study of multi-objective
evolutionary algorithms on the bi-objective 2-dimensional vector packing
problem. Three state-of-the-art methods which prove their efficiency for
a large variety of multi-objective optimization problems were designed
to approximate the whole Pareto set of the problem. Computational ex-
periments are performed on well-known benchmark test instances. The
proposed algorithms are extensively compared to each other using dif-
ferent performance metrics.

Keywords: 2-dimensional vector packing problem, Multi-objective
optimization, Evolutionary algorithms.

1 Introduction

The bi-objective version of the 2-dimensional vector packing problem (Mo2-
DBPP) considers a set N of items i = {1, . . . , N} with two sizes in two inde-
pendent dimensions ci (weight) and hi (height), and an unlimited number of
identical bins with two sizes C and H . The 2-dimensional vector packing prob-
lem (2-DVPP) was always addressed in a single-objective way where the goal is
to pack the items into a minimum number of bins without violating the capacity
constraint in each dimension ([11,3]). However, from a practical point of view it
is often necessary to simultaneously satisfy multiple objectives, and the problem
investigated in this paper highlights what can typically be found in the indus-
try. Indeed, as pointed out in [5], a large number of packing problems can be
formulated as multi-objective optimization problems. In our work, we relax the
height constraint, which becomes an objective to minimize. The main objective
is to find a trade-off between the number of used bins and the maximum height
of a bin.

The Mo2-DBPP is an NP-hard problem since it is a generalization of the
2-DVPP. Moreover, large-scale problem instances generally cannot be solved
exactly. Therefore, approximation search methods are considered to generate
the set of potentially efficient solutions.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 37–48, 2013.
c© Springer International Publishing Switzerland 2013

38 N. Dahmani et al.

A surge of research activities are observed in recent years on multi-objective
evolutionary metaheuristics. These algorithms generate in a single run a set of
solutions that approximate the whole or a part of the Pareto set. The main
advantages of such approaches is that they do not need the transformation of
the multi-objective problem into a single objective one.

Three grounded multi-objective evolutionary algorithms, namely the Indicator
Based Evolutionary Algorithm (IBEA) [12], the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [6] and the Strength Pareto Evolutionary Algorithm
2 (SPEA2) [13] are designed to tackle the bi-objective problem. A compara-
tive study of these search methods for the Mo2-DBPP is investigated based on
benchmark test instances [3] and their respective behavior is discussed.

The reminder of the paper is organized as follows. Section 2 is devoted to
the Mo2-DBPP by providing a formal definition and a mathematical formula-
tion of the addressed problem. Section 3 deals with the proposed multi-objective
evolutionary algorithms. A general presentation of these methods and their ap-
plication to the Mo2-DBPP is stated. In section 4, we report our experiments.
A conclusion and perspectives are drawn in the last section.

2 The Bi-objective 2-Dimensional Vector Packing
Problem

The Mo2-DBPP can be described as follows. Let {1, . . . , N} be a set of items.
Each item i has a weight ci and a height hi. Let also {1, . . . , M̄} be a set of bins,
where M̄ is an upper bound on the number of bins that can be used (obviously
M̄ ≤ N). Each bin j has a weight capacity C. The two conflicting objectives
that have to be concurrently minimized are the number of used bins and the
maximum height of a bin.

We state in (1)-(8) a mathematical formulation of the problem based on in-
teger linear programming. The decision variables are defined as follows.

xij =

⎧⎨⎩
1 if item i is placed in bin j

0 otherwise

yj =

⎧⎨⎩1 if bin j is used

0 otherwise

H : is a integer variable that expresses the maximum height loaded into one
bin.

A Comparative Study of Multi-objective Evolutionary Algorithms 39

min f1(s) =

M̄∑
j=1

yj (1)

min f2(s) = H (2)

s.t

M̄∑
j=1

xij = 1, i = 1, . . . , N (3)

N∑
i=1

cixij ≤ Cyj , j = 1, . . . , M̄ (4)

N∑
i=1

hixij −H ≤ 0, j = 1, . . . , M̄ (5)

xij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , M̄ (6)

yj ∈ {0, 1}, j = 1, . . . , M̄ (7)

H ∈ N (8)

where s = (xij , yj) i = {1, 2, . . . , N} and j = {1, . . . , M̄}.

Objectives

• The first objective (1) seeks to minimize the number of used bins.

• The second objective (2) tries to minimize the maximum height H of a bin.

Constraints

• The partition constraints (3) ensure that each item i is assigned to exactly
one bin j.

• Inequalities (4) express the maximum weight capacity for each bin.

• Inequalities (5) assure that each item size combination into a single bin j
must not exceed the maximum height H .

As the Mo2-DBPP is a bi-objective problem, a definition of some basic con-
cepts related to multi-objective optimization is needed.

A solution s ∈ S is evaluated using a vector (f1(s), f2(s)). A decision vector
s dominates another vector s′ if fk(s) ≤ fk(s

′) ∀k ∈ {1, 2} and ∃l|fl(s) < fl(s
′)

for l �= k. Consequently, solving the Mo2-DBPP problem seeks to identify all
efficient solutions or the Pareto set.

Due to the complexity of the considered problem and the potentially exponen-
tial number of efficient solutions, it is usually impossible to generate the entire
Pareto set. Therefore, an alternative is to identify a good approximation of it,
using multi-objective evolutionary algorithms.

40 N. Dahmani et al.

3 Multi-objective Evolutionary Algorithms for the
Mo2-DBPP

3.1 Multi-objective Evolutionary Algorithms

The multi-objective evolutionary algorithms designed to tackle the Mo2-DBPP
are small variations of three state-of-the-art search method, namely IBEA [12],
NSGA-II [6], and SPEA2 [13]. Small modifications were carried out to save the
whole set of non-dominated solutions found during the search process.

IBEA. Presented by Zitzler and Künzli [12], the main idea of the Indicator
Based Evolutionary Algorithm (IBEA) is to perform of a pairwise comparison
of solutions contained in a population, using a binary quality indicator for the
fitness assignment scheme. A fitness value F (u) is assigned to each individual u
to measure the “loss in quality” if u was removed from the current population
P , (i.e., F (u) =

∑
u′∈P\{u}(−e−I(u′,u)/k)), where k > 0 is a user-defined scaling

factor. Different indicators can be used for such a purpose and the binary addi-
tive ε-indicator (Eps2) is used in this work. As defined in [12], the Eps2(u, u

′)
gives the minimum value by which a solution u ∈ U has to or can be trans-
lated in the objective space to weakly dominate another solution u′ ∈ U . The
selection scheme is a binary tournament between randomly chosen individuals.
The replacement strategy consists of deleting, one-by-one, the worst individuals
and updating the fitness values of the remaining solutions each time there is a
deletion. This process is iterated until the reach of the required population size.
An archive is used to store the non-dominated solutions in order to prevent their
loss during the stochastic search process.

NSGA-II. Introduced by Deb et al. [6], the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) sorts the solutions contained in the population into
many classes at each generation. Individuals from the first front belong to the
first efficient set. Individuals from the second front belong to the second best
efficient set, etc. Two values are then computed for every solutions of the pop-
ulation. The first one consists of the rank of the corresponding solution. This
value represents the quality of the solution in terms of convergence. The second
one, deals with the crowding distance which is a density estimation of solutions
surrounding a particular point of the objective space. This value represents the
quality of the solution in terms of diversity. A dominant solution is character-
ized by a best rank, or in the case of a tie, by the best crowding distance. The
selection strategy is a deterministic tournament between two random solutions.
Only the best individuals survive at the replacement step with respect to the
population size. Likewise, an external population is added to the steady-state
NSGA-II in order to store every potentially efficient solution found during the
search.

SPEA2. As an improved version of the Strength Pareto Evolutionary Algorithm
(SPEA) , SPEA2 was elaborated by Zitzler et al. [13]. The algorithm adapts a

A Comparative Study of Multi-objective Evolutionary Algorithms 41

fine-grained fitness assignment strategy that incorporates density information.
During the selection process, SPEA2 manages a fixed size archive to generate
the offspring solutions. When the number of non-dominated solutions exceeds
the archive size, a bounded archive mechanism based on fitness and diversity in-
formations, is performed. Contrariwise, if the number of non-dominated solution
is less than the predefined archive size, it is filled up by dominated individuals.
At each iteration, a strength value S(x) is assigned to each individual x from
the current population and the archive. S(x) is equal to the number of solutions
which are dominated by x according to the Pareto dominance properties. Then,
the fitness value F (x) of each solution is computed by adding all S(x) values
of dominated solutions by x. To preserve the diversity of solutions, a strategy
based on kth nearest neighbor, is incorporated. The selection scheme is elitist and
consists of a binary tournament with replacement applied only on the archive.

3.2 Application to the Mo2-DBPP

Solution Encoding. A classical way for solving packing problems with
metaheuristics is to use an indirect encoding based on a permutation σ =
(σ(1), . . . , σ(N)) of N items. The major asset of these indirect approaches is
that there is no need for a penalty function as only feasible solutions are gen-
erated. All the problem-specific knowledge is handled by the decoder, which is
generally a greedy heuristic.

For single objective problems, the main goal is to minimize the number of
bins. Hence, a single decoder devoted to this criterion is sufficient. However, in
the multi-objective framework, using a only one decoder may introduce a bias
towards certain regions of the objective space. Thus, two well-known heuristics
from the literature: The first-fit heuristic and the least-loaded heuristic (both
described below) are adapted so as to get a balanced distribution of the generated
potentially efficient solutions.

The following two additional genes are added to the chromosome and used as
parameters by the decoder. Figure 1 illustrates our chromosome encoding.

• A binary variable x ∈ {0, 1} that informs about the procedure used for
decoding the chromosome.

• An integer variable lb that represents a classical lower bound on the number
of bins proposed in [7].

x

Fig. 1. Chromosome encoding

42 N. Dahmani et al.

Solution Evaluation. The evaluation process consists on decoding a solution
in order to evaluate its merit of fitness. In order to obtain a balanced distribution
of the generated solutions, we adapt the following two decoding procedures.

1. The First fit algorithm (FF) [4] is well known approximation algorithm
that aims to minimize the number of bins. Thus, it maximize the height of
a bin. FF considers the items in the predefined order of the permutation
and starts from the first item and the first bin. Each item i is iteratively
packed into the partially filled bin with the smallest index and which has
sufficient residual capacity in terms of the second dimension (i.e., the height)
and respecting the weight capacity constraints. If no such a bin is available,
then item i is packed into a new bin. The process is stopped when there no
more items to pack.

2. The Least loaded algorithm (LL) is another greedy heuristic that was
proposed in the server consolidation context [1]. The aim of this heuristic is
to balance the load between the bins. Consequently, it deals with the mini-
mization of the maximum height. However, the minimization of the number
of bins is not guaranteed.

The algorithm initializes a list of m empty bins that corresponds to a
lower bound on the number of used bins and starts the iterative process
by considering the items in the order given by the permutation. At each
iteration, LL tries to pack the incoming item i into one of the current open
bins by choosing the least loaded one in terms of the height while satisfying
the weight capacity constraints. If LL fails to pack a selected item into the
current open bins, then a new bin is opened. The process is stopped when
there are no more items to pack.

Since this heuristic needs a theoretical lower bound on the number of
used bins as an input, we simply use the basic continuous lower bound. This
parameter is embedded into the solution encoding (as described above) and
modified during the search process.

3.3 Evolutionary Algorithms Features

Crossover Operator. We use the Two points crossover [8]. A pair of crossing
points is randomly selected. The generated offspring preserves the items outside
the selected two points from the first parent chromosome. The remaining items
are inserted from the second parents while respecting the order of their appear-
ance. For each gene added as a parameter (i.e., x and lb), if it is the same for the
two parents, then this information is kept for the generated offspring. If no, the
offspring has 50% of chance to inherit the corresponding information from one
of the parents. Figure 2 illustrates the manner in which this operator performs.

Mutation Operators. We adapted the following mutation operators:

• Shift mutation: A pair of randomly choosing components are shifted from
the permutation part of the chromosome. The lb parameter is changed by
removing a random number from the old values in the chromosome.

A Comparative Study of Multi-objective Evolutionary Algorithms 43

Fig. 2. Two points crossover

• Swap mutation: A pair of randomly choosing components are swapped from
the the permutation part of the chromosome. The lb is changed by adding a
random number to the old values in the chromosome.

For both operators, the x parameter is randomly changed in [0, 1] in order to
decide about the used decoding strategy (i.e., FF or LL). From preliminary
experiments, we noted that a good performance of the above described muta-
tion operators is achieved by adding or removing to the lb parameter a random
number in [0, N5].

4 Experiments

The presented multi-objective evolutionary algorithms stated in the foregoing
section were implemented in C++ using the ParadisEO framework [10]. All al-
gorithms share the same base components for a fair comparison. Computational
runs were performed on an Intel Core 2 Duo 6600 (2.40 GHz) machine, with 2
GB RAM running Linux.

4.1 Experimental Design

Benchmarks. Experiments were conducted based on the benchmarks of
Caprara and Toth [3] for 2-DVPP. About 24 instances are randomly selected
by considering the problem classes in {1, . . . , 6} according to their difficulty and
the problem sizes related to the values N ∈ {25, 50, 100, 200}.

Parameters Setting. The parameters for the proposed multi-objective evo-
lutionary algorithms are adjusted after some preliminary experiments. Indeed,
we did not tune but set the parameters in order to obtain a relatively good
performance on all instances. Table 1 presents the parameters setting used by
all search methods. The initial population is randomly generated. The stopping
criterion is related to the computational time. We arbitrarily set the amount

44 N. Dahmani et al.

Table 1. Parameters setting

Parameters Values

Population size 200
Crossover probability 0.8
Mutation probability 0.5
Shift mutation rate 0.25
Swap mutation rate 0.25

of runtime according to the size of the instance under consideration. For each
value N ∈ {25, 50, 100, 200}, the runtime is equal to {60, 120, 240, 360} seconds
respectively for a single simulation run per instance and per algorithm.

Furthermore, specific parameters exist for some algorithms: SPEA2 requires
an internal, fixed-size archive which is set to 100 individuals. Moreover, the
scaling factor k of IBEA is set to 0.05 following [12].

Performance Assessment. For each search method, a set of 20 runs per
instance were performed with different initial populations. In order to assess the
quality of the approximated Pareto front obtained for every test instance, we
follow the protocol given in [9]. First, we compute a reference set F ∗

N of non-
dominated solutions extracted from the union of all outputs. Then, we define
fmax = (fmax

1 , fmax
2), where fmax

1 and fmax
2 denote the upper bounds of both

objective functions for all fronts approximations.
To evaluate the quality of an output set X regarding F ∗

N , we use two different
multi-objective performance indicators that inform about the convergence and
the diversity of the generated fronts approximations. The unary hyper-volume
metric [14,15] (Hyp) computes the portion of the objective space that is weakly
dominated by F ∗

N and not by X . We also consider the unary additive ε-indicator
(Eps) proposed in [15]. Contrary to Eps2 used in the IBEA algorithm, this indi-
cator is used to compare non-dominated approximations sets,and not solutions.
Eps gives the minimum value by which an approximation X has to be trans-
lated in the objective space to weakly dominate the reference set F ∗

N . Note that
fmax is considered as the reference point for both indicators. For each test in-
stance, we obtain 20 Hyp and 20 Eps measures, corresponding to the 20 runs,
per algorithm.

As suggested by Knowles et al. [9], once all these values are computed, we
perform a statistical analysis for a pairwise comparison of algorithms. As the
collected samples here can be considered as matched samples, the most appro-
priate statistical test is the Wilcoxon signed rank test. Indeed, for a given run,
both the initial population and the random seed are identical for all algorithms.
Thus, the final indicator values can be taken as pairs. Consequently, for each

A Comparative Study of Multi-objective Evolutionary Algorithms 45

test instance, and according to the p− value and to the metric under consider-
ation, this statistical test indicates if the sample of approximation sets obtained
by a given search method is significantly better than the ones of another search
method, or if there is no significant difference between both. All the perfor-
mance assessment procedures were conducted using the performance assessment
tool suite provided in PISA1

4.2 Computational Results

Table 2 compares IBEA, NSGA-II and SPEA2 algorithms with respect to Hyp
and Eps metrics respectively. Our experimental protocol gave rise to 120 sce-
narios for both indicators. For each class under consideration, we plotted the
average metrics values (multiplied by 10−3) for the corresponding algorithm. A
lower average for both indicators signifies a “better” approximation set.

Column # � reports the number of times for which the current algorithm
significantly dominates the other algorithms. This was achieved by performing
the Wilcoxon statistical test and considering a p− value equal to 5%.

Fig. 3. Overall averages of Hyp and Eps indicator metrics

According to the experimental design used in this study, it can be noted that
IBEA was better than NSGA-II and SPEA2 for small size instances (N = 25)
of Class 1, 2 and 3 where each bin contains on average about 4, 2 and 2 items
respectively. However, this does not hold for small size instances of Class 4, 5
and 6 where more items per bin are packed. Indeed, both algorithms (NSGA-II
and SPEA2) concurrently outperform IBEA for these classes.

For medium size instances (N = 50 andN = 100), there was no significant dif-
ference between the considered algorithms. Their corresponding approximations
sets were generally equivalent for both indicator metrics.

However, SPEA2 is clearly useful for large size instances (N = 200) and
performs significantly better than IBEA and NSGA-II algorithms. Furthermore,
the difference between the algorithm can be large for both metrics. For instance,
for Class 5, N = 200, SPEA2 leads to values 1.5 and 3.88, whereas IBEA leads
to 32.27 and 39.39.
1 The package is available at: http://www.tik.ee.ethz.ch/pisa/assessment.html [2]

46 N. Dahmani et al.

Table 2. Algorithms comparison according with respect to Hyp and Eps metrics

IBEA NSGA− II SPEA2
Class N Hyp # � Eps # � Hyp # � Eps # � Hyp # � Eps # �

25 2.04 2 4.25 1 1.57 1 4.58 1 8.05 0 9.17 0
50 6.48 0 9.25 0 6.83 0 9 0 5.92 1 8.97 0

1 100 4.23 0 6.91 0 4.71 0 7.32 0 4.16 0 6.4 0
200 5.94 0 8.46 0 5.88 1 9.5 0 4.96 1 7.24 1

Average 5.55 7.22 4.75 7.6 5.77 7.95
Total 2 1 2 1 2 1

25 8.4 1 9.75 2 9.81 0 9.81 0 10.57 0 11.91 0
50 8.38 0 11.97 0 9.3 0 11.91 0 8.61 0 11.96 0

2 100 9.96 0 8.46 0 10.11 0 8.95 4 9.27 0 9.1 0
200 9.25 0 10.62 0 8.23 1 8.46 1 6.55 2 8.09 1

Average 9 10.2 9.36 9.78 8.75 10.27
Total 1 2 1 5 2 1

25 4.71 2 12.17 1 8.32 0 16.53 0 6.21 1 13.03 1
50 8.26 1 16.16 1 11.48 0 17.21 0 9.33 1 16.49 1

3 100 11.86 0 14.17 0 10.93 0 13.52 0 11.48 0 13.06 0
200 7.97 0 11.15 0 7.88 0 9.43 2 7.97 0 10.69 0

Average 8.2 13.41 9.65 14.17 8.75 13.32
Total 3 2 0 2 2 2

25 5.28 1 7.43 0 1.31 2 3.83 2 5.77 0 7.43 0
50 3.62 0 6.41 0 3.37 1 5.83 2 3.22 0 6.12 0

4 100 3.01 2 5.61 0 3.65 0 5.03 1 3.13 1 4.7 2
200 4.3 0 6.46 0 2.36 0 4.8 1 2.78 2 4.89 2

Average 4.05 6.48 2.67 4.87 3.73 5.79
Total 3 0 3 6 3 4

25 1.19 0 3.97 0 1.09 0 3.61 1 0.99 1 3.84 0
50 1.72 0 4.15 0 3.4 0 5.52 1 1.5 1 3.8 0

5 100 24.5 0 18.04 0 10.82 0 15.05 1 1.7 2 3.94 1
200 32.27 0 39.39 0 24.9 1 17.36 0 1.5 1 3.88 1

Average 14.92 16.39 10.05 10.39 1.42 3.87
Total 0 0 1 3 5 2

25 5.15 0 9.94 0 7.07 1 10.84 1 5.91 2 9.26 2
50 7.72 1 10.23 0 6.98 0 9.71 0 6.09 1 9.11 1

6 100 9.89 0 12.62 0 9.76 1 11.57 0 8.64 2 12.35 0
200 7.99 0 11.6 0 7.56 0 10.59 1 6.67 2 10.69 0

Average 5.69 11.1 7.84 10.68 6.83 10.35
Total 1 0 2 2 7 3

Overall average 7.9 10.8 7.39 9.58 5.88 8.59
Overall total 10 5 9 19 21 13

Finally, we can compare the overall performance of the considered algorithms.
In Figure 3, we plotted the overall averages for both indicator metrics (Hyp and
Eps respectively). Figure 4 presents the total occurrence number for which the
current algorithm significantly dominates the other algorithms with respect to
Hyp and Eps indicators and using the Wilcoxon statistical test with a p−value

A Comparative Study of Multi-objective Evolutionary Algorithms 47

Fig. 4. Total number of occurrence where the current algorithm significantly dominates
the other algorithms in terms of both indicators Hyp and Eps using the Wilcoxon
statistical test with a p− value = 5%

equal to 5%. SPEA2 outperforms IBEA and NSGA-II in overall Hyp and Eps
averages (Figure 3). According to Hyp metric, it leads to 5.88 against 7.9 and
7.39 for both algorithms respectively. Moreover, it was 21 times better against
10 times for IBEA and 9 times for NSGA-II (see Figure 4).

5 Conclusion

In this paper, three multi-objective evolutionary algorithms were proposed for
the Mo2-DBPP in order to provide good approximations for the whole Pareto
set. Experiments were conducted using various test instances inspired from the
literature. A comparative study for the search methods is stated based on differ-
ent multi-objective performance indicators. Computational results show that al-
though IBEA was effective for solving some small size instances and SPEA2 and
NSGA-II were generally equivalent for solving medium size instances, SPEA2
was significantly better than IBEA and NSGA-II when solving large size in-
stances. Furthermore, SPEA2 clearly outperforms both algorithms on overall
average performance.

As a future work, it could be interesting to investigate and compare the per-
formance of SPEA2 with the iterative approaches presented in [5] in solving the
Mo2-DBPP.

References

1. Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: In-
ternational CMG Conference, pp. 399–406. Computer Measurement Group (2007)

2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: Pisa: A platform and pro-
gramming language independent interface for search algorithm. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

3. Caprara, A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector
packing problem. Discrete Applied Mathematics 111(3), 231–262 (2001)

48 N. Dahmani et al.

4. Coffman, J.E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey, pp. 46–93 (1997)

5. Dahmani, N., Clautiaux, F., Krichen, S., Talbi, E.-G.: Iterative approaches for
solving a multi-objective 2-dimensional vector packing problem. Computers & In-
dustrial Engineering (2013), http://dx.doi.org/10.1016/j.cie.2013.05.016

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

7. Eilon, S., Christofides, N.: The loading problem. Management Science 17, 259–267
(1971)

8. Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm and its
application to flowshop scheduling. IEEE Transactions on Systems, Man and Cy-
bernetics 28(3), 392–403 (1998)

9. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich (2006)

10. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: A
framework for evolutionary multi-objective optimization. In: Obayashi, S., Deb,
K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403,
pp. 386–400. Springer, Heidelberg (2007)

11. Spieksma, F.C.R.: A branch-and-bound algorithm for the two-dimensional vector
packing problem. Computers & Operations Research 21, 19–25 (1994)

12. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

13. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsa-
halis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods
for Design Optimization and Control with Applications to Industrial Problems,
Athens, Greece, pp. 95–100. International Center for Numerical Methods in Engi-
neering (2001)

14. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

15. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7, 117–132 (2003)

http://dx.doi.org/10.1016/j.cie.2013.05.016

Approximation Algorithms for the Maximum

Multiple RNA Interaction Problem

Weitian Tong1, Randy Goebel1, Tian Liu2, and Guohui Lin1,�

1 Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2E8, Canada

{weitian,rgoebel,guohui}@ualberta.ca
2 Key Laboratory of High Confidence Software Technologies, Ministry of Education

Institute of Software, School of Electronic Engineering and Computer Science
Peking University, Beijing 100871, China

lt@pku.edu.cn

Abstract. RNA interactions are fundamental in many cellular processes,
which can involve two or more RNA molecules. Multiple RNA interac-
tions are also believed to be much more complex than pairwise interac-
tions. Recently, multiple RNA interaction prediction has been formulated
as a maximization problem. Here we extensively examine this optimiza-
tion problem under several biologically meaningful interaction models.
We present a polynomial time algorithm for the problem when the order
of interacting RNAs is known and pseudoknot interactions are allowed;
for the general problem without an assumed RNA order, we prove the
NP-hardness for both variants (allowing and disallowing pseudoknot in-
teractions), and present a constant ratio approximation algorithm for
each of them.

Keywords: RNA interaction, maximum weight b-matching, acyclic
2-matching, approximation algorithm, worst case performance ratio.

1 Introduction

RNA interaction is one of the fundamental mechanisms underlying many cel-
lular processes, in particular genome regulatory code processes, such as mRNA
translation, editing, gene silencing, and synthetic self-assembling RNA design.
In the literature, pairwise RNA interaction prediction has been independently
formulated as a computational problem [15,2,11]. While these variants are all
motivated by specific biological considerations, the general formulation is usually
NP-hard and many special scenarios have been extensively studied [13,4,5,16,8,9].

In more complex instances, biologists have found that multiple small nucle-
olar RNAs (snoRNAs) interact with ribosomal RNAs (rRNAs) in guiding the
methylation of the rRNAs [12], and multiple small nuclear RNAs (snRNA) in-
teract with an mRNA in the splicing of introns [17]. Multiple RNA interactions
are believed much more complex than pairwise RNA interactions, where only

� Corresponding author.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 49–59, 2013.
c© Springer International Publishing Switzerland 2013

50 W. Tong et al.

two RNA molecules are involved. In fact, even if we have a perfect computa-
tional framework for pairwise RNA interactions, it might still be difficult to deal
with multiple RNA interactions since, for a given pool of RNA molecules, it is
non-trivial to predict their interaction order without sufficient prior biological
knowledge.

Motivated by biological goals, Ahmed et al. have developed a system for mul-
tiple RNA interaction prediction, denoted as MRIP [1]. Here we provide basic
definitions to formally introduce the MRIP problem. An RNA molecule is a se-
quence of nucleotides (A, C, G, and U). A basepair in the RNA is presented as
(i, j), where i < j, indicating that the i-th nucleotide and the j-th nucleotide
form a canonical pairing (i.e., the two nucleotides are either A and U or C and
G). The molecule folds into a structure which is described as a set of basepairs. In
general, every nucleotide can participate in at most one basepair, and if not, it is
a free base (or nucleotide). The set of basepairs is nested (a.k.a. secondary struc-
ture), if for any two basepairs (i1, j1) and (i2, j2) with i1 < i2, either j1 < i2
or j2 < j1; otherwise the set is crossing (a.k.a. tertiary structure) containing
pseudoknots. An interaction between two RNAs is a basepair which consists of
one free base from each RNA. In the sequel, we use interaction and basepair
interchangeably.

In the MRIP problem, we are given a pool of RNA sequences denoted as
R = {R1, R2, . . . , Rm}. Without loss of generality, we assumem is even and these
RNA sequences have the same length n. We use Ri	 to denote the �-th base of Ri.
Following the formulation by Ahmed et al. [1], the possible interactions between
every pair of RNAs are assumed known. In fact, these possible interactions can be
predicted using existing pairwise RNA interaction predictors [13,4,5,16,8,9]. For
a possible interaction (Ri1	1 , Ri2	2), its weight w(Ri1	1 , Ri2	2) can be set using
a probabilistic model or using an energy model or simply at 1 to indicate its
contribution to the structure stability. The problem goal is to find out the order
of RNAs in which they interact, that the first RNA interacts with the second
RNA, which in turn interacts with the third RNA, and so on, and how every two
consecutive RNAs interact, so as to maximize the total weight of the interactions
(to achieve the most structure stability). Throughout this paper, we consider
the uni-weight case, that is to maximize the total number of interactions. Two
interactions (Ri1	1 , Ri2	2) and (Ri1k1 , Ri2k2) are pseudoknot-like if �1 < k1 but
�2 > k2. The MRIP problem can allow or disallow pseudoknot-like interactions,
depending on application details similar to RNA structure prediction.

For a very special case of MRIP (the Pegs and Rubber Bands problem in [1]),
where the order of interacting RNAs is assumed and pseudoknot-like interactions
are disallowed, Ahmed at al. proved its NP-hardness and presented a polynomial-
time approximation scheme [1]. Given that predicting the interaction order is
nontrivial, they also proposed a heuristic for the more general case with unknown
interacting order but still disallowing pseudoknot-like interactions.

In this paper, we first show that the MRIP allowing pseudoknot-like interac-
tions and with an assumed RNA interaction order can be solved in polynomial
time.

On Multiple RNA Interaction Problem 51

Secondly, notice that the interactions are basepairs and thus follow the Watson-
Crick basepairing rule. For four RNAs Ri1 , Ri2 , Ri3 , Ri4 , when there are possible
interactions (Ri1	1 , Ri2	2), (Ri2	2 , Ri3	3), (Ri3	3 , Ri4	4) (for example, if they are
basepairs (A, U), (U, A), (A, U), respectively), then it is naturally to assume
another possible interaction (Ri1	1 , Ri4	4) between RNAs Ri1 and Ri4 . If the
given interactions satisfy the above property then the MRIP problem is said to
have the “transitivity” property. We show that the MRIP problem without an
assumed RNA interaction order, either allowing or disallowing pseudoknot-like
interactions, is NP-hard. In this case we present a constant ratio approximation
algorithm for each variant.

2 Algorithmic and Hardness Results

2.1 MRIP with a Known RNA Interaction Order

In this subsection, we consider the MRIP problem with a known RNA inter-
action order, and we assume the order is (R1, R2, . . . , Rm). When disallowing
pseudoknot-like interactions, Ahmed et al. [1] showed that the problem is NP-
hard via a reduction from the Longest Common Subsequence problem.

Theorem 1. [1] The MRIP problem disallowing pseudoknot-like interactions is
NP-hard.

When allowing pseudoknot-like interactions, we first construct a graph H =
(U, F) where every vertex ui	 corresponds to nucleotide Ri	 and two vertices
are connected by an edge if there is a given possible interaction between them.
Clearly, one can see that a matching M of graph H gives a feasible solution to
the MRIP problem allowing pseudoknot-like interactions, and vice versa. There-
fore, the MRIP problem allowing pseudoknot-like interactions can be solved in
polynomial time.

2.2 The General MRIP

By general MRIP, we mean the MRIP problem in which no RNA interaction
order is assumed. Instead, the possible interactions are given for every pair of
RNAs and the problem goal is to find an interaction order achieving the maxi-
mum number of interactions.

Theorem 2. The general MRIP problem, either allowing or disallowing pseudo-
knot-like interactions, is NP-hard.

Proof. Given a 0-1 matrix Am×n, two consecutive 1’s in a column of the matrix
is said to form a bandpass. When counting the total number of bandpasses in
the matrix, no two bandpasses in the same column are allowed to share any
common 1. The Bandpass problem is to find a row permutation for the input
matrix to achieve the maximum total number of bandpasses. Lin proved that

52 W. Tong et al.

the Bandpass problem is NP-hard via a reduction from the Hamiltonian Path
problem [10].

Let the i-th RNA be the i-th row of matrix A, so there is a possible interaction
between Ri1	1 and Ri2	2 if and only if both positions have a 1. Though such
constructed RNAs and interactions are not necessarily biologically meaningful,
this reduction shows the general MRIP problem is NP-hard. Furthermore, no two
possible interactions between a pair of RNAs are crossing each other, and thus
there are no pseudoknot-like interactions. Hence, the general MRIP problem,
either allowing or disallowing pseudoknot-like interactions, is NP-hard. ��

Given an instance I of a maximization problem Π , let C∗(I) (C(I), respec-
tively) denote the value of the optimal solution (the value of the solution pro-
duced by an algorithm, respectively). The performance ratio of the algorithm

on I is C(I)
C∗(I) . The algorithm is a ρ-approximation if infI

C(I)
C∗(I) ≥ ρ, that is,

it guarantees, on any instance, a solution of value at least a fraction ρ of the
optimum.

Using the possible interactions between the pair of RNAs Ri and Rj , we con-
struct a bipartite graph BG(i, j) = (Vi ∪ Vj , E(i, j)), where the vertex subset Vi
(Vj , respectively) corresponds to the set of nucleotides in Ri (Rj , respectively)
and the edge set E(i, j) corresponds to the set of given possible interactions
between Ri and Rj . That is, if (Ri	1 , Rj	2) is a possible interaction, then there is
an edge between Ri	1 and Rj	j in BG(i, j). One clearly sees that, when allowing
pseudoknot-like interactions, the size of the maximum matching in BG(i, j) is
exactly the maximum total number of interactions between RNAs Ri and Rj ;
when pseudoknot-like interactions are not allowed, the maximum total number of
interactions between RNAs Ri and Rj can be computed by a dynamic program-
ming algorithm similar to one for computing the longest common subsequence
between two given sequences. Either way, this maximum number of interactions
is set as the weight between RNAs Ri and Rj , denoted as w(Ri, Rj).

We next construct an edge-weighted complete graph G, in which a vertex
corresponds to an RNA and the weight between two vertices (RNAs) Ri and Rj

is w(Ri, Rj) computed above. Since the optimal solution to the MRIP problem,
either allowing or disallowing pseudoknot-like interactions, can be decomposed
into two matchings by including alternate edges in the solution, the maximum
weight matching M∗ of graph G has a weight that is at least half of the total
number of interactions in the optimal solution. It follows that this maximum
weight matching-based algorithm, described in Fig. 1, is a 0.5-approximation to
the MRIP problem.

Theorem 3. Approx I is a 0.5-approximation algorithm for the general MRIP
problem, either allowing or disallowing pseudoknot-like interactions.

Proof. When allowing pseudoknot-like interactions, w(Ri, Rj) can be computed
by a maximum matching algorithm in O(n3) time, where n is the (common)
length of the given RNAs.

When disallowing pseudoknot-like interactions, w(Ri, Rj) can be computed
by a dynamic programming algorithm in O(n2) time.

On Multiple RNA Interaction Problem 53

Input: m RNAs Ri, i = 1, 2, . . . , m;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1),

for i = 1, 2, . . . ,m− 1

1. for each RNA pair Ri and Rj ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri, Rj);

2. construct edge-weighted complete graph G;
3. compute the maximum weight matching M∗ of G;
4. stack RNA pairs in M∗ arbitrarily to form a permutation π;
5. output π and the interactions in w(Rπ(i), Rπ(i+1)).

Fig. 1. A high-level description of Approx I

It follows that the time for constructing graph G is O(m2n3). Graph G con-
tains m vertices, and its maximum weight matching M∗ can be computed in
O(m3) time. Subsequent construction of the solution permutation π takes linear
time.

Therefore, Approx I is an O(max{m3,m2n3})-time 0.5-approximation al-
gorithm for the MRIP problem allowing pseudoknot-like interactions. For the
MRIP problem disallowing pseudoknot-like interactions, its worst-case perfor-
mance ratio remains 0.5, but its running time is O(max{m3,m2n2}). ��

3 Better Approximations for General MRIP with
Transitivity

In the previous section, we proved the NP-hardness for the general MRIP prob-
lem, and presented a 0.5-approximation algorithm. One can imagine that this
performance ratio of 0.5 must be tight, if the given possible interactions are ar-
bitrary. Now we consider a biologically meaningful special case where the given
possible interactions are transitive, that is, for any four RNAs Ri1 , Ri2 , Ri3 , Ri4 ,
when there are possible interactions (Ri1	1 , Ri2	2), (Ri2	2 , Ri3	3), (Ri3	3 , Ri4	4)
(for example, they are basepairs (A, U), (U, A), (A, U), respectively), then
(Ri1	1 , Ri4	4) is also a possible interaction between RNAs Ri1 and Ri4 . We call
it the general MRIP problem with transitivity. Note that in the proof of NP-
hardness in Theorem 2, the constructed instance of the MRIP problem satisfies
the transitivity property. Therefore the general MRIP problem with transitivity,
either allowing or disallowing pseudoknot-like interactions, is also NP-hard. We
next show that we can explore the transitivity property to design approximation
algorithms with performance ratios better than 0.5.

3.1 A 0.5328-Approximation for Disallowing Pseudoknots

The improved approximation algorithm for the general MRIP with transitivity
and disallowing pseudoknot-like interactions is denoted as Approx II, and its
high-level description in provided in Fig. 2.

54 W. Tong et al.

Input: m RNAs Ri, i = 1, 2, . . . , m, with transitivity;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1),

for i = 1, 2, . . . ,m− 1

1. for each RNA pair Ri and Rj ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri, Rj) disallowing pseudoknot-like interactions;

2. construct edge-weighted complete graph G using edge weight function w;
3. compute the maximum weight matching M∗ of G;

3.1. delete nucleotides involved in the interactions of M∗;
3.2. reconstruct bipartite graph BG(i, j);
3.3. compute w′(Ri, Rj) disallowing pseudoknot-like interactions;

4. construct edge-weighted complete graph G′ using edge weight function w′;
4.1. compute the maximum weight 4-matching C of G′;
4.2. compute an approximate acyclic 2-matching P of G′;
4.3. compute a matching M out of C and P to extend M∗;

5. stack RNA paths in G[M∗ ∪M] arbitrarily to form a permutation π;
6. output π and the interactions in w(Rπ(i), Rπ(i+1)) +w′(Rπ(i), Rπ(i+1)).

Fig. 2. A high-level description of Approx II

Note that to compute the maximum number of interactions between two
RNAs Ri and Rj (Step 1.2) while disallowing pseudoknot-like interactions, we
can use the same dynamic programming algorithm used in Approx I, which runs
in O(n2)-time. In Step 4.2, the best approximation algorithm for the Maximum-
TSP (with a performance ratio of 7

9 [14]) is used to compute an acyclic 2-
matching. In Step 4.3, to compute a matching M to extend M∗, the union of
the edge sets of M and M∗, i.e. G[M ∪M∗], is an acyclic 2-matching (sub-tour
is an alternative terminology often used in the literature). Basically algorithm
Approx II adds to the maximum weight matching M∗ of graph G a subset of
edges that contains a proven fraction of interactions.

Let I denote the set of interactions in the optimal solution. Let J be the
set of interactions extracted from the weights of the edges in the maximum
weight matching M∗ of graph G. Note that neither I or J contains crossing
interactions. Similarly as in the MRIP problem with a known RNA interaction
order (Section 2), we construct another graph H = (U, F) for the instance where
every vertex ui	 corresponds to nucleotide Ri	 and two vertices are connected
by an edge if there is a given possible interaction between them. With respect
to graph H , both I and J are non-crossing matchings. Therefore, the subgraph
of H induced by the interactions of I and J , H [I ∪ J], is a 2-matching of graph
H , denoted by T . Using this 2-matching T , we partition I into 4 subsets of
interactions, I = I1∪I2∪I3∪I4, and at the same time partition J into 4 subsets
of interactions, J = J1 ∪ J2 ∪ J3 ∪ J4.

Since T is a 2-matching, there are only alternating paths and cycles in T .
First we consider paths. For a path of length 1, say P = 〈u1, u2〉, if its only
edge/interaction is in I ∩ J , then the edge belongs to I1 and belongs to J1 too;

On Multiple RNA Interaction Problem 55

if the edge is in I − J , then the edge belongs to I4; if the edge is in J − I,
then the edge belongs to J4. For a path of length 3, say P = 〈u1, u2, u3, u4〉, if
(u1, u2), (u3, u4) ∈ I, then they belong to I2 and edge (u2, u3) belongs to J2. For
a path other than the above cases, the edges of I all belong to I3 and the edges
of J all belong to J3. And for each cycle, the edges of I all belong to I3 and the
edges of J all belong to J3.

Lemma 1. Let |Xi| denote the size of, that is the number of interactions in,
set Xi, for X = I, J and i = 1, 2, 3, 4. We have |J1| = |I1|, |J2| = 1

2 |I2|, and
|J3| ≥ 2

3 |I3|.
Proof. By the definition of I1, J1, I2, J2, we can easily see |J1| = |I1| and |J2| =
1
2 |I2|. For I3 and J3, from each path or cycle, the number of edges assigned to
J3 is either greater than or equal to the number of edges assigned to I3, or 1
less; but in the latter case the length of the path must be at least 5. Therefore,
the worst case happens when two and three edges are assigned to J3 and I3
respectively, which implies |J3| ≥ 2

3 |I3|. ��
Corollary 1. We have

|I| = |I1| + |I2| + |I3| + |I4|, (1)

w(M∗) = |J1| + |J2| + |J3| + |J4|, (2)

w(M∗) ≥ |I1| + 1

2
|I2| + 2

3
|I3|, (3)

w(M∗) ≥ 1

2
|I| =

1

2
(|I1| + |I2| + |I3| + |I4|) . (4)

Proof. The first two equations are straightforward, following the description of
partitioning process and that w(M∗) = |J |. The last two inequalities follow from
Lemma 1 and Theorem 3, respectively. ��

After deleting the bases involved in the interactions of the maximum weight
matching M∗, graph G′ is constructed the same as graph G except using weight
function w′. For a path of length 3, P = 〈u1, u2, u3, u4〉, such that (u1, u2),
(u3, u4) ∈ I2, the transitivity property ensures that there is a possible interaction
between u1 and u4. Clearly, this interaction is left in graph G′, and such an
interaction is called an induced interaction. Let G′

s be the subgraph of G′ that
contains exactly those edges each of which is contributed by at least one induced
interaction.

Lemma 2. G′
s is a 4-matching in G′, and its weight w′(G′

s) ≥ 1
2 |I2|.

Proof. To prove the first part, we only need to prove that every RNA can have
induced interactions with at most 4 other RNAs. By the definition of I2, there is
an induced interaction (u1, u4) if and only if there is an alternating length-3 path

56 W. Tong et al.

P = 〈u1, u2, u3, u4〉, such that (u1, u2), (u3, u4) ∈ I and (u2, u3) ∈ J . Suppose
uk ∈ Rik , for k = 1, 2, 3, 4. It follows that Ri1 , Ri2 (Ri3 , Ri4 , respectively) are
adjacent in the optimal permutation and Ri2 , Ri3 are matched in M∗. Since each
RNA can be adjacent to at most two other RNAs in the optimal solution, Ri1

and every RNA can have induced interactions with at most 4 other RNAs.
The second part of the lemma follows directly from the definition of an induced

interaction, which corresponds to a distinct pair of interactions of I2. ��
It is known that in O(n2.5) time, a 4-matching can be decomposed into two

2-matchings [6,7], and a 2-matching can be further decomposed for our purpose
in the next few lemmas.

Lemma 3. [3,18] Let C be a 2-matching of graph G such that M∗∩C = ∅. Then,
we can partition the edge set of C into 4 matchings X0, X1, X2, X3 each of which
extends M∗. Moreover, the partitioning takes O(nα(n)) time, where α(n) is the
inverse Ackerman function. ��

The maximum weight 4-matching C of graph G′ can be decomposed into two
2-matchings C1 and C2. By Lemma 3, C1 can be partitioned into 4 matchings
X0, X1, X2, X3 and C2 can be partitioned into 4 matchings Y0, Y1, Y2, Y3, each of
which extends M∗.

Lemma 4. [18] Let C be a 4-matching of graph G such that M∗∩C = ∅. Then, we
can partition the edge set of C into 8 matchings such that each of them extends
M∗ and the maximum weight among them is at least 2

15w
′(C). Moreover, the

partitioning takes O(n2.5) time. ��
Lemma 5. The maximum weight acyclic 2-matching D of graph G′ has weight
w′(D) ≥ |I4|.
Proof. Note that graph G′ contains all interactions of I4 because the only bases
deleted are those involved in the interactions of M∗. The subgraph of graph G′

containing exactly the edges contributed by at least one interaction of I4 is a
subgraph of the optimal solution, and thus it is an acyclic 2-matching in graph
G′. Therefore,

w′(D) ≥ |I4|.
This proves the lemma. ��
Lemma 6. [3,18] Let P be an acyclic 2-matching of G such that M∗ ∩ P = ∅.
Then, we can partition the edge set of P into three matchings Y0, Y1, Y2 each of
which extends M∗. Moreover, the partitioning takes O(nα(n)) time. ��
Lemma 7. [14] The Max-TSP admits an O(n3)-time 7

9 -approximation algo-
rithm, where n is the number of vertices in the graph. ��
Corollary 2. The weight of the second matching M to extend M∗ has weight
w′(M) ≥ max{ 1

15 |I2|, 7
27 |I4|}.

On Multiple RNA Interaction Problem 57

Proof. Using Lemmas 2 and 4, we have

w′(M) ≥ 2

15
w′(C) ≥ 1

15
|I2|.

Using Lemmas 5–7, we have

w′(M) ≥ 1

3
w′(P) ≥ 7

27
w′(D) ≥ 7

27
|I4|.

The corollary holds. ��

Theorem 4. Algorithm Approx II is a 0.5328-approximation for the general
MRIP problem with transitivity and disallowing pseudoknot-like interactions.

Proof. Combining Corollaries 1 and 2, we have for any real x, y ∈ [0, 1],

w(π) = w(M∗) + w′(M)

≥ x(|I1| + 1

2
|I2| + 2

3
|I3|) + (1 − x)

1

2
(|I1| + |I2| + |I3| + |I4|)

+y
1

15
|I2| + (1 − y)

7

27
|I4|

=
1 + x

2
|I1| + 15 + 2y

30
|I2| + 3 + x

6
|I3| + 41 − 27x− 14y

54
|I4|

≥ 255

426
|I1| + 227

426
|I2| + 227

426
|I3| + 227

426
|I4|

≥ 227

426
|I|,

where the second last inequality holds by setting x = 14
71 and y = 35

71 . ��

3.2 A 0.5333-Approximation for Allowing Pseudoknots

The improved approximation algorithm for the general MRIP with transitivity
and allowing pseudoknot-like interactions is denoted as Approx III, and its
high-level description is provided in Fig. 3.

Approx III is very similar to Approx II, and only differs at two places.
First, since the problem allows pseudoknot-like interactions, we run a maximum
weight bipartite matching algorithm to compute those edge weights, in Steps 1.2
and 3.3. Second, computing a matching M to extend M∗ is now based only on
the maximum weight 4-matching C, of which the weight can be better estimated
because pseudoknot-like interactions are allowed.

The analysis of the algorithm is similar to that of the previous section. We
do exactly the same interaction partitioning for the optimal solution and the
maximum weight matching M∗. One can easily verify Lemma 1, Corollary 1, and
Lemma 2. The following lemma is the key to the improvement, which provides
an improved lower bound on the weight of the maximum weight 4-matching.

58 W. Tong et al.

Input: m RNAs Ri, i = 1, 2, . . . , m, with transitivity;
Output: a permutation π of [m] and interactions between RNAs Rπ(i) and Rπ(i+1),

for i = 1, 2, . . . ,m− 1

1. for each RNA pair Ri and Rj ,
1.1. construct bipartite graph BG(i, j);
1.2. compute w(Ri, Rj) allowing pseudoknot-like interactions;

2. construct edge-weighted complete graph G using edge weight function w;
3. compute the maximum weight matching M∗ of G;

3.1. delete nucleotides involved in the interactions of M∗;
3.2. reconstruct bipartite graph BG(i, j);
3.3. compute w′(Ri, Rj) allowing pseudoknot-like interactions;

4. construct edge-weighted complete graph G′ using edge weight function w′;
4.1. compute the maximum weight 4-matching C of G′;
4.2. compute a matching M out of C to extend M∗;

5. stack RNA paths in G[M∗ ∪M] arbitrarily to form a permutation π;
6. output π and the interactions in w(Rπ(i), Rπ(i+1)) +w′(Rπ(i), Rπ(i+1)).

Fig. 3. A high-level description of Approx III

Lemma 8. The weight of the maximum weight 4-matching C of graph G′ is

w′(C) ≥ max{1

2
|I2|, 1

4
|I2| + |I4|}. (5)

Proof. The first component straightly follows from Lemma 2 since G′
s is a 4-

matching in graph G′. Note also that graph G′ contains all the edges of the
optimal solution, each of which is contributed by at least one interaction of I4.
This remaining optimal solution, denoted as P , is an acyclic 2-matching in G′,
and has weight w′(P) ≥ |I4|.

Since G′
s is a 4-matching, it can be decomposed into two 2-matchings denoted

as D1 and D2. One clearly see that both P ∪ D1 and P ∪ D2 are 4-matchings
in graph G′. The interactions of I4 counted towards P are not counted towards
G′

s. Therefore, we have

w′((C)) ≥ max{w′(P ∪ D1), w
′(P ∪ D2)}

≥ 1

2
(w′(D1) + w′(D2)) + w′(P)

=
1

2
w′(G′

s) + |I4|

≥ 1

4
|I2| + |I4|.

This proves the lemma. ��
Theorem 5. Algorithm Approx III is a 0.5333-approximation for the general
MRIP problem with transitivity and allowing pseudoknot-like interactions.

Proof. The estimation of the performance ratio of 0.5333 is very similar to that
of ratio 0.5328 in Theorem 4, and is omitted from here. ��

On Multiple RNA Interaction Problem 59

Acknowledgement. Weitian Tong, Randy Goebel, and Guohui Lin are sup-
ported in part by NSERC, AITF and iCORE. Weitian Tong, Tian Liu, and
Guohui Lin thank the Open Fund of Top Key Discipline of Computer Software
and Theory in Zhejiang Provincial Colleges at the Zhejiang Normal University
for sponsoring a workshop where this work was started.

References

1. Ahmed, S.A., Mneimneh, S., Greenbaum, N.L.: A combinatorial approach for mul-
tiple RNA interaction: Formulations, approximations, and heuristics. In: Du, D.-Z.,
Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 421–433. Springer, Heidel-
berg (2013)

2. Alkan, C., Karakoç, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA in-
teraction prediction and antisense RNA target search. Journal of Computational
Biology 13, 267–282 (2006)

3. Chen, Z.-Z., Wang, L.: An improved approximation algorithm for the Bandpass-2
problem. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 188–199. Springer,
Heidelberg (2012)

4. Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: Fast RNA-RNA binding sites
prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724,
pp. 25–36. Springer, Heidelberg (2009)

5. Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm
for interacting nucleic acid strands. Bioinformatics 25, 365–373 (2009)

6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer (2005)
7. Harary, F.: Graph Theory. Addison-Wesley (1969)
8. Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function and

base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics 25,
2646–2654 (2009)

9. Li, A.X., Marz, M., Qin, J., Reidys, C.M.: RNA-RNA interaction prediction based
on multiple sequence alignments. Bioinformatics 27, 456–463 (2011)

10. Lin, G.: On the Bandpass problem. Journal of Combinatorial Optimization 22,
71–77 (2011)

11. Saad, M.: On the approximation of optimal structures for RNA-RNA interac-
tion. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6,
682–688 (2009)

12. Meyer, I.M.: Predicting novel RNA-RNA interactions. Current Opinion in Struc-
tural Biology 18, 387–393 (2008)

13. Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker,
I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182 (2006)

14. Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9- approximation algorithm for the max-
imum traveling salesman problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)

15. Pervouchine, D.D.: Iris: intermolecular RNA interaction search. Genome Informat-
ics 15, 92–101 (2004)

16. Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction.
Algorithms for Molecular Biology 5, 5 (2010)

17. Sun, J.S., Manley, J.L.: A novel U2-U6 snRNA structure is necessary for mam-
malian mRNA splicing. Genes & Development 9, 843–854 (1995)

18. Tong, W., Chen, Z.-Z., Wang, L., Xu, Y., Xu, J., Goebel, R., Lin, G.: An ap-
proximation algorithm for the Bandpass-2 problem. ArXiv e-print 1307.7089 (July
2013)

On the Clustered Steiner Tree Problem

Bang Ye Wu

National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.
bangye@cs.ccu.edu.tw

Abstract. We investigate the Clustered Steiner tree problem on metric
graphs, which is a variant of Steiner minimum tree problem. The re-
quired vertices are partitioned into clusters, and in a feasible clustered
Steiner tree, the subtrees spanning two different clusters must be disjoint.
In this paper, we show that the problem remains NP-hard even if the
topologies of all clusters and the inter-cluster tree are given. We propose
a (ρ+2)-approximation algorithm for the general case, in which ρ is the
approximation ratio for the Steiner tree problem. When the topologies
for all clusters are given, we show a (ρ + 1)-approximation algorithm.
We also discuss the Steiner ratio for this problem. We show the ratio is
lower and upper bounded by three and four, respectively.

Keywords: approximation algorithm, Steiner tree, NP-hard, graph
algorithm.

1 Introduction

For a simple undirected graph G = (V,E, c) and a required vertex set R ⊆ V , a
Steiner tree is a connected and acyclic subgraph ofG that spans all the vertices in
R. Due to the large number of applications, Steiner tree problems are extensively
studied. The Steiner Minimum Tree (SMT) problem is a classical and well-known
NP-hard problem which involves finding a Steiner tree with minimum total edge
cost [10, 15]. Numerous variants of the SMT problem have been studied, for
example, the versions on the Euclidean metric [8] and the rectilinear metric [9],
the Steiner forest problem [1], the group Steiner tree problem [11], the terminal
Steiner tree problem [4, 6, 17–19], and the internal-selected Steiner tree problem
[13, 14, 16]. The best approximation ratio ρ on general metrics achieved in
polynomial time is an important parameters for many graph problems. From
the first non-trivial result 11/6 [23], it has been improved several times [3, 20].
The current best approximation ratio is 1.39 [3].

In this paper, we consider another variant of SMT, the Clustered Steiner tree
(CluSteiner) problem. In addition to a metric graphG = (V,E, c) and required
vertex set R, we are also given a partition R = {R1, R2, . . . , Rk} of R. A Steiner
tree T is a clustered Steiner tree for R if all the vertices in the same cluster (Ri)
are clustered together in T . More formally, the local tree of a cluster Ri in T is
the minimal subtree of T spanning Ri. A Steiner tree T is a clustered Steiner
tree if the local trees are mutually disjoint. That is, T can be cut into k subtrees

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 60–71, 2013.
c© Springer International Publishing Switzerland 2013

Clustered Steiner Tree Problem 61

by removing k − 1 edges such that each subtree is a Steiner tree for one cluster
Ri. An equivalent definition is that for si, ti ∈ Ri and sj , tj ∈ Rj the unique
siti-path and sjtj-path in T are disjoint for all i �= j. If there is only one cluster
or each required vertex is itself a cluster, the problem degenerates to the original
Steiner minimum tree problem. The contribution of this paper is as follows.

– When R = V , or equivalently no Steiner vertex can be used, the problem
can be simply solved in polynomial time.

– The Steiner ratio for CluSteiner is lower and upper bounded by three and
four, respectively, in which the Steiner ratio is defined as the largest possible
ratio of the minimal cost without using any Steiner vertex to the optimal
cost.

– The problem remains NP-hard even if the topologies of all clusters and the
inter-cluster tree are given.

– The problem can be (ρ+2)-approximated, in which ρ is the best approxima-
tion ratio for the Steiner tree problem. The ratio can be improved to (ρ+ 1)
if the topologies for all clusters are given.

A possible application of this variant is as follows. When designing trans-
portation or computer networks, the links are usually divided into two levels:
inter-clustered or intra-clustered, possibly with different costs, qualities, and ca-
pacities. Also, after the network is built, the communications between nodes in
the same cluster should be routed locally rather than globally for the sake of ca-
pacity consideration or the simpleness of routing protocols. Another application
is for the case that the local topologies for all clusters are given. In this case the
task is to design the inter-cluster topology, as well as the possible insertion of
local Steiner vertices without violating their topologies. A similar consideration
was also studied for the traveling salesperson problem (TSP), named clustered
TSP problem [2, 12]. For this problem, the goal is to find a minimum cost
Hamiltonian path such that the vertices of each cluster are visited consecutively.

The rest of the paper is organized as follows. In Section 2, we give some nota-
tion and definitions. In Section 3, we discuss some properties and the Steiner ra-
tio. The NP-hardness and the approximation algorithms are shown in
Sections 4 and 5 respectively. Finally some remarks are given in Section 6.

2 Notation and Definitions

For a graph G = (V,E, c), V and E are the vertex and edge sets, respectively,
and c is the edge cost. In this paper we consider only undirected graphs. An
edge between vertices u and v is denoted by (u, v), and its cost is denoted by
c(u, v). For a subgraph T of G, c(T) denotes the total cost of all edges of T . For
a graph G, V (G) and E(G) denote the vertex and the edge sets, respectively.
For a vertex subset U , the subgraph of G induced by U is denoted by G[U]. By
smt(G,R), we denote a Steiner minimum tree with instance (G,R) and also its
cost. We use mst(R) to denote a minimum spanning tree (MST), and also its

62 B.Y. Wu

cost, of G[R]. A path with end vertices s and t is called an st-path. An undirected
graph G = (V,E, c) is a metric graph if it is a complete graph with nonnegative
edge costs satisfying the triangle inequality. For a set S, a collection S of subsets
of S is a partition of S if the subsets are mutually disjoint and their union is
exactly S.

Definition 1. For a tree T spanning R, i.e., R ⊆ V (T), the local tree of R on
T is the minimal subtree of T spanning all vertices in R.

By definition, any leaf of a local tree must be in R.

Definition 2. Let R = {Ri|1 ≤ i ≤ k} be a partition of R. A Steiner tree T for
R is a clustered Steiner tree for R if the local trees of all Ri ∈ R are mutually
disjoint, i.e., there exists a cut set C ⊂ E(T) with |C| = k − 1 such that each
component of T − C is a Steiner tree Ti for Ri, 1 ≤ i ≤ k.

The problem is formally defined as follows.

Problem: Clustered Steiner Tree problem (CluSteiner)
Instance: A metric graph G = (V,E, c), required vertices R ⊆ V , and
a partition R = {R1, R2, . . . , Rk} of R.
Goal: Find a minimum-cost clustered Steiner tree for R.

A vertex not in R is a Steiner vertex. In the remainder of this paper, we assume
that (G,R) is the instance of the problem, in which G = (V,E, c) and R =
{R1, R2, . . . , Rk} is a partition of R. We also use n = |V | and m = |E|.

An Eulerian path/cycle is a path/cycle traveling all the edges exactly once. A
graph is Eulerian if there exists an Eulerian cycle (or Eulerian tour). A connected
undirected graph is Eulerian if and only if all the degree of vertices are even.
There exists an Eulerian path if and only if there are exactly two vertices of
odd degree. A Hamiltonian path/cycle is a path/cycle traveling all the vertices
exactly once.

For a graph H , contraction of (u, v) ∈ E(H) replaces u, v with a new vertex
w. For any other vertex s, the edge cost is set to c(s, w) = min{c(s, u), c(s, v)}.
For a subgraph S, contracting S in H means contracting all the edges E(S) in
H , and the resulting graph is denoted by H/S. For convenience, we also use
H/S to denote H/H [S] when S is a vertex subset. Let G/R denote the graph
resulted from contracting all Ri for all Ri ∈ R.

For a graph T and (u, r), (r, v) ∈ E(T), “taking a shortcut between u, v”
means we replace edges (u, r) and (r, v) with (u, v). Similarly, for a uv-path,
taking a shortcut between u, v replaces the path with edge (u, v).

Definition 3. For a local tree Ti of Ri, the topology of Ti is the tree obtained
by repeatedly taking shortcuts between the two neighbors of Steiner vertices with
degree two and removing such Steiner vertices in Ti until there is no such vertex.

Figure 1 depicts an example of the topology of a local tree. For a clustered
Steiner tree T , contracting all the local trees in T results in a tree, denoted by
T/R, called the inter-cluster tree of T . Since a Steiner vertex with degree two in
an inter-cluster tree is meaningless, the topology of an inter-cluster tree is itself.

Clustered Steiner Tree Problem 63

(b)(a)

Fig. 1. Topology of a local tree. White vertices are Steiner vertices and black ones are
required vertices. (a) The original local tree. (b) The topology (solid lines). Note that
the degree-2 Steiner vertices are not vertices of the topology.

3 Steiner Ratio of CluSteiner

Possibly the simplest way to approximate the SMT is by MST. The Steiner ratio
(for the classic SMT problem) is the largest possible ratio between the cost of an
MST and the cost of an SMT. The inequality (1) is well-known, see for example
[22], which shows the Steiner ratio is two for general metric spaces.

mst(R) ≤ 2smt(G,R). (1)

The inequality can be simply shown as follows. Let T = smt(G,R). By doubling
E(T), we can obtain an Eulerian multigraph and therefore an Eulerian tour
Y with c(Y) = 2c(T) = 2smt(G,R). Traveling along the Eulerian cycle and
taking shortcuts between consecutive unvisited required vertices, we can obtain
a Hamiltonian path of G[R] with cost at most c(Y) by the triangle inequality.
Since MST is the cheapest way to connect R, we have that mst(R) ≤ c(Y) and
the inequality follows.

When R = V , i.e., the minimum clustered spanning tree problem, the problem
is equivalent to the case in which no Steiner vertex is allowed. We now show a
simple algorithm for this variant. Since no Steiner vertex is allowed, the local
tree of Ri in the optimal tree is an mst(Ri) for each i. Similarly the inter-cluster
topology is an MST of G/R. The next result is simple, in which an MST can be
solved in O(n log n+m) time [5].

Proposition 1. The minimum clustered spanning tree problem can be solved
with the same asymptotic time complexity as the MST problem.

However, we found that the Steiner ratio 2 does not hold for CluSteiner.
Figure 2 gives a simple example. The left tree (a) is a minimum clustered Steiner
tree with cost p(3 + ε), where p = |R1|. If no Steiner vertex can be used, the
right tree (b) is the best and the cost is 6(p − 1) + p(2 + ε) ≈ 8p. The ratio is
about 8/3 > 2. Note that an MST consists of a path connecting required vertices

64 B.Y. Wu

(b)

……

6

…
…

6

66

6

6

(a)

……

1

2

2
2

2

1 1

2

1

1

ε

ε
εεε

ε+2ε+2

ε+2ε+2

ε+2

Fig. 2. An example for Steiner ratio larger than 2 for CluSteiner. Black vertices are
required vertices and white ones are Steiner vertices. The required vertices circled by
dotted line are in one cluster R1, and all the other clusters are singletons. ε is the
smallest possible edge cost, i.e., zero if edge costs are defined to be nonnegative. For
any vertices u, v, c(u, v) is the same of the cost of the uv-path in the tree on the left.
(a) A clustered Steiner tree. (b) A feasible solution (clustered Steiner tree) without
any Steiner vertex.

not in R1 and linking vertices in R1 to the path individually. However, it is not
feasible for CluSteiner since R1 is not clustered together, i.e., the local tree
contains other required vertices.

Let the Steiner ratio of CluSteiner be defined by the ratio of the minimum
cost without any Steiner vertex to the optimal cost. The above example shows
that the Steiner ratio is at least 8/3. Figure 3 shows an even worse example. The
optimal tree (a) has cost q(p(2 + ε) + 1) ≈ 2pq + 2q. The right tree (b) is the
best possible without Steiner vertex, and its cost is (q − 1)(4p+ 2) + qp(2 + ε).
The ratio is asymptotically three when pq is large. By this example, we have the
lower bound in Lemma 1.

Lemma 1. The Steiner ratio of CluSteiner is at least three.

4 NP-Hardness for Fixed Topologies

At the first glance of CluSteiner, the hardness of CluSteiner seems from
determining the best local and inter-cluster topologies. In this section we shall
show that NP-hardness remains even when the topologies are given.

A caterpillar is a tree of which all the internal vertices form a path. Let s, t
be two leaves adjacent to the two endpoints of the path, respectively. We call
the tree an st-caterpillar.

Problem: Steiner Caterpillar
Instance: A metric graph G = (V,E), required vertices R ⊂ V , and
two vertices x, y ∈ R.

Clustered Steiner Tree Problem 65

(b)(a)

…

…

…

q

…

4p+2

4p+2

4p+2

ε22 +
ε22 +

ε22 +

ε22 +

ε22 +

ε22 +

ε22 +

ε+2

ε+2
ε+2

…

1

2

2

2

1

ε

ε

ε

ε
…

…

ε

ε

ε

ε ε ε

1

1

2

2

2

2
2

2

p

q

Fig. 3. An example with Steiner ratio three. The setting is similar to Figure 2. R1

consists of the q required vertices circled by dotted line. As indicated, each path has
p internal Steiner vertices. (a) The optimal solution. (b) The best one without any
Steiner vertex.

Goal: Find a minimum-cost xy-caterpillar spanning R such that all
internal vertices of the xy-path are not in R.

The (1, 2)-Steiner Caterpillar is the special version in which all the edge
costs are either one or two. Note that a complete graph with all edge costs of one
or two is a metric graph. We show the NP-hardness of Steiner Caterpillar
by reducing the following well-known NP-complete problem to it.

Problem: Dominating Set
Instance: A simple undirected graph H and an integer h.
Question: Is there a dominating set with size h, i.e., a set S ⊆ V (H)
with |S| ≤ h such that for all u /∈ S there exists v ∈ S for which
(u, v) ∈ E?

Lemma 2. (1, 2)-Steiner Caterpillar is NP-hard.

Proof. We reduce Dominating Set to (1, 2)-Steiner Caterpillar, and the
result follows from the NP-completeness of Dominating Set [10]. Let (H,h) be
an instance of Dominating Set. We construct an instance (G,R) of Steiner
Caterpillar as follows. Let V (H) = {vi|1 ≤ i ≤ p}. For each vi ∈ V (H), we
create a Steiner vertex si. Let S = {si|1 ≤ i ≤ p} and R = V (H) ∪ {x, y}, in
which x, y /∈ V (H) are two added vertices. Then, V (G) = R ∪ S and the edge
costs are as follows.⎧⎨⎩ c(si, sj) = 1 for 1 ≤ i < j ≤ p

c(si, x) = c(si, y) = 1 for 1 ≤ i ≤ p
c(si, vj) = 1 for (vi, vj) ∈ E(H) or i = j

66 B.Y. Wu

The cost of any other edge is two, and therefore all the edge costs are either 1
or 2. We now claim that H has a dominating set of size h if and only if there is
an xy-caterpillar of cost p+ h+ 1.

First, suppose that D is a dominating set of H and |D| = h. W.l.o.g. let
D = {vi|1 ≤ i ≤ h}. Construct an xy-caterpillar with internal vertices S′ =
{si|1 ≤ i ≤ h} which are exactly those Steiner vertices corresponding to D. The
order of the internal vertices is irrelevant. Since D is a dominating set, for each
vi there is an internal vertex sj ∈ S′ such that c(vi, sj) = 1. Since the xy-path
has h internal vertices and all the its edges are of cost one, the total cost is
p+ h+ 1.

Conversely, suppose that there is an xy-caterpillar T of cost p + h + 1. For
each vi, if there is no internal vertex s such that c(s, vi) = 1, we can add si to the
xy-path and then connect vi to si. Since the cost of any pair of Steiner vertices
is one, the total cost is not increased. Therefore we can obtain an xy-caterpillar
of the same cost such that all leaves except for x, y are connected to the xy-path
with cost one. Since the total cost is p+ h+ 1, the number of internal vertices
is h, and its corresponding vertex subset in V (H) is a dominating set of H . ��
Theorem 1. CluSteiner is NP-hard even when all the local topologies and
the inter-cluster topology are given.

Proof. By Lemma 2, it is sufficient to show that (1, 2)-Steiner Caterpillar is
a special case. For an instance (G = (V,E, c), R, x, y) of Steiner Caterpillar,
we transform it into an instance (G′ = (V,E, c′),R) of CluSteiner. Let R =
{Ri|1 ≤ i ≤ k}, in which k = |R| − 1, R1 = {x, y} and |Ri| = 1 for i ≥ 2.
Since every cluster contains no more than two vertices, the local topologies are
trivial. The inter-cluster topology is a star with center R1. Let c′(x, y) = 2L. Let
c′(x, v) = c(x, v) + L and c′(y, v) = c(y, v) + L for all v �= x, y, in which L = 5.
All the other edge costs remain the same. We assume that k ≥ 3 since it can be
trivially solved in polynomial time if there are only constant number of required
vertices.

First we show that G′ is also a metric graph. It is sufficient to show the
triangle inequality holds for any three vertices involving x or y. For any vertex
v /∈ {x, y}, c′(x, y) + c′(x, v) > c′(y, v) since c′(x, y) is the largest edge cost,
and c′(x, v) + c′(v, y) = c(x, v) + c(v, y) + 2L > c′(x, y) = 2L. For u, v /∈ {x, y},
c′(x, u) + c′(u, v) = L+ c(x, u) + c(u, v) ≥ L+ c(x, v) = c′(x, v).

Let T be a minimum clustered Steiner tree. Since the inter-cluster topology is
a star with center R1, if there is no Steiner vertex on T , the cost is larger than
(k + 1)L since an edge connecting any vertex to x or y has cost more than L.
But adding any Steiner vertex to subdivide (x, y) and connecting all the required
vertices to it reduces the cost to at most 2L+ (k + 1)2 < (k + 1)L since L > 4
and k ≥ 3. Recall that c′(u, v) ≤ 2 for vertices u, v /∈ {x, y}. Since there exists
at least one Steiner vertex in T , we claim that no required vertex is connected
to x or y. Otherwise, re-connecting this vertex to any Steiner vertex reduces the
total cost. We conclude that x and y are leaves in T .

Therefore the optimal solution of the CluSteiner problem is the same as
the one of the Steiner Caterpillar except for the additional cost 2L. ��

Clustered Steiner Tree Problem 67

5 Approximation Algorithms

For a clustered Steiner tree T , let α(T) denote the total cost of all its local
trees and β(T) = c(T) − α(T) the cost of its inter-cluster topology, i.e., β(T) =
c(T/R). By Algorithm 1, we shall show that any clustered Steiner tree T can
be transformed into a clustered Steiner tree T ′ of which the local trees have no
Steiner vertex. Figure 4 illustrates an example.

Algorithm 1

Input: a clustered Steiner tree T .
Output: a clustered Steiner tree T ′.
1: T ′ ← T ;
2: for all local tree Ti of T

′ do
3: construct a multigraph Hi by doubling the edges of Ti;
4: construct an Eulerian tour Y on Hi;
5: pick any required vertex r in Ti;
6: while existing non-visited required vertex in Y do � traveling along Y
7: let r′ be the next non-visited required vertex in Y ;
8: let s be the previous vertex of r′ in Y ;
9: replace (s, r′) with (r, r′) in Ti; � no change if s = r
10: r ← r′;
11: end while
12: end for
13: output T ′.

In fact, we replace each local tree with a Hamiltonian path and cut some edges
to break cycles. Since the Hamiltonian path consists of shortcuts of the cycle Y ,
the next result follows from the triangle inequality.

Claim. Each local tree Ti is replaced with a Hamiltonian path of Ri with cost
at most 2c(Ti).

After the transformation, each local tree is the added Hamiltonian path, and
cutting the edges makes its topology a part of the inter-cluster topology. Since
no other edge is added, the increment is at most the original cost of the local
trees.

Claim. β(T ′) ≤ β(T) + α(T) = c(T).

The next lemma comes from the above two claims.

Lemma 3. There exists a clustered Steiner tree T ′ with no Steiner vertex in
its local trees and β(T ′) ≤ β(T ∗) + α(T ∗) = c(T ∗), in which T ∗ is a minimum
clustered Steiner tree.

Now we show a proposed approximation algorithm for CluSteiner in
Algorithm 2.

68 B.Y. Wu

r

r’ r

r’

r

r’

Fig. 4. An example illustrates Algorithm 1. For each step, r and r′ are the tail and
head of the arrow, respectively. The dashed edge is the one to be removed.

Algorithm 2. Approximating the minimum clustered Steiner tree

Input: an instance (G,R) of the problem.
Output: a clustered Steiner tree T a.

1: construct T a
i ← mst(G[Ri]) for each i;

2: construct G/R and let R′ = {r′i|1 ≤ i ≤ k}, in which r′i is the vertex resulted from
the contraction of Ri;

3: construct a ρ-approximation T a
0 of smt(G/R, R′);

4: replace r′i with T a
i to obtain a clustered Steiner tree T a;

5: output T a.

Theorem 2. CluSteiner can be (2+ ρ)-approximated in O(n logn+ f(m,n))
time, in which ρ and f(m,n) are the approximation ratio and the time complexity
of an approximation algorithm for Steiner minimum tree on a graph with m edges
and n vertices, respectively.

Proof. Let T ∗ be a minimum cluster Steiner tree. Let T a be the tree constructed
by Algorithm 2 and T ′ the tree satisfying Lemma 3. We have that α(T a) ≤
2α(T ∗). Since T ′ has no Steiner vertex in its local tree, β(T ′) ≥ smt(G/R, R′),
and therefore β(T a) ≤ ρβ(T ′). Since β(T ′) ≤ α(T ∗) + β(T ∗) by Lemma 3,

c(T a) = α(T a) + β(T a) ≤ 2α(T ∗) + ρ(α(T ∗) + β(T ∗))
≤ (2 + ρ)α(T ∗) + ρβ(T ∗) ≤ (2 + ρ)c(T ∗).

��

Clustered Steiner Tree Problem 69

(b)(a)

Fig. 5. Transformation from Ti to its topology Yi. (a) A local tree in which the white
vertices are Steiner vertices. The paths circled by dotted line will be cut into the
inter-cluster tree. (b) After the transformation. The dotted lines are now a part of the
inter-cluster tree.

In Algorithm 2, if we use mst(R′) instead of the Steiner tree T a
0 , we obtain the

best clustered Steiner tree without any Steiner vertex. Let Y be the tree. Since
mst(R′) ≤ 2β(T ′) by (1), we have that β(Y) ≤ 2β(T ′) ≤ 2(α(T ∗) + β(T ∗)), and
therefore c(Y) ≤ 4α(T ∗) + 2β(T ∗).

Corollary 1. The Steiner ratio for CluSteiner is at most four.

Next we consider the case that the topologies of local trees are given. For
simplicity, we call the topology of a local tree the “local topology”. Let Yi be the
local topology for Ri. Clearly Ri ⊆ V (Yi). Let Si = V (Yi) −Ri. The vertices in
Si are the Steiner vertices with degree at least three in the local tree. We may
assume that Si ∩ Sj = ∅ for i �= j. Otherwise there is no solution.

We can modify Algorithm 1 such that the shortcuts are taken between ver-
tices in V (Yi) but not only Ri. The local tree Ti of the optimal tree T ∗ is now
transformed to Yi. Figure 5 illustrates an example. The proof of the next lemma
is similar to Lemma 3 and is omitted.

Lemma 4. Let T ∗ be a minimum cluster Steiner tree. Suppose that the local
topology Yi is given for each i. There exists a clustered Steiner tree T ′ with
β(T ′) ≤ β(T ∗) + α(T ∗) = c(T ∗) such that the vertex set of each local tree is
exactly V (Yi).

Theorem 3. When the local topologies are given, the problem CluSteiner can
be (1 + ρ)-approximated in O(n log n+ f(m,n)) time.

Proof. Let S′ = V −R−⋃i Si be the possible Steiner vertices in the inter-cluster
tree. The approximation algorithm is similar to Algorithm 2 except that we use
Yi as the local tree T a

i and construct the ρ-approximation of smt(G[R′ ∪S′], R′)
as the inter-cluster tree, in which, as defined in Algorithm 2, R′ consists of the
vertices resulted from the contraction of all Ri. Therefore β(T ′) ≥ smt(G[R′ ∪

70 B.Y. Wu

S′], R′), and then β(T a) ≤ ρβ(T ′). By the triangle inequality, the cost of a tree
is at least the cost of its topology. We have that α(T a) ≤ α(T ∗). By Lemma 4,
β(T ′) ≤ α(T ∗) + β(T ∗). In summary,

c(T a) = α(T a) + β(T a) ≤ α(T ∗) + ρ(α(T ∗) + β(T ∗))
≤ (1 + ρ)α(T ∗) + ρβ(T ∗) ≤ (1 + ρ)c(T ∗).

��
By observing the proof carefully, the same result can be obtained as long as

all V (Yi) instead of Yi are given, since we can use mst(G[V (Yi)]) as the local
tree for each i.

Corollary 2. When the Steiner vertices in every local topology are given, the
problem CluSteiner can be (1 + ρ)-approximated in O(n log n+ f(m,n)) time.

6 Conclusion

In this paper, we show the Steiner ratio for CluSteiner is lower and upper
bounded by three and four, respectively. It is interesting to improve the gap
of the two bounds. Another interesting open problem is the approximability of
CluSteiner. Both improving the ratio (2 + ρ) and showing the inapproxima-
bility are interesting. We propose another variant of the problem studied in this
paper. In applications to network design, there may be two cost functions. An
edge (u, v) in a local tree has cost c(u, v) and costs c′(u, v) if it is in the inter-
cluster tree. Usually c′(u, v) > c(u, v). Now the problem is to design a clustered
Steiner tree with minimum total cost.

Acknowledgment. This work was supported in part by NSC 100-2221-E-194-
036-MY3 and NSC 101-2221-E-194-025-MY3 from the National Science Council,
Taiwan, R.O.C.

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algo-
rithm for the generalized Steiner problem in networks. SIAM Journal on Com-
puting 24(3), 445–456 (1995)

2. Bao, X., Liu, Z.: An improved approximation algorithm for the clustered traveling
salesman problem. Information Processing Letters 112, 908–910 (2012)

3. Byrka, J., Grandoni, F., Rothvoß, T., Sanitá, L.: An improved LP-based approxi-
mation for Steiner tree. In: Proc. 42nd ACM Symposium on Theory of Computing,
pp. 583–592 (2010)

4. Chen, Y.H., Lu, C.L., Tang, C.Y.: On the full and bottleneck full Steiner tree
problems. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697,
pp. 122–129. Springer, Heidelberg (2003)

Clustered Steiner Tree Problem 71

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press and McGraw-Hill (2001)

6. Drake, D.E., Hougardy, S.: On approximation algorithms for the terminal Steiner
tree problem. Information Processing Letters 89(1), 15–18 (2004)

7. Fuchs, B.: A note on the terminal Steiner tree problem. Information Processing
Letters 87, 219–220 (2003)

8. Garey, M.R., Graham, R., Johnson, D.: The complexity of computing Steiner min-
imal trees. SIAM Journal on Applied Mathematics 32, 835–859 (1977)

9. Garey, M.R., Johnson, D.: The rectilinear Steiner problem is NP-complete. SIAM
Journal on Applied Mathematics 32, 826–834 (1977)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to The Theory
of NP-Completeness. Freeman, NewYork (1979)

11. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm
for the group Steiner problem. In: Proc. 9th ACM-SIAM Symposium on Discrete
Algorithms, pp. 253–259 (1998)

12. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation al-
gorithms with bounded performance guarantees for the clustered traveling sales-
man problem. Algorithmica 28, 422–437 (2000)

13. Hsieh, S.Y., Yang, S.C.: Approximating the selected-internal Steiner tree. Theo-
retical Computer Science 381(1-3), 288–291 (2007)

14. Huang, C.W., Lee, C.W., Gao, H.M., Hsieh, S.Y.: The internal Steiner tree prob-
lem: Hardness and approximations. Journal of Complexity 29, 27–43 (2013)

15. Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press,
New York (1972)

16. Li, X., Zou, F., Huang, Y., Kim, D., Wu, W.: A better constant-factor approxima-
tion for selected-internal Steiner minimum tree. Algorithmica 56, 333–341 (2010)

17. Lin, G.H., Xue, G.L.: On the terminal Steiner tree problem. Information Processing
Letters 84(2), 103–107 (2002)

18. Lu, C.L., Tang, C.Y., Lee, R.C.T.: The full Steiner tree problem. Theoretical Com-
puter Science 306(1-3), 55–67 (2003)

19. Martinez, F.V., de Pina, J.C., Soares, J.: Algorithms for terminal Steiner trees.
Theoretical Computer Science 389, 133–142 (2007)

20. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation.
SIAM Journal on Discrete Mathematics 19(1), 122–134 (2005)

21. Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M., Correa,
J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer, Heidelberg (2013)

22. Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Problems. Chapman &
Hall (2004)

23. Zelikovsky, A.: An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica 9, 463–470 (1993)

Integrated Job Scheduling with Parallel-Batch

Processing and Batch Deliveries

Xin Feng1,3,4 and Feifeng Zheng2

1 School of Management, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
2 Glorious Sun School of Business and Management,
Donghua University, Shanghai, 200051, P.R. China

3 State Key Lab for Manufacturing Systems Engineering,
Xi’an, Shaanxi, 710049, China

4 Ministry of Education Key Lab for Process Control and Efficiency Engineering,
Xi’an, Shaanxi, 710049, China
fengxin.xjtu@stu.xjtu.edu.cn

Abstract. This paper studies an integrated scheduling problem which
consists of production and distribution stages. Jobs are processed on a
parallel-batch machine in the production stage, and then transported
to customers in the distribution stage. The aim is to find an integrated
schedule in the two stages with the objective to optimize both total
delivery time and total transportation cost. We focus on two models
with either unbounded or bounded batch processing capacity in the pro-
duction stage. In both models we assume sufficient vehicles each with
infinite transportation capacity. For the unbounded model, we derive an
O
(
g(n/g)2g

)
time dynamic programming algorithm where g ≥ 1 and

n are the number of customers and jobs respectively. For the bounded
model, we focus on a special case with m different processing times of
jobs, and present an O

(
n323m

)
time algorithm.

Keywords: Scheduling, Parallel-batch processing, Dynamic program-
ming, Batch delivery.

1 Introduction

For the manufacturing enterprise, a well-known JIT (just-in-time) production
mode has been widely applied. JIT production mode means the operation at
every stage of supply chain is determined by the demand or the order. In such a
production mode, one manufacturer is generally required to respond to customer
demands in a rapid speed and with the least cost as well. To make a satisfactory
and cost saving performance, it is critical to coordinate processing schedule and
delivery schedule of jobs. This problem has been extensively studied in the area
of operation research in the last decades. Hall and Potts[8] firstly introduced
the word ”supply chain scheduling” and pointed out that its essential issue is
collaborative scheduling decision. As they have introduced, jobs are processed
by a manufacturer and then delivered in batches to customers. They considered
a trade-off between customer service level and total transportation cost. Chen
and Vairaktarakis[5] extended this problem by considering transportation time

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 72–83, 2013.
c© Springer International Publishing Switzerland 2013

Scheduling with Parallel-Batch Processing and Deliveries 73

in transportation cost. Their objective is to minimize αS(D1, · · · , Dn)+(1−α)T ,
where Dj is the delivery time of job Jj (1 ≤ j ≤ n) when it is transported to
its customer, function S(D1, · · · , Dn) measures customer service level, and T de-
notes total transportation cost. The constant parameter α represents the relative
preference between the customer service level and the total transportation cost.
They presented either heuristics or efficient exact algorithms for various cases.
For the different objective function, Pundoor and Chen [14] also studied this
integrated production and distribution problem aiming at optimize the trade-off
between maximum delivery tardiness and total transportation cost. Cheng et
al.[6] studied the objective of minimizing the sum of batch delivery cost and
job earliness penalties. Yang [17] considered a related problem under a special
situation where jobs can only be delivered in batches at fixed delivery dates. In
all the above studies, it is assumed that a manufacturer processes at most one
job at any time. We refer the reader to Chen [4] for a comprehensive review on
integrated production and distribution schedule.

In semi-conductor and steel manufacturing industries or some chemical pro-
cessing, some tasks or jobs are processed simultaneously in batches. This special
case is refined as the parallel-batch scheduling model. The parallel-batch machine
processes multiple jobs simultaneously in a batch in its capacity. The processing
time of a batch is equal to the longest processing time of the job within this batch
as Webster and Baker [16] introduced. Motivated by the above application, we
focus on the parallel-batch scheduling model in this paper. There are generally
two kinds of models in literature considering either bounded or unbounded batch
processing capacity. The bounded model arises in integrated circuit manufactur-
ing industry where the batch processing capacity is bounded(see Lee et al. [10]),
while the unbounded model arises in some real scenarios where jobs or compo-
sitions with relative small sizes need to be handled in kilns that are sufficiently
large (see Brucker et al. [1]).

Many researches studied the parallel-batch scheduling model in production
stage without considering distribution. Brucker et al.[1] studied single batch ma-
chine scheduling problems. They proposed two O (n logn) and O

(
nB(B−1)

)
time

dynamic programming algorithms for the unbounded model and the bounded
model to minimize total completion time, where B is the batch processing ca-
pacity of the machine. Especially, for a special case with m different processing
times in the bounded model, they gave an O

(
B2m22m

)
time algorithm. For the

bounded model, Poon and Yu [12] gave an improved O(n6B) time algorithm for
minimizing total completion time for the case where B is sufficiently large, i.e.,
B ≥ 16. None of the above literature has considered the distribution stage. We
refer the reader to Potts and Kovalyov[13] for a comprehensive review on batch
scheduling.

Very few studies have cast light on integrated scheduling where jobs are han-
dled in batches in both production and distribution stages. Tang and Gong[15]
studied a related problem where jobs are transported via vehicles from a hold-
ing area to a parallel-batch machine for processing. Each vehicle transports a
single job at a time and the machine is of limited batch capacity. They proved it

74 X. Feng and F. Zheng

Table 1. A comparison between our main results and previous results

Objective Function Processing
Batch Capacity

Distribution
Stage

Customers
number g

Time Complexity

∑
Dj + T B = 1 (∞,∞) g ≥ 1 O

(
ng+1

)
, in [8]

α
∑

Dj + (1− α)T B ≥ n (∞,∞) g ≥ 1 O
(
g(n/g)2g

)
in this paper∑

Cj B < n∗ null g = 1 O
(
B2m22m

)
, in [1]

α
∑

Dj + (1− α)T B = 1 (∞, c) g = 1 O (n log n), in [5]
α
∑

Dj + (1− α)T B < n∗ (∞,∞) g = 1 O
(
n323m

)
in this paper

*jobs with m different processing times.

NP-hard to minimize the sum of total completion time and total processing cost.
Li et al.[11] studied a model of unbounded parallel-batch machine with family
jobs delivered by capacitated vehicles, aiming at minimizing the completion time
of the last delivery batch. They provided a heuristic algorithm with a worst-case
performance ratio of 3/2. Gong and Tang[7] studied an integrated scheduling
with one parallel-batch machine and one vehicle, both of which are of bounded
capacity. They provided a polynomial-time algorithm for the objective of min-
imizing the makespan, and proved it NP-hard for the objective of minimizing
total weighted completion time. In these researches, few consideration of the
transportation cost has been taken.

In this paper, we study an integrated scheduling problem where there is a sin-
gle parallel-batch machine in the production stage and sufficient vehicles each
with infinite transportation capacity in the distribution stage. We consider two
models with either unbounded or bounded batch processing capacity in the pro-
duction stage. The aim is to find an optimal integrated schedule with the con-
sideration of both total delivery time and total distribution cost.

We sum up our main results and give a comparison with previous results in
Table 1, where the parameters in the table are defined in the next section.

The rest of this paper is organized as follows. In Section 2, we describe the
problem under consideration and present some basic properties of an optimal
schedule. In Sections 3 and 4, we present exact algorithms for the unbounded
and bounded models respectively. Finally Section 5 concludes this paper.

2 Description and Basic Properties

The problem is formally described as follows. There are n jobs, which are re-
quested by g ≥ 1 customers at time 0, to be processed in the production stage
and then transported to customers. Each job Jj is of a non-negative processing
time pj . In the production stage, there is a single parallel-batch machine with a
batch capacity of B to process jobs in the production stage. If B ≥ n , then we
say it is in unbounded batch processing model, otherwise it is in bounded model
if B < n. Assume there is a processing batch denoted as Bi. Then the processing
time of Bi is p(Bi) = maxJj∈Bi {pj} . For any Jj ∈ Bi, the completion time of
its processing is Cj = C(Bi) . Let |Bi| be the number of jobs in batch Bi.

Scheduling with Parallel-Batch Processing and Deliveries 75

In distribution stage, each job after processing is transported from the pro-
duction stage to the customer who request for it. We assume that jobs are
transported in the direct delivery mode introduced by Chen[4] such that each
vehicle only delivers jobs from the same customer at a time. Moreover, there
are sufficient vehicles each with infinite transportation capacity. Let ti be the
transportation time from the production center to customer i, i = 1, 2, . . . , g. It
consumes Ti transportation cost in a round trip between the production center
and customer i. Assume there are totally qi delivery batches for customer i in
the distribution stage. Then the total transportation cost T =

∑
i=1,...,g qiTi. Let

Dj be the delivery time of job Jj (j = 1, 2, . . . , n) when the job is transported
its own customer i. The total delivery time is equal to

∑
i=1,...,nDj .

Similar to Chen and Vairaktarakis[5], we use
∑

i=1,...,nDj, T and α to rep-
resent customer service level, total transportation cost and relative preference
on them respectively. The aim is to find an integrated processing and delivery
schedule to minimize the sum of total delivery time and total transportation
cost with the relative preference α for the parallel-batch scheduling model.

We mainly study two models with either unbounded or bounded batch pro-
cessing capacity of the single batch machine, and adopt the five-field notation
α |β |π |δ |γ introduced by Chen[4] to represent the models as follows.

M1: 1|B − batch,B ≥ n|V (∞,∞), direct|g|α∑j=1,···,nDj + (1 − α)T , which
represents the unbounded batch processing model with g customers.

M2: 1|B − batch,B < n|V (∞,∞), direct|1|α∑j=1,···,nDj + (1 − α)T , which
represents the bounded batch processing model with a single customer.

By the objective formula, it is a regular function which is non-decreasing in
the completion times of jobs. Thus in an optimal production and distribution
schedule, there is no idle time between any two consecutive processing batches.
Besides, in an optimal integrated processing and delivery schedule of problems
M1 and M2, all the jobs from the same customer in one processing batch are
transported in the same delivery batch due to the infinite transportation capacity
and each delivery batch starts immediately on the completion time of processing
of the last job within this delivery batch.

3 The Unbounded Batch Processing Model M1

In this section, we investigate the unbounded model where the single machine
processes up to B (≥ n) jobs simultaneously and jobs are requested by g ≥ 1 cus-
tomers. Assume that there are nk jobs Jk

1 , J
k
2 , . . . , J

k
nk

requested by customer k
(k = 1, 2, . . . , g), and

∑
k=1,···,g nk = n. By observation, we can get two straight-

forward lemma as follows, the proof of lemma 1 is omitted.

Lemma 1. For problem M1, there exists an optimal integrated processing and
delivery schedule such that all the nk jobs for customer k (k = 1, 2, . . . , g) are
processed in SPT (shortest processing time) order, i.e., pkj ≤ pkj+1 for 1 ≤ j <
nk − 1.

76 X. Feng and F. Zheng

Lemma 2. For problem M1, there exists an optimal integrated processing and
delivery schedule such that in any delivery batch all the jobs for customer k are
processed in a single processing batch.

Proof. Assume otherwise in an optimal processing and delivery schedule σ, there
exists a delivery batch ζku for customer k such that ζku consists of jobs from
different processing batches Bu1 , . . . , Buj−1 , Buj , then processing all the jobs of
customer k in ζku within a single batch Buj due to the unbounded processing
capacity results in the same delivery schedule and objective value is reduced.
The lemma follows. ��

By Lemma 1, we rearrange jobs Jk
1 , J

k
2 , . . . , J

k
nk

by SPT order for each cus-

tomer k such that pkj ≤ pkj+1. We observe that each processing batch may con-
tain jobs from different customers. We adopt g-tuple (j1, . . . , jk, . . . , jg) where
1 ≤ jk ≤ nk to represent a state such that for customer k, the shortest jk jobs
has been assigned to previous processing batches and there are nk − jk jobs
left unscheduled for processing. If the next processing batch Bu from this state
contains bk jobs of customer k, i.e., Jk

jk+1, . . . , J
k
jk+bk

, then its processing time

p (Bu) = max
{
p
(
Jk
jk+bk

)
|bk �= 0, k = 1, . . . , g

}
. According to lemma 2, all the

jobs in Bu are transported to customers immediately on the completion of the
processing batch.

We are now ready to present a backward dynamic programming algorithm
DP1, in which the state is added to the beginning, to solve problem M1.

Algorithm DP1
Initialization: Arrange all the nk jobs for customer k in SPT order, i.e., pkj ≤ pkj+1

for 1 ≤ j ≤ nk. Set F (n1, . . . , nk, . . . , ng) = 0.
Recursion: For k = 1, 2, . . . , g and jk = nk, . . . , 0,

F (j1, . . . , jk, . . . , jg) = min
bk=0,...,nk−jk,k=1,...,g

{F (j1 + b1, . . . , jk + bk, . . . , jg + bg)

+ (1− α)
∑

bk �=0,k=1,...,g Tk + α
∑g

k=1 bk
(
max

{
p
(
Jk
jk+bk

)
+ tk |bk �= 0, k = 1, . . . , g

})
+α

∑g
k=1 (nk − jk − bk)

(
max

{
p
(
Jk
jk+bk

) |bk �= 0, k = 1, . . . , g
})}

Output: The optimal objective value F (0, . . . , 0).

In this backward dynamic programming algorithm, the state (j1, . . . , jg) comes
from (j1 + b1, . . . , jg + bg) in the recursion implies adding a new processing

batch Bu containing jobs set
{
Jk
jk+bk

|bk = 1, . . . , nk − jk, k = 1, . . . , g
}
, after

the shortest jk jobs for customer k has been scheduled. In the formula of
F (j1, . . . , jk, . . . , jg), the item I1 = (1 − α)

∑
bk 	=0,k=1,...,g Tk represents the to-

tal transportation time for delivering all the jobs in Bu to customers. The item

I2 = α
∑g

k=1 bk

(
max

{
p
(
Jk
jk+bk

)
+ tk |bk �= 0, k = 1, . . . , g

})
counts the total

delivery time of jobs in Bu. Since the arrangement of batch Bu makes the rest
nk−(jk+bk) jobs for customer k deferred for p (Bu) units of time for processing,

the item I3 = α
∑g

k=1 (nk − jk − bk)
(
max

{
p
(
Jk
jk+bk

)
|bk �= 0, k = 1, . . . , g

})

Scheduling with Parallel-Batch Processing and Deliveries 77

counts the increment of the total processing completion time of all the rest
unscheduled jobs due to the deferment of the processing batch Bu.

Theorem 1. Algorithm DP1 solves problem M1 in O
(
g(n/g)

2g
)

time.

Proof. First, in initialization, sorting jobs in SPT order takes O (
∑
nk lognk) =

O (n logn) time. In the recursion, there are totally
∏g

k=1 (nk + 1) recurrences.
In each recurrence, there are at most

∏g
k=1 (nk + 1) possible combinations of

jobs in batch Bu, and it takes O (g) time to calculate the values of items I1, I2
and I3 for any given Bu. Thus it consumes O (g ·∏g

k=1 (nk + 1)) time to calcu-
late the value of F (j1, . . . , jk, . . . , jg) in each recurrence. By

∑
k=1,···,g nk =

n,
∏g

k=1 (nk + 1) ≤ ((n+ g)/g)g, algorithm DP1 solves the problem M1 in

O
(
g((n+ g)/g)

2g
)

= O
(
g(n/g)

2g
)

time. ��
Theorem 1 means that when the number of customers g is fixed, Algorithm

DP1 solves M1 in polynomial time. When g is arbitrary, according to the exist-
ing literatures (see Hall and Potts[8]), the complexity of this problem remains
unsolved even the batch processing capacity is degenerated to B = 1.

4 The Bounded Batch Processing Model M2

In this section we consider the bounded model where the processing capacity B
of the batch machine is strictly less than n, the number of jobs. Brucker et al.[1]
investigated one related problem within the production stage, and provided an
algorithms running in O

(
nB(B−1)

)
time. They pointed out that when B is arbi-

trary, the complexity of this problem remains unsolved. So they focused on the
case where there is a single customer that requests m different processing times
of jobs, and presented an algorithm running in O

(
2mm2B2

)
time. This case is

reasonable in some manufacturing industries where a manufacturer produces m
types of products with different processing times, which is called multi-variety
and small batch production for m is large or low-variety and large batch pro-
duction for m is small. Chandru et al.[2,3] and Hochbaum and Landy[9] also
proposed O

(
m3Bm+1

)
and O

(
m23m

)
algorithms respectively for this kind of

problem with the objective of minimizing total completion time. We extend the
above research with the further consideration of distribution stage. We assume
that it consumes transportation time t and transportation cost T0 to deliver any
job from the production center to the customer.

Let p̄1 < p̄2 < · · · < p̄m be the m different processing times of the jobs, and nj

be the number of jobs with processing time of p̄j , (j = 1, 2, . . . ,m). n =
∑m

j=1 nj .
For notational convenience, a job with processing time p̄j is called a j -job, and
a processing batch Bk with processing time p(Bk) = p̄j is called a j -batch. If
|Bk| = B, then it is called a full processing batch, otherwise it is non-full. If
Bk is full and contains j -jobs only, it is called a pure j -batch, otherwise Bk is a
non-pure batch if it contains non-uniform length jobs or it is non-full.

78 X. Feng and F. Zheng

Completed jobs are transported to the customer in FCFS (first come first
serve) rule in the distribution stage because waiting is meaningless unless it can
be transported together with latter jobs, which means jobs in any processing
batch are transported to the customer not later than its following processing
batches. Moreover, since all the jobs in one processing batch are assigned to the
same delivery batch, if we assign all the jobs in processing batch Bk to some
delivery batch ζi, we simply say to assign the batch Bk to ζi. We next present
some lemmas on the properties of an optimal schedule of problem M2.

Lemma 3. In an optimal integrated processing and delivery schedule of problem
M2, if there exist two processing batches Bi and Bj satisfying |Bi| ≤ |Bj | and
p (Bi) ≥ p (Bj), then Bi cannot be processed and delivered earlier than Bj.

Proof. Assume otherwise in an optimal integrated processing and delivery sched-
ule σ, two different processing batches Bi and Bj with |Bi| ≤ |Bj | and p (Bi) ≥
p (Bj) are assigned to delivery batches ζ1 and ζ2 respectively, and ζ1 starts earlier
than ζ2. As previously mentioned, jobs are transported in FCFS rule and thus
Bi is processed earlier than Bj . Both ζ1 and ζ2 may contain several processing
batches. Let n1 and n2 represent the number of other jobs delivered in ζ1 and ζ2
excluding Bi and Bj respectively. We use p1 and p2 to denote the total processing
time among these n1 and n2 jobs. τ is the start time of the first processing batch
delivered in ζ1. Since the delivery batches between ζ1 and ζ2 have no influence
in this proof, we ignore them for conciseness. Then the objective value is

F (σ) = F0 + α (n1 + |Bi|) [τ + p (Bi) + p1 + t] + (1 − α)T0
+α (n2 + |Bj |) [τ + p (Bi) + p1 + p (Bj) + p2 + t] + (1 − α)T0

(F0 is the objective value generated by the other delivery batches except ζ1
and ζ2).

Now we produce another schedule σ′ from σ such that the schedule of all
processing batches in σ′ is the same as in σ except that the processing and the
delivery of Bi and Bj are exchanged in the two schedules. Since the completion
time of jobs delivered in the delivery batches except ζ1 and ζ2 is kept the same,
F0 is kept unchanged. Then the objective value is

F (σ′) = F0 + α (n1 + |Bj|) [τ + p (Bj) + p1 + t] + (1 − α)T0
+α (n2 + |Bi|) [τ + p (Bj) + p1 + p (Bi) + p2 + t] + (1 − α)T0

Then F (σ) − F (σ′) = αn1 [p (Bi) − p (Bj)] + α [|Bj | p (Bi) − |Bi| p (Bj)] +
αp2 (|Bj | − |Bi|). Since |Bi| ≤ |Bj | and p (Bi) ≥ p (Bj), i.e., p (Bi)− p (Bj) ≥ 0,
|Bj | p (Bi) − |Bi| p (Bj) ≥ 0, |Bj | − |Bi| ≥ 0, it can be concluded that F (σ) ≥
F (σ′). A contradiction to the assumption that σ is an optimal schedule in this
case. This establishes the lemma. ��

Lemma 3 implies that all the full processing batches each with B jobs are
processed in SPT order, and a non-full j -batch can only be scheduled after any
full j -batch since the number of jobs in a non-full batch is less than B.

Lemma 4. There exists an optimal integrated processing and delivery schedule
of problem M2 such that all the non-full processing batches are processed in SPT
order.

Scheduling with Parallel-Batch Processing and Deliveries 79

Proof. Assume in an optimal integrated processing and delivery schedule σ, there
are two non-full batches Bu and Bu+k with |Bu| , |Bu+k| < B. Bu is scheduled
for processing before Bu+k while p (Bu+k) < p (Bu). We may reassign any κ =
min {B − |Bu| , |Bu+k|} jobs in Bu+k to Bu without changing the completion
time of Bu’s processing. The reassigned κ jobs’ completion time is shifted to an
earlier time so that Bu becomes a full processing batch or all the jobs in Bu+k

are removed. Such reassignment can be applied to any two non-full batches in σ
until all the non-full batches are in SPT order. The lemma follows. ��

We use bj = �nj/B� to represent the maximum number of pure j-batches in
the processing schedule.

Lemma 5. In an optimal integrated processing and delivery schedule of problem
M2, there exist bj pure j-batches in the production stage for j = 1, 2, . . . ,m.

Proof. If bj = 0, the Lemma is straightforward. Below we focus on the case bj ≥
1. Assume otherwise that there are at most bj − 1 pure j -batches in an optimal
integrated processing and delivery schedule σ (1 ≤ j ≤ m). By the definition of
bj, we claim that at least nj − B · (bj − 1) ≥ B j -jobs are assigned to two or
more non-pure batches in σ.

Consider any two such processing batches Bu and Bw that contain j -jobs in
σ. Assume without loss of generality that p (Bu) ≤ p (Bw). In this case, swap
the j -jobs in Bw and the non-j -jobs in Bu. Then the completion time of Bu kept
unchange while that of Bw is reduced or unchange. The reassignment will not
make the jobs’ total completion time larger without changing the number of jobs
contained in them. We can repeat such interchanging between two new batches
Bu

′ and Bw
′ which contain j -jobs and are not pure j -batches. The above repe-

tition stops provided that there are bj pure j -batches for 1 ≤ j ≤ m and obtain
a new schedule σ′. Since the processing times of batches, which are selected for
interchanging jobs, are either reduced or unchanged during interchanging and
the delivery arrangement keeps unchanged since the number of jobs contained
in each processing batch is kept the same, we claim that the new schedule σ′

cannot be worse than σ. The lemma follows. ��
Lemma 6. In an optimal integrated processing and delivery schedule of problem
M2, there exists at most one non-pure j-batch.

Proof. Assume otherwise there exist two non-pure j-batches B
(j)
u and B

(j)
w in an

optimal schedule σ where B
(j)
u precedes B

(j)
w . By Lemma 5 there are bj = �nj/B�

pure j-batches in σ and thus the total number of j -jobs in B
(j)
u and B

(j)
w is at

most nj − B · bj < B. By interchanging each j -job in B
(j)
u with a non-j -job in

B
(j)
w , we obtain an alternative optimal processing schedule with one non-pure

j -batch. Since the delivery schedule keeps unchanged, the lemma follows. ��
In the production stage, according to Lemmas 5 and 6, there are exactly

bj = �nj/B� pure j -batches and at most one non-pure j -batch for j -jobs in
an optimal schedule. Hence, there is either zero or exactly one full non-pure
j -batch for each j (j = 1, 2, . . . ,m). We use the Batch Filling Procedure

80 X. Feng and F. Zheng

introduced by Brucker et al.[1] to form full non-pure batches, and represent
a given configuration of these batches by a set of indices χ ⊂ {1, 2, · · · ,m}.
We have j ∈ χ if and only if there exists one full non-pure j -batch in the
configuration; otherwise j /∈ χ, there is no full non-pure j -batch. There are 2m

possible combinations of set χ, and the Batch Filling Procedure runs in O (m)
time for any given set χ (please refer to Brucker et al.[1] for details).

For any given set χ, all the full processing batches have been determined
above. We next determine non-full processing batches for the remaining unas-
signed jobs. Assume there are totally nχ jobs left to be assigned to some non-full
processing batches for a given set χ. By Lemma 5, nχ ≤ m(B − 1). We re-index
the jobs as J ′

1, J
′
2, · · · , J ′

nχ
in SPT order. Let sj (0 ≤ sj ≤ B − 1) be the number

of j -jobs among the nχ unassigned jobs. To determine how to interleave the jobs
contained in non-full batches with the full batches, all the sj j -jobs can only be
processed after all full j -batches but before all the sj+1 (j+1)-jobs due to Lem-
mas 3 and 4. Since there are m distinct jobs among the nχ jobs and m different
lengths among all the full processing batches, the number of permutation and
combinations for the nχ jobs and all the full batches is a Catalan number

Cm =

(
2m
m

)
−
(

2m
m+ 1

)
→ 4m

m3/2
√
π

for a given set χ. Each permutation and

combination specifies one processing sequence of all the n jobs.
For each of the Cm processing sequences above, we observe that some distinct

jobs J ′
u, J

′
u+1, · · · , J ′

w with p (J ′
u) < p (J ′

w) may be arranged consecutively after
the last full m-batch or between two full batches, i.e., between a full j -batch
and a full (j+1)-batch for some 1 ≤ j ≤ m. The consecutively arranged jobs
J ′
u, · · · , J ′

w may form various combinations of non-full processing batches. The
following lemma is useful for forming non-full processing batches.

Lemma 7. In an integrated optimal processing and delivery schedule of problem
M2, all the j-jobs among the nχ jobs are assigned to the same processing batch.

Proof. Assume otherwise in an optimal schedule σ, there exist two non-full pro-
cessing batches Bu and Bw that both contain j-jobs, and Bu is scheduled before
Bw. Since there are at most B− 1 j -jobs (1 ≤ j ≤ m) in all the non-full process-
ing batches, we can always move the j -jobs in Bw to Bu provided that Bu is not
full, and then exchange all the rest j -jobs, if any, in Bw with the same number
of non-j -jobs in Bu given that Bu already contains B − 1 jobs. The objective
function will not be increased. The lemma follows. ��

Lemma 7 implies that during the assignment of these nχ jobs, all j -jobs to be
assigned can be treated as one group Gj since they are assigned to one batch.
Below we assign the nχ jobs into at most m groups by their processing time, i.e.,
{G1, G2, · · · , Gm}. Group Gj has sj j -jobs and it does not exist if sj = 0. For
one of Cm processing sequences, we first divide {G1, G2, · · · , Gm} into k subsets
{G1, G2, · · · , Gu1} , {Gu1+1, · · · , Gu2} , . . . ,

{
Guk−1+1 , · · · , Gm} such that there

exist some full processing batches between Gui and Gui+1 for i = 1, 2, . . . , k− 1
in the sequence. Then jobs in different subsets cannot be assigned to the same
non-full batch. Especially k = 1 implies that all the m groups are scheduled
in SPT order after all the full processing batches. Since the ui − ui−1 groups of

Scheduling with Parallel-Batch Processing and Deliveries 81

jobs (i = 1, 2, . . . , k; u0 = 0; uk = m) in the ith subset may be jointed into one or
more non-full processing batches, we use a new set of indices γ ⊂ {1, 2, . . . ,m} to
represent all the possible configurations of non-full batch combination for groups
G1, G2, · · · , Gm. We claim that for each processing sequence, there are at most
2m combinations of γ. If i ∈ γ, all the i-jobs in group Gi is assigned to a non-full
batch different from that of Gi+1 (1 ≤ i ≤ m); otherwise Gi is assigned to the
same non-full batch as Gi+1 provided that both groups are in the same subset.
We introduce new indicator variables di (1 ≤ i ≤ m) such that di = 0 if i ∈ γ
and di = 1 otherwise. That is, Gi and Gi+1 are in the same non-full processing
batch if di = 1. For any given set γ, we can produce a unique feasible processing
schedule, if exists, by the following Non-full Batch Filling Procedure.

Non-full Batch Filling Procedure

Input: Any given set γ of non-full processing batch indices and the values of di
(1 ≤ i ≤ m) for γ.

Step 1: Divide {G1, G2, · · · , Gm} into k subsets {G1, G2, · · · , Gu1} , {Gu1+1, · · · ,
Gu2} , . . . ,

{
Guk−1+1, · · · , Gm

}
, where u0 = 0, uk = m and the value of k is

specified by the given set γ. Set w = 1 and h = w − 1.

Step 2: Find the smallest index i∈γ and i > uh in set {Guh+1, Guh+2, · · · , Guw}.
If there is no such index, then

Case 1: if
∑

j=uh+1,...,uw
djsj < B, then groups Guh+1, Guh+2, · · · , Guw form

a non-full processing batch. Update w = w + 1 and h = w − 1. If w = k + 1,
terminate the procedure with a feasible batch processing schedule; otherwise if
w ≤ k, repeat this step.

Case 2: if
∑

j=uh+1,...,uw
djsj ≥ B, then terminate the procedure for the given

set γ because it contradicts the requirement that the related jobs form a non-full
batch.

Step 3: If such i exists and
∑

j=uh+1,...,i djsj ≥ B, then terminate the procedure
with the same reasoning as in Case 2 of Step 1; otherwise if such i exists and∑

j=uh+1,...,i djsj < B, groups Guh+1, Guh+2, · · · , Gui form a non-full processing
batch.

Step 4: Set uh = i and go back to step 2.

The above procedure produces one unique processing schedule σ̃(γ) of all the
n jobs in O(l) ≤ O(m) time for a given γ. The processing schedule σ̃(γ) consists
of
∑

j=1,···,m bj =
∑

j=1,···,m �nj/B� ≤ n/B pure batches, at most m full non-
pure batches and no more than m non-full processing batches. Thus there are
at most Nγ <

n
B + 2m processing batches, denoted as B̃1, B̃2, . . . , B̃Nγ , in σ̃(γ).

Let p(B̃j) be the processing time of the processing batch B̃j (j = 1, 2, . . .Nγ)

and
∣∣∣B̃j

∣∣∣ be the number of jobs in the batch. The completion time of B̃j is equal

to C̃j =
∑

i=1,...,j p(B̃j); j = 1, 2, . . . , Nγ since there is no idle time between any
two consecutive processing batches.

Now we are ready to produce an optimal delivery schedule for each processing
schedule σ̃(γ) by the following forward dynamic programming algorithm DP2.

82 X. Feng and F. Zheng

Algorithm DP2
Input: A feasible processing schedule σ̃(γ) given by Batch Filling Procedure
and Non-full Batch Filling Procedure.
Initialization: Set F (0) = 0.
Recursion: For j = 1, 2, . . . , Nγ ,

Fγ(j) = min
i=1,...,j

{
F (j − i) + α(C̃j + t)

(∑
u=j−i+1,···,j

∣∣∣B̃u

∣∣∣)+ (1 − α)T0

}
Output: An optimal objective value F (Nγ) for schedule σ̃(γ).

Then the optimal solution for this problem is F (opt) = min
γ

{Fγ(Nγ)}. The

optimal schedule is σ̃(γ∗) for the corresponding γ∗ in the optimal solution.
In the recursion of algorithm DP2, there are totally Nγ recurrences, in each of

which it consumes O (Nγ) time to calculate the value of item
∑

u=j−i+1,···,j
∣∣∣B̃u

∣∣∣
and then O

(
N2

γ

)
time to calculate the value of F (j). Hence algorithm DP2 runs

in O
(
N3

γ

)
time.

Theorem 2. Algorithm DP2 solves problem M2 in O
(
n323m

)
time.

Proof. For all the n jobs, there are at most 2m combinations of set χ, each of
which produces at most Cm processing sequences via the Batch Filling Proce-
dure running in O (m) time. In each processing sequence, there are at most 2m

combinations of set γ. Thus there are totally 2m · 2m · Cm = 22mCm com-
binations of γ. Each γ specified a unique processing schedule σ̃(γ) via the
Non-full Batch Filling Procedure which runs in O (nχ) = O(m) time, and an
optimal delivery schedule for σ̃(γ) via algorithm DP2 which runs in O

(
Nγ

3
)

=

O((n
B + 2m)3) < O(n3) time. Together with Cm → 4m

m3/2
√
π
, model M2 can be

solved in O(m2m + 2mCm(m + (n+ 2m)3)) = O((n+ 2m)3 23m

m3/2) = O
(
n323m

)
time. The theorem is established. ��

Theorem 2 means that when the number of job types m is fixed, Algorithm
DP2 solves M2 in polynomial time. When m is arbitrary, according to the ex-
isting literatures (see Brucker et al.[1]), the complexity of this problem remains
unsolved even without considering the distribution stage.

5 Conclusions and Remarks

In this paper we investigate an integrated scheduling problem considering both
production and distribution operations, in which jobs are processed on a parallel-
batch machine and then delivered to customers via sufficient vehicles. The ob-
jective function embodies both customer service level and total transportation
cost. We mainly present dynamic programming algorithms respectively for both
models with unbounded or bounded batch processing capacity. Some other ob-
jective functions would be a direction for further research. Another further work
is to design other algorithms with smaller time complexities.

Scheduling with Parallel-Batch Processing and Deliveries 83

Acknowledgements. This work was partially supported by the National Natu-
ral Science Foundation of China under Grants 71172189, 71071123 and 61221063,
Program for Changjiang Scholars and Innovative Research Team in University
(No.IRT1173), New Century Excellent Talents in University (NCET-12-0824),
and the Fundamental Research Funds for the Central Universities.

References

1. Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn,
T., Van de Velde, S.L.: Scheduling a batching machine. Journal of Scheduling 1,
31–54 (1998)

2. Chandru, V., Lee, C.Y., Uzsoy, R.: Minimizing total completion time on a
batch processing machines. International Journal of Production Research 31(9),
2097–2122 (1993a)

3. Chandru, V., Lee, C.Y., Uzsoy, R.: Minimizing total completion time on a batch
processing machines. Operations Research Letters 13(2), 61–65 (1993b)

4. Chen, Z.L.: Integrated production and outbound distribution scheduling: review
and extensions. Operation Research 58(1), 130–148 (2010)

5. Chen, Z.L., Vairaktarakis, G.L.: Integrated scheduling of production and distribu-
tion operations. Management Science 51(4), 614–628 (2005)

6. Cheng, T.C.E., Gordon, V.S., Kovalyov, M.Y.: Single machine scheduling with
batch deliveries. European Journal of Operational Research 94(2), 277–283 (1996)

7. Gong, H., Tang, L.: A scheduling problem on a single batching machine with batch
deliveries. In: Proceedings of the 30th Chinese Control Conference, July 22-24
(2011)

8. Hall, N.G., Potts, C.N.: Supply chain scheduling: batching and delivery. Operations
Research 51(4), 566–584 (2003)

9. Hochbaum, D., Landy, D.: Scheduling semiconductor burn-in operations to mini-
mize total flowtime. Operation Research 45(6), 874–885 (1997)

10. Lee, C.Y., Uzsoy, R., Martin-Vega, L.A.: Efficient algorithms for scheduling semi-
conductor burn-in operations. Operation Research 40(4), 764–775 (1992)

11. Li, S.S., Yuan, J.J., Fan, B.Q.: Unbounded parallel-batch scheduling with family
jobs and delivery coordination. Information Processing Letters 111(12), 575–582
(2011)

12. Poon, C.K., Yu, W.: On minimizing total completion time in batch machine
scheduling. International Journal of Foundations of Computer Science 15(4),
593–607 (2004)

13. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: a review. European Journal
of Operational Research 120(2), 228–249 (2000)

14. Pundoor, G., Chen, Z.L.: Scheduling a production-distribution system to optimize
the tradeoff between delivery tardiness and distribution cost. Naval Research Lo-
gistics 52(6), 571–589 (2005)

15. Tang, L., Gong, H.: The coordination of transportation and batching scheduling.
Applied Mathematical Modelling 33(10), 3854–3862 (2009)

16. Webster, S., Baker, K.R.: Scheduling groups of jobs on a single machine. Operation
Research 43(4), 692–703 (1995)

17. Yang, X.: Scheduling with generalized batch delivery dates and earliness penalties.
IIE Transactions 32(8), 735–741 (2000)

The Fractional Strong Metric

Dimension of Graphs

Cong X. Kang and Eunjeong Yi

Texas A&M University at Galveston, Galveston, TX 77553, USA
{kangc,yie}@tamug.edu

Abstract. For any two vertices x and y of a graph G, let S{x, y} denote
the set of vertices z such that either x lies on a y − z geodesic or y lies
on a x − z geodesic. For a function g defined on V (G) and U ⊆ V (G),
let g(U) =

∑
x∈U g(x). A function g : V (G) → [0, 1] is a strong resolving

function of G if g(S{x, y}) ≥ 1, for every pair of distinct vertices x, y of
G. The fractional strong metric dimension, sdimf (G), of a graph G is
min{g(V (G)) : g is a strong resolving function of G}. For any connected
graph G of order n ≥ 2, we prove the sharp bounds 1 ≤ sdimf (G) ≤ n

2
.

Indeed, we show that sdimf (G) = 1 if and only if G is a path. If G
contains a cut-vertex, then sdimf (G) ≤ n−1

2
is the sharp bound. We de-

termine sdimf (G) when G is a tree, a cycle, a wheel, a complete k-partite
graph, or the Petersen graph. For any tree T , we prove the sharp inequal-
ity sdimf (T + e) ≥ sdimf (T) and show that sdimf (G+ e)− sdimf (G)
can be arbitrarily large. Lastly, we furnish a Nordhaus-Gaddum-type re-
sult: Let G and G (the complement of G) both be connected graphs
of order n ≥ 4; it is readily seen that sdimf (G) + sdimf (G) = 2 if
and only if n = 4; further, we characterize unicyclic graphs G attaining
sdimf (G) + sdimf (G) = n.

Keywords: (strong) metric dimension, fractional metric dimension, frac-
tional strong metric dimension, Nordhaus-Gaddum-type result, tree, uni-
cyclic graph, cut-vertex.

1 Introduction

Let G = (V (G), E(G)) be a finite, simple, undirected, connected graph of order
|V (G)| ≥ 2 and size |E(G)|. For a vertex v ∈ V (G), the open neighborhood of
v is the set N(v) = {u ∈ V (G) | uv ∈ E(G)}. The degree degG(v) of a vertex
v ∈ V (G) is |N(v)|; a leaf (or an end-vertex) is a vertex of degree one, and
a major vertex is a vertex of degree at least three. The distance between two
vertices u, v ∈ V (G), denoted by dG(u, v), is the length of the shortest path
between u and v; we omit G when ambiguity is not a concern. The diameter,
diam(G), of a graph G is given by max{d(u, v) | u, v ∈ V (G)}. A leaf u is
called a terminal vertex of a major vertex v if d(u, v) < d(u,w) for every other
major vertex w. The terminal degree ter(v) of a major vertex v is the number
of terminal vertices of v. A major vertex v is an exterior major vertex if it has

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 84–95, 2013.
c© Springer International Publishing Switzerland 2013

Fractional Strong Metric Dimension 85

positive terminal degree. Let σ(G) denote the number of leaves of G, and let
ex1(G) denote the number of exterior major vertices of terminal degree exactly
one in G. The complement G of a graph G is the graph whose vertex set is V (G)
and uv ∈ E(G) if and only if uv �∈ E(G) for u, v ∈ V (G). We denote by Pn the
path on n vertices.

For an ordered set S = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v ∈ V (G), the
k-vector r(v|S) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the metric represen-
tation of v with respect to S. The set S is a resolving set for G if r(x|S) = r(y|S)
implies that x = y for all pairs x, y of vertices of G. The metric dimension of G,
denoted by dim(G), is the minimum cardinality amongst all resolving sets of G.
Metric dimension was introduced independently by Slater [13] and by Harary and
Melter [6]. Some applications of metric dimension can be found in robot naviga-
tion [8], sonar [13], combinatorial optimization [12], and pharmaceutical chem-
istry [2]. It was noted in [5] that determining the metric dimension of a graph
is an NP-hard problem. Currie and Oellermann [3] defined fractional metric di-
mension by relaxing a condition in the integer programming problem formulated
for metric dimension. A formulation of fractional metric dimension as a linear
programming problem is found in [4] and recounted in [1]. For discussions on the
fractionalization of other graph parameters, see [11]. Arumugam and Mathew ob-
tained some bounds for fractional metric dimension and computed the parameter
for certain classes of graphs in [1]. For a function g defined on V (G), let g(U) =∑

s∈U g(s) for U ⊆ V (G). For R{x, y} = {z ∈ V (G) | d(x, z) �= d(y, z)}, a real-
valued function g : V (G) → [0, 1] is a resolving function of G if g(R{x, y}) ≥ 1
for any two distinct vertices x, y ∈ V (G). The fractional metric dimension
dimf (G) of a graph G is min{g(V (G)) : g is a resolving function of G}. No-
tice that dimf (G) reduces to dim(G), the well-known metric dimension, if the
codomain of resolving functions is restricted to {0, 1}.

A vertex z ∈ V (G) strongly resolves a pair of vertices x, y ∈ V (G) if there
exists a shortest y−z path containing x or a shortest x−z path containing y. A
set of vertices S ⊆ V (G) strongly resolves G if every pair of distinct vertices of G
is strongly resolved by some vertex in S; then, S is called a strong resolving set
of G. The strong metric dimension of G, denoted by sdim(G), is the minimum
cardinality over all strong resolving sets of G; a strong resolving set of minimum
cardinality is also called a strong basis. Sebö and Tannier [12] introduced the
strong metric dimension. In [10], Oellermann and Peters-Fransen showed that
determining the strong metric dimension of a graph is an NP-hard problem. We
say that u ∈ V (G) is maximally distant from v ∈ V (G) if for every w ∈ N(u),
d(w, v) ≤ d(u, v). If u is maximally distant from v and v is maximally distant
from u, then we say that u and v are mutually maximally distant, or u MMD v
for short. It was shown in [10] that if x MMD y in G, then any strong resolving
set of G must contain either x or y.

Sebö and Tannier [12] observed that if S is a strong resolving set, then the
vectors {r(v|S) | v ∈ V (G)} uniquely determine the graph G, whereas if S
is a resolving set, then the vectors {r(v|S) | v ∈ V (G)} may not uniquely
determine G. It’s easy to construct two non-isomorphic graphs on a common

86 C.X. Kang and E. Yi

set of vertices, a common minimum resolving set, and a common collection of
metric vectors (see [12] for an example). For the other assertion, let us identify
C = {r(v|S) : v ∈ V (G) and S is a strong basis of G} with V (G). Then x, y ∈ C
are adjacent if and only if ‖x − y‖∞ = 1, where ‖x‖∞ = max1≤i≤k |xi| is the
�∞-norm on a vector space and k = sdim(G). To see why, first observe that
xy ∈ E(G) implies ‖x− y‖∞ = 1. On the other hand, assume ‖x− y‖∞ = 1 and
let δi be the unique element in S having 0 at the i-th coordinate which strongly
resolves x from y. Since it is assumed that |xi − yi| ≤ 1 and δi strongly resolves
x from y, we must have |xi − yi| = 1. Since, up to a transposition of x and y,
there is a x− δi geodesic which is an extension by length 1 of a y − δi geodesic,
xy ∈ E(G).

We define fractional strong metric dimension as follows. Let S{x, y} denote
the set of vertices z such that x lies on y − z geodesic or y lies on x − z
geodesic. A real valued function g : V (G) → [0, 1] is a strong resolving func-
tion of G if g(S{x, y}) ≥ 1 for any two distinct vertices x, y ∈ V (G). The
fractional strong metric dimension of G, denoted by sdimf (G), is min{g(V (G)) :
g is a strong resolving function of G}. Notice that sdimf (G) reduces to sdim(G)
if the codomain of strong resolving functions is restricted to {0, 1}. The problem
of finding the fractional strong metric dimension of a graph can be formulated
as a linear programming problem in exactly the same manner as detailed in [4]
and recounted in [1], as long as the “resolving graph R(G) of G” is replaced by
the “strongly resolving graph S(G) of G”: Given a connected graph G of order
n, let V be the vertex set of G and W be the set of all

(
n
2

)
pairs of vertices of G.

Then S(G) is the bipartite graph with partite sets V and W , such that x ∈ V
is joined to {u, v} ∈ W if and only if x strongly resolves u and v in G.

We first fill a hole in the literature on fractional metric dimension by proving
dimf (G) = 1 if and only if G is a path (Theorem 4); with which we readily show
sdimf (G) = 1 if and only G is a path (Corollary 1). Then, for any connected
graph G of order n ≥ 2, we show that 1 ≤ sdimf (G) ≤ n

2 ; if G contains a
cut-vertex, then we prove the sharp bound sdimf (G) ≤ n−1

2 . We determine
sdimf (G) when G is a tree, a cycle, a wheel, a complete k-partite graph, or the
Petersen graph. For any tree T , we prove the sharp inequality sdimf(T + e) ≥
sdimf (T), and we give an example showing that sdimf (G+ e)− sdimf (G) can
be arbitrarily large for some edge e. We obtain a Nordhaus-Gaddum-type result
(see [9]) on fractional strong metric dimension: for connected graphs G and G
of order n ≥ 4, we show that 2 ≤ sdimf (G) + sdimf(G) ≤ n. It is readily
seen that sdimf(G) + sdimf (G) = 2 if and only if n = 4, and there is no tree
T satisfying sdimf(T) + sdimf (T) = n. We characterize unicyclic graphs G
attaining sdimf (G) + sdimf (G) = n.

2 Some Results on dimf(G), as a Preliminary to
sdimf(G)

Theorem 1. [1] Let G be a connected graph of order n. Then dimf (G) ≤ n
2 .

Further dimf (G) = n
2 if and only if there exists a bijection α : V (G) → V (G)

such that α(v) �= v and |R{v, α(v)}| = 2 for all v ∈ V (G).

Fractional Strong Metric Dimension 87

The following proposition extends part (iv) of Cor. 2.7 of [1] to allowing for
ai = 1.

Proposition 1. [14] For k ≥ 2, let Ka1,a2,...,ak
be a complete k-partite graph of

order n =
∑k

i=1 ai. Then

dimf(Ka1,a2,...,ak
) =

{
n−1
2 if ai = 1 for exactly one i ∈ {1, 2, . . . , k}

n
2 otherwise .

(1)

Theorem 2. [1]

(a) For the Petersen graph P, dimf (P) = 5
3 .

(b) For the cycle Cn,

dimf(Cn) =

{ n
n−1 if n is odd,
n

n−2 if n is even.
(2)

(c) For the wheel Wn, n ≥ 5,

dimf (Wn) =

⎧⎨⎩
2 if n = 5
3
2 if n = 6
n−1
4 if n ≥ 7.

(3)

(d) For the grid graph G = Ps�Pt (s, t ≥ 2), dimf (G) = 2 = dim(G).

Theorem 3. [14] For any tree T , dimf (T) = 1
2 [σ(T) − ex1(T)].

Theorem 4. For any graph G of order n, dimf (G) = 1 if and only if G = Pn.

Proof. (⇐=) Since 1 ≤ dimf (Pn) ≤ dim(Pn) = 1, dimf (Pn) = 1.

(=⇒) Let G �= Pn for any n. We will show that dimf (G) > 1. Let N :=⋂
u,v∈V (G)

R{u, v}, where the intersection is taken over all pairs of distinct vertices

of G. Observe that

N �= ∅ if and only if G = Pn for some n.

Suppose, for the sake of contradiction, dimf(G) = 1 and G �= Pn for any n. Let
u, v, w, z ∈ V (G) such that u �= v and w �= z. Let A = R{u, v}, B = R{w, z},
A′ = A−B, B′ = B −A, and let g : V (G) → [0, 1] be a resolving function with
g(V (G)) = 1. By definition, g(A′) + g(A∩B) ≥ 1 and g(B′) + g(A∩B) ≥ 1. By
the assumption that dimf (G) = 1, g(A′) + g(A ∩ B) + g(B′) = 1. So, g(B′) =
0 = g(A′). Since u, v, w, z are arbitrary, g is zero except on N . Since G �= Pn,
N = ∅. Thus g(V (G)) = 0, a contradiction. ��
Theorem 5. Let Bm be a bouquet of m circles with a cut-vertex (i.e., the vertex
sum of m cycles at one common vertex), where m ≥ 2. Then dimf(Bm) = m.

88 C.X. Kang and E. Yi

u2,2

u1,1

u1,2
u1,3

u2,3

u3,3u3,2u3,1u2,5u2,4

u3,4

u3,5u3,6

v

u3,7u2,1

Fig. 1. A bouquet of three circles B3, and its labeling

Proof. Let Bm be a bouquet of m ≥ 2 circles C1, C2, . . ., Cm, with the cut-
vertex v (see Fig. 1). For each cycle Ci with |V (Ci)| = 1 + ki, let the vertices of
Ci be labeled cyclically, v = ui,0, ui,1, . . . , ui,ki , where i ∈ {1, 2, . . . ,m}.

We first show that dimf(Bm) ≥ m. For each i ∈ {1, 2, . . . ,m}, R{ui,1, ui,ki}∩
[V (Bm)− (V (Ci)−{v})] = ∅. So, for each i ∈ {1, 2, . . . ,m}, g(V (Ci)−{v}) ≥ 1
for any resolving function g : V (Bm) → [0, 1]; thus dimf(Bm) ≥ m.

Next, we show that dimf (Bm) ≤ m. For w ∈ V (Bm), let h : V (Bm) → [0, 1]
be a function defined by

h(w) =

⎧⎪⎨⎪⎩
1 if w = u

i,
ki
2

and Ci is an odd cycle
1
2 if w ∈ {u

j,� kj
2 �−1

, u
j,�kj

2 �+1
} and Cj is an even cycle

0 otherwise .

(4)

Notice that h(V (Ci) − {v}) = 1 for each i ∈ {1, 2, . . . ,m}. We will show that
h is a resolving function of Bm. Let x, y ∈ V (Bm) and x �= y. First, suppose
that x, y ∈ V (Ci) for some i ∈ {1, 2, . . . , n}. If d(x, v) �= d(y, v), then R{x, y} ⊇
V (Bm) − [V (Ci) − {v}]; if d(x, v) = d(y, v), then R{x, y} ⊇ {u

i,
ki
2

} when Ci is

an odd cycle, and R{x, y} ⊇ {u
i,�ki

2 �−1
, u

i,� ki
2 �+1

} when Ci is an even cycle. So,

h(R{x, y}) ≥ 1 in each case. Second, suppose that x ∈ V (Ci) and y ∈ V (Cj)
for two distinct cycles Ci and Cj . If Ci or Cj , say Ci, is an odd cycle, then
R{x, y} ⊇ {u

i,
ki
2

}. If both Ci and Cj are even cycles, we may assume that x lies

on v − u
i,� ki

2 �−1
geodesic and y lies on v − u

j,� kj
2 �−1

geodesic, by relabeling if

necessary. Then R{x, y} ⊇ {u
i,�ki

2 �−1
, u

j,� kj
2 �−1

}. In each case, h(R{x, y}) ≥ 1.

So h is a resolving function of Bn with h(V (Bm)) = m; thus dimf (Bm) ≤ m.
Therefore, dimf (Bm) = m. ��

3 Basic Results on the Fractional Strong Metric
Dimension of Graphs

Observation 6. Let G be a connected graph. Then

(a) sdimf (G) ≤ sdim(G),
(b) dimf (G) ≤ sdimf (G),
(c) If x MMD y, then S{x, y} = {x, y} and hence g(x)+g(y) ≥ 1 for any strong

resolving function g of G.

Fractional Strong Metric Dimension 89

Corollary 1. For any graph G of order n, sdimf (G) = 1 if and only if G = Pn.

Proof. Since an end-vertex belongs to every strongly resolving set, sdimf (Pn) =
1. For the other direction, apply Theorem 4 and Observation 6(b). ��
Theorem 7. Let G be a connected graph of order n ≥ 2. Then 1 ≤ sdimf(G) ≤
n
2 . Further, sdimf (G) = n

2 if and only if there exists a bijection α on V (G) such
that α(v) �= v and S{v, α(v)} = {v, α(v)} for every v ∈ V (G).

Proof. The proof (with R{x, y} replaced by S{x, y}) to Theorem 2.6 found in [1]
applies here. For sharpness of the lower bound, note sdimf (Pn) = 1 since an
end-vertex strongly resolves any pair of vertices of Pn (also see Corollary 1). For
sharpness of the upper bound, note sdimf (Kn) = n

2 , where Kn is the complete
graph on n vertices (see Theorem 8). ��
Proposition 2. Let G be a connected graph of order n ≥ 3 with a cut-vertex.
Then sdimf (G) ≤ n−1

2 , and the bound is sharp.

Proof. Let u be a cut-vertex of a connected graph G of order n ≥ 3. For w ∈
V (G), let g : V (G) → [0, 1] be a function defined by

g(w) =

{
0 if w = u
1
2 otherwise.

(5)

We will show that g is a strong resolving function of G; thus sdimf (G) ≤ n−1
2 .

Let x, y ∈ V (G) with x �= y. If u �∈ {x, y}, then S{x, y} ⊇ {x, y}; thus
g(S{x, y}) ≥ g(x) + g(y) = 1. So, let u ∈ {x, y}, say u = x. Let G1 and G2

be two components of G − v. Without loss of generality, we may assume that
y ∈ V (G1). Then there exists a vertex, say z ∈ V (G2), such that u lies on
y − z geodesic, since dG(y, z) = dG(y, u) + dG(u, z). So, S{u, y} ⊇ {y, z}; thus
g(S{u, y}) ≥ 1.

For the sharpness of the bound, let G = Bm be a bouquet of m 3-cycles,
where m ≥ 2; notice that |V (G)| = 2m + 1. Since G contains a cut-vertex,

sdimf (G) ≤ |V (G)|−1
2 by the present proposition. By Theorem 5 and Observa-

tion 6(b), sdimf (G) ≥ m = |V (G)|−1
2 . So, sdimf(G) = |V (G)|−1

2 . ��
Theorem 8. For k ≥ 2, let Ka1,a2,...,ak

be a complete k-partite graph of order

n =
∑k

i=1 ai. Then

sdimf (Ka1,a2,...,ak
) =

{
n−1
2 if ai = 1 for exactly one i ∈ {1, 2, . . . , k}

n
2 otherwise .

(6)

Proof. Let G = Ka1,a2,...,ak
be a complete k-partite graph of order n =

∑k
i=1 ai,

where k ≥ 2; let V1, V2, . . . , Vk be the partition of V (G) with |Vi| = ai (1 ≤ i ≤
k). Let g : V (G) → [0, 1] be any strong resolving function of G. We consider two
cases.

90 C.X. Kang and E. Yi

Case 1: ai ≥ 2 for each i ∈ {1, 2, . . . , k}. In this case, diam(G) = 2. Since any
two vertices in Vi are mutually maximally distant in G, we have (ai−1) ·g(Vi) ≥(
ai

2

) ⇐⇒ g(Vi) ≥ ai

2 for each i ∈ {1, 2, . . . , k}. By summing over the k inequali-

ties, we have g(V (G)) =
∑k

i=1 g(Vi) ≥ 1
2

∑k
i=1 ai = n

2 ; thus sdimf (G) ≥ n
2 . By

Theorem 7, sdimf (G) = n
2 .

Case 2: ai = 1 for some i ∈ {1, 2, . . . , k}. Let s be the number of partite sets
consisting of only one vertex. Without loss of generality, assume that |Vi| = 1 for
i ∈ {1, 2, . . . , s}. First, let s = 1. Then g(Vj) ≥ aj

2 for each j ∈ {2, 3, . . . , k}; thus

g(V (G)) ≥ 1
2

∑k
j=2 aj = n−1

2 , i.e., sdimf(G) ≥ n−1
2 . If we let h : V (G) → [0, 1]

be a function defined by

h(v) =

{
0 if v ∈ V1
1
2 otherwise,

(7)

then g is a strong resolving function ofG; thus sdimf(G) ≤ n−1
2 . So, sdimf(G) =

n−1
2 when s = 1. Second, let 1 < s < n. If we let W = ∪s

i=1Vi, then x MMD y for
any pair x, y ∈W ; thus g(W) = g(∪s

i=1Vi) ≥ 1
2

∑s
i=1 ai. Further, g(Vj) ≥ aj

2 for

each j ∈ {s+1, s+2, . . . , k}. So, g(V (G)) = g(W)+
∑k

j=s+1 g(Vj) ≥ 1
2

∑k
i=1 ai+

1
2

∑k
j=s+1 aj = n

2 , i.e., sdimf(G) ≥ n
2 . By Theorem 7, sdimf(G) = n

2 . Third,
let s = n. Then diam(G) = 1 and x MMD y for any pair x, y ∈ V (G). So,
g(V (G)) ≥ n

2 , i.e., sdimf (G) ≥ n
2 . By Theorem 7, sdimf (G) = n

2 . ��
Theorem 9. For the Petersen graph P, sdimf (P) = 5.

Proof. Let V (P) = {ui : 1 ≤ i ≤ 10} and g : V (P) → [0, 1] be any strong
resolving function. Notice that P is vertex transitive (see [7]), diam(P) = 2,
and each ui ∈ V (P) has 6 non-neighbors. Since, for each ui and a non-neighbor
uij of ui, we have ui MMD uij in G, we must have g(ui) + g(uij) ≥ 1 for each
j = 1 . . . 6. Then, we have

6g(ui) +

6∑
j=1

g(uij) ≥ 6 ⇒
10∑
i=1

⎡⎣6g(ui) +

6∑
j=1

g(uij)

⎤⎦ ≥ 60

⇒ 6g(V (P)) +

10∑
i=1

6∑
j=1

g(uij) ≥ 60

Now, in the double summation, due to vertex transitivity, the number of
times a vertex of P appears in the multiset {uij}(i = 1 . . . 10 and j = 1 . . . 6) is

constant. Thus,
∑10

i=1

∑6
j=1 g(uij) = 6

∑10
i=1 g(ui) = 6g(V (P)). Thus, the last

inequality reduces to 12g(V (P)) ≥ 60, and whence g(V (P)) ≥ 5. By Theorem
7, sdimf (P) = 5. ��
Theorem 10. For the cycle Cn on n ≥ 3 vertices, sdimf (Cn) = n

2 .

Fractional Strong Metric Dimension 91

Proof. Let V (Cn) be labeled cyclically by I = {0, 1, . . . n− 1}. By Theorem 7, it
suffices to find a permutationα on I such thatα is fix-point free and |S{v, α(v)}| =
2 for each v ∈ I = V (G). Let d be the diameter of Cn, and put α(v) = v +
d (mod n). This α clearly is a fix-point free permutation on V (Cn). Further, by
Observation 6(c), |S{v, α(v)}| = 2. ��
Theorem 11. For the wheel Wn on n ≥ 4 vertices, we have

sdimf (Wn) =

{
2 if n = 4
1
2 (n− 1) if n ≥ 5.

(8)

Proof. Let G = Wn for n ≥ 4. If n = 4, then G ∼= K4 and sdimf (G) = 2 by
Theorem 8.

So, we consider for n ≥ 5. Let g be any strong resolving function on V (Wn).
Let the vertices of the outer cycle be labeled cyclically by I = {0, 1, . . . n − 2}.
Let d = �n

2 � and define a permutation α on I such that α(v) = v + d (mod
n− 1). Notice that v MMD α(v) on the graph Wn. Hence, |S{v, α(v)}| = 2 and
g({v, α(v)}) ≥ 1 for each v ∈ I. Then

∑
v∈I g({v, α(v)}) ≥ n− 1 and, since each

v ∈ I appears twice in the sum, we have 2g(I) ≥ n − 1. Therefore, we obtain
g(V (Wn)) ≥ g(I) ≥ n−1

2 .
Next, let h : V (Wn) → [0, 1] be defined by h(v) = 0 for v /∈ I and h(v) = 1

2 for
each v ∈ I. Then h is a strong resolving function of G with h(V (Wn)) = 1

2 (n−1).
Therefore, sdimf (G) = 1

2 (n− 1) for n ≥ 5. ��
Proposition 3. For s, t ≥ 2, sdimf (Ps�Pt) = 2, where Ps�Pt is the Cartesian
product of two paths Ps and Pt.

Proof. First, realize G = Ps�Pt as the rectangular (and integral) lattice in the
first quadrant of the xy-plane such that the base and left side of G lie on the
x-axis and y-axis, respectively. Label the corners of G cyclically as u1 = (0, 0),
u2 = (s − 1, 0), u3, and u4. Then, we have u1 MMD u3 and u2 MMD u4 in G.
So, g(u1) + g(u3) ≥ 1 and g(u2) + g(u4) ≥ 1 for any strong resolving function g
on G. Thus sdimf(G) ≥ 2.

Now, define a function h on V (G) by h(v) = 1 for v ∈ B = {u1, u2} and
h(v) = 0 for v /∈ B. We contend that h is a strong resolving function of G; i.e.,
given v1 = (a, b) and v2 = (c, d), an arbitrary pair of distinct vertices of G, there
exists u ∈ B such that there is a geodesic passing through v1, v2, and u (up to
a transposition of v1 and v2). One can readily check that u1 (u2, respectively)
strongly resolves v1 and v2 if a ≤ c and b ≤ d (a ≤ c and b ≥ d, respectively);
note that, up to relabeling, these are the only two distinct cases. Therefore, we
conclude sdimf (G) = 2. ��
Remark 1. We note that sdimf is not a monotone parameter with respect to
subgraph inclusion in any sense.

First, consider subgraphs on the same set of vertices. Let G = Pm�P2 (m ≥
2), then C2m is a subgraph of G. We have sdimf (G) = 2, whereas sdimf (C2m) =
m. On the other hand, we have sdimf (Pm) = 1, whereas sdimf (Km) = m

2 .

92 C.X. Kang and E. Yi

1
2

0

0

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 2. A graph G and an induced subgraph C8 of G with sdimf (C8) > sdimf (G)

Second, consider induced subgraphs. In Fig. 2, the function g, with g(v) in-
dicated next to each vertex v ∈ V (G), is a minimum strong resolving func-
tion of G. Thus sdimf (G) = 7

2 . Notice C8 is an induced subgraph of G, and
sdimf (C8) = 4 > sdimf(G).

4 The Fractional Strong Metric Dimension of Trees and
Unicyclic Graphs

Proposition 4. For any connected graph G, sdimf (G) ≥ 1
2σ(G).

Proof. Let �1, �2, . . . , �σ be leaves of G, where σ = σ(G). Let g : V (G) → [0, 1]
be any strong resolving function. Since �i MMD �j , i �= j, in G, g(�i) + g(�j) ≥
1. By summing over

(
σ
2

)
inequalities, we have (σ − 1)

∑σ
i=1 g(�i) ≥ (

σ
2

)
, i.e.,∑σ

i=1 g(�i) ≥ σ
2 . Thus sdimf(G) ≥ σ

2 . ��
Corollary 2. For any tree T , sdimf (T) = 1

2σ(T).

Proof. By Proposition 4, sdimf (T) ≥ 1
2σ(T). Let L = {v ∈ V (G) : deg(v) = 1},

and let g : V (T) → [0, 1] be a function defined by g(v) = 1
2 if v ∈ L and g(v) = 0

if v �∈ L. Since any two vertices, say x and y, in T lie in a path containing two
leaves of T , |S{x, y} ∩ L| ≥ 2; thus g(S{x, y}) ≥ 1. So, g is a strong resolving
function of T ; thus sdimf (T) ≤ 1

2σ(T). ��

Since σ(T + e) ≥ σ(T) − 2 for e ∈ E(T), by Proposition 4, sdimf (T + e) ≥
sdimf (T) − 1. In fact, we will show that sdimf (T + e) ≥ sdimf (T).

Theorem 12. For a tree T , sdimf (T + e) ≥ sdimf (T), where e ∈ E(T).

Proof. Let g : V (T + e) → [0, 1] be any strong resolving function of T + e.
Notice that σ(T) − 2 ≤ σ(T + e) ≤ σ(T) for e ∈ E(T). If σ(T + e) = σ(T),
then sdimf (T + e) ≥ 1

2σ(T + e) = 1
2σ(T) = sdimf (T) by Proposition 4 and

Corollary 2.
So, suppose that σ(T + e) = σ(T) − 1. Then there exists a leaf � in T such

that degT+e(�) = 2. Let C be the unique cycle of T + e; we may view the
unicyclic graph T + e as C together with subtrees rooted at vertices on C. Since
� ∈ V (C), there exists a vertex u ∈ V (C) with dC(�, u) = diam(C). Let Tu be
the subtree of T + e rooted at u. Let U be the leaves of Tu if Tu �= {u}, and let
U = {u} if Tu = {u}. Then, g(x) + g(y) ≥ 1 for distinct vertices x, y ∈ U ∪ {�},

Fractional Strong Metric Dimension 93

since x MMD y in T + e. By summing over the
(|U|+1

2

)
inequalities, we have

|U |(g(U) + g(�)) ≥ (|U|+1
2

)
, i.e., g(U) + g(�) ≥ 1

2 (|U | + 1). Then, g(V (T + e)) =
g(V (Tu)∪{�})+g(V (T +e)−V (Tu)−{�}) ≥ g(U)+g(�)+g(V (T +e)−V (Tu)−
{�}) ≥ 1

2 (|U |+1)+ 1
2 (σ(T+e)−|U |) = 1

2 (σ(T+e)+1) = 1
2σ(T), since the number

of leaves of T + e not on the subtree Tu equals σ(T + e)− |U | or σ(T + e) (when
U = {u}). Therefore, sdimf (T + e) ≥ sdimf (T) when σ(T + e) = σ(T) − 1.

Suppose now σ(T + e) = σ(T) − 2, and let �1 and �2 be the two (adjacent)
vertices on C which are leaves of T . Suppose there are distinct vertices u1 and u2
such that diam(C) = d(�i, ui) for i = 1, 2, then we apply the above argument to
the three subset partition V (T +e) = (U1∪{�1})∪(U2∪{�2})∪(the rest), where
Ui (i ∈ {1, 2}) is the leaves of Tui if Tui �= {ui}, and Ui = {ui} if Tui = {ui}. The
above argument, modified mutatis mutantis, yields the desired result. If there
is only one vertex u on C such that diam(C) = d(�i, u) for i = 1, 2, then write
g(V (T + e)) = g(U ∪ {�1}) + g(U ∪ {�2}) − g(U) + g(V (T + e) − U − {�1, �2}).
The desired result again follows from a similar argument. ��
Remark 2. For the sharpness of the bound of Theorem 12, let T be a tree with
k exterior major vertices u1, u2, . . . , uk and ter(ui) = 2 for each i ∈ {1, 2, . . . , k}
such that |V (T)| = 3k and uiui+1 ∈ E(T) for 1 ≤ i ≤ k − 1. If we let e = u1uk,
then sdimf (T+e) = k = sdimf (T). By Corollary 2, sdimf (T) = k. We will show
that sdimf(T +e) = k. Since σ(T +e) = 2k, σ(T +e) ≥ k by Proposition 4. If we
let g : V (T + e) → [0, 1] be a function defined by g(v) = 1

2 if v �∈ {ui | 1 ≤ i ≤ k}
and g(v) = 0 if v ∈ {ui | 1 ≤ i ≤ k}, then g is a strong resolving function of
T + e; thus sdimf (T + e) ≤ k.

Remark 3. There exists a graph G such that sdimf(G+ e) − sdimf (G) is arbi-
trary large. If G = P2k and G+ e ∼= C2k, then sdimf (G) = 1 by Corollary 1 and
sdimf (G+ e) = k by Theorem 10.

Remark 4. Let T be a tree. Then

(a) sdimf (T) = sdim(T) if and only if T is a path.
(b) dimf (T) = sdimf (T) if and only if each exterior major vertex u of T satisfies

ter(u) ≥ 2.

5 Nordhaus-Gaddum-Type Result on Fractional Strong
Metric Dimension

Let both G and G be connected graphs of order n ≥ 4. First, we show that
2 ≤ sdimf (G)+sdimf (G) ≤ n. It is readily seen that sdimf (G)+sdimf (G) = 2
if and only if n = 4. By Theorem 7, sdimf (G) + sdimf(G) = n is equivalent to
sdimf (G) = n

2 = sdimf (G). It is readily seen that sdimf (T) + sdimf (T) < n
for any tree T , since sdimf (T) = n

2 if and only if T = P2 by Corollary 2.

We characterize unicyclic graphs G attaining sdimf (G) + sdimf(G) = n, i.e.,
sdimf (G) + sdimf (G) = n if and only if G = Cn for n ≥ 5.

94 C.X. Kang and E. Yi

Theorem 13. Let G and G be connected graphs of order n ≥ 4. Then

2 ≤ sdimf (G) + sdimf (G) ≤ n.

Moreover, sdimf (G) + sdimf (G) = 2 if and only if n = 4.

Proof. Let G and G be connected graphs of order n ≥ 4. The bounds follow from
Theorem 7. If G = G = P4 (the only possible decomposition when n = 4), then
sdimf (G) = sdimf (G) = 1, achieving the lower bound of the present theorem.
If G = G = C5, then sdimf(G) + sdimf (G) achieves the upper bound of the
present theorem. Next, we show that sdimf (G) + sdimf (G) = 2 if and only if
n = 4. Notice that

sdimf (G) + sdimf (G) = 2 ⇐⇒ sdimf (G) = sdimf(G) = 1

⇐⇒ G ∼= G ∼= Pn by Corollary 1 ⇐⇒ |E(G)| = |E(G)| = n− 1.
(9)

Now, |E(Kn)| = n(n−1)
2 = 2(n− 1), which implies that n = 4. ��

Next, we characterize unicyclic graphs G for which sdimf (G) + sdimf (G) =
|V (G)|.
Theorem 14. Let G and G be connected graphs of order n ≥ 5. Also, let G be
a unicyclic graph. Then sdimf(G) + sdimf(G) = n if and only if G = Cn.

Proof. Let G be a unicyclic graph of order n ≥ 5, and let C be the unique cycle
of G such that the vertices of C are labeled cyclically, say u1, u2, . . . , uk, where
k ≥ 3.

(⇐=) Let G = C = Cn for n ≥ 5. Then sdimf (G) = n
2 by Theorem 10. Next,

we consider G; notice that diam(G) = 2. Let g : V (G) → [0, 1] be any strong re-
solving function of G. Since u1 MMD u2 and u1 MMD un in G, g(u1)+g(u2) ≥ 1
and g(u1) + g(un) ≥ 1. Since G is vertex-transitive, by summing over n inequal-
ities, we have 2

∑n
i=1 g(ui) ≥ n. So,

∑n
i=1 g(ui) ≥ n

2 , and hence sdimf (G) ≥ n
2 .

By Theorem 7, sdimf (G) = n
2 .

(=⇒) Note that, in order for both G and G to be connected and of order
n, sdimf (G) + sdimf(G) = n is equivalent to sdimf (G) = n

2 = sdimf(G). If
there exists a vertex u ∈ V (C) with degG(u) ≥ 3, then u is a cut-vertex and
sdimf (G) < n

2 by Proposition 2. Thus, sdimf (G) = n
2 implies that each vertex

of C is of degree two in G, that is, G = C = Cn. ��
We conclude this paper with some open problems.

Question 1. Can we characterize graphs G such that sdimf (G) = sdim(G)?
Question 2. Can we characterize graphs G such that dimf(G) = sdimf (G)?

Question 3. Can we characterize graphs G attaining sdimf (G) = |V (G)|
2 ?

Acknowledgement. The authors wish to thank the anonymous referees for
some helpful comments and suggestions which improved the presentation of the
paper.

Fractional Strong Metric Dimension 95

References

1. Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discrete
Math. 312, 1584–1590 (2012)

2. Chartrand, G., Eroh, E., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs
and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

3. Currie, J., Oellermann, O.R.: The metric dimension and metric independence of a
graph. J. Combin. Math. Combin. Comput. 39, 157–167 (2001)

4. Fehr, M., Gosselin, S., Oellermann, O.R.: The metric dimension of Cayley digraphs.
Discrete Math. 306, 31–41 (2006)

5. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. Freeman, New York (1979)

6. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2,
191–195 (1976)

7. Holton, D.A., Sheehan, J.: The Petersen graph. Cambridge University Press (1993)
8. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl.

Math. 70, 217–229 (1996)
9. Nordhaus, E.A., Gaddum, J.W.: On complementary graphs. Amer. Math.

Monthly 63, 175–177 (1956)
10. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and

digraphs. Discrete Appl. Math. 155, 356–364 (2007)
11. Scheinerman, E.R., Ullman, D.H.: Fractal graph theory: A rational approach to

the theory of graphs. John Wiley & Sons, New York (1997)
12. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29,

383–393 (2004)
13. Slater, P.J.: Leaves of trees. Congress. Numer. 14, 549–559 (1975)
14. Yi, E.: The fractional metric dimension of permutation graphs (submitted)

Online Scheduling on Two Parallel Machines

with Release Times and Delivery Times�

Peihai Liu and Xiwen Lu

Department of Mathematics, East China University of Science and Technology,
Shanghai, People’s Republic of China, 200237

{pliu,xwlu}@ecust.edu.cn

Abstract. We consider an online scheduling problem where jobs arrive
over time. A set of independent jobs has to be scheduled on two parallel
machines, where preemption is not allowed and the number of jobs is
unknown in advance. The characteristics of each job, i.e., processing time
and delivery time, become known at its release time. Each job is delivered
to the destination independently and immediately at its completion time
on the machines. The objective is to minimize the time by which all
jobs have been delivered. We present an online algorithm which has a
competitive ratio of (1 +

√
5)/2 ≈ 1.618.

Keywords: Scheduling, Delivery times, Parallel machines, Online
algorithm.

1 Introduction

In this paper, we investigate an online scheduling on two parallel machines with
release times and delivery times. There are n jobs, say {J1, J2, . . . , Jn}, which
arrive over time. Each job Jj has a release time rj , a processing time pj , and
a delivery time qj . The characteristics of each job become known at its arrival
time and the number of jobs is unknown in advance. Preemption is not allowed.
There are sufficiently many vehicles. Once the processing of a job is completed,
it is delivered to the destination by a vehicle immediately. The objective is to
minimize the time by which all jobs have been delivered. Let Lj be the time by
which job Jj is delivered in a schedule and Lmax = maxLj. Then this problem
can be denoted by P2|rj , qj , online|Lmax.

Due to their theoretical and practical interests, scheduling problems with
release times and delivery times have been the subject of numerous papers.
The classical one machine problem 1|rj , qj |Lmax is known to be strongly NP-
hard [3]. Potts [14] presented a heuristic algorithm with the worst-case per-
formance ratio 3/2 for the problem. Several polynomial-time approximation
schemes for the same problem are provided by Hall and Shmoys [7,8] and Mastro-
lilli [12]. Hoogeveen and Vestjens [10] studied the online version of this problem.

� This work was supported by the National Nature Science Foundation of China
(11101147,11371137).

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 96–105, 2013.
c© Springer International Publishing Switzerland 2013

Online Scheduling on Two Parallel Machines 97

They provided an online algorithm with a competitive ratio of
√
5+1
2 and showed

that it is best possible. If all jobs have small delivery times, i.e., for each job
Jj , qj ≤ pj, Tian et al. [16] gave a best possible online algorithm with a com-
petitive ratio of

√
2. Liu et al. [11] considered another online restricted version.

Stougie and Vestjens [15] derive a randomized lower bound of 1.302 for the single
machine problem.
P |rj , qj |Lmax is strongly NP-hard since it is a generalization of the classical

one-machine scheduling problem with heads and tails. When jobs have identi-
cal delivery times, it becomes the classical identical parallel machine problem
denoted by P |rj |Cmax. A great deal of work has been done on this problem.
Here we only mention some online results. Chen and Vestjens [2] showed that
LPT which starts the job with the largest processing time whenever a machine
becomes available is 3/2 competitive for all m. In the smae paper, they also show
a lower bound of (5 −√

5)/2 ≈ 1.38197 for m = 2 and a general lower bound of
1.34729. Noga and Seiden [13] presented an online algorithm called Sleepy which
matches the lower bound when m = 2. Some randomized lower bounds are given
in [15] and [13]. When jobs have identical release times and general delivery
times, Woeginger [18] gave a heuristic with a worst-case performance guarantee
of 2 − 2/(m+ 1). When jobs have both general release times and general deliv-
ery times, Mastrolilli [12] presented an efficient polynomial-time approximation
schemes. Hall and Shomys [7] observed that List Scheduling is 2-competitive even
in the presence of precedence constrains for problem P |rj , qj , online|Lmax. Vest-
jens [17] showed that no online algorithm can be better than 3/2-competitive.
Some more researches can be referred to [1,5,4,9]. Stougie and Vestjens [15] derive
a randomized lower bound of 1.265 for any m ≥ 2.

This paper is organized as follows: in the next section, we introduce some
notions and lower bounds for the problem. In Section 3, we present an online

algorithm and show that it has a competitive ratio of
√
5+1
2 ≈ 1.618. This leaves

a gap from 1.5 to 1.618.

2 Preliminaries

Given a job set S, let p(S) denote the total processing time of jobs in S. Denote
by Sj(σ), Cj(σ) and Lj(σ) the starting time, completion time and the time by
which job Jj is delivered to the destination in schedule σ, respectively. We use
σ and π to denote the schedule produced by an online algorithm and an offline
optimal schedule, respectively. Let Lmax(σ), Lmax(π) be the objective value of
σ and π, respectively.

Now, we will introduce some lower bounds. An obvious lower bound is

LB0(S) = max
j∈S

(rj + pj + qj) (1)

98 P. Liu and X. Lu

Another simple lower bound given in Reference [1] is

LB1(S) = min
j∈S

rj +
1

2

∑
j∈S

pj + min
j∈S

qj (2)

This bound is based on the fact that all release times and delivery times are
assumed to be equal to minj∈S rj and minj∈S qj .

The following lower bound, proposed in Reference [1], tries to take into account
release times and delivery times in a more effective way:

LB2(S) =
1

2
(r1 + r2 +

∑
j∈S

pj + q1 + q2) (3)

where ri and qi(i = 1, 2) denote the ith smallest release time and delivery time
in S, respectively.

3 An Online Algorithm

In this section, we will present an online algorithm and show that it has a
competitive ratio of 1 + α, where α = (

√
5 − 1)/2.

We say that a job is available if it has been released, but not yet scheduled.
A machine that is not processing a job is called idle. Our algorithm, which we
call MLDT, is quite simple. If both machines are processing jobs or there are
no available jobs, then we have no choice but to wait. So, assume that there
is at least one idle machine and at least one available job. If both machines
are idle then start the available job with largest delivery time. If at time t,
one machine is idle and the other machine is running job Jj then start the
available job with largest delivery time if and only if t ≥ αpj(t), where pj(t) is the
remaining processing time of job Jj at time t. This is equivalent to t ≥ α2Cj(σ),
as α2 + α = 1.

We use U(t) to denote the set of released and unscheduled jobs at time t.

Algorithm MLDT

Step 0. Set t=0;
Step 1. If U(t) = ∅, goto Step 5.
Step 2. If both machines are idle at time t and U(t) �= ∅, do the following:

select a job with the largest delivery time in U(t) and schedule it on one of
the idle machines.

Step 3. If only one machine is idle at time t and the busy machine is running
a job Jj at time t, do the following:
• If t ≥ α2Cj(σ), select a job with the largest delivery time in U(t) and

schedule it on the idle machine.
• If t < α2Cj(σ), reset t be t∗ = α2Cj(σ). Then goto Step 1.

Step 4. If both machines are busy at time t, reset t to be the first time instant
after t at which at least one machine is idle. Then goto Step 1.

Online Scheduling on Two Parallel Machines 99

Step 5. Waiting a new job arrives and reset t to be the release time of such a
job. Then goto Step 1.

Note that if at time t, one machine is idle and the other machine is running job
Jj , then the machine can be idle for two reasons. If one machine is idle because
t < αpj(t), we say the machine is sleeping. If one machine is idle because there are
no available jobs we say that the machine is waiting. In this situation, t ≥ αpj(t)
(or t ≥ α2Cj(σ)). If one machine is waiting we call the next job released tardy,
or a tardy job.

Let Jl denote the first job in σ that assumes the value Lmax(σ). To analyze
the algorithm, we first give a structure property that the schedule σ satisfies.

Lemma 1. Without loss of generality, we may assume that, at any time before
Sl(σ) in σ, at least one machine is not idle.

Proof. First, we show that, if there is a common idle period in σ before time
Sl(σ), during which both machines are idle, then the schedule must start with the
common idle period. Suppose this is not the case, i.e. at least one job has finished
before the common idle period. Note that, according to the MLDT algorithm,
jobs that are scheduled after the common idle period must be released after
this period. If we remove all the jobs that finish before this idle period, then
the objective value of the schedule created by the MLDT algorithm does not
change, whereas the corresponding optimal value does not increase. Hence the
ratio L(σ)/Lmax(π) for the new instance does not decrease. Therefore, we can
assume that schedule σ starts with a common idle period, if it exists.

Suppose that the first starting job is released at time r1, which is the end of
this idle period. We add a new job J0 with r0 = 0, p0 = r1, q0 = 0. This new
job will start at 0 and be completed at r1 in σ. Therefore, it does not change
the objective value of schedule created by the MLDT algorithm. Since all jobs
except J0 are released at or after r1, there exists an optimal schedule in which J0
will start at 0 and be completed at r1. Hence, J0 does not change the objective
value of the optimal schedule.

Thus, we may assume that, at any time before Sl(σ) in σ, at least one machine
is not idle in σ.

This completes the proof. ��
Without loss of generality, we index jobs with their nondecreasing starting

times in σ, i.e., S1(σ) ≤ S2(σ) ≤ . . . ≤ Sn(σ). Let jx be the last job in σ before
Jl with a delivery time smaller than ql, i.e., qx < ql and Sx(σ) < Sl(σ). If such
Jx does not exist, let Jx be the first starting job J1 which starts at time 0. Let
tb be the minimum time such that both machines are busy processing jobs in
the interval [tb, Sl(σ)].

We now prove that Algorithm MLDT has a competitive ratio no grater than
1 + α. The proof consists of two situations: (1) tb > Sx(σ) and (2) tb ≤ Sx(σ).

Before the analysis of the two situations, we first give some basic properties
for σ and π as follows.

100 P. Liu and X. Lu

Proposition 1. For any two jobs Ji, Jj in σ, if Si(σ) < Sj(σ) and qi < qj, then
rj > Si(σ).

Proposition 2. Suppose that Ji is the running job when Jj starts in σ, i.e.,
Si(σ) ≤ Sj(σ) ≤ Ci(σ). Then Sj(σ) ≥ α2Ci(σ) and Sj(σ) ≥ αp′i, where p′i is the
remaining processing time at time Sj(σ).

Proposition 3. Suppose at time t, one machine is idle and the other machine
is running job Jj. If t > αpj(t), then all jobs which start no earlier than t are
released tardy, i.e., ri ≥ t for each Ji with Si(σ) ≥ t.

Proposition 4. Lmax(π) ≥ Sx(σ) + pl + ql.

Lemma 2. If tb > Sx(σ), then Lmax(σ) ≤ (1 + α)Lmax(π).

Proof. tb > Sx(σ) means that immediately before tb one machine is idle and
one machine is busy. Let Jr be the running job immediately before tb, i.e.,
Cr(σ) ≥ tb, Sr(σ) < tb. Define A = {Jj|tb ≤ Sj(σ) < Sl(σ)}, B = {Jj |Sx(σ) <
Sj(σ) < Sl(σ)} ∪ {Jl}. Thus, qj ≥ ql and rj ≥ Sx(σ) for each j ∈ B. Let
p′r = Cr(σ) − tb.

We claim that the optimal schedule has the following lower bound

Lmax(π) ≥ 1

2
(tb + p′r + p(A) + pl + ql) (4)

In fact, we can check two cases. If Sr(σ) ≤ Sx(σ), then pr ≥ Cr(σ) − Sx(σ) =
p′r + tb − Sx(σ). On basic of the jobs in {Jr, Jl} ∪ A and LB2, we derive the
following lower bound on Lmax(π),

Lmax(π) ≥ 1

2
(0 + Sx(σ) + pr + p(A) + pl + ql + 0)

=
1

2
(tb + p′r + p(A) + pl + ql)

If Sr(σ) > Sx(σ), then Jr ∈ B and qr ≥ ql. Let t′ be the minimum time instant
such that during [t′, tb] at least one machine is running jobs in B. Thus p(B) ≥
tb−t′+p′r+p(A)+pl. By Lemma 1, there exists a running job immediately before
t′, say Jy(Cy ≥ t′). Then, we know that Sy(σ) ≤ Sx(σ). Otherwise Sy(σ) >
Sx(σ). Thus, Jy ∈ B which contradicts to the definition of t′. So, py ≥ t′−Sx(σ).
On basic of the jobs in {Jy}∪B and LB2, we deduce the following lower bound,

Lmax(π) ≥ 1

2
(0 + Sx(σ) + py + p(B) + ql + 0)

=
1

2
(tb + p′r + p(A) + pl + ql)

From the above discussion follows the inequality (4). By the definition of tb
and p′r, we can derive that

Lmax(σ) ≤ tb +
1

2
(p′r + p(A)) + pl + ql (5)

Online Scheduling on Two Parallel Machines 101

From (4) and (5), we deduce that

Lmax(σ) − Lmax(π) ≤ 1

2
(tb + pl + ql) (6)

According to MLDT algorithm, we know that tb ≥ αp′r. If tb > αp′r, then at
time tb, the machine is waiting and rj ≥ tb for each Jj with Sj(σ) ≥ tb. Thus,
rl ≥ tb and Lmax(π) ≥ tb + pl + ql. Therefore, Lmax(σ)−Lmax(π) ≤ αLmax(π).

If tb = αp′r, we discuss two cases according to the relationship between p(A)
and p′r.

Case 1 p(A) ≥ p′r.
If pl + ql ≥ (3 + 2α)tb, then

Lmax(π) ≥ pl + ql ≥ 1 + α

2
(pl + ql) +

1 − α

2
(pl + ql)

≥ 1 + α

2
(tb + pl + ql)

If pl + ql < (3 + 2α)tb, then p′r + p(A) ≥ 2(1 + α)tb ≥ α(tb + pl + ql). Thus,

Lmax(π) ≥ 1

2
(tb + p′r + p(A) + pl + ql)

≥ 1 + α

2
(tb + pl + ql)

Therefore, Lmax(σ) − Lmax(π) ≤ αLmax(π).
Case 2 p(A) < p′r, then all the jobs of A are processed on the same machine

in σ. Thus, Sl(σ) = tb + p(A) and Sl(σ) ≤ tb + p′r ≤ (1 + α)p′r since tb ≤ αp′r.
From (4) we have

Lmax(π) ≥ 1

2
(tb + p′r + p(A) + pl + ql)

=
1

2
(Sl(σ) + p′r + pl + ql) (7)

If pl + ql ≤ Sl(σ) + p′r, then by (7) and Lmax(σ) = Sl(σ) + pl + ql we obtain
that

Lmax(σ) − Lmax(π)

Lmax(π)
≤ Sl(σ) + pl + ql − p′r
Sl(σ) + pl + ql + p′r

≤ Sl(σ)

Sl(σ) + p′r

Recall that p′r ≥ αSl(σ). Therefore, Lmax(σ) − Lmax(π) ≤ αLmax(π).
If pl + ql > Sl(σ)+ p′r, then pl + ql ≥ (1+α)Sl(σ), as Sl(σ) ≤ (1+α)p′r. Since

Lmax(π) ≥ pl + ql and Lmax(σ) = Sl(σ)+pl + ql, we have Lmax(σ)−Lmax(π) ≤
Sl(σ) ≤ αLmax(π).

This completes the proof. ��

102 P. Liu and X. Lu

Lemma 3. For any job Jj, define B = {Ji|Si(σ) < Sj(σ)}. If there is a job Jh
such that rh ≤ α2Sj(σ) and Sh(σ) ≥ Sj(σ), then p(B) ≥ (1 + α)Sj(σ).

Proof. Let tf be the minimum time such that there is no idle machines during
interval [tf , Sj(σ)]. Thus there exists an idle interval on one of the machines
immediately before tf .

If tf ≤ α2Sj(σ), then it is clear that p(B) ≥ 2Sj(σ) − tf ≥ (1 + α)Sj(σ).
If tf > α2Sj(σ), let Jk be the running job immediately before tf . We claim

that tf ≤ α2Ck(σ) by Step 3 of Algorithm MLDT and the fact rh ≤ α2Sj(σ) <
tf , Sh(σ) ≥ Sj(σ). Otherwise, Jh will start before tf which contradicts the fact
provided above. From tf > α2Sj(σ) and tf ≤ α2Ck(σ), we can obtain that
Ck(σ) > Sj(σ) and Ck(σ) > (2 + α)tf ≥ αSj(σ) + tf . Thus, p(B) ≥ Sj(σ) +
Ck(σ) − tf ≥ (1 + α)Sj(σ).

This completes the proof. ��
Lemma 4. If tb ≤ Sx(σ), then Lmax(σ) ≤ (1 + α)Lmax(π).

Proof. Since in the interval [tb, Sl(σ)] both machines are busy processing jobs
and tb ≤ Sx(σ) < Sl(σ), there exists a job other than Jx, say Jy , such that
Sy(σ) ≤ Sx(σ) and Cy(σ) > Sx(σ). Without loss of generality, suppose Jy is
assigned before Jx by the algorithm, i.e., Sy(σ) ≤ Sx(σ). Denote by p′y the
remaining processing time of Jy at time Sx(σ). By the algorithm, Sx(σ) ≥ αp′y.
Define A = {Jj|Sx(σ) < Sj(σ) < Sl(σ)}, Q = A ∪ {Jl}. Then qj ≥ ql and
rj ≥ Sx(σ) for each j ∈ Q. Thus we have

Lmax(σ) ≤ Sx(σ) +
1

2
(p′y + px + p(A)) + pl + ql (8)

Now we consider four cases depending on the assignment of Jx and Jy in the
optimal schedule π.

Case 1: Sx(π) ≥ Sx(σ) and Sy(π) ≥ Sy(σ).
In this case, there are at least py′ + px + p(A) + pl time unit of jobs are

processed no earlier than Sx(σ) since rj ≥ Sx(σ) for each j ∈ Q. Hence,

Lmax(π) ≥ Sx(σ) +
1

2
(p′y + px + p(A) + pl) (9)

On basic of the jobs in {Jx, Jl} ∪ A, similar to LB2, we have

Lmax(π) ≥ Sx(σ) +
1

2
(px + p(A) + pl + ql) (10)

Recall that Sx(σ) ≥ αp′y and rl ≥ Sx(σ). We obtain

Lmax(π) ≥ Sx(σ) + pl + ql ≥ αp′y + pl + ql (11)

Thus, from α3(9) + 2α2(10) + α(11), we deduce

(1 + α)Lmax(π) ≥ Sx(σ) +
1

2
(p′y + px + p(A)) + pl + ql

Online Scheduling on Two Parallel Machines 103

which follows that Lmax(σ) ≤ (1 + α)Lmax(π).
Case 2: Sx(π) ≥ Sx(σ) and Sy(π) < Sy(σ).
Case 2.1: Cy(π) ≤ maxj∈Q Cj(π). Similar to LB2, we have

Lmax(π) ≥ 1

2
(py + Sx(σ) + px + p(A) + pl + ql) (12)

From (8) and (12), we derive that

Lmax(σ) − Lmax(π) ≤ 1

2
(Sx(σ) + pl + ql) ≤ αLmax(π)

Case 2.2: Cy(π) > maxj∈Q Cj(π). Thus all jobs in Q are processed on the
same machine in the optimal schedule π since rj ≥ Sy(σ) for each j ∈ Q. Hence,

Lmax(π) ≥ Sx(σ) + p(A) + pl + ql (13)

It is clear that Lmax(σ) ≤ Sx(σ)+min{px, p′y}+p(A)+pl + ql. Combine (13)
and the above inequality, we deduce that Lmax(σ) − Lmax(π) ≤ min{px, p′y}.
Recall that Sx(π) ≥ Sx(σ) and Sx(σ) ≥ αp′y. Then Lmax(π) ≥ Sx(σ) + px ≥
(1 + α)min{px, p′y} and Lmax(σ) − Lmax(π) ≤ αLmax(π).

Case 3: Sx(π) < Sx(σ) and Sy(π) ≥ Sy(σ).
Similar to Case 2, we can deduce that Lmax(σ) − Lmax(π) ≤ αLmax(π).
Case 4: Sx(π) < Sx(σ) and Sy(π) < Sy(σ).
If Cy(π) > maxj∈Q Cj(π) or Cx(π) > maxj∈Q Cj(π), similar to Case 2.2,

we can deduce that Lmax(σ) − Lmax(π) ≤ αLmax(π). Thus we can only check
situation where Cy(π) ≤ maxj∈QCj(π) and Cx(π) ≤ maxj∈Q Cj(π).

Case 4.1: min{rx, ry} ≥ α2Sy(σ) or ql ≥ 2α2Sy(σ). Then

Lmax(π) ≥ 1

2
(ry + py + rx + px + p(A) + pl) + ql

≥ 1

2
(py + px + p(A) + pl + ql) +

1

2
(ry + rx + ql)

≥ 1

2
(py + px + p(A) + pl + ql) + α2Sy(σ) (14)

Thus, from the inequality (8), (14) and Sy(σ) ≤ Sx(σ), we derive that

Lmax(σ) − Lmax(π) ≤ 1

2
(α3Sy(σ) + Sx(σ) + pl + ql)

≤ α(Sx(σ) + pl + ql)

≤ αLmax(π)

Case 4.2: min{ry, rx} < α2Sy(σ) and ql < 2α2Sy(σ). Then by Lemma 3, we
have that p(B) ≥ (1 + α)Sy(σ), where B = {Jj|Sj(σ) < Sy(σ)}. Thus,

Lmax(π) ≥ 1

2
(p(B) + py + px + p(A) + pl)

≥ 1 + α

2
Sy(σ) +

1

2
(py + px + p(A) + pl) (15)

104 P. Liu and X. Lu

Noting that

Lmax(σ) ≤ 1

2
(Sx(σ) + Sy(σ) + py + px + p(A)) + pl + ql (16)

Thus, from (15) and (16), we obtain that

Lmax(σ) − Lmax(π) ≤ 1

2
(Sx(σ) + pl) + ql − α

2
Sy(σ)

≤ α(Sx(σ) + pl + ql)

≤ αLmax(π)

This completes the proof. ��
Theorem 1. Algorithm MLDT has a competitive ratio no greater than

√
5+1
2

and the bound is tight.

Proof. From Lemma 2 and 4, we know that Algorithm MLDT has a competitive

ratio not greater than 1+α =
√
5+1
2 . Now we construct an instance to show that

the bound is tight as follows: There are three jobs J1, J2, J3 which are released
at time 0. The processing times and delivery times of these jobs are given by
p1 = 1, p2 = α, p3 = 1 + α, q1 = 2ε, q2 = ε, q3 = 0.

In the schedule σ generated by the online algorithm MLDT, J1, J2 start at
times 0, α2 respectively and J3 cannot start until the completion of J1, J2. How-
ever, there exists an optimal schedule π in which J1, J2 are assigned on the same
machine and start at times 0 and 1 respectively. And J3 starts at 0 on the other
machine.

Thus Lmax(σ) = 2+α and Lmax(π) = 1+α+ ε. As ε tends to zero, the ratio
Lmax(σ)/Lmax(π) tends to 1 + α. ��

Acknowledgements. The authors would thank the anonymous referees for
many constructive comments and hints which have improved this paper.

References

1. Carlier, J.: Scheduling jobs with release dates and tails on identical machines to
minimize the makespan. European Journal of Operational Research 29, 298–306
(1987)

2. Chen, B., Vestjens, A.P.A.: Scheduling on identical machines: How good is LPT in
an online setting? Operations Research Letters 21(4), 165–169 (1997)

3. Garey, M.R., Johnson, D.S.: Strong NP-completeness results: Motivation, examples
and implications. Journal of the Association of Computer Machinery 25, 499–508
(1978)

4. Gharbi, A., Haouari, M.: Minimizing makespan on parallel machines subject to
release dates and delivery times. Journal of Scheduling 5, 329–355 (2002)

5. Gharbi, A., Haouari, M.: An approximate decomposition algorithm for scheduling
on parallel machines with heads and tails. Computers & Operations Research 34,
868–883 (2007)

Online Scheduling on Two Parallel Machines 105

6. Grabowski, J., Nowicki, E., Zdrzalka, S.: A block approach for single-machine
scheduling with release dates and due dates. European Journal of Operational
Research 26, 278–285 (1986)

7. Hall, L., Shmoys, D.: Approximation algorithms for constrained scheduling prob-
lems. In: Proceedings of the 30th IEEE Symposium on Foundations of Computer
Science, pp. 134–139. IEEE Computer Society Press, New York (1989)

8. Hall, L., Shmoys, D.: Jacksons rule for single-machine scheduling: Making a good
heuristic better. Mathematics of Operations Research 17, 22–35 (1992)

9. Haouari, M., Gharbi, A.: Lower Bounds for Scheduling on Identical Parallel Ma-
chines with Heads and Tails. Annals of Operations Research 129, 187–204 (2004)

10. Hoogeveen, J.A., Vestjean, A.P.A.: A best possible deterministic online algorithm
for minimizing maximum delivery times on a single machine. SIAM Journal on
Discrete Mathematics 13, 56–63 (2000)

11. Liu, M., Chu, C., Xu, Y., Zheng, F.: An optimal online algorithm for single ma-
chine scheduling with bounded delivery times. European Journal of Operational
Research 201(3), 693–700 (2010)

12. Mastrolilli, M.: Efficient approximation schemes for scheduling problems with re-
lease dates and delivery times. Journal of Scheduling 6, 521–531 (2003)

13. Noga, J., Seiden, S.S.: An optimal online algorithm for scheduling two machines
with release times. Theoretical Computer Science 268(1), 133–143 (2001)

14. Potts, C.N.: Analysis of a heuristic for one machine sequencing with release dates
and delivery times. Operations Research 28, 1436–1441 (1980)

15. Stougie, L., Vestjens, A.P.A.: Randomized on-line scheduling: How low can’t you
go? Operations Research Letters 30(2), 89–96 (2002)

16. Tian, J., Fu, R., Yuan, J.: A best on-line algorithm for single machine scheduling
with small delivery times. Theoretical Computer Science 393, 287–293 (2008)

17. Vestjens, A.P.A.: Online Machine Scheduling. Ph.D. Thesis, Department of Math-
ematics and Computing Science, Eindhoven University of Technology, Eindhoven,
The Netherlands (1997)

18. Woeginger, G.J.: Heuristics for parallel machine scheduling with delivery times.
Acta Informatica 31(6), 503–512 (1994)

Parallel Machine Scheduling with a Single

Server: Loading and Unloading�

Jueliang Hu, Qinghui Zhang, Jianming Dong, and Yiwei Jiang��

Department of Mathematics, Zhejiang Sci-Tech University,
Hangzhou 310018, China
ywjiang@zstu.edu.cn

Abstract. This paper addresses the non-preemptive scheduling on two
parallel identical machines sharing a single server in charge of loading
and unloading jobs. Each job has to be loaded by the server before be-
ing processed on one of the machines and unloaded immediately by the
server after its processing. The goal is to minimize the makespan. This
paper considers classical algorithms LS and LPT for the problem where
the loading and unloading times both are equal to one time unit. We
first analyze the structure of list scheduling for the problem and then
show that the tight worst case ratios of LS and LPT are 12/7 and 4/3,
respectively. Finally, we provide a proof of computational complexity for
the problem.

Keywords: scheduling, server, algorithm, worst case ratio, makespan.

1 Introduction

In this paper, we consider parallel machine scheduling problem with a single
server, which is used to load/unload the job on the machine before/after its
processing. The problem can be described as follows. We are given a sequence
J = {J1, J2, . . . , Jn} of independent jobs, which must be scheduled on one of
two identical machines M1 and M2. Job Jj is associated with a loading time sj ,
a processing time pj and a unloading time tj . All of which are positive integers.
One server exists for loading and unloading jobs. Namely, prior to processing,
each job Jj is loaded by the server onto one machine and the loading time is sj .
Once the loading is finished, the machine starts to process the job immediately
and the server is free to load/unload other job again. Similarly, after finishing
processing, the job will be unloaded immediately by the server from the machine
and the unloading time is tj . The server cannot load/unload job onto/from a
machine when then machine is processing a job. Each machine processes one job
at a time and job preemption is not allowed. The objective is to minimize the
makespan, i.e., the completion time of the latest job. Using the three parameter
notation [8,11], our problem can be denoted by P2, S1|sj, tj |Cmax.

� Supported by theNational Natural Science Foundation of China (11001242, 11071220)
and Zhejiang Province Natural Science Foundation of China (LY13A010015).

�� Corresponding author.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 106–116, 2013.
c© Springer International Publishing Switzerland 2013

Parallel Machine Scheduling with a Single Server 107

There have been numerous literatures of parallel machine scheduling with
servers. For the problem with unit setup times on two machines P2, S1|sj =
1|Cmax, Kravchenko and Werner [11] showed that it is binary NP-hard and
proposed a pseudo-polynomial algorithm. Hall et al. [8] solved the problem
P2, S1|pj = 1|Cmax in polynomial time and showed that the equal setup times
problem P2, S1|sj = s|Cmax is strongly NP-hard. Brucker et al.[4] showed that
the equal processing times problem P2, S1|pj = p|Cmax is NP-hard. Abdekho-
daee and Wirth [1] and Abdekhodaee et al. [2,3] studied the computational com-
plexity of some special and general cases and provided some effective heuristics
for them. Besides the objective of minimizing makespan, Hall et al.[8] consid-
ered the objectives of minimizing the maximum lateness of any job and the total
completion time of all jobs. They provided the computational complexity of the
problems and polynomial or pseudo-polynomial algorithms. Wang and Cheng
[15] proposed an approximation algorithm for minimizing the total weighted
completion time.

For the online version of the scheduling on two machines with a single server,
Zhang and Andrew [20] considered LS algorithm for three special cases where
jobs arrive over list. Su [14] studied the online LPT algorithm for the online
version where jobs arrive over time. Jiang et.al [10] considered the preemptive
version of the scheduling on two identical machines with a single server and
presented an algorithm with a tight worst case ratio of 4/3, which can produce
optimal schedules for two special cases: equal processing times and equal setup
times. In addition, Ou et al. [12], Werner and Kravchenko [16] studied the prob-
lem with multiple servers. In Cheng and Kovalyov[6], Brucker et aI. [5], Iravani
and Teo [9], Su and Lee [13], the authors studied the flowshop problem with a
single server.

All the above variants of the scheduling with servers only considered the
loading operation (setup) and ignored the unloading operation. However, Xie
et.al [17] considered the problem with both loading and unloading operations,
where the unloading operation can be delayed after the job processing is finished.
They showed that the tight worst case ratio of LPT is 3

2− 1
2m for the special case

where sj = tj = 1 and pj is an arbitrary positive real number. Unfortunately, the
result is uncorrect. In fact, the worst case ratio of LPT is at least 3/2 for m = 2,
while their result showed that the tight ratio is 5/4 when m = 2. For the case
where the jobs is partitioned previously, Xie et.al [18] proposed an algorithm
with tight bound of 2. Yip et aI. [19] considered both loading and unloading
operations in a flow-shop problem with multiple servers.

In this paper, we consider the problem with both loading and unloading, where
no delay is allowed between loading and processing, as well as between processing
and unloading. Hence, the model in [17], where the unloading is allowed to be
delayed, can be regarded as one relaxation of our problem.

In this section, we provided a proof of computational complexity of our prob-
lem. Note that problem P2, S1|sj = 1|Cmax is shown to binary NP-complete [8],
it is easy to show that our problem P2, S1|sj = tj = 1|Cmax is also binary NP-
complete by the similar argument. For our problem, we first discuss the structure

108 J. Hu et al.

and properties of list scheduling. Then we show that the tight worst case ratios
of algorithms LS and LPT are 12/7 and 4/3, respectively.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminaries. In section 3, we analyze the structure of list scheduling and show the
worst case ratio of algorithm LS. In Section 4, we consider the performance of
algorithm LPT . Finally, Section 5 presents some concluding remarks.

2 Preliminaries

In this section, we mainly provide the lower bound of the optimal makespan in
the offline version and introduce several definitions.

Before giving the lower bound of the optimal makespan, we first give a couple
of notations as follows. Let ej denote the execution time of Jj , which represents
the period of time from the beginning of loading to the end of unloading. That
is, ej = sj + pj + tj . Clearly, ej ≥ 3 since we assume that sj , pj and tj are

positive integers. Let E =
n∑

i=1

ei be the total execution time of all jobs and emax

be the largest execution time among all jobs. The completion time of a job is
defined as the time by which it has been unloaded. Denote by CA and C∗ the
makespan produced by algorithm A and the optimal makespan, respectively.

Now we present the following conclusion about the optimal makespan.

Lemma 1. For the problem P2, S1|sj = tj = 1|Cmax, the makespan of the
optimal scheduling satisfies

C∗ ≥ max{emax,
E + 2

2
}.

Proof. It is clear that C∗ ≥ emax. On the other hand, when the server loads the
first job onto one of the machines, the other machine must be idle. Similarly,
a machine must be idle when the server unloads the last completion job. Thus,
during the time interval from zero to the makespan in the optimal scheduling,
there are at least two idle time units . Together with the total execution time
E, we can conclude that the makespan of the optimal scheduling is at least E+2

2
and thus the result holds.

We next introduce some definitions for simplifying expression in the subse-
quent sections.

Definition 1. A time unit is called single loading time unit if one machine is
busy loading a job and the other is idle in this time unit. Denote by SST the
start time of the single loading time units.

Definition 2. Two adjacent time units are called double unloading time units
if both of the machines occupy one time unit for unloading a job, respectively .
Denote by EDT the end time of the double unloading time unit.

Parallel Machine Scheduling with a Single Server 109

Fig. 1. Definitions of SST, EDT, block and unfinished block

Definition 3. A block in a schedule is defined as a period of time from an SST
to the earliest EDT after the SST. If there is no EDT from the SST until all
jobs have been scheduled, this period of time is called unfinished block.

Remark. (a) As shown in Figure 1, the difference between the completion times
of two machines is one time unit in a block and at least two time units in a
unfinished block. (b) There is at least two jobs in each block.

3 List Scheduling

Graham [7] proposed List Scheduling heuristic (LS) which assigns the current
job to the first available machine at the earliest possible time. We apply LS to
our problem and it can be described in detail as follows.

Algorithm 1. List Scheduling (LS)

[1.] For each job Ji, 1 ≤ i ≤ n, let l1 and l2 be the current completion times of
machine M1 and M2, respectively.
[2.] (Job assignment) If l1 ≤ l2, assign it to machine M1, otherwise, assign it to
M2.
[3.] (Job execution) The loading for the job starts at the earliest time such that
the server is free to perform both loading and unloading for the job.

3.1 Structure of List Scheduling

We provide some properties of a schedule produced by algorithm LS.

Proposition 1. In any block B, there must be two or alternatively three idle
time units.

Proof. It is clear that there is one idle time unit at each end of the block as
shown in Figure 1. We only need to show that there is at most one idle time
unit in the middle of the block. In fact, before the formation of the block (that
is, it is currently a unfinished block.) no new idle time is introduced except the
idle time at the beginning of the block. For any job Jk ∈ B except the first job
in the block B, let li, i = 1, 2, be the completion time of machine Mi before
scheduling Jk. Without loss of generality, we assume l1 ≤ l2. Then we must have

110 J. Hu et al.

Δ = l2 − l1 ≥ 2 because it is currently a unfinished block. Moreover, according
to LS rule, the last job Ji on M2 must start before time l1 as shown in Figure
2. The scheduling possibilities of Jk is demonstrated in Figure 2. According to
LS rule, if ek �= Δ, the job Jk must be scheduled at time l1, which is the earliest
feasible time because the unloading times of jobs Ji and Jk do not overlap(see
Figure 2 (a) and (b)). In this case, no new idle time is introduced. On the other
hand, if ek = Δ, Jk can not be scheduled at time l1 due to the overlapping of
the unloading times of Ji and Jk. Therefore, algorithm LS must schedule it at
time l1 + 1 and an idle time unit is consequently introduced. At the same time,
however, a block is formed after scheduling this job (see Figure 2 (c)). Hence,
there is at most one idle time unit in the middle of the block and the proof is
complete.

Fig. 2. Scheduling possibilities of job Jk

Proposition 2. In an unfinished block, there is only one idle time unit before
the smaller completion time of the two machines.

Proof. By the proof of Proposition 1, we can obtain that there is no more idle
time before formation of a block, except one idle time unit introduced at the
beginning of the unfinished block.

Proposition 3. The schedule σ produced by LS is a unfinished block or consists
of a number of successive blocks and followed by at most one unfinished block.

Proof. By LS rule, we can conclude that from time zero, i.e., the first SST, a
block must be formed unless all jobs have been scheduled, which implies that
the whole schedule σ is a unfinished block. On the other hand, once a block is
formed, algorithm LS must schedule the next job at the end of the block (EDT),
which can also be regarded as an SST for the coming block or unfinished block.
Hence, we can obtain the structure of schedule σ as shown in Figure 3.

For convenience, denote by σ = B′ and σ = (B1,B2, · · · ,Bk,B′) two structures
of schedule σ mentioned in Proposition 3.

Parallel Machine Scheduling with a Single Server 111

Fig. 3. Structure of list scheduling

3.2 Worst Case Ratio

In this subsection, we show that the tight worst case of algorithm LS is 12
7 .

Before this, we first give a lemma about the blocks produced in the schedule σ.
Let l(B) and e(B) be the time length of a block B and the total execution time
of all jobs in B, respectively. We can obtain the following result.

Lemma 2. e(B) ≥ 7
5 l(B).

Proof. Since there are at least two jobs in any block and each job has a execution
time no less than 3, we have l(B) ≥ 4. Furthermore, it is not hard to obtain that
l(B) = 4 if and only if the block B exactly consists of two same jobs with
execution time of 3. In that case, we have e(B) = 6 and thus e(B) = 3

2 l(B) >
7
5 l(B).

If l(B) ≥ 5, then we have e(B) ≥ 2l(B) − 3 because there are at most three

idle time units by Proposition 1. It follows that e(B)
l(B) ≥ 2 − 3

l(B) ≥ 7
5 .

Theorem 1. Algorithm LS has a tight worst case ratio of 12
7 .

Proof. Let Jl be the last completed job and let T be the start time of Jl, then
we have CLS = T + el. We distinguish two cases according to the structure of
the schedule σ by Proposition 3.

Case 1. σ = B′ is a single unfinished block. Note that there is only one idle time
unit in σ by Proposition 2, then the total execution time of all jobs is at least
2T + el − 1 and thus C∗ ≥ max{ 2T+el+1

2 , el} due to Lemma 1. Hence,

CLS

C∗ ≤ T + el

max{ 2T+el+1
2 , el}

≤
{

2T+2el
2T+el+1 , for el ≤ 2T
T+el
el

, for el > 2T
≤ 3

2
<

12

7
. (1)

Case 2. σ = (B1,B2, · · · ,Bk,B′). Let X =
k∑

i=1

l(Bi) be the total length of all

blocks and let Y =
k∑

i=1

e(Bi) be the total execution time of all jobs in the k

blocks. Then we have Y ≥ 7
5X by Lemma 2.

If B′ = ∅, then CLS = X and E = Y ≥ 7
5X . Thus, C∗ ≥ E+2

2 > 7
10X =

7
10C

LS , i.e., CLS

C∗ < 10
7 < 12

7 .
We now focus on B′ �= ∅. Note that B′ is scheduled after all blocks, the last

completed job Jl must belong to B′. From the definition of B′ as shown in Figure

112 J. Hu et al.

1, we can conclude that the difference between the start times of the first two
jobs in B′ is one time unit.

If Jl is one of the first two jobs in B′, then CLS = T + el ≤ X + 1 + el. By
Lemma 2, we have E ≥ Y + el ≥ 7

5X + el and thus

C∗ ≥ max{E + 2

2
, emax} ≥ max{

7
5X + el + 2

2
, el}.

Hence,
CLS

C∗ ≤ X + el + 1

max{ 7
10X + el/2 + 1, el}

<
12

7
,

the last inequality can be obtained similar to (1).
If Jl is not one of the first two jobs in B′, then there is at least one job Jx in

B′ which is scheduled before Jl, that is, Δ = T −X ≥ ex ≥ 3. Let e(Δ) be the
total execution time of jobs processed on two machines during the period of time
between X and T . Note that there is only one idle time unit during the period of
time from X to T , then e(Δ) = 2Δ− 1. Thus e(Δ) > 7

5Δ due to Δ ≥ 3. In this
case, we have CLS = T+el = X+Δ+el and E ≥ 7

5X+e(Δ)+el ≥ 7
5 (X+Δ)+el.

It implies that

CLS

C∗ ≤ X +Δ+ el

max{ 7
10 (X +Δ) + el/2 + 1, el}

<
12

7
.

Tight Example. We now give an instance I to show that the worst case ratio
of algorithm LS is tight. Consider the instance I including 2n+1 jobs: e2i−1 = 4
and e2i = 3 for all 1 ≤ i ≤ n, and e2n+1 = 7n + 2. It is easy to obtain that
each pair of two jobs J2i−1 and J2i for any 1 ≤ i ≤ n forms a block by LS.
Then σ consists of n same blocks with total length of 5n and followed by the
last job J2n+1. Thus, we have CLS = 12n+ 2. In optimal schedule, the last job
is scheduled on one machine at time zero, and the remainder 2n jobs with total
execution time of 7n are scheduled on another machine from time 1 to 7n + 1,
implying C∗ = 7n+ 2. Hence,

CLS

C∗ =
12n+ 2

7n+ 2
→ 12

7

as n tends to infinity.

4 Algorithm LPT

In this section, we apply LPT algorithm to our problem and show that its tight
worst case ratio is 4/3. The LPT algorithm can be described as follows.

As a matter of fact, the schedule σ produced by LPT can also be regarded as
a list scheduling but the jobs are listed in a non-increasing order of processing
time. Therefore, Propositions 1, 2 and 3 still apply in this section. Let Jl be the
last completed job and its start time is T . We provide the worst case ratio of
LPT in two cases according to Proposition 3.

Parallel Machine Scheduling with a Single Server 113

Algorithm 2. Largest Processing Time (LPT)

[1.] Sort all the jobs such that e1 ≥ e2 ≥ · · · ≥ en.
[2.] For any job Ji, 1 ≤ i ≤ n, schedule it by algorithm LS.

Lemma 3. If σ = B′, we have CLPT

C∗ ≤ 4
3 .

Proof. If Jl is one of the first two jobs in the schedule, then we have CLPT ≤
el + 1. Obviously, C∗ ≥ el and thus CLPT

C∗ ≤ el+1
el

≤ 4
3 due to el ≥ 3. On the

other hand, if Jl is not one of the first two jobs, then at least one job Jx is
scheduled on the same machine before Jl. It implies that T ≥ ex ≥ el. Note that
there is only one idle time unit before time T in the unfinished block, we obtain
E ≥ 2T − 1 + el and thus C∗ ≥ 2T+el+1

2 due to Lemma 1. Hence,

CLPT

C∗ ≤ T + el
(2T + el + 1)/2

≤ 4

3
,

the last inequality holds because of T ≥ el.

Next, similar to Case 2 in the proof of Theorem 1, we assume that the schedule
σ consists of k (k ≥ 1) blocks B1,B2, · · · ,Bk and a unfinished block B′. Denote

X =
k∑

i=1

l(Bi) and Y =
k∑

i=1

e(Bi). Let q be the execution time of the smallest job

in all k blocks, then we can draw a conclusion as follows.

Lemma 4. Y ≥ 2q+3
q+3 X − 3

q+3 .

Proof. Since q is the execution time of the smallest job and there are at least
two jobs in each block Bi, 1 ≤ i ≤ k, we have l(Bi) ≥ q + 1.

(a) If l(Bi) = q + 1, then the block Bi exactly consists of two same jobs with
execution time of q, that is e(Bi) = 2q. It implies that

e(Bi) =
2q

q + 1
l(Bi) ≥ 2q + 3

q + 3
l(Bi),

where the last inequality holds because q ≥ 3.
(b) If l(Bi) = q+2, then the block Bi must consist of two jobs with execution

times of q and q + 1, respectively. In this block, there are three idle time units
and thus e(Bi) = 2q + 1.

(c) If l(Bi) ≥ q+3, we have e(Bi) ≥ 2l(Bi)−3 because there are at most three
idle time units in the block by Proposition 1. It follows that

e(Bi) ≥ (2 − 3

l(Bi)
)l(Bi) ≥ (2 − 3

q + 3
)l(Bi) =

2q + 3

q + 3
l(Bi).

By algorithm LPT , we can conclude that there is at most one block whose
length is q+2. If no block’s length is q+2, by the above arguments (a) and (c),
we have e(Bi) ≥ 2q+3

q+3 l(Bi) for all 1 ≤ i ≤ k and thus

Y ≥ 2q + 3

q + 3
X >

2q + 3

q + 3
X − 3

q + 3
.

114 J. Hu et al.

If there is one block Bj such that l(Bj) = q+ 2, then we have e(Bi) ≥ 2q+3
q+3 l(Bi)

for any i �= j. Thus, by the above arguments, we obtain

Y =
∑
i	=j

e(Bi) + e(Bj) ≥ 2q + 3

q + 3

∑
i	=j

l(Bi) + 2q + 1

=
2q + 3

q + 3
(X − (q + 2)) + 2q + 1 =

2q + 3

q + 3
X − 3

q + 3
.

Hence, the proof is complete.

Lemma 5. If σ = (B1,B2, · · · ,Bk,B′), we have CLPT

C∗ ≤ 4
3 .

Proof. If B′ = ∅, we have CLPT = X and E = Y . It follows that C∗ ≥ Y+2
2 by

Lemma 1. Combining Lemma 4 and q ≥ 3, we obtain that

CLPT

C∗ ≤ 2X

Y + 2
≤ 2X

2q+3
q+3 X − 3

q+3 + 2
≤ 2q + 6

2q + 3
≤ 4

3
.

We next consider the case where B′ �= ∅, which implies Jl ∈ B′. By the LPT
rule, the execution time of Jl is not greater than any one of jobs in

⋃
1≤i≤k

Bi,

that is,
el ≤ q. (2)

Similar to Case 2 in the proof of Theorem 1, the lemma can be proved ac-
cording to the position of the job Jl.

Case 1. Jl is the first job in B′. It follows that CLPT = X + el and E ≥ Y + el.
We first consider the case where there is only one block B1 in the schedule, that
is, X = l(B1) and Y = e(B1). If X = q + 1, we must have Y = 2q, that is,
CLPT = q + 1 + el and E ≥ Y + el = 2q + el. By (2), we have

CLPT

C∗ ≤ q + el + 1
2q+el+2

2

=
2q + 2el + 2

2q + el + 2
≤ 4q + 2

3q + 2
<

4

3
.

If X ≥ q + 2, we have Y ≥ 2X − 3 by Proposition 1 and thus E ≥ Y + el ≥
2X − 3 + el. By (2) and X ≥ q + 2, we obtain that

CLPT

C∗ ≤ X + el
2X−3+el+2

2

=
2X + 2el

2X + el − 1
≤ 2X + 2q

2X + q − 1
≤ 2(q + 2) + 2q

2(q + 2) + q − 1
=

4

3
.

Now we focus on the case where there is at least two blocks. In that case, we

have X ≥ 2(q + 1). It is easy to get that C∗ ≥
2q+3
q+3 X− 3

q+3+el+2

2 according to
Lemmas 1 and 4. By (2), we can obtain

CLPT

C∗ ≤ 2X + 2el
2q+3
q+3 X − 3

q+3 + el + 2
≤ 2X + 2q

2q+3
q+3 X − 3

q+3 + q + 2

≤ 4(q + 1) + 2q
2q+3
q+3 2(q + 1) − 3

q+3 + q + 2
=

6q2 + 22q + 12

5q2 + 15q + 9
≤ 4

3
,

where the last inequality holds because of q ≥ 3.

Parallel Machine Scheduling with a Single Server 115

Case 2. If Jl is the second job in B′, then we have CLPT = X + el + 1 by the
definition of the unfinished block as shown in Figure 1. Note that the execution
time of the first job in B′ is not less than that of Jl, we can obtain thatE ≥ Y+2el

and thus C∗ ≥
2q+3
q+3 X− 3

q+3+2el+2

2 due to Lemmas 1 and 4. It is easy to obtain

that 2q+3
q+3 ≥ 3

2 due to q ≥ 3 and q ≥ el ≥ 3 by (2). Thus

CLPT

C∗ ≤ 2X + 2el + 2
2q+3
q+3 X − 3

q+3 + 2el + 2
<

2X + 2el + 2
2q+3
q+3 X + 2el

≤ 2X + 8
2q+3
q+3 X + 6

≤ 2X + 8
3
2X + 6

=
4

3
.

Case 3. If Jl is not one of the first two jobs in B′, then at least one job Jx is
scheduled before Jl on the same machine, that is, Δ = T − X ≥ ex ≥ el and
thus CLPT = T + el = X +Δ+ el. Let e(Δ) be the total execution time of jobs
processed on two machines during the period of time between X and T . Since
there is only one idle time unit in B′, we have e(Δ) = 2Δ− 1 and thus

E ≥ Y + 2Δ− 1 + el ≥ 2q + 3

q + 3
X − 3

q + 3
+ 2Δ− 1 + el.

Combining el ≤ Δ and 2q+3
q+3 ≥ 3

2 due to q ≥ 3, we obtain

CLPT

C∗ ≤ 2X + 2Δ+ 2el
2q+3
q+3 X − 3

q+3 + 2Δ− 1 + el + 2

<
2X + 2Δ+ 2el

2q+3
q+3 X + 2Δ+ el

≤ 2X + 4Δ
3
2X + 3Δ

=
4

3
.

From Lemmas 3 and 5, we obtain the main result in this section.

Theorem 2. Algorithm LPT has a tight worst case ratio of 4
3 .

Tight Example. Consider the instance I with e1 = 4 and e2 = e3 = 3. It is
clear that the first two jobs form a block and CLPT = 5 + 3 = 8. In the optimal
schedule, the last two jobs are scheduled on one machine at time zero and the
first job is scheduled on another machine at time 1. Then we have C∗ = 6, which

implies CLS

C∗ = 4
3 .

5 Conclusions

We studied the non-preemptively parallel machine scheduling of minimizing
makespan, where each job has to be loaded and unloaded by a single server
before and after being processed on one of two machines. We assumed that both
loading and unloading take one unit time, and considered the classical algo-
rithms LS and LPT for our problem. We analyzed the structure of list schedul-
ing and showed that the tight worst case ratios of LS and LPT are 12/7 and 4/3,
respectively.

116 J. Hu et al.

References

1. Abdekhodaee, A.H., Wirth, A.: Scheduling parallel machines with a single server:
some solvable cases and heuristics. Computers and Operations Research 29,
295–315 (2002)

2. Abdekhodaee, A.H., Wirth, A., Gan, H.S.: Equal processing and equal setup time
cases of scheduling parallel machines with a single server. Computers and Opera-
tions Research 31, 1867–1889 (2004)

3. Abdekhodaee, A.H., Wirth, A., Gan, H.S.: Scheduling parallel machines with a
single server: the general case. Computers and Operations Research 33, 994–1009
(2006)

4. Brucker, P., Dhaenens-Flipo, C., Knust, S., Kravchenko, S.A., Werner, F.: Com-
plexity results for parallel machine problems with a single server. Journal of
Scheduling 5, 429–457 (2002)

5. Brucker, P., Knust, S., Wang, G.: Complexity results for flow-shop problems with
a single server. European Journal of Operational Research 165, 398–407 (2005)

6. Cheng, T.C.E., Kovalyov, M.: Scheduling a single server in a two-machine flow
shop. Computing 70, 167–180 (2003)

7. Graham, R.: Bounds for certain multiprocessing anomalies. Bell System Technical
Journal 45, 1563–1581 (1966)

8. Hall, N.G., Potts, C.N., Sriskandarajah, C.: Parallel machine scheduling with a
common server. Discrete Applied Mathematics 102, 223–243 (2000)

9. Iravani, S., Teo, C.: Asymptotically optimal schedules for single-server flow shop
problemswith setup costs and times.Operations Research Letters 33, 421–430 (2005)

10. Jiang, Y., Dong, J., Ji, M.: Preemptive scheduling on two parallel machines with
a single server. Computers & Industrial Engineering 66, 514–518 (2013)

11. Kravchenko, S.A., Werner, F.: Parallel machine scheduling problems with a single
server. Mathematical and Computer Modelling 26, 1–11 (1997)

12. Ou, J., Qi, X., Lee, C.: Parallel machine scheduling with multiple unloading servers.
Journal of Scheduling 13, 213–226 (2010)

13. Su, L., Lee, Y.: The two-machine flowshop no-wait scheduling problem with a
single server to minimize the total completion time. Computers & Operations Re-
search 35, 2952–2963 (2008)

14. Su, C.: Online LPT algorithms for parallel machines scheduling with a single server.
Journal of Combnatorial Optimization (2012), doi:10.1007/s10878-011-9441-z

15. Wang, G., Cheng, T.C.E.: An approximation algorithm for parallel machine
scheduling with acommon server. Journal of the Operational Research Society 52,
234–237 (2001)

16. Werner, F., Kravchenko, S.A.: Scheduling with multiple servers. Automation and
Remote Control 71(10), 2109–2121 (2010)

17. Xie, X., Li, Y., Zhou, H., Zheng, Y.: Scheduling parallel machines with a single
server. In: Proceeding of International Conference on Measurement, Information
and Control, vol. 1, pp. 453–456 (2012)

18. Xie, X., Zheng, Y., Li, Y.: Scheduling parallel machines with a Single Server: A
Dedicated Case. In: Proceedings of Fifth International Joint Conference on Com-
putational Sciences and Optimization, pp. 146–149 (2012)

19. Yip, Y., Cheng, C., Low, C.: Sequencing of an M machine flow shop with setup,
processing and removal times separated. International Journal of Advanced Man-
ufacturing Technology 30, 286–296 (2006)

20. Zhang, L., Andrew, W.: On-line scheduling of two parallel machines with a single
server. Computers and Operations Research 36, 1529–1553 (2009)

Prompt Mechanism for Online Auctions

with Multi-unit Demands

Xiangzhong Xiang

Department of Computer Science, The University of Hong Kong, Hong Kong
xzxiang@cs.hku.hk

Abstract. We study the following TV ad placement problem: m
identical time-slots are on sell within a period of m days and only one
time-slot is available each day. Advertisers arrive online to bid for some
time-slots to publish their ads. Typically, advertiser i arrives at the ai’th
day and wishes that her ad would be published for at most si days. The
ad cannot be published after its expiration time, the di’th day. If the
ad is published for xi ≤ si days, the total value of the ad for advertiser
i is xi · vi; otherwise, the value of the ad to be published for each day
diminishes and the total value is always si · vi. Our goal is to maximize
the social welfare: the sum of values of the published ads. As usual in
many online mechanisms, we are aiming to optimize the competitive
ratio: the worst ratio between the optimal social welfare and the social
welfare achieved by our mechanism.

Our main result is a competitive online mechanism which is truthful
and prompt for the TV ad placement problem. In the mechanism, each
advertiser is motivated to report her private value vi truthfully and
can learn her payment at the very moment that she wins some time-
slots. Before studying the general case where the maximum demands
si’s are non-uniform, we study the special case where all si’s are uniform
and prove that our mechanism achieves a non-trivial competitive ratio
of 5. For the general case where the maximum demands si’s are non-
uniform, we prove that our mechanism achieves a competitive ratio of
5 · �smax/smin�, where smax, smin are the maximum and minimum value
of si’s. Besides, we derive a lower bound of min{ vmax+vmin

2vmin
, smax
smin

} on the
competitive ratio for the general case, where vmax, vmin are the maximum
and minimum value of vi’s.

1 Introduction

TV advertising has long been a profitable industry and advertising revenue
provides a significant portion of the funding for most privately owned television
networks. Advertisers are eager to promote a wide variety of goods, services and
ideas by making use of advertisements. From the viewpoint of advertising, one
television station, or publisher of advertisements, owns an inventory of time-
slots, which are typically between 30 seconds to 120 seconds long and available
daily. For an advertiser arriving online, she wishes that her advertisement could
be published in a proper time-slot and repeated for a few days before the ad

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 117–128, 2013.
c© Springer International Publishing Switzerland 2013

118 X. Xiang

is expired. As the value of one ad is diminishing when the ad is broadcast for
too many times and the advertiser has budget constraint, the repeating times of
the ad should have upper limit. In the paper, we design an auction mechanism
for publishers to allocate time-slots that maximizes the social welfare while
satisfying advertisers’ preferences.

1.1 The Problem

We study the following TV ad placement problem: m identical time-slots are
on sale within a period of m days and only one time-slot is available each
day. Advertisers arrive online to bid for some time-slots to publish their ads.
Typically, advertiser i arrives at the ai’th day and wishes her ad could be
published for at most si consecutive days.1 The ad cannot be published after its
expiration time, the di’th day. If the ad is published for xi ≤ si days, the total
value of the ad for advertiser i is xi · vi; otherwise, the value of the ad to be
published for each day diminishes and the total value is always si · vi.2 The goal
is to maximize the social welfare: the sum of values of the published ads.

In this paper, we focus on designing truthful mechanisms. The information of
all advertisers arriving in future is unknown in the online auction. However, we
assume that when one advertiser i arrives, its arrival time ai, expiration time di
and maximum demand si are public information. The only private information
is the value vi and selfish advertisers may report false values to the publisher
in order to maximize their profits. A truthful mechanism would motivate selfish
advertisers to reveal their true values. This goal is usually achieved by means of
making the payments collected from advertisers depending on the mechanism’s
outcome instead of advertisers’ reported values.

Besides truthful, we also require our mechanisms to be prompt, which means
that any advertiser that wins some time-slots could always learn her payment
immediately after winning these time-slots. Prompt mechanisms are firstly
proposed in [10]. For mechanisms that are not prompt, three main disadvantages
are discussed in [10]: (1) A winning advertiser does not know how much money
she has spent and thus does not know how much money she has left. She
cannot use her remaining money to take part in another auction. (2) A winning
advertiser may pay long after she won her time-slots. If she is not honest, she can
deny paying the money while her ad has already been published. (3) A winning
advertiser essentially provides the publisher with a “blank check” in exchange
for time-slots. It is hard for advertisers to verify the exact calculation of their
payments. In prompt mechanisms, all these disadvantages are avoided, as any
advertiser can learn her payment when her ad begins to be displayed.

1 In the whole paper, we consider the scenario that each advertiser is only interested
in publishing her ad on some consecutive days. Note that even if advertisers can
publish ads on days which are not consecutive, our prompt mechanism still works
and has the same competitive ratio; but our lower bound on the competitive ratio
does not hold in such model.

2 To utilize time-slots efficiently, any rational publisher will not allocate advertiser i
more than si time-slots.

Prompt Mechanism for Online Auctions 119

1.2 Our Results

Our main result is an online mechanism which is truthful and prompt for the TV
ad placement problem. In the mechanism, we partition all time-slots into groups
evenly and all time-slots in one group can only be allocated to one advertiser.
One advertiser can win at most one group even though she may demand more.
We prove that each advertiser is motivated to reveal her true value in order to
win one group of time-slots. Once an advertiser wins a group of time-slots, the
price she pays for each time-slot in the group can be determined to be the least
value she can report to win one group.

Before studying the general case where the maximum demands si’s are
non-uniform, we study the special case where all si’s are uniform and prove
that our mechanism achieves a non-trivial competitive ratio of 5. The crucial
technique we use is to construct a novel mapping from the optimal solution to
the solution produced by our online mechanism. For the general case where the
maximum demands si’s are non-uniform, we prove that our mechanism achieves
a competitive ratio of 5 · �smax/smin�, where smax, smin are the maximum and
minimum value of si’s. If smax is comparable with smin, our mechanism is still
very competitive. Besides, we derive a lower bound of min{ vmax+vmin

2vmin
, smax

smin
} on

the competitive ratio for the general case, where vmax, vmin are the maximum
and minimum value of vi’s.

Remarks: Besides applied in TV ad placement problem, our online auction
mechanism can solve other problems. Instead of time-slots in TV stations, the
ad space may be a physical newspaper sheet with ads being published on it
daily or a billboard that displays a set of ads on a fixed space with changes
every specific time period. Our mechanism can also be used to solve the on-
demand data broadcast problem [7, 13], in which clients make requests for data
and all requests have deadlines. The server broadcasts the requested data at
some time.

1.3 Related Work

The advertisement placement problem has been widely studied in recent years.
In [12], the auction system used by Google for allocation and pricing of TV ads
is introduced. The system uses a simultaneous ascending auction to generate a
schedule of ads for TV companies daily. Online keyword advertising among mul-
tiple bidders with limited budgets is studied in [1,6,15]. In [1], bidders are offline
while the ad places arrive online and an optimal e

e−1 -competitive randomized
algorithm is introduced. Another important branch about advertisement auction
is designing truthful mechanisms, which is studied in [2, 3].

One classical technique used in many truthful mechanisms is the VCG
payment scheme where each advertiser is charged the harm she causes to other
advertisers and bidding the true value is the dominant strategy [14]. However,
VCG cannot be applied to online problems because it requires computing the
social welfare of the optimal allocation which cannot be computed in an online
fashion. Moreover, even when the optimal allocation is known, the payment of a

120 X. Xiang

winner cannot be determined by VCG at the time when she wins her time-slots;
her payment may depend on future events.

One special case of the TV ad placement problem is studied in [10]. They
assume that advertisers arrive and depart over time. In contrast to our problem,
each advertiser is interested in winning only one time-slot to publish her ad before
she departs. For this special case, they show a 2-competitive prompt and truthful
mechanism. The proof of truthfulness and the analysis of the competitive ratio
are somewhat straightforward as any advertiser can win only one time-slot in
both the optimal solution and the solution produced by their prompt mechanism.
When analyzing the competitive ratio, they match at most two advertisers that
win one time-slot in the optimal solution to exactly one advertiser that wins one
time-slot in their prompt mechanism. In our problem, one advertiser can win
more than one group of time-slots in the optimal solution. We need to design
a novel matching from the optimal solution to the solution produced by our
mechanism without collision. In the analysis, we map at most 5 advertisers in
the optimal solution to one advertiser with higher value winning one group in our
online mechanism. One difficulty in the analysis is that several advertisers may
share one group of time-slots in the optimal solution. We adjust advertisers’
arrival time and expiration time slightly and prove a competitive ratio of 5
successfully.

Azar et al. [4] studies a problem similar to that in [10]. In their auction
problem, each ad can be published for at most once before the ad is expired.
But each ad has an arbitrary size no greater than one and several ads can be
published in one time-slot on condition that the total size does not exceed one.
They design a truthful and prompt mechanism. The mechanism treats ads with
size < 1

2 and size ≥ 1
2 separately. They maintain a tentative schedule of ads for

each day, and always prefers ads with higher density (i.e., the ratio of value to
size). Their mechanism is proved to be 6-competitive.

In the full information setting, our TV ad placement problem is similar to the
online scheduling problem with jobs arriving over time and having deadlines to be
finished. Online scheduling with unit-length jobs has been studied in [5,8,9,11].
The best deterministic algorithm achieves a competitive ratio of 2

√
2 − 1 [11]

and no deterministic algorithm can be better than
√
5+1
2 -competitive [8]. The

on-demand broadcasting problem is studied in [7, 13], which can be reduced to
online scheduling problem with jobs in different lengths. In [7], Chan et al. show
an upper bound of 4Δ + 3 and a lower bound of Δ/ lnΔ on the competitive
ratio, where Δ is the ratio between the length of the longest and shortest jobs.

2 Preliminaries

Consider that m identical time-slots are on sale within a period of m days. Only
one time-slot is available each day. There are advertisers arriving online and
each advertiser has an ad to be published for a period before the ad is expired.
One advertiser i can be represented by a tuple (si, vi, ai, di), where si ∈ N+ is
the maximum number of consecutive time-slots the advertiser demands her ad

Prompt Mechanism for Online Auctions 121

would be published for, vi ∈ R+ refers to the value of the ad if it is published for
one day, and ai, di ∈ N+ are the arrival and expiration time (di − ai + 1 ≥ si).
The lower bound of all si’s are smin and known ahead of time. For any advertiser
i, we assume that her value vi is private while the other information is public.
Advertiser i wishes that her ad is published in time window Wi = [ai, di]. If
x ≤ si consecutive time-slots in Wi are assigned to advertiser i and her payment
for these time-slots is pi, she gains a total value of x · vi and a net profit of
x · vi − pi.

Our goal is to maximize the social welfare which is the total value of all the
published ads. The auction mechanism should be:

(a) Incentive compatible: each advertiser i is incentive to reveal her true
value vi in the auction.

(b) Prompt: each advertiser can learn her total payment at the very moment
that her ad begins to be published.

We say a mechanism is c−competitive if it can always achieve social welfare
which is at least 1

c times of the optimal social welfare.
The further structure of the paper is as follows: in section 3 we show a lower

bound on the competitive ratio of the problem. In section 4, we introduce a
mechanism which is truthful and prompt. In section 5, we show the mechanism
achieves a competitive ratio of 5 when all advertisers’ demands are uniform and
a competitive ratio of 5 · �smax/smin� when their demands are non-uniform.

3 A Lower Bound on the Competitive Ratio

Before showing our main result, a prompt mechanism for the TV ad placement
problem, we derive a lower bound on the competitive ratio for this problem.
Assume that for any advertiser i, smin ≤ si ≤ smax and vmin ≤ vi ≤ vmax.
For the case where all si’s are one, a lower bound of 2 is shown in [10]. For the
general case where si’s are not uniform, we show that the lower bound of the
competitive ratio is min{ vmax+vmin

2vmin
, smax

smin
}.

Theorem 1. The competitive ratio of the TV ad placement problem is at least
min{ vmax+vmin

2vmin
, smax

smin
}.

Proof. To prove the lower bound of the competitive ratio, we measure the
performance of any prompt mechanism against an adversary that knows all
information and adjusts the input sequence according to the decisions made by
the prompt mechanism. On the 1’st day, advertiser u1 : (smax, vmin, 1, smax)
arrives. Wlog, all the x time-slots in time window [x0, x0 + x− 1] are allocated
to u1 at the x0’th day in the prompt mechanism. These x time-slots will not be
available to any advertiser arriving after the x0’th day.

– If x ≤ smin, the adversary stops the input sequence. The social welfare of the
prompt mechanism is: ALG = x ·vmin ≤ smin ·vmin. In the optimal solution,
all time-slots in window [1, smax] are allocated to u1 and the optimal social
welfare is: OPT = smax · vmin. So: OPT/ALG ≥ smax/smin.

122 X. Xiang

– Else, x > smin, the adversary sends another advertiser u2 : (x−1, vmax, x0+
1, x0 + x − 1) and then stops the input sequence. No time-slot in u2’s time
window W2 = [x0 + 1, x0 + x − 1] is available for u2 and ALG = x · vmin.
One feasible solution is to allocate u2 all the x − 1 time-slots in window
W2 and allocate u1 all the x0 time-slots in windows [1, x0]. Then we get:
OPT ≥ (x− 1) · vmax + x0 · vmin ≥ (x− 1) · vmax + vmin. So

OPT

ALG
≥ (x− 1) · vmax + vmin

x · vmin
=
vmax − vmax−vmin

x

vmin
≥ vmax + vmin

2 · vmin
,

the last inequality is true as x ≥ 2.

No matter what the value of x is, we get that OPT/ALG ≥ min{ vmax+vmin
2vmin

, smax
smin

}.

4 A Prompt and Truthful Mechanism

In this section, we introduce a prompt and truthful mechanism for the TV ad
placement problem. In section 5, we will continue to analyze the competitive
ratio of the mechanism.

In the auction, advertisers arrive online and it is known that smin is the lower
bound of all si’s. When advertiser i arrives, we are not clear about the advertisers
arriving later. As shown in the analysis of the section 3, we cannot allocate i
either too many or too few time-slots to achieve a low competitive ratio. In
our prompt mechanism, no matter what si is, we allocate each advertiser 0 or
s = �smin/2� time-slots. We partition all the m time-slots into M = �m/s�
groups and call all the s time-slots in time window [(j − 1) · s+ 1, j · s] as group
Gj (1 ≤ j ≤ M)3. In our mechanism, each group can be allocated to only one
advertiser and each advertiser can win only one group which is totally included
in her time window4 .

Our mechanism is implemented by the HALF-algorithm, as shown in Algo-
rithm 1. In the HALF-algorithm, we maintain one candidate advertiser cj for
each group Gj . Whenever a new advertiser i arrives, look at the candidates for
groups totally included in Wi and let cj be the candidate with the lowest value
(we say i competes on group Gj). If vcj < vi, i will replace cj as the candidate
of Gj ; otherwise, i is rejected irrevocably. On day (k− 1) · s+1, the group Gk is
allocated to its current candidate ck and the payment for the group is calculated.
The price that any winner pays for each time-slot in her winning group equals
her critical value: the minimum value she can declare and still win one group.

In the HALF-algorithm, any advertiser i can only be allocated s time-slots
or 0 slots, although she bids for as many as si time-slots. Before proving the
truthfulness and promptness of HALF-algorithm, we will prove an important
property shown in Lemma 2.

3 When M is not a multiple of s, introduce some dummy slots which will not be used
by any advertiser.

4 Group Gj is totally included in time window Wi = [ai, di] if and only if ai ≤
(j − 1) · s+ 1 and di ≥ j · s.

Prompt Mechanism for Online Auctions 123

Data: Advertisers arriving online
Result: Allocation of time-slots
Set s := �smin/2� and t := 1 ; /* t means it is the t’th day now */

Initialize all candidates for groups as dummy advertisers with value of 0;
while t ≤ m do

while there is a new advertiser ui : (si, vi, ai, di) arriving on day t do
Let S be the set of candidate advertisers for groups which are totally
included in windows Wi;
Let cj be the candidate with the lowest value in S (if there are more
than one such candidate, choose one arbitrary) ; /* We say i competes

on group Gj. */

if vcj < vi then
Make i be the new candidate for group Gj .

end

end
if t == (k − 1) · s+ 1 then

Allocate group Gk to its current candidate advertiser ck;
Let p be the minimum value that advertiser ck can declare and still win
one group;
The payment of advertiser ck is s · p;

end
t := t+ 1;

end
Algorithm 1. HALF-algorithm

Lemma 2. Assume that one advertiser wins a group in the HALF-algorithm.
If she has reported a higher bid and others’ bids are unchanged, she can still win
one group.

Proof. Suppose that advertiser i : (si, vi, ai, di) wins one group Gj in the HALF-
algorithm. We will prove that if she reports v′i > vi and others’ bids are
unchanged, she can still win one group to publish her advertisement. First, note
that advertiser i will compete on the same group Gj , no matter what value she
reports. Second, compare two runs of the HALF-algorithm in two cases: i reports
vi in case 1 and v′i in case 2, and we can show that at any time the candidate
for any group is the same in these two cases (this implies that i can win the
same group in both cases). Before i arrives, these two cases are identical. Look
at the next advertiser r arriving after i. For a contradiction, assume that the
candidate for some group changes after r arrives in case 2. This can only happen
when r competes on group Gj in case 1 and competes on another group Gh

in case 2. Assume ch is the candidate of Gh before r arrives. In case 1, both
i and r compete on Gj and i wins. Thus, vi ≥ vr. r competes on Gj instead
of Gh so vch ≥ vi. It follows that vch ≥ vi ≥ vr. In case 2, r competes on
Gh instead of Gi. But as vr ≤ vch , r cannot become the candidate of Gh. The
candidates of Gj and Gh are unchanged and so do the candidates of all the other
groups. A contradiction occurs. Thus, the candidates of all groups are unchanged

124 X. Xiang

after advertiser r arrives. To finish the proof of monotonicity, we observe all the
advertisers arriving after i one by one and use the same analysis.

Theorem 3. The HALF-algorithm is truthful and prompt.

Proof. We prove the truthfulness first. The true value of advertiser i is vi. Let ui,
u′i be the net profits that advertiser i gains when bidding vi, v

′
i respectively. We

argue that ui ≥ u′i in each of the following cases, as a result bidding truthfully
is a dominant strategy.

1. i wins one group when bidding either vi or v′i. In these two cases, i competes
on one identical group Gj and then wins that group. The price p that i pays
for each time-slot in Gj equals her critical value. So p is independent of i’s
bidding values and her total payment is pi = s ·p. Thus, ui = s ·vi−s ·p = u′i.

2. i wins one group when bidding vi and no group when bidding v′i. From lemma
2, we know that vi ≥ v′i. When bidding vi, i wins group Gj and the price
paid for each time-slot is p. As p is the minimum value that i can bid to win
group Gj , we get p ≤ vi. Hence, ui = s · vi − s · p ≥ 0 = u′i.

3. i wins one group when bidding v′i and no group when bidding vi. When
bidding v′i, i wins group Gj and the price paid for each time-slot is p. As p
is the minimum value that i can bid to win group Gj and i wins no group
when bidding vi, we have p ≥ vi. Thus, u′i = s · vi − s · p ≤ 0 = ui.

4. i wins no group when bidding either vi or v′i. Thus, ui = u′i = 0.

Now we prove the promptness. Recall that regardless what value advertiser
i reports, she will compete on one identical group Gj . Moreover, the winner of
group Gj cannot be advertisers arriving after time-slot (j − 1) · s + 1. As the
algorithm is monotone, the payment of i for group Gj is well defined and can
be calculated at the very moment when Gj is allocated to i, which is time-slot
(j − 1) · s+ 1. Thus the algorithm is prompt.

5 Competitive Ratios

We have shown a lower bound of min{ vmax+vmin

2vmin
, smax

smin
} on the competitive ratio

for the ad placement problem in section 3. We analyze the competitive ratio
of the HALF-algorithm in this section. For the case where all demands si’s are
uniform, the HALF-algorithm is proved to be 5-competitive. For the general
case where si’s are non-uniform, the algorithm is proved to be 5 · �smax/smin�-
competitive. Note that when smax is comparable with smin, the algorithm is still
very competitive.

5.1 Competitive Ratio When Demands Are Uniform

Assume that all demands si’s have the same value of smin. Then in HALF-
algorithm, s = �smin/2� and each advertiser i can only win one group (s time-
slots) which is totally included in her time window Wi. However, in the optimal
solution with the optimal social welfare OPT , i can win any time-slot in Wi.
To compare the social welfare of HALF-algorithm, ALG, with OPT , we need to
define an intermediate variable:

Prompt Mechanism for Online Auctions 125

Definition 4. OPT ′ is the optimal social welfare when the maximum number
of time-slots that any advertiser i demands is 2s and her time window is W ′

i =
[a′i, d

′
i] = [�ai−1

s � · s+ 1, �di

s � · s].
We call W ′

i as i’s extended time window. As in the optimal solution, any
advertiser i can win at most smin ≤ 2s time-slots in windows Wi ⊆ W ′

i , we
can get that OPT ≤ OPT ′. We will compare ALG with OPT ′. Consider one
solution which achieves the social welfare of OPT ′ now. In the solution, each
advertiser bids for at most 2s time-slots in time window W ′. Note that there
are s time-slots in one group and any a′i is the beginning of one group while any
d′i the end of one group. Without loss of generality, we can find one solution O′

in which the social welfare is OPT ′, each group is allocated to one advertisers
and each advertiser i wins 0, 1 or 2 groups in her extended window W ′

i . In the
following theorem, we will study this solution O′ in detail.

Theorem 5. The HALF-algorithm is 5-competitive when maximum demands
are uniform.

Proof. Let A = (p1, . . . , pM) be the solution of HALF-algorithm where advertiser
pj wins groupGj . Let O′ = (o1, . . . , oM) be the solution which achieves the social
welfare of OPT ′. In O′, advertiser oj wins group Gj and some advertisers may
appear twice in O′ (e.g. oj = oj+1). We will match each oj in O′ to exactly one
advertiser � in A where voj ≤ v	. Each advertiser in A is associated with at most
5 members of O′. In this way, OPT ≤ OPT ′ ≤ 5 · ALG and the competitive
ratio of 5 is proved.

The matching is constructed as follows. Let (oj1 , . . . , ojkj) be the members

of O′ that compete on time-slot j in HALF-algorithm (ordered by their arrival
time). Note that ojr wins group Gjr in O′ and Gjr should be in ojr ’s extended
time window W ′

ojr
. The number of groups in the extended time window W ′

ojr
may be one or two more than that in the original time window Wojr . Before
showing the matching, we define function P mapping ojr to one member in A
which wins one group in Wojr :

1. P (ojr) = pjr if group Gjr is totally included in Wojr ;
2. P (ojr) = pjr+1 if group Gjr is not totally included in Wojr and is the first

group in W ′
ojr

;
3. P (ojr) = pjr−1 if group Gjr is not totally included in Wojr and is the last

group in W ′
ojr

;

In case (2) group Gjr+1 should be totally included in Wojr and in case (3) group
Gjr−1 should also be totally included in Wojr as s = �smin/2� and dojr − aojr +
1 ≥ smin. Now we show the rules of matching:

1. If ojkj−1
= ojkj , match both ojkj−1

and ojkj to pj (denoted by ojkj−1
, ojkj →

pj); otherwise, ojkj → pj .

2. If r < kj and ojr �= ojr+1 and ojr �= ojr−1 , then ojr → P (ojr+1).
3. If r < kj − 1 and ojr = ojr+1 , then:

(a) If ojr+2 = ojr+3 , then ojr → P (ojr+2) and ojr+1 → P (ojr+3);

126 X. Xiang

(b) Else if there exists t s.t. t > r and ojt = ojt+1 , then choose the minimum
t, ojr → P (ojr+2) and ojr+1 → P (ojt+1);

(c) Else, ojr → P (ojr+2) and ojr+1 → pj;

Rule (1) is used to deal with the last advertiser ojkj competing on time-slot

j. Rule (2) is for advertisers appearing once in O′ and rule (3) is for those
appearing twice in O′. As one advertiser can appear at most twice in O′, our
matching covers all cases and each element in O′ can be matched to exactly one
advertiser in A. Another important fact we will use later is that there are no
two elements, oj′1 , oj′2 s.t. oj′1 → P (oj′3) and oj′2 → P (oj′3) in our matching.

Firstly, we prove that any advertiser pj is associated with at most 5 elements
in O′. There are two possible cases: (a) ojkj−1

= ojkj , which implies that rule

(3c) is not applicable. Rule (1) matches two elements, ojkj −1 and ojkj , to pj . pj
can also appear in matching like oj′r → P (oj′

r′
), where P (oj′

r′
) = pj . Note that

function P can map at most three elements in O′ to pj (they are oj−1, oj , oj+1)
, and it does not happen that there are two elements, oj′1 , oj′2 s.t. oj′1 → P (oj′3)
and oj′2 → P (oj′3). So rule (2) and (3) can match at most three elements in O′ to
pj . (b) ojkj−1

�= ojkj . Rule (1) and (3c) matches two elements, ojkj and ojr+1 , to

pj (ojr+1 may not exist). Similar to the former case, pj can also appear at most
three times in matching like oj′r → P (oj′

r′
), where P (oj′

r′
) = pj.

It remains to be proved that any element in O′ is always matched to an
advertiser with higher or equal value. In rule (1), since both ojkj and pj compete

on Gj and pj wins, vojkj
≤ vpj . In rule (2), when ojr+1 arrives, she competes

on Gj rather than the group advertiser P (ojr+1) wins. At this moment, ojr has
already arrived, thus the current candidate h for the group advertiser P (ojr+1)
wins has value at least vojr , i.e., vojr ≤ vh. As vP (ojr+1

) should be no less than vh,

vojr ≤ vh ≤ vP (ojr+1
). In rule (3a), when ojr+2 arrives, she competes on Gj rather

than the group advertiser P (ojr+2) or P (ojr+3) wins. Similarly, vojr ≤ vP (ojr+2
)

and vojr+1
≤ vP (ojr+3

). In rule (3b) and (3c), we can get similar results.

5.2 Competitive Ratio When Demands Are Non-uniform

Now we consider the general case where smax is not necessarily equal to smin.
In this case, let ALG2 be the social welfare achieved by the HALF-algorithm.
Let O2 be the optimal solution and OPT 2 be the optimal social welfare. In O2,
advertisers may win more than smin time-slots. We will use O2 to construct one
new solution O2′ in which any advertiser wins no more than smin time-slots.
The social welfare of O2′ is OPT 2′ and it can be proved that OPT 2 ≤ OPT 2′ ·
�smax/smin�. Then we will compare OPT 2′ with ALG2 and a competitive ratio
of 5 · �smax/smin� is proved.

Theorem 6. The HALF-algorithm is 5 · �smax/smin�-competitive when maxi-
mum demands are non-uniform.

Prompt Mechanism for Online Auctions 127

Proof. Let ALG2 be the social welfare achieved by the HALF-algorithm. Let
O2 be the optimal solution and OPT 2 be the optimal social welfare. We use
O2 to construct a new solution O2′. For any advertiser i who wins xi time-slots
in O2, we choose the first x′i = �xi/�smax/smin�� time-slots from all these xi
time-slots and allocate them to i in O2′. The social welfare of O2′ is OPT 2′. As
xi ≤ x′i · �smax/smin� for any i, we get:

OPT 2 ≤ OPT 2′ · �smax/smin�.
In the auction, each advertiser i demands at most si time-slots. Now consider

another scenario where each advertiser i’s maximum demand is smin instead of
si and her other information remains the same as before. In this scenario, the
social welfare achieved by HALF-algorithm is ALG3. The optimal solution is O3
and the optimal social welfare is OPT 3. As all maximal demands are uniform,
by Theorem 5, we can get:

OPT 3 ≤ 5 · ALG3.

Recall that advertiser i wins x′i slots in O2′. As x′i ≤ �smax/�smax/smin�� ≤
smin, advertiser i wins no more than smin slots in O2′. In solution O3, any
advertiser i can also win no more than smin slots. As O3 is the optimal solution,
OPT 3 should be the maximum social welfare and OPT 2′ ≤ OPT 3. On the
other hand, note that the only difference between the two scenarios we have
considered is advertisers’ maximum demands si. However, no matter what the
value of si is, the HALF-algorithm will only allocate each advertiser 0 or s time-
slots. In these two scenarios, the HALF-algorithm has the same output and then
ALG2 = ALG3. Thus,

OPT 2 ≤ �smax/smin� ·OPT 2′ ≤ �smax/smin� · OPT 3
≤ 5 · �smax/smin� · ALG3 = 5 · �smax/smin� ·ALG2.

References

1. Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipartite
matching and single-bid budgeted allocations. In: Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1253–1264.
SIAM (2011)

2. Aggarwal, G., Hartline, J.D.: Knapsack auctions. In: Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm,
pp. 1083–1092. ACM (2006)

3. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In:
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science,
pp. 482–491. IEEE (2001)

4. Azar, Y., Khaitsin, E.: Prompt mechanism for ad placement over time. In: Persiano,
G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 19–30. Springer, Heidelberg (2011)

5. Bartal, Y., Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Lavi, R., Sgall,
J., Tichý, T.: Online competitive algorithms for maximizing weighted throughput
of unit jobs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996,
pp. 187–198. Springer, Heidelberg (2004)

128 X. Xiang

6. Borgs, C., Chayes, J., Etesami, O., Immorlica, N., Jain, K., Mahdian, M.: Dynamics
of bid optimization in online advertisement auctions. In: Proceedings of the 16th
International Conference on World Wide Web, pp. 531–540. ACM (2007)

7. Chan, W.-T., Lam, T.-W., Ting, H.-F., Wong, P.W.H.: New results on on-demand
broadcasting with deadline via job scheduling with cancellation. In: Chwa, K.-
Y., Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 210–218. Springer,
Heidelberg (2004)

8. Chin, F.Y.L., Fung, S.P.Y.: Online scheduling with partial job values: Does
timesharing or randomization help? Algorithmica 37(3), 149–164 (2003)

9. Chrobak, M., Jawor, W., Sgall, J., Tichý, T.: Improved online algorithms for buffer
management in qoS switches. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS,
vol. 3221, pp. 204–215. Springer, Heidelberg (2004)

10. Cole, R., Dobzinski, S., Fleischer, L.K.: Prompt mechanisms for online auctions.
In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 170–181.
Springer, Heidelberg (2008)

11. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management in qos switches. In: Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 209–218. Society for Industrial and
Applied Mathematics (2007)

12. Nisan, N., Bayer, J., Chandra, D., Franji, T., Gardner, R., Matias, Y., Rhodes,
N., Seltzer, M., Tom, D., Varian, H., Zigmond, D.: Google’s auction for tv ads.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 309–327. Springer, Heidelberg
(2009)

13. Ting, H.-F.: A near optimal scheduler for on-demand data broadcasts. In:
Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998,
pp. 163–174. Springer, Heidelberg (2006)

14. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The
Journal of Finance 16(1), 8–37 (1961)

15. Zhou, Y., Chakrabarty, D., Lukose, R.: Budget constrained bidding in keyword
auctions and online knapsack problems. In: Papadimitriou, C., Zhang, S. (eds.)
WINE 2008. LNCS, vol. 5385, pp. 566–576. Springer, Heidelberg (2008)

Using Basis Dependence Distance Vectors

to Calculate the Transitive Closure
of Dependence Relations by Means

of the Floyd-Warshall Algorithm

W�lodzimierz Bielecki, Krzysztof Kraska, and Tomasz Klimek

Faculty of Computer Science and Information Technology
West Pomeranian University of Technology, ul.Żo�lnierska 49, 71–210 Szczecin, Poland

{wbielecki,kkraska,tklimek}@wi.zut.edu.pl

Abstract. In this paper, we present a modified Floyd-Warshall algo-
rithm, where the most time-consuming part – calculating transitive clo-
sure describing self-dependences for each loop statement – is computed
by means of basis dependence distance vectors derived from all vec-
tors describing self-dependences. We demonstrate that the presented ap-
proach reduces the transitive closure calculation time for parameterized
graphs representing all dependences in the loop in comparison with tech-
niques implemented in the Omega and ISL libraries. This increases the
applicability scope of techniques based on transitive closure of depen-
dence graphs. Experimental results for NASA Parallel Benchmarks are
discussed.

Keywords: basis dependence vectors, transitive closure, Floyd-Warshall
algorithm, arbitrarily nested loop, parallelizing compiler.

1 Introduction

Resolving many problems is based on calculating transitive closures of graphs.
In this paper, we deal with parameterized graphs whose number of vertices
is represented with an expression including parameters. Such graphs can be
represented by parameterized relations whose tuples represent vertices while
constraints are responsible for defining edges [11]. Transitive closure calculated
for such relations can be used in optimizing compilers : to remove redundant
synchronization [11], test the legality of iteration reordering transformations
[11], apply iteration space slicing [3], form schedules for statement instances
of program loops [4]. In general, calculating transitive closure of parameterized
graphs is time-consuming [2,11,13]. Sometimes the time of transitive closure
calculation prevents applying techniques for extracting coarse- and fine-grained
parallelism because this time is not acceptable in practice (several hours and even
several days [3,4]. This is why improving transitive closure algorithms aimed at
reducing their time complexity is an actual task.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 129–140, 2013.
c© Springer International Publishing Switzerland 2013

130 W. Bielecki, K. Kraska, and T. Klimek

In this paper, we demonstrate how to reduce the time of calculating transitive
closure describing self-dependences. For this purpose, we propose to find basis
distance dependence vectors from all distance vectors describing self-dependences
and then demonstrate how these vectors can be used for calculating transitive
closure. For extracting such distance vectors, dependence relations, extracted
with a dependence analyzer, are used. Such relations (describing selfdepen-
dences) are characterized by the same arity (the number of tuple elements) of
input and output tuples. Finaly, we present experimental results showing how
the time of transitive closure calculation is reduced for NAS benchmarks [15].

2 Background

In this paper, we deal with the following definitions concerned program loops:
iteration vector, loop domain (index set), parameterized loops, perfectly-nested
and arbitrarily-nested loops. The explanations of them are given in papers [3,4].

Definition 1 (Dependence). Two statement instances S1(I) and S2(J), where
I and J are the iteration vectors, are dependent if both access the same memory
location and if at least one access is a write [4].

Definition 2 (Dependence distance set, dependence distance vector).
We define a dependence distance set DS,T as a set of differences between all such
vectors of the same size that stand for a pair of dependent instances of statement
T and S. We call each element of set DS,T a (dependence) distance vector and
denote it as dS,T .

Definition 3 (Dependence relation). A dependence relation is a tuple re-
lation of the form {[input list] → [output list] : constraints}, where input list
and output list are the lists of variables used to describe input and output tuples
and constraints is a Presburger formula describing the constraints imposed upon
input list and output list.

The general form of a dependence relation is as follows [11]:

R = {[si, . . . , sk] → [ti, . . . , tk] :
∨n

i=1 ∃αi1, . . . , αimi s.t. Fi},

where Fi, i = 1, 2, . . . , n are represented by Presburger formulas, i.e., they are
conjunctions of affine equalities and inequalities on the input variables
s1, . . . , sk, the output variables t1, . . . , tk, the existentially quantified variables
αi1, . . . , αimi , and symbolic constants.

The following concepts of linear algebra are used in the algorithm presented
in this paper: vector, unit normal vector, vector space, field, linear combination,
linear independence. Details can be found in paper [12].

Definition 4 (Column Space of a Matrix). Let A be an m×n matrix. The
space spanned by the columns of A is called the column space of A, denoted C(A)
[12].

Using Basis Dependence Vectors to Calculate the Transitive Closure 131

Definition 5 (Basis). A basis B of a vector space V over a field F (such as R
or Z) is a linearly independent subset of V that spans (or generates) V . Every
finite-dimensional vector space V has a basis [12].

Definition 6 (Positive transitive closure). Let R be an affine integer tuple
relation, then the positive transitive closure R+ of R is the union of all positive
powers of R,

R+ =
⋃
k�1

Rk, with Rk =

{
R if k = 1

R ◦Rk−1 if k � 2.
(1)

Definition 7 (Transitive closure). Transitive closure, R∗, is defined as fol-
lows [11]:

R∗ = R+ ∪ I,

where I is the identity relation. R∗ describes the same connections in a depen-
dence graph (represented by R) that R+ does plus connections of each vertex
with itself.

To check whether output returned by an algorithm represents exact transitive
closure, we can use the well-known fact [11] that for an acyclic relation R (for
such a relation R∩ I = ∅, where I is the identity relation) the following is true:

◦ if R+ is exact transitive closure, then:

R+ = R ∪ (R ◦R+),

◦ if R+ is an over–approximation, then:

R+ ⊂ R ∪ (R ◦R+).

3 Calculating Transitive Closure

To compute the transitive closure of a dependence relation representing all the
dependences exposed for an arbitrarily nested loop, we use a modified form of
the Floyd-Warshall algorithm (see Algorithm 1). It is not difficult to see that
Algorithm 1 has the special key expression Dkj◦(D∗

kk)◦Dik, where ‘◦‘ denotes the
composition operator applied to a pair of relations, Dik describes all dependences
between instances of statement si and statement sk. This means that if there is
a dependence from iteration i1 of statement si to iteration i2 of statement sk
and a chain of self dependences from iteration i2 to iteration i3 D∗

kk and finally
a dependence from iteration i3 of statement sk to iteration i4 of statement sj
(where Dkj describes all dependences between instances of statement sk and
statement sj) then there is a transitive dependence from iteration i1 to iteration
i4. It should be clear that the objective of this technique is to update all the
dependences through statements 1,2,...,n in an iteration of each k -loop.

132 W. Bielecki, K. Kraska, and T. Klimek

Algorithm 1. The modified Floyd-Warshall algorithm [11]

1:
Input :DN×N array whose element i, j represents a dependence relation describing
all direct dependences exposed for instances of statement i and statement j, where
N is the total number of statements in the loop, if there exists a dependence from
instances of statement i � N to instances of statement j � N then Dij �= ∅,
otherwise Dij = ∅.

2:
Output : DN×N array, where each element Dij represents a relation describing
transitive closure between instances of statement i and instances of statement j.

3:
4: Method:
5:
6: for each statement k
7: for each statement i
8: for each statement j
9: Dij = Dij ∪ Dkj ◦ (D∗

kk) ◦ Dik

10:

In the presented algorithm, we propose to calculate D∗
kk using a finite linear

combination of basis dependence distance vectors [5].
Given a set D of m dependence distance vectors in the n-dimensional integer

space derived from a union of dependence relations Dkk (it describes a chain of
self dependences of statement sk in the loop), we first replace all parameterized
vectors with constant vectors.

Let vp be a vector in Zd and pi are its parameterized coordinates in the i-
positions. We may replace vector vp with a linear combination of a constant
vector vc, vc ∈ Zd, and unit normal vectors ei, ei ∈ Zd, where pi are coefficients,
as follows:

vp = vc +
∑
i

pi × ei. (2)

If vc = 0 then it can be rejected from (2).

Proof. Without loss of generality, we may assume that the first n positions of
vp have constant coordinates and the last q positions have parameterized ones.
Then, we can write: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
pn+1

...
pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

pn+1

...
pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

Using Basis Dependence Vectors to Calculate the Transitive Closure 133

where here and further d − n = q, the second vector can be written as the
linear combination of unit normal vectors ek and parameterized coefficients
pn+1, . . . , pd in the last d positions:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

pn+1

...
pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

pn+1

...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ . . .+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0
...
pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= pn+1 ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ . . .+ pd ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
0
...
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

Substituting (4) into (3), we obtain:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
pn+1

...
pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...
cn
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ pn+1 × en+1 + . . .+ pd × ed. (5)

It is obvious that if vc = 0, then vc can be rejected without affecting the
result. ��
Property 1. Replacing parameterized vectors with a linear combination of vec-
tors with constant coordinates can be done in a polynomial time.

Proof. To check each position in vector vp, vp ∈ Zd, the algorithm requires d
operations. In the worst case, all d positions can be parameterized coordinates,
hence d unit normal vectors ek, ek ∈ Zd must be created. This defines O (d2)
time complexity of replacing parameterized vectors. ��
Let us consider the parameterized dependence distance vector (N, 2). It can be
represented as the linear combination of the two linearly independent vectors
(0, 2) + α× (1, 0), where α ∈ Z.

As a result, we get k, k ≥ m, dependence distance vectors with constant
coordinates. This allows us to get rid of parameterized vectors and to form an
integer matrix A, A ∈ Zn×k, by inserting dependence distance vectors with
constant coordinates into columns of A. The columns of A span vector space V .

To decrease the complexity of further computations, redundant dependence
distance vectors are eliminated from matrix A by finding a subset of l, l ≤ k,
linearly independent columns of A. This subset of dependence distance vectors
forms the basis B, B ∈ Zn×l, of A and generates the same vector space V as
A does [12]. Every element of vector space V can be expressed uniquely as a
finite linear combination of the basis dependence distance vectors belonging to
B. When B is completed, we can calculate the relation D∗

kk, as follows:

D∗
kk =

{
[x] → [y] | ∃z s.t. y = x+Bn×l × z ∧ y − x � 0, z ∈ Zl ∧

∧ y ∈ range (Dkk) ∧ x ∈ domain (Dkk)

}
∪ I, (6)

134 W. Bielecki, K. Kraska, and T. Klimek

where : D∗
kk describes a chain of self dependences of statement sk in the loop,

Bn×l×z represents a linear combination of the basis dependence distance vectors
di (the columns of Bn×l, 1 ≤ i ≤ l), y − x � 0 imposes the lexicographically
forward constraints on the tuples of D∗

kk, I is the identity relation.
For each vertex x in the data dependence graph (where x is the source of a

dependence(s), x ∈ domain (Dkk)), we can identify all vertices y (the destina-
tions of the dependence(s), y ∈ range (Dkk)) that are connected with x by a
path of the length equal or more than 1, where y is calculated as x plus a linear
combination of the basis dependence distance vectors B, i.e. y = x + B × z,
z ∈ Zl.

The resulting relation D∗
kk represents the exact transitive closure of rela-

tion Dkk or its over-approximation. To prove this, let us note that relation
D+

kk represents all possible paths between vertices x (standing for dependence
sources, x ∈ domain (Dkk)) and vertices y (standing for dependence destina-
tions, y ∈ range (Dkk)) in the dependence graph, represented with relation Dkk.
Indeed, a linear combination of the base dependence distance vectors Bn×l × z:

◦ reproduces all dependence distance vectors exposed for the loop,
◦ describes all existing (true) paths between any pair of x and y as a linear

combination of all dependence distance vectors exposed for the loop,
◦ can describe not existing (false) paths in the dependence graph represented

by relation D∗
kk.

The last case is possible when on a path between x and y, being described by
D∗

kk, there exists a vertex w such that w ∈ range (Dkk)∧w /∈ domain (Dkk). Such
a case is presented in Figure 1, where x2 ∈ range (Dkk) ∧ x2 /∈ domain (Dkk).
Relation D∗

kk, built according to (6), describes the false path between x1 and x4
depicted by the dotted line.

Fig. 1. False path in the dependence graph

Summing up, we conclude that relation D∗
kk describes all existing paths in

the dependence graph represented by relation Dkk and can describe not existing
paths, i.e., (D∗

kk)exact ⊆ D∗
kk; when relation D∗

kk does not represent not existing
paths, D∗

kk = (D∗
kk)exact.

4 Related Work

Numerous algorithms for calculating the transitive closure of affine integer tuple
relations have been proposed [1,2,6,7,9,11,13]. However, in most of them authors

Using Basis Dependence Vectors to Calculate the Transitive Closure 135

focus on relations whose domain and range are non-parametric polyhedra [1,7,9].
The second limitation of known algorithms is that they require that the arity of
input and output tuples (the number of tuple elements) of relations has to be
the same [2]. This is why we limit related work only to techniques dealing with
parameterized relations whose tuple arities are different in general and relations
can describe dependences available in program loops.

On a different line of work, Bozga et al. [7] have studied the computation
of transitive closure for the analysis of counter automata (register machines)
and they have implemented their method in the tool called FLATA [7]. In this
context, relation R(x, x′) is a relation that can be written as the finite number of
conjunctions of terms of the form ±xi±xj � ai,j , ±x′i±xj � bi,j , ±xi±x′j � ci,j ,
±x′i±x′j � di,j , ±2xi � ei,j or 2x′i � fi,j , where x and y describe counter values,
either at the current step, or at the next step, ai,j , bi,j , ci,j , di,j , ei,j , fi,j ∈ Z are
integer constants and 1 � i, j � n, i �= j. As we can see, this class of relation
does not involve parameters, existentially quantified variables or unions, i.e., it
cannot represent dependences in program loops. This is why we do not compare
this technique with ours.

To our best knowledge, techniques for computing the transitive closure of pa-
rameterized affine integer tuple relations with different input and output arities
of tuples were the subject of the investigation of a few papers only [11,13,14].
Kelly et al. [11] proposed a modified Floyd-Warshall algorithm but they have
not implemented it in the Omega library [17]. Fourteen years later Verdoolaege
has improved and implemented his version of the Floyd-Warshall algorithm in
the ISL library [16], but that algorithm and implementation is not the same as
ours.

Verdoolaege [13,14] treats each of input relations Ri�m as vertices Vi�m of the
directed graph G, where m is the total number of input relations. There exists a
directed path Eij from vertex Vi�m to vertex Vj�m (Rj can immediately follow
Ri) if the range of Ri intersects the domain of Rj , i.e., if

Rj ◦Ri �= ∅. (7)

In order to calculate the transitive closure of a dependence relation R, Ver-
doolaege [13,14] constructs m2 relations

Rij =

m⋃
i,j s.t. Rj◦Ri 	=∅

Rj ◦Ri. (8)

Then he applies Algorithm 1 and returns the union of all output Ri,j as tran-
sitive closure. In our algorithm, we use information gathered with the Petit de-
pendence analyzer [10] to insert a dependence relation describing dependences
between instances of statements i and j as element i, j of array D (element Dij).
Then we call Algorithm 1 to get transitive closure. Information provided with
Petit permits us to reduce the time complexity of the Floyd-Warshall algorithm
implementation due to skipping a connection check between each pair of input
dependence relations (see formula 7).

136 W. Bielecki, K. Kraska, and T. Klimek

Because of differences between our implementation of the Floyd-Warshall al-
gorithm and that of Verdoolaege [13,14], in this paper we investigate only how
different concepts of calculating the relation D∗

kk impact the time complexity
of the Floyd-Warshall algorithm. For this purpose, we have chosen for calcu-
lating D∗

kk algorithms implemented in the in ISL [16] and Omega [17] libraries.
Those algorithms are based on computing parametric powers Rk and then pro-
jecting out the parameter k by making it existentially quantified. As a trivial
example, consider the relation R = {[x] → [x + 1]}. The kth power of R for
arbitrary k is Rk = {[x] → [x + k] | k � 1} and the transitive closure is then
R+ = {[x] → [y] | ∃k ∈ Z�1 : y = x + k} = {[x] → [y] | y � x + 1}. Both the
algorithms consider the difference set ΔR of the relation, but in the ISL library
[16] if all the differences Δis are singleton sets, i.e., Δi = {δi} with δi ∈ Zd, then
R+ is calculated as follows :

R+ = {x −→ y | ∃ki ∈ Z�0 : y = x+
∑
i

kiδi ∧
∑
i

ki = k > 0 (9)

which is essentially the same as that of Beletska et al. [2]. If some of the Δis
are parametric, then each offset Δi is extended with an extra coordinate Δ

′
i =

Δi×{1}, that is a constant and equal to one. The paths constructed by summing
such extended offsets have the length k encoded as the difference of their final
coordinates, so R+ can then be decomposed into relations R+

i , one for each Δi,

R+ = ((R+
m∪I)◦...◦(R+

2 ∪I)◦(R+
1 ∪I))∩{x′ → y′ | ∃k>0 : yd+1−xd+1 = k}, (10)

with

R+
i = s "→ {x′ → y′ | ∃k ∈ Z�1, δ ∈ kΔ

′
i(s) : y′ = x′ + δ}. (11)

Each non-parametric constraint A1x+ c1 � 0 of Δ
′
i(s) from (11) is transformed

into the form A1x + kc1 � 0 and the rest of constraints are rewritten without
any changes. For more details see [13,14].

While the algorithms implemented by Verdoolaege [13,14] in the ISL library
[16] are designed to compute overapproximations, Kelly et all. [11] in the Omega
library [17] propose a heuristic algorithm to compute an underapproximation
that does not guarantee calculating exact transitive closure.

5 Experimental Results

The goals of experiments were to evaluate the effectiveness and time complexity
of the proposed approach for calculating relation D∗

kk for loops provided by the
well-known NAS Parallel Benchmark (NPB) Suite from NASA [15] and com-
pare received results with the effectiveness and time complexity of techniques
implemented in the ISL [16] and Omega [17] tools. We have implemented the
presented algorithm as an ANSI-C++ software module. The source code of the
module was compiled using the gcc compiler v4.3.0 and can be download from:
http://www.sfs.zut.edu.pl/files/mfw-omega.tar.gz. Experiments were conducted

Using Basis Dependence Vectors to Calculate the Transitive Closure 137

using an Intel Core2Duo T7300@2.00GHz machine with the Fedora Linux v12
32bit operating system.

The implementation calculates transitive closure according to Algorithm 1
and permits to choose the three options for producing the relation D∗

kk by means
of: (i) formula (6), (ii) Omega, and (iii) ISL. Under our experiments, we have
examined only such loops provided by NPB that expose dependences. There
exist 58 imperfectly-nested loops in NPB that expose dependences. The results
of our experiments are collected in Table 1, where time is presented in seconds.
The columns ”proposed algorithm”, ”ISL”, and ”Omega” present the time of
calculating transitive closure by means of the Floyd-Warshal algorithm, where
relations D∗

kk were calculated by means of applying formula (6), the ISL, and
Omega tools, respectively.

Table 1. The results of the experiments on the proposed approach to computing
transitive closure (ex : 1 – exact result, 0 – over-approximation; Δt: difference between
the transitive closure calculation time of a known correspondent technique and that of
the presented approach)

#
Source loop name

Number of
relations

Proposed
algorithm

ISL1 Omega2

ex t [s] ex Δt [s] ex Δt [s]

Imperfectly-nested loops

1) BT error.f2p 2 107 1 2.971272 1 8.893896 1 9.152150
2) BT exact rhs.f2p 2 1553 0 32.231114 0 61.389895 0 73.309154
3) BT exact rhs.f2p 3 1553 0 31.938555 0 68.586695 0 74.396025
4) BT exact rhs.f2p 4 1553 0 32.185643 0 61.133555 0 73.996971
5) BT initialize.f2p 2 42 1 0.283660 1 0.394805 1 3.007654
6) BT initialize.f2p 3 42 1 0.288850 1 0.396405 1 2.998300
7) BT initialize.f2p 4 42 1 0.288210 1 0.393468 1 3.052299
8) BT initialize.f2p 5 42 1 0.313911 1 0.428361 1 3.003586
9) BT initialize.f2p 6 42 1 0.318144 1 0.394464 1 3.008207

10) BT initialize.f2p 7 42 1 0.298637 1 0.396687 1 3.018918
11) BT rhs.f2p 3 702 0 26.190911 0 268.752587 0 38.544168
12) BT rhs.f2p 4 510 0 16.442628 0 236.826475 0 26.149409
13) LU blts.f2p 1 4885 1 3632.80771 1 4267.0205 1 5078.63173
14) LU buts.f2p 1 5640 1 4010.86541 1 5673.09815 1 5612.88391
15) LU erhs.f2p 2 66 1 0.166997 1 0.598715 1 5.963691
16) LU erhs.f2p 3 640 0 72.333986 0 164.446467 0 107.584855
17) LU erhs.f2p 4 640 0 74.697203 0 192.229223 0 104.277494
18) LU erhs.f2p 5 640 0 32.549758 0 237.451972 0 58.911653
19) LU HP blts.f2p 1 3232 0 216.569540 0 216.869540 0 218.789512
20) LU HP buts.f2p 1 3593 0 250.428062 0 447.203115 0 267.193005
21) LU HP erhs.f2p 2 66 1 0.164042 1 0.839860 1 6.439332
22) LU HP erhs.f2p 3 640 0 72.560179 0 263.608092 0 115.785944
23) LU HP erhs.f2p 4 640 0 74.509935 0 262.061739 0 116.060227
24) LU HP erhs.f2p 5 640 0 32.928784 0 236.964911 0 57.891926
25) LU HP rhs.f2p 1 17 1 0.214228 1 1.514948 1 1.245564
26) LU HP rhs.f2p 2 640 0 72.552203 0 387.553991 0 115.388039

- Continued on next page -

138 W. Bielecki, K. Kraska, and T. Klimek

#
Source loop name

Number of
relations

Proposed
algorithm

ISL1 Omega2

ex t [s] ex Δt [s] ex Δt [s]

27) LU HP rhs.f2p 3 640 0 74.303048 0 262.026583 0 115.403235
28) LU HP rhs.f2p 4 640 0 32.469942 0 237.760219 0 57.595624
29) LU rhs.f2p 1 17 1 0.217576 1 1.502999 1 1.217024
30) LU rhs.f2p 2 640 0 71.902717 0 279.400439 0 115.549878
31) LU rhs.f2p 3 640 0 73.664458 0 277.564800 0 114.485482
32) LU rhs.f2p 4 1412 0 199.789371 0 968.474450 0 354.928519
33) MG mg.f2p 10 18 1 0.004118 1 0.004387 1 0.004734
34) MG mg.f2p 5 24 0 0.628591 0 0.792310 0 2.122442
35) MG mg.f2p 6 29 0 0.917312 0 0.973950 0 2.164951
36) MG mg.f2p 7 510 1 2.063921 1 17.980857 1 5.568026
37) MG mg.f2p 8 55 0 2.299966 0 2.306906 0 7.139500
38) MG mg.f2p 9 18 1 0.003687 1 0.004398 1 0.004777
39) SP error.f2p 2 107 1 2.496292 1 9.258389 1 9.157796
40) SP exact rhs.f2p 2 1553 0 32.093054 0 97.804819 0 81.841293
41) SP exact rhs.f2p 3 1553 0 32.147199 0 106.642391 0 81.035489
42) SP exact rhs.f2p 4 1553 0 32.297781 0 102.465263 0 81.578539
43) SP initialize.f2p 2 24 1 0.224286 1 0.545536 1 3.036898
44) SP initialize.f2p 3 24 1 0.223405 1 0.398911 1 3.172281
45) SP initialize.f2p 4 24 1 0.221491 1 0.397188 1 3.065710
46) SP initialize.f2p 5 24 1 0.223924 1 0.394303 1 3.033620
47) SP initialize.f2p 6 24 1 0.221686 1 0.410317 1 3.034202
48) SP initialize.f2p 7 24 1 0.222733 1 0.393620 1 3.037680
49) SP rhs.f2p 3 699 1 10.780842 1 231.733093 1 20.082132
50) SP rhs.f2p 4 507 1 14.171069 1 156.553769 1 23.308064
51) UA adapt.f2p 1 10 1 0.046903 1 0.064031 1 0.093033
52) UA adapt.f2p 10 14 1 0.013661 1 0.016454 1 0.026414
53) UA adapt.f2p 11 11 1 0.013425 1 0.016294 1 0.030629
54) UA adapt.f2p 9 14 1 0.005895 1 0.016332 1 0.025601
55) UA setup.f2p 14 31 1 0.297392 1 0.947406 1 0.356227
56) UA setup.f2p 15 15 1 0.261098 1 0.364980 1 0.283646
57) UA transfer.f2p 17 17 1 0.023841 1 0.035448 1 0.086729
58) UA utils.f2p 12 20 1 0.181688 1 0.163561 1 0.738736

Analyzing the results presented in Table 1, we can derive the following conclu-
sions. All techniques under experiments are able to calculate transitive closure
for all NBP loops exposing dependences. The exactness of the presented ap-
proach is the same as that of techniques implemented in Omega and ISL. i.e.,
all techniques under experiments produce exact transitive closure for the same
loops. Calculating relation D∗

kk by means of formula (6) is less time-consuming
in comparison with techniques implemented in Omega and ISL that reduces the

1 Integer Set Library – a library for manipulating sets and relations of integer points
bounded by affine constraints (available at http://repo.or.cz/w/isl.git)

2 Omega Project – frameworks and algorithms for the analysis and transformation of
scientific programs (available at http://www.cs.umd.edu/projects/omega/)

Using Basis Dependence Vectors to Calculate the Transitive Closure 139

time of calculating the transitive closure of a relation describing all the depen-
dences in the loop by means of the F-W’s algorithm. For all loops, we obtained
the shortest time of producing transitive closure.

One possible explanation is that each union that we compose in formula (10)
consists of two relations. If there are m disjuncts in the input relation, then the
direct application of the composition operation may therefore result in a relation
with 2m disjuncts that is computationally expensive. In general, applying for-
mula (6) results in the number of disjuncts that is much less than 2m. All these
facts permit us to conclude that the presented approach is faster than other
well-known approaches.

6 Conclusion

In this paper, we presented a modified Floyd-Warshall algorithm, where the most
time consuming part (calculating transitive closure describing self-dependences
in the program loop) is calculated by means of basis dependence distance vectors.
This results in reducing the time of the transitive closure calculation of param-
eterized graphs representing dependences in program loops. Reducing this time
is explained by using a finite linear combination of basis dependence distance
vectors to calculate the D∗

kk term as a part of a modified Floyd-Warshall’s al-
gorithm. This conclusion was proved by means of numerous experiments with
NPB benchmarks.

The presented approach can be used for resolving many optimizing compilers
problems: redundant synchronization removal [11], testing the legality of itera-
tion reordering transformations [11], iteration space slicing [3], forming schedules
for statement instances of program loops [4]. In our future work we plan to study
the application of the presented approach for extracting both coarse- and fine-
grained parallelism for different popular benchmarks.

References

1. Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to affine
loop invariants detection. Electronic Notes in Theoretical Computer Science 267,
3–16 (2010)

2. Beletska, A., Barthou, D., Bielecki, W., Cohen, A.: Computing the transitive clo-
sure of a union of affine integer tuple relations. In: Du, D.-Z., Hu, X., Pardalos, P.M.
(eds.) COCOA 2009. LNCS, vol. 5573, pp. 98–109. Springer, Heidelberg (2009)

3. Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki, K.: Coarse–grained
loop parallelization: Iteration space slicing vs affine transformations. Parallel Com-
puting 37(8), 479–497 (2011)

4. Bielecki, W., Palkowski, M., Klimek, T.: Free scheduling for statement instances
of parameterized arbitrarily nested affine loops. Parallel Computing (38), 518–532
(2012), http://dx.doi.org/10.1016/j.parco.2012.06.001

5. Bielecki, W., Kraska, K., Klimek, T.: Transitive closure of a union of dependence
relations for parameterized perfectly-nested loops. In: Malyshkin, V. (ed.) PaCT
2013. LNCS, vol. 7979, pp. 37–50. Springer, Heidelberg (2013)

http://dx.doi.org/10.1016/j.parco.2012.06.001

140 W. Bielecki, K. Kraska, and T. Klimek

6. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Ph.D. thesis,
Université de Liège (1998)

7. Bozga, M., Ĝırlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)

8. Diestel, R.: Graph Theory, 4th edn., 451 pages. Springer, Heidelberg (2010)
9. Eve, J., Kurki–Suonio, R.: On computing the transitive closure of a relation. Acta

Informatica 25. X 8(4), 303–314 (1977)
10. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: New

User Interface for Petit and Other Extensions. User Guide (1996)
11. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs

and its applications. In: Huang, C.-H., Sadayappan, P., Banerjee, U., Gelernter,
D., Nicolau, A., Padua, D.A. (eds.) LCPC 1995. LNCS, vol. 1033, pp. 126–140.
Springer, Heidelberg (1996)

12. Schrijver, A.: Theory of Linear and Integer Programming. Series in Discrete Math-
ematics (1999)

13. Verdoolaege, S., Cohen, A., Beletska, A.: Transitive closures of affine integer tu-
ple relations and their overapproximations. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 216–232. Springer, Heidelberg (2011)

14. Verdoolaege, S.: Integer set library – manual, Tech. rep, Version: isl-0.11 (2012),
http://www.kotnet.org/skimo/isl/manual.pdf

15. NASA Advanced Supercomputing Division, http://www.nas.nasa.gov
16. Integer Set Library, http://www.kotnet.org/~skimo/isl/
17. Omega Library, http://www.cs.umd.edu/projects/omega/

http://www.kotnet.org/skimo/isl/manual.pdf
http://www.nas.nasa.gov
http://www.kotnet.org/~skimo/isl/
http://www.cs.umd.edu/projects/omega/

A Nash Equilibrium Based Algorithm

for Mining Hidden Links in Social Networks

Huan Ma1, Zaixin Lu2, Lidan Fan3, Weili Wu3, Deying Li1,�, and Yuqing Zhu3

1 School of Information, Renmin University of China, Beijing 100872, China
2 NSF Center for Research on Complex Networks, Texas Southern University,

Houston, Texas, 77004, USA
3 Dept. of Computer Science, University of Texas at Dallas,

Richardson, TX, 75080, USA
deyingli@ruc.edu.cn

Abstract. With the advance of high techniques, more and more con-
nections between individuals in a social network can be identified, but it
is still hard to obtain the complete relation information between individ-
uals for complex structure and individual privacy. However, the social
networks have communities. In our work, we aim at mining the invisible
or missing relations between individuals within a community in social
networks. We propose our algorithm according to the fact that the indi-
viduals exist in communities satisfying Nash Equilibrium, which is bor-
rowed from game-theoretic concepts often used in economic researches.
Each hidden relation is explored through the individual’s loyalty to their
community. To the best of our knowledge, this is the first work that
studies the problem of mining hidden links from the aspect of Nash
Equilibrium. Eventually we confirm the superiority of our approach from
extensive experiments over real-world social networks.

1 Introduction

Along with increasing popularity of large, complex networks in computer science
and physical domains, the social networks have received a considerable amount
of attention from researchers for their theoretical interests and practical im-
portance in real-world applications. In the social networks, the nodes represent
individuals, and the links (edges) denote the interactions between the nodes. The
most significant feature of social network is “community structure”, which means
the connections between individuals are dense within the same community while
sparse across distinct communities, that is individuals in the same community
share more common attributes, and identifying community structure and learn-
ing the microscopical relation between individuals in a community can help us
to understand individuals’ behaviors well, which have wide applications in social
marketing [1] [2], urban development [3], criminology [4] and so forth.

Take advantage of online networks, a large volume of data can be obtained by
people, however, in the process of collecting, gathering or recording information,

� Corresponding author.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 141–152, 2013.
c© Springer International Publishing Switzerland 2013

142 H. Ma et al.

some information may be lost for the complex relations between individuals, the
data of information from real-world networks is often incomplete and inaccu-
rate, here we call the lost or missing information as hidden links. Particularly,
most information is distributed within communities, and a few information is
distributed among communities, as a result, the hidden links often reside within
communities. To get insight into microscopical individual behaviors, it is of great
value for us to mine these lost links more accurately. Since the connections across
communities are sparse, in our problem, we assume these links will never be lost.
In other words, they are observable to the public. Obviously, our problem is es-
tablished on the existing community structure.

To efficiently explore the hidden links between individuals whin a community,
we start from the aspect of community formation, which was interpreted as a
game framework by Chen et al. in [6]. They explained this phenomenon from
human nature. Each agent is rational and selfish, and their behaviors of joining
communities are associated with a gain function and a loss function, therefore,
they will choose to join a community that maximize their total interest (the gain
of joining the community minus the loss of joining the community). Obeying
this rule, all agents finally find their corresponding communities (Each agent
can join more than one communities at the same time.) with satisfying Nash
Equilibrium. Witnessing this phenomenon, we aim to apply the property into
our problem by reasonable and proper modifications, which is different from [7],
although they find the missing links in community, they don’t use the property
of community to find the links, and they use the common neighbor method.

In this paper, we assume that the community structure in a social network
has been identified through existing techniques in community detection, and
these communities reach Nash Equilibrium status. Here, the concept of Nash
Equilibrium is a concrete measurement based on the neighbor distribution of
each node, which is different from the one in [6]. Moreover, each individual is
required to belong one community, that is, the communities are disjoint. In each
community, if no link is lost, then every individual has at least the same number
of in-community neighbors as that of out-community neighbors. However, when
some links between members within communities are missed, some individuals
may become active, meaning that they have tendency to leave their current com-
munities and join other communities. Therefore, we try to search the lost links
from these active individuals. As for determining which links are the possible
ones adjacent to these active individuals, we modify the techniques used in link
prediction problem, which is a long-standing problem in social networks and has
received extensive attentions from researchers.

Our paper is the first one to mine the hidden links from the aspect of game-
theoretic framework. The main contribution is as follows.

– We prove the NP-hardness of finding a Nash equilibrium when a graph has
to be partitioned into two communities and the function used to measure
the equilibrium of each node is only based on the degrees in communities.

– We propose a novel measurement modified from Nash equilibrium in [6] to
determine the loyalty of each individual to their own communities, and define

Algorithm for Mining Hidden Links in Social Networks 143

all the members who are observed having tendency to leave their current
community as active individuals.

– By adopting link prediction measurements common neighbors [8] and Act(·)
of each node which represents the probability that a node will leave its
own community, we search possible hidden links adjacent to these active
individuals in communities.

2 Game-Theoretic Framework for Mining Hidden Links

2.1 Relative Work in Community Identification

Large networks present attractive common properties, such as power-law degree
distributions [9], high network transitivity [10] and the outstanding feature “com-
munity structure”, meaning that edges between vertices in the same community
are dense and sparse between different communities [11]. Identifying commu-
nity structure in a social network provides people information to understand
individual behaviors.

The formation of communities in social networks was put in the game the-
oretic context by Atheyand et al. [12] from economics point of view. In their
work, they observed that on deciding which community to participate, individ-
uals will definitely concern about the losses and gains that associate themselves
joining a community. Unfortunately, the social network their work considered is
not in frame. Later, in [6], Chen et al. investigated the dynamic formation of
communities from the game-theoretic aspect too. They showed that individuals
are intrinsically selfish, and they join or leave communities according to their
utilities, where the utility is interpreted as the combination of a gain function
and a loss function. The gain function is based on the widely used concept “
modularity” that was proposed by Newman in [5]. The loss function reflects
the intrinsic cost relating to individuals’ choices. They demonstrated that each
individual in a community structure finally reaches Nash Equilibrium. Before
Chen, existing research addresses detecting social communities mainly based on
network topological structures, and many algorithms set a global optimization
goal like modularity [5], betweenness [13], or conductance [14].

2.2 Community Formation Game

In our problem, given the community structure, we track back to the community
formation process. This is helpful for us to explore the potential existing links.
Each individual makes their decisions to join a community according to their k-
hop community loyalty to a community. An individual will join a community to
which it has the highest k-hop community loyalty. At the very beginning, each in-
dividual represents a community. Later, some individuals randomly get together
to form larger communities, then, the remaining individuals join these communi-
ties according to Nash Equilibrium condition. When the community structure in
a social network is established, each individual has more in-community neighbors
than the neighbors in any of the other neighbors.

144 H. Ma et al.

Nash Equilibrium. Since Nash Equilibrium is the key factor that we use to
locate the existing but not visible links, here we introduce its formal definition
in our problem and several relative terms about it. Finally, we prove the NP-
hardness of finding Nash Equilibrium for the community structure.

Definition 1. Social Network: A social network is denoted as G = (V,E,C),
where each node vi ∈ V represents an individual in the network, and an edge
(vi, vj) ∈ E means that individual vi has relation with vj , C = {C1, C2, ..., Cm}
is a set of disjoint communities that forms this network, that is Ci ∩ Cj = ∅,
where i �= j.

Definition 2. k-Hop Community Loyalty (k-HCL): Given a community Cj ∈ C
and a positive parameter integer k, for each individual ui ∈ V (Cj), where V (Cj)
is the member of Cj, the k-hop Community Loyalty of ui to Cj is denoted as
CLk(i, Cj):

CLk(i, Cj) = α1w1 + · · · + αpwp + · · · + αkwk (1)

where
αp =

|N in
i,j,p|

|N in
i,j,p| + |Nout

i,j,p|
(2)

N in
i,j,p and Nout

i,j,p represent the set of p-hop neighbors of ui inside community
Cj and the set of p-hop neighbors of ui outside community Cj , respectively, wp

is a coefficient that indicates the importance of p-hop neighbors of ui, and it
decreases exponentially [16] with the increase of p , actually it is the probability
of edge, such as in [17], w1 = 1%, w2 = 1%2, wp = 1%p. And the parameter k
is predetermined.

From equation (2), we conclude that the community loyalty of each individual
has close relation with its neighbors, implying that the more closer in-community
neighbors one vertex has, the more loyal it is to its own community.

Based on the factor of k-HCL, we give the concept of Nash Equilibrium as
follows:

Definition 3. Nash Equilibrium: Given a set of m disjoint communities
C1, ..., Cm which constitute a social network, the communities are said to be
in Nash Equilibrium if ∀ community Ct and ∀i ∈ Ct,

∀1 ≤ j �= t ≤ m,CLk(i, Cj) ≤ CLk(i, Ct),

where CLk(i, Cj) is the k-HCL value of individual i to community Cj .

Seeing from the above definition, obviously, Nash Equilibrium for the com-
munity structure in a social network is such a status: each individual is satisfied
with their current community and no one has the tendency (desire) to leave it
and join other communities. In other words, the community structure is sta-
ble. When the inequality above holds strongly (with “<” instead of “≤”) for
all individuals, then Nash Equilibrium is regarded as strong Nash Equilibrium.
Otherwise, if there is an individual i, CLk(i, Ct) equals to CLk(i, Cj) for some
t and j, then this Nash Equilibrium is classified as weak Nash Equilibrium.

Algorithm for Mining Hidden Links in Social Networks 145

2.3 Hardness of Forming Communities Satisfying Strong Nash
Equilibrium

Generally, Nash Equilibrium of each node is considered mainly from its k-hop
neighborhood information including neighbors inside and outside its own com-
munity. Although achieving Nash Equilibrium only needs simple requirements,
it is still hard to partition a graph into two subgraphs satisfying with a strong
Nash equilibrium. In the following, we prove that it is NP-hard to partition a
general graph into two subgraphs satisfying with strong Nash Equilibrium even
if only 1-hop neighbors are considered.

Lemma 1. For a set S = {s1, s2, · · · , sm} which is a vertex subset of V (G), if
the induced graph of S forms a cycle and only odd vertices s1, s3, · · · , s2i−1 are
adjacent to V (G)\S, then S cannot be partitioned into two communities S1 and
S2 satisfying with (∗): for each u ∈ V (S1), |N(u)\V (S2)| > |N(u) ⊆ V (S2)| and
v ∈ V (S2), |N(v)\V (S1)| > |N(v) ⊆ V (S1)|, where N(u) denotes the neighbor
set of node u.

Based on the above lemma, we obtain the NP-hardness proof as follows.

Theorem 1. For an arbitrary graph G = (V,E), it is NP-hard to partition
G into two subgraphs to reach strong Nash Equilibrium with 1-hop community
loyalty requirement.

2.4 Models for Link Prediction

In this part, we formally define our problem and introduce several approaches
that have been proposed for link prediction problem. Firstly, we give the concept
of Hidden Links.

Definition 4. Hidden Links: In the real-world networks, some relation links
between individuals may be lost when gathering or recording information, we call
the lost or missing relation links as hidden links.

Definition 5. Equilibrium based Hidden Links Mining (EHLM) problem: Given
a set of m disjoint communities C1, ..., Cm which constitute a social network,
our aim is to find the active individuals that destroy Nash Equilibrium of the
community structure, and mine possible (hidden) links that connect them with
other individuals in the same community.

As for the topic of predicting link problem in social networks, extensive re-
searches have been conducted to infer links from observable data sets like [18],
and [19]. All approaches in these works took score(x, y) as a key factor, which is
a connection weight assigned to each pair of vertices (x, y) based on input graph
G. The higher the score is, the higher probability that x and y are connected.
In the following, we introduce several methods that define score(x, y). For sim-
plicity, we denote N(x) as the neighbor set of node x in graph G. A number
of measurements proposed are based on the idea that two vertices x and y are

146 H. Ma et al.

more likely to have a hidden link between them if N(x) and N(y) have a large
scale overlap.

The most basic approach is to rank node pairs < u, v > according to the
length of their shortest path in a network, which is based on the observation
obtained by Newman inGcollab [8], in which Newman proposed common neighbor
as a measurement, only considering the number of neighbors that node x and
y have in common, that is, score(x, y) := |N(x) ∩ N(y)|.Salton et al. in [21]
introduced the Jaccards coefficient which is a similarity metric often used for
information retrieval. It is used to estimate the probability that both of x and y
have a randomly selected property p. Actually, when p is viewed as the common
neighbors of x and y in G, the measurement becomes

score(x, y) := |N(x) ∩N(y)|/|N(x) ∪N(y)|.
In [22], Adamic et al. considered the measurement

score(x, y) :=
∑

p∈N(x)∩N(y)

1/ log(N(p))

is derived. In [8] and [20], a measure score(x, y) := |N(x)| · |N(y)| is proposed
according to the empirical observation, which indicates that the probability of co-
authorship between x and y is related to the product of the numbers of authors
who work with both x and y. Through refining the definition of shortest-path,
Katz in [23] proposed a measure

score(x, y) :=

∞∑
	=1

β	 · |paths〈	〉x,y|

where paths
〈	〉
x,y is the set of all paths with length � from x to y, β is a positive

parameter.

3 Methodology

In this section, we propose an algorithm called Two-Stage Link Mining (T-
SLM) for the Equilibrium based Hidden Links Mining (EHLM) problem. This
algorithm contains two phases. The first phase is to identify active individuals,
in which we calculate the k-HCL values of each vertex to different communities.
Through comparing these k-HCL values that associate with each vertex, we can
obtain the community each node belongs to. Then we find the vertices who are
not in the communities that they are supposed to be in, and name them as active
vertices. The second phase is to search possible links adjacent with those active
individuals. For every active individual, we continue to find its adjacent links
until it satisfies Nash Equilibrium. Finally, all active individuals are satisfied with
their own communities, indicating that all communities are observably stable and
the entire community structure accords with Nash equilibrium.

To facilitate the description of our algorithm, in the first place, we define
active individual based on the definition of k-HCL given in section 2.2.

Algorithm for Mining Hidden Links in Social Networks 147

Definition 6. Active Individual (AI): Given a set of m disjoint communities
C1, ..., Cm which constitute a social network, an individual ui in community Cj

is said to be active if ∃ t, such that CLk(i, Ct) > CLk(i, Cj), where CLk(i, Cj)
is the k-HCL value of individual ui to community Cj .

For an individual ui belonging to community Cj , if ∃ p such that CLk(i, Cj) <
CLk(i, Cp), then ui becomes an active individual.

3.1 Select Active Individual Set

In this part, we determine active individuals appeared in each community based
on k-HCL value and Nash Equilibrium of community structure defined in sec-
tion 2.2. All the obtained active individuals from a set, which we call Active
Individual Set (AIS). To simplify the expression of our algorithm, Some notions
are introduced first. Assume that a social network is partitioned into m com-
munities, namely C1, C2, · · ·, Cm. The diameter Di,j of node i in community
Cj is the maximum number of hops between i and any vertex belongs to Cj .
Therefore, we have the diameter dj of community Cj as dj = max{Di,j , i ∈ Cj}.
k is computed by k = max{di, i = 1, 2, · · · ,m}. The concrete description of this
location procedure is as follows.

Algorithm 1. EHLM Algorithm-Locate Active Individual Set (SAIS)

INPUT: A social network G = (V,E,C), m communities C1, · · · , Cm, w1, · · · , wk, where
k is predetermined and S = φ.
OUTPUT: Active Individual Set S ⊆ V (G).
For each node i ∈ Cj , construct the Di,j-level Breadth First Search Tree (DBFST)
rooted at i, include all the nodes within Di,j-hop of i to the DBFST. Put the corre-
sponding vertex set to N in

i,j,r and Nout
i,j,r, respectively, where r = 1, 2, · · · , Di,j . (Notice

that k ≥ Di,j , we set N in
i,j,m′ = φ and Nout

i,j,r′ = φ for r′ = Di,j + 1, · · · , k.)
For 1 ≤ j ≤ m

For i ∈ Cj

According to Formulation (1) and (2), compute CLk(i, Cj) and CLk(i, Ct) for
∀i ∈ V (G) and ∀t, 1 ≤ t �= j ≤ m, compute Act(i) = maxt �=j{CLk(i, Ct)−
CLk(i, Cj)} and record it;

If Act(i) �= 0
S = i ∪ S;

End
End
Return S.

3.2 Search Hidden Links

From Algorithm 3.1, we obtain all the active individuals in communities in G. In
this phase, we explore possible but invisible links that are adjacent to these active

148 H. Ma et al.

individuals. Both of the two ends of these links lie in the same community. Under
the condition that we have known the active vertices, to find their matching pairs
corresponding those links, we compute the number of common neighbors and the
total k-HCL values of a pair of nodes. Then we match the active nodes in the
same community, if there is not active nodes, we will use the common neighbors
method to find the hidden links. And we will update the loyalty after adding a
link. In the following, we provide the concrete description of the second phase
implementation.

Algorithm 2. EHLM Algorithm-Search Hidden Links

INPUT: The active individual set S, the total number of added links AL, HL = φ,
L = 0.
OUTPUT: The set of hidden links HL.
if L ≤ AL

if s = φ
Calculate argmax{ui,uk}(Act(ui) + Act(uk)), where ui and uk belong to the
same community, denote the corresponding nodes pair as (um, un);

else
Calculate argmax{ui,uk}|N(ui) ∩N(uk)|, where ui and uk belong to the
the whole graph, denote the corresponding nodes pair as (um, un);

W = W ∪ (um, un);
Execute step the inner loop in Algorithm 1 to update S;
Return W .

3.3 Algorithm Analysis

Our EHLM algorithm contains two stages. The first step is to determine the
active individuals set: for each node, find all of its k-hop neighbors through
using the Breadth First Search (BFS) method, then compute the Community
Loyalty (CL) of each node to all the different communities through applying
eqnarray (1) and (2). Next, we find the active nodes through measure the value
of Act(·) with regard to each node, when the value is larger than zero, we place
the corresponding node into Active Individuals Set. After finding these active
individuals, we find proper pairs among those active individuals to add links
between them when Active Individual Set is not null, otherwise, we will use the
common neighbor algorithm to find the hidden links in the whole graph. Every
time we determine a link, we will update the active individuals set, since the
newly added link improves the community loyalty of some individuals.

4 Simulation

Before we show our results we introduce the data sets we use and our compar-
ison algorithms. Four realistic data sets are used: NetHEPT, Enron Email,

Algorithm for Mining Hidden Links in Social Networks 149

Arenas and American College Football. Before we carry out the experi-
ments, to get communities, we adopt the approaches proposed in [24] and [25].
The communities of NetHEPT and Enron are partitioned by [24], and the com-
munities of Arenas and ACF are partitioned by [25]. Next, we delete the links
in Table IV. Here, we set the parameter k = 1, suppose the maximum number
of common neighbors is N . We denote N(x) as the set of neighbors of node x
in social networks. The three comparison algorithms we use to find the hidden
links between nodes in communities are: Random method, Common neighbors,
and Jaccard’s coefficient, all of which is introduced in [15].

Table 1. Results of correct probability on Arenas/Email

Predictor Jaccard’s coefficient(%) common neighbors(%) our algorithm(%)

Rank=1 5.1 7.7 8.6
Rank=4 5.7 8.2 9.175
Rank=16 3.3 8.88 10.04
Rank=64 4.29 8.225 9.31

Table 2. Results of correct probability on ACF/Team

Predictor Jaccard’s coefficient(%) common neighbors(%) our algorithm(%)

Rank=1 78.2 54.2 80.1
Rank=4 77.12 55.275 80.375
Rank=8 75.1 55.8 77.825
Rank=16 73.36 55.83 75.62

Table 3. Results of correct probability on NetHEPT/Author

Predictor Jaccard’s coefficient(%) common neighbors(%) our algorithm(%)

Rank=1 24.01 14.23 24.8
Rank=4 22.72 14.75 29.86
Rank=16 21.125 14.81 24.78
Rank=64 21.59 15.39 20.68

4.1 Experimental Results

To compare with other algorithms, we concerned about the probabilities of cor-
rect predictions (i.e precisions). We randomly delete a number of links in each
graph, and conduct our algorithm and the above three methods on the incom-
plete graphs. For each comparison, we run each algorithm 1000 times to get the
average. We fix the Rank = 1, 4, 16, 64.

150 H. Ma et al.

Table 4. Results of correct probability on Enron/Email

Predictor Jaccard’s coefficient(%) common neighbors(%) our algorithm(%)

Rank=1 7.15 21.463 31.002
Rank=4 20.468 49.351 58.125
Rank=16 18.732 32.485 42.163
Rank=64 13.375 13.281 19.952

0 50 100 150 200 250 300
0

5

10

15

20

25

Total Predictions:

Tu
re

 P
re

di
ct

io
ns

:

EHLM
Jac. Coeff.
Com. Neig.
Random

(a) Arenas Email Network

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

Total Predictions:

T
ur

e
P

re
di

ct
io

ns
:

EHLM
Jac. Coeff.
Com. Neig.
Random

(b) American College Football

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

Total Predictions:

Tu
re

 P
re

di
ct

io
ns

:

EHLM
Jac. Coeff.
Com. Neig.
Random

(c) NetHEPT Author Network

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

Total Predictions:

Tu
re

 P
re

di
ct

io
ns

:

EHLM
Jac. Coeff.
Com. Neig.
Random

(d) Enron Email Network

Fig. 1. True Predictions vs. Total Predictions

From Table 1, we can find that the probabilities of correct predictions for
EHLM and Common Neighbors (Com. Neig.) decrease as the number of total
predictions is increasing from 1 to 64. This agrees with our intuition in that
top ranked pairs have higher probabilities to be hidden links. In addition, our
algorithm always outperforms Com. Neig. and Jaccard’s Coefficient (Jac. Co-
eff.). When comparing the first 16 predictions, our algorithm is about 15 percent
better than Com. Neig. and it outperforms Jac. Coeff. even much better. When
comparing 64 predictions, the gap between our algorithm and Jac. Coeff. is
smaller. From Table 2, 3 and 4, we can see the results on other three data sets.
Note that the precisions not only depend on the total number of predictions but
also depend on the number of hidden links. The more the number of hidden

Algorithm for Mining Hidden Links in Social Networks 151

links, the higher the probabilities of correct predictions. In Table 2 (i.e. the re-
sults on ACF/Author network), about 40 percent of links are hidden, therefore,
the precisions of all the algorithms are relatively high; while in Table 1 (i.e. the
results on Arenas/Email netowrk), only 10 percent of links are hidden, and the
precisions of all three algorithms are relatively low. Fig.1 plots the experimental
results of True Predictions vs. Total Predictions. It can be seen that with the
increase of total predictions, the number of true predictions increases. In all the
test cases, our algorithm works the best.

5 Conclusion

In this paper, we address the problem of mining hidden links between individ-
uals within communities. Instead of directly predicting these links, we consider
this problem from viewpoint of community formation process, and model it as
a game-theoretic framework. Each individual is assumed to be selfish, and it
chooses to join a community with the maximal loyalty value. Generally, the
community structure in a social networks satisfies Nash Equilibrium, and we
search for the active individuals and mining the existing links hidden. Our work
is the first attempt to predict links from the aspect of the community formation.
To test the efficiency of our algorithm, we conducted extensive experiments over
large-scale real world social networks and compare our algorithm with state-of-
art algorithms and our algorithm outperforms them.

Acknowledgment. This work was supported in part by National Natural Sci-
ence Foundation of China under grants 61070191 and 91124001, and Research
Fund for the Doctoral Program of Higher Education of China under grant
20100004110001. It was also supported by the by National Science Foundation
of USA under grants CNS-1016320, CCF-082999.

References

1. Kotler, P., Zaltman, G.: Social Marketing: An Approach to Planned Social Change.
The Journal of Marketing 35(3), 3–12 (1971)

2. McKenzie Mohr, D., Smith, W.: Fostering Sustainable Behavior: An Introduction
to Community Based Social Marketing. New Society Publishers (1999)

3. Kasarda, J.D., Janowitz, M.: Community Attachment in Mass Society. American
Sociological Review 39(3), 328–339 (1974)

4. Sampson, R.J., Groves, W.B.: Community Structure and Crime: Testing Social
Disorganization Theory. American Journal of Sociology 94(4), 774 (1989)

5. Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103(23), 8577–8582 (2006)

6. Chen, W., Liu, Z., Sun, X., Wang, Y.: A game-theoretic framework to identify
overlapping communities in social networks. Data Min. Knowl. Discov. 21(2),
224–240 (2010)

7. Yan, B., Gregory, S.: Finding missing edges in networks based on their community
structure. Physical Review E 85, 056112 (2012)

152 H. Ma et al.

8. Newman, M.E.J.: Clustering and preferential attachment in growing networks.
Physical Review Letters E 64(025102) (2001)

9. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393, 440–442 (1998)

11. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

12. Atheyand, S., Jha, S.: A theory of community formation and social hierarchy,
working paper (2006)

13. Gregory, S.: A fast algorithm to find overlapping communities in networks. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS
(LNAI), vol. 5211, pp. 408–423. Springer, Heidelberg (2008)

14. Brandes, U., Erlebach, T.: Network Analysis: methodological foundations. Springer
(2005)

15. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J.
American Society for Information Science and Technology 58(7), 1019–1031 (2007)

16. Lancichinetti, A., Kivel, M., Saramki, J., Fortunato, S.: Characterizing the Com-
munity Structure of Complex Networks. PLoS One 5(8), e11976 (2010)

17. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence
through a social network. In: The 9th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 137–146 (2003)

18. Goldberg, D.S., Roth, F.P.: Assessing experimentally derived interactions in a small
world. Proceedings of the National Academy of Sciences 100(8), 4372–4376 (2003)

19. Popescul, A., Ungar, L.: Statistical relational learning for link prediction. In: Work-
shop on Learning Statistical Models From Relational Data at the International
Joint Conference on Artificial Intelligence, pp. 81–90. ACM Press, New York (2003)

20. Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution
of the social network of scientific collaboration. Physica A 311(34), 590–614 (2002)

21. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-
Hill, New York (1983)

22. Adamic, L.A., Adar, E.: Friends and neighbors on the Web. Social Networks 25(3),
211–230 (2003)

23. Katz, L.: A new status index derived from sociometric analysis. Psychome-
trika 18(1), 39–43 (1953)

24. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech.: Theory and Experiment (2008)

25. Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., Fan, Y.: Comparative definition of com-
munity and corresponding identifying algorithm. Phys. Rev. E. 78(2), 1–7 (2008)

An Improved Exact Algorithm for Undirected

Feedback Vertex Set�

Mingyu Xiao1 and Hiroshi Nagamochi2

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China

myxiao@gmail.com
2 Department of Applied Mathematics and Physics,

Graduate School of Informatics, Kyoto University, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract. A feedback vertex set in an undirected graph is a subset of
vertices removal of which leaves a graph with no cycles. Razgon (SWAT
2006) gave a 1.8899nnO(1)-time algorithm for finding a minimum feed-
back vertex set in an n-vertex undirected graph, which is the first exact
algorithm for the problem that breaks the trivial barrier of 2n. Later,
Fomin et al. (Algorithmica 2008) improved the result to 1.7548nnO(1).
In this paper, we further improve the result to 1.7356nnO(1). Our al-
gorithm is analyzed by using the measure-and-conquer method. After
showing some properties of the problem, we get improvements by intro-
ducing a new measure scheme on the structure of reduced graphs.

1 Introduction

There are many practical problems that require us to find a minimum number of
vertices or edges in a graph that intersect all cycles in the graph. An example is
the deadlock recovery problem in concurrent programs [15], which has applica-
tions in operating system, computer architecture communities, database system
and so on. In this problem, the system is represented by a resource allocation
graph (RAG) with vertices being processed and a deadlock in the system is rep-
resented by a cycle in RAG. We need to abort a set of processes in the system to
recover it from deadlocks. The set of processes is corresponding to a minimum
set of vertices in RAG intersecting all cycles. Another well-known application is
the rank aggregation problem [14,7], in which we are asked to find out a ranking
minimizing the number of pairs that occur in a different order in the outcome
ranking, i.e., to delete a minimum number of arcs in a directed graph so that all
cycles in the graph are broken. Some other applications are also mentioned in
the literature [9,5,10].

The above kinds of problems of destroying cycles in graphs are known as
feedback set problems. They have been systematically studied in both practice
and theory due to their importance. According to the graph being directed or

� Supported by NFSC of China under the Grant 61370071 and Fundamental Research
Funds for the Central Universities under the Grant ZYGX2012J069.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 153–164, 2013.
c© Springer International Publishing Switzerland 2013

154 M. Xiao and H. Nagamochi

undirected, and the elements to be deleted being vertices or edges, we can define
four different versions of the problem: Directed Feedback Vertex Set (DFVS),
Undirected Feedback Vertex Set (UFVS), Directed Feedback Arc Set (DFAS)
and Undirected Feedback Edge Set (UFES). UFES is polynomial-time solvable
since it is equal to the problem of finding a maximum spanning tree in a graph,
while the other three problems become NP-hard, where UFVS and DFAS are
also included in the list of Karp’s 21 NP-complete problems [13].

UFVS admits a polynomial-time approximation algorithm with ratio 2 [1],
whereas no constant-ratio approximation algorithm has been found for the prob-
lems in directed graphs [8]. These problems have also been extensively studied
in parameterized and exact algorithms. For parameterized problems with pa-
rameter k being the size of the solution, there is a long list of contributions to
k-UFVS [12,6,4,3], and it can be solved in O(3.83kkn2) time now [3]. Whether k-
DFVS admits fixed-parameterized tractable algorithms or not had been an open
problem for a long time and finally it was solved affirmatively by Chen et al. [5].
Exact algorithms faster than the trivial 2nnO(1) time for both UFVS and DFVS
were developed recently. Based on a good choice of the measure to problem in-
stances, a 1.8899nnO(1)-time algorithm for UFVS was designed by Razgon [16],
and later the running time was improved to 1.7548nnO(1) by Fomin et al. [10].
Razgon [17] also broke the barrier 2n for DFVS by giving a 1.9977nnO(1)-time
algorithm.

In this paper, we will design a 1.7356nnO(1)-time exact algorithm for UFVS,
which improves the previous results. Our algorithm also uses some good branch-
ing rules introduced in [16] and [10]. But our algorithm adopts a different measure
scheme from the previous algorithms. Under this measure scheme, we can get
the improvements by showing the worst case of the algorithm in [10] will not
always happen. To effectively use the measure scheme, we also analyze some new
structural properties of the problem.

2 Preliminaries

In this paper, a graph stands for an undirected graph with possible multiple
edges and self-loops. A simple graph is a graph without any multiple edges and
self-loops. Let G = (V,E) be a graph and X ⊆ V be a subset of vertices. The
subgraph induced byX is denoted by G[X], and G[V \X] is also written asG\X .
Contracting X into a single vertex v∗ means to remove X from G after changing
the end-vertex u ∈ X of each edge uv ∈ E to the new vertex v∗, where we keep
any parallel edges between v∗ and v ∈ V \X while we remove all resulting loops
incident to v∗. A vertex v in a connected graph is called a cut-vertex, if removing
it leaves more than one connected component. For a vertex v ∈ V , the set of
the neighbors of v is denoted by N(v), and the degree d(v) of v is defined to
be the number of edges incident to v, where d(v) ≥ |N(v)|. In a simple graph,
d(v) = |N(v)|. After some preprocessing, our algorithm will keep the graph as a
simple graph.

A subset X ⊆ V of vertices is called a feedback vertex set of a graph G if
G \X is a forest. Note that X is a feedback vertex set of G if and only if V \X

An Improved Exact Algorithm for Undirected Feedback Vertex Set 155

induces a forest. The problem of finding a minimum feedback vertex set (FVS)
is equivalent to the problem of finding a maximum induced forest (MIF). For
the purpose of description, we will design an algorithm in terms of MIF. Given a
subset F ⊆ V of vertices which induces a forest G[F], a maximum induced forest
containing F is called an F -MIF. The problem of finding an F -MIF is called the
forced MIF. We will use (G,F) to denote an instance of the forced MIF.

3 Reducing the Instance

We review some cases where a given instance (G,F) can be simplified. First, if
there is a vertex with a self-loop, then this vertex should be deleted from the
graph. Second, if there is a vertex not contained in any cycle in G (including
degree-1 vertices), we can add it to F directly without changing the optimality
of the instance. Third, if there are multiple edges between a vertex u ∈ V \ F
and a vertex v ∈ F , then u needs to be excluded from any F -MIF. Fourth, if the
maximum degree of G is 2, then we can solve the instance easily by removing
one vertex in V \ F from each cycle in G and returning the vertex set of the
resulting graph as a solution. The next lemma provides the fifth reduction.

Proposition 1. [17] Given an instance (G,F), let G′ be the graph obtained
from G by contracting each connected component T of G[F] into a single vertex
vT , and F ′ be the corresponding set obtained from F by replacing V [T] of each
connected component T of G[F] with the new vertex vT . Then for a subset X ⊆
V \ F , a set F ∪X is an F -MIF in (G,F) if and only if F ′ ∪X is an F ′-MIF
in (G′, F ′).

When the set of vertices in F in the current instance (G,F) is not an in-
dependent set in the graph G, we apply the procedure in the proposition. We
denote by Rd the algorithm that consists of the above five reductions. The algo-
rithm Rd(G,F) will return an instance (G′, F ′) to which none of the above five
reductions is applicable anymore. When there are parallel edges between two
vertices not in F , we will show that simply branching on one of the two vertices
by including it to F or not is good enough for our analysis. Then we can deal
with all parallel edges. We will call an instance a reduced instance, if the graph
has no parallel edge and none of the above five reductions can be applied.

In this paper, we use the following new lemma to deal with degree-2 vertices
in a reduced instance.

Lemma 1. Let (G,F) be a reduced instance and v ∈ V \F be a vertex of degree
2. Then there is an F -MIF S containing v.

Proof. Since a reduced instance has no parallel edges, the two neighbors of v
are different. Let N(v) = {u1, u2}. To derive a contradiction, we assume that no
F -MIF of (G,F) contains v. Let S be an F -MIF of (G,F). Since S is maximal
subject to acyclicity of induced graph G[S], S ∪ {v} induces a graph G[S ∪ {v}]
with a cycle C passing through {u1, v, u2}. First consider the case where G[S ∪
{v}] contains exactly one such cycle C. Since F is an independent set, C contains

156 M. Xiao and H. Nagamochi

at least one vertex v′ ∈ V (C) \ (F ∪ {v}), for which S′ = (S \ {v′}) ∪ {v} still
induces an acyclic graph, and hence S′ is another F -MIF of (G,F), contradicting
the assumption. Next consider the case where G[S ∪ {v}] contains at least two
distinct cycles C1 and C2. In this case, C1−{v} and C2−{v} are paths between
u1 and u2. Since C1 − {v} �= C2 − {v}, there is a cycle in the union of C1 − {v}
and C2 − {v}, contradicting that G[S] is acyclic. This proves the lemma.

4 A Divide-and-Conquer Algorithm Based on
Cut-Vertices

We also use the following new lemma, which leads to a divide-and-conquer
method to eliminate cut-vertices in any instances (a proof of this lemma can
be found in the full version of this paper).

Lemma 2. Let (G,F) be a reduced instance of forced MIF with a cut-vertex v,
and let H be a connected component in G \ {v}. Let F1 = F ∩ (V (H) ∪ {v}),
G1 = G[V (H) ∪ {v}], F2 = F \ V (H), G2 = G \ V (H), and F ∗

i = Fi ∪ {v},
i = 1, 2.

(i) Assume that v ∈ F . Then an F -MIF of (G,F) is obtained by the union of
any F1-MIF of I1 = (G1, F1) and F2-MIF of I2 = (G2, F2).

(ii) Assume that v �∈ F and |S∗
1 | > |S1| for an F ∗

1 -MIF S∗
1 of I∗1 = (G1, F

∗
1)

and an F ′
1-MIF S1 of IH = (H,F ′

1 = F ∩ V (H)). Then an F -MIF of
(G,F) is obtained by the union of S∗

1 \ {v} and S2 for any F ∗
1 -MIF S∗

1 of
I∗1 = (G1, F

∗
1) and F2-MIF S2 of I2 = (G2, F2).

(iii) Assume that v �∈ F and |S∗
1 | ≤ |S1| for an F ∗

1 -MIF S∗
1 of I∗1 = (G1, F

∗
1)

and an F ′
1-MIF S1 of IH = (H,F ′

1 = F ∩ V (H)). Then an F -MIF of
(G,F) is obtained by the union any F1-MIF of IH = (H,F1) and F ′

2-MIF
of I ′H = (G \ (V (H) ∪ {v}), F ′

2 = F \ (V (H) ∪ {v})).
If a cut-vertex v is in F , we need to compute I1 and I2 according to Lemma 2.

On the other hand, if v is not in F , we first compute I∗1 and IH and then compute
either I2 or I ′H according to the solutions to I∗1 and IH . After applying this step,
we can assume that the graph G is biconnected.

5 The Idea of the Branching Operations

A simple idea to design algorithms for forced MIF is that: we pick up a vertex
t ∈ F and select a neighbor v (∈ V \ F) of it, and then branch on v by either
including it to F or deleting it from the graph. Deleting v in the second branch
decreases the number of vertices only by one. We look at the first branch. When
v is included to F , we delete all vertices in N(v) ∩ N(t) from the graph and
contract v and t into a new vertex, say t. When N(v)∩N(t) = ∅, the number of
vertices decreases again only by one in the first branch. It leads to only running
time of 2nnO(1). However, in the first branch we observe more information: the

An Improved Exact Algorithm for Undirected Feedback Vertex Set 157

vertices in N(v) \N(t) will become a neighbor of t in the new graph. If all the
vertices in V \T become neighbors of t, then the problem may become an easier
problem. This implies that the vertices in N(t) may be easier to be handled than
other vertices in V \F . We set a weight to each vertex in our graph to distinguish
their contribution to the computational complexity of the problem. Define the
weight of each vertex in F to be 0. We select a vertex t ∈ F as a designated
vertex in our algorithm. Then define the weight of each vertex in V \ (F ∪N(t))
to be 1, and set the weight of each vertex in N(t) to be a value α ∈ [0.5, 1.0],
where the best value of α will be determined according to the analysis of our
algorithm described later. We use the sum w of all the vertex weight as the
measure of the instance, where w ≤ n holds. Suppose that we choose a neighbor
v of t for branching, and let d be the number of neighbors of v except t (i.e.,
d = |N(v)| − 1). Here we assume the worst case that N(v)∩N(t) = ∅. By using
C(w) = τw (τ > 1) to denote the worst size of the search tree generated from
an instance with measure w by our algorithm, we get the following recurrence
for the above branching operation

C(w) ≤ C(w − (α+ d(1 − α))) + C(w − α), (1)

which will be the bottleneck of the algorithm. To get a smaller upper bound on
the size of the search tree of the algorithm, we hope that d(1 − α) is as large as
possible.

When d = 1, we can simply include v to F without branching, because if any
F -MIF S not containing v always includes the other neighbor v′ (�= t) of v by
the maximality and can be modified into another F -MIF S′ = (S \ {v′}) ∪ {v}.

Razgon [16] gave a way of dealing with the case of d = 2 effectively so that
the worst recurrence becomes

C(w) ≤ C(w − (α+ 3(1 − α))) + C(w − α).

We can verify that C(w) = O(1.8899w) by choosing α = 0.6370. That is how
Razgon [16] obtained the first exact algorithm that breaks the barrier of 2n for
MIF.

Fomin et al. [10] further analyzed the problem and found a way to deal with
the case of d = 3, and then improved the worst case recurrence to

C(w) ≤ C(w − (α + 4(1 − α))) + C(w − α), (2)

which solves to C(w) = O(1.7548w) with α = 0.5116. This leads to the current
best time bound for exact algorithms for FVS (MIF).

Previous techniques to deal with the cases of d = 2 and d = 3 come from the
following lemma.

Lemma 3. [10] Let (G,F) be a reduced instance. For a vertex t ∈ F , let v ∈
V \ F be a neighbor of t such that |N(v)| ≥ 3. If N(v) ∩ F = {t}, then there is
an F -MIF S satisfying one of the following properties: For D(v) = N(v) \ {t} =
{v1, v2, . . . , vd}

158 M. Xiao and H. Nagamochi

1. v ∈ S;
2. (D(v) ∪ {v}) ∩ S = {v1, v2}; and
3. {v, vi, vi+1, . . . , vd} ∩ S = {vi} for some i ∈ {3, . . . , d}, where |D(v)| ≥ 3.

Based on the lemma, we obtain the following branching rule. When d = 2
(|N(v)| = 3), we can branch into two instances at v by either including v to
F or by including v1 and v2 to F and deleting v. When d = 3 (|N(v)| = 4),
we can branch into three instances at v by including v to F , by including v1
and v2 to F and deleting v, or by including v3 to F and deleting v. These two
branching rules are more effective than simply branching on v by including it to
F or not. Therefore, we get effective ways to deal with the cases of d = 2 and
d = 3. However, Lemma 3 only handles the case where N(v)∩F = {t}. When v
is also adjacent to other vertices in F , the the analysis will become complicated
and some bad cases arise. To extend Lemma 3, Fomin et al. [10] introduced two
concepts “active vertex” and “generalized neighbor.”

In their algorithm, at most a vertex t ∈ F is designated as an active vertex.
When we contract a set of vertices into a single vertex in Rd(G,F), the new
vertex is called an active vertex and denoted by t if the set includes the active
vertex t. The algorithm always choose a neighbor of the active vertex t to branch
on based on the “generalized degree.” For a vertex v ∈ V \F , a vertex u ∈ V \F is
called a generalized neighbor of v if u is a neighbor of v or u and v share a common
neighbor s in F \{t}. Denote by GD(v) the set of generalized neighbors of v and
gd(v) = |GD(v)| the generalized degree of v. Hence GD(v) = (N(v) \ F) ∪ {u ∈
N(s) \ F | s ∈ N(v) ∩ (F \ {t})}. For generalized neighbors, the next property
holds, which nearly corresponds to Lemma 3.

Lemma 4. Let (G,F) be a reduced instance with a designated vertex t ∈ F . For
a vertex v ∈ V \ F , denote GD(v) = {v1, v2, . . . , vd} (d = gd(v)). If gd(v) ≤ 1,
then there is an F -MIF containing v. Otherwise (gd(v) ≥ 2) there is an F -MIF
S satisfying one of the following properties:

1. v ∈ S;
2. (GD(v) ∪ {v}) ∩ S = {v1, v2}; and
3. {v, vi, vi+1, . . . , vd} ∩ S = {vi} for some i ∈ {3, . . . , d}, where gd(v) ≥ 3.

Proof. Let S be an F -MIF of (G,F), where we assume that v �∈ S (otherwise
we are done). By the maximality of S, we see that G[S′ ∪ {v}] contains a cycle
C passing through v, and V (C) \ {t} contains at least one vertex u in GD(v) =
(N(v)\F)∪{u ∈ N(s)\F | s ∈ N(v)∩ (F \ {t})}. If S′ contains no other vertex
from GD(v) \ {u}, then S′ = (S \ {u})∪ {v} is an F -MIF containing v. Assume
that S contains at least two vertices from GD(v). Hence gd(v) ≥ 2 (which means
that there is an F -MIF S′ containing v when gd(v) ≤ 1). Let i (≥ 2) be the
largest index such that vi ∈ S, where i ≥ 2. If i = 2, then we have the second
condition. Otherwise for i ≥ 3 we have the third condition.

Note that in this lemma, we do not require the vertex v to be a neighbor of
the active vertex t. But our algorithm only branches on a vertex adjacent to the
active vertex based on the lemma.

An Improved Exact Algorithm for Undirected Feedback Vertex Set 159

6 The Algorithm

Our algorithm for forced MIF is described in Fig. 1. In Step 1, the algorithm
deals with some parallel edges between two vertices u, v ∈ V \F . We can branch
by either including u to F or deleting it from the graph. In the first branch
we can also remove v directly since at least one of u and v should be deleted
to destroy all cycles containing them. Note that when u is of degree-2, we can
simply remove v without branching, because now u is adjacent to only v and v
intersects all cycles containing u. After this step, the algorithm will not create
parallel edges between two vertices in v \ F any more. Step 2 calls Rd(G,F) to
reduce the instance. Lemma 1 can guarantee the correctness of Step 3. Steps 3
and 4 are used to deal with the graph that is not biconnected. After Step 4, the
instance satisfies the following properties: the instance is a reduced instance; all
vertices in V \ F are of degree ≥ 3; and the graph G is biconnected. Based on
these properties, we will design the major reduction operations in the algorithm.

A vertex v ∈ N(t) with gd(v) = 3 is called a good vertex, if (i) GD(v)\N(t) is
not empty; or (ii) when N(t) contains no good vertex of Case (i), any vertex v ∈
N(t) with gd(v) = 3 will do. For any vertex v ∈ V \F , let Fv = N(v)∩ (F \{t}).
A vertex v ∈ N(t) with gd(v) ≥ 4 is called an effective vertex if (i) it is in a path
vav′ where a ∈ F \ {t} and v′ ∈ V \ (F ∪N(t)); or (ii) when N(t) contains no
effective vertex of Case (i), any vertex v ∈ N(t) that maximizes dg(v) and then
maximizes |Fv| will do. By using Lemma 4, we get Steps 8, 9 and 10 in Fig. 1.

7 The Analysis

We will use the measure-and-conquer method [11] to analyze the algorithm. In
this method, we set a weight to each vertex in the graph and use the sum w of
the total vertex weight as the measure to scale the size of the instance. In fact,
we will set the vertex weight of each vertex at most 1. Then w is at most the
number n of vertices and a running time bound with respect to w will imply a
running time bound with respect to n.

Fomin et al. used the measure-and-conquer method in the analysis of their
algorithm [10]. In their analysis, they only considered three kinds of different
vertex weight: setting the weight of each vertex in F as 0, the weight of each
vertex in N(t)∩ (V \F) as α = 0.5116, and the weight of each remaining vertex
in V \ (F ∪N(t)) as 1, where t is the active vertex in the graph. By listing out
all recurrences as (1) generated by the algorithm, Fomin et al. proved that the
algorithm runs in 1.7548nnO(1) time and the worst case is (2).

One way to further decrease the time bound of Fomin et al.’s algorithm is
to improve the worst case of (2) by using the branching rule from Lemma 4
for d = 4. However, this new branching rule will create four instances and it
will generate a recurrence even worse than (2). In this paper, we try to improve
the result of MIF in a different way. We will use a different measure scheme to
improve the worst case analysis.

In most measure-and-conquer algorithms for graph problems, such as the al-
gorithms in [2,11,18], we set different vertex weights for vertices of different

160 M. Xiao and H. Nagamochi

Input: A graph G = (V,E) and a subset of vertices F ⊆ V . Initially F = ∅.
Output: An F -MIF S of G.

1. If {There are parallel edges between two vertices u, v ∈ V \ F}, if one of
u and v, say u is of degree 2, then return S := mif(G \ {u, v}, F) ∪ {u},
else return

S := max{ mif(G \ {u}, F ∪ {v}), mif(G \ {v}, F) }.
2. Elseif{(G,F) is not a reduced instance}, let (G′, F ′) := Rd(G,F) and

return S := mif(G′, F ′).
3. Elseif {There is a degree-2 vertex v in V \F}, select such a vertex v, and

return S := mif(G, F ∪ {v}).
4. Elseif {G consists of k ≥ 2 connected components Gi = (Vi, Ei) (i =

1, 2, . . . , k)}, return

S :=
⋃k

i=1
mif(Gi, Fi = Vi ∩ F).

5. Elseif {G is not biconnected}, use Lemma 2 to decompose (G,F) into
subinstances, where we select H as the component of minimum number
of vertices.

6. Elseif {F = ∅}, select a vertex v of maximum degree and return

S := max{ mif(G, {v}), mif(G \ {v}, ∅) },
where v is designated as the active vertex t in the instance (G, {v}).

7. Elseif {F contains no active vertex}, choose an arbitrary vertex t ∈ F as
an active vertex. Denote the active vertex by t from now on.

8. Elseif {There is a vertex v ∈ N(t) with gd(v) ≤ 1}, select such a vertex
v, and return S := mif(G,F ∪ {v}).

9. Elseif {There is a vertex v ∈ N(t) with gd(v) = 2}, select such a vertex
v, where GD(v) = {v1, v2}, and return

S := max{ mif(G,F ∪ {v}), mif(G \ {v}, F ∪ {v1, v2}) }.
10. Elseif {There is a vertex v ∈ N(t) with gd(v) = 3} select such a good

vertex v, where GD(v) = {v1, v2, v3} (v3 is chosen so that v1 ∈ GD(v2) if
possible and v3 �∈ N(t) if v is of Case (i)), and return

S := max { mif(G,F ∪ {v}), mif(G \ {v, v3}, F ∪ {v1, v2}),
mif(G \ {v}, F ∪ {v3}) }.

11. Else /* gd(v) ≥ 4 for each v ∈ N(t) */ select an effective vertex v ∈ N(t),
and return

S := max{ mif(G,F ∪ {v}), mif(G \ {v}, F) }.
Note. In Steps 9 and 10, if adding v1 and v2 to F induces a cycle in the second
branch, we just ignore this branch.

Fig. 1. Algorithm mif(G,F)

An Improved Exact Algorithm for Undirected Feedback Vertex Set 161

degree. One reason for this would be that vertices of higher degree may have
larger contribution to the structural complexity of the graph. However, MIF
seems different from the previous measure-and-conquer algorithms in the sense
that the current fastest algorithm is obtained by using weights with no difference
between vertices of different degree.

We wonder whether the algorithm for MIF can be improved if we distinguish
vertices of different degree (without significantly modifying the algorithm). Note
that in some branching operations in the algorithm, we will delete some vertices
from the graph and the degree of some vertices will decrease. When the maxi-
mum degree of the graph is at most 2, the forced MIF can be solved in polyno-
mial time. These properties imply that vertices of different degree have different
contribution to the hardness of the problem. After carefully analyzing the al-
gorithm based on the above observation, we improve the running time bound
for this problem from 1.7548nnO(1) to 1.7356nnO(1) by using a sophisticated
measure scheme.

Our improvement is obtained from the following intuitive observation. The
worst case of Fomin et al.’s algorithm is to branch on a vertex v of gd(v) = 4 (as
Step 10 in mif(G,F)) with recurrence (2). However, we observe that this case
may not always happen. If there is a vertex u ∈ GD(v) of high degree (such
as degree ≥ 6), in the branch of including v to F (where u becomes a vertex
adjacent to the new active vertex), we can branch on a vertex u of degree at least
6 in the next step, which may lead to a good performance. If there is a vertex
u ∈ GD(v) of low degree (such as degree ≤ 5), in the other branch of deleting v
from the graph, the degree of u will decrease by one and u will become an ‘easy’
vertex in the future. Then it is possible to decrease some measure from u by
setting different vertex weight to vertices of different degree. Both cases imply
that we can get a recurrence better then (2). This is the main idea on how our
algorithm gets the claimed improvement. Next, we show the details about the
weight setting and the recurrences generated by the algorithm.

7.1 Weight Setting and Basic Analysis

Let t be the active vertex in the graph and U = V \ (F ∪N(t)). For each vertex
v ∈ V , we set its vertex-weight w(v) to be

w(v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if v = t (v is the active vertex)
β if v ∈ F \ {t}
α if v ∈ N(t) ∩ (V \ F)
0 if v ∈ U and d(v) ∈ {0, 1}
wi if v ∈ U and d(v) = i for i ∈ {2, 3, 4}
1 if v ∈ U and d(v) ≥ 5,

where wi is the weight of a vertex v ∈ U of degree i ≥ 0.
To simplify some arguments, we require vertex weights satisfy the following

constraints

0.01 < β = w2 ≤ w3 ≤ w4 ≤ 1 and max{β, 0.5} ≤ α ≤ 1. (3)

162 M. Xiao and H. Nagamochi

We also assume that
w3 + β ≤ 2α. (4)

We will determine the best value of β, α, w3 and w4 so that the worst recurrence
in the algorithm is as good as possible.

Let Δi (i ≥ 1) denote wi − wi−1, where w0 = w1 = 0 and wj = 1 for all
j ≥ 5. We see that Δi ≥ 0 for each i ≥ 1. Recall that we use C(w) to denote
the worst size of the search tree with respect to the measure w generated by the
algorithm. We will list out all possible recurrences created by the algorithm. To
do so, we analyze the decrease of the measure in each of the generated instances
in each recurrence.

In the algorithm, we have two basic operations in branching on a vertex v in
a reduced instance: one is to include vertex v to F and the other is to delete
vertex v from the graph. We consider the following three cases (1), (2) and (3):

(1) The vertex v is in U , and it is included to F and also selected as the active
vertex t. In this case, the weight of v decreases from w(v) to β, the weight of
v further decreases from β to 0, and the weight of each neighbor u �∈ F of v
decreases from w(u) to α. In total, the measure w decreases by at least

Δw ≥ w(v) +
∑

u∈N(v)\F
(w(u) − α). (5)

(2) The vertex v ∈ V \ F is a neighbor of the active vertex t, and it is
included to v by the first branch, and Rd(G,F) is executed in the next step,
where t and v (possibly with some other vertices in F adjacent to v) will be
contracted into a new active vertex: We analyze the decrease of the measure
w in these two operations together. In fact, the decrease of the measure come
from three kinds of vertices, which are v itself, vertices in GD(v), and vertices
in Fv = N(v) ∩ (F \ {t}). The weight of v decreases from α to 0. For vertices
u ∈ GD(v), we distinguish two cases. If u is also in N(t), then after including
v to F , vertex u will be removed from the graph by executing Rd(G,F). Then
the weight of each vertex u ∈ GD(v) ∩N(t) decreases from α to 0, whereas the
weight of each vertex u ∈ GD(v) \N(t) decreases from w(u) = wd(u) to α. We
see that the weight of some vertices in F also decreases. After including v to
F , all vertices in Fv together with v and t will be contracted into a new active
vertex. This decreases the weight of each vertex in Fv by β. In total, the decrease
of the measure w is at least

Δw = α+ |GD(v) ∩N(t)|α+
∑

u∈GD(v)\N(t)

(wd(u) − α) + |Fv|β. (6)

(3) The vertex v is deleted from the graph: In this case the measure decreases
by the deletion of v and the weight decrease of some of its neighbors (since their
degrees decrease by 1). Then the weight of each vertex u ∈ N(v) \ (F ∪ N(t))
decreases by Δd(u). Then deleting v decreases the measure w by at least

Δw = w(v) +
∑

u∈N(v)\(F∪N(t))

Δd(u), (7)

An Improved Exact Algorithm for Undirected Feedback Vertex Set 163

where w(v) = 1 when v is in U and w(v) = α when v is in N(t).
We will frequently use (5), (6) and (7) to derive our recurrences generated by

the algorithm.

7.2 Some Techniques

To ease amortization on our analysis, we introduce “shift” σ for some recurrences
which are not bottlenecks in our algorithm. Suppose that there are two branching
operations A and B with recurrences C(w)≤C(w − t(A1)) + C(w − t(A2)) and
C(w)≤C(w − t(B1)) + C(w − t(B2)), and that branching operation B is always
applied to the subinstanceG1 generated by the first branch of A in the algorithm.
The branching operation B may lead to a better recurrence (with a smaller
branching factor) than A does. To improve the recurrence for operation A, we
will save some decreasing of the measure in operation B to A. Instead, we save
σB ≥ 0 from B by evaluating the branch rule B with a worse recurrence

C(w)≤C(w − (t(B1) −σB)) + C(w − (t(B2) −σB)).

The saved weight σB will be included to the recurrence for operation A to obtain

C(w)≤C(w − (t(A1) +σB)) + C(w − t(A2)).

The amount of save is also called shift. In our algorithm, we introduce only one
shift σ when branching on a vertex v with gd(v) = 4 in Step 11.

7.3 The Final Result

By using the above techniques, we can list out all the recurrences generated in
the algorithm. The detailed analysis and the recurrence list can be found in the
full version of this paper. We build up a quasiconvex program according to the
list of recurrences. After solve it we get the running time bound of 1.7356nnO(1)

by letting α = 0.5547, β = 0.0851, w3 = 0.9793, w4 = 0.9919 and σ = 0.0876.

Theorem 1. The minimum feedback vertex set in an n-vertex undirected graph
can be solved in 1.7356nnO(1) time.

8 Concluding Remarks

With new reductions based on biconnectivity and a deeper analysis, we improved
the running time bound for the maximum induced forest problem (the feedback
vertex set problem) from 1.7548nnO(1) to 1.7356nnO(1). The improvement is
analyzed by using a measure scheme where we distinguish vertices of different
degree. Previous measure-and-conquer algorithms for MIF did not consider this
before. It should be interesting to know that this measure scheme is still helpful
for MIF. Furthermore, we introduced many structural properties for the problem,
and our algorithm does not need to solve the maximum independent set problem
while previous best algorithm needs this as a subroutine.

164 M. Xiao and H. Nagamochi

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. on Disc. Math. 12(3), 289–297 (1999)

2. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Fast algorithms for
max independent set. Algorithmica 62(1-2), 382–415 (2012)

3. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures.
In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg
(2010)

4. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback
vertex set problems. J. Comput. Syst. Sci. 74, 1188–1198 (2008)

5. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55, 1–19 (2008)

6. Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An
O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem. In:
Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidel-
berg (2005)

7. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation revisited (2001)
(manuscript)

8. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)

9. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook
of Combinatorial Optimization, vol. A, pp. 209–258. Kluwer Acad. Publ., Dordrecht
(1999)

10. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feed-
back vertex set problem: exact and enumeration algorithms. Algorithmica 52(2),
293–307 (2008)

11. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 1–32 (2009)

12. Guo, J., Gramm, J., Huffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Com-
put. Syst. Sci. 72, 1386–1396 (2006)

13. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.M.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, Nwe York (1972)

14. Kemeny, J., Snell, J.: Mathematical models in the social sciences. Blaisdell (1962)
15. Silberschatz, A., Galvin, P.: Operating System Concepts, 4th edn. Addison-Wesley

(1994)
16. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,

R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)
17. Razgon, I.: Computing minimum directed feedback vertex set in O(1.9977n). In:

ICTCS 2007, Rome, Italy, pp. 70–81 (2007)
18. Xiao, M., Nagamochi, H.: A refined exact algorithm for edge dominating set.

In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287,
pp. 360–372. Springer, Heidelberg (2012)

An Inductive Construction of Minimally Rigid

Body-Hinge Simple Graphs

Yuya Higashikawa1, Naoyuki Kamiyama2,�, Naoki Katoh1,∗,
and Yuki Kobayashi1

1 Graduate School of Engineering, Kyoto University,
Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan

{as.higashikawa,naoki,as-kobayashi}@archi.kyoto-u.ac.jp
2 Institute of Mathematics for Industry, Kyushu University,

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
kamiyama@imi.kyushu-u.ac.jp

Abstract. In this paper, we propose an inductive construction of min-
imally rigid body-hinge simple graphs. Inductive construction is one of
well-studied topics in Combinatorics and Combinatorial Optimization.
We develop an inductive construction for minimally rigid body-hinge
simple graphs in d-dimension with d ≥ 3 by which we can develop a
polynomial-time algorithm for enumerating all minimally rigid body-
hinge simple graphs.

Keywords: Body-hinge framework, Panel-hinge framework, Body-hinge
graph, Combinatorial rigidity, Rigid realization.

1 Introduction

A d-dimensional body-hinge framework (Fig. 1(a)) is a collection of d-dimensional
rigid bodies connected by hinges, where a hinge is a (d − 2)-dimensional affine
subspace, i.e., pin-joints in 2-space, line-hinges in 3-space, plane-hinges in 4-space
etc. Bodies are allowed to move continuously in Rd so that the relative motion of
any two bodies connected by a hinge is a rotation around it and the framework
is called rigid if every motion provides a framework isometric to the original one.
We consider a body-hinge framework as a pair (G,p) of a multigraph G = (V,E)
and a mapping p from e ∈ E to a (d − 2)-dimensional affine subspace p(e) in
Rd. Namely, v ∈ V corresponds to a body and uv ∈ E corresponds to a hinge
p(uv) which joints the two bodies corresponding to u and v. Then, G is said
to be realized as a generic body-hinge framework (G,p) in Rd, and is called a
body-hinge graph.

Tay [10] and Whiteley [13] independently proved that the infinitesimal rigidity
of a generic body-hinge framework (G,p) is determined only by its underlying
graph G. Body-hinge framework is generic if its rigidity matrix has a maximum
rank on all subgraphs [15]. From basic algebraic geometry results this means

� Supported by JSPS Grant-in-Aid for Scientific Research(A)(25240004).

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 165–177, 2013.
c© Springer International Publishing Switzerland 2013

166 Y. Higashikawa et al.

(a) (b) (c)

Fig. 1. (a) Body-hinge, (b) panel-hinge and (c) body-bar frameworks

that ‘almost all’ body-hinge realizations of G are generic in Rd (see [13,14,16]
for details). For generic frameworks, rigidity is equivalent to infinitesimal rigidity
[8,14].

Let D =
(
d+1
2

)
and G̃ denotes the graph obtained from G by replacing each

edge by (D − 1) parallel edges.

Proposition 1. [10,13] A graph G can be realized as an infinitesimally rigid

body-hinge framework in Rd if and only if G̃ contains D edge-disjoint spanning
trees.

Katoh and Tanigawa [4] proved that the generic rigidity of minimally rigid
panel-hinge framework (Fig. 1(b)) is equivalent to that of body-hinge
frameworks.

A necessary and sufficient condition that a generic 2-dimensional framework
is rigid is given by Laman [5]. The corresponding graph is called a Laman graph.
It is known that Laman graphs are generated via Henneberg operations, and all
Laman graphs can be constructed by these operations [3,14]. Furthermore, by
using the matroid property, we can efficiently enumerate all Laman graphs by
the algorithm of [12]. On the other hand, it remains open to derive combinatorial
characterizations for 3-dimensional bar-joint frameworks [14].

However, for a special class of generic 3-dimensional bar-joint frameworks
such as generic body-bar and body-hinge frameworks, a combinatorial charac-
terization was developed by Tay and Whiteley [10,13]. A body-bar framework
(Fig. 1(c)) is a collection of rigid bodies connected by rigid bars with joints
which is represented by a body-bar graph where a rigid body corresponds to a
vertex and a bar corresponds to an edge. A graph (a minimally rigid body-bar
graph) corresponding to a minimally generically rigid body-bar framework in
d-dimension can be characterized as one that contains D edge-disjoint spanning
trees. D edge-disjoint spanning trees can be viewed as a union of six graphic
matroid, and thus we can easily develop a polynomial-time algorithm for enu-
merating all minimally rigid body-bar graphs by using the algorithm of [12].
Moreover, an inductive construction for all minimally rigid body-bar graphs in
d-space is known [2]. We investigate the combinatorial property of graphs G

such G̃ contains D edge-disjoint spanning trees. Such graphs are called body-
hinge rigid graphs. Similarly to a minimally body-bar graph, we can define a

An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs 167

minimally rigid body-hinge graph which corresponds to a minimally generically
rigid body-hinge framework. However, for minimally rigid body-hinge graphs,
inductive operations that create one with larger size from a smaller one are not
known. Notice that Katoh and Tanigawa [4] showed two operations (i.e., contrac-
tion of minimally rigid proper subgraph, and splitting-off operation at a vertex
of degree two) that create a minimally rigid body-hinge graph with a smaller
size when a minimally rigid body-hinge graph is given. However, this does not
directly imply that we can develop an algorithm for enumerating all minimally
rigid body-hinge graphs that runs in polynomial-time per output.

Our Results: We develop five operations that inductively construct minimally
rigid body-hinge simple graphs for d-dimension with d ≥ 3. More precisely, we
prove the following theorems.

Theorem 1. For any given minimally rigid body-hinge simple graph G, we ap-
ply at least one of five operations to G so that the resulting graph is also a
minimally rigid body-hinge simple graph. Also, every operation can be executed
in polynomial-time to apply operations.

Theorem 2. Any minimally rigid body-hinge simple graph can be constructed
by a sequence of operations of five types starting from the triangle graph.

In this paper, we focus on body-hinge simple graphs, because it is not in-
teresting to consider body-hinge multigraphs from the viewpoint of engineering
applications.

The rest of this paper is organized as follows. In Section 2, we introduce
necessary notations and facts that are needed to prove Theorems 1 and 2. In
Section 3, we introduce five operations, and give a proof of Theorem 1. In Section
4, we give a proof of Theorem 2.

2 Preliminaries

Let G = (V,E) be a multigraph which may contain parallel edges but no self-
loops. For X ⊆ V , let G[X] be the graph induced by X . For X ⊆ V , let
δG(X) = {uv ∈ E | u ∈ X, v �∈ X}. ForX = {v}, we shall omit set brackets when
describing singleton sets, e.g., δG(v) implies δG({v}). Throughout the paper,
a partition P of V is a collection {V1, V2, . . . , Vm} of vertex subsets for some
positive integer m such that Vi �= ∅ for 1 ≤ i ≤ m,Vi ∩ Vj = ∅ for any 1 ≤ i, j ≤
m, i �= j, and ∪m

i=1Vi = V . Let δG(P) denote the set of edges of G connecting

distinct subsets of P . Let Ẽ denote the edge set of G̃. Also, with ẽ denote the
set of corresponding D − 1 parallel copies of e in Ẽ. We index the edges of ẽ
by 1 ≤ i ≤ D − 1, and ei, or (e)i, denotes th ith element in ẽ. The following
Tutte-Nash-Williams disjoint tree theorem is well known [7,11].

Proposition 2 (Tutte, Nash-Williams). A multigraph G = (V,E) contains
k edge-disjoint spanning trees if and only if |δG(P)| ≥ k(|P| − 1) holds for every
partition P of V .

168 Y. Higashikawa et al.

baa

v

b

(b)(a)

Proper rigid subgraph

Fig. 2. (a) Contraction and (b) splitting off

Proposition 2 implies that a body-hinge graph can be realized as a rigid body-
hinge framework if and only if G̃ has D edge-disjoint spanning trees. Katoh and
Tanigawa [4] showed two operations which produce a minimally rigid body-hinge
graph of a smaller size from a minimally rigid body-hinge graph G = (V,E).

The first operation is the contraction of a proper rigid subgraph;G′ = (V ′, E′)
is called a proper rigid subgraph if it is a rigid subgraph of G satisfying 1 <
|V ′| < |V | (Fig. 2(a)). The second operation is a so-called splitting off operation
(Fig. 2(b)). For a vertex v of a graph G, we denote by NG(v) the set of vertices
adjacent to v in G. A splitting off is defined only at a vertex v of degree two. Let
NG(v) = {a, b}. We denote byGab

v the graph obtained fromG by removing v (and
the edges incident to v) and then inserting a new edge ab. So, the resulting graph
Gab

v is isomorphic to that obtained by contracting either va or vb. Note that it is
not straightforward to construct a polynomial-time algorithm for enumerating all
minimally rigid body-hinge graphs based on these two operations. The following
six lemmas are known [4].

Lemma 1. [4] Let G be a rigid body-hinge graph. Then, G is 2-edge-connected.

Lemma 2. [4] Let G = (V,E) be a minimally rigid body-hinge multigraph, and
let G′ = (V ′, E′) be a rigid subgraph of G. Then, the graph obtained from G by
contracting E′ is a minimally rigid body-hinge multigraph.

Lemma 3. [4] Let G = (V,E) be a multigraph which contains no proper rigid
subgraph. Then, the following holds.

(D − 1)|E| < D(|V | − 1) +D − 1. (1)

Lemma 4. [4] Let G = (V,E) be a minimally rigid body-hinge graph which
contains no proper rigid subgraph. Then, either G is a cycle graph of at most D
vertices or it contains a chain v0, v1, . . . , vd of length d such that vivi+1 ∈ E for
0 ≤ i ≤ d− 1 and |δG(vi)| = 2 for 1 ≤ i ≤ d− 1.

Lemma 5. [4] Let G = (V,E) be a minimally rigid body-hinge graph. Then, for
any vertex v of degree two with NG(v) = {a, b}, Gab

v is a rigid body-hinge graph.

Lemma 6. [4] Let G = (V,E) be a minimally rigid body-hinge graph that con-
tains no proper rigid subgraph. Then, for any vertex v of degree two with NG(v) =
{a, b}, Gab

v is a minimally rigid body-hinge graph.

An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs 169

3 Five Operations Which Inductively Construct
Minimally Rigid Body-Hinge Simple Graphs

Consider a minimally rigid body-hinge simple graph G = (V,E), where the
number of vertices is n with n ≥ 3. Notice that for n = 3, G is a triangle (a
simple cycle of length 3). We define five operations which construct a minimally
rigid body-hinge simple graph G′ = (V ′, E′) of a larger size.

G

ba

a

v

b

H

(1) Operation 1

G

H v
1

v
2

a

a

(4) Operation 4

ba

G

a

v

b

H

(3) Operation 3

ba

G

a

v

bx y

H

(2) Operation 2

v

G

H

a

b
c

(5) Operation 5

Fig. 3. Operations which inductively construct a minimally rigid body-hinge simple
graph

Operation 1 (edge-split): Choose an edge ab, insert a new vertex v on ab if the
resulting graph is rigid (Fig. 3(1)).

Operation 2 (edge-split plus 1-addition): There exists a partition of V denoted
by P such that (D − 1)|δG(P)| = D(|P| − 1). Let P = {V1, V2, . . . , Vm}. For an
edge ab ∈ δG(P), split ab to add a new vertex v. Find vertices x, y ∈ V such
that x ∈ Vi and y ∈ Vj with 1 ≤ i, j ≤ m, i �= j, and the graph H obtained from
G by adding an edge xy to E ∪ {va, vb}\{ab} is minimally rigid. Then add an
edge xy (Fig. 3(2)).

Operation 3 (vertex 2-addition): Add a new vertex v, choose two existing vertices
a and b, and add edges va, vb if the resulting graph is minimally rigid (Fig. 3(3)).

Operation 4 (triangle-addition): Choose an arbitrary vertex a, add two new
vertices v1 and v2 as well as edges v1a, v1v2, v2a (Fig. 3(4)).

Operation 5 (triangle-expansion): Choose an arbitrary vertex a. Suppose that a
has degree d. Let G′ be created from G by replacing vertex a with a triangle
v, b, c where b and c are connected to at least one neighbor of a, and v is
connected to b and c. Formally, let 2 ≤ d′ ≤ d, v1, . . . , vd be the neighbors of a
and G′ = (V ′, E′) with V ′ = V ∪{b, c}\a, E′ = E∪{vib : 1 ≤ i ≤ d′−1}∪{vic :
d′ ≤ i ≤ d}\{via : 1 ≤ i ≤ d}. We apply this operation only if the resulting
graph is minimally rigid (Fig. 3(5)).

3.1 Proof of Theorem 1

Let H = (V ′, E′) be the graph obtained by applying one of the five operations.

170 Y. Higashikawa et al.

b

ab

ab

k

6-k

a ba
G

v

v
˜

ba

G

ba

H

˜
vã vb̃H̃

(a) (b)

Fig. 4. Illustration of operation 1 for D = 6. (a) An example of a minimally rigid

body-hinge graph G and the graph G̃. (b) The graph H obtained by operation 1 and

the graph H̃.

b

T
6

T
5

T
5

ab
5

’ T
6
’

a ba
G

v
˜ H̃

(a) (b)

v

ba

G

ba

H

Fig. 5. Illustration of operation 2 for D = 6. (a) An example of a minimally rigid

body-hinge graph G and the graph G̃. (b) The graph H obtained by operation 2 and

the graph H̃.

(1) edge-split (Fig. 3(1))
First, We shall show that H is rigid. We denote by Tj (1 ≤ j ≤ D) D edge-

disjoint spanning trees of G̃. Let us show that we can construct edge-disjoint
spanning trees T ′

1, . . . , T
′
D of H̃ from each of T1, . . . , TD. From the assumption

of operation 1, let us assume that each Tj (1 ≤ j ≤ k) with k ≤ D − 2 uses an

edge abj while Tj (k + 1 ≤ j ≤ D) does not use any of ãb (See Fig. 4(a)). For
a spanning tree Tj (1 ≤ j ≤ k), let T ′

j = Tj \ {abj} ∪ {vaj , vbj} (Fig. 4(b)). For

each Tj (k + 1 ≤ j ≤ D), we create a spanning tree T ′
j by adding one of ṽa, ṽb,

so that T ′
j is a spanning tree. This is possible because 2(D − 1 − k) ≥ D − k.

Then it is clear that T ′
j (1 ≤ j ≤ D) are edge-disjoint spanning trees.

Next, suppose, for a contradiction, that H is not minimal, i.e., there exists a
redundant edge f in H . Therefore, H is rigid even if we remove f . f �= va or vb
since v is of degree two. Thus, f ∈ E holds. Since H\{f} is rigid, Hab

v \{f} is
also rigid by Lemma 5. Since Hab

v = G, this implies that G is redundantly rigid,
contradicting the minimal rigidity of G. So, H is a minimally rigid body-hinge
graph.

An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs 171

(2) edge-split plus 1-addition (Fig. 3(2))
First, we shall show that H is rigid. Notice that the graph obtained by splitting
the edge ab is no longer rigid since by (D − 1)|δG(P)| = D(|P| − 1), P ′ =
(V1, V2, . . . , Vm, Vm+1 (= {v})) does not satisfy the condition of Proposition 2.
We shall first show that there always exists an edge xy with x ∈ Vi and y ∈ Vj
with 1 ≤ i, j ≤ m, i �= j such that the graph H obtained from G by adding an
edge xy to E ∪ {va, vb}\ab is rigid. Such edge xy, if it exists, is called eligible.
To show this, it suffices to show that ab is eligible. For this, let Tj (1 ≤ j ≤ D)

be D edge-disjoint spanning trees in G̃ such that Tj (1 ≤ j ≤ D − 1) is a

spanning tree which uses edge abj , and TD is the one which does not use ãb
(Fig. 5(a)). For T1, . . . , TD, T ′

j = Tj ∪ {vaj, vbj}\{abj} for j = 1, 2, . . . , D − 2,
T ′
D−1 = TD−1 ∪ {vaD−1}, and T ′

D = TD ∪ {vbD−1} (Fig. 5(b)). Then T ′
1, . . . , T

′
D

are clearly edge-disjoint spanning trees in H̃ . Thus H is rigid. However, it may
not be minimal. Therefore, we apply this operation only if the resulting graph is
minimally rigid, which can be checked by applying the pebble game algorithm [6],
for instance.

(3) vertex 2-addition (Fig. 3(3))
We shall show that H is rigid. We shall show that we can construct D edge-
disjoint spanning trees T ′

j (1 ≤ j ≤ D) in H̃ from D edge-disjoint spanning trees

Tj (1 ≤ j ≤ D) of G̃ by adding a single edge vaj or vbj′ (Fig. 6(b)). Since the

number of edges ṽa ∪ ṽb is 2(D − 1), this is always possible. Then, the graph
H obtained by vertex 2-addition is also rigid. However, it may not be minimal.
Therefore, we apply this operation only if the resulting graph is minimally rigid.

(4) triangle-addition (Fig. 3(4))
Let us prove that H is a minimally rigid body-hinge graph. Since the graph G is
a minimally rigid body-hinge graph, there exist D edge-disjoint spanning trees
in G̃. Let F be a triangle graph where F is a minimally rigid body-hinge graph.
Then there exist D edge-disjoint spanning trees in F̃ . Since G and F share a
single vertex v, the union of a spanning tree of G̃ and that of F̃ is clearly a

ba ba
G

v
˜ H̃

v

ba

G

ba

H

Fig. 6. Illustration of operation 3 for D = 6. (a) An example of a minimally rigid

body-hinge graph G and the graph G̃ obtained from G. (b) The graph H obtained by

operation 3 and the graph H̃ obtained from H .

172 Y. Higashikawa et al.

spanning tree of H̃ . By the minimal rigidity of G and F , the minimality of H is
obvious. Therefore, H is a minimally rigid body-hinge graph.

(5) triangle-expansion (Fig. 3(5))
We shall show that H is rigid. Let F be a triangle graph. Notice that F is a min-
imally rigid body-hinge graph. Then there exist D edge-disjoint spanning trees
in F̃ . The union of a spanning tree of G̃ and that of F̃ is clearly a spanning tree
of H̃ . Then, the graph H obtained by triangle-expansion is also rigid. However,
it may not be minimal. Therefore, we apply this operation only if the resulting
graph is minimally rigid.

Finally we will show that all five operations can be executed in polynomial-
time. Notice that we can find P satisfying the condition of operation 2 in
polynomial-time (more precisely, O(n) applications of max-flow computation
[9]). Checking whether the graph obtained by adding an edge xy in applying
operation 2 is rigid or not can be done in O(n2) time by applying the pebble
game algorithm [6]. It is not difficult to see that the other four operations can
be done in polynomial-time. ��

4 Proof of Theorem 2

In this section, we prove Theorem 2. For this purpose, we first prove the following
three lemmas.

Lemma 7. Let G′ = (V ′, E′) be a minimally rigid body-hinge simple graph
which contains no proper rigid subgraph such that |V ′| ≥ 3. Then, the num-
ber of vertices of degree two is at least (D − 3)|V ′|/(D − 1) + 2/(D − 1).

Proof. By Lemma 3, we have the following:

(D − 1)|E′| < D(|V ′| − 1) + (D − 1). (2)

Let k denote the number of the vertices of degree two. Then, there exist
|V ′| − k vertices of degree more than two. This implies the following:

2k + 3(|V ′| − k) ≤ 2|E′|. (3)

By (2) and (3),

2(D − 1)k + 3(D − 1)(|V ′| − k) ≤ 2(D − 1)|E′| ≤ 2D(|V ′| − 1) + 2(D − 1).

As a result,

k ≥ (D − 3)|V ′|/(D − 1) + 2/(D − 1). ��

Lemma 8. Let G = (V,E) be a minimally rigid body-hinge multigraph. (a) G
does not contain more than two parallel edges. (b) Contraction of two parallel
edges into a single vertex never produces new parallel edges.

An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs 173

a b

v

Fig. 7. The case where two parallel edges are produced after the contraction of two
parallel edges

Proof. (a) Omitted. (b) After the contraction of parallel edges, the minimal
rigidity is preserved by Lemma 2. Suppose for a contradiction that new par-
allel edges are produced in the graph obtained by the contraction of parallel
edges. This implies that there exist parallel edges e and e′ between vertices
a and b ∈ V , and moreover vertices a and b have a common adjacent vertex v
(Fig. 7). Then the edge e is redundant, contradicting the minimality of G. There-
fore, new parallel edges are not produced due to the contraction of parallel edges.

��
The following lemma plays a key role in proving Theorem 2.

Lemma 9. There exists at least one vertex of degree two in a minimally rigid
body-hinge simple graph G = (V,E) with |V | ≥ 3.

Suppose, for a contradiction, that there exists a minimally rigid body-hinge
simple graph G such that the degree of each vertex is at least three. Let us
consider the following two cases.

Case 1. G does not have a proper rigid subgraph.

Since the degree of each vertex is at least three, we have

3|V | ≤ 2|E|. (4)

By Lemma 3 and (4), we have

3(D−1)|V |≤2(D−1)|E| ≤ 2D(|V |−1)+2(D−1). (5)

As a result, we have (D − 3)|V | ≤ −2, contradicting |V | ≥ 3.
The rest of the proof is omitted.

4.1 Proof of Theorem 2

The proof is by induction on the number of vertices in a minimally rigid body-
hinge simple graph. For the base case, a triangle graph is obviously a minimally
rigid body-hinge simple graph and thus satisfies the theorem. Suppose that any
minimally rigid body-hinge graph of n − 1 or less vertices for n ≥ 4 can be
constructed by a sequence of the five operations starting from the triangle graph.
Suppose we have a minimally rigid body-hinge graph G = (V,E) of n vertices.

174 Y. Higashikawa et al.

a

e

v
ab

v
abv

(a) (b) (c)

b a

e

b

G

P

G

a b

P ’P ’

G'(=G e)/

Fig. 8. The reverse direction of operation 2

Then, we prove that we can construct a minimally rigid body-hinge graph of
n− 1 or n− 2 vertices by applying one of the five operations on G in the reverse
direction. Let E1 and E2 be a partition of E such that E1 and E2 are both
nonempty. Let G[E1] and G[E2] be the subgraphs edge-induced by E1 and E2,
respectively. Suppose that G[E1] and G[E2] share a single vertex v, i.e., v is a
cut point, and G[E2] is a triangle. Then, G is obtained by applying operation 4
to G[E1]. Therefore, we assume that G does not have a partition into E1 and E2

such that G[E2] is a triangle. Furthermore, if G has a proper rigid subgraph of
the triangle graph and the degree of one of vertices of the triangle graph is two,
we apply operation 5 in the reverse direction. In this case, the resulting graph is
minimally rigid by Lemma 2. Therefore, in the subsequent discussion, we assume
that G does not have a triangle graph as its subgraph. In the following, we prove
that it is possible to apply at least one of operations 1, 2 and 3 in the reverse
direction. We divide the proof into two cases depending on whether G has a
proper rigid subgraph or not.

Case 1. G does not have a proper rigid subgraph.
By Lemma 9, there exists at least one vertex of degree two. In this case, by
Lemma 5, a minimally rigid body-hinge graph of n−1 vertices can be constructed
by the reverse direction of operation 1 (i.e., splitting off operation).

Case 2. G has a proper rigid subgraph.
There exists a vertex v of degree two by Lemma 9. Let us consider applying
operation 1 in the reverse direction at a vertex v. Notice that this operation is
in fact equivalent to a splitting off operation, In this case, the resulting graph is
rigid by Lemma 5. Thus, the resulting graph is denoted by Gab

v where a and b
are adjacent vertices of v. Notice that there does not exist an edge ab because
we assume that G does not have a triangle graph as its subgraph. Thus, Gab

v is a
simple graph. However, the minimality is not guaranteed. If the resulting graph
is minimally rigid, we can obtain a minimally rigid body-hinge graph of n − 1
vertices. So, suppose otherwise. If the edge ab is redundant, the graph obtained
by removing ab from Gab

v is rigid. The resulting graph is isomorphic to that
obtained by applying operation 3 in the reverse direction (vertex 2-addition).
Then, by the minimal rigidity of G, we remark that the graph obtained by
applying operation 3 in the reverse direction is always minimally rigid. Therefore,
if there exists a vertex v of degree two and the edge ab is redundant for Gab

v ,
the reverse direction of operation 3 for G produces a minimal rigid body-hinge
graph of n− 1 vertices.

An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs 175

Thus, consider the case where for Gab
v , ab is not redundant but there exists a

redundant edge e ∈ E \ {av, bv} (see Fig. 8). Let G′ = Gab
v \ {e}. Since G is a

minimally rigid body-hinge graph, and by Proposition 2,

(D − 1)|δG(P)| ≥ D(|P| − 1) (6)

holds for any partition P . By the minimal rigidity of G, if we remove edge e,
G\{e} is not rigid. Then, by Proposition 2, there exists a partition P satisfying
e ∈ δG(P) such that

(D − 1)|δG\{e}(P)| < D(|P| − 1) (7)

holds. Thus,
(D − 1)|δG(P)| < D|P| − 1 (8)

follows. Let P = {V1, V2, . . . , Vm} be such that v ∈ V1. Then, let us consider the
following cases depending on whether |V1| ≥ 2 or |V1| = 1.

Subcase 2A. |V1| ≥ 2. Let P ′ be the partition obtained by removing v from V1
in P . Then, we have

|P ′| = |P|, |δG′(P ′)| ≤ |δG(P)| − 1. (9)

By (9), we have

(D − 1)|δG′(P ′)| −D(|P ′| − 1) ≤ (D − 1)(|δG(P)| − 1) −D(|P| − 1)

= (D − 1)|δG(P)| −D|P| + 1 < 0. (10)

Because this fact contradicts the rigidity of G′, there does not exist such P .

Subcase 2B. |V1| = 1. Let P ′ = P \ {{v}}. (i) a and b belong to Vi for some
i �= 1. Then, we have

|P ′| = |P| − 1, |δG′(P ′)| = |δG(P)| − 3. (11)

Then,

(D − 1)|δG′(P ′)| −D(|P ′| − 1) = (D − 1)(|δG(P)| − 3) −D(|P| − 2)

= (D − 1)|δG(P)| −D|P| + 1 −D + 2 < 0. (12)

Since this fact contradicts the rigidity of G′, there does not exist such P .

(ii) a and b belong to Vi and Vj for some i �= j with i > 1, j > 1. Let P ′ = P \V1.
Then, we have

|P ′| = |P| − 1, |δG′(P ′)| = |δG(P)| − 2. (13)

Because Gab
v is rigid and edge e is redundant, G′ is also a rigid body-hinge

graph. Then, by Proposition 2, we have

(D − 1)|δG′(P ′)| ≥ D(|P ′| − 1). (14)

176 Y. Higashikawa et al.

By (13) and (14), we have

(D − 1)|δG(P)| ≥ D|P| − 2. (15)

By (8) and (15),

(D − 1)|δG(P)| = D|P| − 2 (16)

follows.
By (13) and (16), we have

(D − 1)(|δG′(P ′)| + 2) = D(|P ′| + 1) − 2

(D − 1)|δG′(P ′)| = D(|P ′| − 1). (17)

By (17), G′ is minimally rigid. Furthermore, notice that the equation (17) is
equivalent to the condition of operation 2. Hence, a minimally rigid body-hinge
graph of n−1 vertices can be constructed by applying operation 2 in the reverse
direction for a minimally rigid body-hinge graph G. Therefore, for any given
minimally rigid body-hinge simple graph G = (V,E) of n vertices, a minimally
rigid body-hinge graph G′ of n − 1 or n − 2 vertices can be constructed by
applying one of the five operations in the reverse direction. ��

As a result, it is possible to construct an algorithm for enumerating minimally
rigid body-hinge simple graphs by applying the reverse search [1]. The running
time is polynomial per output (O(n6) time). The details are omitted. Moreover
it is possible to define operations to generate all minimally rigid body-hinge
multigraphs. In this case, we need three operations instead of operations 4 and
5. The details are also omitted.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathe-
matics 65(1), 21–46 (1996)

2. Frank, A., Szego̧, L.: Constructive characterizations for packing and covering with
trees. Discrete Applied Mathematics 131(2), 347–371 (2003)

3. Henneberg, L.: Die graphische statik der starren system. Leipzig (1911)
4. Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. Discrete and Com-

putational Geometry 45, 647–700 (2011)
5. Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engi-

neering Mathematics 4(4), 331–340 (1970)
6. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Mathe-

matics 308(8), 1425–1437 (2008)
7. Nash-Williams, C.: Edge-disjoint spanning trees of finite graphs. Journal of the

London Mathematical Society 36, 445–450 (1961)
8. Roth, A.: The rigidity of graphs. AMS 245, 279–289 (1979)
9. Schrijver, A.: Combinatorial Optimization, vol. B, p. 881, Corollary 51.3b. Springer

(2003)
10. Tay, T.: Linking (n−2)-dimensional panels in n-space ii:(n−2, 2)-frameworks and

body and hinge structures. Graphs and Combinatorics 5(1), 245–273 (1989)

An Inductive Construction of Minimally Rigid Body-Hinge Simple Graphs 177

11. Tutte, W.T.: On the problem of decomposing a graph into n connected factors.
Journal of the London Mathematical Society 36, 221–230 (1961)

12. Uno, T.: A new approach for speeding up enumeration algorithms and its applica-
tion for matroid bases. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-I., Tokuyama,
T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 349–359. Springer, Heidelberg
(1999)

13. Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM Journal
on Discrete Mathematics 1(2), 237–255 (1988)

14. Whiteley, W.: Some matroids from discrete applied geometry. Contemporary Math-
ematics 197, 171–311 (1996)

15. Whiteley, W.: Rigidity of molecular structures: generic and geometric analysis. In:
Thorpe, M.F., Duxbury, P.M. (eds.) Rigidity Theory and Applications, pp. 21–46
(1999)

16. Whiteley, W.: Rigidity and scene analysis. In: Goodman, J., ORourke, J.
(eds.) Handbook of Discrete and Computational Geometry, 2nd edn. ch. 60,
pp. 1327–1354. Chapman Hall/CRC Press, Boca Raton, FL (2004)

On Complexities of Minus Domination

Luérbio Faria1, Wing-Kai Hon2, Ton Kloks, Hsiang-Hsuan Liu2,
Tao-Ming Wang3, and Yue-Li Wang4

1 Instituto de Matemática e Estat́ıstica
Universidade do Estado do Rio de Janeiro, Brazil

luerbio@cos.ufrj.br
2 Department of Computer Science

National Tsing Hua University, Taiwan
{wkhon,hhliu}@cs.nthu.edu.tw

3 Department of Applied Mathematics
Tunghai University, Taichung, Taiwan

wang@go.thu.edu.tw
4 Department of Information Management

National Taiwan University of Science and Technology
ylwang@cs.ntust.edu.tw

Abstract. A function f : V → {−1, 0, 1} is a minus-domination function of
a graph G = (V,E) if the values over the vertices in each closed neighbor-
hood sum to a positive number. The weight of f is the sum of f(x) over all
vertices x ∈ V. In the minus-domination problem, one tries to minimize the
weight of a minus-domination function. In this paper, we show that (1) the
minus-domination problem is fixed-parameter tractable for d-degenerate
graphs when parameterized by the size of the minus-dominating set and by
d, where the size of a minus domination is the number of vertices that are
assigned 1, (2) the minus-domination problem is polynomial for graphs of
bounded rankwidth and for strongly chordal graphs, (3) it is NP-complete
for splitgraphs, and (4) unless P = NP there is no fixed-parameter algo-
rithm for minus-domination.

1 Introduction

A fresh breeze seems to be blowing through the area of domination problems.
This research area is aroused anew by the recent fixed-parameter investigations
(see, e.g., [2,7,26,27]).

Let G = (V ,E) be a graph and let f : V → S be a function that assigns some
integer from S ⊆ Z to every vertex of G. For a subset W ⊆ V we write

f(W) =
∑

x∈W

f(x).

The function f is a domination function if for every vertex x, f(N[x]) > 0, where
N[x] = {x} ∪N(x) is the closed neighborhood of x. The weight of f is defined as
the value f(V).

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 178–189, 2013.
c© Springer International Publishing Switzerland 2013

On Complexities of Minus Domination 179

In this manner, the ordinary domination problem is described by a domination
function that assigns a value of {0, 1} to each element of V . A signed domination
function assigns a value of {−1, 1} to each vertex x. The minimal weight over all
dominating and signed dominating functions are denoted by γ(G) and γs(G),
respectively. In this paper we look at the minus-domination problem.

Definition 1. Let G = (V ,E) be a graph. A function f : V → {−1, 0, 1} is a minus-
domination function if f(N[x]) > 0 for every vertex x.

In the minus-domination problem one tries to minimize the weight of a minus-
domination function. The minimal weight over all minus-domination functions
is denoted as γ−(G). Notice that the weight may be negative. For example, con-
sider a K4 and add one new vertex for every edge, adjacent to the endpoints of
that edge. Assign a value 1 to every vertex of the K4 and assign a value −1 to
each of the six other vertices. This is a valid minus-domination function and its
weight is −2.

The problem to determine the value of γ−(G) is NP-complete, even when
restricted to bipartite graphs, chordal graphs and planar graphs with maxi-
mal degree four [3,5]. Sharp bounds for the minimum weight are obtained in,
e.g., [21].

Damaschke shows that, unless P = NP, the value of γ− cannot be approxi-
mated in polynomial time within a factor 1 + ε, for some ε > 0, not even for
graphs with maximum degree at most four [3, Theorem 7].

In this paper we settle the complexity of the minus-domination problem for
planar graphs, d-degenerate graphs, cographs, strongly chordal graphs and
splitgraphs.

2 Planar Graphs and d-Degenerate Graphs

In this section, we show that the minus-domination problem is fixed-parameter
tractable for planar graphs and d-degenerate graphs.

2.1 Planar Graphs

Determining the smallest weight over all minus-dominating functions is NP-
complete, even when restricted to planar graphs [5].

Let G = (V ,E) be a graph and let f : V → S be a domination function.
Following Zheng et al. [26], we define the size of f as the number of vertices
x ∈ V with f(x) > 0. We denote the size of a minus-dominating function f as
size(f).

Consider signed-domination functions of size at most k. It is easy to see that
|V(G)| = O(k2) (see [26]). It follows that the signed domination problem pa-
rameterized by the size is fixed-parameter tractable. This is not so clear for the
minus domination problem. For example, consider a star and assign to the center
a value of 1 and to every leaf a value of zero. This is a valid minus-domination
function with size 1 but the number of vertices is unbounded.

180 L. Faria et al.

Theorem 1. For planar graphs the minus-domination problem, parameterized by
the size, is fixed-parameter tractable.

Proof. Let f : V → {−1, 0, 1} be a minus-domination function. Let

D = { x | x ∈ V and f(x) = 1 }.

Then D is a dominating set in G. It follows that, for all graphs G,

γ−(G) � γ(G) � min { size(f) | f is a minus-dominating function }.

The first subexponential fixed-parameter algorithm for domination in planar
graphs appeared in [1]. In [1], the authors prove that, if G is a planar graph
with γ(G) � k, then the treewidth of G is O(

√
k). Using a tree decomposition

of bounded treewidth one can solve the domination problem in O(215.13
√
k · k+

n3 +k4) time (or conclude that γ(G) > k). The results were generalized to some
nonplanar classes of graphs by Demaine et al. [4].

The minus-domination problem with size bounded by k can be formulated in
monadic second-order logic. By Courcelle’s theorem, any such problem can be
solved in linear time on graphs of bounded treewidth (see, e.g., [13,15]). This
proves the theorem. ��

2.2 d-Degenerate Graphs

Definition 2. A graph is d-degenerate if each of its induced subgraphs has a vertex
of degree at most d.

Graphs with bounded degeneracy contain, e.g., graphs that are embeddable
on some fixed surface, families of graphs that exclude some minor, graphs of
bounded treewidth, etc. [24].

In this subsection we show that, for each fixed d, the minus domination prob-
lem, parameterized by the size, is fixed-parameter tractable for d-degenerate
graphs.

In the minus domination problem one searches for a partition of the vertices
into three parts, say red, white and blue. The red vertices are assigned −1, white
are 1 and blue are 0. Notice that, when considering a partition of the vertices,
we allow that some parts of the partition are empty. Zheng et al. proved a lemma
similar to the one below for the signed domination problem in [27, Theorem 2]
and [26, Lemma 6].

Lemma 1. Assume that G = (V ,E) has a minus-dominating function with size at
most k. Let R, W and B be the coloring of the vertices into red, white and blue,
defined by this minus-domination function. Then

|W ∪ R| = O(k2).

On Complexities of Minus Domination 181

Proof. By assumption, the minus-domination function colors at most k vertices
white. Consider the subgraph G′ induced by the red and white vertices. Consider
a vertex x of G′. Then at least half of its neighbors are colored white, otherwise
its closed neighborhood has weight at most zero. Since there are at most k white
vertices, each vertex of G′ has degree less than 2k.

Notice also that each red vertex has at least two white neighbors. Since there
are only k white vertices, and each white vertex has degree less than 2k, the
number of red vertices is less than 2k2. This proves the lemma. ��

For algorithmic purposes one usually considers the following generalization of
the domination problem. Consider graphs in which each vertex is either colored
black or white. In the parameterized black-and-white domination problem the
objective is to find a set D of at most k vertices such that

for each black vertex x, N[x] ∩D �= ∅.

Obviously, the domination problem is a special case, in which each vertex is
black.

For the minus-domination problem we describe an algorithm for a black-and-
white version, where the vertices with a 0 or −1 are black and such that each
closed neighborhood of a black vertex has a positive weight. To see that this
solves the minus-domination problem, just consider the case where all vertices
are black.

Alon and Gutner prove, in their seminal paper, that the domination problem
is fixed-parameter tractable for d-degenerate graphs [2]. The main ingredient of
their paper is the following lemma.

Lemma 2. Let G = (V ,E) be a d-degenerate black-and-white colored graph. Let B
and W be the set of black and white vertices. If |B| > (4d + 2)k then the set

Ω =

{
x | x ∈ V and |N[x] ∩ B| � |B|

k

}
satisfies |Ω| � (4d + 2)k.

To prove that the minus-domination problem, parameterized by the size, is
fixed-parameter tractable for d-degenerate graphs, we adapt the proof of [2,
Theorem 1].

Theorem 2. For each d and k, there exists a linear algorithm for finding a minus-
domination of size at most k in a d-degenerate black-and-white graph, if such a set
exists.

Proof. Let B and W be the set of black and white vertices. First assume that
|B| � (4d + 2)k. If there is a minus-domination function of size at most k then
there are k vertices (assigned 1) that dominate all vertices in B.

The algorithm tries all possible subsets R ⊆ B for the set of red vertices (those
are assigned −1). Number the closed neighborhoods of the vertices in R∪B, say

N1, . . . ,Nt,

182 L. Faria et al.

where t = |B ∪ R| � (4d + 2)k. Define an equivalence relation on the vertices
of V \ R by making two vertices equivalent if they are contained in exactly the
same subsets Ni. For each equivalence class that contains more than k vertices
which are not red, remove all of them except at most k vertices. This kerneliza-
tion reduces the graph to an instance H with at most g(k,d) vertices, for some
function g.

Consider all subsets of V(H) with at most k vertices of which none is red. Give
these vertices the value 1 and the remaining vertices that are not red the value
0. Check if this is a valid minus-domination.

Now assume that |B| > (4d+ 2)k. Then, by Lemma 2, |Ω| � (4d+ 2)k. Notice
that at least one vertex of Ω is assigned 1 in any minus-domination function of
size k. In that case the algorithm grows a search tree of size at most (4d+2)k ·k!
before it arrives at the previous case (see [2]). ��

3 Cographs

A minus domination with bounded size can be formulated in monadic second-
order logic without quantification over subsets of edges. It follows that there is
a linear-time algorithm to solve the problem for graphs of bounded treewidth
or rankwidth (or cliquewidth) [17]. It is less obvious that γ− is computable for
bounded rankwidth when there is no restriction on the size. In this section we
adapt a method of Yeh and Chang [25] to show this.

It is well-known that the graphs of rankwidth one are the distance-hereditary
graphs. We first analyze the complexity of the minus-domination problem for
the class of cographs. Cographs form a proper subclass of the class of distance-
hereditary graphs.

We denote a path with four vertices by P4.

Definition 3. A cograph is a graph without induced P4.

Cographs are characterized by the property that each induced subgraph with
at least two vertices is either a join or a union of two smaller cographs. It follows
that cographs admit a decomposition tree (T , f) where T is a rooted binary tree
and where f is a bijection from the vertices of G to the leaves of T . Each internal
node is labeled as ⊗ or ⊕. When the label is ⊗ then all vertices of the left subtree
are adjacent to all vertices of the right subtree. A node that is labeled as ⊗ is
called a join-node. When the label is ⊕ there is no edge between vertices of the
right and left subtree. A node that is labeled as ⊕ is called a union-node. One
refers to a decomposition tree of this type as a cotree. A cotree for a cograph can
be obtained in linear time.

Theorem 3. There exists a polynomial algorithm that computes γ− for cographs.

On Complexities of Minus Domination 183

Proof. Let G = (V ,E) be a cograph. We assume that a cotree for G is part of
the input. Consider a subtree T ′ and let W ⊆ V be the set of vertices that are
mapped to the leaves in T ′.

For three numbers (a,b, c), an (a,b, c)-function is a function f : W → {−1, 0, 1}
such that f assigns a vertices the value −1, b vertices the value 0 and c vertices
the value 1. Obviously, we have that a+ b+ c = |W|.

For an integer t, let

ζ(t,a,b, c) = max | { x | x ∈ W and f(N[x] ∩W) + t > 0 and

where f is an (a,b, c)-function } |.

When the set is empty we let ζ(t,a,b, c) = −∞.

Notice that a minus-domination function with minimum weight can be com-
puted when ζ is known for the root node, that is, when W = V . Namely,

γ−(G) = min { −a+ c | a+ b + c = n and ζ(0,a,b, c) = n }.

We show how the values ζ(t,a,b, c) can be computed. Assume that G is the
union of two cographs G1 = (V1,E1) and G2 = (V2,E2). We denote the ζ-values
for G1 and G2 by ζ1 and ζ2. Then

ζ(t,a,b, c) = max { ζ1(t,a1,b1, c1) + ζ2(t,a2,b2, c2)

where a1 + a2 = a b1 + b2 = b c1 + c2 = c }.

Now assume that G is the join of G1 and G2. Then

ζ(t,a,b, c) = max { ζ1(t− c2 + a2,a1,b1, c1) + ζ2(t− c1 + a1,a2,b2, c2)

where a1 + a2 = a b1 + b2 = b c1 + c2 = c }.

This proves the theorem. ��
Remark 1. Notice that complete multipartite graphs are cographs. Formulas for
the signed and minus domination number of complete multipartite graphs ap-
pear in a recent paper by Liang [19].

3.1 Distance-Hereditary Graphs

Definition 4. A graph G is distance hereditary if for every pair of nonadjacent
vertices x and y and for every connected induced subgraph H of G which contains
x and y, the distance between x and y in H is the same as the distance between x

and y in G.

184 L. Faria et al.

Distance-hereditary graphs are the graphs of rankwidth one (see, e.g., [15]).
They were introduced in 1977 by Howorka [12] as those graphs in which, for
every pair of nonadjacent vertices, all the chordless paths between them have
the same length. They have a decomposition tree (T , f) where T is a rooted
binary tree and f is a bijection from the vertices to the leaves of T . For each
branch, the ‘twinset’ of that branch is defined as those vertices in the leaves that
have neighbors in leaves outside that branch. Each twinset induces a cograph.
Each internal node of T is labeled as ⊕ or ⊗. When the label is ⊗ then all the
vertices in the twinset of the left branch are adjacent to all the vertices in the
twinset of the right branch. When the label is ⊕ there are no edges between
vertices mapped to different branches. The twinset of a parent is either empty,
or the twinset of one of the two children or the union of the twinsets at the two
children.

Theorem 4. There exists a polynomial algorithm that computes γ− for distance-
hereditary graphs.

Proof. See ArXiv1307.6663.
��

Remark 2. It is not hard to see that similar results can be derived for graphs
of bounded rankwidth, that is, γ− is computable in polynomial time for graphs
of bounded rankwidth (see, e.g., [15]). The rankwidth appears as a function
in the exponent of n. Graphs of bounded treewidth are contained in the class
of bounded rankwidth and so a similar statement holds for graphs of bounded
treewidth. At the moment we do not believe that there is a fixed-parameter
algorithm, parameterized by treewidth or rankwidth, to compute γ−. The results
of [27, Section 4.2] seem wrong.1

4 Strongly Chordal Graphs

The minus domination problem is NP-complete for chordal graphs. In this section
we show that the problem can be solved in polynomial time for strongly chordal
graphs.

A graph is chordal if it has no induced cycle of length more than three. A chord
in a cycle is an edge that runs between two vertices that are not consecutive in
the cycle. Let C = [x1, . . . , x2k] be an even cycle of length 2k. A chord {xi, xj} in
C is odd if the distance in C between xi and xj is odd.

Definition 5. A chordal graph G is strongly chordal if each cycle in G of even
length at least 6 has an odd chord.

There are many characterizations of strongly chordal graphs [6,14]. Perhaps
the best known examples of strongly chordal graphs are the interval graphs.

1 We communicated with the authors of [27] and our ideas about it are now in
agreement.

On Complexities of Minus Domination 185

In strongly chordal graphs the domination number is equal to the 2-packing
number (see, e.g., [23, Theorem 7.4.4]). It follows that the domination number
for strongly chordal graphs is polynomial [6].

Theorem 5. The minus domination problem for strongly chordal graphs can be
solved in O(min {n2,m logn}) time. Here n is the number of vertices and m is the
number of edges of the graph.

Proof. Farber [6] describes a linear programming formulation for the domina-
tion problem. In this linear programming formulation we can change the vari-
ables from xi to zi = xi + 1. This changes the constraints −1 � xi � 1 into
0 � zi � 2. The linear program becomes

Minimize
n∑

i=1

zi

subject to
∑

i∈N[k]

zi � bk for each k

and 0 � zi � 2 for each i.

In our case, the variable bk is equal to |N[k]|+ 1.

The closed neighborhood matrix of a strongly chordal graph is totally balanced.
By [9,11,16] (see also, e.g., [23, Theorem A.3.4]) the integer program and its
linear relaxation have the same value.

To deal with the constraint zi � 2 we write the LP as

Minimize jT · z

subject to
(
A

−I

)
z �

(
b

−2 · j

)
and z � 0.

Here, the matrix A is the closed neigborhood matrix, and the vector b is equal
to

b = j +Aj.

The dual of this LP is

Maximize bT · y1 − 2jT · y2

subject to Ay1 � j + y2 and y1 � 0 and y2 � 0.

Notice that
y2,k = max { 0, −1 +

∑

i∈N[k]

yi } for all k.

The linear program and its dual can be solved via Farber’s method in linear time,
when a strong elimination ordering of the graph is part of the input. We omit
the details; see also remark 4 below. ��

186 L. Faria et al.

Remark 3. When G is strongly chordal then so is G2 [20]. A simple vertex of G
is simplicial in G2. The weighted 2-packing problem in G asks for the maximal
weight independent set in G2. This can be solved in linear time [8]. It uses the
fact that in any chordal graph, with integer weights on the vertices, the maximal
weight over all independent sets equals the minimal number of cliques that have
the property that every vertex is covered at least as many times by cliques as its
weight.

Corollary 1. There exists a linear-time algorithm that solves minus domination on
interval graphs.

Remark 4. After the publication of our draft on arXiv, one of the authors of
their paper, quoted in the footnote, drew our attention to their result. The au-
thors claim a linear algorithm for minus domination on strongly chordal graphs.
(Here, they assume that a strong elimination ordering is a part of the input). 2

5 Splitgraphs

In this section we show that the minus-domination problem is NP-complete for
splitgraphs. We reduce the (3, 2)-hitting set problem to the minus-domination
problem. The (3, 2)-hitting set problem is defined as follows (see, e.g., [22]).

Instance: Let C be a collection of sets, each containing exactly three elements
from a universe U.

Question: Find a smallest set U′ ⊆ U such that for each C ∈ C,

|C ∩U′| � 2.

Lemma 3. The (3, 2)-hitting set is NP-complete.

Proof. The reduction is from vertex cover, i.e., (2, 1)-hitting set. The (2, 1)-hitting
set is defined similar as above, except that in this case every subset has two
elements and the problem is to find a subset U′ which hits every subset at least
once.

Consider an instance of (2, 1)-hitting set. Let C be the collection of 2-element
subsets of a universe U. Add four vertices to the universe, say α, β, γ and δ.
Add α to every subset of C and add two subsets, {α,β,γ} and {α,β, δ}. We claim
that any solution of this (3, 2)-hitting set problem has α in the hitting set. If not,
then {β,γ, δ} is a subset of the (3, 2)-hitting set. In that case we may replace the
elements β, γ and δ with α and β. Then we obtain a (3, 2)-hitting set with fewer
elements.

Thus, we may assume that α is in the (3, 2)-hitting set. But now the problem
is equivalent to the (2, 1)-hitting set, since every adapted subset contains α. ��
Theorem 6. The minus-domination problem is NP-complete for splitgraphs.

Proof. See ArXiv1307.6663.
��

2 C. Lee and M. Chang, Variations of Y-dominating functions on graphs, Discrete Math-
ematics 308 (2008), pp. 4185–4204.

On Complexities of Minus Domination 187

5.1 Minus Domination Is Not FPT

Consider the following problem.

Instance: A graph G.
Question: Does G have a minus domination of weight at most 0?

Following Hattingh et al. [10], we call this ‘the zero minus-domination problem.’
Consider the graph L in Figure 1.

�

�

�

�

�

����

�� ���

��

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

����

�� ���

��

�
�

�

�
�
�

�
�

�

�
�
�

� � ��
�

�
��

	
	
	
		

−1

1

−1

−1

1

1
−1

1

−1

1

−1

1

−1
1

−1

Fig. 1. The graph L. It has γ−(L) = −1

Lemma 4. The graph L has minus-domination weight γ−(L) = −1. The minus-
domination function that achieves this weight is unique; it is the one depicted in
Figure 1.

Theorem 7. The zero minus-domination problem is NP-complete.

Proof. Let H be a graph and let G be the union of H and k disjoint copies of L.
Obviously

γ−(G) = γ−(H) + k · γ−(L) = γ−(H) − k.

It follows that γ−(G) � 0 if and only if γ−(H) � k. By Theorem 6, given a graph
H and a positive k it is NP-complete to decide whether γ−(H) � k. ��
Theorem 8. The minus-domination problem is para-NP-complete unless P = NP.

Proof. Assume there exists an algorithm which runs in time O(f(k) · nc) and
that determines whether a graph G has a minus domination of weight at most
k. Then the zero minus-domination problem would be solvable in polynomial
time. ��

References

1. Alber, J., Bodlaender, H., Fernau, H., Kloks, T., Niedermeier, R.: Fixed-parameter al-
gorithms for dominating set and related problems on planar graphs. Algorithmica 33,
461–493 (2002)

188 L. Faria et al.

2. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size
in degenerated graphs. Algorithmica 54, 544–556 (2009)

3. Damaschke, P.: Minus domination in small-degree graphs. Discrete Applied Mathe-
matics 108, 53–64 (2001)

4. Demaine, E., Formin, F., Hajiaghayi, M., Thilikos, D.: Fixed-parameter algorithms for
(k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms 1,
33–47 (2005)

5. Dunbar, J., Goddard, W., Hedetniemi, S., Henning, M., McRae, A.: The algorithmic
complexity of minus domination in graphs. Discrete Applied Mathematics 68, 73–84
(1996)

6. Farber, M.: Domination, independent domination, and duality in strongly chordal
graphs. Discrete Applied Mathematics 7, 115–130 (1984)

7. Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.: Linear kernels for (con-
nected) dominating set on graphs with excluded topological subgraphs. In: Proceed-
ings STACS 2013, Schloss Dagstuhl-Leibniz-Zentrum für Informatik. LPIcs, vol. 20,
pp. 92–103 (2013)

8. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In: Nash-
Williams, C., Sheehan, J. (eds.) Proceedings 5th British Combinatorial Conference
1975. Congressus Numeratium XV, pp. 211–226 (1975)

9. Fulkerson, D., Hoffman, A., Oppenheim, R.: On balanced matrices. Mathematical
Programming Study 1, 120–132 (1974)

10. Hattingh, J., Henning, M., Slater, P.: The algorithmic complexity of signed domina-
tion in graphs. Australasian Journal of Combinatorics 12, 101–112 (1995)

11. Hoffman, A., Kolen, A., Sakarovitch, M.: Totally-balanced and greedy matrices. SIAM
Journal on Algebraic and Discrete Methods 6, 721–730 (1985)

12. Howorka, E.: A characterization of distance-hereditary graphs. The Quarterly Journal
of Mathematics 28, 417–420 (1977)

13. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
14. Kloks, T., Liu, C., Poon, S.: Feedback vertex set on chordal bipartite graphs.

Manuscript on arXiv: 1104.3915 (2012)
15. Kloks, T., Wang, Y.: Advances in graph algorithms (2013) (manuscript)
16. Kolen, A.: Location problems on trees and in the rectilinear plane, PhD Thesis, Math-

ematisch centrum, Amsterdam (1982)
17. Langer, A., Rossmanith, P., Sikdar, S.: Linear-time algorithms for graphs of bounded

rankwidth: A fresh look using game theory. In: Ogihara, M., Tarui, J. (eds.) TAMC
2011. LNCS, vol. 6648, pp. 505–516. Springer, Heidelberg (2011)

18. Lee, C., Chang, M.: Variations of Y-dominating functions on graphs. Discrete Mathe-
matics 308, 4185–4204 (2008)

19. Liang, H.: Signed and minus domination in complete multipartite graphs. Manuscript
on arXiv: 1205.0343 (2012)

20. Lubiw, A.: Γ -Free matrices, Master’s Thesis, University of Waterloo, Canada (1982)
21. Matoušek, J.: Lower bound on the minus-domination number. Discrete Mathemat-

ics 233, 361–370 (2001)
22. Mellor, A., Prieto, E., Mathieson, L., Moscato, P.: A kernelisation approach for multi-

ple d-hitting set and its application in optimal multi-drug therapeutic combinations.
PLoS One 5, e13055 (2010)

23. Scheinerman, E., Ullman, D.: Fractional graph theory. Wiley (1997)
24. Thomason, A.: The extremal function for complete minors. Journal of Combinatorial

Theory, Series B 81, 318–338 (2001)

On Complexities of Minus Domination 189

25. Yeh, H., Chang, G.: Algorithmic aspects of majority domination. Taiwanese Journal
of Mathematics 1, 343–350 (1997)

26. Zheng, Y., Wang, J., Feng, Q.: Kernelization and lowerbounds of the signed dom-
ination problem. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS,
vol. 7924, pp. 261–271. Springer, Heidelberg (2013)

27. Zheng, Y., Wang, J., Feng, Q., Chen, J.: FPT results for signed domination. In:
Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 572–583.
Springer, Heidelberg (2012)

A Linear-Time Algorithm for Reconciliation

of Non-binary Gene Tree and Binary Species Tree

Yu Zheng1, Taoyang Wu2, and Louxin Zhang1

1 Department of Mathematics, National University of Singapore, Singapore 119076
{matzhyu,matzlx}@nus.edu.sg

2 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ U.K.
taoyang.wu@uea.ac.uk

Abstract. Tree reconciliation approach to inferring the duplication his-
tory for a gene family poses challenging problems when input gene and
species trees are non-binary. We present the first linear-time algorithm
that outputs a reconciliation of a non-binary gene tree and a binary
species tree that minimizes the gene loss cost under the constraint of
having the smallest gene duplication cost. As a part of a method for
reconciling two non-binary trees, this algorithm has been implemented
in a software package (http://phylotoo.appspot.com).

1 Introduction

Millions of genes in current species belong to only thousands of gene families.
A gene family includes the instances of the same gene in different species and
duplicate genes in the same species. Two genes found from different species are
orthologous if they arose by speciation in the most recent common ancestor of
the species [9]. Since orthologous genes tend to retain similar biological functions,
they are often used to infer the pattern of gene gain and loss, the mode of signal-
ing pathway evolution, and the relationship between genotype and phenotype.
Therefore, ortholog identification is often the first task of a genome study.

Genes are gained through duplication and horizontal gene transfer, and get
lost via deletion and pseudogenization in evolution. Identifying orthologs is es-
sentially to find out how a gene family has evolved. A key method for this
problem is to use an explicit model of the evolutionary history of a gene family,
in the form of gene tree. It compares the gene tree and the evolutionary history
of the species where the genes are found – the species tree – using a procedure
known as tree reconciliation [14]. Species tree reconciliation formalizes the fol-
lowing intuition: If the offspring of a binary gene tree node is distributed in the
same set of species as that of one of its child nodes, then the node corresponds
to a duplication event [10,19]. The tree reconciliation approach is less prone to
error than a sequence-match-based method, particularly in the situation when
gene loss events are not rare [14].

Standard reconciliation between a binary gene tree and a binary species tree is
linear-time computable [6,22]. However, tree reconciliation presents challenging

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 190–201, 2013.
c© Springer International Publishing Switzerland 2013

Reconciliation of Non-binary Gene Tree and Binary Species Tree 191

problems when either the input gene tree or the input species tree is not binary
[7,21]. Non-binary gene tree nodes are called soft polytomies because the true
pattern of gene divergence is binary [12], but there is not enough signal in the
data to time the true diverging events. On top of ambiguity in gene tree, there
are also uncertainties in a species tree. The NCBI taxonomy database and other
reference species trees are often non-binary due to unsolved species diverging
order [13]. Notung, the best packages for tree reconciliation, requests that one
of the two reconciled trees has to be binary [7,21].

Here, we focus on the reconciliation of a non-binary gene tree and a binary
species tree. Quadratic algorithms are known for this problem [4,7]. It was also
independently studied for arbitrary species trees in [3], where the optimality
criterion used is inferring the smallest set of gene duplication events that poses
the least gene loss events. Such an optimality criterion is used since a gene lose
event is often attributed to an absence in the species when many species have
sparse sampling of genes [3]. Unfortunately, the heuristic method proposed in
the work might stop before an optimal solution is found. Hence, in general, it
overestimates the number of loss events.

In the present paper, we present the first linear-time algorithm that outputs
a reconciliation that minimizes the gene loss cost under the constraint of having
the smallest gene duplication cost. Most importantly, it is a natural extension
of the standard reconciliation procedure from binary to non-binary gene trees.

2 Tree Reconciliation Problem

2.1 Gene Trees and Species Trees

Both gene and species trees are rooted trees in which only the “root” node is
of degree two and all the other nodes have degree 1 or at least 3. Both gene
and species trees are also leaf–labeled. A species tree represents the evolutionary
history of a set of modern species. In a species tree, a leaf is labeled by a unique
modern species, whereas each internal node naturally corresponds to a unique
subset of modern species.

A gene tree represents the evolutionary relationship of the members of a gene
family, in which a leaf represents a unique gene. A gene family having multiple
members found in a species is often a product of a series of gene duplication
events. Since the gene tree of a gene family does not represent its explicit dupli-
cation history, one has to reconcile it and the corresponding species tree to infer
the duplication history of the gene family.

In the study of tree reconciliation, a gene tree leaf is labeled with the species
in which the corresponding gene is found. Clearly, the gene tree of a gene fam-
ily is not uniquely leaf labeled if multiple gene members are found in the same
modern species. Since a gene duplication event might be inferred above the root
of a species tree, we draw a branch entering its root (see Fig. 1 for example).
For a gene or species tree T , we use r(T) to denote its root; we use V (T), Lf(T),

192 Y. Zheng, T. Wu, and L. Zhang

◦
V (T), and E(T) to denote the sets of nodes, leaves, internal (or non-leaf) nodes

and all the branches of T , respectively. Clearly, V (T) = Lf(T) ∪
◦
V (T).

For any u ∈ V (T), all the nodes in the path from r(T) to u are the ancestors
of u. If w is an ancestor of u, we also call u a descendant of w. The induced
subtree of T on all the descendants of u is written T (u). We use L(u) to denote
the set of the labels of the leaves of T (u).

We say w is the parent of v or v is a child of w if w is an ancestor of v and
a branch connects w and v. The parent of v is denoted by p(v). A tree node is
binary if it has exactly two children; it is non-binary otherwise. A tree is binary
if all its internal nodes are binary (Fig. 1A) and non-binary otherwise.

Finally, for each u ∈ Lf(T), we use lT (u) to denote the label of u. In addition,
l−1
T (c) denotes the unique leaf having label c if T is a species tree.

2.2 Tree Reconciliation

Consider a binary species tree S and a binary gene tree G such that L(rG) =
L(rS). A reconciliation f between G and S is a map from V (G) to V (S) having
the following properties:

(i) (Leaf-preservation) For each x ∈ Lf(G), f(x) ∈ Lf(S), having the
same label as x.
(ii) (Order-preservation) For g, g′ ∈ V (G) such that g′ is a descendant
of g, then, either f(g′) = f(g) or f(g′) is a descendant of f(g).

For a subset X ⊆ V (S), we use lca(X) to denote the unique node y that
satisfies the following two properties: (i) y is a common ancestor of nodes of X ,
that is, an ancestor of every node of X ; (ii) no child of y is a common ancestor
of the nodes of X . This lca(X) is called the most recent common ancestor of the
nodes in X in S. Clearly, the map λ defined by:

λ(u) =

{
l−1
S (lG(u)), u ∈ Lf(G),

lca ({λ(v)|p(v) = u}) , u ∈
◦
V (G)

(1)

is a reconciliation between G and S. Note that λ is the minimum one in the
sense that, for any reconciliation f between G and S, λ(u) = f(u) or λ(u) is a
descendant of f(u) for every u ∈ V (G). Hence, λ is called the lca reconciliation
between G and S [10].

A u ∈
◦
V (G) is a duplication node if λ(u) = λ(v) for some child v of u.

The number of inferred duplications is defined as the duplication cost of the
reconciliation of G and S, denoted by D(G,S) [19]. A hypothetical evolutionary
history of the gene family will be obtained if, for each duplication node in G, a
duplication is assumed to occur in the branch entering to λ(u) in S.

The resulting evolutionary history of the gene family may contain gene loss
events in general. For example, for a non-root v ∈ V (G), if λ(p(v)) �= λ(v), we
have to assume the corresponding ancestral gene copy had lost in each species

Reconciliation of Non-binary Gene Tree and Binary Species Tree 193

represented by a branch off the lineage path from λ(p(v)) to λ(v). Overall, we
have to assume

l(G,S) =
∑

u∈
◦
V (G)

∑
v:p(v)=u

[n(u, v) + d(u)− 2]

gene losses, where d(u) = 1 if u is a duplication node under λ and 0 otherwise,
and n(u, v) denotes the number of nodes in the path between u and v inclusively.
The l(G,S) is called the gene loss cost of the λ between G and S. For example,
D(G′, S) = 4, D(G′′, S) = 3, and l(G′, S) = l(G′′, S) = 7 for G′, G′′ and S given
in Fig. 1.

The weighted linear combination of the gene duplication and loss costs (called
the affine reconciliation cost here) is also used to study gene and species tree
reconciliation.

a b c d e f h

A
v3

v2
v1 v4

v5
v6

 a b a a c d e d e f h a h a b a d e a h d e f h a c

C B

Fig. 1. An illustration of binary tree reconciliation. A. A binary species tree S of 7
species a, b, c, d, e, f, h. B. A binary gene tree G′ of a gene family over the species.
The reconciliation between G′ and S produces an evolutionary history of 4 duplication
(indicated by square) and 7 gene loss events (not shown). C. Another gene tree G′′ over
the same gene family. The reconciliation between G′′ and S produces an evolutionary
history of 3 duplication and 7 gene loss events, shown in Fig. 3.

2.3 Reconciliation of Two Non-binary Trees

In graph theory, an edge contraction is an operation that removes an edge from
a graph while simultaneously merging the two nodes previously connected by
the edge. Given two rooted trees T and T ′, T ′ refines T if T can be obtained
from T ′ via a series of edge contractions. Clearly, we can map each v ∈ V (T) to
a unique node v′ ∈ V (T ′) such that LT (v) = LT ′(v′). Moreover, if T ′ is a binary
tree, T ′ is called a binary refinement of T . We use BR(T) to denote the set of
all binary refinements of T .

We shall study non-binary tree reconciliation in the binary refinement model
[8]. The reconciliation problem is formally defined as a discrete optimization
problem:

General Reconciliation (GR)
Input: A species tree S, a set of gene trees Gi (1 ≤ i ≤ k) and a reconciliation
cost c(,).
Output: A Ŝ ∈ BR(S) and Ĝi ∈ BR(Gi) for every i such that

∑
1≤i≤k c(Ĝi, Ŝ)

is minimized.

194 Y. Zheng, T. Wu, and L. Zhang

When the input species and gene trees are binary, the solution is the lca
reconciliation defined earlier for the duplication, loss, or affine reconciliation
cost [5,11] and hence linear-time computable [6,22].

A star tree is a rooted tree in which the all the leaves are the children of the
root. Clearly, every binary tree is a binary refinement of the star tree over the
same set of species. When the input species tree S is a star tree and the input
gene trees Gi are binary, a solution to the GR problem is just a binary species
tree Ŝ that minimizes

∑
i c(Gi, Ŝ) over all the binary species trees. Hence, the

species tree problem becomes a special case of the GR problem. Recall that the
species tree problem is NP-hard [17] and even is hard to be approximated within
a logarithmic factor [2]. Therefore, the GR problem is an important, but difficult
problem in computational biology. Here, we shall work on the following special
case of the GR problem:

Non-binary Gene Tree Refinement (NGTR)
Input: A binary species tree S and a non-binary gene tree G.
Output: A binary refinement Ĝ of G such that D(Ĝ, S) = d and l(Ĝ, S) =
minG′∈BR(G):D(G′,S)=d l(G

′, S), where d = minG′∈BR(G)D(G′, S).

For example, given a species tree S (Fig. 1A) and an non-binary gene tree
G (Fig. 2A) as the instance of the NGTR problem, G′′ (Fig. 1B) is a desired
solution. Although G′ (Fig. 1C) is also a binary refinements of G, it is not a
solution, as it does not give the smallest duplication cost.

3 Algorithm

Consider a species tree S and a gene tree G such that L(G) = L(S). For each
G′ ∈ BR(G), every g ∈ V (G) and the corresponding node in G′ are mapped
to the same node in S under the lca reconciliations λG and λG′ . Hence, the
refinement of G can be achieved by refining each star subtree consisting of a
non-binary node and its children separately.

Our goal is to find Ĝ ∈ BR(G) by resolving every non-binary node of G using
S such that Ĝ has the smallest duplication cost d when Ĝ and S are reconciled.
Moreover, the reconciliation of Ĝ and S also has the minimum loss cost over
G′ ∈ BR(G) such that D(G′, S) = d.

Consider a non-binary internal node g ∈
◦
V (G) with k children gi, k ≥ 3.

We set I(g) = {s ∈ V (S) : s ∈ P (λ(g), λ(gi)) for some i}, where P (λ(g), λ(gi))
denotes the set of nodes in the path from I(g) forms a subtree rooted at λ(g)
(see Fig. 2B). For simplicity, we also use I(g) to represent the resulting subtree.
Clearly, in I(g), every leaf is λ(gi) for some i. However, I(g) may not be a
binary subtree because some internal nodes may have a child not belonging to
I(g) (Fig. 2B). We use I+(g) to denote the binary tree obtained by including
all the children of the non-leaf nodes of I(g). For each x ∈ V (I+(g)), we define
ω(x) to be the number of the children (of g) that are mapped to x under λ.
We further define:

Reconciliation of Non-binary Gene Tree and Binary Species Tree 195

m(x) =

{
ω(x), if x ∈ Lf(I+(g)),

ω(x) + max{m(x1),m(x2)}, otherwise,

where x1 and x2 are the children of x in I+(g).
For the non-binary tree g in G in Fig. 2A and the species tree S in Fig. 1A,

we have:

ω(a) = ω(vi) = 1, 1 ≤ i ≤ 5, m(b) = m(c) = m(v6) = 0,

m(a) = m(v4) = 1, m(v1) = m(v5) = 2, m(v2) = 3, m(v3) = 4.

A

 a c a d e a h a b d e f h

B g

g1 g3 g4
g5

g6

1/0 1/0
1/0

1/1

1/2
2/2

 1/1
2/2

1/3

 a b c d e f h

Duplication
Gene loss

C

Fig. 2. An illustration of computing m(), α(), β() for refining a non-binary gene tree
node. A. A gene tree G with non-binary root g. B. I(g) and I+(g) in the reconciliation
of G (panel A) and S (Figure 1.A). I(g) consists of v1–v5 and the leftmost leaf labeled
with species a (red circles), on which α(x) and β(x) is written beside each node x in the
format of α(x)/β(x). I+(g) is obtained from I(g) by adding v6 and the leaves labeled
with species b and c. The edges in I+(g) but not in I(g) are drawn in gray. C. The
duplication history of the children of g induced by refining g. After g is refined, the
resulting binary refinement of G is G′′ in Fig. 1.C.

Theorem 1. At least m(λ(g))−1 duplication events are required to produce the
ancestral genes represented by g1, g2, · · · , gk in the reconciliation of S and any
G′ ∈ BR(G).

Proof. Consider the following partial order set:

O = ({L(λ(g1)), L(λ(g2)), · · · , L(λ(gk))},⊆) ,

where L(λ(gi)) is the set of labels of the leaves below in λ(gi) in S and ⊆ is the
set inclusion. For the example presented in Fig 2, O contains the following six
subsets:

{a, b, c}, {a}, {a, b}, {d, e}, {a, b, c, d, e, f, h}, {d, e, f, h}.

Note that all the image nodes appearing in a path from the root to a leaf
in I+(g) form a chain in O. We have that m(λ(g)) is the largest size of such a
chain. An A ⊂ O is an antichain if for any x, y ∈ A, they are incomparable, i.e.,

196 Y. Zheng, T. Wu, and L. Zhang

x �⊆ y and y �⊆ x. For any i �= j, if L(λ(gi)) and L(λ(gj)) are incomparable, they
are disjoint since they correspond to two tree nodes in S. Hence, an antichain
consists of disjoint elements in O. Let M be the smallest number of antichains
into which O may be partitioned. In [3], it is proved that M −1 is a lower bound
on the number of duplications needed to produce g1, g2, · · · , gk. By a dual of
Dilworth’s theorem [18], M is equal to m(λ(g)), the size of the longest chain.

Consider a hypothetical evolution of a gene family in the corresponding species
tree S as shown in Fig. 3. Thick branches represent ancestral species in S. Two
numbers are naturally associated with each branch e = (p(u), u): the number
α(u) of ancestral gene copies flowing into e, and the number β(u) of ancestral
gene copies flowing out e. Clearly, if t duplication events occurred inside e,
β(u) = α(u) + t > α(u), where we assume each duplication event produces
exactly one copy of only one gene. Similarly, if l gene loss events occurred inside
e, β(u) = α(u) − l < α(u). Clearly, α(u) and β(u) are uniquely determined by
the evolution history itself. Conversely, a set of such numbers corresponds at
least one feasible evolutionary histories. In the rest of this section, we shall work
on these numbers of a feasible partial evolutionary history from g to its children
gi’s.

We shall infer a reconciliation with exactly m(λ(g)) − 1 duplications associ-
ated with g. By Theorem 1, it has the smallest duplication cost. The inferred
duplication events have to be postulated on proper branches of I+(g) to mini-
mize gene losses simultaneously. To this end, we define α(u) and β(u) for each
node u of I+(g) as follows. In the rest of this section, u1 and u2 denote the two
children of u if it is an internal node of S.

Let r = λ(g), the root of the subtree I+(g). We set

α(r) = 1, (2)

β(r) = max {min(m(r1),m(r2)), 1}+ ω(r). (3)

For any u �= r with parent p(u) and sibling u′ in I+(g),

α(u) = α(u′) = β(p(u)) − ω(p(u)), (4)

β(u) =

⎧⎪⎨⎪⎩
m(u), if α(u) ≥ m(u),

m(u), if u is a leaf of I+(g),

γ(u), otherwise,

(5)

where γ(u) is:

max{α(u),min(m(u1),m(u2)) + ω(u), 1 + ω(u)}. (6)

Continue the example given in Fig. 1–2, the computation of α() and β() is
shown in Fig. 2B.

If α(u) < β(u), we postulate β(u) − α(u) duplication events on the branch
(p(u), u); if α(u) > β(u), we postulate α(u)−β(u) gene loss events on the branch
instead. In total, we postulate

∑
u∈I+(g) max(β(u) − α(u), 0) duplication events

and
∑

u∈I+(g) max(α(u) − β(u), 0) gene loss events.

Reconciliation of Non-binary Gene Tree and Binary Species Tree 197

 a b c d e f h

Fig. 3. A schematic view of the duplication history of the gene family inferred from
the lca reconciliation of S (Fig. 1A) and G (Fig. 2A). It is extended from the partial
history in Fig. 2.C by reconciling the children of g, having 3 duplication and 7 loss
events.

For the example given in given in Fig. 1–2, we infer two duplication events
above the root r and one inside the branch from v2 to v1 in S (Fig. 1A), resulting
in the binary refinement G′′ (Fig. 1C) and the duplication history of the gene
family shown in Fig. 3.

Theorem 2. (1) The reconciliation described above has the smallest duplication
cost (that is, m(λ(g)) − 1) for resolving g.

(2) It also has the minimum gene loss cost over all the reconciliations that
induce a binary refinement of g and have duplication cost m(λ(g)) − 1.

The idea of its proof is clear although the proof is long. Recall that λ(g) is the
root of I+(g). In the subtree I+(g), by the definition of m(), at most m(λ(g))
children of g are mapped onto a root-to-leaf path from λ(g); furthermore, there
is a path P containing exactly m(λ(g)) children images. By setting α(u) and
β(u) with formulas (2)-(5), we only postulate duplication events in P and push-
down duplication events away from the root as much as possible by postulating
a duplication event whenever it is necessary. By doing so, we guarantee that
the resulting reconciliation has the minimum gene loss cost while keeping the
duplication cost unchanged. For the example considered above, P is the leftmost
path from the root to the leaf labeled with a (Fig. 2B). We postulate all three
duplication events in P and three loss events on the branches off P (Fig. 2C).
To prove Theorem 2, we first establish three facts about α() and β(). Due to
limit space, the proof of the following lemma is omitted.

Lemma 1. Let u be an internal node of I+(g).
(1) If α(u) < m(u), then α(u) ≤ β(u).
(2) If α(u) ≥ m(u), then, α(w) ≥ m(w) = β(w) for any descendant w of u.
(3) ω(u) + min{m(u′)|p(u′) = u} ≤ β(u) ≤ m(u), and 1 ≤ α(u).

Proof of Theorem 2. (1). Assume that m(r) is computed through the nodes
on the following path P in I+(v) (Fig 4):

P : u0 = r, u1, u2, · · · , ut, (7)

198 Y. Zheng, T. Wu, and L. Zhang

u1

'u3

ut 'ut

u0

'u1'u2u2

ut-1

Fig. 4. The path P defined in the proof of Theorem 2.3, along which m(r) is computed
and m(r) duplication events have to be postulated, where r = λ(g), the root of I+(g)

i.e., ut is a leaf of I+(g) and m(ui−1) = ω(ui−1) +m(ui) for i = t, t− 1, · · · , 1.
Let u′i be the sibling of ui in I+(g). Then, m(u′i) ≤ m(ui) for i ≥ 1. By the
fact (3) in Lemma 1, β(ui−1) ≥ ω(ui−1) + m(u′i), i ≥ 1. Hence, α(u′i) =
β(ui−1) − ω(ui−1) ≥ m(u′i), i ≥ 1. By the fact (2) in Lemma 1, α(w) ≥ β(w)
for any w in the subtree rooted at u′i (i ≥ 1). This implies that there are no
duplication events postulated in the subtree below u′i, i ≥ 1. Therefore, all
the duplication events are postulated on P . Since ut is a leaf, by definition,
β(ut) = m(ut). Let j be the smallest index satisfying β(uj) = m(uj). Then, for
any i < j, a(ui) < m(ui) and hence α(ui) ≤ β(ui) by the fact (1) in Lemma 1.
Thus, the number of the inferred duplication events is equal to

j−1∑
i=0

(β(ui)− α(ui))

= (β(u0)− 1) +

j−1∑
i=1

(β(ui)− β(ui−1) + ω(ui−1))

=

j−2∑
i=0

ω(ui)− 1 + β(uj−1) ≤
j−2∑
i=0

ω(ui)− 1 +m(uj−1) = m(r)− 1.

where the last inequality follows from the fact (3) in Lemma 1.

(2). Assume R is a partial reconciliation that uses m(r) − 1 duplication events
for resolving g. We shall prove that R cannot have less gene loss cost than the
reconciliation defined above.

For each u ∈ I+(g), we use α̂(u) and β̂(u) to denote the number of genes en-
tering and leaving the branch from p(u) to u for R. Consider P given in Eqn. (7).
Since m(r) children of g are mapped to the nodes on P and a duplication event
can only produce one more gene, all the duplication events must occur on P and,
additionally, no gene loss occurs on P . This is because the duplication history
induced by R has exactly m(r) − 1 duplication events responsible for the chil-

dren of g. Thus, β̂(ui) ≥ α̂(ui) for any ui on P . Moreover, we have the following
results. Their proofs can be found in the final version of this work.

Reconciliation of Non-binary Gene Tree and Binary Species Tree 199

Fact 1. For any ui on P , β̂(ui) ≥ β(ui).

Fact 2. For any descendant w of u′i in I+(g), α̂(w) ≥ α(w).

Using the two fact given above, we continue to prove the part 2 of Theorem 2.
For each u′i, the subtree S(u′i) (rooted at u′i) can be decomposed into the union
of disjoint paths

P̄ : w1, w2, · · · , wt̄

such that m(wi−1) = m(wi) +ω(wi−1) and wt̄ is a leaf. In each of these disjoint

paths P̄ , R has lR =
∑t̄

j=1(α̂(wj) − β̂(wj)) = α̂(w1) −m(w1) gene loss events,
whereas our reconciliation has lO = α(w1)−m(w1) gene loss events. By Fact 2,
lR ≥ lO.

4 Efficient Implementation of the Algorithm

Now, we briefly discuss how to implement the algorithm in linear time. Consider
an internal node u in I+(g) with children u1 and u2. Assume m(u1) > m(u2) = 0
and ω(u) = 0, that is, no child of g is mapped to u and u2. By definition, u2
has to be a leaf of I+(g). By Eqn. (6), γ(u) = α(u) since α(u) ≥ 1 (Lemma 1).
This implies that α(u) = β(u) = α(u1) = α(u2). In other words, we only need to
update α() and β() for all the nodes that are the child images or have degree-3
in I+(g). From the proof of the fact (1) of Theorem 2, we only need to compute
the values of α() and β() on the path P defined in Eqn. (7) for the purpose
of inferring duplication events. We call such a path is the ‘dominant’ path. We
need to build the condensed version P̂ from P by removing the degree-2 nodes
u such that ω(u) = 0 to have linear-time implementation. This is because P̂ has
at most |C(g)| nodes, but P may not, where C(g) is the set of the children of g
in the gene tree.

Based on the above discussion, we implement the algorithm as follows:

1. Compute ω() and m() in the species tree and build the condensed domi-
nant paths P̂g using doubly linked list for all non-binary gene tree nodes g
simultaneously.

2. Resolve each non-binary gene tree node g by inferring duplication events on
the corresponding path P̂g.

3. Obtain the binary refinement of G by assembling all the inferred duplication
events together.

The details of Step 1 is omitted due to space limit. It can be done in time
O(n+m) for input gene and species trees of n and m nodes, respectively, using
the techniques appearing in [22]. More specifically, we need to pre-process the
species tree S so that we have the postorder traversal of S and can find lca({u, v})
for any u, v ∈ V (S) using constant operations [20].

200 Y. Zheng, T. Wu, and L. Zhang

Step 2 can be done in time O(n) since the length of each condensed dominant
path P̂g is less than or equal to the number of the children of g.

Step 3 can clearly be done in O(n+m). If one would like to output the gene
loss cost, we could simply find it by reconciling the resulting binary refinement
and the species tree in O(n+m) time [22].

As a part of a programcalled TxT for reconciling two non-binary trees, the algo-
rithm has been implemented. TxT is available on http://phylotoo.appspot.com.

5 Conclusion

We have presented the first linear-time algorithm for the NGTR problem. All
the existing algorithms for this problem have quadratic-time complexity [4,7].
Our algorithm benefits from an elegant theorem in partial order theory [18].
Unlike [3], to resolve non-binary gene tree nodes, we focus on the longest chain
instead of the disjoint partitions of the partial order set defined in the proof of
Theorem 1.

Our study takes the same approach as in [3]. We compute in linear time a
reconciliation with the optimal duplication cost. Moreover, it has the smallest
gene loss cost over all reconciliations with the optimal duplication cost. When
two binary trees are reconciled, the lca reconciliation has not only the best
duplication cost [11], but also the optimal gene loss cost [5]. However, such a
reconciliation minimizing the both costs may not exist for some non-binary gene
and species trees. Our proposed algorithm is identical to the standard duplication
inference procedure when applied to binary gene tree nodes. Thus, our algorithm
can be considered as a natural generalization of the standard reconciliation to
non-binary gene trees. Hence, our study advances tree reconciliation approach.

Finally, techniques developed in this work are powerful for studying the NGTR
problem. After our work [23], Lafond et al. presented an O(|G||S|)-time algo-
rithm for computing a reconciliation that has the smallest sum of the gene du-
plication and loss costs for an non-binary gene tree G and a binary gene tree
S [15]. By refining our techniques here, we have obtained an O(|G| + |S|)-time
algorithm for for the same problem recently.

Acknowledgments. LX Zhang would like to thank Daniel Huson for suggestion
of working on non-binary tree reconciliation. He would also like to thank David
A. Liberles for comments on the preliminary version of this paper. This work
was financially supported by Singapore MOE tier-2 grant R-146-000-134-112 and
tier-1 grant R-146-000-177-112.

References

1. Arvestad, L., Lagergren, J., Sennblad, B.: The gene evolution model and computing
its associated probabilities. J. ACM 56, 1–44 (2009)

2. Bansal, M.S., Shamir, S.: A note on the fixed parameter tractability of the gene-
duplication problem. IEEE-ACM Trans. Comput. Biol. Bioinform. 8, 848–850
(2010)

Reconciliation of Non-binary Gene Tree and Binary Species Tree 201

3. Berglund-Sonnhammer, A., et al.: Optimal gene trees from sequences and species
trees using a soft interpretation of parsimony. J. Mol. Evol. 63, 240–250 (2006)

4. Chang, W.-C., Eulenstein, O.: Reconciling gene trees with apparent polynomies.
In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244.
Springer, Heidelberg (2006)

5. Chauve, C., El-Mabrouk, N.: New perspectives on gene family evolution: losses in
reconciliation and a link with supertrees. In: Batzoglou, S. (ed.) RECOMB 2009.
LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

6. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000)

7. Durand, D., Halldorsson, B., Vernot, B.: A hybrid micro-macroevolutionary ap-
proach to gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2005)

8. Eulenstein, O., Huzurbazar, S., Liberles, D.: Reconciling Phylogenetic Trees. In:
Dittmar, K., Liberles, D. (eds.) Evolution After Duplication, pp. 185–206. Wiley-
Blackwell, New Jersey (2010)

9. Fitch, W.M.: Distinguishing homologous from analogous proteins. Syst. Zool. 19,
99–113 (1970)

10. Goodman, M., et al.: Fitting the gene lineage into its species lineage, a parsi-
mony strategy illustrated by cladograms constructed from globin sequences. Syst.
Zool. 28, 132–163 (1979)

11. Górecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoret.
Comput. Sci. 359, 378–399 (2006)

12. Hudson, R.: Gene genealogies and the coalescent process. In: Oxford Surveys in
Evolutionary Biology, vol. 7, pp. 1–44. Oxford University Press (1990)

13. Koonin, E.V.: The origin and early evolution of eukaryotes in the light of phyloge-
nomics. Genome Biol. 11, 209 (2010)

14. Kristensen, D.M., Wolf, Y.I., Mushegian, A.R., Koonin, E.V.: Computational
methods for gene orthology inference. Briefings Bioinform. 12, 379–391 (2011)

15. Lafond, M., Swenson, K.M., El-Mabrouk, N.: An optimal reconciliation algorithm
for gene trees with polytomies. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS,
vol. 7534, pp. 106–122. Springer, Heidelberg (2012)

16. Maddison, W.: Reconstructing character evolution on polytomous cladograms.
Cladistics 5, 365–377 (1989)

17. Ma, B., Li, M., Zhang, L.X.: From gene trees to species trees. SIAM J. Comput. 30,
729–752 (2000); Also in Proc. RECOMB 1998, pp. 182–191 (2000)

18. Mirsky, L.: A dual of Dilworth’s decomposition theorem. Amer. Math. Monthly 78,
876–877 (1971)

19. Page, R.: Maps between trees and cladistic analysis of historical associations among
genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994)

20. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and
parallelization. SIAM J. Comput. 17, 1253–1262 (1988)

21. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary
species trees. J. Comput. Biol. 15(8), 981–1006 (2008)

22. Zhang, L.X.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phy-
logenies. J. Comput. Biol. 4, 177–187 (1997)

23. Zheng, Y., Wu, T., Zhang, L.X.: Reconciliation of Gene and Species Trees With
Polytomies, arXiv:1201.3995, arxiv.org (2012)

arxiv.org

On Some Proximity Problems of Colored Sets�

Chenglin Fan1, Jun Luo1,2, and Farong Zhong3

1 Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences, Shenzhen, China
2 Huawei Noah’s Ark Laboratory, Hong Kong

3 College of Math, Physics and Information Sciences
Zhejiang Normal University, Jinhua, China

{cl.fan,jun.luo}@siat.ac.cn,zrf@zjnu.cn

Abstract. The maximum diameter color-spanning set problem (MaxDCS) is de-
fined as follows: given n points with m colors, select m points with m distinct
colors such that the diameter of the set of chosen points is maximized. In this
paper, we design an optimal O(n log n) time algorithm using rotating calipers
for MaxDCS problem in the plane. Our algorithm can also be used to solve the
maximum diameter problem of imprecise points modeled as polygons. We also
give an optimal algorithm for the all farthest foreign neighbor problem (AFFN) in
the plane, and propose algorithms to answer the farthest foreign neighbor query
(FFNQ) of colored sets in two and three dimensional space. Furthermore, we
study the problem of computing the closest pair of color-spanning set (CPCS) in
d dimensional space, and remove the factor logm of the best known time bound
if we treat d as a constant.

1 Introduction

Computing the diameter of a set of n points in a d-dimensional space (d = 1, 2, 3....) has
a long history of research [2, 4]. The diameter of a point set is the maximum Euclidean
distance between any two points of the set. By a reduction to set disjointness, the com-
putation requires Ω(n log n) operations in the algebraic computation tree model [1].
The paper [14] is completely devoted to this problem and several efficient algorithms
are proposed.

However, these algorithms are based on the assumption that the positions of input
points are precise. If a point may randomly appear at one of the many candidate posi-
tions, which are painted with the same color, how to compute the maximum possible
diameter of the point set with different colors? The problem is called the Maximum Di-
ameter Color-spanning Set (MaxDCS) problem. The solution to the problem is useful
in large computer networks. For example, a large company tries to pool resources to
solve a certain computational task. But some uncertain factors interfere with the accu-
racy of the data and the company want to know the worst (or the best) cost based on
those imprecise data.

� This research is partially funded by the International Science & Technology Cooperation Pro-
gram of China (2010DFA92720-24) and NSF of China under project 11271351.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 202–213, 2013.
c© Springer International Publishing Switzerland 2013

On Some Proximity Problems of Colored Sets 203

d

(a) (b)

d

Fig. 1. Example of maximum diameter of imprecise points modeled as (a) polygons and (b) point
set

In 2007, Löffler et al. [19] studied the largest diameter problem and the smallest
diameter problem based on imprecise data. But they used a continuous region model,
such as disc and square. They showed that the largest diameter problem can be solved
in O(n logn) time based on the square and the disc models. But their algorithm [19]
cannot be adapted to the case when imprecise data are modeled as general polygons.
The algorithm in our paper can be used to compute the maximum diameter of imprecise
points in O(n log n) time, which can be modeled as polygons (see Figure 1), as the two
points forming the largest diameter must be among the vertices of two polygons. On the
other hand, the smallest diameter problem under the disc model is more complex and

they proposed an (1+ ε)-approximation andO(ncε−
1
2) time algorithm for the problem,

where c ≈ 6.66 [19].
The minimum diameter color-spanning set (MDCS) problem is firstly studied by

Zhang et al. in spatial databases [21]. But Zhang et al. only proposed an O(nm) time
algorithm for the problem. It is unfortunately a brute force algorithm. Then Chen et al.
implemented the algorithm in a geographical tagging system [22]. Finally, Fleischer et
al. [23] proved that the problem is NP-Complete in Lp (p ≥ 2) metric and proposed
an efficient constant factor approximation algorithm for the MDCS problem. Fan et
al. [24] recently studied several other color-spanning problems; they gave an efficient
randomized algorithm to compute a maximum diameter color-spanning set, and they
showed that it is NP-hard to compute a largest closest pair color-spanning set and a
planar minimum color-spanning tree.

While all-pairs nearest neighbors in any fixed dimension d can be computed in opti-
mal O(n log n) time [5], no algorithm with similar efficiency is known for the all-pairs
farthest neighbors. Agarwal et al. [9] showed that the three-dimensional all-pairs far-
thest neighbors can be computed in O(n4/3 log4/3 n) expected time, and posed closing
the gap between this and the only lower bound of Ω(n logn) as a challenging open
problem. Cheong [17] et al. studied the all farthest pair problem when all the points
are at the convex positions in R3, and gave an expected O(n log2 n) time algorithm to
compute it.

The bichromatic closest (resp. farthest) pairs (BCP, resp. BFP) [6] is formulated as
follows: Given a set n red and m blue points in Rd, find a red point p and a blue
point q such that the distance between p and q is minimum among all red-blue pairs,

204 C. Fan, J. Luo, and F. Zhong

which can be calculated in Γd(n,m) time and Γd(n, n) = O(n1+ε) for d ≥ 3 and
Γ2(n, n) = O(n log n).

Dumitrescu et al. [15] studied the BCP (resp. BFP) problems when each point is
colored with one of the m(≥ 2) colors, they gave algorithms to solve BCP (resp. BFP)
problems in Tmin

d (m,n)(resp. Tmax
d (m,n)) time in d dimensional space. They showed

that Tmin
2 (m,n) = O(n log n), Tmin

d (m,n) = Tmin
d (2, n) · logm and Tmax

d (m,n) =
Tmax
d (2, n)·logm [15], where Tmin

d (2, n) = Γd(n, n) for d ≥ 3. The trivial low bound
of Tmin

d (2, n) isΩ(n) and the trivial upper bound of Tmin
d (2, n) is O(n2). Ramos gave

an optimal deterministic algorithm for computing the diameter of a three-dimensional
point set, which can also be used to solve the bichromatic diameter in three-dimensional
space in O(n log n) time [13]. Combining the above two results, we can solve BFP of
m colors in O(n log2 n) time.

In paper [10], Agarwal et al. gave an O(n log n) time algorithm for the following
problem: Given a collection of sets with total of n points in the plane, find for each point
a closest neighbor that does not belong to the same set, which is the earliest version to
compute all foreign nearest pairs of points in the plane.

In this paper, all the problems we study are based on Euclidean distance. We propose
an optimal time algorithm for MaxDCS. To the best of our knowledge, this is the first
O(n log n) time algorithm for MaxDCS. We also give an optimal algorithm for all
farthest foreign neighbors problem (AFFN) in the plane, and propose algorithms to
answer the the farthest foreign neighbor query (FFNQ) of colored sets in two and three
dimensional space. At last we study the problem of computing the closest pair of color-
spanning set (CPCS) in d dimensional space, and remove the factor logm off the best
known time bound if we treat d as a constant.

Table 1 lists the results of our algorithms and previous algorithms.

Table 1. An overview of the time complexity of various problems of colored sets. The number in
parenthesis is the number of dimension, and k denotes the number of colors of point set.

Problem Previous results Our results
MaxDCS(2) O(n log2 n) [13, 15] O(n log n)

AFFN(2) none O(n log n)

FFNQ(2) none O(log n)

FFNQ(3) none O(log2 n)

CPCS(d) Tmin
d (2, n) logm [15] Tmin

d (2, n)

2 The Algorithm for MaxDCS

Problem 1. Suppose that we are given n points with m colors. How to select m points
with m different colors such that the diameter of the m selected points is maximized?

LetCH∗ be the convex hull of all n input points {p1, p2, ..., pn} and let 〈v1, v2, ..., vt〉
be the vertices of CH∗ in clockwise order. We can divide 〈v1, v2, ..., vt〉 into r se-
quences G1, G2, ..., Gr such that all vertices in one sequence have the same color and
appear consecutively on CH∗. Denote the first vertex in Gi as vsi and the last vertex

On Some Proximity Problems of Colored Sets 205

Gi

vti−1

vsi
vti

vsi+1

Ci

CH∗

CHi

Gi−1
Gi+1

Fig. 2. Illustration of Associate Convex Hull CHi and Associate Chain Ci

in Gi as vti (in clockwise order). Let the convex hull constructed from vti−1, vsi+1 and
all the vertices in Gi be CHi, which is called the Associate Convex Hull of Gi. Let Di

be the set of points inside CHi with colors different from the color of the vertices in
Gi. We can construct a convex chain Ci such that it starts from vti−1, ends at vsi+1 and
encloses all the points of Di. We call Ci the Associate Chain of Gi (see Figure 2).

Lemma 1. All Associate Chains Ci (i = 1, 2, ..., r) can be computed in O(n log n)
time.

Proof. First of all, we can constructCH∗ inO(n logn) time. Then the vertices ofCH∗

are separated in r groups G1, G2, ..., Gr by traversing the vertices of CH∗ in O(n)
time. At the same time all CHi’s can be constructed during the traversal. For each point
pk (k = 1, 2, ..., n), we can decide which CHi it is located in O(log n) time (note that
each point pk could belong to at most two neighboring Associate Convex Hulls). Thus
this step in total also takes O(n logn) time. For all points in CHi, we can get rid of
those points with the same color as those inGi to obtainDi which can be done in linear
time. Since one point can only belong to at most two neighboring Associate Convex
Hulls, we have

∑r
i=1 |Di| = O(n). Therefore, we can construct all Associate Chains

in O(n log n) time. ��
Let the two points realizing MaxDCS be p′ and p′′. For two points pi and pj , the

distance between them is denoted as d(pi, pj) and the color of pi and pj is denoted as
Col(pi) and Col(pj) respectively. We have the following lemmas:

Lemma 2. At least one of p′ and p′′ is a vertex of CH∗.

Proof. Assume that neither of p′ and p′′ is a vertex of CH∗ as is shown in Figure 3. We
draw two parallel lines l1 and l2 through p′ and p′′ respectively which are perpendicular

206 C. Fan, J. Luo, and F. Zhong

p′

p′′

pi

pj

CH∗

l1

l2

Fig. 3. At least one of the p′ and p′′ is a vertex of CH∗

to the line segment p′p′′. According to the property of convex hull, at least one vertex,
say pi, must lie above or on l1 and another vertex, say pj , must lie below or on l2.
Therefore, d(p′, pj) ≥ d(p′, p′′), d(p′′, pi) ≥ d(p′, p′′) and d(pi, pj) ≥ d(p′, p′′). Since
Col(p′) �= Col(p′′) according to our assumption, Col(p′) �= Col(pj) or Col(p′′) �=
Col(pi) orCol(pi) �= Col(pj). Then at least one pair of (p′, pj), (p′′, pi) and (pi, pj) is
a better candidate for realizing MaxDCS than the pair of (p′, p′′). This is a contradiction
and the lemma is proved. ��

Now, without loss of generality, let p′ be a vertex of CH∗.

Lemma 3. If p′′ is not a vertex of CH∗, then it must be the vertex of some Associate
Chain.

Proof. We can draw two parallel lines l1 and l2 through p′ and p′′ respectively which
are perpendicular to p′p′′, similar to the proof of lemma 2 (see Figure 4). Since p′ is a
vertex of CH∗, there is no point above l1. For the points below l2, the color of these
points must be the same as the color of p′. (Otherwise, any one of these points together
with p′ is the better candidate for realizing MaxDCS than the pair (p′, p′′). Assume
that the vertices of CH∗ below l2 are in Gi, then vti−1 and vsi+1 are between l1 and l2.
Therefore, p′′ must be a vertex of Ci since all points below l2 have the same color as p′

and they do not belong to Ci. The lemma is proved. ��
According to Lemma 2 and Lemma 3, there are two cases for p′ and p′′:

1. p′ and p′′ are the vertices of CH∗. Actually, we need to find l1 and l2 with the
maximum distance. We can use the rotating calipers method [4] to compute the
diameter of a point set ((p′, p′′) is called an antipodal pair in the rotating calipers
method). The only difference is that in our algorithm, we do not need to record the
distance between an antipodal pair with the same color.

2. p′ is a vertex of CH∗ and p′′ is a vertex of some Ci. In this case, we can rotate l1
along CH∗ and at the same time rotate l2 along the associate chain. However, an
associate chain may intersect with its neighboring associate chain and it may cause
trouble when rotating l2. Fortunately, associate chains that are not neighbors do not
intersect. We can construct convex hullCHeven which is the convex hull of all Ci’s
where i is an even number (see Figure 5). Observe that all vertices of Ci (i is even)

On Some Proximity Problems of Colored Sets 207

l1

l2

vti−1vsi+1

p′

p′′

CHi

Ci

CH∗

Fig. 4. p′′ is the vertex of an Associate Chain

are the vertices of CHeven. Similarly, we can construct convex hull CHodd which
includes all the vertices of Ci (i is odd). Then l2 needs to be rotated twice, once
along CHeven and the other along CHodd. For l1, it just rotates along CH∗ twice
accordingly. Note that there is one minor case: when the number of the associate
chains is odd, the first and the last chain of CHodd intersect. We can deal with this
case easily by just rotating l2 along the odd associate chains from the first one to
the last one and l1 along CH∗ accordingly as before. The only difference is that
l1 does not rotate exactly one round. It rotates a little bit more than one round but
definitely no more than two rounds.

G1

G2

G3

G4

G5

G6

G7

G8

G1

G2

G3

G4

G5

G6

G7

G8

C3

C5

C1

C7

CHodd C2

C4

C6

C8

CHeven

(a) (b)

Fig. 5. Illustration of (a) CHodd and (b) CHeven

208 C. Fan, J. Luo, and F. Zhong

After three rounds of applying the rotating calipers, we can obtain p′ and p′′ which
has the maximum distance. Each round of rotation can be finished inO(n) time if CH∗

and all Ci’s are already computed. Thus we have the following theorem:

Theorem 1. The maximum diameter color-spanning set problem can be solved in
O(n log n) time, which is optimal.

3 The Algorithms for AFFN and FFNQ

Problem 2. All farthest foreign neighbors of colored set (AFFN): Given n colored
points P = {p1, p2, ..., pn}, for each point pi, finding the farthest neighbor which has a
color different from pi. Let pfi denote the farthest colored neighbor of pi, which satisfy
{d(pi, pfi) ≥ d(pi, pj) for all pj with the color of pj different from the color of pi.

We construct the farthest-point Delaunay triangulation (the dual graph of farthest-
point Voronoi diagram) of all the points P in the plane, FPDT (P). The farthest-point
Voronoi diagram FPV D(P) can be computed in O(n logn) time. A point of P has a
cell in the farthest-point Voronoi diagram if and only if it is a vertex of the convex hull
of P . What is more, let cw(p) and ccw(p) denote the adjacent point of p in clockwise
and counterclockwise direction of convex hull respectively, then the cell will come in
between the cells of cw(p) and ccw(p) [20].

We construct the convex hull CH for the point set P , and let the point set on the
convex hull be PCH . We then construct the associate chains Ci and groups Gi as in
Lemma 1 in O(n log n) time.

Then we divide FPDT (P) into the same colored sets Fj(1 ≤ j ≤ m). Let F ′
j

denote the set of points adjacent to points in Fj . The point set Fj is composed of several
groups of Gi. All the points in each group Gi have the same color. If one point in Gi

belong to Fj , then all the points inGi belong to Fj . The cells controlled byGi are sorted
in counterclockwise direction when the points in Gi are sorted in clockwise direction
on CH . We use CCj to denote the set of those associate chains corresponding to Fj

(each associate chain Ci in CCj corresponds to Gi in Fj). For each associate chain Ci

in CCj , the start point and endpoint in Ci belong to F ′
j .

Lemma 4. For each point q lying in the cell controlled by point p in Fj , if q have the
same color with the point p, then the farthest foreign neighbor of q belongs to set CCj ,
otherwise the farthest foreign neighbor of q is p.

Proof. If q lies in the cell controlled by p in Fj and has a color different from p, then
p is q’s farthest foreign neighbor. Otherwise we remove all the points in Fj , then the
convex hull of P \ Fj is the point set PCH \ Fj ∪ CCj . For each point p belonging
to PCH \ Fj \ F ′

j , p does not control any region of cell(Fj) in FPVD(P) after all
the points in Fj are removed because otherwise if p controls some regions of cell(q)
in FPV D(P \ Fj), then P controls some disjoint regions in FPV D(P \ Fj) which
contradicts the property of Voronoi diagram, that is the region controlled by each point
in farthest point Voronoi diagram should be connected.

On Some Proximity Problems of Colored Sets 209

Therefore q belongs to the cell controlled by point p in CCj in FPVD(P \ Fj),
and all the points in CCj have some different colors from q. Then the farthest foreign
neighbor of q belongs to set CCj . ��
Theorem 2. The all farthest foreign neighbors of colored set problem in the plane can
be solved in O(n log n) time and O(n) space, which is optimal.

Proof. The steps to compute AFFN in the plane are as follows:

1. FPV D(P) andFPDT (P) can be constructed inO(n logn) time [20].FPDT (P)
has O(n) edges. All the groups of Gi and Ci can be computed in O(n log n) time,
and
∑

(Gi + Ci) = O(n) according to Lemma 1.
2. Find the same colored set Fj and F ′

j of FPDT (P), which takes O(n) time as∑
(|Fj | + |F ′

j |) = O(n).
3. For each set CCj , construct the farthest point Voronoi diagram of CCj . The total

time cost is
∑ |CCj | log(|CCj |) = O(n log n).

4. For the point p located in cell(p′) in FPVD(P), if p′ has a color different from p,
then p′ is the farthest foreign neighbor of p. Otherwise we locate p in FPV D(CCj)
to find its farthest foreign neighbor according to Lemma 4, where the color of p is
the same as the color of Fj . Hence the location for each point takes O(log n) time,
and total time is O(n logn).

��
The above theorem can be easily extended to the farthest foreign neighbor query (FFNQ)
of a point:

Theorem 3. Given a colored sets P of n points in the plane and a point q (q might
not be in P) with some color, the farthest foreign neighbor query (FFNQ) of q can be
answered in O(log n) time in the plane with O(n logn) preprocessing time and O(n)
space.

Now we consider the FFNQ problem in three dimensions. We first compute the three
dimensional convex hull CH(3) in O(n log n), and let O be a vertex of CH(3). Let
PCH(3) denote the point set of CH(3).

The CH(3) of n points in space consists of nf ≤ 2n − 4 faces and ne ≤ 3n − 6
edges [20]. We assume that all the faces of CH(3) are triangles (namely simplicial
polytope), otherwise we just add some edges to triangulate it.

For each face fi of CH(3), we use fi and point the O to construct a tetrahedron ti.
Then the space surround by CH(3) consist of nf tetrahedra.

For each point p inside CH(3), we located it to find which tetrahedron ti it belongs
to in O(log2 n) using O(n log n) space [16]. Let Si denote the point set of P located
in ti.

If we remove a vertex pj (pj �= O) from CH(3), those faces with vertex pj will
disappear. Let facej denote the set of those disappeared faces, Tj denote the set of
tetrahedra with one face in facej , and T ′

j denote those points of P inside Tj but without
those points of the same color as pj . For each face fi, since fi has only three vertices,
fi appears on at most three different tetrahedra sets like Tj . Let T ′′

j denote those point
set of {T ′

i |pi ∈ Fj}, hence
∑ |T ′′

j | = O(n). Let FTj denote those point set F ′
j ∪ T ′′

j .

210 C. Fan, J. Luo, and F. Zhong

Lemma 4 still holds in three dimensional space when FTj replaces CCj . The remain-
ing part of the algorithm is similar to the two dimensional case. The time complexity
analysis is as follows:

The complexity of FPVD(P) and FPDT (P) in d dimension is O(n�d/2�) [3],
which can be constructed inO(n�d/2�+n logn) time [8]. Hence theFPDT (P) in three
dimensional space can be constructed in O(n2) time and the complexity of FPDT (P)
is O(n2). However, the size of FPDT (P) is smaller than the boundO(n�d/2�) in gen-
eral case [7]. Chan et al [12] give an output sensitive algorithm to compute FPDT (P)
in three dimensional space in O((n+ f) log2 f) time, where f (f ∈ [n, n2]) is the size
of FPDT (P).

We compute the Voronoi diagram for each FTj . Then the total time is

M∑
i=1

|FTj |2 ≤
f/n∑
k=1

|U ′
k|2 = O(f/n× n2) = O(fn)

where U ′
k is the union of several FTj such that n ≤ |U ′

k| ≤ 2n. Since |FTj| ≤ n and∑ |FTj | = O(f), then k = O(f/n)).
The total size of all Voronoi diagrams is also O(fn) using above analysis. In three-

dimensional space, it is possible to answer point location queries in O(log2N) using
O(N logN) space and O(N logN) preprocessing time of size N [16]. Therefore we
can answer the nearest foreign neighbor query in O(log2 n) using O(fn logn) space
and O(fn logn) preprocessing time . ��

Therefore we have the following theorems:

Theorem 4. Given a colored set P of n points in three dimensions and a point q (q
might not be in P) with color, the farthest foreign neighbor query of q can be answered
inO(log2 n) time with O(fn logn) preprocessing time andO(fn logn) preprocessing
space, where f is the size of DT (P).

4 The Algorithm for CPCS(d)

Problem 3. The closest pair of color-spanning set in d dimensional space (CPCS(d)):
Givenn input pointsP in d dimensions, find a pair (p, q), satisfying {d(p, q) ≤ d(p′, q′),
Col(p) �= Col(q), Col(p′) �= Col(q′)} for any p′, q′ in the space.

We use the well separated pairs decomposition (WSPD) method together with a com-
pressed quadtree to deal with this problem. Well separated pairs decomposition was
defined by Callahan and Kosaraju [11]. We use the version of WSPD (very roughly)
from [18].

The steps of our algorithm are as follows:
1. Construct the smallest enclosing box of P in d dimensional space. Using quadtree

subdivision to divide the box into smaller boxes (child boxes) until the points in each
disjoint box have the same color.

2. Find the smallest box B of the subdivision in which there exist at least two points
in B with different colors. Let d0 denote the diameter of B and b0 denote the edge
length of the side of B. Then the distance of CPCS(d) is less than or equal to d0.

On Some Proximity Problems of Colored Sets 211

Obviously, the boxB is divided into child boxes following step 1 and the points in each
child box have the same color which has a side length b0/2.

3. For the box obtained thus far whose diameter is larger than d0/2, we divide it into
smaller boxes until its side length is b0/2. Now the side length of any such base box is
b0/2.

4. For two disjoint base boxes u, v, let dis(u, v) = min||p−q||, where p ∈ u, q ∈ v.
If two boxes contain points of the same color, then we can ignore them. Otherwise
we compute the dis(u, v) and the distance of CPCS(d) is the minimum of all those
dis(u, v).

Lemma 5. For each base box u, there are at most O(2ddd/2) disjoint base boxes v
satisfying dis(u, v) ≤ d0.

Proof. For any base box b, the length of the side of b is b0/2 and d0 = b0 ∗ d1/2. Hence
there are at mostO(d0/(b0/2))d = O(2ddd/2) disjoint base boxes whose distance from
b is less than or equal to d0. ��

Theorem 5. The time complexity for computing the distance of CPCS(d) is
Tmin
d (m,n) = O(22ddd) ∗Tmin

d (2, n) + O(n logn + 2dn) = Tmin
d (2, n), if d is a

constant.

Proof. Let the quadtree after step 3 be T , and the compressed quadtree corresponding
to T be T. Construct a ε−1 WSPD W for T. Let (u, v) be a pair of boxes in W and
ε = 1/2, then there are only two possible cases:

1. max{diam(u), diam(v)} > d0/2. Since we know u, v are ε−1 well separated,
then dis(u, v) ≥ ε−1 ∗max{diam(u), diam(v)} > ε−1d0/2 = d0, that means we
do not need to compute the distance of those pairs.

2. diam(u) = diam(v) = d0/2. Those are the pairs we need to compute at step 4.

According to the Lemma 5.1 in [18], one can construct a 2-WSPD of size O(2dn) with
the construction time being O(2dn logn + 2dn). Of course, there is a little difference
in our algorithm, as the box with diameter d0/2 does not need to be divided further, but
that does not affect the time complexity of our algorithm.

At step 4, let the time to compute the distance between the box pair (u, v) be
CP (|u|, |v|), where |u| and |v| denote the number of points in u and v respectively.
Then CP (|u|, |v|) = Tmin

d (2, |u| + |v|) since u contains the points of one color
and v contains the points of the other color. Then this problem is exactly the BCP
problem. Because Tmin

d (2, n) = Ω(n), we have Tmin
d (2, |x|) + Tmin

d (2, |y|) ≤
Tmin
d (2, |x| + |y|). Because we only need to compute the box pair whose distance

is less than or equal to d0 and according to Lemma 5, each box appears at most
O(2ddd/2) times in those pairs, then

∑
dis(u,v)≤d0

(|u| + |v|) = O(2ddd/2n). So

we have
∑

dis(u,v)≤d0
CP (|u|, |v|) ≤ Tmin

d (2,
∑

dis(u,v)≤d0
(|u| + |v|)) ≤ Tmin

d (2,

O(2ddd/2n)) = O((2ddd/2)2)Tmin
d (2, n) = O(22ddd)Tmin

d (2, n) as Tmin
d (2, n) =

O(n2). If we treat d as a constant, then the time to compute the distance of CPCS(d)
is Tmin

d (m,n) = O(22ddd)Tmin
d (2, n) +O(n logn+ 2dn) = Tmin

d (2, n). ��

212 C. Fan, J. Luo, and F. Zhong

5 Conclusions

In this paper, we propose an optimalO(n log n) time algorithm for the maximum diam-
eter color-spanning set problem. Our algorithm can also be used to solve the maximum
diameter problem of imprecise points modeled as polygons since the candidate pair of
points must be vertices of two polygons, and the vertices of each polygons are painted
in the same color.

We also give O(n logn) time and O(n) space algorithms for AFFN problems in the
plane . For the query of the farthest foreign neighbor in two dimension, we propose
O(log n) query time algorithms with O(n log n) preprocessing time and O(n) prepro-
cessing space. For the three dimension query problems, we give O(log2 n) query time
algorithms with O(fn logn) preprocessing time andO(fn log n) preprocessing space,
where f is the size of Farthest point Delaunay triangulation of P . We also give an al-
gorithm to improve the best known bound of the CPCS(d) problem, and conclude that
the CPCS(d) of m colors can be computed in the same time with CPCS(d) of two
colors when d is a constant. In the future, we will focus on the problems of computing
the farthest foreign pair in higher dimensional space, and approximate nearest neighbor
query of color point set.

References

1. Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Springer, New York
(1985)

2. Shamos, M.I.: Computational geometry, Ph.D. thesis, Yale University (1978)
3. Klee, V.: On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik 34,

75–80 (1980)
4. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proc. MELECON

1983 (1983)
5. Vaidya, P.M.: An O(nlogn) algorithm for the all-nearest-neighbors problem. Discrete Com-

put. Geom., 101–115 (1989)
6. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean minimum spanning

trees and bichromatic closest pairs. In: Proceedings of the Sixth Annual Symposium on Com-
putational Geometry, pp. 203–210 (1990)

7. Rex, A.: Dwyer, Higher-dimensional voronoi diagrams in linear expected time. Discrete
Comput. Geom. 6(1), 343–367 (1991)

8. Chazelle, B.: An optimal convex hull algorithm and new results on cuttings. In: Proc. 32nd
Annu. IEEE Sympos. Found. Comput. Sci., pp. 29–38 (1991)

9. Agarwal, P.K., Matousek, J., Suri, S.: Farthest Neighbors, Maximum Spanning Trees and Re-
lated Problems in Higher Dimensions. Comput. Geom. Theory Appl. 1(4), 189–201 (1992)

10. Aggarwal, A., Edelsbrunner, H., Raghavan, P., Tiwari, P.: Optimal Time Bounds for Some
Proximity Problems in the Plane. Information Processing Letters 42, 55–60 (1992)

11. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applica-
tions to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach. 42, 67–90
(1995)

12. Chan, T.M., Snoeyink, J., Yap, C.-K., Dividing, P., Pruning, D.: Output-Sensitive Construc-
tion of Four-Dimensional Polytopes and Three-Dimensional Voronoi Diagrams. Discrete
Comput. Geom. 18(4), 433–454 (1997)

On Some Proximity Problems of Colored Sets 213

13. Ramos, E.A.: An Optimal Deterministic Algorithm for Computing the Diameter of a Three-
Dimensional Point Set. Discrete Comput. Geom. 26, 233–244 (2001)

14. Malandain, G., Boissonnat, J.: Computing The Diameter of a Point set. International Journal
of Computational Geometry and Applications 12(6), 489–509 (2002)

15. Dumitrescu, A., Guha, S.: Extreme Distances in Multicolored Point Sets. In: Sloot, P.M.A.,
Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS 2002, Part III. LNCS, vol. 2331,
pp. 14–25. Springer, Heidelberg (2002)

16. Snoeyink, J.: Point location. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete
and Computational Geometry, 2nd edn. ch. 34 (2004)

17. Cheong, O., Shin, C.S., Vigneron, A.: Computing farthest neighbors on a convex polytope.
Theor. Comput. Sci. 296(1), 47–58 (2003)

18. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics and their
applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

19. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems
on imprecise points. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619,
pp. 446–457. Springer, Heidelberg (2007)

20. Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, 3rd edn.
Springer (2008)

21. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword search in
spatial databases: Towards searching by document. In: Proceedings of the 25th IEEE Inter-
national Conference on Data Engineering (ICDE 2009), pp. 688–699 (2009)

22. Chen, Y., Shen, S., Gu, Y., Hui, M., Li, F., Liu, C., Liu, L., Ooi, B.C., Yang, X., Zhang,
D., Zhou, Y.: MarcoPolo: A community system for sharing and integrating travel informa-
tion on maps. In: Proceedings of the 12th International Conference on Extending Database
Technology (EDBT 2009), pp. 1148–1151 (2009)

23. Fleischer, R., Xu, X.: Computing Minimum Diameter Color-Spanning Sets. In: Lee, D.-T.,
Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292. Springer, Heidelberg
(2010)

24. Fan, C., Ju, W., Luo, J., Zhu, B.: On Some Geometric Problems of Color-Spanning Sets.
Journal of Combinatorial Optimization 26(2), 266–283 (2013)

An Extended Strange Planet Protocol�

Jin Liu, Zhenhua Duan��, and Cong Tian

ICTT and ISN Laboratory, Xidian University, Xi’an, 710071, P.R. China

Abstract. Strange planet protocol is about a special way that three species mate.
This paper extends the original strange planet protocol to m species and analyzes
conditions for secure communications with it. To do so, conditions of must-fail,
might-fail and cannot-fail states are formalized and the number of cannot-fail
states is discussed. Finally, an example is given to show how the extended strange
planet protocol works.

Keywords: Automata, protocols, secure communication.

1 Introduction

The original strange planet problem is described as follows. On a distant strange planet,
there are three species a, b, and c. Any two different species can mate to produce two
children of the third species but the participants die. As you can see, the number of
individuals never changes. The planet fails if at the some point all individuals are of the
same species. That is, no more breeding can take place. Now a question arises: “Is it
possible that no matter what breeding choices are made, the planet will not fail? ”. It
mirrors real one about protocols [2–4]. “The planet fails” means that a protocol enters
an error state.

To describe the problem, we need some notations below. A state is defined as a
tuple (a,b,c) in italic type, denoting the numbers of individuals of species a, b, and c,
respectively. We write abc instead of (a,b,c) as a state for brevity. After a breeding,
a new successor state is produced. A state abc can reach a state a′b′c′ if a′b′c′ is a
descendant of abc. We say a state is a final state if there exist two species with 0 numbers
at the state, and a might-fail state if the state can reach a final state, and a cannot-fail
state if the state can never reach a final state. For two numbers x and y, we denote (x

mod 3) = (y mod 3) by x
3
= y.

For the original strange planet problem, some conclusions are achieved in [1]:

1. State a′b′c′ is reachable from a non-final state abc iff genetic factor (gene) condition
G1 holds.

a′ + b′ + c′ = a+ b+ c

(a′ − b′) 3
= (a− b)

(a′ − c′) 3
= (a− c) (G1)

� This research is supported by the NSFC Grant Nos. 61133001, 61272118, 61272117,
61202038, 61322202, 91218301 and National Program on Key Basic Research Project (973
Program) Grant No. 2010CB328102.

�� Corresponding author.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 214–225, 2013.
c© Springer International Publishing Switzerland 2013

An Extended Strange Planet Protocol 215

(b′ − c′) 3
= (b− c)

2. Two non-final states a′b′c′ and abc are reachable from each other iff condition G1
holds.

3. A state abc (a, b, c ≥ 0) is a might-fail state iff it satisfies condition M1, M2, or
M3 given below.{

(b − c)
3
= 0, and (M1)

(a+ b+ c)
3
= (a− b)

3
= (a− c)

{
(a− c)

3
= 0, and (M2)

(a+ b+ c)
3
= (a− b)

3
= (b− c){

(a− b)
3
= 0, and (M3)

(a+ b+ c)
3
= (a− c)

3
= (b − c)

4. For n individuals, there are totally 2n+ n(n−3)
3 cannot-fail states.

In this paper, we extend the problem with 3 different species to m different species.
Accordingly, the rule for mating is extended such that any m− 1 different species can
mate. If they do, the participants die and m − 1 children of the mth species are born.
Similarly, the number of individuals never changes just as the case for three species.
Whenever the numbers of any two species decrease to 0, the planet will fail, i.e. no
more breeding can take place. We investigate the conditions of cannot-fail, might-fail
and must-fail states, as well as the number of cannot-fail states.

The paper is organized as follows. In the next section, the extended strange planet
problem with m species is introduced. The conditions of cannot-fail, might-fail and
must-fail states are presented in Section 3, and the number of cannot-fail states is cal-
culated in Section 4. Section 5 gives an example to show how the m species strange
planet protocol can be used in secure communications [5]. Finally, in Section 6, con-
clusion and future research are presented.

2 m Species Strange Planet Protocol

Let N0 denote the set of all non-negative integers. Given m species a0, a1, · · · , and
am−1, and total n of numbers of all m species. We model the extended strange planet
problem with automata [6] and use the notations introduced in [1]. Further, let ai denote
the number of individual specie ai (0 ≤ i ≤ m − 1), thus, a0 + · · · + am−1 = n.
We use (a0, a1, a2, · · · , am−1) (ai ∈ N0) to represent a state, denoting the numbers of
individuals of species a0, a1, · · · , and am−1, respectively. For the sake of brevity, we use
a0a1a2 · · · am−1 to replace (a0, a1, a2, · · · , am−1). An ai-event occurs if individuals of
species a0, a1, · · · , ai−1, ai+1, · · · , and am−1 breed and produce m − 1 ai’s (0 ≤ i ≤
m− 1). The definitions of the final state and cannot-fail state are the same as the case
of three species. A might-fail state is a state which can reach not only a final state, but

216 J. Liu, Z. Duan, and C. Tian

also itself (i.e, in a circle). Final states and the states that can only reach final states are
called must-fail states.

As an example, we assume that there are five species a, b, c, d, and e. Any four
can mate. For example, a, b, c, and d mate to produce children e. Each kind of the
participants decreases by one while the number of species e increases by 4.

Fig. 1 shows the model of the strange planet with four species and six individuals
where 1230, 0123, 3012 and 2301 are cannot-fail states, and all others must-fail states.
Considering the symmetry, we just take the combination of the numbers of the four
species as a sample.

2220
d

1113
d

0006

a

4002

1122
d

0015

a

3300
b

4011

1230
d

0123
a

3012
b

2301

c

Fig. 1. Strange planet with four species and six individuals

3 Principles in Transitions

Fact 1. A state a0a1a2 · · · am−1 is a non-final state iff D2 holds.

For any i, j ∈ N0, 0 ≤ i, j ≤ m− 1, if i �= j, ai + aj �= 0. (D2)

That is, there exists at most one 0 in a0, a1, a2, · · · , and am−1. ��
Fact 2. A state a0a1a2 · · · am−1 has a precursor state if there is at least one number in
a0, a1, a2, · · · , and am−1 which is no less than m− 1. ��

The proofs of the above Facts are straightforward.

Lemma 1. If a′0a′1a′2 · · · a′m−1 is a direct successor of a non-final state a0a1a2 · · · am−1,
condition G2, called non-final genetic factor, holds.

a′0 + a′1 + · · · + a′m−1 = a0 + a1 + · · · + am−1

(a′0 − a′1)
m
= (a0 − a1)

(a′0 − a′2)
m
= (a0 − a2)

· · · (G2)

(a′0 − a′m−1)
m
= (a0 − am−1)

An Extended Strange Planet Protocol 217

(a′1 − a′2)
m
= (a1 − a2)

(a′1 − a′3)
m
= (a1 − a3)

· · ·
(a′1 − a′m−1)

m
= (a1 − am−1)

· · ·
(a′m−2 − a′m−1)

m
= (am−2 − am−1)

Proof. For a non-final state a0a1a2 · · · am−1, there are at most m possible transitions
at state a0a1a2 · · ·am−1 as depicted in Fig. 2.

a0a1a2 · · · am−1(a0 +m− 1)(a1 − 1)(a2 − 1) · · · (am−1 − 1)

(a0 − 1)(a1 +m− 1)(a2 − 1) · · · (am−1 − 1)

(a0 − 1)(a1 − 1)(a2 − 1) · · · (am−1 +m− 1)

a0

a1

am−1

Fig. 2. Possible transitions

When a0-event occurs: we have a′0 = a0 − 1 + m, a′1 = a1 − 1, · · · , and a′m−1 =
am−1 − 1. Thus,

a′0 + a′1 + · · · + a′m−1 = a0 + a1 + · · · + am−1

(a′0 − a′1)
m
= (a0 − a1 +m)

m
= (a0 − a1)

(a′0 − a′2)
m
= (a0 − a2 +m)

m
= (a0 − a2)

· · ·
(a′0 − a′m−1)

m
= (a0 − am−1 +m)

m
= (a0 − am−1)

(a′1 − a′2)
m
= (a1 − a2)

(a′1 − a′3)
m
= (a1 − a3)

· · ·
(a′1 − a′m−1)

m
= (a1 − am−1)

· · ·

218 J. Liu, Z. Duan, and C. Tian

(a′m−2 − a′m−1)
m
= (am−2 − am−1)

It can be proved similarly in the case in which event a1, a2, · · · , or am−1 occurs. ��

Theorem 1. If a state a′0a′1a′2 · · · a′m−1 is reachable from a non-final state a0a1a2 · · ·
am−1, G2 holds. On the contrary, if G2 holds, it can be at least obtained that a0a1a2 · · ·
am−1 can reach a′0a

′
1a

′
2 · · · a′m−1 or a′0a

′
1a

′
2 · · · a′m−1 can reach a0a1a2 · · · am−1, un-

der the condition that the precursor state is a non-final one.

Proof. Suppose state a′0a
′
1a

′
2 · · · a′m−1 is reachable from the non-final state a0a1a2 · · ·

am−1. By Lemma 1, G2 holds.
For two states a0a1a2 · · · am−1 and a′0a′1a′2 · · · a′m−1, if G2 holds, we have:

a′0 + a′1 + · · · + a′m−1 = a0 + a1 + · · · + am−1

(a′0 − a′1)
m
= (a0 − a1)

(a′0 − a′2)
m
= (a0 − a2)

· · ·
(a′0 − a′m−1)

m
= (a0 − am−1)

(a′1 − a′2)
m
= (a1 − a2)

(a′1 − a′3)
m
= (a1 − a3)

· · ·
(a′1 − a′m−1)

m
= (a1 − am−1)

· · ·
(a′m−2 − a′m−1)

m
= (am−2 − am−1)

Without loss of generality, we assume a′0−a0 ≥ a′1−a1 ≥ · · · ≥ a′m−1−am−1. Thus,

a′0 − a′1 = a0 − a1 −mk1
a′0 − a′2 = a0 − a2 −mk2

· · ·
a′0 − a′m−1 = a0 − am−1 −mkm−1

where k1, k2, · · · , and km−1 are integers. Equivalently, we have

a1 − a′1 +mk1 = a0 − a′0
a2 − a′2 +mk2 = a0 − a′0

· · ·
am−1 − a′m−1 +mkm−1 = a0 − a′0

An Extended Strange Planet Protocol 219

Then,

a0 − a′0 = a0 − a′0
a0 − a′0 = a1 − a′1 +mk1

a0 − a′0 = a2 − a′2 +mk2

· · ·
a0 − a′0 = am−1 − a′m−1 +mkm−1

Equivalently,

a′0 = a0 − (a0 − a′0)
a′1 = a1 − (a0 − a′0) +mk1

a′2 = a2 − (a0 − a′0) +mk2

· · ·
a′m−1 = am−1 − (a0 − a′0) +mkm−1

Owing to a′0 − a0 ≥ a′1 − a1 ≥ · · · ≥ a′m−1 − am−1, we have km−1 ≥ · · · ≥
k2 ≥ k1 ≥ 0. Consequently, we can find some reasonable breeding choices such that
a0a1a2 · · · am−1 can reach a′0a

′
1a

′
2 · · · a′m−1. During the process, all the species num-

bers are non-negative.
a0 a1 a2 · · · am−1

− − 1 − − 1 − 1 − − 1 +m −
	· · ·	
− 1	− 1 − 1 +m	− 1
− 1	− 1 +m − 1	− 1
plus m · · ·		
− 1 for − 1 − 1	− 1 +m	
k1 times · · ·		
− 1	− 1 − 1 +m plus m − 1	
− 1 − − 1 +m − 1 for − 1		
− 1 − 1 − 1 k2 times − 1 +m		

(a0 − a′
0) · · · | plus m

times − 1 − 1 − 1 +m | − 1 for
| · · · | km−1 times

| − 1 − 1 − 1 | − 1 +m |
| · · · | |
| − 1 − 1 − 1 +m − − 1 |
| · · · |
| − 1 − 1 − 1 − 1 +m |
| · · · |
− − 1 − 1 − 1 − 1 +m −

Accordingly, state a0a1a2 · · · am−1 can reach state a′0a
′
1a

′
2 · · · a′m−1. ��

We point out that if G2 holds, state a′0a
′
1a

′
2 · · · a′m−1 is reachable from non-final

state a0a1a2 · · · am−1, but not vice versa. For instance, states 2221 and 1150 satisfy
condition G2, however, 2221 can reach 1150 but 1150 cannot reach 2221.

220 J. Liu, Z. Duan, and C. Tian

Corollary 1. Two cannot-fail states or might-fail states a′0a
′
1a

′
2 · · ·a′m−1 and a0a1a2

· · · am−1 are reachable from each other iff condition G2 holds. ��
In the following, some conditions are given to show how to decide whether a state is

a must-fail, might-fail or cannot-fail state.

1. must-fail states: Must-fail states consist of two kinds of states, final states and some
specific non-final states which cannot reach themselves (named tailed states for con-
venience). Thus, to decide whether a given state is a must-fail state, we need to check
whether it is a final state or a tailed state. By the definition, a final state a0a1a2 · · · am−1

can be distinguished by checking whether there exist at least two 0 in a0,a1,a2,· · · , and
am−1. Further, to decide whether a state a0a1a2 · · · am−1 is a tailed state, we first sort
a0a1a2 · · · am−1 in ascending order and obtain a′0a

′
1a

′
2 · · ·a′m−1. Then we compare

each a′i, 0 ≤ i ≤ m− 1, with the ith number in 0, 1, 2, · · · ,m− 1. Consequently, state
a0a1a2 · · · am−1 is a tailed state iff there exists at least one a′i such that a′i < i. As an
example, for a state (2, 1, 2, 1, 6, 4) in 6 species strange planet protocol, we sort it in
ascending order first and obtain a sequence (a′0 = 1, a′1 = 1, a′2 = 2, a′3 = 2, a′4 =
4, a′5 = 6). Thus, (2, 1, 2, 1, 6, 4) is a tailed state since the a′3, i.e. 2, is smaller than 3.

The following Lemma shows the correctness of the above approach for deciding
whether a state is a tailed state.

Lemma 2. Let a′0a′1a′2 · · · a′m−1 be the sequence obtained by sorting the numbers of
state a0a1a2 · · · am−1 in ascending order. a0a1a2 · · ·am−1 is a tailed state iff there
exists at least one a′i such that a′i < i.

Proof. (⇒): Since sequence a′0a
′
1a

′
2 · · · a′m−1 is in ascending order, it can be obtained

that ak ≤ ak+1, 0 ≤ k ≤ m − 2. Suppose i is the smallest integer in 0, 1, · · · , and
m− 1 such that ai < i. Then we have i+ 1− ai ≥ 2. This means that after at most athi
mating, there are at least two species al and ak, 0 ≤ l, k ≤ i, which have never been
added by m. Some reasonable breeding choices are shown below:

a0 a1 a2 · · · al · · · ak · · · ai ai+1 · · · am−1 −
− 1 − 1 +m − 1 − 1 − 1 − 1 − 1 − 1 |

−1 +m − 1 − 1 − 1 − 1 − 1 − 1 − 1 |
− 1 − 1 − 1 − 1 − 1 − 1 − 1 +m − 1 at most

· · · ai times

− 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 +m |
− 1 − 1 − 1 +m − 1 − 1 − 1 − 1 − 1 |
− 1 − 1 − 1 − 1 − 1 − 1 +m − 1 − 1 |
− 1 − 1 − 1 +m − 1 − 1 − 1 − 1 − 1 −

Since al, ak ≤ ai, according to the mating rules, al and ak must be 0. This leads to
a0a1 · · · ai · · · am−1 being a tailed state.

(⇐): We prove the sufficiency by contradiction. Without loss of generality, we as-
sume each a′i ≥ i, 0 ≤ i ≤ m − 1. Then the state can be equally denoted as

An Extended Strange Planet Protocol 221

(0+b0, 1+b1, · · · ,m−1+bm−1), b′i ≥ 0, 0 ≤ i ≤ m−1. Thus we have the following
breeding sequences:

0 + b0, 1 + b1, 2 + b2, · · · , m− 1 + bm−1

↓
m− 1 + b0, 0 + b1, 1 + b2, · · · , m− 2 + bm−1

↓
m− 2 + b0, m− 1 + b1, 0 + b2, · · · , m− 3 + bm−1

↓
· · ·
↓

1 + b0, 2 + b1, 3 + b2, · · · , 0 + bm−1

↓
0 + b0, 1 + b1, 2 + b2, · · · , m− 1 + bm−1

It is evident that the state is in a loop, which is contradictory with the definition of
tailed states. So, the hypothesis is false. Therefore, the Lemma holds. ��

2. might-fail states: A might-fail state is one that can reach not only final states, but
also itself. This means that it is in a circle and can reach a final state. Thus, for a given
state a0a1a2 · · · am−1, we first check whether it can reach a final state and then decide
whether it is in a loop.

If there are at least two numbers in {a0 mod m, a1 mod m, · · · , am−1 mod m}
which are equal, state a0a1a2 · · · am−1 can reach a final state. Further, state a0a1a2 · · ·
am−1 is in a loop if it is not a tailed state or a final state.

Lemma 3. Let a′0a
′
1a

′
2 · · · a′m−1 be the sequence obtained by sorting the numbers in

state a0a1a2 · · ·am−1 in ascending order. a0a1a2 · · · am−1 is a might-fail state iff the
following two conditions hold together:

(1) ∃ i, j, 0 ≤ i, j ≤ m− 1, i �= j, such that ai
m
= aj ,

(2) a′i ≥ i, for ∀ i ∈ {0, 1, 2, · · · ,m− 1}.

Proof. In fact, condition (1) ensures that a state can reach a final state and condition (2)
guarantees that a state is in a loop.
(1) (⇒): For m strange planet protocol with n individuals, i.e. a0 + a1 + a2 + · · · +
am−1 = n, we have:

a0 = mk0 + q0
a1 = mk1 + q1
a2 = mk2 + q2

· · ·
am−1 = mkm−1 + qm−1

where k0, k1, k2, · · · , and km−1 ≥ 0, q0, q1, q2, · · · , and qm−1 = 0, 1, 2, · · · , orm−1.
Without loss of generality, we assume q0 = q1, k0 ≥ k1. Thus, a0 − a1 = m(k0 − k1).
We can find the following breeding choices:

222 J. Liu, Z. Duan, and C. Tian

a0 a1 a2 · · · am−1

− − 1 − − 1 +m − 1 − 1
| − 1 | − 1 − 1 +m − 1

t times | · · ·
| − 1 | − 1 − 1 − 1 +m
| − 1 | − 1 +m − 1 − 1
| − 1 plus m − 1 − 1 +m − 1
| for (k0 − k1) · · ·
| − 1 times − 1 − 1 − 1 +m
| − 1 | − 1 +m − 1 − 1
− − · · ·

Now we have a′0 = a1+m(k0−k1)−t and a′1 = a1+m(k0−k1)−t. That is a′0 = a′1.
Then after a′0 (or a′1) times non-a0-event or non-a1-event occur, a0 and a1 will reduce
to 0 simultaneously. Therefore, state a0a1 · · · am−1 can reach a final state.

(⇐): Now we prove that if a state can reach a final state, condition (1) holds. Suppose
state a0a1a2 · · · am−1 can reach the final state 00b2 · · · bm−1. G2 holds between them.
Then we have (a0 − a1)

m
= (b0 − b1)

m
= (0 − 0)

m
= 0 and a0

m
= a1. Thus, condition (1)

holds.
(2) A state can reach itself iff it is not a tailed state or a must-fail state. By Lemma 2,

state a0a1 · · · am−1 is in a loop iff for each a′i, 0 ≤ i ≤ m− 1, it has a′i ≥ i. ��

3. cannot-fail states: Cannot-fail states are the ones that cannot reach final states. This
means that it is a state in a loop but cannot reach a final state. Accordingly, we have the
following corollary.

Corollary 2. Let a′0a
′
1a

′
2 · · · a′m−1 be the sequence obtained by sorting the numbers in

state a0a1a2 · · ·am−1 in ascending order. a0a1a2 · · · am−1 is a cannot-fail state if the
following two conditions hold:

(1) � ∃ i and j, 0 ≤ i, j ≤ m− 1, i �= j, such that ai
m
= aj ,

(2) a′i ≥ i, for ∀ i ∈ {0, 1, 2, · · · ,m− 1}. ��
In Corollary 2, condition (1) confirms that state a0a1a2 · · ·am−1 cannot reach a final
state, and (2) indicates that state a0a1a2 · · · am−1 occurs in a loop.

Equivalently, a state a0a1 · · · am−1, is a cannot-fail state if (a0 mod m, a1 mod m,
· · · , am−1 mod m) is an arbitrary permutation of 0, 1, 2, · · · , and m − 1. So we also
have the corollary below.

Corollary 3. State a0a1a2 · · ·am−1 is a cannot-fail state iff there do not exist two num-
bers, i and j, 0 ≤ i, j ≤ m− 1, i �= j, such that ai

m
= aj . ��

4 Properties with m Strange Planet Protocol

Let S be the set of all states. For any x, y ∈ S, xRy, if x can reach y. With respect to
relation R, S is partitioned into three sets, cannot-fail, must-fail, and might-fail states
as shown in Fig. 3.

An Extended Strange Planet Protocol 223

cannot-fail

must-fail state(final state)

might-fail

must-fail

...

... · · ·

Fig. 3. Possible Subsets

Theorem 2. The binary reachable relation R over the set of cannot-fail states (or the
set of might-fail states) is an equivalence relation.

Proof. Let x(x0x1 · · ·xm−1) and y(y0y1 · · · ym−1) be two different states in the set of
cannot-fail states (or the set of might-fail states) and xRy. It is evident that condition
G2 holds. Namely, (xi − xj)

m
= (yi − yj), 0 ≤ i < j ≤ m− 1.

(1) Suppose that there exists a state z(z0z1 · · · zm−1) such that yRz. Then, (yi−yj) m
=

(zi − zj), 0 ≤ i < j ≤ m− 1, it follows that (xi − xj)
m
= (zi − zj), 0 ≤ i < j ≤

m− 1. By non-final genetic factor and Theorem 1, G2 also holds between x and z,
and xRz. So relation R is transitive.

(2) Since G2 holds between x and y, by Corollary 1 we have yRx. Thus, relation R is
symmetric.

(3) Let x′(x′0x
′
1 · · ·x′m−1) be the sorted state of x. Then according to Lemma 3 and

Corollary 2, x′i ≥ i, 0 ≤ i ≤ m − 1, which guarantees that x′ is in a loop. That is
to say, x can reach itself, namely xRx. Hence, relation R is reflexive.

Therefore, the theorem holds. ��
Theorem 3. For m species strange planet protocol with n individuals, there are totally

(m+
n−∑m−1

i=0 i

m − 1)!

(
n−∑m−1

i=0 i

m)! × (m− 1)!
×m!

cannot-fail states.

Proof. For any a0 + a1 + a2 + · · · + am−1 = n, we have

a0 = mk0 + q0

a1 = mk1 + q1

· · ·
am−1 = mkm−1 + qm−1

224 J. Liu, Z. Duan, and C. Tian

where k0, k1, k2, · · · , and km−1 ≥ 0, q0, q1, q2, · · · , and qm−1 = 0, 1, 2, · · · , or m− 1.
According to the conditions of cannot-fail states, we know that only if q0, q1, q2, · · · ,
and qm−1 is an arbitrary permutation of 0, 1, 2, · · · , and m− 1, state a0a1a2 · · · am−1

is a cannot-fail state. So,

a0 + a1 + a2 + · · · + am−1 = n
= (mk0 + q0) + (mk1 + q1) + · · · + (mkm−1 + qm−1)
= m(k0 + k1 + · · · + km−1) + (q0 + q1 + · · · + qm−1)

Thus,

k0 + k1 + k2 + · · · + km−1 =
n−∑m−1

i=0 i

m

The number of the combinations of k0, k1, · · · , and km−1 is equal to the problem of

putting r =
n−∑m−1

i=0 i

m indistinguishable objects intom distinguishable buckets, namely
Cr

m+r−1 [7]. Consequently, the number of the cannot-fail states will be:

Cr
m+r−1 ×m× (m− 1)! =

(m+
n−∑m−1

i=0 i

m − 1)!

(
n−∑m−1

i=0 i

m)! × (m− 1)!
×m!

Therefore, the theorem holds. ��
Note that by the proof of Theorem 3, it can be inferred that only if n ≥∑m−1

i=0 i and
n mod m = 0, there exist cannot-fail states in the extended strange planet problem.
Therefore, for m species and n individuals, the number of cannot-fail states is:⎧⎪⎨⎪⎩

(m+
n−∑m−1

i=0
i

m −1)!

(
n−∑m−1

i=0
i

m)!×(m−1)!

×m!, n ≥∑m−1
i=0 i and n mod m = 0,

0, otherwise.

5 Applications

We use a small password generator example to show how them strange planet protocol
can be used in secure communications. A password of an important file constitutes five
parts, which is held by five different persons, respectively. Let Pass1, Pass2, Pass3,
Pass4 and Pass5 be the data held by worker1, worker2, worker3, worker4, and
worker5, respectively. In order to open the file, the five parties are required to partici-
pant in simultaneously.

To keep the password safe, whenever the password is used successfully, Pass1,
Pass2, Pass3, Pass4 and Pass5 will be changed according to rules in 5 strange planet
protocol automatically. Note that the sum of the 5 data never changes. A new generated
password is any successor of the former one. In that way, the password generator will
fail if the current password is a might-fail state or a must-fail state, because both can
lead to a final state which has no successors. That is to say, only cannot-fail states
can make the password generator work permanently. We point out that here worker1,

An Extended Strange Planet Protocol 225

worker2, worker3, worker4, and worker5 do not know the rule. Each of them only
holds their data assigned by the generator. To ensure that new data will always be gen-
erated, the initially assigned data should be a cannot-fail state in the extended strange
planet protocol.

For instance, let Pass1 = 66, Pass2 = 58, Pass3 = 14, Pass4 = 20, Pass5 = 32
be the initial data held by the 5 workers, respectively. The numbers modulom are 1, 3, 4,
0, 2, which exactly satisfies the condition of cannot-fail states. The password generator
will work forever and a possible infinite sequence will be produced as shown below:

Pass1 Pass2 Pass3 Pass4 Pass5

66 58 14 20 32

65 62 13 19 31

64 61 12 18 35

68 60 11 17 34

72 59 10 16 33

71 58 14 15 32

· · ·

6 Conclusion

This paper presents a general extension of the original strange planet problem and re-
veals the essential principles in it. An intelligent password generator is designed to show
how the protocol can be used in practice. In the near future, we will further study more
general mating rules among species of the extended protocol as well as the essence
under it. How the discovered properties can be used in secure communications of real
world will also be investigated.

References

1. Tian, C., Duan, Z., Liu, J.: Secure Communication with Strange Planet Protocol. Optimization
Letters, 1–9 (2012)

2. Holzmann, G.J.: Design and Validation of Computer Protocols. Pretentice Hall (1991) ISBN
0-13-539925-4

3. Perlman, R.: Interconnections: Bridges, Routers, Switches, and Internetworking Protocols,
2nd edn. Addison-Wesley (1999) ISBN 0-201-63448-1

4. Comer, D.E.: Internetworking with TCP/IP - Principles, 4th edn. Protocols and Architecture.
Prentice Hall (2000) ISBN 0-13-018380-6

5. Agrawal, D.P., Zeng, Q.-A.: Introduction to Wireless and Mobile Systems, 2nd edn. Thomson
(April 2005) ISBN. 978-0534493035

6. Hopcroft, J.E., Motwani, R., Ullman J.D.: Introduction to Automata Theory, Languages, and
Computation, 2nd edn. Pearson Education (2000) ISBN 0-201-44124-1

7. Rosen, K.H., Krithivasan, K.: Discrete mathematics and its applications. McGraw-Hill, New
York (1999)

Online Bin Covering: Expectations

vs. Guarantees�

Marie G. Christ, Lene M. Favrholdt, and Kim S. Larsen

University of Southern Denmark, Odense, Denmark
{christm,lenem,kslarsen}@imada.sdu.dk

Abstract. Bin covering is a dual version of classic bin packing. As usual,
bins have size one and items with sizes between zero and one must be
packed. However, in bin covering, the objective is to cover as many bins
as possible, where a bin is covered if the sizes of items placed in the
bin sum up to at least one. We are considering the online version of
bin covering. Two classic algorithms for online bin packing that have
natural dual versions are Harmonick and Next-Fit. Though these two
algorithms are quite different in nature, competitive analysis does not
distinguish these bin covering algorithms.

In order to understand the combinatorial structure of the algorithms
better, we turn to other performance measures, namely relative worst
order, random order, and max/max analysis, as well as analyses under
restricted input assumptions or uniformly distributed input. In this way,
our study also supplements the ongoing systematic studies of the relative
strengths of various performance measures.

We make the case that when guarantees are needed, even under re-
stricted input sequences, the dual Harmonick algorithm is preferable.
In addition, we establish quite robust theoretical results showing that if
items come from a uniform distribution or even if just the ordering of
items is uniformly random, then dual Next-Fit is the right choice.

1 Introduction

Bin covering [1] is a dual version of classic bin packing. As usual, bins have size
one and items with sizes between zero and one must be packed. However, in
bin covering, the objective is to cover as many bins as possible, where a bin is
covered if the sizes of items placed in the bin sum up to at least one. We are
considering the online version of bin covering. A problem is online if the input
sequence is presented to the algorithm one item at a time, and the algorithm
must make an irrevocable decision regarding the current item without knowledge
of future items.

Bin covering algorithms have numerous important applications. For instance
when packing or canning food items guaranteeing a minimum weight or volume,
reductions in the overpacking of even a few percent may have a large economic

� Supported in part by the Danish Council for Independent Research.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 226–237, 2013.
c© Springer International Publishing Switzerland 2013

Online Bin Covering 227

impact. If items arrive on a conveyor belt, for instance, the problem becomes
online.

Classic algorithms for online bin packing are Next-Fit and Harmonick [21].
Next-Fit is a very simple and natural algorithm, and Harmonick was designed
to obtain a competitive ratio [24,19] better than any Any-Fit algorithm (First-
Fit and Best-Fit are examples of Any-Fit algorithms for bin packing, and the
competitive ratio of Next-Fit is worse than both these algorithms). Harmonick

and variations of it have been analyzed extensively [22,25,23]. We consider the
obvious dual version of these, DNF [1] and DHk [12]. These algorithms are quite
different in nature and the bin packing versions are clearly separated, having
competitive ratios of 2 and approximately 1.691, respectively. However, for bin
covering, competitive analysis does not separate them! In fact, for bin covering,
competitive analysis categorizes both algorithms as being worst possible (among
reasonable algorithms). This is unlike the situation in bin packing, and in general,
results from bin packing do not transfer directly to bin covering.

To understand the algorithmic differences better, it is therefore necessary to
employ different techniques, and we turn to other generally applicable perfor-
mance measures, namely relative worst order analysis, random order analysis,
and max/max analysis. As for almost all performance measures, the idea is to
abstract away some details of the problem to enable comparisons. Without some
abstraction, it is hard to ever, analytically, claim that one algorithm is better
than another, since almost any algorithm performs better than any other algo-
rithm on at least one input sequence. For all the measures considered here, the
abstraction can be viewed as being defined via first a partitioning of the set of
input sequences of a given length and then an aggregation of the results from
each partition. For each sequence length, competitive analysis, for instance, con-
siders all the ratios of the online performance to the optimal offline performance
obtained for each sequence of that length, and then takes the worst ratio of all
of these. The measures above employ a less fine-grained partition of the input
space. Worst order and random order analysis group permutations of the same
sequence together instead of considering each sequence separately, considering
worst-case or average-case performance, respectively, within each partition. With
max/max analysis the partitioning of the input space is even coarser: for each
sequence length n, the online worst-case behavior over all sequences of length
n is compared to the worst-case optimal offline behavior over all sequences of
length n. There is no one correct way to compare algorithms, but since these
measures focus on different aspects of algorithmic behavior, considering all of
the ones above lead to a very broad analysis of the problem. Extensive moti-
vational sections can be found in the papers introducing these measures and in
the survey [13]. As a further supplement, we analyze restricted input sequences,
where items have similar size, which is likely to happen in practice if one is pack-
ing products with an origin in nature, for instance. Finally, we consider input
sequences containing items having uniformly distributed sizes.

Relative worst order analysis [3,4] has been applied to many problems; a recent
list can be found in [15]. In [16], bin covering was analyzed, but using a version

228 M.G. Christ, L.M. Favrholdt, and K.S. Larsen

of the problem allowing items of size 1. We analyze the more commonly studied
version for bin covering, where all items are strictly smaller than 1. Since worst-
case sequences from [16] contain items of size 1, this leads to slightly different
results. For completeness, we include these results. Random order analysis [20]
was introduced for classic bin packing, but has also been used for other problems;
a server problem, for instance [7]. Max/max analysis [2] was introduced as an
early step towards refining the results from competitive analysis for paging and
a server problem.

Relative worst order analysis emphasizes the fact that there exist multisets of
input items where DNF can perform 3

2 times as poorly as DHk. On the other
hand, DHk’s method of limiting the worst case also means that it has less of
an opportunity to reach the best case, as opposed to DNF. This is reflected
in the random order analysis, where DNF comes out at least as well as DHk.
Another way of approaching randomness is to analyze a uniform distribution. We
establish new results on DHk showing that its performance here is slightly worse
than that of DNF, in line with the random order results. With the max/max
analysis, a distinction between the two algorithms can only be achieved, when
the item sizes are limited, and DHk is the algorithm selected as best by this
measure. With respect to competitive analysis, we also consider restricted input
in the sense that item sizes may only vary across one or two consecutive DHk

partitioning points. This is a formal way of treating the case where items are
of similar size, while allowing greater variation when this size is large. We show
that with this restricted form of input, considering the worst case measures of
competitive analysis, DHk is deemed better than DNF, as DNF is vulnerable
to worst-case sequences where DHk can organize the packing differently.

This study also contributes to the ongoing systematic studies of the relative
strengths of various performance measures, initiated in [7]. Up until that paper,
most performance measures were introduced for a specific problem to overcome
the limitations of competitive analysis. In [7], comparisons of performance mea-
sures different from competitive analysis were initiated, and this line of work has
been continued in [5,8,6], among others. Our results supplement results in [11],
showing that no deterministic algorithm for the bin covering problem can be
better than 1

2 -competitive and giving an asymptotically optimal algorithm for
the case of items being uniformly distributed on (0, 1). For DNF, [10] established
an expected competitive ratio of 2

e under the same conditions.
Due to space restrictions, several proofs have been omitted or shortened. Refer

to [9] for all the details.

Bin Covering

In the one dimensional bin covering problem, the algorithm gets an input se-
quence I = 〈i1, i2, . . .〉 of item sizes, where for all j, 0 < ij < 1. The goal is
to pack the items in a maximum number of bins, each having size 1, such that
the sum of the sizes of the items within each bin is at least one, i.e., the bin
is covered. Requiring items to be strictly smaller than 1 corresponds to assum-
ing that items of size 1 are treated separately. This makes sense, since there is

Online Bin Covering 229

no advantage in combining an item of size 1 with any other items in a bin. In
other words, any algorithm not giving special treatment to items of size 1 could
trivially be improved by doing so.

In algorithms for bin packing and covering, it is standard to use the termi-
nology that a bin is open if it is one of the bins that an algorithm is currently
considering for the next item, and closed if the bin has received items, but the
algorithm will not consider that bin again for future items.

Thus, the objective for a bin covering algorithm A is to maximize the number
of bins covered as a result of processing an input sequence I. We let A(I) denote
this number of covered bins. We let Opt denote an optimal offline algorithm.
Thus, Opt(I) is the largest number of bins that can be covered by any algorithm
processing I.

Assmann, Johnson, Kleitman, and Leung [1] introduced the Dual Next-Fit
algorithm (DNF), an adaption of the Next-Fit algorithm for bin packing. DNF
always keeps a single bin open. The arriving items are packed into the open bin
until the open bin has a content of at least one. Then the open bin is closed and
a new empty bin becomes the open bin.

Harmonick was introduced for bin packing by Lee and Lee [21]. This al-
gorithm partitions the interval (0, 1] into k subintervals, with the partitioning
points at 1

2 ,
1
3 , . . . ,

1
k , resulting in the intervals (0, 1k], (1

k ,
1

k−1], . . . , (12 , 1). For each
of these k subintervals, Harmonick keeps one open bin into which the items
belonging to this subinterval are packed at their arrival. This means that each
closed bin for the interval (1j ,

1
j−1] contains exactly j items. The natural adapta-

tion to the bin covering problem is to use (0, 1k), [1k ,
1

k−1), . . . , [12 , 1). The resulting

algorithm, DHarmonick (DHk), uses exactly j items from the interval [1j ,
1

j−1)
to cover a bin. All through the paper we assume that k ≥ 2, since for k = 1,
DHk becomes DNF.

2 Competitive Analysis

In competitive analysis [24,19], the performance of an online algorithm is com-
pared to that of an optimal offline algorithm Opt. An algorithm A for a max-
imization problem is called c-competitive if there exists a fixed constant b such
that for any input sequence I, it holds that A(I) ≥ cOpt(I)+b. The supremum
over all such c is the competitive ratio CR(A) of A. Note that some authors
reverse the order of the algorithm and Opt to get ratios larger than one.

For bin covering, Csirik and Totik [11] showed that no deterministic online al-
gorithm can be better than 1

2 -competitive. DNF was shown to be 1
2 -competitive

in [1], and the same result for DHk was noted in [16]. For completeness, to show
that this result is tight for a large class of algorithms, we define a reasonable
algorithm to be one that closes bins as soon as they are covered, does not close
bins before they are covered, and does not have more than a constant number
of open bins at any point.

Theorem 1. Any deterministic reasonable algorithm has competitive ratio 1
2 .

230 M.G. Christ, L.M. Favrholdt, and K.S. Larsen

2.1 Limiting the Item Sizes

In some applications of the bin covering problem it is likely that the sizes of the
items contained in an input sequence differ only slightly, e.g., packing similar
food items into a container, guaranteeing the consumer a minimum weight. In
the following, we investigate the performance of DNF and DHk on sequences
with similar-sized items. Since it seems reasonable to allow larger variance in
size when the considered sizes are large, we consider sequences containing item
sizes from consecutive DHk intervals.

We first consider intervals (a, b) ⊆ (0, 1) that contain exactly one DHk par-
titioning point. Afterwards, we consider sequences with exactly two DHk par-
titioning points. We emphasize that there are no restrictions on the endpoints
a and b, which can be any real numbers, as long as the interval between them
contains exactly one or two DHk partitioning points. In both cases, DHk turns
out to have the better ratio.

For any (a, b) ⊆ (0, 1), we let CRa,b denote the competitive ratio on sequences
where all item sizes are in (a, b).

If (a, b) does not contain at least one of the interval borders used by DHk,
then DHk behaves exactly like DNF. If (a, b) contains a DHk border, then we
define 1

p = max
{
1
l

∣∣l ∈ N, 1l < b
}
, and refer to 1

p as the maximal border in (a, b).

Theorem 2. If 1
p+1 ≤ a < 1

p , then CRa,b(DNF) = p
p+1 .

Theorem 3. If 1
p+1 ≤ a < 1

p and k ≥ p, then CRa,b(DHk) = p2+1
p(p+1) .

It follows that if (a, b) contains exactly one DHk partitioning point, 1
p , and

k ≥ p, then DHk has a better competitive ratio than DNF:

Corollary 1. If 1
p+1 ≤ a < 1

p and k ≥ p, then CRa,b(DHk) > CRa,b(DNF).

We now consider intervals (a, b) ⊆ (0, 1) that contain exactly two DHk parti-
tioning points. For the following theorem, note that 1

p <
p+2

p(p+1) <
1

p−1 .

Theorem 4. If a < 1
p+1 , then

CRa,b(DNF) ≤

⎧⎪⎨⎪⎩
p+ 1

p+ 2
, if b ≤ p+2

p(p+1)

p(p+ 1)

p2 + 2p+ 2
, otherwise

Proof. Replacing p by p+ 1 in Theorem 2, we get an upper bound of p+1
p+2 , since

the upper bound of Theorem 2 only assumes a < 1
p < b. This proves the upper

bound for b ≤ p+2
p(p+1) .

If b > p+2
p(p+1) , we choose ε, 0 < ε < min

{
1

2(p−1)(p+1)n (1
p+1 − a), b− p+2

p(p+1)

}
,

the only purpose of this complicated expression being that we should ensure that
all items below belong to (a, b). Now, we consider a sequence consisting of the
following subsequences:

Online Bin Covering 231

– 〈〈1
p
〉p−1,

1

p
− 2ε,

p+ 2

p(p+ 1)
+ ε〉(p+1)(p−2)n

– 〈 1

p+ 1
+i(p−1)ε,

1

p+ 1
−(i+1)(p−1)ε, 〈 1

p+ 1
+ε〉p−2,

1

p+ 1
−ε, p+ 2

p(p+ 1)
+ε〉

for i = 1, 2, . . . , (p+ 1)n

– 〈 1

p+ 1
+ i(p−1)ε,

1

p+ 1
− (i+1)(p−1)ε, 〈 1

p+ 1
〉p−2,

1

p+ 1
−ε, p+ 2

p(p+ 1)
+ε〉

for i = (p+ 1)n+ 1, (p+ 1)n+ 2, . . . , 2(p+ 1)n− 1

– 〈 1

p+ 1
+ 2(p+ 1)n(p− 1)ε, 〈 1

p+ 1
〉p−2,

1

p+ 1
− ε,

p+ 2

p(p+ 1)
+ ε〉

– 〈 1

p+ 1
− (p− 1)ε〉

Giving the items in this order, DNF covers (p+ 1)(p− 2)n+ (p+ 1)n+ (2(p+
1)n− 1− (p+1)n)+ 1 = p(p+1)n bins. In the full version it is shown that Opt
covers (p2 + 2p+ 2)n bins. ��
Theorem 5. If 1

p+2 ≤ a < 1
p+1 and k ≥ p+ 1, then

CRa,b(DHk) =

⎧⎪⎪⎨⎪⎪⎩
p3 + 2p2 + p+ 2

p(p+ 1)(p+ 2)
, if b ≤ p+2

p(p+1)

p3 + 2p2 + 2

p(p+ 1)(p+ 2)
, otherwise

Proof. We only sketch the proof of the lower bound here.
Items of size less than 1

p+1 are called small, items of size at least 1
p are called

large, and the remaining items are called medium. Let s, m, and � denote the
number of small, medium, and large items, respectively.

Consider an optimal packing. For i = 1, 2, 3, let ni denote the number of bins
with exactly p+i−1 items. Then, n = n1+n2+n3 is the number of bins covered
by Opt. Since DHk covers exactly � s

p+2� + � m
p+1� + � 	

p� bins, we can consider
items from the three types of bins separately. The contribution to the number
of bins covered by DHk from the ni items is at least di − 3, where

di ≥

⎧⎪⎪⎨⎪⎪⎩
p3 + 2p2 + p+ 2

p(p+ 1)(p+ 2)
ni, if b ≤ p+2

p(p+1)

p3 + 2p2 + 2

p(p+ 1)(p+ 2)
ni, otherwise

��
It follows that if (a, b) contains exactly two DHk partitioning points, then

DHk has a better competitive ratio than DNF:

Corollary 2. If 1
p+2 ≤ a < 1

p+1 , then CRa,b(DHk) > CRa,b(DNF).

3 Relative Worst Order Analysis

Relative worst order analysis was introduced by Boyar and Favrholdt [3] and
compares the performance of two algorithms A and B directly instead of via the

232 M.G. Christ, L.M. Favrholdt, and K.S. Larsen

comparison to Opt. Algorithms are compared on the same input sequence I,
but on the worst possible permutation of I for each algorithm.

Formally, if n is the length of I, and σ is a permutation on n elements, then
σ(I) denotes I permuted by σ, and we define AW (I) = minσ A(σ(I)). If there
exists a fixed constant b such that, for any input sequence I, AW (I) ≥ BW (I)−b,
then A and B are comparable and the relative worst order ratio of A to B is
defined as follows: WR(A,B) = sup{c | ∃b ∀I : AW (I) ≥ cBW (I) − b}.

Note that since the performance of DHk does not depend on the order in
which the items are given, relative worst order analysis of DNF versus DHk

gives the same result as simply comparing the two algorithms on each sequence
separately, just as competitive analysis with Opt replaced by DHk.

In [16], a relative worst order analysis of DHk and DNF is given for the
model that allows items of size 1. It is shown that, for i < j, WR(Hj , Hi) = i+1

i .
Hence, in this model, WR(DHk,DNF) = 2, for k ≥ 2, since DNF and DH1 are
equivalent. Note that, for i ≥ 2, the result from [16] holds for our model too,
since the lower bound sequences for these cases do not contain items of size 1.

We first show that DHk and DNF are comparable. This is a special case of
the corresponding result in [16].

Lemma 1. For any k ≥ 1 and any input sequence I, DHkW (I) ≥ DNFW (I)−
(k − 1).

Thus, according to relative worst order analysis, DHk is at least as good as
DNF. The next lemma establishes a separation between the two algorithms.

Lemma 2. For any k ≥ 2, WR(DHk,DNF) ≥ 3
2 .

By providing a matching upper bound, we determine the exact relative worst
order ratio of the two algorithms.

Theorem 6. WR(DHk,DNF) = 3
2 .

Thus, we conclude that according to relative worst order analysis, DHk is a
better algorithm than DNF.

4 The Random Order Ratio

The random order ratio was introduced by Kenyon [20] as the worst ratio ob-
tained over all sequences I, comparing the expected value of an algorithm A,
with respect to a uniform distribution of all permutations, σ, of I, to the value
of Opt on I:

RR(A) = lim inf
Opt(I)→∞

Eσ[A(σ(I))]

Opt(I)

Note that Opt is still assumed to know the entire sequence in advance, so there
is no expectation involved in computing Opt(I).

The following theorem gives a bound on how well DNF can perform with
respect to the random order ratio.

Online Bin Covering 233

Theorem 7. The random order ratio of DNF is at most 4
5 .

Proof. Let Sn denote all sequences of length n with item sizes from I, where
I = {ε, 1 − ε} for an 0 < ε < 1

n . Define

Sn
i = {I ∈ Sn | I contains i items of size ε and n− i items of size 1 − ε}

Then we can consider the following disjoint partitioning Sn =
⋃

0≤i≤n S
n
i . We

let Rn denote the set of all sequences of length n.
The first inequality below follows from two facts:

– For any pair of sequences, I, I ′ ∈ Sn
i , Opt(I) = Opt(I ′).

– For two sums A =
∑n

i=1 ai and B =
∑n

i=1 bi,
A
B ≥ min1≤i≤n

ai

bi
.

EI∈Sn [DNF(I)]

EI∈Sn [Opt(I)]
≥ min

0≤i≤n

EI∈Sn
i
[DNF(I)]

Opt(Ini)
, where Ini ∈ Sn

i

= min
I∈Sn

Eσ[DNF(σ(I))]

Opt(I)
≥ min

I∈Rn

Eσ[DNF(σ(I))]

Opt(I)

Hence,

lim
n→∞

EI∈Sn [DNF(I)]

EI∈Sn [Opt(I)]
≥ lim inf

Opt(I)→∞
Eσ[DNF(σ(I))]

Opt(I)
= RR(DNF).

In the rest of the proof, we compute the leftmost expression from the above,
which then gives us an upper bound on the random order ratio of DNF.

There is no difference between choosing some element from Sn uniformly at
random and generating a length n sequence iteratively by choosing the next item
from I with equal probability. Thus, we can analyze the behavior of DNF by
considering a Markov chain, where the state of the system after i items have
been processed is determined by the state of the open bin. The Markov chain is
finite and has just three states: either there is no open bin (N – for “No”), one
open bin containing one large item of size 1 − ε (L – for “Large”), or one bin
with a number of small items, each of size ε (S – for “Small”). Note that since
ε < 1

n , there is room for all the small items in one bin, if necessary.
This is an irreducible chain, where all states are positive recurrent, which

implies that it has a stationary (equilibrium) distribution, and the probability of
ending up in each of the states converges independently of the starting state [14].
The probability of being in one of the states N , L, or S can be calculated from
the following equations:

1 = Prob[N] + Prob[L] + Prob[S]

Prob[N] = Prob[L] + Prob[S]/2

Prob[L] = Prob[N]/2

Prob[S] = Prob[N]/2 + Prob[S]/2

234 M.G. Christ, L.M. Favrholdt, and K.S. Larsen

�������	N

1
2�� 1

2 ��
�������	L

1

��

�������	S

1
2

��

1
2

��

Fig. 1. A Markov chain describing DNF’s behavior on the considered sequences

This system has the solution Prob[N] = Prob[S] = 2
5 and Prob[L] = 1

5 . From
this it follows that EI∈Sn [DNF(I)] tends to Prob[N]n = 2

5n.
For the optimal algorithm, note that its result only depends on the number

of items of each size. In particular, after n items, it can cover
⌊
n
2

⌋
bins, unless

there are more small than large items. All the small items would be wasted.
Using random walks, it is easy to see that the expected difference between

the number of large and small items is a low order term compared with n, and
therefore does not affect the limit.

A sequence of independent stochastic variables {Xi}i≥1, where Prob[Xi =

1] = Prob[Xi = −1] = 1
2 , is called a simple random walk [14]. It is well known

that if we define Tn =
∑n

i=1Xi, then limn→∞
E[|Tn|]√

n
=
√

2
π [17]. Hence, E[|Tn|] ∈

O(
√
n), and then EI∈Sn [Opt(I)] = n

2 −O(
√
n).

In conclusion, we get lim
n→∞

EI∈Sn [DNF(I)]
EI∈Sn [Opt(I)] = lim

n→∞
2
5n

n
2 −O(

√
n)

= 4
5 . ��

Theorem 8. The random order ratio of DHk is 1
2 .

Proof. The performance of DHk does not depend on the order of the items in
the sequence. Given a sequence containing n items of size 1 − ε and n items of
size ε, where ε < 1

n , DHk will always cover n
2 bins, while Opt will cover n bins.

The lower bound is given by Theorem 1, since the random order ratio of a bin
covering algorithm is never worse than its competitive ratio. ��

Thus, according to random order analysis, DNF is at least as good as DHk.
Though it seems hard to raise the lower bound on the random order ratio for
DNF above 1

2 , and thereby separate the two algorithms, we conjecture that DNF
is in fact strictly better than DHk with respect to this measure. We discuss this
further in the conclusion.

5 The Max/Max Ratio

The max/max ratio was introduced by Ben-David and Borodin [2] and com-
pares an algorithm’s worst-case behavior on any sequence of length n with Opt’s
worst-case behavior on any sequence of length n. The max/max ratio was intro-
duced for the minimization problems paging and K-server. Since bin covering is
a maximization problem, we actually need a min/min ratio. Additionally, since

Online Bin Covering 235

the input items can be arbitrarily small, letting the sequence length approach
infinity does not give interesting results. Thus, we modify the measure to con-
sider the volume, vol(I), of a sequence I, where vol(I) is the sum of the sizes of
all the items in I:

MRvol(A) =
lim infv→∞ minvol(I)=v A(I)/v

lim infv→∞ minvol(I)=v Opt(I)/v

This measure cannot distinguish between DNF and DHk in the general case:

Theorem 9. Both DNF and DHk have a min/min ratio of 1.

If the item sizes are restricted to be from an interval (a, b) ⊆ (0, 1), the
min/min ratio can distinguish between DNF and DHk. If (a, b) does not contain
at least one of the interval borders used by DHk, then DHk behaves exactly like
DNF. If (a, b) contains a DHk border, then we define, as in Section 2, 1

p as the

maximal border in (a, b).

Theorem 10. With item sizes in (a, b) ⊆ (0, 1), where 1
p ∈ (a, b), DHk has a

min/min ratio of 1 and DNF has a min/min ratio of max
{

1+ 1
p

1+b ,
pb
1+b

}
.

Note that
1+ 1

p

1+b < 1 is equivalent to 1
p < b, which follows from the definition and

maximality of 1
p . Furthermore, pb

1+b < 1 is equivalent to b < 1
p−1 , which is satisfied

as long as b is not equal to 1
p−1 . Thus, according to min/min analysis, DHk is

better than DNF when item sizes are restricted to an interval (a, b) ∈ (0, 1)
containing a DHk border, and b �= 1

p−1 where 1
p is the maximal border.

6 Uniform Distribution

In this section, we study the expected performance ratio of DNF and DHk on
sequences containing items drawn uniformly at random from the interval (0, 1).

The expected performance ratio ERU(A) is the ratio between the expected
performance of the algorithms A and Opt on sequences of length n, containing
items drawn uniformly at random from the interval (0, 1):

ERU(A) = lim
n→∞

EI∈Un(0,1)[A(I)]

EI∈Un(0,1)[Opt(I)]
.

Theorem 11. On a sequence containing items drawn uniformly at random from
the interval (0, 1),

ERU(DH2) =
1

2
+

1

e2 − e
≈ 0.7141 and

lim
k→∞

ERU(DHk) =
12 − π2

3
≈ 0.7101 .

This should be compared with a result from [10], showing that on a uniform
distribution, DNF has an expected performance ratio of 2

e ≈ 0.7358. Thus, under
this assumption, DNF is a little better than DHk.

236 M.G. Christ, L.M. Favrholdt, and K.S. Larsen

7 Concluding Remarks

Our starting point was the fact that the very different bin covering algorithms,
DNF and DHk, are not separated by competitive analysis. Thus, the question is
which algorithm to use in different scenarios. DHk was designed to guard against
worst-case sequences, and since these are often made up using pathological input,
mixing very large and very small items, we have carried out analyses using the
worst-case performance, but on restricted input of items of similar size. The
comparison is still in DHk’s favor, though less so. Under similar conditions,
Max/max analysis and relative worst order analysis also point to DHk.

In contrast, DNF is a little better than DHk when considering expected
performance under a uniform distribution. This seems fairly robust; even if we
add an element of worst-case requirements in the form of random order analysis,
DNF does not appear worse than DHk. Thus, even if an adversary gets to choose
the worst sequence for the algorithm, just the fact that the items are received
in the order of a random permutation removes DHk’s advantage over DNF.

Thus, unless guarantees are desired or it is known that items do not arrive in
a random order, it is worth considering DNF as the algorithm of choice.

DHk has a random order ratio of 1
2 , which is worst possible, whereas the

upper bound we have on DNF is 4
5 . We conjecture that these two algorithms

can be separated, and discuss this issue in rest of the section. It seems intuitively
almost obvious that DNF would always get a ratio larger than 1

2 . The difficulty
in establishing this formally stems from problems handling the size aspects using
probability theory. In the hardest case, there are a linear number of very large
items such that if they end up on top of each other pairwise, we get the ratio
of 1

2 . Thus, we need to prove that some fraction of these large items do not end
up pairwise on top of each other. The small items that would be packed with
the large items in an optimal packing can be cut into very small pieces so there
are orders of magnitude more small items than large items—but still of possibly
dramatically varying size, relatively. Whereas we have strong theoretical tools for
bounding the deviation from the expected number of items in certain locations
in the form of Chebyshev’s inequality, for instance, it is much harder to reason
regarding deviations from the expected size, and it is exactly the sum of sizes
of small items surrounding a large item that decides whether or not two large
items end up on top of each other.

Results on the random order ratio are often difficult to establish. An excep-
tionally tight result appears in [18], where it is shown that the random order
ratio of Next-Fit for bin packing is exactly 2. Note, however, that this result
does not give indication that the random order ratio of DNF for bin covering
should be 1

2 . The sequence establishing the lower bound of 2 consists of n items
of size 1

2 and kn items of size ε < 1
kn , for some large k. For a random ordering of

these items, each item of size 1
2 has a high probability of being combined with at

least one of the small items. For bin covering, the problem is reversed; we must
prove that each large item has a significant probability of being surrounded by
a sufficient volume of small items so that it will not go into the same bin as a
neighboring large item.

Online Bin Covering 237

References

1. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.-T.: On a dual version
of the one-dimensional bin packing problem. J. Algorithms 5(4), 502–525 (1984)

2. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11(1), 73–91 (1994)

3. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Trans. Algorithms 3(2) (2007)

4. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to
paging. J. Comput. Sys. Sci. 73(5), 818–843 (2007)

5. Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO
under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)

6. Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms
on access graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 195–206. Springer, Heidelberg (2013)

7. Boyar, J., Irani, S., Larsen, K.S.: A comparison of performance measures for online
algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS
2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009)

8. Boyar, J., Larsen, K.S., Maiti, A.: A comparison of performance measures via
online search. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and
FAW 2012. LNCS, vol. 7285, pp. 303–314. Springer, Heidelberg (2012)

9. Christ, M., Favrholdt, L.M., Larsen, K.S.: Online bin covering: Expectations vs.
guarantees. arXiv:1309.6477(cs.DS) (2013)

10. Csirik, J., Frenk, J.B.G., Galambos, G., Kan, A.H.G.R.: Probabilistic analysis of
algorithms for dual bin packing problems. J. Algorithms 12(2), 189–203 (1991)

11. Csirik, J., Totik, V.: Online algorithms for a dual version of bin packing. Discrete
Appl. Math. 21(2), 163–167 (1988)

12. Csirik, J., Woeginger, G.: On-line packing and covering problems. In: Fiat, A.,
Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 147–177.
Springer, Heidelberg (1998)

13. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. SIGACT News 36(3), 67–81 (2005)

14. Durrett, R.: Probability: Theory and Examples. Dixbury Press (1991)
15. Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List factoring and relative worst order

analysis. Algorithmica 66(2), 287–309 (2013)
16. Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Comparing online algorithms for bin

packing problems. J. Scheduling 15(1), 13–21 (2012)
17. Hoffmann-Jørgensen, J.: Probability with a View towards Statistics, vol. I. Chap-

man & Hall (1994)
18. Coffman Jr., E.G., Csirik, J., Rónyai, L., Zsbán, A.: Random-order bin packing.

Discrete Appl. Math. 156, 2810–2816 (2008)
19. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy

caching. Algorithmica 3, 79–119 (1988)
20. Kenyon, C.: Best-fit bin-packing with random order. In: SODA, pp. 359–364 (1996)
21. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. J. ACM 32(3),

562–572 (1985)
22. Ramanan, P.V., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear

time. J. Algorithms 10(3), 305–326 (1989)
23. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
24. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Comm. ACM 28(2), 202–208 (1985)
25. Woeginger, G.: Improved space for bounded space, on-line bin-packing. SIAM J.

Disc. Math. 6(4), 575–581 (1993)

Map of Geometric Minimal Cuts for General

Planar Embedding�

Lei Xu1, Evanthia Papadopoulou2, and Jinhui Xu1

1 Department of Computer Science and Engineering
State University of New York at Buffalo

Buffalo, NY 14260, USA
{lxu,jinhui}@buffalo.edu

2 Faculty of Informatics
Università della Svizzera italiana

Via Giuseppe Buffi 13
CH 6904 Lugano, Switzerland

evanthia.papadopoulou@unisi.ch

Abstract. In this paper, we consider the problem of computing the
map of geometric minimal cuts (MGMC) induced by a general planar
embedding (i.e., the edge orientation is either rectilinear or diagonal) of
a subgraph H = (VH , EH) of an input graph G = (V,E). The MGMC
problem is motivated by the critical area extraction problem in VLSI
layout and finds applications in several other areas. In this paper, we
extend an earlier result for planar rectilinear embedding to its more gen-
eral case. The increased freedom on edge orientation in the embedding
imposes new challenges, mainly due to the fact that the inducing re-
gion of a geometric minimal cut is no longer unique. We show that the
MGMC problem can be solved by computing the L∞ Hausdorff Voronoi
diagram of a set of rectangle families, each containing an infinite num-
ber of axis-aligned rectangles. By exploiting the geometric properties
of these rectangle families, we present an output-sensitive algorithm for
computing the Hausdorff Voronoi diagram in this general case which runs
in O((N + K) log2 N log logN) time, where K is the complexity of the
Hausdorff Voronoi diagram and N is the number of geometric minimal
cuts.

1 Introduction

In this paper, we consider the following problem, called Map of Geometric Min-
imal Cuts or MGMC problem: Given a graph G = (V,E) and an planar em-
bedding of a subgraph H = (VH , EH) of G with rectilinear or diagonal edges,
compute a map M of the embedding plane P of H so that for every point p ∈ P ,
the cell in M containing p is associated with the “closest” geometric cut (in G)
to p, where the distance between a point p and a cut C is defined as the max-
imum distance between p and any individual element of C. A geometric cut C

� The research of the third author was supported in part by NSF under grant
IIS-1115220.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 238–249, 2013.
c© Springer International Publishing Switzerland 2013

Map of Geometric Minimal Cuts for General Planar Embedding 239

of G is a set of edges and vertices in H that overlap a given geometric shape S
in P and whose removal from G disconnects G. In this paper we consider the
case where geometric cuts are induced by axis-aligned rectangles and distances
are measured by the L∞ metric. The main objective of the MGMC problem is
to compute the map M of all geometric minimal (or canonical) cuts (the exact
definition of geometric minimal cuts will be given in next section) of the planar
embedding of H .

The MGMC problem was introduced in [5] motivated by the VLSI critical area
computation problem. The critical area problem for various types of faults can
be reduced to different variants of Voronoi diagrams that lead to accurate critical
area extraction (see e.g., [4,6] and references therein). A VLSI net can be modeled
as a graph G = (V,E) with a subgraph embedded on every conducting layer. A
subgraph H = (VH , EH) on a layer X is vulnerable to random defects associated
with layer X . Defects on layer X may create cuts on graph G that result in
disconnecting the net N . The Voronoi framework for critical area extraction
asks for a subdivision of layer X into regions that reveal for every point p the
radius of the smallest disk centered at p inducing a cut of G.

The MGMC problem was first addressed in [5,6], based on higher order
Voronoi diagrams and an iterative process to determine min-cuts that resulted in
the L∞ Hausdorff Voronoi diagram of all geometric min-cuts. In [7] the rectilin-
ear version of the problem was considered and an output sensitive approach was
proposed that first computed all possible geometric min-cuts and then directly
computed the L∞ Hausdorff Voronoi diagram, where each geometric min-cut in-
duced an axis-aligned rectangle representing its minimum inducing region. The
MGMC problem is also closely related to the farthest line-segment Voronoi dia-
gram which has constant complexity for non-crossing line segments [2].

2 Geometric Cuts

Let G = (V,E) be the undirected graph in an MGMC problem and H =
(VH , EH) be its planar subgraph embedded in the plane P with |V | = NG,
|E| = MG, |VH | = n, and |EH | = m. Due to the planarity of H , m = O(n).
Edges in H are straight line segments with rectilinear or diagonal orientation. A
pair of vertices u and v in a graph is connected if there is a path in this graph
from u to v, and disconnected otherwise. A graph is connected if every pair of its
distinct vertices is connected. Without loss of generality (WLOG), we assume
that G is connected. A cut C of G is a subset of edges in G whose removal
disconnects G. A cut C is minimal if removing any edge from C no longer forms
a cut.

Definition 1 (see [7]). Let R be a connected region in P , and C = R ∩H be
the set of edges in H intersected by R. C is called a geometric cut induced by
R if the removal of C from G disconnects G. A geometric cut C is called a 1-D
geometric cut (or a 1-D cut) if R(C) is a segment. If R(C) is an axis-aligned
rectangle, then C is called a 2-D geometric cut (or a 2-D cut). A geometric cut

240 L. Xu, E. Papadopoulou, and J. Xu

1

2

3

4

1 2

3

R(C)left R(C)right

(a) (c)(b)

1

2

Fig. 1. (a) R(C) of a 2-D cut C is bounded by 4 edges. (b) Each vertical line segment
between R(C)left andR(C)right (gray region) forms a 1-D cut {1, 2}. (c) Two minimum
reducing regions (dashed and dotted rectangles) of geometric cut {1,2,3}.

C is a geometric minimal cut if the set of edges intersected by any rectangle
shrinking from R(C) is no longer a cut.

When there is no ambiguity of the region R, we often call the cut induced by
R as a geometric cut for simplicity. For a given cut C, its minimum inducing
region R(C) is the minimum axis-aligned rectangle which intersects every edge
of C. For some geometric cut C, its R(C) could be degenerated into a horizontal
or vertical line segment, or even a single point. If R(C) is not a point, it may
not be fixed for a given geometric minimal cut C (see Figure 1).

Let B(C) denote the set of edges bounding a geometric minimal cut C (i.e.,
the set of edges in C intersecting R(C)). Due to the minimality nature of C,
removing any edge in B(C) will lead to a non-cut. This means that any edge in
B(C) is necessary for forming the cut. However, this is not necessarily true for
edges in C \ B(C). Thus, a geometric minimal cut may not be a minimal cut.
This also explains why the number of geometric minimal cuts is polynomial and
the number of minimal cuts is exponential [7].

Clearly edges in B(C) define the boundary position of R(C). However, it is
not true that all edges in B(C) are needed to define R(C).

Lemma 1. For any 1-D (or 2-D) geometric minimal cut, the number of edges
in B(C) needed to define R(C) is at most two (or four) (see Figure 1(a)).

For simplicity, we assume thereafter that B(C) contains only those edges
which are barely sufficient to define R(C).

For a 1-D cut C, the location of R(C) may not be fixed, since there may
be an infinite number of 1-D cuts cutting the same set of edges (see Figure
1(b)). For a 2-D cut C, it is also possible that R(C) is not fixed due to the
appearance of diagonal oriented edge(s) in B(C). For example, if the vertex of
R(C) incident to a diagonal oriented edge e ∈ B(C), moving the vertex along e
continuously could generate an infinite number of different R(C). In Figure 1(c),
two minimum inducing regions represented by dotted and dashed rectangles are
induced by the geometric cut {1, 2, 3}.
Lemma 2. For a given geometric minima cut C, if R(C) is not fixed, the num-
ber of R(C) is infinite.

Map of Geometric Minimal Cuts for General Planar Embedding 241

Note that in the presence of non-fixed inducing region, the computation of
map M is quite different. In this case, if point p ∈ P falls in the cell of a geometric
minimal cut C, p is closer to one of its R(C) than to all R(C′) of any other cut
C′. Thus the MGMC problem is to construct a Hausdorff Voronoi diagram of
which each cell corresponding to a geometric minimal cut C is a union of its
R(C). The main challenge is to efficiently deal with those Voronoi cell owned by
an infinite number of rectangles corresponding to the same geometric minimal
cut.

3 Identifying Geometric Minimal Cuts and Minimum
Inducing Regions

To compute the map M of geometric minimal cuts, we first identify all possible
geometric minimal cuts and then construct the Hausdorff Voronoi diagram of
their infinite number of minimum inducing regions.

3.1 Computing Geometric Minimal Cuts

To identify all 1-D and 2-D geometric minimal cuts, we adopt the algorithm
proposed in [7]. In [7], it has shown that all geometric minimal cuts induced
by a planar rectilinear embedding of H can be identified in a worst case
O(n3 logn(log logn)3) time and in O(n log n(log logn)3) time if the maximum
size of the cut is bounded by a constant.

3.2 Computing Minimum Inducing Regions

(a) (d)(c)(b)

e1

e2

e3

e4

e6

e1

e2

e3

e4

e5e5
e5

e1e1

e2e2

e3e3

e4e4

R1(C)

R2(C)

R1 R2

Fig. 2. (a) R1 with 2 neighboring crossings {e3, e4} is not an R(C). (b) R2 with 2
opposite crossings {e1, e4} is an R(C). (c) Compute e5 by {e1, e2, e3}. (d) Compute
{e5, e6} by {e1, e3}.

First, we emphasize that the methods of computing minimum inducing regions
described in this section actually can be applied to arbitrary planar embedding of
H . Given a set C of geometric minimal cuts of H , we need to first identify their
minimum inducing regions before computing the Hausdorff Voronoi diagram.
For a given cut C ∈ C, from our previous discussion we know that R(C) may

242 L. Xu, E. Papadopoulou, and J. Xu

not be unique. If R(C) is fixed, R(C) is bounded by the edges in B(C) and
can be computed in O(1) time. If R(C) is not fixed, we know (from Lemma
2) that there are infinite number of R(C)s. Thus it is impossible to compute
the Hausdorff Voronoi diagram for all such R(C)s. To overcome this difficulty,
our main idea is to find a discrete representation to capture the behaviors of all
possible R(C)s. In other words, we need to find a small set of extreme R(C)s
to represent the infinite number of R(C)s. To achieve this goal, our idea is to
analyze the geometric properties of all R(C)s. For instance, if R(C) is not fixed
for a given 1-D cut C, it is easy to see that each R(C) is bounded by the two
extreme 1-D cuts R(C)left and R(C)right (or R(C)top and R(C)bottom), and the
two bounding edges in B(C) (see Figure 1(b)). For a 2-D cut C, it is more
complicated since (1) B(C) contains up to 4 edges and (2) one or more edges
could be arbitrarily orientated. From now on, we assume that B(C) consists of 4
non-rectilinear edges. We focus on this case since all the other cases are simpler
and can be handled similarly. Thus we omit the details for other cases in this
extended abstract.

Definition 2. B(C) is general if it contains 4 non-rectilinear edges.

Definition 3. Given an edge e of a general B(C), e is crossing (or tangent
to) a rectangle R if e intersects R twice (or once). Each intersection is called a
crossing (or tangency) between B(C) and R. (see Figure 2(b))

To better understand these concepts, consider the geometric minimal cut C =
{e1, e2, e3, e4} shown in Figure 2. R1 is not a minimum inducing region of C since
shrinking it a little bit still cuts C. e2 (e3) is tangent to R2. R2 is an R(C) with
2 crossings {e1, e4}.
Lemma 3. Given a geometric minimal cut C, if R(C) is not unique, the number
of crossing between B(C) and any R(C) is at most 2. If it is 2, the two crossings
are not neighboring to each other.

Proof. Clearly it is sufficient to prove that there is no pair of neighboring cross-
ings. Suppose that this is not true. We can shrink R(C) by moving the boundary
edge of R(C) connecting the two neighboring crossings toward its opposite edge
by a small distance and R(C) still cuts all edges in C. This is a contradiction. ��

Thus, to find all R(C)s, we have two cases to consider, (1) the number of cross-
ing is 1 and (2) the number of crossings is 2. For case (1), we explain our idea by
an example. In Figure 2(c), a general B(C) contains 4 edges {e1, e2, e3, e4} with
slopes {κ1, κ2, κ3, κ4} respectively. A rectangle (shown by dashed line) tangent to
{e1, e2, e3} respectively and crossed by e4 is a minimum inducing region R1(C).
Another rectangle (shown by dotted line) tangent to the same set of edges as
R1(C) forms another minimum inducing region R2(C). R2(C) is also crossed by
e4. For all R(C)s tangent to e1, e2, e3, their corner points which are not on any
edge of B(C) induce a new edge e5 (i.e., union of all such corner points forms
an edge), called skating edge. The skating edge e5 can be easily computed from
{e1, e2, e3}. Given a set of 4 edges {e1, e2, e3, e5}, if we move a point p along

Map of Geometric Minimal Cuts for General Planar Embedding 243

the valid interval of e1, each p corresponds to exactly one minimum inducing
region R(C). Note that the valid interval in which R(C) exists can be easily
computed. Thus we call {e′1, e′2, e′3, e5} a configuration of R(C), where e′i is the
valid interval of ei for i ∈ {1, 2, 3}. For case (2), as shown in Figure 2(d), the
dotted and dashed rectangles are tangent to e2 and e3 respectively. Similar to
case (1), we can also compute two skating edges e5 and e6 for all R(C)s tangent
to e2 and e3. For any three edges of B(C), the corresponding configuration can
be computed in either case (1) or (2). Thus we have the following lemma.

Lemma 4. Given a geometric minimal cut C, R(C) has at most 4 configura-
tions and each configuration is a set of 4 edges.

For a general B(C), we only need to find a set of 4 configurations to represent
all its R(C)s.

Lemma 5. Given a geometric minimal cut C, the representation of R(C) (i.e.,
all configurations if R(C) is not unique) can be computed in O(|B(C)|) time.

4 Generating Map of Geometric Minimal Cuts

Given a set C of geometric minimal cuts of H , the Hausdorff Voronoi diagram of
C is a partition of the embedding plane P of H into regions (or cells) so that the
Hausdorff Voronoi cell of a cut C ∈ C is the union of all points whose Hausdorff
distance to some R(C) is closer than to any minimum inducing region of other
cuts in C.

In our MGMC problem, we have four types of objects, the fixed and non-
fixed minimum inducing regions of 1-D geometric minimal cuts and the fixed
and non-fixed minimum inducing regions of 2-D geometric minimal cuts. As it is
well known, the Hausdorff Voronoi diagram can be viewed as the intersections of
wavefronts propagating from each object with unit speed. Thus our construction
of the Hausdorff Voronoi diagram uses the wave propagation concept. We focus
on the discussion of 2-D R(C)s since the same idea can be applied to the 1-D
case. More specifically, for non-fixed R(C), we assume that B(C) is general. We
have two types of objects to consider, the fixed rectangle R(C) and the union
of non-fixed rectangle UR(C). To visualize the whole growing process, we can
lift the waves to 3D with time being the third dimension and thus each object
corresponds to a 3D cone. We will discuss the properties of 3D cones of R(C)
and UR(C) in the next section.

Lemma 6 (see [7]). The Hausdorff Voronoi diagram can be obtained by pro-
jecting the lower envelope of the 3D facet cones to the xy plane.

4.1 Properties and Plane Sweep Approach

Lemma 7. Let C be a 2-D geometric minimal cut with a fixed R(C). At any
moment, the wavefront of R(C) is either empty or an axis-aligned rectangle.
Furthermore, the wavefront in 3D is a facet cone apexed at a segment and with
each facet forming a 45 degree angle with the xy plane. (see Figure 3)

244 L. Xu, E. Papadopoulou, and J. Xu

(a) (b)

Fig. 3. (a) The wavefront (dashed line) of a fixed R(C)
(solid line). (b) Its corresponding 3D V -cone. Note that
the bold dashed line in (a) is corresponding to the bold
solid line in (b).

RU

RV

Rsquare

e1U

e1V

e4Ve2V

e3V

e4U
e2U

e3U

Fig. 4. Rsquare (bold
line), RU (dashed line)
and RV (dotted line)

Definition 4. Given a fixed R(C), a 3D facet cone ∂W (C) is a U -cone (or
V -cone) if its apex segment sC is parallel to the y (or x) axis. (see Figure 3(b))

Next we discuss the properties of the wavefront of UR(C) of a general B(C).
By Lemma 4, we know that UR(C) is represented by at most 4 configurations
UR1(C), UR2(C), UR3(C) and UR4(C), with each corresponding to a 3D wave-
front. The 3D wavefront of UR(C) is simply the lower envelope of the wavefronts
of the four configurations (looking from −∞ of the z axis). Since the prop-
erty of each wavefront is the same, we only need to focus on one configuration
UR1(C) = {e1, e2, e3, e4}.
UR1(C) is the union of an infinite number of R(C)s. It is possible that some

of them have U -cones as their 3D wavefronts and the others have V -cones as
their 3D wavefronts. To distinguish these R(C)s, we further classify UR1(C)
into two sub-configurations UR1U (C) = {e1U , e2U , e3U , e4U} and UR1V (C) =
{e1V , e2V , e3V , e4V } such that any rectangle from UR1U (C) (or UR1V (C)) gen-
erates only U -cone (or V -cone). The computation of UR1U (C) and UR1V (C)
can be done in O(1) time since we only need to check the position of the square
(denoted by Rsquare in Figure 4) of UR1(C) if it exists. All the rectangles of
UR1(C) with length bigger (or smaller) than the width form U -cones (or V -
cones). In Figure 4, RU (or RV) is a minimum inducing region corresponding
to an U - (or V -) cone in 3D. Now we analyze the property of the wavefront of
UR1U (C) and UR1V (C) respectively.

To better illustrate the whole growing process of the wavefront of UR1U (C) =
{e1U , e2U , e3U , e4U}, we first choose 3 rectangles {Rmin, Rmid, Rmax} such that
Rmin (or Rmax) is an extreme rectangle of UR1U (C) in which the difference
between the length and width is minimum (or maximum). Rmid is any rectangle
in between. We first analyze the wavefront of these three rectangles and then
generalize the idea to all rectangles in UR1U (C).

Since the Hausdorff distance to a rectangle Rmin is determined by the four
corner points, an equivalent view is to propagate 4 separated waves from the 4

Map of Geometric Minimal Cuts for General Planar Embedding 245

Rmin Rmid

Rmax
Smin

WRmin

Smid

WRmin

WRmid

Smax WRmin

WRmid

WRmax

(a) (b)

(c) (d)

Fig. 5. The growing process of the wavefront for 3 rectangles

corner points of Rmin with each being an L∞ ball. Let B1min, B2min, B3min

and B4min be the 4 L∞ balls of Rmin. The common intersection of the 4 balls
are the wave WRmin of Rmin. We grow the 4 corner balls of Rmid and Rmax

in the same way and denote their waves by WRmid and WRmax respectively.
Initially, both of them are empty. We call it stage 1. Once the size of the 4
balls of Rmin reaches the minimum Hausdorff distance to Rmin, their common
intersection forms a segment smin located at the center of Rmin and parallel to
the shorter side of Rmin (see Figure 5(a)). As Bimin grows, WRmin becomes
a rectangle. Later, smid appears when the size of the 4 balls of Rmid reaches
the minimum Hausdorff distance to Rmid and intersects WRmin (see Figure
5(b)). After that, WRmid grows in the same way as WRmin does. Finally, smax

appears and intersects the above two rectangles (see Figure 5(c)). We call the
above procedure stage 2. In stage 3, all 3 rectangles grows simultaneously (see
Figure 5(d)).

To analyze the wavefront WUR1U (C) of UR1U (C), we generalize the above
discrete process by replacing Rmid with the union of all rectangles between Rmid

and Rmax. It is easy to see the shape of WUR1U (C) at each stage. In stage 1,
WUR1U (C) is empty. In stage 2, WUR1U (C) is a segment smin. WUR1U (C)
keeps the shape as a hexagon (see Figure 6(a)) until smax appears. Each non-
rectilinear edge of the hexagon is parallel to {e1U , e2U , e3U , e4U} respectively. In
stage 3, WUR1U (C) is an octagon, since each endpoint of smax grows to an
segment paralleled to the x-axis. We denote the two endpoints of smin (or smax)
as pamin and pbmin (or pamax and pbmax). ea (or eb) is the straight line segment
between pamin and pamax (or pbmin and pbmax) (see Figure 6(b)). The property
of wavefront of UR1V (C) is the same except that everything in each stage is
rotated counterclockwise by 90-degree.

246 L. Xu, E. Papadopoulou, and J. Xu

(a)

Smax
Hexagon OctagonSmin

Smax Smin

pamax

pamin

pbmin

pbmax

ea

eb

(b)

Fig. 6. (a) The growing process of wavefront WUR1U (C). (b)ea and eb.

la lb

(a) (b)
V -shape curve

U -shape curve

(c)

1 2 3 4

5

1
2
3

4

U -shape curve

Fig. 7. (a) CV -cone. (b) 5 stages of sweeping CV -
cone. (c) 4 stages of sweeping CU -cone (view the
process by rotated 90-degree).

(a) (b)

Fig. 8. (a) stage 4 (b) stage 5

To better understand the whole growing process, we lift the wavefront
WUR1U (C) to 3D, with time being the third dimension (see Figure 7(a)). The
following lemma summarizes the main properties of the growing process.

Lemma 8. Let C be a 2-D geometric minimal cut with non-fixed R(C). At
stage 1, the wavefront WUR1U (C) (or WUR1V (C)) is empty. At stage 2 (or
3), WUR1U (C) (or WUR1V (C)) is a hexagon (or an octagon) with the property
discussed above. Furthermore, the wavefront in 3D is a facet cone apexed at a
segment and with each facet forming a 45 degree angle with the xy plane. It is a 6-
sided (or 8-sided) facet cone in stage 2 (or 3). Let la and lb be the top and bottom
(or left and right) edge of the 6-sided facet cone of WUR1U (C) (WUR1V (C))
at stage 2. Then ea (or eb) is the projection of la (or lb) on the xy plane.

Definition 5. Given a non-fixed R(C) and one of its sub-configuration I, a
3D facet cone ∂WI(C) is a CU -cone (or CV -cone) if its apex segment smin is
parallel to the y (or x) axis.

By the above lemma, CU -cone (or CV -cone) has 6 facets at stage 2 and 8
facets at stage 3. Thus we totally have 4 types of objects in 3D, U -cone, V -cone,
CU -cone and CV -cone.

Lemma 9. The wavefront of UR(C) can be represented by at most 4 CU -cones
and 4 CV -cones.

To efficiently construct the Hausdorff Voronoi diagram HVD(C), we follow
the spirit of Fortune’s plane sweep algorithm for points [3], and sweep along the

Map of Geometric Minimal Cuts for General Planar Embedding 247

x axis direction a tilted plane Q in 3D which is parallel to the y axis and forms a
45 degree with the xy plane. Q intersects the xy plane at a sweep line L parallel
to the y axis.

Since every facet of a 3D facet cone forms a 45 or 135-degree angle with the xy
plane and apexed at either a horizontal or vertical segment, at each moment, the
intersection of Q and a cone ∂WI(C) is either a V -shape curve (i.e., consisting
of a 45-degree ray and a 135-degree ray on Q) or a U -shape curve (i.e., consisting
of a 45-degree ray, a segment parallel to L, and a 135-degree ray). When the cone
is first encountered, it introduces either a V -shape curve or a U -shape curve to
Q. When L (or Q) moves, the curve grows and its shape may change from a
V -shape to a U -shape. In addition, the height of the apex of a V -shape curve
could change due to the existence of CV -cones. For both CU -cone and CV -
cone, the 45-degree and 135-degree ray of a U -shape curve could move along the
y direction on Q. Next, we discuss the intersection between each type of cones
and Q in details.

First we consider U cones. Let ∂W (C) be any U cone with apex segment
sC , and v1 and v2 be the two endpoints of sC . When the sweep plane Q first
encounters ∂W (C), it introduces a U -shape curve Cu to Q. Let rl, rr, and sm
be the left and right rays and the middle segment of Cu respectively. Initially
sm is the apex segment sC , and rl and rr are the two edges of facet cone. When
Q (or L) moves, Cu grows and always maintains its U -shape.

Lemma 10 (see [7]). Let ∂W (C), Cu, rl, rr and sm be defined as above. When
Q moves in the direction of the x axis, Cu is always a U -shape curve. The
supporting lines of rl and rr remain the same on Q, and the two endpoints of
sm (the fixed points of rl and rr) moves upwards in unit speed along the two
supporting lines.

Let ∂WI(C) be any CU -cone with apex segment smin, and pamin and pbmin be
the two endpoints of smin. When the sweep plane Q first encounters ∂WI(C),
it introduces a U -shape curve Ccu to Q. Let rl, rr, and sm be the left and right
rays and the middle segment of Ccu respectively.

Lemma 11. Let ∂WI(C), Ccu, rl, rr and sm be defined as above. When Q
moves in the direction of the x axis, Ccu is always a U -shape curve (i.e., at each
moment, rl and rr remain 45-degree and 135-degree respectively.). The whole
process can be divided into 4 stages (see Figure 7(c)). At stage 1, sm is the apex
segment sMM which is the edge of rectangle RI parallel to y-axis with smaller
x coordinate. RI is the rectangle growing from smin at the moment when smax

appears. At stage 2, sm moves in unit speed downwards from sMM to smin with
its two endpoints staying on la and lb respectively. At stage 3, sm moves in unit
speed upwards from smin to SNN with its two endpoints staying on la and lb
respectively. SNN is the edge of rectangle RI parallel to sMM . At stage 4, two
endpoints of sm moves upwards in unit speed along rl and rr.

For an arbitrary V cone ∂W (C′), let sC′ be its apex segment, and v′1 and v′2
be its two endpoints (or left and right endpoints). When Q first touches ∂W (C′)

248 L. Xu, E. Papadopoulou, and J. Xu

at v′1, it generates a V -shape curve C′
v. C

′
v remains a V -shape curve before

encountering v′2. After that, C′
v becomes a U -shape curve.

Lemma 12 (see [7]). Let rl and rr be the two rays of C′
v, and sm be the middle

segment of the U -shape curve C′
v after Q visiting v′2. During the whole sweeping

process, the supporting lines of rl and rr are fixed lines on Q. C′
v remains the

same V -shape curve on Q before encountering v′2. sm moves upwards in unit
speed along the supporting lines of rl and rr after Q encounters v′2.

For an arbitrary CV -cone ∂WI(C′), let s′min be its apex segment, and pa′min

and pb′min be its two endpoints (or left and right endpoints).

Lemma 13. The whole sweeping process of a CV -cone can be divided into 5
stages (see Figure 7(b)). At stage 1, when Q first touches ∂WI(C′) at pa′max, it
generates a V -shape curve Ccv. At stage 2, Ccv is still a V -shape curve moving
in unit speed downwards from pa′max to pa′min with its apex staying on l′a. At
stage 3, Ccv remains the same V -shape curve on Q before encountering pb′min.
At stage 4, Ccv is a 4-edge V -shape curve (see solid lines in Figure 8 (a)) moving
in unit speed upwards from pb′min to pb′max with its apex staying on l′b. At stage
5, after Q encounters pb′max, Ccv becomes an 5-edge U -shape curve (see solid
lines in Figure 8 (b)) with the middle segment s′m moves upwards in unit speed
along the fixed supporting lines of r′l and r′r on Q.

The 4-edge V -shape curve (5-edge U -shape curve) is essentially a union of U-
shape curves if a V -shape is considered as a degenerated case of U -shape curve
(See dotted lines in Figure 8 (a)). Two of those U -shape curves are shown at
dotted lines in Figure 8. For each 4-edge V -shape curve (5-edge U -shape curve),
we divide it to two curves, one curve with 45 and 135 degrees lines and another
curve with the rest. Instead of working on the 4-edge V -shape curve and 5-edge
U -shape curve directly, we convert each of them to the normal U or V -shape
curve by computing the intersections with other curves on the beach line. Since
any two curves may intersect at most twice, the same complexity will be kept
of the beach line as [7]. Thus, even though there are 4 types of cones, at each
moment, we only have U and V -shape curves on Q. We have two cases in which
a hidden U or V -shape curve could appear in the beach line instead of only one
case as in [7].

Lemma 14. Let ∂W (C1) be either a U or V cone and ∂W (C2) be a V cone
with its left endpoint v1 of sC2 being inside of ∂W (C1) and its right endpoint
v2 being outside of ∂W (C1). If ∂W (C2) is not entirely contained by the union
∪Ci∈C;Ci 	=C2∂W (Ci), the V -shape curve C2 introduced by ∂W (C2) will be hidden
by the beach line at the beginning and then becomes part of the beach line later.
This is the first case in which a hidden U or V -shape curve could appear in the
beach line.

Lemma 15. Let ∂W (C′
1) be any type of cone and ∂W (C′

2) be a CV -cone
with pa′max or pa′min being inside of ∂W (C′

1) and its right endpoint pb′min

being outside of ∂W (C′
1). If ∂W (C′

2) is not entirely contained by the union

Map of Geometric Minimal Cuts for General Planar Embedding 249

∪Ci∈C;Ci 	=C′
2
∂W (Ci), the V -shape curve C′

2 introduced by ∂W (C′
2) will be hidden

by the beach line at the beginning and then becomes part of the beach line later.
This is the second case in which a hidden U or V -shape curve could appear in
the beach line.

Lemma 16. Let C be a set of N minimal geometrical cuts. The edges of HVD(C)
are either segments or rays, and the vertices of the HVD(C) are either the ver-
tices of bisectors or the intersections of bisectors.

Lemma 17. The size K of the L∞ Hausdorff Voronoi diagram of N minimum
geometrical cuts is O(N+M ′), where M ′ is the number of intersecting minimum
inducing region pairs. The bound is tight in the worst case.

4.2 Events, Data Structures and Algorithm

To implement the plane sweep algorithm, we use similar data structures as in
[7] with one modification for handling V events. To efficiently detect all possible
V events, our idea is to process the apex points of all V -shape curves, including
(1) the left endpoint of a V-cone’s apex segment and (2) pamax and pamin of a
CV -cone into the 3D dynamic range search tree data structure MD. Thus we
are able to handle all events efficiently in a similar way as [7].

Theorem 1. The L∞ Hausdorff Voronoi diagram HVD(C) of a set C of geo-
metric minimal cuts can be constructed by a plane sweep algorithm in O((N +
K) log2N log logN) time, where N = |C| and K is the complexity of the Haus-
dorff Voronoi diagram.

References

1. Abellanas, M., Hernandez, G., Klein, R., Neumann-Lara, V., Urrutia, J.: A Combi-
natorial Property of Convex Sets. Discrete & Computational Geometry 17, 307–318
(1997)

2. Dey, S.K., Papadopoulou, E.: The L∞(L1) Farthest Line-Segment Voronoi diagram.
In: The Ninth International Symposium on Voronoi Diagrams in Science and Engi-
neering, pp. 49–55 (2012)

3. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174
(1987)

4. Papadopoulou, E.: Critical area computation for missing material defects in VLSI
circuits. IEEE Transactions on Computer-Aided Design 20(5), 583–597 (2001)

5. Papadopoulou, E.: Higher order Voronoi diagrams of segments for VLSI critical
area extraction. In: The Eighteenth International Symposium on Algorithms and
Computation, pp. 716–727 (2007)

6. Papadopoulou, E.: Net-aware critical area extraction for opens in VLSI circuits via
high-order Voronoi diagram. IEEE Transactions on Computer-Aided Design 20(5),
583–597 (2011)

7. Xu, J., Xu, L., Papadopoulou, E.: Computing the Map of Geometric Minimal
Cuts. In: The Twentieth International Symposium on Algorithms and Computation,
pp. 244–254 (2009)

8. Xu, J., Xu, L., Papadopoulou, E.: Map of Geometric Minimal Cuts with Applica-
tions. In: Handbook of Combinatorial Optimization, 2nd edn. Springer (2013)

A New Approach to the Upper Bound

on the Average Distance from the Fermat-Weber
Center of a Convex Body�

Xuehou Tan1,2 and Bo Jiang1

1 Dalian Maritime University, Linghai Road 1, Dalian, China
2 Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan

tan@wing.ncc.u-tokai.ac.jp

Abstract. We show that for any convex body Q in the plane, the av-
erage distance from the Fermat-Weber center of Q to the points in Q is

at most 99−50
√

3
36

·Δ(Q) < 0.3444 ·Δ(Q), where Δ(Q) denotes the diam-

eter of Q. This improves upon the previous bound of 2(4−√
3)

13
· Δ(Q) ≈

0.3490 · Δ(Q), due to Dumitrescu, Jiang and Tòth. Our new method
to evaluate the average distance from the Fermat-Weber center of Q is
to transform Q into a circular sector of radius Δ(Q)/2. Some points of
Q may decrease their distances to the Fermat-Weber center in Q after
the transformation, but the total amount of varied distances can be well
controlled. Our work sheds more light on the conjectured upper bound
Δ(Q)/3.

1 Introduction

The Fermat-Weber center of a measurable planar set Q with positive area is a
point in the plane, such that the average distance from it to the points in Q is
minimal. Clearly, the Fermat-Weber center gives the ideal location, say, for a
fire station that serves the region Q. The classical Fermat-Weber problem is to
find a point in a set F of feasible facility locations, which minimizes the average
distance to the points in a set D of (possibly weighted) demand locations. For
a survey of the Fermat-Weber problem, see [10]. Related work on the Weber
problem can also be found in [7].

Let ‖pq‖ denote the Euclidean distance between two points p and q in
the plane, and pq the line segment with two endpoints p and q. For a mea-
surable set Q with positive area and a point y in the plane, we denote by
μQ(y) the average distance between y and the points x in Q, that is, μQ(y) =∫
x∈Q

‖xy‖dx/area(Q), where area(Q) denotes the area of the body Q. Let FWQ

be a point for which this average distance is minimal, namely, μQ(FWQ) =
miny μQ(y). We simply write μ∗

Q = μQ(FWQ). The point FWQ is a Fermat-
Weber center of Q. (Note that Q may be non-convex.)

� This work was partially supported by the Grant-in-aid (MEXT/JSPS KAKENHI
23500024) for Scientific Research from Japan Society for the Promotion of Science
and by National Natural Science Foundation of China under grant 61173034.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 250–259, 2013.
c© Springer International Publishing Switzerland 2013

On the Fermat-Weber Center of a Convex Body 251

In this paper, we restrict our attention to convex bodies. Clearly, FWQ ∈ Q if
Q is convex. Let c denote the supermum and c′ denote the infimum of μ∗

Q/Δ(Q)
over all convex bodies Q in the plane, where Δ(Q) denotes the diameter of Q.
Carmi, Har-Peled and Katz conjectured that c = 1

3 and c′ = 1
6 [4]. Note that the

supermum c is attained for a circular disk D since μ∗
D = Δ(D)

3 , and the infimum
c′ can be achieved by constructing a flat rhombus Pε such that μ∗

Pε
tends to

Δ(Pε)
6 [4,6].
Carmi, Har-Peled and Katz were the first to show that 1

6 ≤ c′ ≤ 1
7 [4], and

the lower bound for c′ was later improved by Abu-Affash and Katz from 1
7 to

5
24 [1]. Very recently, Dumitrescu, Jiang and Tóth have proved that c′ = 1

6
[6]. For the other conjecture of c = 1

3 , Abu-Affash and Katz were the first to
show that c ≤ 2

3
√
3
[1]. Their method is to transform P into several circular

sectors, without decreasing the distance of any point to the considered center.
Dumitrescu, Jiang and Tóth further refined the analysis of Abu-Affash and Katz,

and showed that c ≤ 2(4−√
3)

13 [6]. The previously known methods have a limit
in proving the conjectured value of c = 1

3 , as they do not handle the situation
in which the distances of the transformed points to the considered center are
decreased [1,6].

The main contribution of this paper is to prove that μ∗
Q < 99−50

√
3

36 ·Δ(Q) <
0.3444 · Δ(Q). Our upper bound is rather close to the conjectured value of
Δ(Q)/3, as the difference between them is less than 0.0111. Moreover, our
proof is simple and straightforward, since it is based on elementary geometric
transformations.

As in the previous work [1,6], we actually give an upper bound on the average
distance to the points in Q from the center of the smallest enclosing circle of
Q. A new idea to evaluate the average distance from the Fermat-Weber center
of Q is to transform Q into a circular sector of radius Δ(Q)/2. Some points
of Q may decrease their distances to the Fermat-Weber center in Q after the
transformation, but the total amount of varied distances can be well controlled.

2 Preliminaries

We first review some known results related to our work. A curve of constant width
is a convex planar shape whose width, defined as the perpendicular distance
between two distinct parallel lines each intersecting its boundary at a single
point, is the same regardless the direction of those two parallel lines. For instance,
the width of a circle as well as the width of the Reuleaux triangle is constant:
its diameter.

A basic result on curves of constant width is Barbier’s theorem, which states
that the perimeter of any curve of constant width is equal to the width multiplied
by π.

252 X. Tan and B. Jiang

The isoperimetric inequality is a geometric inequality involving the square of
the circumference of a closed curve in the plane and the area of a plane region
it encloses, as well as its various generalizations [3,5,9]. Isoperimetric literally
means ”having the same perimeter”. Specifically, the isoperimetric inequality
states, for the length L of a closed curve and the area A of the planar region
that L encloses, that 4πA ≤ L2, and that the equality holds if and only if the
curve is a circle.

By the isoperimetric inequality and Barbier’s theorem, one can obtain the
”isodiametric” theorem: In the class of all plane convex sets of diameter at most
one, the circle of unit diameter has the largest area (see Section 11.3 of [3].) In

our terminology, we have area(Q) ≤ (Δ(Q)
2)2π, where Δ(Q) denotes the diameter

of a convex body Q.
From the definition of the Fermat-Weber center, we can simply make the

following observations.

Observation 1. Let T be a circular sector of radius r and center angle α in the
plane, and let o be the center of the sector T . Then,

μT (o) =

∫ r

0 αx
2 dx∫ r

0 αx dx
=
αr3/3

αr2/2
=

2r

3
.

Observation 2. Let X, Y be two (not necessarily convex) bodies of the same
area, and let p be a point in the plane. If the distance of a point of X − (X ∩ Y)
from p is no more than that of any point of Y − (X ∩ Y), then μX(p) ≤ μY (p).

1

The following result is also needed for our proof of c ≤ (99− 50
√
3)/36.

Theorem 1. [8]. Let S be a set of diameter Δ(S) in the plane. Then, S is
contained in a circle of radius Δ(S)/

√
3.

3 1/3 ≤ c ≤ (99 − 50
√
3)/36

Let P be a convex body in the plane. Denote by o and R the center and the
radius of the smallest enclosing circle of P , respectively. From the convexity of
P , we have o ∈ P . It has been shown by Abu-Affash and Katz that P can be
transformed into a circular sector T of center angle α (≤ 2π) and radius at most
R, such that area(P) = area(T) and μP (o) ≤ μT (o) ≤ 2R/3 [1]. The following
result immediately follows.

Lemma 1. (See [1]) In the special case that the radius R of the smallest en-
closing circle of P is equal to Δ(P)/2, μ∗

P ≤ Δ(P)/3.

1 This result is used several times in the proof of Theorem 3.3 of [1].

On the Fermat-Weber Center of a Convex Body 253

For ease of presentation, assume below that Δ(P) = 1 and 1/2 < R ≤ 1/
√
3.

Denote by Dr the disk of radius r, centered at o, and area(Dr) the area of Dr.
Also, we denote by Ar the set of the points of P , which are outside of Dr, and
area(Ar) the total area of the regions formed by the points of Ar.

We will first describe a method to transform P into a disk Dt, t < 1/2. Next,
we describe a transformation from P into a circular sector of radius 1

2 . We show
that area(A 1

2
) is only a small portion (near a seventh) of area(P). Since the

decreased distance for any point of A 1
2
in our transformation is no more than

(1/
√
3− 1/2), a careful calculation gives c ≤ 99−50

√
3

36 < 0.3444.

3.1 Transforming P into a Disk

From the ”isodiametric” theorem [3], we can assume that area(P1) = t2π holds
for some t < 1/2. Thus, P can be transformed into the disk Dt without changing
its area. Since R > 1/2, the points of At clearly form at least three disjoint
regions. See Fig. 1.

Lemma 2. Suppose that K is a connected region of the point set At, and
Arc(K,Cx) is the intersection of K with the circle Cx of radius x, centered
at o, t ≤ x ≤ R. Then, Arc(K,Cx) is a single, connected arc of radius x. More-
over, the arc length of Arc(K,Cx) is strictly larger than that of Arc(K,Cy), if
t ≤ x < y ≤ R.

Proof. First, if Arc(K,Cx) contains two disjoint arcs, then we can simply find
two points, one per arc, such that the line segment connecting them is not
completely contained in K. Since K is a region outside the disk Dt, the found
segment is not completely contained in P either, contradicting the convexity of
P . Analogously, if x < y but the arc length of Arc(G,Cx) is strictly smaller
than that of Arc(K,Cy), we can find, say, two extreme points of Arc(K,Cx)
and Arc(K,Cy), such that the line segment connecting them is not completely
contained in K and thus P , a contradiction again. Finally, if x < y and the
arc length of Arc(G,Cx) is equal to that of Arc(K,Cy), then all arcs between
Arc(G,Cx) and Arc(K,Cy) are of the same length. From the convexity of P , all
points of At can form at most two disjoint regions, and thus, R is equal to 1/2,
contradicting our assumption that R > 1/2. �

Remark. The above result can be generalized a little more. Let us shrink the
circle of radius t into that of radius c such that an arc of the circle of radius c
outside of P degenerates into a point for the first time, see Fig. 1. Then, Lemma
3 also holds for any connected region of the point set Ac, because a line segment
outside of the disk Dc is outside of the convex body P .

Lemma 3. Suppose that R > Δ(P)/2. Then, P can be transformed into a disk

Dt, t < 1/2, such that μP (o) ≤ μDt(o) +
area(At)
area(P) · (R− t).

254 X. Tan and B. Jiang

Proof. We first describe a transformation from P into Dt. Again, denote by K
a connected region of At. For all circular arcs âb in K, with two endpoints a and

b on the boundary of K, we transform them into the arcs â′b′ of radius ‖oa′‖,
with two endpoints a′ and b′ inside Dt, such that ‖oa‖ − t = t − ‖oa′‖ (i.e.,

‖oa‖+ ‖oa′‖ = 2t), and the arc length of â′b′ is equal to that of âb. See Fig. 1.
Let u ∈ K be a point on the circle of radius R, and v ∈ K the intersection point
of the line segment ou with the circle of radius t. In particular, we assume that
the point u is transformed into u′ such that three points u, u′ and v (= v′) are on
the same line. See Fig. 1. (Note that for a point x ∈ âb and its transformed point

x′ ∈ â′b′, three points o, x′ and x are usually not on a line.) Denote by K ′ the
region formed by the transformed points. Clearly, area(K) = area(K ′).2 Denote
by A′

t the set of the transformed points. It immediately follows from Lemma 2
(as well as the remark after Lemma 2) that any two connected regions formed
by the points of A′

t, cannot overlap each other, see Fig. 1.

o t

o t
R

P

o tK
R

Dt

Dt

u v
K'

K''

c
u'

2t-R
t
KK

o t

R

P

K

Dt

b

1/2

3

3

1

2

b

1b

2

3

K

1K

2

S

S

S

1

2

3

Fig. 1. Illustration for transforming P into the disk Dt, assuming that Δ(P) = 1

Turn to the evaluation of distance changes occurred in the transformation.
Let âb and ĉd denote the intersection arcs of a region K with two circles of
radii x and y respectively, where t+ (R − t)/2 ≤ x ≤ t and y = x + (R − t)/2.

Since x < y, the arc length of âb is larger than that of ĉd (Lemma 2). For every

point p ∈ ĉd, we relate it to an unique point q ∈ âb such that ‖op‖ + ‖oq‖ =
‖op′‖+‖oq′‖+2(R−t), where p′ and q′ denote the points transformed from p and

q, respectively. For the other points z ∈ âb, which are not related to any point of
ĉd, we clearly have ‖oz‖ ≤ ‖oz′‖+(R−t), where z′ denotes the point transformed
from z. Thus, μK(o) ≤ μK′(o) + (R − t). Therefore, area(At) = area(A′

t) and
μAt(o) ≤ μA′

t
(o) + (R− t).

2 Note that if we stretch the arc of K on the circle of radius t into a line segment,
without changing the distances of all points of K to the stretched segment, then
K′ is obtained by reflecting the stretched region using the stretched segment as a
mirror.

On the Fermat-Weber Center of a Convex Body 255

Let B = Dt−P ∩Dt. Since area(P) = area(Dt), we have area(A′
t) = area(B).

Denote by A′′
t the set of the points, which is symmetric to A′

t about the center
o. In Fig. 1, the region K ′′ is symmetric to K ′ about the center o. Clearly, A′′

t

intersects with B, area(A′′
t) = area(A′

t) and μA′
t
(o) = μA′′

t
(o). Let A1 = A′′

t −
A′′

t ∩B and B1 = B−A′′
t ∩B. Then, area(A1) = area(B1). Note that the points

of A1 and B1 are inside and outside of the convex body P , respectively. Denote
by A2 (⊆ A1) the set of the points, whose distances to o are smaller than any
point of B1, and B2 (⊆ B1) the set of the points, whose distances to o are larger
than any point of A1. So, area(A2) = area(B2), and μA1−A2(o) = μB1−B2(o).
Thus, the point set (A1 − A2) is equivalently the same as (B1 − B2), for the
considered center o. Since the distance of any point of A2 to o is smaller than
that of any point of B2, the point set A2 can then be transformed into B2 such
that μA2(o) ≤ μB2(o) (Observation 2). In summary, μA′

t
(o) = μA1+A′′

t ∩B(o) =
μA2+(A1−A2)+A′′

t ∩B(o) = μA2(o)+μA1−A2(o)+μA′′
t ∩B(o) ≤ μB2(o)+μB1−B2(o)+

μA′′
t ∩B(o) = μB1(o) + μA′′

t ∩B(o) = μB(o).
Finally, the lemma can be obtained by the following calculation:

μP (o) =

∫
x∈(P−At)

‖ox‖dx +
∫
x∈At

‖ox‖dx

area(P)

=
area(P −At) · μ(P−At)(o) + area(At) · μAt(o)

area(P)

≤ area(P −At) · μ(P−At)(o) + area(At) · (μA′
t
(o) + (R− t))

area(P)

≤ area(P −At) · μ(P−At)(o) + area(B) · μB(o) + area(At) · (R − t)

area(P)

=

∫
x∈Dt

‖ox‖dx + area(At) · (R− t)

area(P)

= μDt(o) +
area(At)

area(P)
· (R− t).

�

3.2 Transforming P into a Circular Sector of Radius Δ(P)/2

Following from Lemma 3, a key point in giving a good upper bound on the
average distance from the Fermat-Weber center is to keep both (R − t) and
area(At) to be small. Instead of a disk, P can analogously be transformed into
a circular sector of radius 1/2; in this case, the value (R − t) is minimized. An
important observation made in this paper is that the total area of the regions
of P , outside of the circle of radius 1/2, is roughly less than one seventh of the
area of P .

256 X. Tan and B. Jiang

Lemma 4. Suppose that Δ(P) = 1 and R > 1/2. Then, area(A 1
2
) < (1/2 −

2(1− 1/
√
3)2)area(P).

Proof. Let us reconsider the transformation of P into the disk Dt. Since we
have assumed that R > 1/2, all the points of At form several connected regions.
Denote by K1,K2, . . . ,Kj the sequence of the regions, which are formed by the
points of At. Denote by ai, bi two extreme points of the region Ki (1 ≤ i ≤ j)
on the circle of radius t, and σi the center angles of the circular sector bounded
by oai and obi. (The sector obtained by extending oai and obi in the disk DR

contains Ki.) See also Fig. 1.
Denote by Si, 1 ≤ i ≤ j, the circular sector of radius t and center angle σi,

which is wholly contained in P . (So, Si is adjacent to Ki.) The region of P
contained in the congruent circular sector Ti, symmetric to Si about the center
o, is not a full circular sector; otherwise, P cannot be convex, a contradiction.
From the convexity of P , the union of these circular sectors Si and Ti cannot
cover the disk Dt. Hence, the area of the union of all circular sectors Si is strictly
less than t2π/2, or equally, area(P)/2.

Consider now a process of transforming P into a circular sector of radius s,
in which s varies from t to 1/2. From the assumption that R > 1/2 and the
”isodiametric” theorem [3], we can assume that area(P) = α/8 holds for some
α < 2π, i.e., P can be transformed into a sector of radius 1/2 and center angle
α. Denote by Us the union of the (full) circular sectors of radius s (t ≤ s ≤ 1/2),
contained in P . (See Fig. 1 for an example, where the circular sectors of radius
1/2 are shown in thin, dotted line.) Denote by V1 the union of the regions of P ,
which are outside of the circle of radius s, and V2 the region P −Us −V1. In the
process of changing s from t to 1/2, some regions of V1 are newly added into Us,
but some others drop out of Us and are thus added into V2. Since the total area
(i.e., area(P)) is never changed, the decreased amount of area(V1) is equal to the
increased amount of area(V2). That is, the amount of area(Us) is not changed at
all! Hence, the area of the union of the circular sectors of radius 1/2, which are
contained in P , is strictly less than area(P)/2. All the regions K1,K2, . . . ,Kj

can then be gathered into a circular sector with the center angle less than α/2.
Finally, let us analyze the size of area(A′

1
2

). Denote by K ′ the region which is

transformed from a region K of the point set At, and β the center angle of the
(longest) arc of K ′, which is on the circle of radius 1/2. Let L be the circular re-
gion, between two circles of radii 1/2 and 1 − R, whose center angle γ is slightly
larger than β. So, area(L) = γ(1/4 − (1 − R)2)/2. Let the arc of K ′ on the cir-
cle of radius 1/2 be completely contained in that of L. Since γ > β, the region L
contains a circular arc, whose length is equal to the length of the arc of K ′ on the
circle of radius 1/2. From Lemma 2, the regionK ′ is wholly contained in L. Hence,
area(K ′) < area(L). Since all the regions K1,K2, . . . ,Kj can be gathered into a
circular sector, whose center angle is less than α/2, we can assumeΣ γ ≤ α/2, and
thus obtain area(A′

1
2

) < α(1/4−(1−R)2)/4. SinceR ≤ 1/
√
3 and area(P) = α/8,

we have area(A 1
2
) < (1/2− 2(1− 1/

√
3)2)area(P). �

On the Fermat-Weber Center of a Convex Body 257

By now, we can give the main result of this paper.

Theorem 2. For any convex object P in the plane, we have

μ∗
P <

99− 50
√
3

36
·Δ(P) < 0.3444 ·Δ(P).

Proof. From Lemma 1, we discuss only the case R > Δ(P)/2. Denote by Ix the
set of the points of P , which are inside the circle of radius x. Let v be the value
satisfying α(1/4−v2)/2 = 2area(A 1

2
). Then, area(I 1

2
)−area(Iv) = area(A 1

2
) and

area(Iv) = v2α/2. Since area(A 1
2
) < α(1/4− (1−R)2)/4, we have v > 1−R.

o
v

R

P

o
R

S
1/2

B

B
1

B
3

BBBB

BB

B
2
BBB

1/2

o
R

v

E

Iv

S
v
S

Fig. 2. Illustration for the transformation of P into S 1
2

Let us denote by Sx the circular sector of radius x and center angle α, centered
at o. So, area(S 1

2
) = area(P). Assume also that Sx ⊇ Sx′ if x′ ≤ x ≤ 1/2, as it

can always be obtained by rotating Sx′ around the center o appropriately.
We describe below a transformation from P into S 1

2
. Since Iv is a convex body

and area(Iv) = αv2/2, all points of Iv can be transformed into the circular sector
Sv, without decreasing the distance of any point to o after the transformation
(see the proof of Theorem 3.3 of [1]). Hence, μIv (o) ≤ μSv(o). Denote by Bi a
connected region of I 1

2
− Iv. See Fig. 2. Then, Bi can be transformed (without

changing the area) into a circular region B′
i, which is the difference between two

circular sectors of the same center angle αi, and two radii 1
2 and v. It follows from

Observation 2 and Lemma 2 that μBi(o) < μB′
i
(o). Since area(I 1

2
)− area(Iv) =

α(1/4 − v2)/4, we have Σ αi = α/2 (see the middle of Fig. 2). Finally, denote
by E the circular region, which is the difference between two circular sectors of
the same center angle α/2, and two radii 1/2 and v. So, area(E) = area(A 1

2
).

Following from the proof of Lemma 4, the length of the arc of E on the circle
of radius 1/2 is larger than the total lengths of the arcs of A 1

2
on the circle of

radius 1/2. On the other hand, since v > 1−R, we have R− 1/2 > 1/2− v. As
done in Section 3.1, the point set A 1

2
can then be transformed into E such that

258 X. Tan and B. Jiang

μA 1
2

(o) = μE(o) + (R − 1/2). In this way, all points of P are transformed into

S 1
2
(Fig. 2).
As in Section 3.1, we can then obtain the following result:

μP (o) =

∫
x∈(P−A 1

2
) ‖ox‖dx +

∫
x∈A 1

2

‖ox‖dx

area(P)

≤
area(P −A 1

2
) · μ(P−A 1

2
)(o) + area(E) · μE(o) + area(A 1

2
) · (R − 1/2)

area(P)

=

∫
x∈S 1

2

‖ox‖dx + area(A 1
2
) · (R− 1/2)

area(P)

= μS 1
2
(o) +

area(A 1
2
)

area(P)
· (R − 1/2)

≤ 1

3
+ (1/2− 2(1− 1/

√
3)2) · (1/

√
3− 1/2)

=
99− 50

√
3

36
.

From the assumption that Δ(P) = 1, the theorem thus follows. �

4 Concluding Remarks

We have shown that for any convex object Q in the plane, μ∗
Q < 0.3444 ·Δ(Q).

This improves upon the previous upper bound of 0.3490 ·Δ(Q) [6]. Our result is
obtained by investigating several geometric transformations. As in [1,6], this new
upper bound on the average distance from the Fermat-Weber center of a convex
object can also be used to improve the known solutions of several geometric
problems.

Finally, it is an interesting challenge to prove the conjecture of c = 1/3. Our
method transforms P into a circular sector of radius Δ(P)/2, which may always
lead to a factor c > 1/3. To avoid this, one can make use of the transformation
of P into the disk Dt. A good trade-off between (R − t) and area(At) may be
helpful in completing the proof of c = 1/3.

References

1. Abu-Affash, A.K., Katz, M.J.: Improved bounds on the average distance to the
Fermat-Weber center of a convex object. Inform. Process. Lett. 109, 329–333 (2009)

2. Aronov, B., Carmi, P., Katz, M.J.: Minimum-cost load-balancing partition. Algo-
rithmica 54(3), 318–336 (2009)

3. Brass, P., Moser, W.O.J., Pach, J.: Research problems in discrete geometry.
Springer (2005)

On the Fermat-Weber Center of a Convex Body 259

4. Carmi, P., Har-Peled, S., Katz, M.J.: On the Fermat-Weber center of a convex
object. Comput. Geom. Theory and Appl. 32(3), 188–195 (2005)

5. Chavel, I.: Isoperimetric inequalities. Cambridge Univ. Press (2001)
6. Dumitrescu, A., Jiang, M., Tóth, C.T.: New bounds on the average distance from

the Fermat-Weber center of a convex body. Discrete Optimization 8(3), 417–427
(2011)

7. Fekete, S.P., Mitchell, J.S.B., Weinbrecht, K.: On the continuous Weber and
k-median problems. In: Proc. 16th ACM Symp. on Computational Geometry,
pp. 70–79 (2000)

8. Jung, H.W.E.: Über der kleinsten Kreis, der eine ebene Figur einschließt. J. Angew.
Math. 137, 310–313 (1910)

9. Osserman, R.: The isoperimetric inequality. Bull. Amer. Math. Soc. 84, 1182–1238
(1978)

10. Wesolowsky, G.: The Weber problem: History and perspectives. Location Sci. 1(1),
5–23 (1993)

Parameterized Complexity of Control
and Bribery for d-Approval Elections�

Jianxin Wang1, Min Yang1, Jiong Guo2, Qilong Feng1, and Jianer Chen1

1 School of Information Science and Engineering,
Central South University,

Changsha 410083, P.R. China
jxwang@mail.csu.edu.cn

2 Universität des Saarlandes,
Campus E 1.7, D-66123 Saarbrücken, Germany

jguo@mmci.uni-saarland.de

Abstract. A d-Approval election consists of a set C of candidates and
a set V of votes, where each vote v can be presented as a set of d candi-
dates. For a vote v ∈ V , the protocol assigns one point to each candidate
in v. The candidate getting the most points from all votes wins the elec-
tion. An important aspect of studying election systems is the strategic
behavior such as control and bribery problems. The control by delet-
ing votes problem decides whether for a given election (C, V), a specific
candidate c, and an integer k, it is possible to delete at most k votes
such that c wins the resulting election. In the control by adding votes
setting, one has two sets V and U of votes and asks for a subset U ′ ⊆ U
such that |U ′| ≤ k and c becomes the winner in V ∪ U ′. The bribery
problem has the same input as the vote deleting control problem and
asks for changing at most k votes to make c win. All three problems
have been shown NP-hard. We initialize the study of the parameterized
complexity of these problems and present a collection of tractability and
intractability results. In particular, we derive polynomial-size problem
kernels for the standard parameterizations of the control by deleting
votes and bribery problems, the seemingly first non-trivial problem ker-
nels for the control and bribery problems of elections.

1 Introduction

An election consists of a set C of candidates, a set V of votes over the candi-
dates, and an election protocol. A vote is normally a total linear order of the
candidates. The winner of the election is determined by the election protocol.
There are numerous different election protocols. The choice of election protocols
may affect both the outcome of the election and the behavior of the voters. Most
widely used protocols can be assigned to one of the two categories: scoring pro-
tocols and protocols based on comparisons. In a scoring protocol, a candidate is
� This work is supported by the National Natural Science Foundation of China under

Grant (61232001, 61103033, 61173051, 61128006), the DFG Excellence Cluster on
Multimodal Computing and Interaction (MMCI).

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 260–271, 2013.
c© Springer International Publishing Switzerland 2013

Parameterized Complexity for d-Approval Elections 261

assigned some points from a vote according to his position in this vote. Then, the
candidates with the most points from all votes win the election. Most prominent
scoring protocols include Plurality, Borda, and d-Approval. Protocols based on
pairwise comparisons require that the winner should be “preferred” by most vot-
ers compared to each of other candidates, for instance, the Condorcet method.
For more details of election protocols, we refer to [1,2].

Different aspects of elections have been explored, for instance, the strategic
behavior. Some elections can be “controlled” by the authority conducting the
election to achieve strategic results, for instance, to make a preferred candidate
win the election. In this case, we have a so-called constructive control scenario [4].
The types of control can involve adding and deleting either candidates or votes.
Two other strategic behaviors have also been particularly well studied, that is,
manipulation and bribery. In the case of manipulation, voters may be better off
revealing its preferences untruthfully. With bribery we refer to attacks where an
outsider picks a group of votes and convinces them to vote in his interest.

In this work, we study strategic behavior of the d-Approval protocol, one
of the most extensively studied scoring protocols [16,15]. It assigns one point to
each of the first d candidates in a vote and the candidate getting the most points
wins the election. We call that a vote v “approves” a candidate c, if c gets a point
from v. In a d-Approval election, votes can be considered as size-d subsets of the
candidates. If several candidates end up with the maximal amount of points,
then they are called co-winners; otherwise, the election has a unique winner. We
study the following control and bribery problems of d-Approval protocol.

Constructive Control by Deleting Votes for d-Approval (DV-d-Approval)
Input: A set C of candidates, a distinguished candidate c with c /∈ C, a
set V of size-d subsets of C ∪ {c}, and an integer k
Question: Can we find a subset V ′ ⊆ V such that |V | − |V ′| ≤ k and c
is the unique winner under the d-Approval protocol in (C ∪ {c}, V ′)?

Constructive Control by Adding Votes for d-Approval (AV-d-Approval)
Input: A set C of candidates, a distinguished candidate c with c /∈ C,
two sets V and U of size-d subsets of C ∪ {c}, and an integer k
Question: Can we find a subset U ′ ⊆ U such that |U ′| ≤ k and c is the
unique winner under the d-Approval protocol in (C ∪ {c}, V ∪ U ′)?

Bribery for d-Approval (Bribery-d-Approval)
Input: A set C of candidates, a distinguished candidate c with c /∈ C, a
set V of size-d subsets of C ∪ {c}, and an integer k
Question: Can we change at most k subsets in V such that c is the
unique winner under the d-approval protocol in the new election?

Note that with “changing a vote v” in Bribery-d-Approval we mean to replace
some candidates in v by others. However, the sets before and after the change
should have the same cardinality d.

The computational study of election problems has been initialized by Bartholdi
et al. [3]. The complexity of constructive control problems was studied first by

262 J. Wang et al.

Bartholdi et al. [4] and later on by many others [10,12,16]. Faliszewski et al.
gave the first classification of bribery problems concerning their computational
complexity [9]. In particular, simple reductions from the NP-hard Exact Cover
problem prove the NP-hardness of DV-d-Approval and AV-d-Approval, even d
being a constant at least 3 and 4, respectively [15]. The NP-hardness of Bribery-
d-Approval follows from a similar reduction and holds for d ≥ 3 [9].

We focus here on the parameterized complexity of the above problems [8,17].
Many election problems turn out to be NP-hard. However, there are practi-
cal scenarios where some natural parameters of these problems take small val-
ues [7]. Hence, the analysis of their parameterized complexity with respect to
various parameters might contribute new insight to the study of election proto-
cols. We refer to [5] for a recent survey of parameterized complexity of election
problems. A parameterized problem is a language L ⊆ Σ∗ × N , where Σ is an
alphabet. Given an instance (I, k) of a parameterized problem L, we say L is
fixed-parameter tractable, if there is an algorithm deciding in f(k) · |I|O(1) time
whether (I, k) ∈ L, where f(k) is an arbitrary computable function depending
only on k. The basic classes of fixed-parameter intractable problems are denoted
by W[1] and W[2].

We consider two parameterizations of DV-d-Approval, that is, with k and |V ′|
as parameters. Then, for AV-d-Approval and Bribery-d-Approval, we study the
standard parameterization, namely, by the solution size k. It is easy to see
that, if d is unbounded, then all four parameterized problems are not fixed-
parameter tractable. However, in most practical settings of d-Approval elections,
one assumes d is bounded by a constant. In these settings, we achieve fixed-
parameter tractability results for all four parameterized problems. Our main
contributions are two problem kernels of size O(kd+2) for DV-d-Approval and
Bribery-d-Approval. Given an instance (I, k) of a parameterized problem L, a
kernelization computes an “equivalent” instance (I ′, k′) in polynomial time, such
that (1) |I ′|+k′ ≤ g(k) and (2) (I, k) ∈ L iff (I ′, k′) ∈ L. The new instance (I ′, k′)
is then called problem kernel. If the function g(k) is polynomial, then (I ′, k′) is a
polynomial problem kernel. Refer to [6,11] for more details on kernelizations. In
the last few years, several control and manipulation problems have been proven
to be fixed-parameter tractable. However, almost all these results are based
on some general classification methods, resulting in inpractically high running
time [5]. Until now, we are not aware of any non-trivial kernelization results for
strategic behavoir problems of elections.

2 Parameterized Complexity Results

In this section, we give a classification of parameterized complexity of the con-
sidered problems based on the value of d. Given a set C of candidates, a set V
of votes over C, and a candidate c, we denote the set of votes which approve c
with V (c). Moreover, the score s(c) of c achieved in (C, V) is defined as |V (c)|.
For a vote v, let C(v) denote the set of candidates approved by v. Clearly, in a
d-approval election, |C(v)| = d for all votes v.

Parameterized Complexity for d-Approval Elections 263

2.1 Unbounded d

If the number d of approved candidates of the votes is unbounded, then all
parameterizations considered here are not tractable.

Theorem 1. DV-d-Approval with k or |V ′| as parameter, AV-d-Approval with k
as parameter, and Bribery-d-Approval with k as parameter are W[2]-hard.

Proof. We give here only reductions for DV-d-Approval; the other two problems
can be shown in similar way.

For DV-d-Approval with k, we reduce from the W[2]-hard Hitting Set prob-
lem [8], where, given a ground set H , a collection F of subsets of H , and an
integer l, we asks for a subset H ′ ⊆ H with |H ′| ≤ l such that H ′ ∩ F �= ∅ for
every subset F ∈ F . Given an instance (H,F), we can safely assume that all
subsets in H have the same cardinality t. We set C = H and construct for every
subset H ∈ H a vote v = H . Moreover, we add dummy candidates and votes
such that all candidates in C have the same score in V . To this end, let f(hi) be
the number of subsets in F that contain hi ∈ H and let m := maxi f(hi). Then,
for each hi, add m − f(hi) many votes to V which approve hi and t − 1 new
dummy candidates. Note that each dummy candidate is approved only once.
Finally, we add m many votes to V which approve c and t − 1 new dummy
candidates. Finally, set k := l. It is easy to prove the equivalence between the
instances. Every candidate in C has the same score in V as c. To make c win,
we have to delete at least one vote for every candidate. Obviously, to delete the
votes with dummy candidates is never better than to delete the votes according
to the subsets in H.

For the parameterization by |V ′|, we reduce from the W[2]-hard Set Packing
problem [8]. Here, given a ground set H , a collection F of subsets of H , and
an integer l, one asks for a subcollection F ′ ⊆ F such that |F ′| ≥ l and all
subsets in F ′ are pairwisely disjoint. Again, we assume that all sets in F have
the same cardinality t. The candidate set is set equal to H and each subset in F
corresponds to a vote. Then, add two votes, each approving only c and t − 1
new dummy candidates. Finally, set |V ′| := l + 2. Since the score of c is 2, the
solution set V ′ of the election can contain for each other candidate c′ at most
one vote approving c′. Thus, the instances are clearly equivalent. ��

2.2 Approved Candidates Bounded by a Constant

DV-d-Approval Parameterized by k. We prove that this parameterization is
fixed-parameter tractable by giving an integer linear programming (ILP) for-
mulation of this problem. Some of the following terms and definitions will be
used again in the problem kernel section.

Given an instance (C, c, V, k) of DV-d-Approval, we divide the set C of can-
didates into two subsets with respect to their scores achieved in V . The first
set E contains all “essential” candidates c′ in C with s(c′) ≥ s(c) and I := C \E.
Moreover, we partition the votes into three subsets. The first subset is set equal
to V (c), i.e., the set of all votes approving c. Then, the remaining votes are

264 J. Wang et al.

partitioned into two sets, V (E) containing all votes approving at least one can-
didate in E but not c and V (I) := V \ (V (c) ∪ V (E)). If a subset V ′ of V
satisfies |V | − |V ′| ≤ k and c is the unique winner in (C, V ′), then V ′ is called a
solution set.

The following observations are not hard to see and directly imply that DV-d-
Approval is fixed-parameter tractable with respect to k.

Observation 1. All votes in V (I) can be safely removed, that is, (C, c, V, k) is
a yes-instance if and only if (C, c, V \ V (I), k) is a yes-instance.

By this observation, we can from now on assume that V = V (c) ∪ V (E).

Observation 2. If (C, c, V, k) is a yes-instance, then there exits a solution set V ′

satisfying V (c) ⊆ V ′.

Proof. Consider an arbitrary solution set V ′. If V ′ satisfies the claim, then we
are done; otherwise, set V ′′ := V (c) \ V ′. The set V ′ ∪ V ′′ is a solution set as
well, since adding V ′′ to V ′ increases the score of c by |V ”|. Thus, if c is the
unique winner in (C, V ′), then the same holds for (C, V ′ ∪ V ′′). ��
Observation 3. If (C, c, V, k) is a yes-instance, then |E| ≤ d · k.
Proof. By Observations 1 and 2, in order to construct a solution set V ′ from V ,
we need to delete votes from V (E) such that for each candidate c′ ∈ E, its score
in (C, V ′) is upper-bounded by s(c)−1. In other words, the deletion of these votes
has to decrease the score of c′ by at least s(c′)−s(c)+1 for each c′ ∈ E. Moreover,
by deleting one vote from V , we can decrease the scores of exact d candidates
and decrease the score of each of these d candidates by one. If (C, c, V, k) is a
yes-instance, then we delete at most k votes from V . This means that the scores
of at most d · k candidates can be decreased, implying the claim. ��

We further partition the votes in V (E) into disjoint classes V (E′), each class
corresponding to a subset E′ of E with |E′| ≤ d and containing all votes v
in V (E) with C(v) ∩ E = E′. Recall that C(v) is the set of the candidates that
the vote v approves. With Observations 3, we have O(kd) many such classes. In
the following, we give an integer linear programming formulation (ILP) for DV-
d-Approval with the number of variables bound by a function of k. To this end,
we define for each class V (E′) of V (E) a variable xE′ , which takes integer values
and represents the number of votes deleted from this class. The ILP consists of
the following constraints:

∑
E′⊆E,|E′|≤d

xE′ ≤ k

0 ≤ xE′ ≤ |V (E′)|, ∀E′ ⊆ E : |E′| ≤ d∑
E′⊆E,|E′|≤d,c′∈E′

xE′ ≥ s(c′)− s(c) + 1, ∀c′ ∈ E

Parameterized Complexity for d-Approval Elections 265

Clearly, this ILP has O(kd) many integer variables. With d being a constant,
the Lenstra’s results [14] directly imply the following theorem.

Theorem 2. For constant d, DV-d-Approval is fixed-parameter tractable with k
as parameter.

Note that the results by Lenstra serve mainly for the classification purpose,
resulting in an extremely high running time with respect to k. In Section 3, we
improve Theorem 2 by presenting a problem kernel for DV-d-Approval.

DV-d-Approval Parameterized by l := |V ′| and AV-d-Approval. Note that Ob-
servation 2 clearly holds also for the parameterization with l := |V ′|. That is,
there is a solution set containing all votes approving c. Thus, if l ≤ s(c), then
the given instance is trivial. Let sV (c)(c

′) be the score of an essential candi-
date c′ achieved in V (c). Recall that V (c) is the set of votes approving c. For
every essential candidate c′, it must hold that |V ′(c′) \ V (c)| < s(c)− sV (c)(c

′),
where V ′(c′) is the set of votes in V ′ approving c′. Thus, DV-d-Approval can be
reformulated as the problem of selecting l− s(c) many votes from V \V (c) such
that for every essential candidate c′, the number of selected votes approving c′
is less than s(c)− sV (c)(c

′). Therefore, the following problem can be considered
as a generalization of DV-d-Approval.
Input: A set C = {c1, c2, . . . , cn} associated with an integer vector (b1, b2, ..., bn),
a set V of size-d subsets of C, an integer l ≥ 0
Question: Is there a subset V ′ ⊆ V such that |V ′| ≥ l and V ′ has at most bi
subsets containing ci for 1 ≤ i ≤ n?

We call this problem Generalized d-Set Packing (d-GSP), since the well-known
d-Set Packing problem is exactly the special case of d-GSP with bi = 1 for all i’s,
that is, all subsets in V ′ are pairwisely disjoint. The parameterized algorithm
for d-Set Packing in [13], that is based on the so-called “greedy localization”
technique, can be easily modified for d-GSP: We only need to relax the disjoint
condition in both greedy and localization phases of the algorithm to match bi’s.
Thus, we arrive at the following theorem.

Theorem 3. For constant d, DV-d-Approval is fixed-parameter tractable with
respect to |V ′|.

In AV-d-Approval, we clearly add only those votes in U to V which approve c.
Thus, we can assume that all votes in U approving c and the solution adds ex-
actly k votes. The final score of c is s(c)+k. The problem is then to select k votes
from U such that for every candidate c′ in C the number of votes approving c′
in the resulting election does not exceed s(c) + k. Since the score of c′ in V is
known, we can also reformulate AV-d-Approval as d-GSP.

Theorem 4. For constant d, AV-d-Approval is fixed-parameter tractable with
respect to k.

266 J. Wang et al.

Bribery-d-Approval. For the bribery problem, we can show similar observations
as Observation 2. Here, we can assume that there is at least one vote in V not
approving c, since, otherwise, it is trivial. Moreover, |C| ≥ d, since, otherwise,
the instance is clearly not solvable. Let V (c) be the set of votes approving c.

Observation 4. There exists a solution, where no vote in V (c) is changed.

Proof. Let V ′ be the set of votes that an optimal solution S changed. If V ′ ∩
V (c) = ∅, then we are done; otherwise, let v ∈ V ′ ∩ V (c). Let s′(c) and s′(c′)
denote the scores of c and c′ �= c in the election V ′′ resulting by changing V
according to S but not v. Since v approves c, we have s′(c) ≥ s′(c′) for all c′ ∈
C. If there is a vote v′ in V ′′ that does not approve c, then changing v′ to
approve c instead of changing v leads to another solution. If all votes in V ′′

approving c, then all candidates c′ with s′(c′) = s′(c) must be approved by v,
since, otherwise S could not be a solution. Moreover, these candidates c′ have
to be approved by all votes in V . However, since xthere is some vote x ∈ V not
approving c, the solution S has changed x. With c′ being approved by x, we can
modify S to change c′ in x to some candidate not approved by v. ��

The final score of c is clearly s(c) + k. We partition then the candidates
into three sets: C1 := {c′ | s(c′) ≥ s(c) + k}, C2 := {c′ | s(c′) ≤ s(c)}, and
C3 := C \ (C1∪C2). Since at most d ·k candidates in C can have different scores
in V and in the resulting election, the following observation is trivial.

Observation 5. If |C1| ≥ k · d, then the given instance is a no-instance.

If C1 = ∅, then it is trivial to solve: choose from V \ V (c) arbitrarily k votes
and in each of them, replace one of its approved candidates by c. Thus, the
main task is to change the votes approving at least one candidate in C1. With
Observation 5, we can again partition the votes approving C1 into O(kd) classes
and give a similar ILP-formulation as for the control by deleting votes case.

Theorem 5. For constant d, Bribery-d-Approval is fixed-parameter tractable
with respect to k.

3 Problem Kernels

In Section 2.2, for the DV-d-Approval problem, we already proved the bounds
on the number of essential candidates and the number of the classes of votes
in V (E). However, in order to achieve a problem kernel, we need to bound the
number of votes, that is, |V (c)| and |V (E)|. Although the votes in V (c) will
never be deleted from V , we cannot simply ignore them and encode s(c) with
an integer. Such an integer is not available in an instance of DV-d-Approval.
Moreover, the number of votes in one class of V (E) could also be unbounded.
The key for our kernelization is to partition the votes in V (E) into two subsets.
The first set D has a bounded size and contains all “deletable” votes that a
solution set might delete from V . The votes in the second set R are irrelevant

Parameterized Complexity for d-Approval Elections 267

for the construction of solution sets and serve only to record the correct scores for
the candidates in E. Based on these sets, the kernelization algorithm constructs
a new, equivalent instance (C, c,V , k) with E ⊆ C andD ⊆ V . However, V (c) ⊆ V
and R ∩ V = ∅. This new instance is then output as the problem kernel.

The set D of deletable votes is defined as follows. For each subset E′ ⊆ E
with |E′| ≤ d, if |V (E′)| ≤ k, then D contains all votes in V (E′). Otherwise,
D contains arbitrary k + 1 many votes from V (E′). The set R is set to V (E) \
D. Clearly, both sets can be computed in O(|V (E)|) time. The kernelization
algorithm consists of two rules. We first apply the first rule exhaustively and then
the second rule. Both rules create new votes approving exactly one candidate
in C and some new, “dummy” candidates. Note that each dummy candidate is
approved only once.

Rule 1. If there is a vote v in R approving more than one candidate in E,
i.e., |C(v) ∩ E| > 1, then, for each c′ ∈ C(v) ∩ E, add a new vote to R, which
approves c′ and d− 1 new, dummy candidates.

The second rule iteratively constructs the new instance. It needs as input
the differences between the scores of the essential candidates and s(c). Let E =
{c1, c2, . . .} and set ti := s(ci)− s(c).

Rule 2.

Input: C, E, c, D, R, k, ti’s for all ci ∈ E
Output: (C, c,V , k)
For each ci ∈ E, compute its score si in D ∪R
Set C := C, V := D, and sc := 0
For i = 1 to |E|, distinguish the following two cases:

Case 1. si − sc < ti
add ti − (si − sc) many new votes to R,
each approving ci and d− 1 new dummy candidates

set si := sc + ti
Case 2. si − sc > ti

Let R(ci) be the set of votes in R approving ci
if |R(ci)| ≥ si − sc − ti, then

remove si − sc − ti many votes in R(ci) from R
else

remove all votes in R(ci) from R
add si − sc − ti − |R(ci)| votes to V ,
each approving c and d− 1 new dummy candidates

set sc := si − ti − |R(ci)|
For j = 1 to i− 1 do

add tj − (sj − sc) many new votes to R,
each approving cj and d− 1 new dummy candidates.

set sj := sc + tj
set si := sc + ti

Add all dummy candidates to C

268 J. Wang et al.

Add all votes in R to V
return (C, c,V , k)

Lemma 1. Given two instances I1 = (C1, c, V1, k) and I2 = (C2, c, V2, k) of DV-
d-Approval, let s1(c1) and s2(c2) denote the score of c1 achieved in V1 and the
score of c2 achieved in V2, respectively. Moreover, I1 and I2 satisfy the following
conditions:

– I1 and I2 have the same set of essential candidates, that is, {c′ ∈ C1|s1(c′) ≥
s1(c)} = {c′ ∈ C2|s2(c′) ≥ s2(c)}, and

– for every essential candidate c′, we have s1(c′)− s1(c) = s2(c
′)− s2(c).

Then, for a set S of votes with S ⊆ (V1 ∩ V2) and |S| ≤ k, V1 \ S is a solution
set for I1 if and only if V2 \ S is a solution set for I2.

Now we prove the correctness of both rules. Here, we say a rule is correct,
if the instance I after one application of the rule is equivalent to the original
instance I ′, that is, I is a yes-instance, if and only if I is a yes-instance. Note
that Rule 2 applies only once.

Lemma 2. Rule 1 is correct.

Proof. Let I = (C, c,V , k) be the instance created by one application of Rule 1
to I = (C, c, V, k). The rule “splits” one vote v ∈ R into |C(v) ∩ E| votes, each
approving one candidate in C(v)∩E. Clearly, each candidate in E has the same
score in both instances. If I is a yes-instance, then the score of c in V is at least 2,
since the candidates in C(v) ∩E have scores at least k + 1 in V . Therefore, the
newly introduced dummy candidates in C are not essential. By Observations 1
and 2, we can only delete vote from V (E). If there is a vote v in R is deleted by
the solution set V ′ of I, then, by the precondition of Rule 1, we can replace v by
a vote in D which approves the same set of essential candidates as v to derive a
new solution set. Therefore, we can assume that V ′ deletes no vote from R. With
Lemma 1, we can then conclude that V ′ represents a solution set for I as well.
For the reversed direction, we can observe that there exists at least one solution
set V ′ for I that does not delete the newly introduced votes. With Lemma 1, V ′

is a solution set for I. ��
Lemma 3. Rule 2 is correct.

Proof. To show the equivalence of I and I, we prove first that for every c′ ∈ E,
we have s′(c′) − s′(c) = s(c′) − s(c), where s′(c′) and s′(c) denote the scores
of c′ and c in I, respectively. To this end, we need the following claim. Here,
for 1 ≤ i ≤ |E|, let Vi and Ri denote the current sets V and R after the i-th
iteration of the outer For-loop of Rule 2.

Claim. After the i-th iteration of the outer For-loop of Rule 2, every candi-
date cj ∈ E with 1 ≤ j ≤ i satisfies ri(cj) − ri(c) = s(cj) − s(c), where ri(cj)
and ri(c) are the scores of cj and c achieved in Ri ∪ Vi, respectively.

Parameterized Complexity for d-Approval Elections 269

Proof. We prove this claim by an induction on i. For i = 1, recall t1 = s(c1)−s(c).
Note that R ∪D contains all votes approving c1 but not c. By initializing s1 as
the score of c1 in R ∪ D, we have s1 ≥ t1 before the first iteration. Since sc is
initialized as zero, Case 1 cannot apply to i = 1. If Case 2 applies, then votes
are added to V or deleted from R such that, after this iteration, the difference
between the scores of c1 and c in R1∪V1 is equal to t1. Note that, due to Rule 1,
all votes in R(ci) approve ci but no other candidates in E.

For i > 1, assume the claim is true for i− 1, that is, for all cj with j ≤ i− 1,
ri−1(cj)−ri−1(c) = s(cj)−s(c) = tj . Consider now si, which is initialized as the
score of ci in R ∪ D at the beginning of Rule 2. Since in the iterations before,
no vote approving ci is deleted or added, si = ri−1(ci) before the i-th iteration.
Moreover, whenever the rule adds votes approving c to V , the value of sc is
accordingly increased and always records the score of c in the new instance
during the whole process of Rule 2. We have then sc = ri−1(c) before the i-
th iteration. If Case 1 is applied, then ti − (si − sc) votes approving ci are
added to R and no other votes are deleted or added. This implies that ri(ci) =
ri−1(ci) + ti − (si − sc) = ti + ri−1(c) = ti + ri(c). This clearly holds for other
candidates cj with j < i.

The second case is more involved. For ci, as in the first case, ri(ci) = ri(c)+ ti
should hold at the end of this iteration. However, to achieve this, we added
some votes approving c, which increase ri(c), compared to ri−1(c). To restore
ri(cj) − ri(c) = ri−1(cj) − ri−1(c) = tj for 1 ≤ j < i, the second For-loop is
applied. Note that at the end of the (i−1)-th iteration, sj is set to sc+tj with sc =
ri−1(c). Therefore, before the execution of the inner For-loop, there are sj many
votes approving cj . With increased sc, this For-loop adds then sc−(sj−tj) many
votes approving cj to restore ri(cj)− ri(c) = tj . Thus, the claim is true. ��

By this claim, we have then that in the new instance I created by Rule 2,
s′(ci)−s′(c) = ti = s(ci)−s(c) for all 1 ≤ i ≤ |E|. By Observations 1 and 2, every
solution set V ′ of I deletes only votes from V (E). Moreover, by the definitions
of D and R, we can conclude that, if V ′ deletes a vote v from R, then there is
another solution set replacing v by a vote in D. Thus, by Lemma 1, if I is a
yes-instance, then so is I. The reversed direction is also easy to see. First, the
dummy candidates added by Rule 2 are clearly not essential. By the above claim,
the essential candidates in I remain essential in I and their score differences are
not changed. If there is a solution set for I that does not delete any vote added
by Rule 2, then Lemma 1 implies that I is a yes-instance. By Observation 2,
the votes added by Rule 2, which approves c, are not deleted. Next, we prove
that no solution set deletes the votes added by Rule 2, which approves only
one essential candidate. Suppose this is not true. Assume there is such a vote v
approving c′ ∈ E and deleted by a solution set. Then, we can assume that all
votes in D approving c′ are deleted by this solution set as well, since, otherwise,
we could replace v by such a remaining vote. Let D(c′) be the set of votes in D
approving c′. By the above assumption, |D(c′)| ≤ k. By the definition of D
and R, there is no vote in V (E) \D approving c′. Thus, s(c′) − s(c) < |D(c′)|.
Since s′(c′)− s′(c) = ti = s(c′)− s(c), deleting all votes in D(c′) results in that

270 J. Wang et al.

the new score of c′ is less than s(c), which implies that we do not have to delete v,
a contradiction. ��
Lemma 4. Both rules can be executed in polynomial time.

Proof. Clearly, Rule 1 can be applied O(|V |) times and each application
needs O(d) time. Each iteration of the outer For-loop of Rule 2 creates at
most |V | votes, since the total score of all candidates is bounded by d · |V |.
Therefore, the total running time of Rule 2 is O(|C| · (|C|+ d · |V |)). ��
Theorem 6. DV-d-Approval with d being a constant admits a problem kernel
with O(kd+2) votes and candidates.

Proof. Since every vote can approve d candidates, it suffices to bound the number
of votes. By Observation 3, there are at most d · k essential candidates and thus,
O(kd) many classes in V (E), each class corresponding to a subset E′ ⊆ E
with |E′| ≤ d. By the definition of D, there are O(kd+1) many votes in D.
Next, we bound the number of votes in V \ D. According to Rules 1 and 2,
these votes approve either c or one candidate in E. Therefore, we can partition
them into |E|+1 disjoint subsets, denoted by V(c), V(c1), . . ., and V(c|E|), each
containing the votes in V \D that approving c or ci ∈ E. We prove first the size
bound for V(c) and then the one for V(ci).

We prove that |V(c)| ≤ kd+1 by analyzing the execution of Rule 2. Recall ti =
s(ci) − s(c) for ci ∈ E. Clearly, ti ≤ k for all i’s, since, otherwise we cannot
make c the unique winner by deleting at most k votes. Before the first iteration
of the outer For-loop of Rule 2, we have clearly V(c) = ∅. In every iteration of
this loop, Rule 2 adds some votes to V(c), only in Case 2. Moreover, these votes
are added to V , only when Ri(ci) = ∅. Let sD(ci) be the number of votes in D
approving ci ∈ E. Thus, sD(ci)− |Vi(c)| = tj and |Vi(c)| ≤ sD(ci) ≤ kd+1.

By the claim proven in the proof of Lemma 3, after Rule 2, s′(ci)− s′(c) = ti
for each ci ∈ E, where s′(ci) and s′(c) are the scores of s′ and s in I, respectively.
Since s′(c) = |V(c)| ≤ kd+1, we have s′(ci) − ti ≤ kd+1. Since s′(ci) = sD(ci) +
|R(ci)|, |R(ci)| ≤ kd+1 and thus, |V(ci)| ≤ kd+1. ��

By Observations 4 and 5, the same idea of essential candidates and the par-
tition of votes into deletable and irrelevant votes can also apply to Bribery-d-
Approval.

Corollary 1. Bribery-d-Approval with d being a constant admits a problem ker-
nel with O(kd+2) votes and candidates.

Corollary 2. DV-d-Approval and Bribery-d-Approval can be solved in
O∗(kk·(d+2)) time.

4 Conclusion

We initialized a study of parameterized complexity of d-Approval election prob-
lems. In particular, we derived polynomial problem kernels for the control by

Parameterized Complexity for d-Approval Elections 271

deleting votes and bribery problems. It seems that similar idea could also be
applied to solve other strategic behavior problems of d-Approval elections such
as control by adding/deleting candidates or cloning candidates. Another future
research direction would be to improve the running times of our algorithms,
which are still inpractically high. Finally, the parameterized complexity study of
strategic behavior of other election protocols remain mostly open [5].

References

1. Arrow, K., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare I.
North-Holland (2002)

2. Arrow, K., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare II.
North-Holland (2010)

3. Bartholdi III, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare 6, 157–165 (1989)

4. Bartholdi III, J., Tovey, C.A., Trick, M.A.: How hard is it to control an election?
Mathematical and Computer Modelling 16(8/9), 27–40 (1992)

5. Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in Computational
Aspects of Voting - A Parameterized Complexity Perspective. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370,
pp. 318–363. Springer, Heidelberg (2012)

6. Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

7. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard
to manipulate? Journal of the ACM 54(3), 1–33 (2007)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
9. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How Hard Is Bribery in

Elections? J. Artif. Intell. Res (JAIR) 35, 485–532 (2009)
10. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull and

Copeland Voting Computationally Resist Bribery and Constructive Control. J.
Artif. Intell. Res (JAIR) 35, 275–341 (2009)

11. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(1), 31–45 (2007)

12. Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but him: The complex-
ity of precluding an alternative. Artificial Intelligence 171(5-6), 255–285 (2007)

13. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set pack-
ing. J. Algorithms 50(1), 106–117 (2004)

14. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8, 538–548 (1983)

15. Lin, A.: The complexity of manipulating k-Approval elections. In: Proc. 3rd In-
ternational Conference on Agents and Artificial Intelligence, vol. (2), pp. 212–218.
SciTe Press (2011)

16. Meir, R., Procaccia, A., Rosenschein, J., Zohar, A.: Complexity of strategic behav-
ior in multi-winner elections. Journal of Artificial Intelligence Research 33, 149–178
(2008)

17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

Circular Convex Bipartite Graphs:

Feedback Vertex Set

Zhao Lu1, Min Lu1, Tian Liu1,�, and Ke Xu2,�

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, China
lt@pku.edu.cn

2 National Lab of Software Development Environment,
Beihang University, Beijing 100191, China

kexu@nlsde.buaa.edu.cn

Abstract. A feedback vertex set is a subset of vertices, such that the re-
moval of this subset renders the remaining graph cycle-free. The weight
of a feedback vertex set is the sum of weights of its vertices. Finding
a minimum weighted feedback vertex set is tractable for convex bipar-
tite graphs, but NP-complete even for unweighted bipartite graphs. In
a circular convex (convex, respectively) bipartite graph, there is a circu-
lar (linear, respectively) ordering defined on one class of vertices, such
that for every vertex in another class, the neighborhood of this vertex
is a circular arc (an interval, respectively). The minimum weighted feed-
back vertex set problem is shown tractable for circular convex bipartite
graphs in this paper, by making a Cook reduction (i.e. polynomial time
Turing reduction) for this problem from circular convex bipartite graphs
to convex bipartite graphs.

Keywords: Feedback vertex set, circular convex bipartite graph, convex
bipartite graph, Cook reduction, tractability.

1 Introduction

A feedback vertex set is a subset of vertices, such that the removal of this subset
renders the remaining graph cycle-free. The weight of a feedback vertex set is
the sum of weights of its vertices. In a weighted graph, the weight of an FVS is
the summation of weights over the vertices in the FVS, and the weight of each
vertex is a positive integer. For unweighted graphs, each vertex has a unit weight.
Finding a minimum weighed FVS (MFVS, in short) even in unweighted graphs
is a classicalNP-complete problem [19,10] with many applications [8], and many
algorithms have been developed for MFVS, such as approximate algorithms (e.g.
[32]), randomized algorithms (e.g. [2]), parameterized algorithms (e.g. [4,21]),

� Corresponding authors. Partially supported by National 973 Program of China
(Grant No. 2010CB328103) and Natural Science Foundation of China (Grant No.
61370052).

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 272–283, 2013.
c© Springer International Publishing Switzerland 2013

Circular Convex Bipartite Graphs: FVS 273

exact algorithms (e.g. [9]), polynomial time algorithms for restricted graphs (e.g.
[23,29,20,21]), algorithms based on statistical physics (e.g. [31]), algorithms to
enumerate and count the number of MFVS (e.g. [7]), and also there are works to
estimate the size of MFVS (e.g. [26,16]), and so on. A good survey on tractability
of MFVS in various graph classes as well as on various kinds of MFVS algorithms
is [8]. A recent good brief introduction is in [20]. See also [14].

It was known that MFVS is also NP-complete on unweighed bipartite graphs
[30], but tractable on weighted convex bipartite graphs [23] and on chordal bi-
partite graphs [20]. A natural question is

– Where is the boundary between tractability and intractability of MFVS on
bipartite graphs?

In this paper, partial progress on this question has been made by investigating
MFVS on circular convex bipartite graphs, which generalize convex bipartite
graphs and constitute an interesting subclass of bipartite graphs.

In a circular convex bipartite [22] (convex bipartite [13], respectively) graph,
there is a circular (linear, respectively) ordering defined on one class of vertices,
such that for each vertex in another class, the neighborhood of this vertex is a
circular arc (an interval, respectively). Circular convex bipartite graphs are nat-
ural models for scheduling problems. For example, the available working hours
of a worker is usually a consecutive period of hours. A group of workers and
their available hours can be modeled by a circular-convex bipartite graph [22].

Despite the apparent similarity in definitions of circular convex bipartite
graphs and convex bipartite graphs, results for circular convex bipartite graphs
are scarce for a long time, while results for convex bipartite graphs are plenty.
Only maximum matching and Hamiltonian cycle and path were known linear
time solvable for circular-convex bipartite graphs [22]. Recently, connected dom-
ination and independent domination were shown tractable for circular-convex
bipartite graphs [25,24]. On the other hand, several NP-complete problems for
bipartite graphs were known polynomial time or even linear time solvable for
convex bipartite graphs, such as feedback vertex set [30,23], variants of domina-
tion [6], Hamiltonian cycle and path [22], etc, see a brief survey in [15].

Here we show that MFVS is tractable for circular convex bipartite graphs,
by making reduction from circular convex bipartite graphs to convex bipartite
graphs. As in [25,24], the reduction is a Cook reduction (a polynomial time
Turing reduction) [10]. The special properties of feedback vertex set makes this
reduction possible. Before our works in [25,24] and here, only Karp reduction
(polynomial many-one reduction) [10] from circular convex bipartite graphs to
circular-arc graphs was used [22]. Our methods in this paper and in [25,24] may
be of use to show more problems tractable for circular convex bipartite graphs.

To put our results more properly in the range of bipartite graphs, let us
turn to other interesting superclasses of convex bipartite graphs, such as chordal
bipartite graphs and tree convex bipartite graphs, see Figure 1. Chordal bipartite
graphs were well known, see e.g. books [11,3]. In a chordal bipartite graph, every
cycle of length at least six has a chord, where a chord of a cycle on a graph is

274 Z. Lu et al.

Fig. 1. (In)tractability of MFVS for various bipartite graphs

an edge between two vertices of the cycle but the edge itself is not a part of the
cycle [12]. Feedback vertex set is tractable for chordal bipartite graphs [20].

Tree convex bipartite graphs were introduced recently as a natural extension
to convex bipartite graphs [16,18,27,28,17,25,24]. In a tree convex bipartite graph,
there is a tree defined on one class of vertices, such that for every vertex in
another class, the neighborhood of this vertex is a subtree [16]. When the tree
is a path (a star, a triad, of maximum degree three, respectively), the graph is
called convex bipartite [13] (star convex bipartite [16], triad convex bipartite [18],
tree convex bipartite with ΔT = 3 [28,17], respectively), where a triad is three
pathes with a common end. Feedback vertex set is shown NP-complete for star
convex bipartite graphs and tree convex bipartite graphs with the maximum
degree of the tree ΔT = 3 [16,28,17], but tractable for triad convex bipartite
graphs [18,27,28,17,25,24]. Thus, the (in)tractability of feedback vertex set for
various bipartite graph classes is well understood now.

We note in pass that the adjacent matrices of circular convex (convex, respec-
tively) bipartite graphs have the so-called circular (consecutive, respectively)
ones property, which is recognizable in linear time, see e.g. survey [5]. Tree con-
vex bipartite graphs are also recognizable in linear time, see e.g. survey [1].
The associated circular orderings (linear orderings, trees, respectively) are all
constructible in linear time, thus can safely be assumed as part of the inputs.

This paper is structured as follows. After introducing some necessary defini-
tions and notations and some basic facts (Section 2), a polynomial time Turing
reduction (i.e. a Cook reduction) is shown for feedback vertex set from circular
convex bipartite graphs to convex bipartite graphs (Section 3), and finally are
some concluding remarks and open problems (Section 4).

2 Preliminaries

The neighborhood of a vertex x in a graph G is denoted by NG(x) = {y | y
is adjacent to x in G}. When G is clear from the context, we just write N(x)
instead of NG(x). In this paper, G will always denote an input graph, we just
use N(x) to denote the neighborhood of a vertex x in G. For any subgraph G′

of G, we use NG′(x) to denote the neighborhood of a vertex x in G′.

Circular Convex Bipartite Graphs: FVS 275

For a circular-convex bipartite graphG = (A,B,E), without loss of generality,
we can always assume a canonical circular ordering ≺ on A,

a1 ≺ a2 ≺ · · · ≺ an ≺ an+1 = a1,

such that for each vertex b in B, either N(b) = {ai, ai+1, · · · , aj} or N(b) =
{aj, aj+1, · · · , an, a1, · · · , ai}, for some i, j, where 1 ≤ i ≤ j ≤ n+ 1.

Recall that deleting a FVS makes the remaining graph a forest. Thus finding
a MFVS in a graph is equivalent to finding a maximum cycle-free set (MCFS)
in the same graph. We will show how to find a MCFS instead of a MFVS in
circular convex bipartite graphs.

For a MCFS F = (A′, B′, E′) of a circular-convex bipartite graph G =
(A,B,E), we call two vertices a′ and a′′ consecutive in A′, if either a′ = ai,
a′′ = aj , i < j, and there is no ax in A′ for i < x < j, or a′ = aj, a

′′ = ai, i < j,
and there is no ax in A′ for 1 ≤ x < i and j < x ≤ n.

Notice that all graph properties we are interested in are invariant under the
renaming of vertices, especially under the rotation of the circular ordering on A.
By rotation on A we mean that changing the absolute positions of each ai’s on A,
but not changing the relative ordering of all vertices on A. With these rotations
in mind, without loss of generality, we may always assume that the neighborhood
N(b) of a vertex b is in the form N(b) = {ai, ai+1, · · · , aj}, where 1 ≤ i ≤ j ≤ n.
This will greatly simplify our presentations. For example, in the above definition
of consecutiveness on A′, we only need to consider the following case, where
a′ = ai, a

′′ = aj , i < j, and there is no ax in A′ for i < x < j.
A very useful property of MCFS is listed as the following lemma, which is a

key property for our reduction to work.

Lemma 1. If G′ is a subgraph of G and G′ contains a MCFS of G, then any
MCFS of G′ is also a MCFS of G.

Proof. Assume that F is a MCFS ofG, F is contained in G′, andG′ is a subgraph
of G. Now assume that U is any MCFS of G′. Since F is a MCFS of G, we know
that F is cycle-free. Since F is contained in G′ and U is a MCFS of G′, we know
that U is as large as F . Since U is cycle-free and also contained in G, we know
that U is also a MCFS of G. ��
We will use Lemma 1 in the following way. The graph G will be a circular convex
bipartite graph whose MCFS F we want to find. The graph G′ will be a convex
bipartite graph which is a subgraph of G and also contains F . Then we can
find a MCFS U of G′ by a known efficient algorithm and U is as good as F
for G. We will set different restrictions on F to get the proper G′’s in different
cases respectively, and these restrictions should cover all the possibilities. In
each case, we are able to construct not a single G′ satisfying the conditions in
Lemma 1, but a polynomial time constructible family of G′’s, with at least one of
the G′’s satisfying the conditions in Lemma 1. This constitutes the main frame
of our reduction in this paper. Thus, our reduction will be a Cook reduction
(polynomial time Turing reductions), rather than a Karp reductions (polynomial
time many-one or mapping reductions). Notice that Lemma 1 holds for weighted
graphs, so our reduction base on this lemma also works for weighted graphs.

276 Z. Lu et al.

3 Reduction

In this section, we will make a Cook reduction of the maximum cycle-free set
(MCFS) from circular convex bipartite graphs to convex bipartite graphs.

A MCFS F = (A′, B′, E′) of G = (A,B,E) must be in one of the following
four cases.

1. There is only one vertex in A′.
2. There are exactly two vertices in A′.
3. There are at least three vertices in A′ and there are two consecutive vertices

in A′ with no common neighbor in B′.
4. There are at least three vertices in A′ and every two consecutive vertices in
A′ have a common neighbor in B′.

We will deal with the above four cases respectively as follows.

Case 1: There is only one vertex in A′

This is the easiest case to deal with among all cases. Notice that each MCFS must
has at least one vertex from A. Indeed, for every vertex a in A, the subgraph
induced by {a} ∪ B is still cycle-free. This is because that, to make a cycle
a′b′a′′b′′ · · · a′ in a bipartite graph with a bipartition of its vertices into two sets
A and B, we need at least four vertices a′, a′′, b′, b′′, with at least two vertices
a′, a′′ from A and at least two vertices b′, b′′ from B, respectively. If there is only
one vertex in A′, without loss of generality, we can assume that this vertex is
a. Then {a} ∪ B is apparently cycle-free and is maximum with respect to the
condition in case 1. Thus, in this case, the MCFS of G is {a} ∪B.

We define a set S1 as follows.

S1 = {{a} ∪B | a ∈ A}.
Then S1 is computable in polynomial time O(|A||B|), and S1 contains a MCFS
of G in case 1, as discussed above.

Case 2: There are exactly two vertices in A′

This is also an easy case to deal with among all cases. Notice that for each MCFS
having two vertices in A′, there will be at most one common neighbor of these
two vertices in B′. Indeed, we have the following useful lemma, which is a key
observation for our whole reduction to work in this case and in case 4 below.

Lemma 2. Let G = (A,B,E) be a circular-convex bipartite graph and G′ =
(A′, B′, E′) a cycle-free subgraph of G. Then for any two vertices a′, a′′ in A′,
|B′ ∩N(a′) ∩N(a′′)| ≤ 1.

Proof. If there are two vertices a′, a′′ in A′ and two vertices b′, b′′ in B′∩N(a′)∩
N(a′′), then there is a cycle a′b′a′′b′′a′ in G′, which is a contradiction to the
assumption that G′ is cycle-free. ��

Circular Convex Bipartite Graphs: FVS 277

Under the condition that there are exactly two vertices in A′ and the inter-
section of their neighborhoods is nonempty, we know that there will be exact
one common neighbor of these two vertices in B′. This is because that if the
intersection of their neighborhoods is nonempty, then we can always put a com-
mon neighbor of them into B′ still not making any cycle. On the other hand, if
there are exactly two vertices in A′ and the intersection of their neighborhoods
is empty, then we can put all vertices in B into B′ still not making any cycle.

More precisely, if there are exactly two vertices inA′, without loss of generality,
we may assume that these two vertices are a′, a′′, that is, A′ = {a′, a′′}. If
N(a′) ∩ N(a′′) �= ∅ and assume that b ∈ N(a′) ∩ N(a′′), then {a′, a′′, b} ∪ B \
(N(a′) ∩ N(a′′)) is apparently cycle-free, and also maximum with respect to
the conditions that A′ = {a′, a′′} and b ∈ N(a′)∩N(a′′). Thus, in this case, the
MCFS is {a′, a′′, b}∪B \(N(a′)∩N(a′′)). If N(a′)∩N(a′′) = ∅, then {a′, a′′}∪B
is apparently cycle-free, and also maximum with respect to the conditions that
A′ = {a′, a′′} andN(a′)∩N(a′′) = ∅. Thus, in this case, the MCFS is {a′, a′′}∪B.

We define a set S2 as follows.

S2 = {{a′, a′′, b} ∪B \ (N(a′) ∩N(a′′)) | a′, a′′ ∈ A, b ∈ N(a′) ∩N(a′′)} ∪
{{a′, a′′} ∪B | a′, a′′ ∈ A and N(a′) ∩N(a′′) = ∅}.

Then S2 is computable in polynomial time O(|A|2|B|2), and S2 contains a MCFS
of G in case 2, as discussed above.

Case 3. There are at least three vertices in A′ and there are two
consecutive vertices in A′ with no common neighbor in B′

This is a main case to deal with among all cases. In this case, we will make a
cut on the circular ordering of G to get a convex bipartite subgraph G′.

Fig. 2. Graph G and the graph Gai,aj

Without loss of generality, we may assume that ai, aj are in A′, but none of
ax’s are in A′ for i < x < j, and moreover, none of vertices in N(ai) ∩ N(aj)
are in B′, that is, N(ai) ∩ N(aj) ∩ B′ = ∅. Then we can remove the vertices

278 Z. Lu et al.

in {ai+1, · · · , aj−1} ∪ (N(ai) ∩ N(aj)), and also remove all the edges incident
with one of the removed vertices. Intuitively, in this way, we make a cut on the
circular ordering of G between ai and aj to get a convex bipartite subgraph
G′ = Gai,aj , whose MCFS is as large as a MCFS of G, see Figure 2.

More precisely, for any two vertices ai, aj in A, we define a graph Gai,aj as
follows.

Gai,aj = (Aai,aj , Bai,aj , Eai,aj), where

Aai,aj = A \ {ai+1, · · · , aj−1},
Bai,aj = B \ (N(ai) ∩N(aj)), and

Eai,aj = {e ∈ E | e has its two ends in Aai,aj and Bai,aj respectively}.
Figure 2 shows how we get the graph Gai,aj from the original graph G for a pair
of vertices ai, aj . The following lemmas justify the construction of Gai,aj .

Lemma 3. For any two vertices ai, aj in A, the graph Gai,aj is convex bipartite.

Proof. We prove by definition. After removing {ai+1, ..., aj−1} from A, we define
a new linear ordering on Aai,aj as follows, see Figure 2 (right).

aj ≺ aj+1 ≺ · · · ≺ ai−1 ≺ ai.

Then for each vertex b in Bai,aj , its neighborhood NG′(b) is an interval on Aai,aj

under this new linear ordering. Indeed, assume that N(b) = {ap, ap+1, · · · , aq} in
G, where 1 ≤ p ≤ q ≤ n. Then NG′(b) = N(b) ∩Bai,aj . In general, NG′(b) is an
interval on Aai,aj . More precisely, We have the following four cases to consider.

1. If p ≥ j and q ≤ i, then NG′(b) = N(b) = {ap, ap+1, · · · , aq−1, aq}.
2. If p ≤ i ≤ q ≤ j or j ≤ p ≤ i ≤ q, then NG′(b) = {ap, ap+1, · · · , ai−1, ai}.
3. If i ≤ p ≤ j ≤ q or p ≤ j ≤ q ≤ i, then NG′(b) = {aj, aj+1, · · · , aq−1, aq}.
4. If i ≤ p ≤ q ≤ j, then NG′(b) = ∅.
In each case, NG′(b) is still an interval on Aai,aj under the new linear ordering.
By definition of convex bipartite graph, Gai,aj is a convex bipartite graph. ��
Lemma 4. For a circular convex bipartite graph G = (A,B,E), if there is a
MCFS F = {A′, B′, E′} of G with two consecutive vertices ai, aj in A′ and no
common neighbor of ai and aj in B′, then F is also a MCFS of Gai,aj . Moreover,
under the same assumption on the existence and property of F , any MCFS Fai,aj

of Gai,aj is also a MCFS of G.

Proof. Essentially the same as the proof of Lemma 1. For the first part of this
lemma, we prove by contradiction. By the assumption on F , we know that during
the construction of Gai,aj , none of vertices or edges of F are removed, so F is
still a CFS on Gai,aj . If F is not a MCFS of Gai,aj , then there is a MCFS F ′

of Gai,aj which is strictly larger than F . Notice that any CFS of Gai,aj is also
a CFS of G, since Gai,aj is a subgraph of G. Then F ′ is also a CFS of G and
larger than F . This is a contradiction to the maximality of F in G.

Circular Convex Bipartite Graphs: FVS 279

For the second part of this lemma, notice that the MCFS F of G is also a
MCFS of Gai,aj by the first part of this lemma. Then by the assumption on
Fai,aj , we know that Fai,aj is as large as F and Fai,aj is also a CFS of G. Thus,
Fai,aj is also a MCFS of G. ��

We define a set S3 as follows.

S3 = {Fai,aj | ai, aj ∈ A and Fai,aj is a MCFS of Gai,aj}.
Remark 1. For each pair of ai, aj , Gai,aj is unique, but for each Gai,aj , its MCFS
Fai,aj may not be unique. For our purpose, however, for each ai, aj , we only need
one such MCFS Fai,aj of Gai,aj in S3, see proof of Lemma 5 below.

Lemma 5. S3 is computable in polynomial time O(|A|5 + |A|4|E|).
Proof. By Lemma 3, for each pair of ai, aj , Gai,aj is a convex bipartite graph,
thus we can compute a MCFS of Gai,aj by the known O(|A|3 + |A|2|E|) time
algorithm in [23]. As remarked in Remark 1, for each pair of ai, aj , we only need
one such MCFS of Gai,aj in S3. Thus, by an enumeration of all O(|A|2) pairs
(ai, aj) in A×A, we can compute S3 in polynomial time O(|A|5 + |A|4|E|). ��

By lemma 5 and lemma 4, we know that S3 is polynomial time computable
and contains a MCFS of G under the conditions in case 3.

Case 4. There are at least three vertices in A′ and every pair of
connective vertices in A′ has a common neighbor in B′

This is the last and also a main case to deal with among all cases. In this case,
we can not directly make a cut on G, as in case 3, to get a convex bipartite
subgraph. However, we can show that, in this case, A′ is actually contained in a
neighborhood of a single vertex in B′. This containment will enable us to deal
with this case similarly as in case 3, when A′ is restricted into the neighborhood
of a single vertex in B′. Thus, the following lemma is a key observation for our
reduction to work in this case.

Lemma 6. Under the conditions of case 4, there is a vertex b in B′ and a
positive integer k ≥ 3, such that A′ = {a(1), a(2), · · · , a(k)} ⊆ N(b).

Proof. Under the conditions of case 4, without loss of generality, we can assume
that A′ = {a(1), a(2), · · · , a(k)} for k ≥ 3, a(i) and a(i+1) are consecutive in A′

with a(k+1) = a(1) for 1 ≤ i ≤ k, and there is a common neighbor b(i) in B′ to
a(i) and a(i+1) for 1 ≤ i ≤ k.

Now, consider the following vertex sequence a(1)b(1)a(2)b(2) · · · a(k)b(k)a(1).
Each two consecutive vertices in this sequence are adjacent in F . Below, we
will show by induction on k that, if there are two distinct vertices among b(i)’s,
then there is a cycle in F , whose vertices are all among this sequence.

The base step k = 3. If b(1), b(2), b(3) are all distinct, then the sequence
a(1)b(1)a(2)b(2)a(3)b(3)a(1) itself is a cycle of length six in F . If two of b(1), b(2), b(3)

are equal, say b(1) = b(2), then a(1)b(1)a(3)b(3)a(1) is a cycle of length four in F .

280 Z. Lu et al.

The induction step. Assume that for sequence a(1)b(1) · · ·a(k′)b(k
′)a(1) with

3 ≤ k′ ≤ k, if there are two distinct vertices among b(i)’s, then there is a cycle
of length at most 2k′ in F . Let us consider k + 1 vertices b(1), · · · , b(k+1). If all
b(i)’s are distinct, then the sequence a(1)b(1)a(2)b(2) · · ·a(k+1)b(k+1)a(1) itself is
a cycle of length 2k + 2 in F . Assume that at least two of b(i)’s are equal, say
b(i) = b(j) with 1 ≤ i < j ≤ k + 1. If j = i + 1, then by induction on sequence
a(1)b(1) · · · a(i)b(j)a(j+1)b(j+1) · · · a(k+1)b(k+1)a(1), there is a cycle of length at
most 2k in F . If j > i+1, then by induction on two sequence a(i)b(i) · · · a(j)b(j)a(i)
and a(j)b(j)a(j+1)b(j+1) · · ·a(k+1)b(k+1)a(1)b(1) · · · a(i)b(i)a(j) respectively, there is
a cycle of length at most max(2(j − i), 2(k + 1− j + i)) ≤ 2k in F .

The existence of such a cycle in F always contradicts to the cycle-freeness
of F . Thus, we can conclude that for 1 ≤ i ≤ k, all b(i)’s are equal to a single
vertex, say b in B′. ��

Based on this lemma, for any two consecutive vertices a(i) and a(i+1) in A′,
there is no vertex in N(a(i)) ∩N(a(i+1)) ∩ B′ other than the vertex b. That is,
for any 1 ≤ i ≤ k, N(a(i)) ∩N(a(i+1)) ∩ B′ = {b}. Thus, we can make a cut on
the circularly ordered set N(b) between a(i) and a(i+1), to get a convex bipartite
graph, see Figure 3.

Fig. 3. The graph G and its subgraph Gb,ai,aj

More precisely, for each vertex b in B, without loss of generality, we may
assume that N(b) = {ap, ap+1, · · · , aq}, where 1 ≤ p < q ≤ n. Then for any i, j,
where 1 ≤ p ≤ i < j ≤ q ≤ n, we define a graph Gb,ai,aj as follows.

Gb,ai,aj = (Ab,ai,aj , Bb,ai,aj , Eb,ai,aj), where

Ab,ai,aj = N(b) \ {ai+1, ai+2..., aj−1},
Bb,ai,aj = B \ (N(ai) ∩N(aj)) ∪ {b}, and
Eai,aj = {e ∈ E | e has its two ends in Aai,aj and Bai,aj respectively}.

Figure 3 shows how we get the graph Gb,ai,aj from G for each triple (b, ai, aj).
The following lemmas justify the construction of Gb,ai,aj .

Lemma 7. For each vertex b in B and any two of its neighbors ai, aj, the graph
Gb,ai,aj is a convex bipartite graph.

Circular Convex Bipartite Graphs: FVS 281

Proof. Almost the same as the proof of Lemma 3. Notice that N(b) = Ab,ai,aj

is an interval on Ab,ai,aj . ��
Lemma 8. Under the conditions of case 4, any MCFS F of G containing two
consecutive vertices ai and aj in A and their common neighbor b in B is also a
MCFS of Gb,ai,aj , and any MCFS Fb,ai,aj of Gb,ai,aj is also a MCFS of G.

Proof. Essentially the same proofs as Lemma 1 and Lemma 4. For the first part,
notice that in construction of Gb,ai,aj , no vertices of F is removed. Indeed, since
ai and aj are consecutive in F , we know that ai+1, · · · , aj−1 all are not in F . For
the second part, notice that Gb,ai,aj is a subgraph of G and Gb,ai,aj contains a
MCFS of G under the conditions of case 4. ��

Now we define a set S4 as follows.

S4 = {Fb,ai,aj | b ∈ B, ai, aj ∈ N(b) and Fb,ai,aj is a MCFS of Gb,ai,aj}.

Remark 2. For each tuple of (b, ai, aj), Gb,ai,aj is unique, but for each Gb,ai,aj ,
its MCFS may not be unique. For our purpose, however, for each triple (b, ai, aj),
we only need one such MCFS of Gb,ai,aj in S4, see proof of Lemma 9 below.

Lemma 9. S4 is computable in polynomial time O(|B|(|A|5 + |A|4|E|)).
Proof. By Lemma 7, for each vertex b in B and each pair of ai, aj in N(b),
Gb,ai,aj is a convex bipartite graph, thus we can compute a MCFS of Gb,ai,aj by
the known O(|A|3 + |A|2|E|) time algorithm in [23]. As remarked in Remark 2,
for each triple (b, ai, aj), we only need one such MCFS of Gb,ai,aj in S4. Thus, by
an enumeration of all O(|B||A|2) triples (b, ai, aj) in B×A×A, we can compute
S4 in polynomial time O(|B|(|A|5 + |A|4|E|)). ��

By lemma 9 and lemma 8, we know that S4 is polynomial time computable
and contains a MCFS of G under the conditions in case 4.

The overall reduction

Finally, we can define a set S = S1 ∪ S2 ∪ S3 ∪ S4. By above discussions in from
case 1 to case 4, we know that S is polynomial time computable and S contains
a MCFS of G in all cases. Now our overall reduction works as follows.

– Compute the set S and pick out a cycle-free set with the maximum weight.

Since cycle-freeness is verifiable in polynomial time, this reduction is a poly-
nomial time Turing reduction (Cook reduction) of MCFS (or MFVS) from cir-
cular convex bipartite graphs to convex bipartite graphs. Thus, by the known
tractability result of MCFS (or MFVS) in [23] and the complementary relation-
ship between MCFS and MFVS, we have the following main theorem.

Theorem 1. The minimum weighthed feedback vertex set problem (MFVS) is
polynomial time solvable for circular convex bipartite graphs.

282 Z. Lu et al.

4 Conclusions

We have shown that the minimum weighted feedback vertex set (MFVS) is
tractable for circular convex bipartite graphs, by making a Cook reduction (poly-
nomial time Turing reduction) of this problem from circular convex bipartite
graphs to convex bipartite graphs. We still have the following open problems.

First, the existence of Karp reduction rather than Cook reduction of this prob-
lem for these graphs is unknown. Second, our main concern here is on tractabil-
ity of MFVS rather than on practical efficiency of algorithms of MFVS for these
graphs. The existence of linear time algorithms of MFVS for these graphs is un-
known. Third, any problem which is NP-complete for circular convex bipartite
graphs but tractable for convex bipartite graphs is unknown. Finally, can we
show more problems tractable for circular convex bipartite graphs?

Acknowledgments. We thank Kaile Su for encouragement and support, Fran-
cis Y.L. Chin for rising the question on tractability of MFVS for circular convex
bipartite graphs during FAW-AAIM 2011, and anonymous reviewers for helpful
comments.

References

1. Bao, F.S., Zhang, Y.: A review of tree convex sets test. Computational Intelli-
gence 28(3), 358–372 (2012); Previous version: A survey of tree convex sets test.
arXiv.0906.0205 (2009)

2. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized Algorithms for the Loop
Cutset Problem. J. Artif. Intell. Res. 12, 219–234 (2000)

3. Brandstad, A., Le, V.B., Spinrad, J.P.: Graph Classes - A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

4. Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set: New Measure and New Struc-
tures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer,
Heidelberg (2010)

5. Dom, M.: Algorithmic aspects of the consecutive ones property. Bulletin of the
EATCS 98, 27–59 (2009)

6. Damaschke, P., Muller, H., Kratsch, D.: Domination in Convex and Chordal Bi-
partite Graphs. Inform. Proc. Lett. 36, 231–236 (1990)

7. Fomin, F.V., Gaspers, S., Pyatkin, A., Razgon, I.: On the Minimum Feedback
Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica 52(2), 293–
307 (2008)

8. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook
of Combinatorial Optimization, (suppl. vol. A), pp. 209–258. Kluwer Academic
Publishers (1999)

9. Fomin, F.V., Villanger, Y.: Finding Induced Subgraphs via Minimal Triangula-
tions. In: Proc. of STACS, pp. 383–394 (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

Circular Convex Bipartite Graphs: FVS 283

12. Golumbic, M.C., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J.
Graph Theory. 2, 155–163 (1978)

13. Grover, F.: Maximum matching in a convex bipartite graph. Nav. Res. Logist.
Q. 14, 313–316 (1967)

14. Guo, J.: Undirected feedback vertex set. Encyclopedia of Algorithms, 995–996
(2008)

15. Hung, R.-W.: Linear-time algorithm for the paired-domination problem in convex
bipartite graphs. Theory Comput. Syst. 50, 721–738 (2012)

16. Jiang, W., Liu, T., Ren, T., Xu, K.: Two hardness results on feedback vertex
sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681,
pp. 233–243. Springer, Heidelberg (2011)

17. Jiang, W., Liu, T., Wang, C., Xu, K.: Feedback vertex sets on restricted bipartite
graphs. Theor. Comput. Sci. (in press, 2013), doi: 10.1016/j.tcs.2012.12.021

18. Jiang, W., Liu, T., Xu, K.: Tractable feedback vertex sets in restricted bipartite
graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831,
pp. 424–434. Springer, Heidelberg (2011)

19. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer
Computations, pp. 85–103. Plenum Press, New York (1972)

20. Kloks, T., Liu, C.H., Pon, S.H.: Feedback vertex set on chordal bipartite graphs.
arXiv:1104.3915 (2011)

21. Kloks, T., Wang, Y.L.: Advances in graph algorithms. Manuscipt of a book (2013)
22. Liang, Y.D., Blum, N.: Circular convex bipartite graphs: maximum matching and

Hamiltonian circuits. Inf. Process. Lett. 56, 215–219 (1995)
23. Liang, Y.D., Chang, M.S.: Minimum feedback vertex sets in cocomparability graphs

and convex bipartite graphs. Acta Informatica 34, 337–346 (1997)
24. Lu, M., Liu, T., Xu, K.: Independent Domination: Reductions from Circular- and

Triad-Convex Bipartite Graphs to Convex Bipartite Graphs. In: Fellows, M., Tan,
X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 142–152. Springer, Hei-
delberg (2013)

25. Lu, Z., Liu, T., Xu, K.: Tractable Connected Domination for Restricted Bipartite
Graphs (Extended Abstract). In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013.
LNCS, vol. 7936, pp. 721–728. Springer, Heidelberg (2013)

26. Madelaine, F.R., Stewart, I.A.: Improved upper and lower bounds on the feedback
vertex numbers of grids and butterflies. Discrete Math. 308, 4144–4164 (2008)

27. Song, Y., Liu, T., Xu, K.: Independent domination on tree convex bipartite graphs.
In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS,
vol. 7285, pp. 129–138. Springer, Heidelberg (2012)

28. Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite
graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer,
Heidelberg (2012)

29. Wang, F.H., Wang, Y.L., Chang, J.M.: Feedback vertex sets in star graphs. Inform.
Process. Lett. 89(4), 203–208 (2004)

30. Yannakakis, M.: Node-deletion problem on bipartite graphs. SIAM J. Comput. 10,
310–327 (1981)

31. Zhou, H.: The feedback vertex set problem: a spin glass approach. arXiv:1307.6948
(2013)

32. Van Zuylen, A.: Linear programming based approximation algorithms for feedback
set problems in bipartite tournaments. Theor. Comput. Sci. (in press)

The Multi-parameterized Cluster

Editing Problem

Faisal N. Abu-Khzam

Department of Computer Science and Mathematics
Lebanese American University

Beirut, Lebanon
faisal.abukhzam@lau.edu.lb

Abstract. The Cluster Editing problem seeks a transformation of a
given undirected graph into a transitive graph via a minimum number of
edge-edit operations. Existing algorithms often exhibit slow performance
and could deliver clusters of no practical significance, such as singletons.
A constrained version of Cluster Editing is introduced, featuring more
input parameters that set a lower bound on the size of a clique-cluster
as well as upper bounds on the amount of both edge-additions and dele-
tions per vertex. The new formulation allows us to solve Cluster Editing
(exactly) in polynomial time when edge-edit operations per vertex is
smaller than half the minimum cluster size. Moreover, we address the
case where the new edge addition and deletion bounds (per vertex) are
small constants. We show that Cluster Editing has a linear-size kernel in
this case.

1 Introduction

Given an undirected loopless graph G = (V,E) and an integer k > 0, the Cluster
Editing Problem asks whether k or less edge additions or deletions can transform
G into a graph whose connected components are cliques. Cluster Editing is NP-
Complete [13, 16], but can be solved in polynomial-time when the parameter k
is fixed [4, 10]. In other words, the problem is fixed-parameter tractable when
parameterized by the total number of edge-edit operations1.

The Cluster Editing problem received considerable attention recently. This
can be seen from a long sequence of continuous algorithmic improvements (see
[1–3, 5, 6, 10, 11]). The current asymptotically fastest fixed-parameter algorithm
runs in O∗(1.618k) [2]. Moreover, a kernel of order 2k was achieved recently in [6].
In other words, an arbitrary Cluster Edit instance can be reduced in polynomial-
time into an equivalent instance where the number of vertices is at most 2k.

In application domains, Cluster Editing is also known under the name “Cor-
relation Clustering” where it can be viewed as a model for accurate unsupervised
clustering. In such context, edges to be deleted/added from a given instance are

1 We assume familiarity with the notion of fixed-parameter tractability and kerneliza-
tion algorithms (see [7, 8, 15]).

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 284–294, 2013.
c© Springer International Publishing Switzerland 2013

Cluster Editing Multi-parameterized 285

considered false positives/negatives. Such errors could be small in some practi-
cal applications, and they tend to be even smaller per input object, or vertex,
unless the said object is an outlier. Moreover, in some applications clusters are
not expected to be too small or differ significantly in size.

Motivated by the above, we consider a parameterized version of Cluster Edit-
ing, dubbed Constrained Cluster Editing, which assumes a cluster is bounded
below by some application-specific threshold and both the number of edges that
can be deleted and the number of edges that can be added, per vertex, are also
bounded. We refer to these two bounds by error parameters. We introduced
these parameters in [9] where an experimental study was conducted on their
effect on the running time of branching algorithms. Similar work appeared re-
cently in [12] where the total number of edge-edit operations, per vertex, and the
number of clusters in the target solution are used as additional parameters. We
note here that setting separate bounds on the two parameters could affect the
complexity as well as algorithmic solutions of the problem. Moreover, according
to computational biologists [14], the expected frequency of false positives and
false negatives differ in many applications.

We present a polynomial time algorithm that solves the optimization version
of Cluster Edit whenever the sum of the two error parameters is smaller than
half the expected minimum cluster size in the target solution. This is a rather
common case whenever the clusters are of significant minimum size and error
parameters are not expected to be high, being often due to noise.

We shall discuss the complexity of Constrained Cluster Editing when the
error-parameters are small constants. In particular, we show that Minimum
Cluster Editing is solvable in polynomial-time when at most one edge can be
deleted and at most one edge can be added per vertex. Moreover, in the case
where error parameters are small constants, we show that our simple reduction
procedure leads to a problem kernel whose size is linear in the parameter k.

The paper is organized as follows: section 2 presents some preliminaries; sec-
tion 3 is devoted to the main reduction procedure; our main complexity result is
presented in section 4; in section 5 we study the optimization version of Cluster
Editing when the error parameters are small constants, and section 6 concludes
with a summary.

2 Preliminaries

We adopt common graph theoretic terminologies, such as neighborhood, degrees,
adjacency, path, etc. The term non-edge is used to designate a pair of non-
adjacent vertices. Given a graph G = (V,E), and a set S ⊂ V , the subgraph
induced by S is denoted by G[S]. A clique in a graph is a subgraph induced by a
set of pair-wise adjacent vertices. An edge-edit operation is either a deletion or
an addition of an edge. We shall use the term cluster graph to denote a transitive
graph, which consists of a disjoint union of cliques, as connected components.

286 F.N. Abu-Khzam

For a given graph G and parameter k, the Parameterized Cluster Editing
problem asks whether G can be transformed into a cluster graph via k or less
edge-edit operations. In this paper, we consider a parameterized version of this
problem, called Constrained Cluster Editing, which can be formally defined as
follows.

Input: A graphG, parameters k, s, a, d, and two functions a : V (G)→{0, 1, · · · , a},
d : V (G) → {0, 1, · · · , d}.
Question: Can G be transformed into a disjoint union of cliques by at most k
edge-edit operations such that each clique is of size s or more and, for each vertex
v ∈ V (G), the number of added (deleted) edges incident on v is at most a(v)
(d(v) respectively)?

We shall use some special terminology to help us present our algorithm. The
expression solution graph may be used instead of cluster graph, when dealing
with a specific input instance. Edges that are not allowed to be in the cluster
graph are called forbidden edges, while edges that are (decided to be) in the
solution graph are permanent. An induced path of length two is called a conflict
triple, which is so named because it can never be part of a solution graph. To
cliquify a set S of vertices is to transform G[S] into a clique by adding edges.

A clique is permanent if each of its edges are permanent. To join a vertex v
to clique C is to add all edges between v and vertices of C that are not in N(v).
This operation makes sense only when C is permanent or when turning C to a
permanent clique. If v already contains C in its neighborhood, then joining v to
C is equivalent to making C ∪ {v} a permanent clique. To detach v from C is
the opposite operation (of deleting all edges between v and the vertices of C).

The first, and simplest, algorithm for Cluster Editing finds a conflict triple
in the input graph and “resolves” it by exploring two cases: either delete one
of the two edges in the path or insert the missing edge, In both cases, the
algorithm proceeds recursively. As such, the said algorithm runs in O(3k) (3
cases per conflict triple). The same idea has been used in almost all subsequent
algorithms, which added more sophisticated “branching rules.”

A kernelization algorithm, with respect to an input parameter k, is a
polynomial-time reduction procedure that yields an equivalent problem instance
whose size, or order, is bounded by a function of the input parameter. Known
kernelization algorithms for Cluster Editing have so far obtained kernels whose
order (number of vertices only) is bounded by a linear function of k [5, 6, 11].
The most recent order-bound is 2k [6]. We shall present a simple reduction proce-
dure that delivers kernels whose number of edges is bounded by 2(a+3d)2k. The
same reduction procedure is used to obtain our main result, which states that
Minimum Cluster Editing is solved exactly in polynomial time when s > 2(a+d).

When s = 1, the bound on a cluster size is not important. The corresponding
version of the problem can be denoted by (a, d)-Cluster Editing. This version
is different from the one introduced in [12] where a bound c is placed on the
total number of edge-edit operations per vertex. We refer to this problem as c-
Cluster Editing. When c > 3, c-Cluster Editing is NP-hard (shown also in [12]).

Cluster Editing Multi-parameterized 287

Note that 4-Cluster Editing is not equivalent to (a, d)-Cluster Editing where
a+ d = 4. According to our definition, a+ d = 4 means that that (a, d) is one of
the five elements of {(i, j) : i+ j = 4}. Therefore, the NP-hardness of c-Cluster
Editing for c ≥ 4 does not imply that (a, d)-Cluster Editing is NP-hard when
a+ d = 4. Note that, for any a, (a, 0)-Cluster Editing is solvable in polynomial
time: any solution must add all edges to get rid of all conflict-triples, if possible.

We note here that if (a, d)-Cluster Editing is NP-hard then so is (a′, d′)-Cluster
Edit for all a′ ≥ a and d′ ≥ d. This follows immediately from the definition since
every instance of the first is an instance of the second. We conjecture that (a, 1)-
Cluster Editing is NP-hard for a > 1, and we prove in section 5 that (1, 1)-Cluster
Editing is solvable in polynomial-time when the cluster size is at least four. We
pose as open problem whether (2, 1)-Cluster Editing is NP-hard.

Finally, as an additional practical objective, our reduction procedure assumes
that no edge can be added between two different connected components. This
can be motivated by the common practice in social networks to (try to) con-
nect people who have mutual friends/connections. This constraint may be made
stronger by requiring that two vertices with disjoint neighborhoods must belong
to different clusters. The latter constraint is not studied in this paper.

3 A Reduction Procedure

In general, a problem-reduction procedure is based on reduction rules, each of
the form 〈condition, action〉, where action is an operation that can be performed
to obtain an equivalent instance of the problem whenever condition holds. If a
reduction is not possible, or the action violates a problem-specific constraint,
then we have a no instance. Moreover, a reduction rule is sound if its action
results in an equivalent instance.

Let (G, k) be an instance of (a, d, s, k)-Cluster Editing. In what follows, a set
is cliquifiable if it can be made a clique by adding all pairs of missing edges
without violating any of the constraints.

The main reduction rules are given below. They are assumed to be applied
successively in such a way that a rule is not applied, or re-applied, until all the
previous rules have been applied exhaustively. We shall prove the soundness of
non-obvious reduction rules only.

3.1 Base-Case Reductions

Reduction Rule 1. The reduction algorithm terminates and reports a no in-
stance, whenever any of k, a(v), or d(v) becomes negative for some vertex v ∈
V (G).

Reduction Rule 2. For any vertex v, if d(v) = 0 (or becomes zero), then N(v)
is cliquified.

Note that applying Rule 2 may yield negative parameters, which triggers Rule
1 and causes the algorithm to terminate with a negative answer.

288 F.N. Abu-Khzam

Reduction Rule 3. If a(u) = 0, then set every non-edge of u to forbidden.

Reduction Rule 4. If a(u) = d(u) = 0, then delete N [u]. This results in delet-
ing all edges connecting N(u) to V (G) \ N(u) and decrementing all the corre-
sponding parameters.

Soundness: In this case, N [u] is cliquified by Rule 2. If the algorithm does not
terminate, and since no new neighbors can be added to u, N [u] is a cluster.

3.2 Reductions Based on Conflict-Triples

Reduction Rule 5. If uv and uw are permanent edges and vw is a non-edge,
then add vw and decrement each of k, a(v) and a(w) by one. If vw is a non-
permanent edge, then set vw as permanent.

Reduction Rule 6. If uv is a permanent edge and uw is a forbidden edge, then
set vw as forbidden. If vw exists, delete it and decrement k, d(v) and d(w) by
one.

3.3 Reductions Based on Common Neighbors

Reduction Rule 7. If two non-adjacent vertices u and v have more than d(u)+
d(v) common neighbors (or just > 2d common neighbors), then add edge uv and
decrement each of k, a(u) and a(v) by one.

Soundness: If u and v are not in the same clique in the solution graph, then at
least one of them has to lose more than d edges, which is not possible.

Reduction Rule 8. If two adjacent vertices, u and v, have at least 2d common
neighbors then set uv as permanent edge.

Soundness: Same argument as in Rule 7 above.

Reduction Rule 9. If two vertices u and v are such that |N(u) \ N(v)| >
a+ d then set edge uv as forbidden. If u and v are adjacent, then delete uv and
decrement each of k, d(u) and d(v) by one.

Soundness: For u and v to be in the same cluster, at most d neighbors may be
deleted from N(u) and at most a neighbors can be added to N(v).

3.4 Reductions Based on Cluster-Size

Reduction Rule 10. If s > 1 and there is a vertex v satisfying: 0 ≤ degree(v)<
s− a(v)− 1, then return No.

Soundness: Obviously, v needs more than a(v) edges to be a member of a
cluster in a solution graph.

Cluster Editing Multi-parameterized 289

Reduction Rule 11. If s > 1 and there is a vertex v satisfying: 0 ≤ degree(v)−
d(v) < s− a(v)− 1, then set d(v) = degree(v)− s+ a+ 1.

Soundness: If d(v) edges incident on v are deleted, we get a no-instance by
Rule 10.

Reduction Rule 12. If s > 2 and two non-adjacent vertices u and v have less
than s− 2a common neighbors, then set edge uv as forbidden.

Soundness: For u and v to belong to the same cluster, they must have at least
s − 2 common neighbors. After adding uv, the maximum number of common
neighbors we can add is 2a− 2 (a− 1 edges between u and N(v) and vice versa).
The total number of common neighbors after adding all possible edges remains
less than s− 2(= s− 2a+ 2a− 2).

Reduction Rule 13. If s > 2 and two adjacent vertices u and v have < s −
2a− 2 common neighbors, then delete edge uv.

Soundness: The argument is similar to the previous case, except that each
vertex must add at least a neighbors of the other to obtain s − 2 common
neighbors.

3.5 Permanent and Isolated Cliques

Deleting all isolated cliques is a sound reduction rule for the general Cluster
Editing problem. In our formulation we do not allow a cluster to be of size < s.
Therefore, and since we do not allow the addition of edges between different
connected components, we shall assume that an isolated clique of size < s yields
a no instance.

Reduction Rule 14. If a clique C is such that N(C)\C = ∅ and |C| < s then
we have a no-instance.

Reduction Rule 15. If a clique C is such that N(C) \ C = ∅, and |C| ≥ s,
then delete C.

Soundness: This follows from our assumption that no edges are to be added
between different connected components.

Finally, the presence of permanent cliques can yield problem reductions that
are not obtained by exhaustive applications of the above reduction rules. Note
that a permanent edge is a special case of a permanent clique.

Reduction Rule 16. If a vertex v has more than d neighbors in a permanent
clique C, then v is joined to C.

Reduction Rule 17. Let C be a permanent clique of size > a. If a vertex v
has less than |C| − a neighbors in C, then v is detached from C.

290 F.N. Abu-Khzam

4 Complexity of Constrained Cluster Editing

An instance (G, a, d, s, k) of Constrained Cluster Editing is said to be reduced if
the above reduction rules have been exhaustively applied to the input graph G.
The following key Lemma follows from the reduction procedure.

Lemma 1. Let (G, a, d, s, k) be a reduced yes-instance of Constrained Cluster
Editing. Then every vertex of G has at most a+ 3d neighbors.

Proof. Assume there is a vertex v such that |N(v)| > a + 3d. By Rule 7, any
vertex u is either a neighbor of v or has at most 2d common neighbors with v. In
the latter case, v has more than a+d vertices that are not common with u. Edge
uv would then be forbidden by Rule 9. By Rules 8 and 9, every edge incident on
v is either deleted or becomes permanent. Applying Rules 5 and 6 (exhaustively)
leads to cliquifying and isolating N [v], which then results in deleting N [v].

We now consider the optimization version of Cluster Editing, which seeks a
minimum number of edge-edit operations. So k is not a parameter in this case,
but we keep the three constraints a, d and s.

Theorem 1. When s > 2(a + d), and ad > 0, the Minimum Cluster Editing
problem is solvable in polynomial time.

Proof. By Rules 7 and 12, any two vertices u, v of a reduced instance that are
at distance two from each other satisfy: s − 2a ≤ |N(u) ∩ N(v)| ≤ 2d. When
s−2a > 2d, and provided the reduction procedure does not detect a no instance,
the reduction rules will automatically lead to a P2-free graph since no two non-
adjacent vertices can have common neighbors.

In practice, the total number of errors per data element is expected to be
small and should be much smaller than a cluster size. In the seemingly common
case where the cluster size is greater than two times such error, our theorem
asserts that optimum clustering is solvable in polynomial time.

When s ≤ 2(a + d), the Minimum Constrained Cluster Editing problem re-
mains NP-hard. In this case, the reduction procedure may still help to obtain
faster parameterized algorithms. Moreover, when the error-parameters a and d
are small constants and the size of a cluster is not important (i.e., s = 1), apply-
ing the above reduction rules yields equivalent instances whose size is bounded
by a linear function of the main parameter k.

Theorem 2. There is a polynomial-time reduction algorithm that takes an ar-
bitrary instance of Constrained Cluster Editing and either determines that no
solution exists or produces an equivalent instance whose order is bounded by
2k(a+ 3d+ 1).

Proof. Let (G, a, d, k) be a reduced instance of Cluster Editing. By Lemma 1,
each remaining vertex in a reduced instance has degree ≤ a+ 3d. Let A be the
set of vertices of G that are incident to an edge that must be deleted or a non-
edge that must be added to obtain a minimum solution. If (G, a, d, k) is a yes

Cluster Editing Multi-parameterized 291

instance, then |A| ≤ 2k. Let B = N(A) and C = V (G) \ (A ∪B). Observe that
any member of a conflict triple is either in A or in B. It follows that C must
be empty since any isolated clique is deleted in a reduced instance. The proof
follows from the fact that |A| ≤ 2k and every vertex of A has at most a + 3d
neighbors in B.

The following Corollary follows easily from Theorem 2 and Lemma 1.

Corollary 1. There is a polynomial-time reduction algorithm that takes an ar-
bitrary instance of Constrained Cluster Editing and either determines that no
solution exists or produces an equivalent instance whose size is bounded by 2k(a+
3d)2.

5 The (a, d, s)-Cluster Editing Problem

In [9], a Cluster Editing algorithm was modified so that it solves (a, d, 1, k)-
Cluster Editing. Experiments show that using the add and delete parameters
improves the running time on yes instances, despite the fact that a few combina-
tions of values of a and d were tried on each instance before finding a solution.
It was observed that solutions were always found with small values of a and d.
Motivated by these experiments, we discuss the complexity of the optimization
version of Cluster Editing when a, d and s are small constants. We shall refer to
this optimization version of the problem as (a, d, s)-Cluster Editing.

It was shown in [12] that Cluster Editing is NP-hard when the total number
of edge-edit operations per vertex is four or more. Unfortunately, the result (and
proof) of [12] cannot be used in studying the complexity of each of the separate
cases where a+ d = 4 ((a, d) ∈ {(0, 4), (1, 3), (2, 2), (3, 1)}). It was also shown in
[12] that Cluster Editing is NP -hard when a = 0 and d = 2. This implies the
NP-hardness of (a, 2, s)-Cluster Editing for a ≥ 0 and s ≥ 1. Motivated by these
results, and by the need for non-trivial clusters, we show that our reduction
procedure solves (1, 1, s)-Cluster Editing in polynomial time. We shall address
the case s ≥ 4 in the rest of this paper 2.

Lemma 2. A reduced instance of (1, 1, s)-Cluster Editing is triangle free.

Proof. If the reduced instance has a triangle T = {u, v, w} that is not contained
in (or does not form) a clique-cluster, then we distinguish two cases:

(i) Some vertex x of G has exactly two neighbors, say v and w, in T . This
triggers Rule 8, which forces edge vw to become permanent. Then Rule 16
applies to both u and x, forcing {u, v, w, x} to become a clique in the solution
graph (if possible).

(ii) Some vertex of G has exactly one neighbor in T , which triggers Rule 17 and
deletes the edge between the said vertex and T .

2 It can be shown that the problem is solvable in polynomial-time for any s > 0, but
the proof is too long to include in this paper.

292 F.N. Abu-Khzam

Lemma 3. In a reduced yes instance of (1, 1, s)-Cluster Editing, the maximum
degree is bounded above by three.

Proof. By Lemma 1 every vertex is of degree ≤ 4. Let v be a vertex of degree 4.
Since at most one incident edge can be deleted, v must belong to a cluster that
contains at least three of its neighbors. Since G is triangle-free, two edges would
be needed to connect each such neighbor to the other two, which is impossible.

If s > 4, and by Theorem 1, the problem is completely solved by the reduction
procedure since s > 4 = 2(a+ d). When s = 4, any yes-instance cannot contain
a vertex of degree one. Moreover, edges incident on a degree-two vertex cannot
be deleted. Therefore neighbors of a degree-two vertex must be in the same clus-
ter. This is guaranteed by Rule 11, which sets d(v) to sero for any degree-two
vertex. This results in introducing triangles and triggering other rules (as de-
scribed above) that yield automatic isolation (and removal) of clusters whenever
possible. The remaining graph must be 3-regular.

The following reduction rule is specific to reduced (triangle-free) instances of
(1, 1, s)-Cluster Editing.

Reduction Rule 18. If u and v are adjacent degree-three vertices of a reduced
(1, 1, s)-Cluster Editing instance, and none of the neighbors of u is adjacent to
a neighbor of v (i.e., N(N(u)) ∩N(v) = ∅), then delete edge uv.

Soundness: If uv is permanent, and since d = 1, at least one neighbor of each
is in the same cluster of u and v. This requires adding two edges to a neighbor
of each, which is impossible.

Lemma 4. In a reduced yes instance of (1, 1, 4)-Cluster Editing, if two vertices
have a common neighbor then they must belong to a cycle of length four.

Proof. Every vertex of the reduced instance is of degree-three. If two adjacent
vertices are not part of a C4, then Rule 18 applies.

Since G is triangle-free and 3-regular, exactly one edge must be deleted per
vertex. Moreover, every edge of G is part of a cycle of length four. It follows that
edges that are not deleted by an optimum solution, if one exists, form a disjoint
union of cycles of length four each (the remaining subgraph, before performing
any edge addition, is 2-regular). To find an optimum solution, we transform the
problem into an instance of Independent Edge Cover, which seeks a minimum
set of edges S such that every vertex is incident on exactly one element of S. In
fact, we just treat a reduced instance as an instance of Edge Cover since each
and every vertex has a d value of one. We now obtain the following.

Theorem 3. (1, 1, 4)-Cluster Editing is solvable in polynomial-time.

Proof. This follows from the above reduction to Independent Edge Cover, which
can be solved in polynomial-time [17].

Cluster Editing Multi-parameterized 293

When s = 3, the reduction procedure would also result in a 3-regular graph
and the reduction to Independent Edge Cover can also be used. To see this
note that deleting a single edge of a connected component results in subsequent
reductions that turn it into a cluster graph, unless a no instance is detected. It
follows that (1, 1, 3)-Cluster Editing is solvable in polynomial-time. We note that
the case s ≥ 1 is also solvable in polynomial-time, via a reduction to Weighted
Edge Cover.

6 Conclusion

We studied a multi-parameterized version of the Cluster Editing problem and
showed that a simple reduction procedure solves Minimum Cluster Editing in
polynomial-time when the smallest acceptable cluster size exceeds twice the al-
lowable edge operations per vertex. Such operations are viewed as errors or false
positives/negatives in the input.

On the other hand, when the bound on the edge-edit operations per vertex
is constant, we showed that a linear-size kernel is obtained. Previously known
kernels have a linear bound on the number of vertices only, and they are not
easily applicable to the constrained version.

We observed that (a, d, s, k)-Cluster Editing is NP-hard when d ≥ 2, and
conjectured that (a, 1, s, k)-Cluster Editing is NP-hard, in general, for a ≥ 2. To
prove this claim, it would be enough to show the NP-hardness for the case a = 2
and d = 1.

References

1. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: Parameter-
ized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)

2. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. In: Iliopou-
los, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 85–95. Springer,
Heidelberg (2011)

3. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:
Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)

4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

5. Cao, Y., Chen, J.: Cluster editing: Kernelization based on edge cuts. Algorith-
mica 64(1), 152–169 (2012)

6. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. In: Thai, M.T.,
Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidel-
berg (2010)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
9. Ghrayeb, A.: Improved search-tree algorithms for the cluster edit problem. MS

thesis, Lebanese American University (2011)
10. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:

Exact algorithms for clique generation. Theor. Comp. Sys. 38(4), 373–392 (2005)

294 F.N. Abu-Khzam

11. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput.
Sci. 410(8-10), 718–726 (2009)

12. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discrete Applied Mathematics 160(15), 2259–2270 (2012)

13. Krivánek, M., Morávek, J.: NP -hard problems in hierarchical-tree clustering. Acta
Inf. 23(3), 311–323 (1986)

14. Langston, M.A.: Private communication (2012)
15. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press

(2006)
16. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete

Applied Mathematics 144(1-2), 173–182 (2004)
17. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Al-

gorithmica 64(4), 535–563 (2012)

Fast Order-Preserving Pattern Matching

Sukhyeun Cho1, Joong Chae Na2, Kunsoo Park3, and Jeong Seop Sim1,�

1 School of Computer and Information Engineering, Inha University, Korea
csukhyeun@inha.edu, jssim@inha.ac.kr

2 Department of Computer Science and Engineering, Sejong University, Korea
jcna@sejong.ac.kr

3 School of Computer Science and Engineering, Seoul National University, Korea
kpark@theory.snu.ac.kr

Abstract. Given a text T and a pattern P , the order-preserving pattern
matching (OPPM) problem is to find all substrings in T which have the
same relative orders as P . The OPPM has been studied in the fields of
finding some patterns affected by relative orders, not by their absolute
values. For example, it can be applied to time series analysis like share
prices on stock markets and to musical melody matching of two musical
scores. In this paper, we present a new method of deciding the order-
isomorphism between two strings even when there are same characters.
Then, we show that the bad character rule of the Horspool algorithm
for generic pattern matching problems can be applied to the OPPM
problem. Finally, we present a fast algorithm for the OPPM problem
and give experimental results to show that our algorithm is about 2 to
5 times faster than the KMP-based algorithm in reasonable cases.

Keywords: order-preserving pattern matching, order-isomorphism,
Horspool algorithm.

1 Introduction

Given a text T and a pattern P , the order-preserving pattern matching (OPPM
for short) problem is to find all substrings in T which have the same rela-
tive orders as P . For example, when P = (35, 40, 23, 40, 40, 28, 30) and T =
(10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25) are given, P has the same relative or-
ders as the substring T ′ = (28, 32, 12, 32, 32, 20, 25) of T . In T ′ (resp. P), the
first character 28 (resp. 35) is the 4-th smallest, the second character 32 (resp.
40) is the 5-th smallest, the third character 12 (resp. 23) is the smallest, and
so on. See Figure 1. The OPPM has been studied in the fields of finding some
patterns affected by relative orders, not by their absolute values. For example,
it can be applied to time series analysis like share prices on stock markets and
to musical melody matching of two musical scores [1].

Recently, several results were presented on the OPPM problem. For the OPPM
problem, the order-isomorphismmust be defined. Kim et al. [1] defined the order-
isomorphism as the equivalence of permutations converted from strings with an

� Corresponding author.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 295–305, 2013.
c© Springer International Publishing Switzerland 2013

296 S. Cho et al.

0 2 4 6 8 10 12

10

20

30

40
35

40

23

40 40

28
30

10

20

15

28

32

12

32 32

20

25

15

25

pattern P

text T

Fig. 1. An OPPM example for pattern P = (35, 40, 23, 40, 40, 28, 30) and text T =
(10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25)

assumption that all the characters in a string are distinct. Given T (|T | = n)
and P (|P | = m), they proposed an algorithm for the OPPM problem running
in O(n+m logm) time based on the Knuth-Morris-Pratt (KMP) algorithm [4].
Meanwhile, Kubica et al. [2] defined the order-isomorphism as the equivalence
of all relative orders between two strings, and presented a method of deciding
the order-isomorphism of two strings even when there are same characters. They
independently proposed an algorithm for the OPPM problem based on the KMP
algorithm running in O(n+m logm) time for a general alphabet and O(n+m)
time for an integer alphabet. More recently, Crochemore et al. [3] introduced
order-preserving suffix trees, and they suggested an algorithm finding all occur-
rences of P in T running in O((m logn)/ log logn+z) time where z is the number
of occurrences.

In this paper, we propose a fast algorithm for the OPPM problem based on
the Horspool algorithm [6–8]. Experimental results show that our algorithm is
about 2 to 5 times faster than the KMP-based algorithm in reasonable cases.
Our contributions are as follows.

• We present a new method of deciding the order-isomorphism between two
strings even when there are same characters. We show that Kubica et al.’s
method [2] may decide incorrectly when there are same characters.

• We show that the bad character rule can be applied to the OPPM problem by
defining groups of characters as one character. Kim et al. [1] mentioned the
hardness of applying the Boyer-Moore algorithm [5] to the OPPM problem.
The good suffix rule could be well-defined but the bad character rule could
not be directly applied to the OPPM problem.

• We present a space-efficient algorithm computing the shift table for text
search based on a factorial number system. Let q be the size of the group
of characters and |Σ| be the size of the alphabet. Then, our algorithm uses
O(q!) space for the shift table while the algorithms of [6, 7] for the generic
pattern matching problem use O(|Σ|q) space for the shift table.

Fast Order-Preserving Pattern Matching 297

Table 1. LMaxP , LMinP , μ(P) for P = (35, 40, 23, 40, 40, 28, 30)

i 0 1 2 3 4 5 6

P [i] 35 40 23 40 40 28 30

LMaxP [i] -1 0 -1 1 3 2 5

LMinP [i] -1 -1 0 1 3 0 0

μ(P)[i] 0 1 0 3 4 1 2

This paper is organized as follows. In Section 2, we describe the previous
works related to the OPPM problem. In Section 3, we present a new method of
deciding the order-isomorphism between two strings. In Section 4, we present an
algorithm for the OPPM problem. In Section 5, we show experimental results
comparing our algorithm with the KMP-based algorithm.

2 Preliminaries

Let Σ denote an alphabet and σ = |Σ|. Let |x| denote the length of a string x.
A string x is described by a sequence of characters (x[0], x[1], . . . , x[|x|− 1]). For
a string x, let a substring x[i..j] be (x[i], x[i + 1], . . . , x[j]).

Now, we formally define the order-isomorphism and the order-preserving pat-
tern matching problem. Two strings x and y of the same length over Σ are called
order-isomorphic, written x ≈ y, if

x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for 0 ≤ i, j < |x|.

If two strings x and y are not order-isomorphic, we write x �≈ y. Given a text
T [0..n− 1] and a pattern P [0..m− 1], we say that T matches P at position i if
T [i−m+1..i] ≈ P . In the previous example shown in Figure 1, T matches P at
position 9 because T [3..9] ≈ P . The order-preserving pattern matching problem
is to find all positions of T matched with P .

Let us define a prefix table μ(x) of string x:

μ(x)[i] = |{j : x[j] ≤ x[i] for 0 ≤ j < i}|.

For the previous example, the prefix table of P is μ(P)[i] = (0, 1, 0, 3, 4, 1, 2).
See Table 1.

Lemma 1. For two strings x and y, if x ≈ y, then μ(x) = μ(y).

Proof. By the assumption that x ≈ y, x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for 0 ≤ i < j <
|x|. Hence, μ(x) = μ(y).

298 S. Cho et al.

Lemma 2. Assume that x[0..t] ≈ y[0..t]. For all 0 ≤ i, j ≤ t, if x[i] < x[j], then
y[i] < y[j], and if x[i] = x[j], then y[i] = y[j].

Proof. We first prove by contradiction the first proposition (when x[i] < x[j]).
Suppose that y[i] ≥ y[j]. Then, by the definition of order-isomorphism, x[i] ≥
x[j], which contradicts the assumption that x[i] < x[j].

Next, consider the case when x[i] = x[j]. Then, since x[i] ≤ x[j], y[i] ≤ y[j]
by the definition of order-isomorphism. Moreover, since x[j] ≤ x[i], y[j] ≤ y[i].
Since y[i] ≤ y[j] and y[j] ≤ y[i], y[i] = y[j].

Kubica et al. [2] used location tables called LMax and LMin for the order
information of prefixes of P :
Given a string x, for i = 0, . . . , |x| − 1,

LMaxx[i] = j if x[j] = max{x[k] : k ∈ [0, i− 1], x[k] ≤ x[i]};
if there is no such j then LMaxx[i] = −1. Similarly

LMinx[i] = j if x[j] = min{x[k] : k ∈ [0, i− 1], x[k] ≥ x[i]},
and LMinx[i] = −1 if no such j exists. If more than one such j exist, we select
the rightmost one among them. Intuitively, LMaxx[i] indicates the position of
the largest character which is not larger than x[i] in x[0..i − 1], and LMinx[i]
indicates the position of the smallest character which is not smaller than x[i] in
x[0..i − 1]. For the previous example, the location tables of P are LMaxP [i] =
(−1, 0,−1, 1, 3, 2, 5) and LMinP [i] = (−1,−1, 0, 1, 3, 0, 0). See Table 1. Notice
the location tables of x can be computed in O(|x|) time for an integer alphabet
and in O(|x| log |x|) time for a general alphabet [2].

3 New Decision of Order-Isomorphism

In this section, we show that Kubica et al.’s method [2] for deciding the order-
isomorphism of two strings may be incorrect when there are same characters
and present a new method which works correctly even when there are same
characters.

Kubica et al. [2] claimed that the order-isomorphism of two strings x and y
could be decided using the location tables as follows.

Lemma 3 (see [2]). Assume that x[0..t] ≈ y[0..t], t < |x| − 1, |y| − 1 and
a = LMaxx[t + 1], b = LMinx[t + 1]. Then, x[0..t + 1] ≈ y[0..t + 1] ⇔ y[a] ≤
y[t+1] ≤ y[b]. In case a or b is equal to −1, we omit the respective inequality in
the condition.

For example, assume two strings x = (1, 3, 2), y = (2, 5, 4), and the location
tables LMaxx = (−1, 0, 0) and LMinx = (−1,−1, 1) are given. Then, y ≈ x
since y[LMaxx[i]] ≤ y[i] ≤ y[LMinx[i]] for all 0 ≤ i < 3.

However, this method may decide incorrectly when there are same
characters. For example, consider two strings x = (1, 3, 2) and y = (1, 2, 2).

Fast Order-Preserving Pattern Matching 299

Then, y[LMaxx[i]] ≤ y[i] ≤ y[LMinx[i]] for all 0 ≤ i < 3. But, by the defi-
nition of order-isomorphism, y �≈ x because x[1] � x[2] and y[1] ≤ y[2]. The
reasons why Lemma 3 may not hold when there are same characters in the given
strings are as follows. In the proof of the necessary condition of Lemma 3, to
show x[0..t + 1] ≈ y[0..t + 1] (when y[a] ≤ y[t + 1] ≤ y[b]), they tried to prove
that x[i] ≤ x[t + 1] ⇔ y[i] ≤ y[t + 1] for i ≤ t. For this, they proved that
x[i] ≤ x[t + 1] ⇒ y[i] ≤ y[t + 1] and x[i] ≥ x[t + 1] ⇒ y[i] ≥ y[t + 1]. But, it is
not equivalent to x[i] ≤ x[t + 1] ⇔ y[i] ≤ y[t + 1]. Instead of the latter x[i] ≥
x[t+1] ⇒ y[i] ≥ y[t+1], it should be proven that x[i] > x[t+1] ⇒ y[i] > y[t+1].
As seen in our example, however, x[1] > x[2] � y[1] > y[2].

We show a new lemma for deciding whether two strings are order-isomorphic
or not even when there are same characters.

Lemma 4. Assume that x[0..t] ≈ y[0..t], t < |x|−1, |y|−1 and a = LMaxx[t+1],
b = LMinx[t + 1]. Let p be the condition y[a] < y[t + 1] and q be the condition
y[t+ 1] < y[b]. Then, x[0..t+ 1] ≈ y[0..t+ 1] ⇔ (p ∧ q) or (¬ p ∧ ¬ q). In case a
or b is equal to −1, we assume the respective condition p or q is true.

Proof. Without loss of generality, we assume that a �= −1 and b �= −1. Since
x[a] ≤ x[b] by definitions of LMax and LMin, y[a] ≤ y[b] by definition of the
order-isomorphism. Hence, (¬ p ∧ ¬ q), i.e., y[a] ≥ y[t + 1] ≥ y[b] is equal to
y[a] = y[t+ 1] = y[b].

(⇒) By definitions of LMax and LMin, x[a] ≤ x[t+ 1] ≤ x[b]. We have two
cases according to whether x[a] = x[b] or not.

– Case when x[a] = x[b]: In this case, x[a] = x[t+1] = x[b]. Since x[0..t+1] ≈
y[0..t+ 1], y[a] = y[t+ 1] = y[b] by Lemma 2.

– Case when x[a] < x[b]: First we prove that x[a] �= x[t + 1] �= x[b]. Without
loss of generality, suppose x[t+1] = x[a]. Then, x[a] is the smallest character
which is not smaller than x[t + 1] in x[0..t + 1]. That is, x[a] = x[b], which
contradicts the condition that x[a] < x[b]. Since x[a] �= x[t + 1] �= x[b],
x[a] < x[t+ 1] < x[b] and thus y[a] < y[t+ 1] < y[b] by Lemma 2.

Therefore, x[0..t+1] ≈ y[0..t+1] ⇒ (y[a] < y[t+1] < y[b]) or (y[a] = y[t+1] =
y[b]).

(⇐) Since we have already x[0..t] ≈ y[0..t] (assumption), to show x[0..t+1] ≈
y[0..t+ 1], we only need to prove that for all i ≤ t,

x[i] ≤ x[t+ 1] ⇔ y[i] ≤ y[t+ 1] and x[t+ 1] ≤ x[i] ⇔ y[t+ 1] ≤ y[i].

We only consider the former, i.e., x[i] ≤ x[t+1] ⇔ y[i] ≤ y[t+1]. (The latter can
be proven in a similar way.) First, we show that x[i] ≤ x[t+ 1] ⇒ y[i] ≤ y[t+ 1]
when (p∧q) or (¬ p∧¬ q). By the definition of LMax, x[i] ≤ x[a]. Since x[0..t] ≈
y[0..t], y[i] ≤ y[a]. Finally, by the hypothesis (p∧q) or (¬ p∧¬ q), y[a] ≤ y[t+1].
Hence, we get y[i] ≤ y[t+ 1].

Next, we show that y[i] ≤ y[t+1] ⇒ x[i] ≤ x[t+1] when (p∧ q) or (¬ p∧¬ q).
We have two cases according to the hypothesis (p ∧ q) or (¬ p ∧ ¬ q).

300 S. Cho et al.

– Case when y[a] = y[t + 1] = y[b] (¬ p ∧ ¬ q): Since y[i] ≤ y[t + 1] = y[a]
and x[0..t] ≈ y[0..t], x[i] ≤ x[a]. Moreover, since y[a] = y[b], x[a] = x[b] by
Lemma 2, and then x[t+ 1] = x[a] = x[b]. Hence, x[i] ≤ x[a] = x[t+ 1].

– Case when y[a] < y[t + 1] < y[b] (p ∧ q): We prove it by contradiction.
Suppose x[i] > x[t + 1]. Then, x[i] ≥ x[b] by the definition of LMin, and
thus y[i] ≥ y[b] due to x[0..t] ≈ y[0..t]. Moreover, since y[b] > y[t + 1], we
have y[i] > y[t+ 1]. It contradicts the condition that y[i] ≤ y[t+ 1].

Therefore, (p ∧ q) or (¬ p ∧ ¬ q) ⇒ x[0..t+ 1] ≈ y[0..t+ 1].
��

For example, let us consider again the two strings x = (1, 3, 2), y = (1, 2, 2)
and the location tables LMaxx = (−1, 0, 0), LMinx = (−1,−1, 1) shown as
the counter-example. Obviously, x[0..1] ≈ y[0..1] by the definition of the order-
isomorphism. Then, y �≈ x because y[LMaxx[2]] < y[2] = y[LMinx[2]].

4 Fast Order-Preserving Pattern Matching Algorithm

4.1 Basic Idea

Basically, our algorithm for the OPPM problem is based on the Horspool al-
gorithm widely used for generic pattern matching problems. The Horspool al-
gorithm for generic pattern matching problems uses the shift table for filtering
mismatched positions to expect sublinear behavior. (This method is well known
as the bad character rule.) That is, when a mismatch occurs, the generic Hor-
spool algorithm shifts the pattern using the shift table by setting the character
of T compared with P [m− 1] as the bad character.

However, as mentioned in [1], it is not easy to apply the bad character rule to
the OPPM problem since the order-isomorphism is defined using the orders of
characters, not just the character itself. Consider the previous example again, i.e.,
T = (10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25) and P = (35, 40, 23, 40, 40, 28, 30).
If we apply the generic Horspool algorithm to this case, we should compare T [6]
with P [6] first. T [6] ≈ P [6] by the definition of order-isomorphism but as we
can see, T [0..6] �≈ P . If we set T [6] as the bad character as the generic Horspool
algorithm, the shift table for T [6] is hard to be defined since T [6], no matter
what character it is, will match every character in P by the definition of the
order-isomorphism.

There exist some variants of the Horspool algorithm using the notion of q-
grams which consider q consecutive characters as one character [6, 7]. When a
mismatch occurs, the q-gram based algorithms shift the pattern farther than
the original Horspool algorithm by some modification of the shift table. Given
a q-gram x and a pattern P of length m over Σ, the shift table D in [6, 7] is
defined as follows:

Let k = max{i | P [i− q + 1..i] = x for q − 1 ≤ i < m− 1}. Then,
D[f(x)] = min(m− q + 1,m− k − 1). (1)

Fast Order-Preserving Pattern Matching 301

In (1), k means the last position of P matching a q-gram x. To index the shift
table D, they defined a fingerprint f(x) which maps a q-gram x to an integer.
Intuitively, using f(x), a q-gram x is mapped to a character over an alphabet
whose size is σq. For a q-gram x, the fingerprint f(x) is defined as follows.

f(x) =

q−1∑
k=0

x[k] · σk

We use q-grams to solve the hardness of defining bad characters in the OPPM.
For this, we should modify the shift table and the fingerprint. Given a q-gram
x and a pattern P of length m, we define the shift table D indexed by the
fingerprint f(x) as follows:

Let k = max{i | μ(P [i− q + 1..i]) = μ(x) for q − 1 ≤ i < m− 1}. Then,
D[f(x)] = min(m− q + 1,m− k − 1). (2)

In (2), the meaning of k is the same as in (1), but we find the position of
P matching a q-gram using the prefix table and a new fingerprint for space-
efficiency of the shift table. Note that even if we use the prefix table instead of
the location tables, we do not miss any position of P that matches the q-gram
x by Lemma 1. We use a factorial number system [9] for our new fingerprint.
Note that we can use the factorial number system since there are i+ 1 possible
values for the i-th element of the prefix table. Refer to [9–11] for more details.
For a q-gram x, we define a fingerprint f(x) as follows.

f(x) =

q−1∑
k=0

μ(x)[k] · k! (3)

Since the fingerprint f(x) in (3) has the factorial number system, the prefix
tables are uniquely mapped to integers from 0 to q! − 1 [9–11]. Thus, our shift
table D needs O(q!) space.

4.2 Search Algorithm

Our algorithm consists of two steps. In the first step, we compute the location
tables LMaxP , LMinP and the shift table D of pattern P . As mentioned above,
the location tables can be computed in O(m logm) time for a general alphabet
and can be computed in O(m) time for an integer alphabet [2]. To compute
D, all the fingerprints of q-grams of P must be computed. For all the q-grams
of P , prefix tables can be computed in O(mq log q) time using dynamic order-
statistics trees [1] for a general alphabet and can be computed in O(mq) time
using word-encoded sets [11] for an integer alphabet where σ = 2�w/q�−1 and w is
the word size. Then, after computing all the prefix tables, all the fingerprints can
be computed in O(mq) time by Horner’s rule [4]. Finally, D can be computed
in O(q! +mq log q) time [6,7]. Note that we need O(q!) time for initialization of
D. The first step takes O(q! +mq log q +m logm) for a general alphabet.

302 S. Cho et al.

Algorithm 1 shows a pseudo-code of the second step, where we search for P
in T using the shift table D. Suppose we check if P matches T [i−m+1..i]. We
first compare the last q-grams of P and T [i−m+ 1..i] using their fingerprints,
i.e., f(P [m− q..m− 1]) and f(T [i− q+1..i]). If they are the same, we check the
order-isomorphism of P and T [i−m+1..i] character by character using LMaxP
and LMinP (Lemma 4). Otherwise, we do not compare P and T [i −m + 1..i]
because T [i − m + 1..i] cannot be order-isomorphic to P by Lemma 1. Then,
we shift P forward by D[f(T [i − q + 1..i])]. We repeat this until P reaches the
rightmost of T . Figure 2 shows a part of process of Algorithm 1 on the previous
example shown in Figure 1. We first compare the fingerprints f(T [4..6]) = 4 and
f(P [4..6]) = 2. Since they are distinct, we shift P by D[f(T [4..6])] = D[4] = 3.
Next, since f(T [7..9]) and f(P [4..6]) are the same, we compare P and T [3..9]
using Lemma 4. Since P ≈ T [3..9], Algorithm 1 reports the position 9 as an
occurrence. Since the second step takes O(nm + n q log q) time for a general
alphabet, Algorithm 1 takes O(nm+ n q log q + q!) time overall. For an integer
alphabet of size σ = 2�w/q�−1 where w is the word size, Algorithm 1 takes
O(nm+ n q + q!) time.

Algorithm 1. Text Search
1: Preprocess D,LMaxP , LMinP

2: m ← |P |, n ← |T |
3: t ← f(P [m− q..m − 1])
4: i ← m− 1
5: while i < n do
6: c ← f(T [i− q + 1..i])
7: if c = t then � Compare the last q-grams
8: if T [i−m+ 1..i] ≈ P then
9: print “pattern occurs at position” i

10: i ← i+D[c] � Shift P by D[c]

Fig. 2. Performing search on T = (10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25) with P =
(35, 40, 23, 40, 40, 28, 30) using Algorithm 1

Fast Order-Preserving Pattern Matching 303

Algorithm 2. Fingerprint Computation

q ← |x|, c ← 0
for i ← q − 1 downto 1 do

t ← 0
for j ← 0 to i− 1 do

if x[j] ≤ x[i] then t ← t+ 1 � Compute μ(x)[i]

c ← (c+ t) · i � Horner’s rule

return c

5 Experimental Results

Table 2. Search times (in seconds) for 1,000 random patterns in a random text of
length 5,000,000

σ
m 5 10 15

q 3 4 5 3 4 5 3 4 5

230
OKMP 41.76 41.78 41.84

OHq 28.81 39.31 82.17 17.22 13.17 14.79 15.49 8.86 8.71

10
OKMP 41.17 41.28 41.22

OHq 28.75 39.50 82.57 17.39 13.26 14.82 15.79 8.99 8.75

4
OKMP 41.43 41.28 41.29

OHq 30.92 40.89 83.18 18.55 14.20 15.24 16.86 9.86 9.11

2
OKMP 40.46 41.10 40.90

OHq 37.99 47.08 86.56 24.55 19.41 18.60 21.72 14.21 11.67

We conducted experiments to compare the practical performance of our algo-
rithm (OHq) and the KMP-based algorithm (OKMP). The KMP-based
algorithmwas implemented based on the algorithms of [1,2].We checked the order-
isomorphism using Lemma 4 in both algorithms. We used a naive approach (Al-
gorithm 2) to compute the fingerprints instead of using dynamic order-statistics
trees or word-encoded sets because they are less practical when implemented.
Algorithm 2 runs in O(q2) time.

The experimental environments and parameters are as follows. Both algo-
rithms were implemented in C++ and compiled with Microsoft’s C/C++ com-
piler (x86) version 17.00.50727.1, and O2 (maximizing speed) and Oi (generating
intrinsic functions) options were used as optimization options. The experiments
were performed on a Windows 7 PC (64bit) with 32 GB RAM and Intel Core
i7 3820 processor. We tested for a random text T of length n = 5, 000, 000
from an integer alphabet and searched for 1,000 random patterns of length
m = 5, 10, 15, respectively. We performed experiments with varying q from 3
to 5 and σ = 230, 10, 4, 2.

304 S. Cho et al.

Table 2 shows search times. As the pattern length m becomes longer, OHq
runs faster compared to OKMP. Especially, for example, when σ = 230, m = 15,
and q = 5, OHq is about 5 times faster than OKMP. Whereas when m = 5, OHq
does not work well compared to OKMP. The reason why OHq is relatively slower
in this case is because it is based on the Horspool algorithm which works better
as patterns are longer and σ is larger. When m = 5 and q = 5, OKMP beats
OHq for all cases because q = m and q-gram technique has no effect on speedup.
From our experiment, it seems that setting q = 4 is adequate for short patterns
(m ≤ 15). Also, it is worthy of remark that the search times for each algorithm
are almost the same regardless of the alphabet size. That is, the alphabet size
hardly affects the search time in the order-preserving pattern matching.

Acknowledgments. This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIP) (No.
2012R1A2A2A01014892). This work was supported by the IT R&D program of
MSIP/KEIT [10038768, The Development of Supercomputing System for the
Genome Analysis]. This work was supported by the Industrial Strategic tech-
nology development program (10041971, Development of Power Efficient High-
Performance Multimedia Contents Service Technology using Context-Adapting
Distributed Transcoding) funded by the Ministry of Knowledge Economy (MKE,
Korea). This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (2011-0007860). This research was supported
by Next-Generation Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Sci-
ence, ICT & Future Planning (2011-0029924).

References

1. Kim, J., Eades, P., Fleischer, R., Hong, S., Iliopoulos, C.S., Park, K., Puglisi, S.J.,
Tokuyama, T.: Order preserving matching. CoRR, abs/1302.4064 (2013); Submit-
ted to Theor. Comput. Sci.

2. Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A linear time
algorithm for consecutive permutation pattern matching. Information Processing
Letters 113(12), 430–433 (2013)

3. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Walen, T.: Order-preserving suffx trees and their
algorithmic applications. CoRR, abs/1303.6872 (2013)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

5. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Comm. ACM 20(10),
762–772 (1977)

6. Baeza-Yates, R.: Improved string searching. Software: Practice and Experi-
ence 19(3), 257–271 (1989)

Fast Order-Preserving Pattern Matching 305

7. Tarhio, J., Peltola, H.: String matching in the DNA alphabet. Software: Practice
and Experience 27(7), 851–861 (1997)

8. Horspool, R.N.: Practical fast searching in strings. Software: Practice and Experi-
ence 10(6), 501–506 (1980)

9. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley (1997)

10. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in linear time.
Information Processing Letters 79(6), 281–284 (2001)

11. Mares, M., Straka, M.: Linear-time ranking of permutations. Algorithms-ESA,
187–193 (2007)

Scheduling for Electricity Cost in Smart Grid

Mihai Burcea1,∗, Wing-Kai Hon2, Hsiang-Hsuan Liu2,
Prudence W.H. Wong1, and David K.Y. Yau3

1 Department of Computer Science, University of Liverpool, UK
{m.burcea,pwong}@liverpool.ac.uk

2 Department of Computer Science, National Tsing Hua University, Taiwan
{wkhon,hhliu}@cs.nthu.edu.tw

3 Information Systems Technology and Design,
Singapore University of Technology and Design, Singapore

david yau@sutd.edu.sg

Abstract. We study an offline scheduling problem arising in demand
response management in smart grid. Consumers send in power requests
with a flexible set of timeslots during which their requests can be served.
For example, a consumer may request the dishwasher to operate for one
hour during the periods 8am to 11am or 2pm to 4pm. The grid controller,
upon receiving power requests, schedules each request within the spec-
ified duration. The electricity cost is measured by a convex function of
the load in each timeslot. The objective of the problem is to schedule all
requests with the minimum total electricity cost. As a first attempt, we
consider a special case in which the power requirement and the duration
a request needs service are both unit-size. For this problem, we present
a polynomial time offline algorithm that gives an optimal solution and
show that the time complexity can be further improved if the given set
of timeslots is a contiguous interval.

1 Introduction

We study an offline scheduling problem arising in “demand response manage-
ment” in smart grid [7, 9, 18]. The electrical smart grid is one of the major
challenges in the 21st century [6, 28, 29]. The smart grid uses information and
communication technologies in an automated fashion to improve the efficiency
and reliability of production and distribution of electricity. Peak demand hours
happen only for a short duration, yet makes existing electrical grid less efficient.
It has been noted in [4] that in the US power grid, 10% of all generation assets and
25% of distribution infrastructure are required for less than 400 hours per year,
roughly 5% of the time [29]. Demand response management attempts to over-
come this problem by shifting users’ demand to off-peak hours in order to reduce
peak load [3, 12, 17, 20, 23, 25]. This is enabled technologically by the advances
in smart meters [13] and integrated communication. Research initiatives in the
area include GridWise [10], the SeeLoadTM system [16], EnviroGridTM [24], peak
demand [27], etc.

∗ Supported by EPSRC Studentship.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 306–317, 2013.
c© Springer International Publishing Switzerland 2013

Scheduling for Electricity Cost in Smart Grid 307

The smart grid operator and consumers communicate through smart metering
devices. We assume that time is divided into integral timeslots. A consumer sends
in a power request with the power requirement, required duration of service, and
the time intervals that this request can be served (giving some flexibility). For ex-
ample, a consumer may want the dishwasher to operate for one hour during the
periods from 8am to 11am or 2pm to 4pm. The grid operator upon receiving all
requests has to schedule them in their respective time intervals using theminimum
energy cost. The load of the grid at each timeslot is the sum of the power require-
ments of all requests allocated to that timeslot. The energy cost is modeled by a
convex function on the load. As a first attempt to the problem, we consider in this
paper the case that the power requirement and the duration of service requested
are both unit-size, a request can specify several intervals during which the request
can be served, and the power cost function is any convex function.

PreviousWork.Koutsopoulos and Tassiulas [12] has formulated a similar prob-
lem to our problem where the cost function is piecewise linear. They show that
the problem is NP-hard, and their proof can be adapted to show the NP-hardness
of the general problem studied in this paper for which jobs have arbitrary du-
ration or arbitrary power requirement (see elaboration in Section 6). They also
presented a fractional solution and some online algorithms. Salinas et al. [25] con-
sidered a multi-objective problem to minimize energy consumption cost and max-
imize some utility. A closely related problem is to manage the load by changing
the price of electricity over time, which has been considered in a game theoretic
manner [3, 20, 23]. Heuristics have also been developed for demand side manage-
ment [17]. Other aspects of smart grid have also been considered, e.g., communi-
cation [4, 14, 15], security [19]. Reviews of smart grid can be found in [7, 9, 18].

The combinatorial problem we defined in this paper has analogy to the tradi-
tional load balancing problem [2] in which the machines are like our timeslots and
the jobs are like our power requests. Themain difference is that the aim of load bal-
ancing is usually to minimize the maximum load of the machines. Another related
problem is deadline scheduling with speed scaling [1, 31] in which the cost func-
tion is also a convex function, nevertheless a job can be served using varying speed
of the processor. Two problems that are more closely related are the minimum
cost maximum flow problem [5] with convex functions [21, 26] when we have unit
power requirement and unit duration for each job; and the maximum-cardinality
minimum-weight matching on a bipartite graph. Yet, existing algorithms for the
problem cater for more general input [8, 11, 22, 30]. They are more powerful and
have higher time complexity than necessary to solve our problem.

Our Contributions. In this paper we study an optimization problem in de-
mand response management in which requests have unit power requirement,
unit duration, arbitrary timeslots that the jobs can be served, and the cost
function is a general convex function. We propose a polynomial time offline al-
gorithm that gives an optimal solution. We show that the time complexity of the
algorithm is O(n2τ), where n is the number of jobs and τ is the number of time-
slots. We further show that if the feasible timeslots for each job to be served
forms a contiguous interval, we can improve the time complexity to O(nτ logn).

308 M. Burcea et al.

Technically speaking, we use a notion of “feasible graph” to represent alter-
native assignments. After scheduling a job, we can look for improvement via
this feasible graph. We show that we can maintain optimality each time a job is
scheduled. For the analysis, we compare our schedule with an optimal schedule
via the notion of “agreement graph”, which captures the difference of our sched-
ule and an optimal schedule. We then show that we can transform our schedule
stepwise to improve the agreement with the optimal schedule, without increasing
the cost, thus proving the optimality of our algorithm.

Organization of the Paper. Section 2 gives the definition of the problem and
notions required. Section 3 describes our algorithm and its properties. In Section
4, we prove that our algorithm gives an optimal solution, while in Section 5 we
prove its time complexity. We give some concluding remarks in Section 6.

2 Preliminaries

We consider an offline scheduling problem where the input consists of a set of
unit-sized jobs J = {J1, J2, . . . , Jn}. The time is divided into integral timeslots
T = {1, 2, 3, . . . , τ} and each job Ji ∈ J is associated with a set of feasible
timeslots Ii ⊆ T , in which it can be scheduled. In this model, each job Ji must
be assigned to exactly one feasible timeslot from Ii. The load
(t) of a timeslot
t represents the total number of jobs assigned to the timeslot. We consider a
general convex cost function f that measures the cost used in each timeslot t
based on the load at t. The total cost used is the sum of cost over time. Over all
timeslots this is

∑
t∈T f(
(t)). The objective is to find an assignment of all jobs

in J to feasible timeslots such that the total cost is minimized. We first describe
the notions required for discussion.

Feasible Graph. Given a particular job assignment A, we define a feasible graph
G which is a directed multi-graph that shows the potential allocation of each
job in alternative assignments. In G each timeslot is represented by a vertex. If
job Ji is assigned to timeslot r in A, then for all w ∈ Ii\{r} we add a directed
edge (r, w) with Ji as its label.

Legal-Path in a Feasible Graph. A path (t, t′) in a feasible graph G is a legal-
path if and only if the load of the starting point t is at least 2 more than the
load of the ending point t′, i.e.,
(t)−
(t′) ≥ 2. Note that if there is a legal-path
in the feasible graph G, the corresponding job assignment is not optimal.

Agreement Graph. We define an agreement graph Ga(A,A
∗) which is a di-

rected multi-graph that measures the difference between a job assignment solu-
tion A and an optimal assignment A∗. In Ga(A,A

∗) each timeslot is represented
by a vertex. For each job Ji such that Ji is assigned to different timeslots in
A and A∗, we add an arc from t to t′, where t and t′ are the timeslots that Ji
is assigned to by A and A∗, respectively. The arc (t, t′) is labelled by the tuple
(Ji, +/−/=). The second value in the tuple is “+” or “−” if moving job Ji
from timeslot t to timeslot t′ causes the total cost of assignment A to increase
or decrease, respectively. The value is “=” if moving the job does not cause any
change in the total cost of assignment A.

Scheduling for Electricity Cost in Smart Grid 309

1 00

J1

t1 t2 t3

(a) The feasible graph G
after adding job J1 to t1.

11 0

J1

J2

J2

t1 t2 t3

(b) The feasible graph G
after adding job J2 to t2.

12 0

J1

J2

J2

t1 t2 t3

11 1

J1

J2

J2t1 t2 t3

(c) Left: The feasible graph immediately after J3 is added to slot t1. The path (t1, t3)
is a legal-path and we shift by moving J1 to t2 and J2 to t3. Right: The feasible graph
after the shift, with no more legal-paths.

Fig. 1. Let J = {J1, J2, J3}, T = {t1, t2, t3}, I1 = {t1, t2}, I2 = {t1, t2, t3}, and
I3 = {t1}. The number inside the vertices denotes their load. Suppose the algorithm
schedules the jobs in order of their indices. (a) and (b) Jobs J1 and J2 are arbitrarily
assigned their feasible minimum load slots. (c) A legal-path and the corresponding shift
after assigning J3.

Observation 1. By moving Ji from t1 to t2 the overall energy cost (i) decreases
if
(t1) >
(t2)+1, (ii) remains the same if
(t1) =
(t2)+1, and (iii) increases
if
(t1) <
(t2) + 1.

Shifting. By Observation 1, existence of a legal-path implies that the assignment
is not optimal and we can execute a shift and decrease the total cost of the
assignment. Given a legal-path P , a shift moves each job corresponding to an
arc e along P from the original assigned timeslot to the timeslot determined by
e. More precisely, if the path contains an arc (r, w) with J as its label, then job
J is moved from r to w. It is easy to see from Observation 1 that such a shift
decreases the cost, implying that the original assignment is not optimal.

On the other hand, when there is no legal-path, it is not as straightforward
to show that the assignment is optimal. Nevertheless, we will prove this is the
case in Lemma 6.

3 Our Algorithm

The Algorithm. We propose a polynomial time offline algorithm that mini-
mizes the total cost (Figure 1 shows an illustration). The algorithm arranges the
jobs in J in arbitrary order, and runs in stages. At any Stage i, we have three
steps:
(1) Assign Ji to a feasible timeslot with minimum load, breaking ties arbitrarily;
(2) Suppose Ji is assigned to timeslot t. We update the feasible graph G to
reflect this assignment in the following way. If applicable, we add arcs from t
labelled by Ji to any other feasible timeslots (vertices) of Ji;

310 M. Burcea et al.

(3) If there exists any legal-path in G from t to any other vertex t′, the algorithm
executes a shift along the legal-path (see Section 2). At the end, the algorithm
updates the feasible graph G to reflect this shift.

Invariants. In the next section, we show that the algorithm maintains the fol-
lowing two invariants. At the end of each stage:
(I1) There is no legal-path in the resulting feasible graph;
(I2) The assignment is optimal for the jobs considered so far.

Additional Notations. To ease the discussion, in the remainder of the paper,
we use
′i(t) to represent the load of timeslot t after adding Ji (but before the
shift),
i(t) to represent the load of timeslot t at the end of Stage i, and
′i(s, t)
and
i(s, t) to represent
′i(s)−
′i(t) and
i(s)−
i(t), respectively.

4 Correctness

Theorem 1. Our algorithm finds an optimal assignment.

Framework. Consider any stage. After Step (2), there may be a legal-path in
the resulting feasible graph G. In Lemma 1, we show that if a legal-path exists in
G after adding Ji to timeslot r, there is at least one legal-path starting from r.
Suppose the algorithm chooses the legal-path (r, t) and executes the shift along
this path in Step (3). In Lemma 3, we show that if there is no legal-path in the
feasible graph G before adding a job, then after adding a job and executing the
corresponding shift by the algorithm, the resulting feasible graph has no legal-
paths. Therefore, Step (3) of the algorithm needs to be applied only once and
there will be no legal-path left, implying that Invariant (I1) holds. In Lemma 6,
we show that if there is no legal-path in a feasible graph G, the corresponding
assignment is optimal and hence Invariant (I2) holds.

Proof of Invariant (I1)

Lemma 1. Suppose that before adding job Ji to timeslot r the feasible graph G
has no legal-path. If there is any legal-path after adding Ji, there is at least one
legal-path starting from r.

Proof. Assume that there is a legal-path (s, t) after assigning Ji to timeslot r,
so that
′i(s, t) ≥ 2. If r = s, we have obtained a desired legal-path. Otherwise,
r �= s, there are two cases:

Case 1. G contains an (s, t) path before adding Ji. Since r �= s,
i−1(s) =
′i(s)
and
i−1(t) ≤
′i(t) (the latter inequality comes from the fact that r may be equal
to t). This implies
i−1(s, t) ≥
′i(s, t) ≥ 2, which contradicts the precondition
that there is no legal-path before adding Ji. Thus, Case 1 cannot occur.

Case 2. G does not contain any (s, t) path before adding Ji. Since (s, t) becomes
a legal-path after adding Ji, it must be the case that assigning Ji to timeslot
r adds some new edge (r, w) (with Ji as its label) to G, which connects an
existing (s, r) path and an existing (w, t) path. We know that
i−1(s)−
i−1(r) ≤
1 because there is no legal-path before adding Ji. Also,
′i(s) =
i−1(s) and

Scheduling for Electricity Cost in Smart Grid 311

′i(r) =
i−1(r) + 1 because the new job Ji is assigned to r, with r �= s. Hence,

′i(r, t) ≥
′i(s, t), so that the (r, t) subpath is also a legal-path. ��
Lemma 2. If before adding a job the feasible graph G does not have a legal-path,
then after adding one more job there will be no legal-paths where the load of the
starting point is at least 3 more than the load of the ending point. In other words,
the load difference corresponding to any new legal-path, if it exists, is exactly 2.

Lemma 2 will be proved in the full paper and we proceed with Invariant (I1).

Lemma 3. Suppose that G is a feasible graph with no legal-paths. Then after
adding a job and executing the corresponding shift by the algorithm, the resulting
feasible graph has no legal-paths.

Proof. Suppose that there were no legal-paths in G after Stage i−1, but there is a
new legal-path in G after assigning Ji. By Lemma 1, there must be one such legal-
path (s, t) where s is the timeslot assigned to Ji, and without loss of generality,
let it be the one that is selected by our algorithm to perform the corresponding
shift. Let the ordering of the vertices in the path be [s, v1, v2, . . . , vk, t], and P
denote the set of these vertices.

We define In(r) to be the set of vertices w such that a (w, r) path exists
before adding Ji, and Out(r) to be the set of vertices w such that an (r, w) path
exists before adding Ji. We assume that r ∈ In(r) and r ∈ Out(r) for the ease of
later discussion. Similarly, we define In ′′(r) to be the set of vertices w such that
a (w, r) path exists after shifting, and we define Out ′′(r) analogously. Given a
set R of vertices, let IN (R) =

⋃
r∈R In(r) and OUT (R) =

⋃
r∈R Out(r). The

notation IN ′′(R) and OUT ′′(R) are defined analogously.
Briefly speaking, we upper bound the load of a vertex in IN ′′(P), and lower

bound the load of a vertex in OUT ′′(P), as any legal-path that may exist after
the shift must start from a vertex in IN ′′(P) and end at a vertex in OUT ′′(P).
Based on the bounds, we shall argue that there are no legal-paths as the load
difference of any path after the shift will be at most 1. Note that after the shift,
only the load of t is increased by one, whereas the load of any other vertex
remains unchanged. Now, concerning the legal-path (s, t), there are two cases:

Case 1. There was an arc from s to v1 in the feasible graph G before adding
Ji. In this case, it is easy to check that IN ′′(P) ⊆ IN (P),1 and OUT ′′(P) ⊆
OUT (P) ∪ OUT (Ii).

2

1 Otherwise, let z be a vertex in IN ′′(P) but not in IN (P). Take the shortest path
from z to some vertex in P after the shift. Then all the intermediate vertices of such
a path are not from P . However, the jobs assigned to those intermediate vertices are
unchanged, so that such a path also exists before the shift, and z is in IN(P). A
contradiction occurs.

2 Otherwise, let z be a vertex in OUT ′′(P) but not in OUT (P)∪OUT (Ii). Take the
shortest path that goes to z starting from some vertex in P after the shift. Then
all the intermediate vertices of such a path are not from P . If such a path does not
involve vertices from Ii, then this path must exist before the shift, so that z is in
OUT (P). Else, z is in OUT (Ii). A contradiction occurs.

312 M. Burcea et al.

Suppose that
i−1(s) = x. Then,
i−1(t) = x−1 because there is no legal-path
before adding Ji but there is one after adding Ji. This implies
i−1(vh) ≤ x for
any h ∈ [1, k], or there was a legal-path (vh, t) before adding Ji. The load of any
vertex in IN (P) is at most x or there was a legal-path entering t before adding
Ji. The load of any vertex in OUT(P) is at least x− 1 or there was a legal-path
leaving s before adding Ji. For any vertex r in Ii,
i−1(r) ≥ x, since s ∈ Ii has
the minimum load. This implies that the load for any vertex in OUT (Ii) is at
least x − 1, or there was a legal-path leaving a vertex in Ii before adding Ji.
Thus, after the shift, the load of any vertex in IN ′′(P) is at most x, and the load
of any vertex in OUT ′′(P) is at least x− 1, so no legal-paths will exist.

Case 2. There were no arcs from s to v1 in the feasible graph G before adding Ji.
In this case, Ji must be involved in the shift, so that the jobs assigned to s after
the shift will be the same as if Ji was not added. Consequently, if there is still a
legal-path after the shift, the starting vertex must be from IN ′′(P\{s}), while the
ending vertex must be from OUT ′′(P\{s}). Similar to Case 1, it is easy to check
that IN ′′(P\{s}) ⊆ IN (P\{s}) and OUT ′′(P\{s}) ⊆ OUT (P\{s})∪ OUT (Ii).
Suppose that
i−1(s) = x, so that
′i(s) = x + 1. Because adding Ji creates a
new legal-path (s, t), by Lemma 2,
′i(t) =
i−1(t) = x − 1. Thus, the load of
any vertex in IN (P\{s}) is at most x, since there was no legal-path entering t
before adding Ji. On the other hand,
i−1(v1) ≥ x otherwise job Ji would be
assigned to v1. However,
i−1(v1) ≤ x or there is a legal-path (v1, t). Hence,

i−1(v1) = x. This implies that the load of any vertex in OUT (P\{s}) is at
least x − 1, since there was no legal-path leaving v1 before adding Ji. As for
the vertices in OUT (Ii), we can use a similar argument as in Case 1 to show
that their load is at least x − 1. Thus, after the shift, the load of any vertex in
IN ′′(P\{s}) is at most x, and the load of any vertex in OUT ′′(P\{s}) is at least
x− 1, so no legal-path will exist. ��
Proof of Invariant (I2)
We now prove in Lemma 6 (the other key lemma for the correctness) that non-
existence of legal-paths implies the assignment is optimal. The rough ideas are
as follows. Consider an optimal assignment A∗ (satisfying some constraints as to
be defined). In Lemma 5, we show that there is a sequence of agreement graphs
Ga(A1, A

∗), Ga(A2, A
∗), . . . , Ga(Ak, A

∗) where the cost is non-increasing every
step, A1 is the original assignment of jobs given by our algorithm, and Ak is
an optimal assignment. We prove Lemma 6 by contradiction, assuming there is
no legal-path in the feasible graph G but the assignment A is not optimal. We
then consider the sequence of agreement graphs given in Lemma 5 and show
that either there is no agreement graph in the sequence involving strict decrease
of overall cost (which means A is already optimal) or that there is a legal-path
in the feasible graph G, leading to a contradiction.

Note that Lemma 5 considers an optimal assignment A∗ such that Ga(A,A
∗)

is acyclic. The existence of such A∗ is stated here and proved in the full paper.

Scheduling for Electricity Cost in Smart Grid 313

Lemma 4. There exists an optimal assignment A∗ such that Ga(A,A
∗) is

acyclic.

Lemma 5. Suppose A is not optimal and A∗ is an optimal assignment such
that Ga(A,A

∗) is acyclic. Then we can have a sequence of agreement graphs
Ga(A1, A

∗), Ga(A2, A
∗), . . . , Ga(Ak, A

∗) such that A1 = A, Ak = A∗, and the
cost is non-increasing every step.

Proof. Consider the agreement graph Ga(Ai, A
∗), for i ≥ 1, starting from A1 =

A. In each step, from Ga(Ai, A
∗) to Ga(Ai+1, A

∗), one arc is removed. For i ≥ 1,
we consider in Ga(Ai, A

∗) any arc labelled with either a “−” or an “=” and we
execute the move corresponding to this arc. Through this move, we remove one
arc, and thus we do not introduce any new arcs. However, the +/−/= label of
other arcs may change. If the resulting graph Ga(Ai+1, A

∗) does not contain any
more “−” or “=” arcs, we stop. Otherwise, we repeat the process.

Note that the cost is non-increasing in every step. By the time we stop, if
the resulting graph, say, Ga(Ah, A

∗), does not contain any more arcs, we have
obtained the desired sequence of agreement graphs. Otherwise, we are left only
with “+” labelled arcs in Ga(Ah, A

∗); however, in the following, we shall show
that such a case cannot happen, thus completing the proof of the lemma.

Firstly, cost(Ah) ≥ cost(A∗) since A∗ is an optimal assignment. Next, by
Lemma 4, Ga(A1, A

∗) is acyclic and the resulting graph Ga(Ah, A
∗) by removing

all “−” and“=” labelled arcs is also acyclic. Thus, in Ga(Ah, A
∗), there must

exist at least one vertex with in-degree 0 and one vertex with out-degree 0. We
look at all such (v1, vi) paths in Ga(Ah, A

∗), where v1 has in-degree 0 and vi has
out-degree 0. For any such (v1, vi) path, we show that by executing all moves
of the path (i) the overall cost is increasing, and (ii) the labels of all arcs not
contained in the (v1, vi) path remain “+”. After executing all moves of the path,
all arcs of the (v1, vi) path are removed.

(i) Suppose the vertices of the path are [v1, v2, . . . , vi] and
(v1) = x. As all
arcs in (v1, vi) are labelled with “+” (i.e., the cost is increasing),
(vj) ≥ x, for
j > 1. By executing all moves in the path,
(v1) = x− 1,
(vj) is unchanged, for
1 < j < i, and
(vi) is increased by one. Thus, the overall cost is increasing.

(ii) We show that the labels of all arcs not contained in the (v1, vi) path remain
“+”. There may be out-going arcs from v1 to other vertices not in the (v1, vi)
path initially labelled by “+”. Before executing all the moves in the (v1, vi) path,
the load of all other vertices is at least x as we assume
(v1) = x. After the move,

(v1) = x− 1 and out-going arcs from v1 point to vertices with load at least x.
Thus, an arc from v1 to any other vertex denotes a further increase in the cost
and the labels of the arcs do not change. For vertices vj , for 1 < j < i, the
load of vj remains unchanged and thus the labels of the arcs incoming to or
outgoing from vj remain the same. For vi, there may be incoming arcs. Suppose

(vi) = y before executing all the moves in the (v1, vi) path. Then the load of
all other vertices pointing to vi is at most y and the arcs are labelled by “+”.
After executing all the moves in the (v1, vi) path,
(vi) = y + 1, and thus any
subsequent moves from vertices pointing to vi cause further increases in the cost,
i.e., the labels do not change.

314 M. Burcea et al.

Thus, the overall cost is increasing. We repeat this process until there are no
more such (v1, vi) paths. We end up with cost(Ak) > cost(A∗), which contradicts
the fact that cost(Ak) = cost(A∗) as Ak = A∗. Thus, the case where we are
left only with “+” labelled arcs in Ga(Ah, A

∗) cannot happen, and the lemma
follows. ��
Lemma 6. If there is no legal-path in the feasible graph G, the corresponding
assignment is optimal.

Proof. Suppose by contradiction there is no legal-path in the feasible graph G,
but the corresponding assignmentA is not optimal. LetA∗,A1 = A,A2, . . . , Ak=
A∗ be the assignments as defined in Lemma 5. Note that each arc in the agree-
ment graph Ga(A1, A

∗) corresponds to an arc in the feasible graph G (since
G captures all possible moves). Because the sequence of agreement graphs in
Lemma 5 only involves removing arcs, each arc in all of Ga(Ai, A

∗) corresponds
to an arc in G.

Suppose Ga(Aj , A
∗) is the first agreement graph in which a “−” labelled arc

is considered between some timeslots ta and tb. If there is no such arc, then A is
already an optimal solution (since the sequence will be both non-increasing by
Lemma 5 and non-decreasing as no “−” labelled arc is involved). Otherwise, if
there is such an arc in Ga(Aj , A

∗), we show that there must have existed a legal-
path in the feasible graphG, leading to a contradiction. We denote by
(Ai, t) the
load of timeslot t in the agreement graphGa(Ai, A

∗). Suppose
(Aj , ta) = x, then

(Aj , tb) ≤ x− 2 as the overall energy cost would be decreasing by moving a job
from ta to tb. If
(A1, ta) = x and
(A1, tb) ≤ x−2 in the original assignment, then
there is a legal-path inG, which is a contradiction. Otherwise, we claim that there
are some timeslots uiy and vkz such that
(A1, uiy) ≥ x and
(A1, vkz) ≤ x− 2,
and there is a path from uiy to vkz in G. This forms a legal-path in G, leading
to a contradiction.

To prove the claim, we first consider finding uiy . We first set i0 = j and ui0 =
ta. If
(A1, ui0) ≥ x, we are done. Else, since
(Aj , ui0) = x and
(A1, ui0) < x,
there must be some job that is moved to ui0 before Aj . Let i1 < i0 be the
latest step such that a job is added to ui0 and the job is moved from ui1 . Note
that since this move corresponds to an arc with label “=”,
(Ai1 , ui1) = x and

(Ai1 , ui0) = x − 1. If
(A1, ui1) ≥ x, we are done. Otherwise, we can repeat
the above argument to find ui2 and so on. The process must stop at some step
iy < i0 where
(A1, uiy) ≥ x. Similarly, we set k0 = j and vk0 = tb, so that we
can find a step kz < k0 such that
(A1, vkz) ≤ x−2. Recall that since each arc in
Ga(A1, A

∗) corresponds to an arc in the feasible graph G and in all subsequent
agreement graphs we only remove arcs, there is a path from uiy and vkz in G.
Therefore, we have found a legal-path from uiy to vkz in G. ��

5 Time Complexity

We prove the time complexity of our algorithm in Theorem 2 and show that this
can be improved for the case where the feasible timeslots associated with each
job are contiguous.

Scheduling for Electricity Cost in Smart Grid 315

Theorem 2. We can find the optimal schedule in O(n2τ) time.

Proof. We add jobs one by one. Each round when we assign the job Ji to timeslot
t, we add arcs (t, w) labelled by Ji for all vertices w that w ∈ Ii in the feasible
graph. By Lemma 1, there is a legal-path starting from t if there is a legal-path
after assigning Ji to timeslot t. When Ji is assigned to t, we start breadth-first
search (BFS) at t. By Lemma 2, if there is a node w which can be reached by
the search and the number of jobs assigned to w is two less than the number
of jobs assigned to t, it means that there is a legal-path (t, w). Then we shift
the jobs according to the (t, w) legal-path. After shifting there will be no legal-
paths anymore by Lemma 3. Finally we update the edges of the vertices on the
legal-path in the feasible graph.

Adding Ji to the feasible graph needs O(|Ii|) time. Because |Ii| is at most the
total number of timeslots in T , |Ii| = O(τ) where τ is the number of timeslots.
The BFS takes O(τ+nτ) time because there are at most nτ edges in the feasible
graph. If a legal-path exists after adding Ji and its length is l, the shifting needs
O(l) time, which is O(τ) because there are at most τ vertices in the legal-path.
After the shift, at most nτ edges are updated in the feasible graph, taking O(nτ)
time. The total time for adding n jobs is thus bounded by O(n2τ). ��

We now consider the special case where each job Ji ∈ J is associated with
an interval of contiguous timeslots Ii = [ρi, δi], for positive integers ρi ≤ δi, and
each job Ji must be assigned to exactly one feasible timeslot si, for ρi ≤ si ≤ δi.
We give a sketch here, while the full proof can be found in the full paper.

Theorem 3. We can find the optimal schedule in O(nτ logn) time for the case
where the feasible timeslots associated with each job are contiguous.

Proof (Sketch). For the special case, we use data structure techniques for the
speed up. For each timeslot ti ∈ T , we use two balanced binary search trees
that contain the feasible intervals for all jobs assigned to ti. For each job Jj
with Ij = [ρj , δj] assigned to ti, the first binary tree keeps the value of ρj ,
while the second binary tree keeps the value of δj . The binary trees are updated
whenever a job is moved to and from ti accordingly, and each such update takes
O(log n) time. We can query a minimum and a maximum value of the two trees,
respectively, in order to establish the directly reachable interval of timeslot ti, i.e.,
the other timeslots that jobs from ti can be moved to. Because of the contiguous
property of the feasible intervals, the set of timeslots is contiguous. We denote
this interval of timeslots by [αi, βi] and we have that αi ≤ ti ≤ βi.

We further find the set of the ending vertices of all the paths of length at
most τ − 1 that start from ti, which we call reachable interval. Note that the
ending vertices of paths of length 2 from ti can be found by checking the binary
search trees of each timeslot in [αi, βi], which can then be used to find vertices
at distance 3 from ti and so on. Finding the reachable interval requires O(τ)
time. We can then identify any legal path in O(τ) time.

In summary, adding a job to the feasible graph takes O(logn) time. Finding
the reachable interval and legal path takes O(τ) time. Shifting of jobs along the

316 M. Burcea et al.

legal path found takes O(τ logn) time. Thus the time taken to add one job is
bounded by O(τ logn). The overall time for adding all n jobs is thus bounded
by O(nτ logn). ��

6 Conclusion

In this paper we study an offline scheduling problem arising in demand response
management in smart grid. We focus on the particular case where requests have
unit power requirement and unit duration. We give a polynomial time offline
algorithm that gives an optimal solution. Natural generalization extends to ar-
bitrary power requirement and arbitrary duration. The problem where requests
have unit power requirement and arbitrary duration has been shown to be NP-
hard [12] by a reduction from the bin packing problem. Using a similar idea, it
can be shown that the problem where requests have arbitrary power requirement
and unit duration is also NP-hard. An obvious research direction is to develop
approximation algorithms for the general problem. It would be also interesting
to consider online algorithms for the problem.

Acknowledgement. We would like to thank the reviewers for very helpful
comments leading to improvement in the time complexities of our algorithms.

References

1. Albers, S.: Energy-efficient algorithms. Communication ACM 53(5), 86–96 (2010)
2. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Al-

gorithms 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)
3. Caron, S., Kesidis, G.: Incentive-based energy consumption scheduling algorithms

for the smart grid. In: IEEE Smart Grid Comm., pp. 391–396 (2010)
4. Chen, C., Nagananda, K.G., Xiong, G., Kishore, S., Snyder, L.V.: A

communication-based appliance scheduling scheme for consumer-premise energy
management systems. IEEE Trans. Smart Grid 4(1), 56–65 (2013)

5. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248–264 (1972)

6. European Commission. Europen smartgrids technology platform (2006),
ftp://ftp.cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf

7. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power
and Energy Magazine 8(3), 60–65 (2010)

8. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much
harder than linear optimization. J. ACM 37(4), 843–862 (1990)

9. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power and Energy Maga-
zine 7(2), 52–62 (2009)

10. Kannberg, L.D., Chassin, D.P., DeSteese, J.G., Hauser, S.G., Kintner-Meyer, M.C.,
Pratt, R.G., Schienbein, L.A., Warwick, W.M.: GridWiseTM: The benefits of a
transformed energy system. CoRR, nlin/0409035 (September 2004)

11. Karzanov, A.V., McCormick, S.T.: Polynomial methods for separable convex op-
timization in unimodular linear spaces with applications. SIAM J. Comput. 26(4),
1245–1275 (1997)

ftp://ftp.cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf

Scheduling for Electricity Cost in Smart Grid 317

12. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power
grid: Scheduling of power demands for optimal energy management. In: Proc. e-
Energy, pp. 41–50 (2011)

13. Krishnan, R.: Meters of tomorrow (in my view). IEEE Power and Energy Maga-
zine 6(2), 96–94 (2008)

14. Li, H., Qiu, R.C.: Need-based communication for smart grid: When to inquire
power price? CoRR, abs/1003.2138 (2010)

15. Li, Z., Liang, Q.: Performance analysis of multiuser selection scheme in dynamic
home area networks for smart grid communications. IEEE Trans. Smart Grid 4(1),
13–20 (2013)

16. Martin, L.: SEELoadTMSolution,
http://www.lockheedmartin.co.uk/us/

products/energy-solutions/seesuite/seeload.html
17. Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart

grid using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)
18. Lui, T., Stirling, W., Marcy, H.: Get smart. IEEE Power and Energy Magazine 8(3),

66–78 (2010)
19. Ma, C.Y.T., Yau, D.K.Y., Rao, N.S.V.: Scalable solutions of markov games for

smart-grid infrastructure protection. IEEE Trans. Smart Grid 4(1), 47–55 (2013)
20. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand

response management in the smart grid: A stackelberg game approach. IEEE Trans.
Smart Grid 4(1), 120–132 (2013)

21. Minoux, M.: A polynomial algorithm for minimum quadratic cost flow problems.
European Journal of Operational Research 18(3), 377–387 (1984)

22. Minoux, M.: Solving integer minimum cost flows with separable convex cost ob-
jective polynomially. In: Gallo, G., Sandi, C. (eds.) Netflow at Pisa. Mathematical
Programming Studies, vol. 26, pp. 237–239. Springer, Heidelberg (1986)

23. Mohsenian-Rad, A.-H., Wong, V., Jatskevich, J., Schober, R.: Optimal and au-
tonomous incentive-based energy consumption scheduling algorithm for smart grid.
In: Innovative Smart Grid Technologies (ISGT) (2010)

24. REGEN Energy Inc. ENVIROGRIDTMSMART GRID BUNDLE.,
http://www.regenenergy.com/press/

announcing-the-envirogrid-smart-grid-bundle/
25. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling

in smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)
26. Sokkalingam, P.T., Ahuja, R.K., Orlin, J.B.: New polynomial-time cycle-canceling

algorithms for minimum-cost flows. Networks 36(1), 53–63 (2000)
27. Toronto Hydro Corporation. Peaksaver Program,

http://www.peaksaver.com/peaksaver_THESL.html
28. UK Department of Energy & Climate Change. Smart grid: A more energy-efficient

electricity supply for the UK (2013),
https://www.gov.uk/smart-grid-a-more-energy-

efficient-electricity-supply-for-the-uk
29. US Department of Energy. The Smart Grid: An Introduction (2009),

http://www.oe.energy.gov/SmartGridIntroduction.htm
30. Végh, L.A.: Strongly polynomial algorithm for a class of minimum-cost flow prob-

lems with separable convex objectives. In: Proceedings of the 44th Symposium on
Theory of Computing, STOC 2012, pp. 27–40. ACM, New York (2012)

31. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 374–382 (1995)

http://www.lockheedmartin.co.uk/us/products/energy-solutions/seesuite/seeload.html
http://www.lockheedmartin.co.uk/us/products/energy-solutions/seesuite/seeload.html
http://www.regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/
http://www.regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/
http://www.peaksaver.com/peaksaver_THESL.html
https://www.gov.uk/smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk
https://www.gov.uk/smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk
http://www.oe.energy.gov/SmartGridIntroduction.htm

Uniform-Circuit and Logarithmic-Space

Approximations of Refined Combinatorial
Optimization Problems

Tomoyuki Yamakami

Department of Information Science, University of Fukui
3-9-1 Bunkyo, Fukui, 910-8507 Japan

Abstract. We lay out a refined framework to discuss various approxi-
mation algorithms for combinatorial optimization problems residing in-
side the optimization class PO. We are focused on optimization problems
characterized by computation models of uniform NC1-circuits, uniform-
AC0, and logarithmic-space Turing machines. We present concrete op-
timization problems and prove that they are indeed complete under
reasonably weak reductions. We also show collapses and separations
among refined optimization classes.

Keywords: optimization problem, approximation-preserving reduction,
approximation algorithm, NC1 circuit, AC0 circuit, logarithmic space.

1 Introduction

A combinatorial optimization problem asks to find an “optimal” solution among
all feasible solutions associated with each admissible instance, where the opti-
mality usually takes a form of either maximization or minimization according
to a certain fixed ordering over all solutions. A significant progress was made in
a field of fundamental research during 1990s and its trend has continued pro-
moting our understandings of the approximability of optimization problems. In
particular, NP optimization problems (or NPO problems, in short) have been a
centerfold of our interests in a direct connection to NP decision problems. Let
NPO express the collection of such optimization problems. NPO problems that
can be exactly solved in polynomial time form a “tractable” optimization class
PO, whereas APX (which is denoted in this paper by APXP for technicality)
consists of NPO problems whose optimum solutions are relatively approximated
within constant factors in polynomial time. A large number of NPO problems
that have been studied are classified into those complexity classes.

Those classifications of optimization problems are all described from a view-
point of polynomial-time computability and any systematic discussion on opti-
mization problems inside PO has been vastly neglected except for [7], in which
logarithmic-space optimization problems (or NLO problems) were discussed. Note
that Àlvarez and Jenner [1] also studied from a slightly different viewpoint a class
OptL of functions computing optimal solutions using only logarithmic space.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 318–329, 2013.
c© Springer International Publishing Switzerland 2013

Refined Combinatorial Optimization Problem 319

A number of intriguing optimization problems have been already known to re-
side within PO. As a typical example, the problem, Min st-Cut, of finding a
minimal s-t cut of a given directed graph is well-known to belong to PO. Another
example is the minimum path weight problem (Min Path-Weight), which is
to find a path S = (v1, v2, . . . , vk) with k ≥ 2 from given source v1 to sink vk
on a given directed graph such that the path weight

∑k
i=1 w(vi) is minimum,

where w(v) is a given weight (expressed in binary) of vertex v. This problem is
also in PO. Although Min st-Cut is a “complete” problem for PO, Min Path-
Weight, which is actually an NLO problem, seems to have low complexity
within PO.

Here, we wish to raise a question of whether it is possible to obtain a finer
classification inside PO. To achieve our goal, we seek to develop a new, finer
framework—a low-complexity world of optimization problems—and reexamine
the computational complexity of optimization problems within this new frame-
work. In particular, we look into a world of optimization problems that can be
approximated by logarithmic-space (or log-space) Turing machines and by uni-
form families of NC1-circuits. For this purpose, we need to reshape the existing
framework of expressing optimization complexity classes by clarifying the scope
and complexity of verification processes for solutions and objective functions. For
instance, to expand the approximation class APX into lower complexity classes,
we intend to use a new notation APXPNPO to emphasize the polynomial-time
approximability of NP optimization problems. Similarly, we describe a collection
of NP optimization problems that are P-solvable as PONPO.

As logarithmic-space computation has often exhibited intriguing features in
the past decades, significant differences also exist between NPO and NLO. For
example, unlike NPO problems, weak computation models do not seem to sup-
port a typical reduction between minimization problems and maximization prob-
lems within NLO unless they are polynomially bounded (see Section 3.2).

The optimization class LONLO was introduced in [7] as a collection of NL opti-
mization problems that are L-solvable (i.e., solvable by multi-tape deterministic
Turing machines using logarithmic space). If we replace directed graphs of Min
Path-Weight by undirected forests, then the resulted problem, called Min
Forest-Path-Weight, belongs to LONLO. In a similar way, using log-space
uniform families of NC1-circuits and AC0-circuits in place of logarithmic-space
Turing machines, we can define NC1ONLO and AC0ONLO, respectively.

We will present a number of concrete optimization problems that are “com-
plete” for the aforementioned refined classes of optimization problems under
weak reductions. We need such weak reductions among low-complexity optimiza-
tion problems because strong reductions tend to obscure essential characteristics
of “complete” problems. We will also prove relationships among those classes.

2 Optimization and Approximation Preliminaries

We will refine an existing framework for studying combinatorial optimization
problems of, in particular, low computational complexity. Throughout this pa-
per, the notation N denotes the set of all natural numbers (i.e., nonnegative

320 T. Yamakami

integers) and Q indicates the set of all rational numbers. Two special notations
Q>1 and Q≥1 respectively express the sets {q ∈ Q | q > 1} and {q ∈ Q | q ≥ 1}.
Given two numbers m,n ∈ N with m ≤ n, an integer interval [m,n]Z is a set
{m,m+ 1,m+ 2, . . . , n}. A string (or a word) over alphabet Σ is a finite series
of symbols taken from Σ. The empty string is denoted λ. Given a binary string
w, rep(w) denotes the positive integer represented by w in binary.

2.1 Models of Computation

As a model of computation, we will use the following basic form of Turing ma-
chine, which is equipped with a random-access input tape, an input-index tape,
multiple work tapes, and possibly an output tape. A tape is called read-once if
it is a read-only tape and its tape head either stays at the same cell without
reading any information (whose move is called an λ-move or ε-move) or moves
to the right cell to scan another symbol. Similarly, a write-only tape indicates
that, whenever its tape head writes a nonempty symbol in a tape cell, the head
should move immediately to its right tape cell. In this paper, “output tapes” are
always assumed to be write-only tapes.

An auxiliary Turing machine is the above-mentioned deterministic Turing
machine equipped with an extra read-once auxiliary tape on which a sequence
of symbols is provided as an extra input. This machine can therefore read off
two symbols at once from an input tape and an auxiliary tape to make a de-
terministic move. Let auxL denotes the collection of all sets A for which there
exist a polynomial p and a log-space auxiliary Turing machine M such that, for
every x and y, (i) (x, y) ∈ A implies |y| ≤ p(|x|) and (ii) M accepts (x, y) iff
(x, y) ∈ A, where y is given on an auxiliary tape. Its functional version (with
polynomially-bounded output symbols) is denoted by auxFL.

We assume that the reader is familiar with four complexity classes, P, NP,
L, and NL, and two function classes, FP and FL. For circuit-based complexity
classes AC0 and NC1 (and their functional versions FAC0 and FNC1), we use a
standard notion of Boolean circuits, which are composed only of three basic gates
AND, OR, and NOT . A family of NC1-circuits requires log-space uniformity,
whereas a family of AC0-circuits requires DLOGTIME-uniformity.

It is important to note that, on an output tape of a machine, a natural number
is represented in binary, where the least significant bit is always placed at the
right end of the output bits.

2.2 Refined Optimization Classes

Combinatorial optimization problems that we will extensively discuss in this
paper can be formulated in the following manner. Since our purpose is to examine
lower-complexity problems, it is better to reformulate an existing framework of
NP optimization problems or NPO problems (see, e.g., [2]) in terms of auxiliary
Turing machines.

An NPO problem P = (I, SOL,m, goal):

Refined Combinatorial Optimization Problem 321

◦ I is a finite set of admissible instances. There must be a deterministic Turing
machine (DTM) that recognizes I in polynomial time.

◦ SOL is a function mapping I to a collection of certain finite sets, where
SOL(x) is a set of feasible solutions of input instance x. There must be a
polynomial q such that (i) for every x ∈ I and every y ∈ SOL(x), it holds
that |y| ≤ q(|x|) and (ii) the set I ◦ SOL = {(x, y) | x ∈ I, y ∈ SOL(x)} is
recognized in time polynomial in |x| by a certain auxiliary Turing machine
stating with x on an input tape and y on an auxiliary tape.

◦ goal is either max or min. When goal = max, P is called a maximization
problem; when goal = min, it is a minimization problem.

◦ m is a measure function (or an objective function) from I ◦ SOL to N whose
value m(x, y) is computed in time polynomial in |x| by a certain auxiliary
Turing machine starting with x on an input tape and y on an auxiliary tape.
For any instance x ∈ I,m∗(x) denotes the “optimal” value goal{m(x, y) | y ∈
SOL(x)}. Moreover, SOL∗(x) expresses the “optimal” set {y ∈ SOL(x) |
m(x, y) = m∗(x)} of x.

Since a polynomial-time Turing machine can copy y into its work tape and
manipulate it freely, the above use of auxiliary Turing machines does not alter
the existing notion of NPO problems. Let the notation NPO express the class
of all NPO problems. We say that an NPO problem P is P-solvable if there ex-
ists a polynomial-time deterministic algorithm M such that, for every instance
x ∈ I, M returns an optimal solution y in SOL(x) (possibly together with its
optimal value m∗(x)). To analyze log-space optimization problems, Tantau [7]
considered NL optimization problems (or NLO problems, in short), which are
obtained simply by replacing the term “polynomial time” in the above defini-
tion of NPO problems with “logarithmic space.” For NLO problems, the use of
auxiliary Turing machine is essential and it may not be replaced by any Turing
machine having no read-once tapes. To express the class of all NLO problems,
we use the succinct notation of NLO. Moreover, MinNL (MaxNL, resp.) denotes
the class of all minimization (maximization, resp.) problems in NLO. Given a
class C of optimization problems, the notation POC expresses the class of all
optimization problems in C that are P-solvable. Similarly, we can define the
notions of LOC , NC1OC , and AC0OC by replacing the term “P-solvable” with
“L-solvable,” “NC1-solvable,” and “AC0-solvable,” respectively. Conventionally,
PONPO is written as PO, and LONLO is noted briefly as LO in [7].

A measure function m is called polynomially bounded if there exists a polyno-
mial p such that m(x, y) ≤ p(|x|, |y|) holds for all pairs (x, y) ∈ I ◦ SOL. More-
over, an optimization problem is said to be polynomially bounded if its measure
function is polynomially bounded. We use a succinct notation PBO to denote
the collection of all optimization problems that are polynomially bounded.

Next, we will define approximation classes using a notion of γ-approximation.
Given an optimization problem P = (I, SOL,m, goal), the performance
ratio of solution y with respect to instance x is defined as R(x, y) =
max{|m(x, y)/m∗(x)|, |m∗(x)/m(x, y)|}, provided that neither m(x, y) nor
m∗(x) is zero. Notice that R(x, y) = 1 iff y ∈ SOL∗(x). Let γ > 1 be a

322 T. Yamakami

constant indicating an upper bound of performance ratio. We say that P is
polynomial-time γ-approximable if there exists a polynomial-time deterministic
Turing machine M such that, for any instance x, R(x,M(x)) ≤ γ. Such a ma-
chine is also called a γ-approximate algorithm. The γ-approximability implies
that the set {x ∈ I | SOL(x) �= Ø} is in P. We also define three extra no-
tions of “log-space γ-approximation” [7], “NC1 γ-approximation,” and “AC0

γ-approximation” by replacing “polynomial-time Turing machine” in the above
definition with “logarithmic-space (auxiliary) Turing machine,” “uniform family
of NC1-circuits,” and “uniform family of AC0-circuits,” respectively.

The notation APXPC denotes a class consisting of problems P in class
C of optimization problems such that, for a certain fixed constant γ >
1, P is polynomial-time γ-approximable. Similarly, we introduce the nota-
tions of APXLC , APXNC1

C , and APXAC0
C using “log-space γ-approximation,”

“NC1 γ-approximation,” and “AC0 γ-approximation,” respectively. Notice that
APXPNPO is conventionally expressed as APX.

2.3 Approximation-Preserving Reductions

We will use three types of reductions between two optimization prob-
lems. Given two optimization problems P = (I1, SOL1,m1, goal) and Q =
(I2, SOL2,m2, goal), P is polynomial-time AP-reducible (or APP-reducible, in
short) to Q, denoted P ≤P

AP Q, if there are two functions f, g and a constant
c ≥ 1 such that the following APP-condition is satisfied:

◦ for any instance x ∈ I1 and any r ∈ Q>1, it holds that f(x, r) ∈ I2,
◦ for any x ∈ I1 and any r ∈ Q>1, if SOL1(x) �= Ø then SOL2(f(x, r)) �= Ø,
◦ for any x ∈ I1, any r ∈ Q>1, and any y ∈ SOL2(f(x, r)), it holds that
g(x, y, r) ∈ SOL1(x),

◦ f(x, r) and g(x, y, r) are computed by two deterministic auxiliary Turing
machines that run in time polynomial in (|x|, |y|) for any fixed r ∈ Q>1, and

◦ for any x ∈ I1, any r ∈ Q>1, and any y ∈ SOL2(f(x, r)), R2(f(x, r), y) ≤ r
implies R1(x, g(x, y, r)) ≤ 1 + c(r − 1).

When the above APP-condition holds, we also say that P APP-reduces to Q. The
triplet (f, g, c) is called a polynomial-time AP-reduction (or an APP-reduction)
from P to Q.

Notice that the above definition excludes the case of r = 1. As a result, PONPO

is not closed under polynomial-time AP-reductions. Since our main target is
problems inside PONPO, we further need to introduce another type of reduction
(f, g), in which g “exactly” transforms in polynomial time an optimal solution
for Q to another optimal solution for P . We write P ≤P

EX Q when the following
EX-condition holds:

◦ for any instance x ∈ I1, it holds that f(x) ∈ I2,
◦ for any x ∈ I1, if SOL1(x) �= Ø then SOL2(f(x)) �= Ø,
◦ for any x ∈ I1 and any y ∈ SOL2(f(x)), it holds that g(x, y) ∈ SOL1(x),
◦ f(x) and g(x, y) are computed by two deterministic auxiliary Turing ma-
chines that run in time polynomial in (|x|, |y|), and

Refined Combinatorial Optimization Problem 323

◦ for any x ∈ I1 and y ∈ SOL2(f(x)), R2(f(x), y) = 1 implies R1(x, g(x, y)) =
1, where R1 and R2 respectively express performance ratios for P1 and P2.

The above pair (f, g) is called a polynomial-time EX-reduction from P to Q.
By combining ≤P

AP and ≤P
EX, we define the third notion of polynomial-time

strong AP-reduction (or strong APP-reduction), denoted ≤P
sAP, obtained from

≤P
AP by allowing r to be chosen from Q≥1 (instead of Q>1).
By replacing the requirement of “polynomial time” in the above (strong) APP-

condition with “logarithmic-space,” “uniform family of NC1-circuits,” and “uni-
form family of AC0-circuits,” we obtain (strong) APL-reduction (≤L

AP, ≤L
sAP),

(strong) APNC1-reduction (≤NC1

AP , ≤NC1

sAP), and (strong) APAC0-reduction (≤AC0

AP ,

≤AC0

sAP), respectively. The following lemma is immediate.

Lemma 1. For any reduction type c ∈ {P,L,NC1,AC0}, P1 ≤c
sAP P2 implies

both P1 ≤c
AP P2 and P1 ≤c

EX P2.

Given a type of reduction, say, ≤ discussed above as well as a class C of
optimization problems, an optimization problem P is called ≤-hard for C if Q ≤
P holds for every problem Q in C. Moreover, P is said to be ≤-complete for C if
P is in C and it is ≤-hard for C.

3 Complete Problems

In Section 2, we have introduced basic classes of low-complexity optimiza-
tion problems. Note that, for any given class C of optimization problems,
NC1OC ⊆ LOC ⊆ POC and APXNC1

C ⊆ APXLC ⊆ APXPC . Moreover, it holds
that NC1OC ⊆ APXNC1

C , LOC ⊆ APXLC , and POC ⊆ APXPC .

3.1 General Complete Problems

Hereafter, we will discuss complete problems for refined optimization classes.
We first note that the type of reduction is often crucial. The ≤L

AP- and ≤L
EX-

reductions are quite powerful so that all problems in APXLNLO and LONLO

become reducible to problems even in APXAC0
NLO and AC0ONLO, respectively.

Proposition 1. 1. APXLNLO = {P ∈ NLO | ∃Q ∈ APXAC0
NLO [P ≤L

AP Q]}.
2. LONLO = {P ∈ NLO | ∃Q ∈ AC0ONLO [P ≤L

EX Q]}.

In a given graph, a path of G is a sequence (v1, v2, . . . , vk) of vertices satisfying
that (vi, vi+1) is an edge for every index i ∈ [k − 1]. A path is called simple
if there are no repeated vertices in it. The maximum vertex weight problem
(Max Vertex) takes a directed graph, a source s ∈ V , and a weight function
w : V → N+ and finds a path from s to a certain vertex t ∈ V so that the
weight of t is maximum. It follows from [7] that Max Vertex is ≤L

AP-complete
for APXLMaxNL.

Proof Sketch of Proposition 1. We will show only (1). (⊆) Since Max
Vertex is in APXLNLO, take a constant γ > 1 and a log-space deterministic

324 T. Yamakami

Turing machine M that produces γ-approximate solutions for Max Vertex.
Letting Max Vertex = (I, SOL,m,max), we modify it as follows and obtain
a new problem, say, Pmax. Instances of Pmax are of the form (x, t0), where
x ∈ I and t0 ∈ V , satisfying the condition that (*) for every v ∈ V , w(t0) ≤
w(v) ≤ γw(t0). Consider an AC0-circuit that outputs t0 on input (x, t0). Since
w(t0) ≤ m∗(x, t0) ≤ γw(t0), Pmax must belong to APXAC0

NLO.
Let r ≥ 1 and define f(x, r) = (x, t0) and g(x, y, r) = y. Since t0 can be

obtained by running M on x, f is in FL. Note that the performance ratio
R2(f(x, r), y) equals R1(x, g(x, y, r)). Thus, Max Vertex APL-reduces to P .
Moreover, because Max Vertex is ≤L

AP-complete for APXLMaxNL, we conclude
that every maximization problem in APXLNLO is ≤L

AP-reducible to Pmax. The
case of minimization is similar.

(⊇) Let P ∈ NLO and Q ∈ APXAC0
NLO satisfying P ≤L

AP Q. It is not difficult
to prove that Q ∈ APXAC0

NLO implies P ∈ APXLNLO. �

The complete problems presented in the proof of Proposition 1 does not seem
to capture the essence of problems in APXLNLO as well as NLO. Therefore, in
what follows, we intend to look into weaker notions of reducibilities. In partic-
ular, we want to limit our attention within ≤NC1

AP -complete and ≤NC1

EX -complete
problems.

Let DSTCON denote the well-known s-t connectivity problem on directed
graphs. Let us recall the minimum path weight problem (Min Path-Weight)
introduced in Section 1. Notice that, if we set a weight of every vertex of a
given input graph to be 1, then Min Path-Weight is equivalent to a problem
of finding the shortest s-t path in the graph. We will prove that Min Path-
Weight is ≤NC1

sAP -complete for MinNL.

Proposition 2. Min Path-Weight is ≤NC1

sAP -complete for MinNL.

Proof Sketch. For notational convenience, let Min Path-Weight =
(I0, SOL0,m0,min). It is not difficult to show that Min Path-Weight be-
longs to NLO. Next, we will show that every minimization problem in NLO is
≤NC1

sAP -reducible to Min Path-Weight. Let P = (I, SOL,m,min) be any mini-
mization problem in NLO. For m, we choose an appropriate log-space auxiliary
Turing machine M with three tapes computing m. Recall that any solution
candidate is written on M ’s auxiliary read-once tape. We define a partial con-
figuration of M as a 〈a, σ, b, τ, c, u, d, ξ〉, where an input tape-head scans σ at
cell a, an auxiliary-tape head scans τ at cell b, u indicates the entire content
of an O(log n)-space work tape with its head scanning at cell c, and an output
tape-head writes ξ in cell d, where all cell numbers are expressed in binary. The
weight of this vertex is defined as ξ (expressed in binary). For convenience, we
call this graph a configuration graph of M on input x. Let us define an instance
of Min Path-Weight as follows. Let f(x, r) denote the configuration graph
of M on input x. Let y be any path of the graph f(x, r). Let g(x, y, r) denote
the content of the auxiliary tape that is reconstructed from labels attached to
vertices along the path y. Clearly, f and g are in FNC1. It is not difficult to

Refined Combinatorial Optimization Problem 325

show that m(f(x, r), y) = m0(x, g(x, y, r)). Therefore, Min Path-Weight is

≤NC1

sAP -complete for MinNL. �

Under the assumption that L = NL, we can prove that the optimization
problem Min Path-Weight is ≤NC1

sAP -complete for NLO = MaxNL ∪MinNL.

Lemma 2. If L = NL, then Min Path-Weight is ≤NC1

sAP -complete for NLO.

Proof Sketch. By Proposition 2, it suffices to show that every maximization
problem P1 in NLO is sAPAC0-reducible to a certain minimization problem
P2 in NLO (since AC0 ⊆ NC1). Let P1 = (I1, SOL1,m1,max) in NLO. We
construct a minimization problem P2 = (I2, SOL2,m2,min) in NLO as follows.
Take an appropriate polynomial p satisfying that b(x) = 2p(n) ≥ m∗

1(x) for every
x ∈ I. Let I2 = I1 and SOL2 = SOL1. Moreover, for every (x, y) ∈ I2◦SOL2, let

m2(x, y) = � b(x)2

m1(x,y)
� ifm1(x, y) > 0; b(x)2 otherwise. Here, we define f(x, r) = x

and g(x, y, r) = y. If R2(f(x, r), y) ≤ r with r ≥ 1, then R1(x, g(x, y, r)) equals
m∗

1(x)
m1(x,y)

, which is at most b(x)2

m∗
2(x)+1 /

b(x)2

m2(x,y)
= m2(x,y)

m∗
2(x)

≤ rm∗
2(x)

m∗
2(x)+1 ≤ 1 + c(r − 1),

where c = 1, since m2(x, y) ≤ rm∗
2(x).

To complete the proof, assuming that L = NL, we still need to prove that the
measure function m2 is in auxFL. Consider the following procedure: on input
x ∈ I, guess a number e and a series of carry-on integers, check bit by bit whether
em1(x, y) ≤ b(x)2 and (e + 1)m1(x, y) > b(x)2, check that all carry-on numbers
are correct, and output e. Under the assumption of L = NL, this procedure can
be implemented on a log-space auxiliary Turing machine. �

When we consider an undirected-graph version of Min Path-Weight, de-

noted Min UPath-Weight, it is log-space 2n
O(1)

-approximable because, by the
result of [6], using log space, we not only determine whether there exists a feasi-
ble solution for Min Upath-Weight but also find at least one feasible solution
if any. When all admissible input graphs of Min UPath-Weight are restricted
to be forests, we call the corresponding problem Min Forest-Path-Weight,
where a forest is an acyclic undirected graph.

Proposition 3. Min Forest-Path-Weight is ≤NC1

EX -complete for LONLO.

Different from standard terminology, we will define a mixed graph G = (V,E)
to be induced from a directed graph (V1, E1) and an undirected graph (V2, E2)
as V = V1 × V2 and E = {((v1, v2), (v′1, v′2)) | (v1, v′1) ∈ E1, (v2, v

′
2) ∈ E2}.

The minimum mixed path weight problem (Min Mix-Path-Weight) takes
an instance of a mixed graph G = (V,E) induced from (V1, E1) and (V2, E2),
a source pair (s1, s2) ∈ V , and a weight function w : V → N × N with two
extra conditions: (i) (V2, E2) is a forest and (ii) w2(v2) ≤ w1(v1) ≤ 2w2(v2) for
every (v1, v2) ∈ V , where w(v1, v2) = (w1(v1), w2(v2)). The problem is to find
a (mixed) path S of G starting at (s1, s2) and ending at (t1, t2) for which the
partial path weight

∑
(v1,v2)∈S w1(v1) is minimum.

326 T. Yamakami

Proposition 4. Min Mix-Path-Weight is ≤NC1

sAP -complete for APXLMinNL.

Proof Sketch. It is not difficult to show that Min Mix-Path-
Weight is in APXLNLO (and thus APXLMinNL). For simplicity, we
set Min Mix-Path-weight = (I0, SOL0,m0,min) with measure function
m0(x,S) =

∑
(v1,v2)∈S w1(y1).

Next, let P = (I, SOL,m,min) be any minimization problem in APXLNLO.

Our goal is to show that P is ≤NC1

AP -reducible to Min Mix-Path-Weight. Let
M1 be a log-space auxiliary Turing machine computing m and let M2 be a log-
space γ-approximation algorithm for P , where γ > 1 is a constant. This implies
that (*) m∗(x)/γ ≤ m(x,M2(x)) ≤ m∗(x). Let M3 compute m(x,M2(x)) using
log space. As in the proof of Proposition 2, we consider a pair of partial config-
urations of M1 and M3. Those pairs constitute a mixed graph. For each i ∈ [3],
let si be the initial configuration of Mi and let yi be the final and accepting
configuration of Mi. The weight of a path corresponds to the value of m. Given
auxiliary input pair (z1, z3) of M1 and M3, let h(z1, z3) denote the associated
series of pairs of partial configurations of M1 and M3, respectively. Let us de-
fine f(x, r) to be 〈G, (s1, s2), (t1, t2), w〉 and let g(x, (y1, y3), r) = h−1(y1, y3).
The desired weight function w(v1, v2) = (w1(v1), w2(v2)) is defined as follows.
Note that m(x, y) = m0(f(x, r), (y1, y3)). If γ ≤ 2, then Condition (*) im-
plies m∗

0(f(x, r))/2 ≤ m0(f(x, r), (y1, y3)) ≤ m∗
0(f(x, r)). Next, we assume that

γ > 2. Fix x ∈ I. Let us define Δ = (γ − 2)m(x,M2(x)). We define w2(v2) to
be Δ plus the output value produced by M1 that appears inside partial con-
figuration v2. Similarly, let w1(v1) be Δ plus the value outputted by M3 inside
v1. Note that w is computed from x using log space. Let b(x) = m(x,M2(x)).

The ratio m0(f(x,r),(y1,y3))
m∗

0(f(x,r))
equals b(x)+Δ

m∗(x)+Δ ≤ b(x)+Δ
γb(x)+Δ = 1

2 by (*), as requested.

Therefore, P ≤NC1

AP Min-Path-Weight holds. �

3.2 Polynomially-Bounded Problems

For low-complexity optimization classes, polynomially-bounded optimization
problems play a quite special role. Hereafter, we are focused on those problems.

Lemma 3. 1. Let P be a minimization (maximization, resp.) problem in
APXLNLO ∩ PBO. There exists a maximization (minimization, resp.) prob-

lem Q in APXLNLO ∩ PBO such that P is ≤AC0

sAP -reducible to Q.
2. For any minimization (maximization, resp.) problem P in NLO∩PBO, there

exists a maximization (minimization, resp.) problem Q in NLO∩PBO such

that P is ≤AC0

sAP -reducible to Q.
3. For any minimization (maximization, resp.) problem P in LONLO ∩ PBO,

there exists a maximization (minimization, resp.) problem Q in LONLO ∩
PBO such that P is ≤AC0

sAP -reducible to Q.

The maximum bounded vertex weight problem (Max B-Vertex) takes an
undirected graph G = (V,E), a source s ∈ V , and a weight function w : V → N
satisfying w(v) ≤ |V | for every v ∈ V , and finds a path of G starting at s and
ending at a certain vertex t of the maximum non-zero weight.

Refined Combinatorial Optimization Problem 327

Proposition 5. Max B-Vertex is ≤NC1

EX -complete for LONLO ∩ PBO.

The maximum Boolean formula value problem (Max BFVP) takes a set of
Boolean formulas and a Boolean assignment σ for variables in the formulas and
finds a maximal set of satisfied formulas by σ. Note that Max BFVP is known
to be NC1-complete.

Lemma 4. Max BFVP is ≤NC1

EX -complete for NC1ONLO ∩ PBO.

If we use ≤L
AP-reductions instead of ≤NC1

sAP -reductions, then it is possible to
prove that APXLNLO contains polynomially-bounded ≤L

AP-complete problems.

Lemma 5. There exists a polynomially-bounded optimization problem that is
≤L

AP-complete for APXLNLO.

Proof Sketch. It is shown in [7] that APXLNLO ∩ PBO has an ≤L
AP-complete

maximization problem. To prove the lemma, we want to show that every mini-
mization problem P1 = (I1, SOL1,m1,min) in APXLNLO is ≤L

AP-reducible to a
certain maximization problem P2 = (I2, SOL2,m2,max) in APXLNLO ∩ PBO.
Assume that, for an appropriate constant γ > 1, P1 is γ-approximable by a
log-space deterministic Turing machine M1. Let b(x) = m1(x,M1(x)) for every
x ∈ I. Note that b(x)/γ ≤ m∗

1(x) ≤ b(x). For convenience, set c = γ log γ+γ−1.
Since the case where 1+ c(r−1) ≥ γ is easy, we consider the other case where

1+c(r−1) < γ. For brevity, we set δ = 1+c(r−1). Define k = �log γ/ log δ�. Note
that δk−1 ≤ γ ≤ δk. For convenience, we define I0 = {((x, r, i) | x ∈ I, r ≥ 1, 0 ≤
i ≤ k} and SOL0(x, r, i) = {y ∈ SOL1(x) | m1(x, y) ∈ (b(x)/δi+1, b(x)/δi]}. Let
i0 be the maximum integer i satisfying that 0 ≤ i ≤ k and SOL0(x, r, i) �= Ø.
Note that m∗

1(x) ∈ (b(x)/δi0+1, b(x)/δi0].
Let I2 = {(x, r) | x ∈ I1, r ≥ 1} and SOL2(x, r) = {〈y0, y1, . . . , yk〉 | ∃i ∈

[0, k]Z∀j ∈ [i + 1, k]Z [yi ∈ SOL0(x, r, i) ∧ yj �∈ SOL0(x, r, j)]}. Note that I2 ∈
L and I2 ◦ SOL2 ∈ auxL. We set m2((x, r), y) = i + 1 if y = 〈y0, . . . , yk〉
and i is the maximum integer satisfying yi ∈ SOL0(x, r, i). Note that m2 ∈
auxFL. Define f(x, r) = (x, r) and g((x, r), y, r) = yi where i = m2((x, r), y).
Take any y ∈ SOL2(x, r) for which R2(x, y) ≤ r. Since m∗

2(x, r) = i0 + 1,
it follows that i0+1

r ≤ m2((x, r), y) ≤ i0 + 1. We then obtain b(x)/δi0+1 ≤
m1(x, yi) ≤ b(x)/δ(i0+1)/r. Thus, R1(x, g((x, r), y, r)) = R1(x, yi) = m1(x,yi)

m∗
1(x)

≤
b(x)/δ(i0+1)/r

b(x)/δi0+1 = δ(i0+1)(1−1/r). Since log z ≥ z−1
z for all real numbers z ∈ [1, 2], it

follows that k ≤ log γ
log δ +1 ≤ δ log δ

δ−1 + 1 = c
δ−1 . Hence, r =

δ−1
c + 1 ≤ 1

k + 1. From

this inequality, we obtain (i0 + 1)(1− 1/r) ≤ (k + 1)(1− 1/r) = 1. This implies
R1(x, g((x, r), y, r)) ≤ δ = 1 + c(r − 1). Therefore, P1 ≤L

AP P2 holds. �

4 Relations among Refined Optimization Classes

We will turn our attention to relationships among basic optimization problems
introduced in Section 2. We start with claiming that two classes APXPNLO and
PONLO coincide with NLO.

328 T. Yamakami

Lemma 6. APXPNLO = PONLO = NLO.

Proof Sketch. Note that PONLO ⊆ APXPNLO. First, we claim that
APXPNLO ⊆ NLO. By the definition of APXPNLO, all problems in APXPNLO

must be NLO problems, and hence they are in NLO. Next, we show that
NLO ⊆ PONLO. Let P = (I, SOL,m, goal) be any problem in NLO. We con-
sider only the case of goal = max. We want to show that P also belongs to
PONLO. Let x be any instance in I. Consider the following algorithm on x. De-
fine D = {(x, y) ∈ I ◦ SOL | ∃z ∈ SOL(x) [z ≥ y ∧m(x, z) ≥ m(x, y)]}, where
≥ is the lexicographic ordering. Note that D ∈ NL ⊆ P. By a binary search
technique using D, we can find a maximal solution y ∈ SOL∗(x) in polynomial
time. Therefore, NLO ⊆ PONLO ⊆ APXPNLO ⊆ NLO. �

Proposition 6. 1. [7] L = NL iff LONLO ∩ PBO = NLO ∩ PBO.
2. NC1 = L iff NC1ONLO ∩ PBO = LONLO ∩ PBO.
3. L = P iff LONPO ∩ PBO = PONPO ∩ PBO.

Proposition 7. 1. [7] If L �= NL, then LONLO �= APXLNLO �= NLO.
2. If L �= P, then PONPO � APXLNPO.
3. If NC1 �= NL, then NC1ONLO �= APXNC1

NLO.

Proof Sketch. We will show only (3). Assume that NC1ONLO = APXNC1
NLO.

Consider DSTCON (on unweighted directed graphs), which is ≤NC1

m -complete
for NL. Taking a constant γ > 1, let us define a restricted version of Min
Path-Weight, called Min Rest-Path(γ) = (I, SOL,m,min), as follows. An
instance of Min Rest-Path is w = 〈G, s, t, p0〉, where G = (V,E) is a directed
graph, and s, t are distinct vertices in G, p0 is a special path from s to t. Let
len(p) denote the length of a path p. A solution of w is a path p from s to t
satisfying len(p0)/γ ≤ len(p) ≤ len(p0). We use the length of a path as the
measure. It is not difficult to show that Min Rest-Path(γ) is in APXAC0

NLO,
which is included in APXNC1

NLO.
By our assumption, Min Rest-Path(γ) ∈ NC1ONLO for any γ > 1. Now,

we take γ = 2. Given an instance 〈G, s, t〉 of DSTCON, define 〈G′, s′, t, p0〉 as
follows. Let n = |V | and let G′ = (V ′, E′), where V ′ = V ∪{v1, v2, . . . , vn, s′} and
E′ = E ∪ {(s′, v1), (vn, s), (s, w1), (wn, t)} ∪ {(vi, vi+1), (wi, wi+1) | i ∈ [n − 1]}.
Moreover, let p0 = (s′, v1, v2, . . . , vn, s, w1, w2, . . . , wn, t). If p is a path from s
to t, let p′ = (s′, v1, . . . , vn, s) ∗ p, which is a concatenation of two paths. Since
len(p′) = n+ 1 + len(p), it follows that n ≤ len(p′) ≤ 2n. Thus, an appropriate
NC1-circuit computes the minimal path p by our assumption. If len(p) < len(p0),
then we accept the input; otherwise, we reject the input.

Notice that 〈G′, s′, t, p0〉 may be quite larger than 〈G, s, t〉 and, in gen-
eral, we cannot produce 〈G, s, t, p0〉 on a log-space work tape. However, we
can avoid this pitfall as follows. Whenever a circuit needs information on ver-
tices {v1, . . . , vn, w1, . . . , wn, s

′}, the circuit automatically answer the question.

This implies that DSTCON ∈ NC1. Since DSTCON is ≤NC1

m -complete for NL,
DSTCON ∈ NC1 implies NC1 = NL. �

Refined Combinatorial Optimization Problem 329

Proposition 8. 1. NC1ONLO � APXAC0
NLO.

2. AC0ONLO �= APXAC0
NLO.

The parity function π is defined as π(x1, x2, . . . , xn) = x1⊕x2⊕· · ·⊕xn, where
each xi ∈ {0, 1}. Let π∗(x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn) be the n-
bit string π(x11, . . . , x1n)π(x21, . . . , x2n) · · ·π(xn1, . . . , xnn). It is not difficult to
show that π∗ is in FNC1 but not in FAC0 because π resides in NC1−AC0. Given
y ∈ {0, 1}+, rep(y) expresses one plus the natural number represented in binary
as y.

Proof Sketch of Proposition 8. We will show only (1). Here, we consider
the minimization problemMin m-Parity = (I, SOL,m,min) defined as follows.

Let I =
⋃

n∈N+{0, 1}n2

and SOL(x) = {y ∈ {0, 1}n | rep(y) ≥ rep(π∗(x))} for
each x ∈ I with |x| = n2. Let m(x, y) = rep(y). Clearly, I is in L, I ◦ SOL is
in auxL, and m is in FNC1. Hence, Min m-Parity ∈ NLO. Since SOL∗(x) =
{π∗(x)} for every x ∈ I, it follows from π∗ ∈ FNC1 that Min m-Parity is
NC1-solvable.

Next, we will prove that Min m-Parity �∈ APXAC0
NLO. Assume otherwise.

There exists a uniform family {Cn}n∈N+ of AC0-circuits such that, for every x ∈
I, C|x|(x) computes a string y in SOL(x) such that (1/γ)rep(y) ≤ rep(π∗(x)) ≤
rep(y). Take any number n satisfying 2n > γ and any string x ∈ {0, 1}n. Let
us consider π∗(xn). Define Cn2(xn) = y. If π(x) = 1, then we have 2n+1 ≤
rep(y) ≤ γ · 2n+1 because of rep(π∗(xn)) = 2n+1. Since |y| = n, it must hold
that rep(y) = 2n+1; that is, y = 1n. However, if π(x) = 0, then we obtain
1 ≤ rep(y) ≤ γ since rep(π∗(xn)) = 1. Since γ < 2n, y has the form 0z. Hence,
π(x) equals the first bit of y. This gives an AC0-circuit that computes π. This is
a contradiction against the fact that π is not in AC0. Therefore, Min m-Parity
does not belong to APXAC0

NLO. �

References

1. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107, 3–30 (1993)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer (2003)

3. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arbores-
cences. In: STOC 1991, pp. 112–122. ACM Press (1991)

4. Goldschlager, L.M., Shaw, R.A., Staples, J.: The maximum flow problem is log space
complete for P. Theoret. Comput. Sci. 21, 105–111 (1982)

5. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In: SODA 1993, pp. 21–30 (1993)

6. Reingold, O.: Undirected connectivity in log-space. J. ACM 55, article 17 (2008)
7. Tantau, T.: Logspace optimisation problems and their approximation properties.

Theory Comput. Syst. 41, 327–350 (2007)

An Optimal Single-Machine Scheduling

with Linear Deterioration Rate
and Rate-Modifying Activities

Sheng Yu

School of Business Administration, Zhongnan University of Economics and Law,
Wuhan, 430073, P.R. China
yusheng@znufe.edu.cn

Abstract. This paper considers a single-machine scheduling with lin-
ear deterioration rate of processing speed and multiple rate-modifying
activities simultaneously. A rate-modifying activity can change the pro-
cessing rate of machine under consideration, which means after each
rate-modifying activity the speed of the machine is fully recovered. The
integration of these two concept is motivated by human operators and
semi-automatic systems that experience performance degradation over
time and require rate-modifying activities for recovery. The objective is
to minimize the makespan. We need to decide the sequence of jobs and
when to schedule the rate-modifying activities. An optimal schedule is
proposed, which can solve the problem in O(n log n) time where n is the
number of jobs.

Keywords: Scheduling,Rate-modifying activity, Makespan, Linear
deterioration.

1 Introduction

In many scheduling environments with human operators or semi-automatic sys-
tems, such as goods loading and unloading operations in a warehouse, the speeds
of machines usually deteriorate during processing due to human fatigue and other
factors, and thus a job started later consumes a longer time for satisfaction. In
such environments, machine maintenance and rest time are necessary to recover
the speeds or efficiencies of the machines.

Eilon [1] is the first to introduce a mathematical model, aiming to maximize
the total revenue, and to determine the optimal placement and duration of a
single rest period with the assumption of a linear rate of recovery. Gentzler et
al. [2] further extended the model with multiple uniform length rest periods each
of which ensures full recovery of the speed, and the speed of machine declines
at a linear or exponential rate. Bechtold et al. [3] considered the problem to
determine the optimal number, placement, and duration of rest periods during
a fixed length time horizon with the assumption of linear decay of work rate and
linear recovery rate.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 330–339, 2013.
c© Springer International Publishing Switzerland 2013

Optimal Single-Machine Scheduling 331

Lee and Leon [4] first adopted the concept of rate-modifying activity for ma-
chine maintenance or rest period. They study a single-machine scheduling with
one rate-modifying activity, which changes the speed of the machine, inducing
the processing time of αipi for job Ji where pi is the initial processing time
of Ji before the rate-modifying activity and αi is the activity effect for job
Ji. They present polynomial algorithms for both problems of minimizing the
makespan and minimizing total completion time. Lee and Lin [5] considered
a single-machine scheduling such that the speed of machine changes via rate-
modifying activity (or machine maintenance) and randomized machine break-
downs cause one repair operation consuming a longer time than in rate-modifying
activity. Both resumable and non-resumable cases considering several objectives
are studied. Lodree and Geiger [6] investigated a single-machine scheduling prob-
lem with time-dependent processing times and one rate-modifying activity which
fully recovers job processing times, aiming to minimize the makespan. With the
assumption that the first job is with unit length and specific definition of pro-
cessing times of other jobs, they prove that the optimal policy is to schedule
the activity in the middle of the job sequence. Lodree et al. [7] made a com-
prehensive review on scheduling with human factors, and call such scenario the
human task-sequencing problem, which includes scheduling with rate-modifying
activities.

One quite related line is that the speed of machine is constant while jobs de-
teriorate during waiting. Browne and Yechiali [8] first introduced the problem of
scheduling deteriorating jobs on a single machine such that the actual processing
time pAj of a job Jj is equal to its initial processing time pj plus αj times of the
starting time sj of the job where αj is named the deterioration rate of job Jj ,
i.e., pAj = pj + αjsj . They prove that the schedule in non-decreasing order of
pi/αi minimizes the makespan or total completion time. In Mosheiov [9], the
actual processing time of job Jj is defined as pAj = pj + bsj where b is called
the job-independent deterioration rate. For more details on scheduling with de-
teriorating effect, please refer to Alidaee and Womer [10], and Cheng et al. [11].
The difference between deteriorating jobs and deteriorating machine speed lies
in that the actual processing time of a job is much dependent on its starting
time in the former scenario, while in the latter one, the actual processing time
of a job is dependent on how long the job waits since the last rate-modifying
activity.

In this paper, we investigate a single-machine scheduling with multiple rate-
modifying activities and linear deterioration rate of processing speed. Similar
to Gentzler et al. [2], and Lodree and Geiger [6], we assume that each rate-
modifying activity fully recovers the speed of the machine. Moreover, we define a
more reasonable linear deterioration function than that in Lodree and Geiger [6].
The objective is to minimize the makespan. Since there are multiple activities,
the problem under consideration becomes more difficult in deciding the number
of jobs to be processed between any two rate-modifying activities. We provide a
polynomial time algorithm for the problem.

332 S. Yu

2 Problem Statement

There are n jobs J1, J2, . . . , Jn to be processed on a single machine. All the jobs
are available at time zero and preemption is not allowed. The machine is with
a linear job-independent deterioration rate, that is, its speed decreases linearly
during processing and thus the actual processing time of a job becomes longer
if it is started later. However, the speed of the machine can be fully recovered
at any time via one rate-modifying activity.

There are totally l ≥ 1 rate-modifying activities each of which consumes t
units of time. No job is allowed to be processed during each rate-modifying
activity, and then the l rate-modifying activities partition the whole (non-delay)
processing sequence into l + 1 subsequences πi (1 ≤ i ≤ l + 1). Between πi and
πi+1 (1 ≤ i ≤ l) is the ith rate-modifying activity with length of t. Let ni denote
the number of jobs in πi, J[i,j] the jth job in πi, and C[i,j] the completion time

of J[i,j]. Then
∑l+1

i=1 ni = n.
Combining the idea of rate-modifying activity in Lodree and Geiger [6] and

linear job-independent deterioration rate for the model without rate-modifying
activities in Zhao and Tang [12], we define the actual processing time of job J[i,j]
by pA[i,j] = p[i,j]+ bS[i,j], which assumes that the deterioration rate of this single-
machine scheduling problem with time-dependent processing time is constant,
and comparing with the position-dependent processing times set in Lodree and
Geiger [6] this is more general. Here, S[i,j] is the sum of the actual processing
times of jobs preceding J[i,j] in Πi. We call S[i,j] the modified starting time and
give its formulaic definition as follows: for all i (1 ≤ i ≤ l + 1),

S[i,j] =

{
0, j = 1;∑j−1

u=1 p
A
[i,u] = (1 + b)S[i,j−1] + p[i,j−1], j = 2, . . . , ni.

By the above definition of pA[i,j], it is a linear function of S[i,j] but not of the

starting time of job J[i,j], and p
A
[i,1] = p[i,1] tells that the speed of the machine is

fully recovered after the (i − 1)th rate-modifying activity.
Consider the completion time of each job. For the first job of each πi, since

S[i,1] = 0, C[1,1] = p[1,1] and C[i,1] = C[i−1,ni−1]+ t+p
A
[i,1] = C[i−1,ni−1]+ t+p[i,1]

(2 ≤ i ≤ l + 1). For j = 2, 3, . . . , ni (1 ≤ i ≤ l + 1), we have C[i,j] = C[i,j−1] +
pA[i,j] = C[i,j−1] + p[i,j] + bS[i,j]. The objective of the problem is to minimize the
makespan Cmax = C[l+1,nl+1].

We denote the problem as 1|pA[j] = p[j] + bS[j], l − rms|Cmax, where the pa-
rameter l − rms denotes that there are l rate-modifying activities. For a given
processing sequences π1, π2, . . . , πl+1, with simple algebra, the makespan is equal
to

Cmax =

l+1∑
i=1

ni∑
j=1

p[i,j](1 + b)ni−j + lt.

By the above formula of Cmax, we observe that the contribution of each sub-
sequence πi depends on the number ni of jobs, normal processing times of the

Optimal Single-Machine Scheduling 333

jobs, and their processing sequence within πi. Thus, the rest problem is to decide
how to allocate each job to some suitable πi and find optimal processing rule for
the jobs within each πi.

3 Optimal Policy for 1|pA
[j] = p[j] + bS[j], l − rms|Cmax

We first consider the optimal processing rule for jobs in each subsequence πi and
give the following lemma.

Lemma 1. In an optimal solution of problem 1|pA[j] = p[j] + bS[j], l− rms|Cmax,

the jobs in each πi are processed in the shortest processing time (SPT) order.

Proof.We prove the lemma by adjacent pairwise interchange argument. Given a
schedule π = (π1, . . . , πi, . . . , πl+1). If πi contains exactly one job, then the theo-
rem is trivial. We assume that πi contains at least two jobs, i.e., ni ≥ 2. Let πi =
(J[i,1], . . . , J[i,r], J[i,r+1], . . . , J[i,ni]) where p[i,r] ≤ p[i,r+1]. We construct a corre-
sponding schedule π′

i = (. . . , J[i,r−1], J[i,r+1], J[i,r], J[i,r+2], . . .). The only differ-
ence between π′

i and πi is the position exchange between jobs J[i,r] and J[i,r+1]. To
show that πi dominates π′

i, it suffices to show that Cmax(π1, . . . , πi, . . . , πl+1) ≤
Cmax(π1, . . . , π

′
i, . . . , πl+1). The makespans of schedules (π1, . . . , πi, . . . , πl+1) and

(π1, . . . , π
′
i, . . . , πl+1) are given respectively by,

Cmax(π1, . . . , πi, . . . , πl+1)

=

i−1∑
h=1

nh∑
q=1

p[h,q](1 + b)nh−q +

l+1∑
h=i+1

nh∑
q=1

p[h,q](1 + b)nh−q + lt

+
r−1∑
q=1

p[i,q](1 + b)ni−q + p[i,r](1 + b)ni−r + p[i,r+1](1 + b)ni−(r+1)

+

ni∑
q=r+2

p[i,q](1 + b)ni−q, (1)

and

Cmax(π1, . . . , π
′
i, . . . , πl+1)

=
i−1∑
h=1

nh∑
q=1

p[h,q](1 + b)nh−q +
l+1∑

h=i+1

nh∑
q=1

p[h,q](1 + b)nh−q + lt

+

r−1∑
q=1

p[i,q](1 + b)ni−q + p[i,r+1](1 + b)ni−r + p[i,r](1 + b)ni−(r+1)

+

ni∑
q=r+2

p[i,q](1 + b)ni−q. (2)

334 S. Yu

Taking the difference between (1) and (2), we have

Cmax(π1, . . . , π
′
i, . . . , πl+1)− Cmax(π1, . . . , πi, . . . , πl+1)

= (p[i,r+1] − p[i,r])((1 + b)ni−r − (1 + b)ni−(r+1))

≥ 0.

where the inequality is due to p[i,r] ≤ p[i,r+1] and 0 < b. Thus, πi dominates π′
i.

Repeating this interchange argument for any two adjacent jobs in each πi yields
the theorem. ��

We are now ready to deal with the optimal partition of the n jobs into l + 1
subsequences. By arranging the n jobs in the non-decreasing order of pj , let σ

denote the sequence (J1, J2, . . . , Jn) where p1 ≤ p2 ≤ . . . ≤ pn. Define jmod =
j mod (l + 1). For each job Jj (1 ≤ j ≤ n), we assign it to subsequence Πi such
that

i =

{
l + 1, jmod = 0;

jmod, otherwise.

By Lemma 1, we schedule the jobs in each Πi in SPT order, and assign one
rate-modifying activity between any two adjacent subsequences. We call this
schedule Π(l) = (Π1, Π2, . . . , Πl+1) the coresidual schedule. We will prove this
coresidual schedule is an optimal schedule for this problem.

Assume n = (l + 1)x + y, where x = �n/(l + 1)� is the quotient of n divided
by (l+ 1) and y = n mod (l+ 1) is the residue of the division. According to the
coresidual schedule, the qth job in Πh is exactly the ((q− 1)(l+1)+ h)th job in
sequence σ, i.e., J[h,q] = J(q−1)(l+1)+h.

Theorem 1. For problem 1|pA[j] = p[j] + bS[j], l − rms|Cmax, an optimal policy

is as follows: process jobs in the coresidual schedule Π(l) and assign one rate-
modifying activity to the end of each Πi (1 ≤ i ≤ l).

Proof. For Π(l), if y = 0, then there are uniformly x jobs in each Πu (1 ≤ u ≤
l + 1); otherwise if y �= 0, then there are x+ 1 jobs in each Πu (1 ≤ u ≤ y) and
x jobs in each Πv (y + 1 ≤ v ≤ l + 1), respectively. We consider the latter case
where y �= 0. For the former case it can be similarly discussed. With y �= 0, the
makespan of Π(l) is given by

Cmax(Π(l)) =

y∑
h=1

x+1∑
q=1

p(q−1)(l+1)+h(1 + b)x+1−q + lt

+

l+1∑
h=y+1

x∑
q=1

p(q−1)(l+1)+h(1 + b)x−q. (3)

From (3), we observe that for any two subsequences Πu and Πw both contain-
ing x jobs, the qth job in Πu and that in Πw make a total contribution of

Optimal Single-Machine Scheduling 335

[p(q−1)(l+1)+u + p(q−1)(l+1)+w](1+ b)x−q to the makespan, which keeps the same
if the two jobs are exchanged between the two subsequences. For the case that
both Πu and Πw contain x + 1 jobs, the same conclusion holds with the simi-
lar reasoning. Thus, to prove the optimality of Cmax(Π(l)), it suffices to show
that: (i) By interchanging the jth job in Πu (1 ≤ u ≤ y) with the jth job in

Πv (y + 1 ≤ v ≤ l + 1) which produces schedule Π̃ , Cmax(Π̃) ≥ Cmax(Π(l));
(ii) By moving one job Ji(l+1)+s from Πs to the corresponding position (by SPT

order) in Πm (s �= m) which produces schedule Π̂ , Cmax(Π̂) ≥ Cmax(Π(l)); (iii)
By interchanging the ith job in Πs with the jth job in Πm (j �= i, s �= m) which
produces schedule Π̆ by SPT order, Cmax(Π̆) ≥ Cmax(Π(l)).

(a) The proof of part (i).
After the interchange, job J(j−1)(l+1)+u is scheduled in the jth position of Πv

and job J(j−1)(l+1)+v is scheduled in the jth position of Πu, while all the other
jobs in Π(l) are processed in the same positions.

Cmax(Π̃) =
∑

1≤h≤y,h 	=u

x+1∑
q=1

p(q−1)(l+1)+h(1 + b)x+1−q

+

j−1∑
q=1

p(q−1)(l+1)+u(1 + b)x+1−q + p(j−1)(l+1)+v(1 + b)x+1−j

+
x+1∑

q=j+1

p(q−1)(l+1)+u(1 + b)x+1−q

+
∑

y+1≤h≤l+1,h 	=v

x∑
q=1

p(q−1)(l+1)+h(1 + b)x−q

+

j−1∑
q=1

p(q−1)(l+1)+v(1 + b)x−q + p(j−1)(l+1)+u(1 + b)x−j

+
x∑

q=j+1

p(q−1)(l+1)+u(1 + b)x−q + lt. (4)

Taking the difference between (3) and (4), we have that

Cmax(Π̃)− Cmax(Π(l))

=
(
p(j−1)(l+1)+v(1 + b)x+1−j + p(j−1)(l+1)+u(1 + b)x−j

)
− (p(j−1)(l+1)+u(1 + b)x+1−j + p(j−1)(l+1)+v(1 + b)x−j

)
=
(
p(j−1)(l+1)+v − p(j−1)(l+1)+u

) (
(1 + b)x+1−j − (1 + b)x−j

)
> 0.

where the inequality holds since b > 0 and v > u, implying p(j−1)(l+1)+v ≥
p(j−1)(l+1)+u. The proof of part (i) is completed.

(b) The proof of part (ii).

336 S. Yu

There are totally six cases including 1 ≤ s < m ≤ y, 1 ≤ m < s ≤ y,
1 ≤ s ≤ y < m ≤ l + 1, 1 ≤ m ≤ y < s ≤ l + 1, y < s < m ≤ l + 1, and
y < m < s ≤ l + 1. We consider the last case where y < s < m ≤ l + 1. For the
other five cases, their proofs are similar to that of this case. By case condition
and Lemma 1,

Cmax(Π̂) =

y∑
h=1

x+1∑
q=1

p(q−1)(l+1)+h(1 + b)x+1−q

+
∑

y+1≤h≤l+1, h 	=s,m

x∑
q=1

p(q−1)(l+1)+h(1 + b)x−q + lt

+

i−1∑
q=1

p(q−1)(l+1)+s(1 + b)x−1−q +

x∑
q=i+1

p(q−1)(l+1)+s(1 + b)x−q

+

i−1∑
q=1

p(q−1)(l+1)+m(1 + b)x+1−q + p(i−1)(l+1)+s(1 + b)x+1−i

+

x∑
q=i

p(q−1)(l+1)+m(1 + b)x−q. (5)

Taking the difference between (3) and (5), we have

Cmax(Π̂)− Cmax(Π(l))

=
i−1∑
q=1

p(q−1)(l+1)+s(1 + b)x−1−q + p(i−1)(l+1)+s(1 + b)x+1−i

+

i−1∑
q=1

p(q−1)(l+1)+m(1 + b)x+1−q

−(

i∑
q=1

p(q−1)(l+1)+s(1 + b)x−q +

i−1∑
q=1

p(q−1)(l+1)+m(1 + b)x−q)

= b

i−1∑
(q=1

(
p(q−1)(l+1)+m(1 + b)x−q − p(q−1)(l+1)+s(1 + b)x−q−1

)
+bp(i−1)(l+1)+s(1 + b)x−i.

Since pi ≤ pj for i < j and b > 0, Cmax(Π̂) > Cmax(Π(l)) which completes the
proof of part (ii).

(c) The proof of part (iii).
Without loss of generality, assume that i < j. There are six cases which are

the same as those in part (ii), and we only consider one of these cases where
y < s < m ≤ l + 1. Again, the proofs of the other five cases are similar to that
of this case and we omit them. For the case where y < s < m ≤ l + 1, Note
that after the interchange, the ith job in Πs is still in the ith position in the

Optimal Single-Machine Scheduling 337

new subsequence by SPT order, and the same conclusion holds for the jth job
in Πm. By case condition and Lemma 1,

Cmax(Π̆)

=

y∑
h=1

x+1∑
q=1

p(q−1)(l+1)+h(1 + b)x+1−q

+
∑

y+1≤h≤l+1, h 	=s,m

x∑
q=1

p(q−1)(l+1)+h(1 + b)x−q + lt

+
i−1∑
q=1

p(q−1)(l+1)+s(1 + b)x−q +

j−1∑
q=i

pq(l+1)+s(1 + b)x−q+1

+p(j−1)(l+1)+m(1 + b)x−j +
x∑

q=j+1

p(q−1)(l+1)+s(1 + b)x−q

+

i−1∑
q=1

p(q−1)(l+1)+m(1 + b)x−q + p(i−1)(l+1)+s(1 + b)x−i

+

j∑
q=i+1

p(q−2)(l+1)+m(1 + b)x−q−1

+

x∑
q=j+1

p(q−1)(l+1)+m(1 + b)x−q. (6)

Taking the difference between (3) and (6), we have

Cmax(Π̆)− Cmax(Π(l))

=

j−1∑
q=i

pq(l+1)+s(1 + b)x−q + p(j−1)(l+1)+m(1 + b)x−j

+p(i−1)(l+1)+s(1 + b)x−i +

j∑
q=i+1

p(q−2)(l+1)+m(1 + b)x−q

−
j∑

q=i

p(q−1)(l+1)+s(1 + b)x−q −
j∑

q=i

p(q−1)(l+1)+m(1 + b)x−q

=

j−1∑
q=i+1

((pq(l+1)+s − p(q−1)(l+1)+m)− (p(q−1)(l+1)+s − p(q−2)(l+1)+m))(1 + b)x−q

−(p(j−1)(l+1)+s − p(j−2)(l+1)+m)(1 + b)x−j

+(pi(l+1)+s − p(i−1)(l+1)+m)(1 + b)x−i

=

j−1∑
q=i

(pq(l+1)+s − p(q−1)(l+1)+m)((1 + b)x−q − (1 + b)x−q−1).

338 S. Yu

Since pi ≤ pj for i < j and b > 0, we obtain Cmax(Π̆) ≥ Cmax(Π(l)) which
completes the proof of part (iii). Thus, the schedule Π(l) is with the minimum
makespan. The theorem follows. ��

For time complexity of solving the optimal makespan, the jobs need to be
renumbered in non-decreasing order of pj , taking O(n log n) time. Thus problem
1|pA[j] = p[j] + bS[j], l − rms|Cmax can be solved in O(n log n) time.

Corollary 1. For problem 1|pA[j] = p[j] + bS[j], l − rms|Cmax, the number N of
optimal schedules is

N =

{
(l + 1)! (y!)x((l + 1− y)!)x−1 if y �= 0;
((l + 1)!)x if y = 0.

where x = �n/(l + 1)� and y = n mod (l + 1).

Proof. Assume that n ≥ l+1. We first consider the case y �= 0. From the proof of
Theorem 1, we see that for the first y or last (l−1−y) subsequences with the same
number of jobs, jobs ranked in the same position can be arbitrarily interchanged
without changing the objective value. By (3), each of the first y subsequences
has x+ 1 jobs, and each of the last (l − 1− y) subsequences has x jobs. So, the
permutation of the jobs in the same position of the first y subsequences is (y!)x+1,
and that of the last (l−1−y) subsequences is ((l+1−y)!)x. At this time, the first y
subsequences has already been permutated, so as the last (l−1−y) subsequences.
Therefore, the permutation of the (l + 1) subsequences is P (l+1,l+1)

P (y,y)P (l+1−y,l+1−y) .

Then, the number of optimal schedules is (l + 1)! (y!)x((l + 1 − y)!)x−1 when
y �= 0. It is analogous to prove N = ((l + 1)!)x when y = 0. ��

For one variation where the machine may arbitrarily adopt k ∈ [0, l] rate-
modifying activities during job processing, we denote the problem by 1|pA[j] =
p[j] + bS[j], rms|Cmax. This variation is reasonable for the case when the value
of t is not that small compared to pj , and it may be optimal to adopt none of
the rate-modifying activities in some case. Hence, we shall be more careful to
select rate-modifying activities, that is, the makespan may be less by using some
of the l rate-modifying activities than using all of them. In this variation, it is
necessary to figure out what is the optimal number of rate-modifying activities
adopted. Hence, we get the following theorem:

Theorem 2. For problem 1|pA[j] = p[j] + bS[j], rms|Cmax, there exists an op-

timal schedule Π(L) such that Π(L) = min{ min
1≤i≤l

Π(i), Π(0)} and Π(0) =

(J1 J2 . . . Jn) without rate-modifying activities.

4 Conclusion

This paper investigated one single-machine scheduling problem to minimize the
makespan.We considered the scenario such that themachine is with linear deterio-
ration rate of processing speed and rate-modifying activities. Each rate-modifying

Optimal Single-Machine Scheduling 339

activity, consuming a fixed length of time, can fully recover the speed of the ma-
chine.We presented an optimal schedule with time complexity ofO(n logn) where
n is the number of jobs, and gave one result on an extended problem where an op-
timal schedule may not adopt all the rate-modifying activities. Future research
topics include extending our results to multi-machine scheduling problem as well
as problems with different objective functions.

Acknowledgements. This work was supported by NSFC(No. 71301168) and
the Scientific Research Foundation of ZNUFE (Zhongnan University of Eco-
nomics and Law, No. 31541310813).

References

[1] Eilon, S.: On a mechanistic approach to fatigue and rest periods. Int. J. Prod.
Res. 3, 327–332 (1964)

[2] Gentzler, G.L., Khalil, T.M., Sivazlian, B.B.: Quantitative models for optimal rest
period scheduling. Omega-Int. J. Manag. Sci. 5, 215–220 (1977)

[3] Bechtold, S.E., Janaro, R.E., Sumners, D.L.: Maximization of labor productivity
through multi-rest break scheduling. Manag. Sci. 30, 1442–1458 (1984)

[4] Lee, C.Y., Leon, V.J.: Machine scheduling with a rate-modifying activity. Eur. J.
Oper. Res. 128, 119–128 (2001)

[5] Lee, C.Y., Lin, C.S.: Single-machine scheduling with maintenance and repair rate-
modifying activities. Eur. J. Oper. Res. 135, 493–513 (2001)

[6] Lodree, E.J., Geiger, C.D.: A note on the optimal sequence position for a rate-
modifying activity under simple linear deterioration. Eur. J. Oper. Res. 201,
644–648 (2010)

[7] Lodree, E.J., Geiger, C.D., Jiang, X.: Taxonomy for integration scheduling theory
and human factors: Review and research opportunities. Int. J. Ind. Ergonom. 39,
39–51 (2009)

[8] Browne, S., Yechiali, U.: Scheduling deteriorating job on a single processor. Oper.
Res. 38, 495–498 (1990)

[9] Mosheiov, G.:
∧
-shaped policies of schedule deteriorating jobs. J. Oper. Res.

Soc. 47, 1184–1191 (1996)
[10] Alidaee, B., Womer, N.K.: Scheduling with time dependent processing times: Re-

view and extensions. J. Oper. Res. Soc. 50, 711–720 (1999)
[11] Cheng, T.C.E., Ding, Q., Lin, B.M.T.: A concise survey of scheduling with time-

dependent processing times. Eur. J. Oper. Res. 152, 1–13 (2004)
[12] Zhao, C.L., Tang, H.Y.: A note to due-window assignment and single machine

scheduling with deteriorating jobs and a rate-modifying activity. Comput. Oper.
Res. 39, 1300–1303 (2012)

A Loopless Algorithm for Generating Multiple

Binary Tree Sequences Simultaneously�

Ro-Yu Wu1, Jou-Ming Chang2, Hung-Chang Chan3, and Kung-Jui Pai4

1 Department of Industrial Management,
Lunghwa University of Science and Technology, Taoyuan, Taiwan

2 Institute of Information and Decision Sciences,
National Taipei College of Business, Taipei, Taiwan

3 Department of Computer Science and Information Engineering,
Yuanpei University, Hsinchu, Taiwan

4 Department of Industrial Engineering and Management,
Ming Chi University of Technology, New Taipei City, Taiwan

Abstract. Pallo and Wu et al. respectively introduced the left-weight
sequences (LW-sequences) and right-weight sequences (RW-sequences)
for representing binary trees. In this paper, we introduce two new types
of binary tree sequences called the left-child sequences (LC-sequences)
and right-child sequences (RC-sequences). Next, we propose a loopless
algorithm associated with rotations of binary trees for generating LW-,
RW-, LC-, and RC-sequences simultaneously. Moreover, we show that
LW- and RW-sequences are generated in Gray-code order, and LC- and
RC-sequences are generated so that each sequence can be obtained from
its predecessor by changing at most two digits. Our algorithm is shown
to be more efficient in both space and time than the existing known
algorithms.

Keywords: Binary trees, Loopless generating algorithms, Gray-code
order, Constant amortized time.

1 Introduction

Combinatorial objects are usually encoded by integer sequences and are gener-
ated in a particular order. Since a large amount of objects need to be generated,
the design of efficient generating schemes are necessary. Ehrlich [1] defined that
an algorithm for generating objects is a loopless generating algorithm provided
the computation of changing one object into the next one only takes a constant
time. In particular, if the change between two successive objects is limited by
only one integer, the generation results in a Gray-code order. Loopless algorithms
for generating binary trees [6, 8, 11–13, 17] and their generalization called k-ary
trees [2–4,9,18] have attracted a great deal of attention. In these literature, some
of these generating scheme are based on tree rotations [2–4, 6, 8, 12].

� This work was partially supported by the National Science Council of Taiwan under
contracts NSC102-2221-E-262-013 and NSC102-2221-E-141-001-MY3.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 340–350, 2013.
c© Springer International Publishing Switzerland 2013

Generating Multiple Binary Tree Sequences 341

Although many types of integer sequences have been introduced to encode bi-
nary trees, the so-called left-weight sequences (LW-sequences) are the most com-
mon type of adoption [7]. For generating LW-sequences of binary trees, Pallo [7]
has proposed a constant amortized time (CAT for short) algorithm that gener-
ates sequences in lexicographic order. Shortly afterwards, van Baronaigien and
Ruskey [10] designed a recursive CAT algorithm that generates LW-sequences in
a Gray-code order. Roughly a decade later, Vajnovszki [12] developed a loopless
algorithm associated with rotations of binary trees for generating LW-sequences
by way of Williamson’s idea [14]. At a later time, based on the traversal in a
rotation graph constructed by a special type of rotation on the left-arm (or right-
arm) of a tree, Wu et al. [15] provided a recursive CAT algorithm to generate
LW-sequences of binary trees in lexicographic order. In that paper, to efficiently
transform binary tree sequences, they made use of the concept of mirror image
of LW-sequences to define the right-weight sequences (RW-sequences) for binary
trees.

Because the usual binary trees are implemented so that nodes are allocated by
structures and children of a node are accessed through pointers (i.e., the struc-
ture and pointer representation), this motivates us to define integer sequences
connoting child’s information to represent binary trees. Two new types of binary
tree sequences called the left-child sequences (LC-sequences) and the right-child
sequences (RC-sequences) are introduced in the next section. In this paper, we
present a loopless algorithm associated with rotations of binary trees for gener-
ating four types of binary tree sequences simultaneously, including LW-, RW-,
LC-, and RC-sequences. In particular, LW- and RW-sequences are generated in
Gray-code order, and LC- and RC-sequences are generated so that each sequence
can be obtained from its predecessor by changing at most two digits. To the best
of our knowledge, this is the first time that a loopless generating algorithm can
simultaneously generate multiple types of binary tree sequences. Moreover, we
show that the proposed algorithm has a high efficiency in the space and time re-
quirements. In fact, to generate sequences of binary trees with n internal nodes,
our loopless algorithm requires totally 6n+O(1) memory space, and each gen-
eration needs no more than 4 comparisons and takes an amortized cost with at
most 8 assignments when n is larger.

2 Preliminaries

A binary tree T considered here is a rooted, ordered tree with n internal nodes
numbered by 1, 2, . . . , n in inorder (i.e., visit recursively the left subtree, root
and then the right subtree of T) such that every internal node has exactly two
children called the left child and the right child. Such a binary tree is also referred
to an extended binary tree [5]. For a node i ∈ T , the subtree rooted at i is denoted
by Ti. Also, the subtree rooted at the left child (respectively, right child) of i
is called the left subtree (respectively, right subtree) of i and is denoted by Li

(respectively, Ri).

342 R.-Y. Wu et al.

2.1 Left-Weight and Right-Weight Sequences

The weight of a binary tree T , denoted by w(T), is defined to be the num-
ber of leaves in T . Clearly, w(T) = n + 1 and Ti contains w(Ti) − 1 internal
nodes for 1 � i � n. The left weight of a node i ∈ T , denoted by w	(T, i),
is defined to be the number of leaves in Li, i.e., w	(T, i) = w(Li). Pallo [7]
further defined the integer sequence w	(T) = (w	(T, 1), w	(T, 2), . . . , w	(T, n))
to be the left-weight sequence (LW-sequence for short) of T . Similarly, the
right weight of a node i ∈ T is wr(T, i) = w(Ri) and the integer sequence
wr(T) = (wr(T, 1), wr(T, 2), . . . , wr(T, n)) is called the right-weight sequence
(RW-sequence for short) of T in [15]. For notational convenience, if the tree T is
clear from the context, we simply write w	(i) and wr(i) instead of w	(T, i) and
wr(T, i), respectively. For example, Fig. 1 shows a binary tree T with 9 internal
nodes whose LW-sequence and RW-sequence are w	(T) = (1, 2, 1, 1, 3, 6, 1, 1, 3)
and wr(T) = (1, 4, 2, 1, 1, 4, 2, 1, 1), respectively.

1 7

8

92

3

4

5

6

Fig. 1. A binary tree T of weight 10

For a binary tree T , there is a linear time transformation between w	(T) and
wr(T) in [15]. In addition, Pallo [7] and Wu et al. [15] respectively characterized
an integer sequence to be an LW-sequence or RW-sequence of a binary tree as
follows.

Theorem 1. [7, 15] Let w = (w1, w2, . . . , wn) be an integer sequence. Then,

(a) w is the LW-sequence of a binary tree T with n internal nodes if and only if
the following conditions are satisfied for all i ∈ {1, 2, . . . , n}: (i) 1 � wi � i
and (ii) i− wi � j − wj for all j ∈ [i− wi + 1, i].

(b) w is the RW-sequence of a binary tree T with n internal nodes if and only
if the following conditions are satisfied for all i ∈ {1, 2, . . . , n}: (i) 1 � wi �
n− i+ 1 and (ii) i+ wi � j + wj for all j ∈ [i, i+ wi − 1].

For a binary tree T , a path from the root to its leftmost (respectively, right-
most) leaf is called the left arm (respectively, right arm). The following lemma
shows that a node on the left arm or right arm of a subtree is easy to be checked.
In particular, if we imagine that T is the right subtree (respectively, left subtree)
of a dummy node numbered by 0 (respectively, n+ 1), it is easy to check from

Generating Multiple Binary Tree Sequences 343

Lemma 1 that a node x is in the left arm (respectively, right arm) of T if and
only if x = w	(x) (respectively, x+wr(x) = n+1), and x is the root of T if and
only if w	(x) + wr(x) = n+ 1.

Lemma 1. [15] Let T be a binary tree and i ∈ T an internal node. If x is a
descendant of i, the following statements hold:

(a) The node x is contained in the left arm of Ri ⇔ x− w	(x) = i.
(b) The node x is contained in the right arm of Li ⇔ x+ wr(x) = i.

Lemma 2. [15] Let T be a binary tree and i ∈ T an internal node. Suppose that
i is not the root of T and let p be the parent of i. Then, the following statements
hold:

(a) The node i is the right child of p ⇔ p = i−w	(i) ⇔ wr(p) = w	(i)+wr(i).
(b) The node i is the left child of p ⇔ p = i+wr(i) ⇔ w	(p) = w	(i) +wr(i).

2.2 Left-Child and Right-Child Sequences

We now introduce new types of sequences to represent binary trees. For a binary
T with n internal nodes 1, 2, . . . , n numbered in inorder, the left-child sequence
(LC-sequence for short) of T , denoted by c	(T) = (c	(T, 1), c	(T, 2), . . . , c	(T, n)),
is an integer sequence such that the term c	(T, i), 1 � i � n, is defined as follows:

c	(T, i) =

{
0 if the left child of i is a leaf;

j if j is the left child of i in T .
(1)

Similarly, we denote cr(T) = (cr(T, 1), cr(T, 2), . . . , cr(T, n)) as the right-child
sequence (RC-sequence for short) of T , where we use the right child instead of
the left child in (1) to define the term cr(T, i). Obviously, c	(T, i) < i and either
cr(T, i) = 0 or cr(T, i) > i. In particular, c	(T, 1) = cr(T, n) = 0. Customarily, we
omit the parameter T in the terms c	(T, i) and cr(T, i) if it is clear from the con-
text. For instance, the LC-sequence and RC-sequence of the binary tree T shown
in Figure 1 are c	(T) = (0, 1, 0, 0, 3, 2, 0, 0, 7) and cr(T) = (0, 5, 4, 0, 0, 9, 8, 0, 0),
respectively.

We can also reformulate c	(T, i) and cr(T, i) as follows.

Lemma 3. Let T be a binary tree and i ∈ T an internal node. Then

(a) c	(i) =

{
0 if the left child of i is a leaf;

min{x ∈ [1, i− 1] |x+ wr(x) = i} otherwise.

(b) cr(i) =

{
0 if the right child of i is a leaf;

max{x ∈ [i+ 1, n] |x− w	(x) = i} otherwise.

Proof. By symmetry, we only prove (a). Suppose that the left child of i is not
a leaf of T and let c	(i) = j. By Lemma 1, x + wr(x) = i if and only if x is
contained in the right arm of Tj (i.e., Li). In particular, j � x whenever x is
contained in the right arm of Tj. �

344 R.-Y. Wu et al.

Lemma 4. Let T be a binary tree and i ∈ T an internal node. The following
conditions hold:

(a) w	(i) =

{
1 if c	(i) = 0

w	(c	(i)) + i− c	(i) otherwise;

(b) wr(i) =

{
1 if cr(i) = 0

wr(cr(i)) + cr(i)− i otherwise.

Proof. By symmetry, we only prove (a). Clearly, if c	(i) = 0, then w	(i) = 1.
Otherwise, by Lemma 2 we have i = c	(i) + wr(c	(i)). Thus, w	(i) = w(Li) =
w(Tc�(i)) = w	(c	(i)) + wr(c	(i)) = w	(c	(i)) + i− c	(i). �

2.3 Tree Rotations

A rotation is a simple operation that reconstructs a binary tree into another tree
and preserves its inorder. For a binary tree T and two nodes x, y ∈ T where x is
the right child of y, a left rotation at x, denoted by ρ	(T, x), is an operation that
raises x to the place of y, such that y becomes the new left child of x and the
left subtree of x becomes the new right subtree of y, while the remaining parts
of the tree are unchanged. A right rotation at a node x, denoted by ρr(T, x), is
the reverse operation of ρ	(T, x), i.e., if we apply the right rotation after a left
rotation at a node, it reconstructs the original tree. See Fig. 2 for an illustration.
Also, for notational convenience, we use the same notation ρ	(T, x) or ρr(T, x)
to denote the resulting tree that performs the rotation.

The following propositions directly follow from the definition of rotations and
thus we omit the proof since its validity can easily be checked from Lemma 2.

left rotation

right rotation

x

y x

y

Ly

Ry RxLy

Rx

Lx

Fig. 2. Left rotation and right rotation

Proposition 1. For a binary tree T and two nodes x, y ∈ T where x is the right
child of y. Let L = ρ	(T, x). Then

(a) wr(L, y) = w	(T, x) and w	(L, x) = w	(T, x) + w	(T, y);
(b) cr(L, y) = c	(T, x) and c	(L, x) = y;
(c) If y is the left child of a node z, then z = x+ wr(x) and c	(L, z) = x;
(d) If y is the right child of a node z, then z = y − w	(y) and cr(L, z) = x;
(e) Except for the above changes, the left child and right child (respectively, left

weight and right weight) of every other node in L remain unchanged.

Generating Multiple Binary Tree Sequences 345

Proposition 2. For a binary tree T and two nodes x, y ∈ T where y is the left
child of x. Let R = ρr(T, x). Then

(a) w	(R, x) = wr(T, y) and wr(R, y) = wr(T, y) + wr(T, x);
(b) c	(R, x) = cr(T, y) and cr(R, y) = x;
(c) If x is the left child of a node z, then z = x+ wr(x) and c	(R, z) = y;
(d) If x is the right child of a node z, then z = x− w	(x) and cr(R, z) = y;
(e) Except for the above changes, the left child and right child (respectively, left

weight and right weight) of every other node in R remain unchanged.

3 A Loopless Generation of Binary Tree Sequences

Let Tn be the set of binary trees with n internal nodes. It is well-known that
|Tn| = 1

n+1

(
2n
n

)
. A systematic way to describe all binary tree sequences is the

use of coding trees. A coding tree Tn is a rooted tree consisting of n levels such
that every node is associated with a label and the full labels along a path from
the root to a leaf in Tn represent the sequence of a binary tree T ∈ Tn. To
facilitate the description of Tn, the following terms are used in [16]. We say
that a non-leaf node x ∈ Tn has an up-fragment (respectively, a down-fragment)
if the labels of x’s children in Tn are arranged from left to right in increasing
order (respectively, decreasing order). In particular, a coding tree is called a
flip-flap tree if the following conditions hold: (1) every non-leaf node has either
an up-fragment or a down-fragment; (2) if a node has an up-fragment, then its
adjacency siblings (if exist) must have a down-fragment, and vice versa.

Accordingly, we construct a coding tree such that the root has label 1 and,
for each level i � 2, the two particular labels 1 and i always appear in any
fragment of level i. Moreover, if we restrict that the two nodes with labels 1 and
i are on the boundary in every fragment and the two types of fragments (i.e.,
up-fragments and down-fragments) alternately appear in each level of Tn, then
the resulting coding tree is a flip-flap tree. In this case, if the full labels along
the path in the left arm of Tn are determined, then so is the arrangement of
Tn. Since we have two choices to label a node (except the root) in the left arm
of Tn, there are at least 2n−1 different ways to construct a flip-flap tree. For
instance, Fig. 3 shows a flip-flap tree T5 begins with the sequence (1, 2, 3, 4, 5)
in its left arm. In this case, the initial fragment in each level of T5 is given by a
down-fragment.

In the above arrangement of Tn, if u and v are two adjacent leaves, the
sequences from the root to u and to v are said to be consecutive. The following
lemma establishes the base of our loopless algorithm such that an enumeration
of LW-sequences in Gray-code order can be achieved.

Lemma 5. In a flip-flap tree, any two consecutive LW-sequences differ in ex-
actly one digit.

Proof. Let w	(T1) and w	(T2) be consecutive sequences with respect to two
adjacent leaves u and v in Tn, and let w be the lowest common ancestor of u

346 R.-Y. Wu et al.

3

1

1

12

1 2 3

14 23 1 43 1414 1 4

5 124 351 435 1451 51 2 4 5 14 51 51 25 15 123 51 5 151 25 1

2

3

updown down downdown down down downup up up up up up

down up down up down

down up

down

Fig. 3. A flip-flap tree T5 for LW-sequences

and v. It is clear that labels collected from the root to node w are the same for
leaves u and v, and are different for w’s children. By the flip-flap arrangement,
the remaining labels for leaves u and v must also be the same. Thus, there is
only one position having different digits for w	(T1) and w	(T2). �

A procedure called NextTree() is developed to perform either a left rotation or
a right rotation at node i for generating the next tree sequences. Arrays w	(1..n),
wr(1..n), c	(1..n) and cr(1..n) are used to store the current LW-, RW-, LC- and
RC-sequences, respectively. We initially set w	(j) = j, wr(j) = 1, c	(j) = j − 1
and cr(j) = 0 for j = 1, . . . , n. That is, the first generated tree is the left-skew
tree. In addition, two auxiliary arrays ρ(1..n) and F (1..n) are employed to record
important information for nodes 1, 2, . . . , n. The setting ρ(i) = 1 (respectively,
ρ(i) = −1) indicates that the current operation performed at node i is a left
rotation (respectively, a right rotation), and in this moment the fragment at level
i of Tn will be an up-fragment (respectively, a down-fragment). Also, we use F (i)
to keep the track of positions to be processed for node i. In the beginning, let
i = n and, for 1 � j � n, we set up ρ(j) = −1 and F (j) = j. When NextTree()
is invoked, it performs the following steps:

1. Determine the case to perform a left rotation or a right rotation at node i.
1.1 The case of a left rotation (i.e., an up-fragment at level i of Tn):

– Let p be the parent of i (in this case, i is the right child of p). If p is
not the root of the current tree T , let q be the parent of p.

– Perform the rotation T ′ = ρ	(T, i).
– According to Proposition 1(c) and 1(d), if p is the left child of q in
T , update c	(T

′, q) = i; otherwise, update cr(T
′, q) = i.

– According to Proposition 1(a) and 1(b), update wr(T
′, p), w	(T

′, i),
cr(T

′, p) and c	(T ′, i).
– If i is not on the left arm of T ′, perform ρ	(T

′, n) in the next iteration.

Generating Multiple Binary Tree Sequences 347

1.2 The case of a right rotation (i.e., a down-fragment at level i of Tn):
– Let q be the left child of i. If i is not the root of the current tree T ,

let p be the parent of i.
– Perform the rotation T ′ = ρr(T, i).
– According to Proposition 2(c) and 2(d), if i is the left child of p in
T , update c	(T

′, p) = q; otherwise, update cr(T
′, p) = q.

– According to Proposition 2(a) and 2(b), update w	(T
′, i), wr(T

′, q),
c	(T

′, i) and cr(T ′, q).
– If i still has a left child in T ′, perform ρr(T

′, n) in the next iteration.
2. If the fragment is in face of a boundary (i.e., i is on the left arm of T ′ for

Step 1.1 or i has no left child in T ′ for Step 1.2), then we perform the
following:
– Change the type of rotation in the next iteration(i.e., ρ(i) = −ρ(i)).
– Propagate the information of F from an upper level to a lower level in

Tn (i.e., F (i) = F (i − 1)).
– Recover the information of F for the upper level of Tn (i.e., F (i − 1) =
i− 1).

– Set F (n) to be the node that will be rotated in the next iteration (i.e.,
i = F (n)).

– Retrieve the initial value of F (n) (i.e., F (n) = n).
3. When i = 1, all tree sequences have been generated.

Fig. 4 gives the implementation in detail. Table 1 shows the list of binary tree
sequences generated by NextTree() when n = 5.

Table 1. The lists of binary tree sequences generated by NextTree() when n = 5

Tree LW-seq. RW-seq. LC-seq. RC-seq.

1 (1,2,3,4,5) (1,1,1,1,1) (0,1,2,3,4) (0,0,0,0,0)
2 (1,2,3,4,1) (1,1,1,2,1) (0,1,2,3,0) (0,0,0,5,0)
3 (1,2,3,1,1) (1,1,3,2,1) (0,1,2,0,0) (0,0,4,5,0)
4 (1,2,3,1,2) (1,1,3,1,1) (0,1,2,0,4) (0,0,5,0,0)
5 (1,2,3,1,5) (1,1,2,1,1) (0,1,2,0,3) (0,0,4,0,0)
6 (1,2,1,1,5) (1,3,2,1,1) (0,1,0,0,2) (0,3,4,0,0)
7 (1,2,1,1,3) (1,4,2,1,1) (0,1,0,0,3) (0,5,4,0,0)
8 (1,2,1,1,2) (1,4,3,1,1) (0,1,0,0,4) (0,3,5,0,0)
9 (1,2,1,1,1) (1,4,3,2,1) (0,1,0,0,0) (0,3,4,5,0)
10 (1,2,1,2,1) (1,4,1,2,1) (0,1,0,3,0) (0,4,0,5,0)
11 (1,2,1,2,3) (1,4,1,1,1) (0,1,0,3,4) (0,5,0,0,0)
12 (1,2,1,2,5) (1,3,1,1,1) (0,1,0,3,2) (0,4,0,0,0)
13 (1,2,1,4,5) (1,2,1,1,1) (0,1,0,2,4) (0,3,0,0,0)
14 (1,2,1,4,1) (1,2,1,2,1) (0,1,0,2,0) (0,3,0,5,0)
15 (1,1,1,4,1) (3,2,1,2,1) (0,0,0,1,0) (2,3,0,5,0)
16 (1,1,1,4,5) (3,2,1,1,1) (0,0,0,1,4) (2,3,0,0,0)
17 (1,1,1,3,5) (4,2,1,1,1) (0,0,0,2,1) (4,3,0,0,0)
18 (1,1,1,3,4) (5,2,1,1,1) (0,0,0,2,4) (5,3,0,0,0)
19 (1,1,1,3,1) (5,2,1,2,1) (0,0,0,2,0) (4,3,0,5,0)
20 (1,1,1,2,1) (5,4,1,2,1) (0,0,0,3,0) (2,4,0,5,0)
21 (1,1,1,2,3) (5,4,1,1,1) (0,0,0,3,4) (2,5,0,0,0)

Tree LW-seq. RW-seq. LC-seq. RC-seq.

22 (1,1,1,2,4) (5,3,1,1,1) (0,0,0,3,2) (5,4,0,0,0)
23 (1,1,1,2,5) (4,3,1,1,1) (0,0,0,3,1) (2,4,0,0,0)
24 (1,1,1,1,5) (4,3,2,1,1) (0,0,0,0,1) (2,3,4,0,0)
25 (1,1,1,1,4) (5,3,2,1,1) (0,0,0,0,2) (5,3,4,0,0)
26 (1,1,1,1,3) (5,4,2,1,1) (0,0,0,0,3) (2,5,4,0,0)
27 (1,1,1,1,2) (5,4,3,1,1) (0,0,0,0,4) (2,3,5,0,0)
28 (1,1,1,1,1) (5,4,3,2,1) (0,0,0,0,0) (2,3,4,5,0)
29 (1,1,2,1,1) (5,1,3,2,1) (0,0,2,0,0) (3,0,4,5,0)
30 (1,1,2,1,2) (5,1,3,1,1) (0,0,2,0,4) (3,0,5,0,0)
31 (1,1,2,1,4) (5,1,2,1,1) (0,0,2,0,3) (5,0,4,0,0)
32 (1,1,2,1,5) (4,1,2,1,1) (0,0,2,0,1) (3,0,4,0,0)
33 (1,1,2,3,5) (4,1,1,1,1) (0,0,2,3,1) (4,0,0,0,0)
34 (1,1,2,3,4) (5,1,1,1,1) (0,0,2,3,4) (5,0,0,0,0)
35 (1,1,2,3,1) (5,1,1,2,1) (0,0,2,3,0) (4,0,0,5,0)
36 (1,1,2,4,1) (3,1,1,2,1) (0,0,2,1,0) (3,0,0,5,0)
37 (1,1,2,4,5) (3,1,1,1,1) (0,0,2,1,4) (3,0,0,0,0)
38 (1,1,3,4,5) (2,1,1,1,1) (0,0,1,3,4) (2,0,0,0,0)
39 (1,1,3,4,1) (2,1,1,2,1) (0,0,1,3,0) (2,0,0,5,0)
40 (1,1,3,1,1) (2,1,3,2,1) (0,0,1,0,0) (2,0,4,5,0)
41 (1,1,3,1,2) (2,1,3,1,1) (0,0,1,0,4) (2,0,5,0,0)
42 (1,1,3,1,5) (2,1,2,1,1) (0,0,1,0,3) (2,0,4,0,0)

348 R.-Y. Wu et al.

Procedure NextTree()

begin
1 if ρ(i) = 1 then // Step 1.1

2 p ← i− w�(i); // Set i to be the right child of p; see Lemma 2(a);

3 if w�(p)+wr(p) �= n+1 then // Test, if p is not the root of T;
4 if w�(p+ wr(p)) = w�(p) + wr(p) then

// Test, if p is the left child of its parent; see Lemma 2(b);

5 c�(p+wr(p)) ← i; // p+wr(p) is the parent of p; see Proposition 1(c);

6 else
7 cr(p−w�(p)) ← i; // p−w�(p) is the parent of p; see Proposition 1(d);

8 wr(p) ← w�(i); // See Proposition 1(a);

9 w�(i) ← w�(i) + w�(p);
10 cr(p) ← c�(i); // See Proposition 1(b);

11 c�(i) ← p;
12 if w�(i) �= i then // Test, if i is not on the left arm of T ′;
13 i ← n; return; // Perform ρ�(T

′, n) in the next iteration;

14 else // Step 1.2

15 q ← c�(i); // Set q to be the left child of i;
16 if w�(i) +wr(i) �= n+ 1 then // Test, if i is not the root of T;
17 if w�(i+ wr(i)) = w�(i) + wr(i) then

// Test, if i is the left child of its parent; see Lemma 2(b);

18 c�(i+ wr(i)) ← q; // i+ wr(i) is the parent of i, see Proposition 2(c);

19 else
20 cr(i− w�(i)) ← q; // i− w�(i) is the parent of i, see Proposition 2(d);

21 w�(i) ← wr(q); // See Proposition 2(a);

22 wr(q) ← wr(q) + wr(i);
23 c�(i) ← cr(q); // See Proposition 2(b);

24 cr(q) = i;
25 if w�(i) �= 1 then // Test, if i still has a left child in T ′;
26 i ← n; return; // Perform ρr(T

′, n) in the next iteration;

27 ρ(i) ← −ρ(i); // Step 2;

28 F (i) ← F (i− 1);
29 F (i− 1) ← i− 1;
30 i ← F (n);
31 F (n) ← n;

Fig. 4. The loopless procedure NextTree()

Lemma 6. NextTree() takes an amortized cost with at most 4 comparisons and
8 + 3

2n−1 assignments.

Proof. Let Nc and Na denote the expected number of comparisons and the
expected number of assignments used in the procedure. We can check from
NextTree() that there are 3 comparisons in the best case and 4 comparisons
in the worst case. It follows that Nc � 4. For computing the upper bound of
Na, it is easy to see that the procedure requires at most 7 assignments when the
rotation is performed at node n. Otherwise, it requires at most 11 assignments.
Moreover, from the observation of a flip-flap tree, we can see that the number of
rotations at node n is equal to the difference between the number of leaves and
the number of their parents, i.e., |Tn| − |Tn−1| (e.g., we have 42 − 14 = 28 for
T5). Thus,

Generating Multiple Binary Tree Sequences 349

Na � 7(|Tn| − |Tn−1|) + 11|Tn−1|
|Tn| = 7 + 4 · n+ 1

n
·
(
2n−2
n−1

)(
2n
n

) = 8 +
3

2n− 1
.

�
We summarize our main result as the following theorem.

Theorem 2. All binary trees with n internal nodes encoded by LW-, RW-,
LC-, and RC-sequences can be generated simultaneously in O(|Tn|) time us-
ing 6n+O(1) memory space and each generation requires only constant time. In
particular, LW-sequences and RW-sequences are generated in Gray-code order,
and discriminatingly, LC-sequences and RC-sequences are generated so that each
sequence can be obtained from its predecessor by changing at most two digits.

Proof. For NextTree(), the memory requirement is obvious as those stated in the
procedure (see Fig. 4) and the time complexity directly follows from Lemma 6.
Since the procedure NextTree() performs either a left rotation or a right rotation,
by Propositions 1 and 2, the four types of binary tree sequences can be correctly
generated. Accurately, by Lemma 5, we have known that LW-sequences is gener-
ated in a Gray-code order. From another point of view, we can check the proce-
dure to see that a digit in the current LW-sequence (respectively, RW-sequence)
will be changed either in Line 9 (respectively, Line 8) for a right rotation or in
Line 21 (respectively, Line 22) for a left rotation. Thus, for these two types of
sequences, there only one digit is changed for each generation. By contrast, for
LC-sequences (respectively, RC-sequences), the change of the two digits occurs
either in the case that we perform a right rotation at node i whose parent is a
left child (respectively, right child) of a node or in the case that we perform a
left rotation at node i who is a left cild (respectively, right child) of its parent
(see Lines 5 and 11 or Lines 18 and 23 for LC-sequences, and Lines 7 and 10 or
Lines 20 and 24 for RC-sequences). For all other cases in each of the generation
of LC-sequences or RC-sequences, there is only one digit to be changed. �

4 Concluding Remarks

In this paper, we design a loopless algorithm associated with rotations of binary
trees for generating LW-, RW-, LC-, and RC-sequences simultaneously. Also,
we prove that our algorithm is possessed of a high efficiency in space and time
requirements. Compared with the loopless algorithm that associates with rota-
tions to generate LW-sequences of binary trees in [12], ours is more efficient in
both space and time. Our algorithm needs 6n+O(1) space and each generation
requires 3/4 comparisons and 7/11 assignments in the best/worst case between
two successive sequences. In fact, a result pointed in [18] shows that Vajnovszki’s
algorithm needs 8n+O(1) space and each generation requires 3/5 comparisons
and 9/13 assignments in its best/worst case between two successive sequences.

350 R.-Y. Wu et al.

We know that almost all combinatorial objects have integer sequence repre-
sentation. Since different representations are derived from some structural prop-
erties of these objects, there must be a natural correspondence between the
different representations. As to the future research, we believe that the idea
of this paper could easily be imitated to generate multiple types of sequences
for other combinatorial objects, such as k-ary trees. Applying this technique to
generate other combinatorial objects is still open.

References

1. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and
other combinatorial configurations. J. ACM 20, 500–513 (1973)

2. Korsh, J.F.: Loopless generation of k-ary tree sequences. Inform. Process. Lett. 52,
243–247 (1994)

3. Korsh, J.F., LaFollette, P.: Loopless generation of Gray codes for k-ary trees. In-
form. Process. Lett. 70, 7–11 (1999)

4. Korsh, J.F., Lipschutz, S.: Shift and loopless generation of k-ary trees. Inform.
Process. Lett. 65, 235–240 (1998)

5. Knuth, D.E.: The Art of Computer Programming. Fascicle 4A — Generating All
Trees, vol. 4. Addison-Wesley (2005)

6. Lucas, J.M., Roelants van Baronaigien, D., Ruskey, F.: On rotations and the gen-
eration of binary trees. J. Algorithms 15, 343–366 (1993)

7. Pallo, J.: Enumerating, ranking and unranking binary trees. Comput. J. 29,
171–175 (1986)

8. Roelants van Baronaigien, D.: A loopless algorithm for generating binary tree se-
quences. Inform. Process. Lett. 39, 189–194 (1991)

9. Roelants van Baronaigien, D.: A loopless Gray-code algorithm for listing k-ary
trees. J. Algorithms 35, 100–107 (2000)

10. Roelants van Baronaigien, D., Ruskey, F.: A Hamiltonian path in the rotation
lattice of binary trees. Congr. Numer. 59, 313–318 (1987)

11. Takaoka, T.: O(1) time algorithms for combinatorial generation by tree traversal.
Comput. J. 42, 400–408 (1999)

12. Vajnovszki, V.: On the loopless generation of binary tree sequences. Inform. Pro-
cess. Lett. 68, 113–117 (1998)

13. Vajnovszki, V.: Generating a Gray code for P-sequences. J. Math. Model. Algo-
rithms 1, 31–41 (2002)

14. Williamson, S.G.: Combinatorics for Computer Science. Computer Science Press,
Rockville (1985)

15. Wu, R.-Y., Chang, J.-M., Wang, Y.-L.: A linear time algorithm for binary tree
sequences transformation using left-arm and right-arm rotations. Theor. Comput.
Sci. 355, 303–314 (2006)

16. Wu, R.-Y., Chang, J.-M., Wang, Y.-L.: Loopless Generation of non-regular trees
with a prescribed branching sequence. Comput. J. 53, 661–666 (2010)

17. Xiang, L., Ushijima, K.: On O(1) time algorithms for combinatorial generation.
Comput. J. 44, 292–302 (2001)

18. Xiang, L., Ushijima, K., Tang, C.: Efficient loopless generation of Gray codes for
k-ary trees. Inform. Process. Lett. 76, 169–174 (2000)

Touring Disjoint Polygons Problem Is NP-Hard

Arash Ahadi, Amirhossein Mozafari, and Alireza Zarei

Department of Mathematical Sciences
Sharif University of Technology

Abstract. In the Touring Polygons Problem (TPP) there is a start
point s, a sequence of simple polygons P = (P1, . . . , Pk) and a target
point t in the plane. The goal is to obtain a path of minimum possible
length that starts from s, visits in order each of the polygons in P and
ends at t. This problem has a polynomial time algorithm when the poly-
gons in P are convex and is NP-hard in general case. But, it has been
open whether the problem is NP-hard when the polygons are pairwise
disjoint. In this paper, we prove that TPP is also NP-hard when the
polygons are pairwise disjoint in any Lp norm even if each polygon con-
sists of at most two line segments. This result solves an open problem
from STOC ’03 and complements recent approximation results.

1 Introduction

A natural and well studied problem in computational geometry is to find a
shortest path from a start point s to a target point t, having some properties
in the plane. In some applications, the shortest path must visit a set of regions
according to a given order. Zoo-keeper [5], Safari [9] and Watchman route [2,8]
problems are famous examples of such applications. In the fixed source version
of the Safari and Zoo-keeper problems, we are given a simple polygon P , a start
point s inside it and a set of disjoint convex polygons (cages) {P1, . . . , Pk} inside
P each of which sharing exactly one edge with P . In the Zoo-keeper problem,
we seek a tour of minimum possible length that visits the cages only at their
boundaries but never enters any of them while in the Safari problem the tour can
enter the cages. In the Watchman route problem (fixed-source version) we have
a simple polygon P and a start point s inside it and the goal is to find a shortest
tour from s inside P such that every point in P can be seen from at least one
point of the tour. It is not difficult to show that in the Zoo-keeper and Safari
problems, the shortest tour must visit the cages in the same order as they lie on
the boundary of P and in the Watchman route problem, the shortest tour must
visit its essential pockets in their order around P [2]. What all these problems
have in common is that we should find a shortest path visiting some polygons
in a given order. The Touring Polygons Problem (TPP) is the general problem
having this visiting property. In TPP, we are given a start point s, a sequence
P = (P1, . . . , Pk) of simple polygons and a target point t in the plane and the
goal is to find a shortest path that starts from s, visits all polygons according to
their order and ends at t. This problem was introduced by Dror et al. [3] in 2003.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 351–360, 2013.
c© Springer International Publishing Switzerland 2013

352 A. Ahadi, A. Mozafari, and A. Zarei

They also discussed the constrained version of TPP in which an ordered sequence
F = (F0, . . . , Fk) of simple polygons called fences are also given and the portion
of the desired path between Pi and Pi+1 must lie inside Fi (consider s as P0 and
t as Pk+1). They proved that TPP is NP-hard in general case and proposed an
O(kn log(n/k)) time algorithm for the case that the polygons are convex and
pairwise disjoint and an O(nk2 logn) time algorithm for the constrained case
with convex polygons where n is the total number of vertices of the polygons.
But the complexity of TPP (constrained and unconstrained versions) when the
polygons are disjoint and allowed to be non-convex has remained open so far even
for the L1 norm. We call this case Touring pairwise Disjoint Polygons Problem
(TDPP). Fig 1. shows an example of TDPP.

Fig. 1. TDPP with sequence (s, P1, P2, P3, P4, t) and its solution

Recently, several approximation algorithms have been proposed for TPP and
TDPP [6,7,10]. In 2010, Pan et al. [10] gave a linear time approximation al-
gorithm for TDPP without answering what the complexity of this problem is.
In this paper, we prove that TDPP is NP-hard for any Lp norm even if each
polygon is composed of at most two joint line segments whose angles with the
x-axis are in {0,±π/4, π/2}. Our proof complements the Dror et.al proof of NP-
hardness of TPP [3] which is based on the Canny-Reif proof of NP-hardness of
three-dimensional shortest path problem [1].

2 Proof of NP-Hardness

To prove the NP-hardness, we use a reduction from the 3-SAT problem. Let
Φ(X,C) be an instance of the 3-SAT problem where X = {x1, . . . , xn} is its
variable set and C = {C1, . . . , Cm} is its clause set such that each variable ap-
pears at most once in each clause. We build an instance PΦ = (s, P1, . . . , Pk, t)
of TDPP with total complexity of O(n+m) and a real number LΦ in polynomial
time such that the solution of TDPP on PΦ is no longer than LΦ if and only if
Φ has a satisfying assignment. To construct PΦ, we consider the octal Cartesian
coordinate system in the plane that is similar to the ordinary Cartesian coordi-
nate system but the x-axis and the y-axis are numbered by octal numbers and
the coordinate of each point in the plane is an ordered pair of two octal numbers.

Touring Disjoint Polygons Problem Is NP-Hard 353

We define a proper path as a path that starts from s, intersects the polygons of
PΦ according to their order and ends at t. An optimal path is a proper path of
least possible length. PΦ contains the start point s and the target point t as the
first and the last polygons respectively. Between s and t in PΦ, there is a sequence
(Gi) of gadgets each of which consists of a sequence of polygons which are either
a line segment or joined two line segments whose angles with the x-axis are in
{0,±π/4, π/2}. So, a proper path should start from s and traverse the gadgets
according to their order and end at t. A semi-optimal path of Gi is a path that
starts from s and optimally traverses Gj gadgets (1 ≤ j ≤ i) according to their
order and an incoming semi-optimal path of Gi is a semi-optimal path of Gi−1

that optimally enters into the Gi. Note that there may be many semi-optimal
paths for one gadget. We arrange the gadgets in the plane in such a way that
all optimal and semi-optimal paths can only be horizontal from one gadget to
its next gadget. So the height of any incoming semi-optimal path of Gi is its
vertical distance from the x-axis when it traverses from Gi−1 to Gi. This height
determines how it has traversed the previous gadgets.

To construct PΦ, we assign two sequences of numbers namely {αi} and {βi}
to Φ(X,C). We define numbers αi and βi (1 ≤ i ≤ n) as follows :

αi =
∑

xi∈Cj

8j−1 , βi =
∑

x̄i∈Cj

8j−1

In other words, for αi = (am−1 . . . a0)8, aj = 1 if xi ∈ Cj+1 and otherwise aj = 0.
Similarly, for βi = (bm−1 . . . b0)8, bj = 1 if x̄i ∈ Cj+1 and otherwise bj = 0. Let
Γ be the following set:

Γ = {
n∑

i=1

γi | γi = αi or γi = βi }.

Note that the elements of Γ are octal numbers whose digits are in {0, 1, 2, 3}.

Lemma 1. Φ has a satisfying assignment if and only if Γ contains a num-
ber with no zero digit in its m digit octal representation.

Proof. Let lij be the j’th literal of the i’th clause. If Φ(X,C) has a satis-
fying assignment, each clause Ci has a true literal lij . Let γ =

∑
γw in which

γw = αw if xw ∈ L or γw = βw if x̄w ∈ L where L = {lij} is the set of true
literals in the satisfying assignment of Φ(X,C). Trivially, γ ∈ Γ and has no zero
digit in its octal representation. On the other hand, if such a γ number exists,
the w’th digit of αi or βi is 1 for all w. So, we can build a satisfying assignment
by assigning true for the first case and false for the second case to the variable
xi. �

Based on the above discussion, the sketch of the reduction is generating 2n equiv-
alent semi-optimal paths whose heights are all numbers in Γ and then stretch

354 A. Ahadi, A. Mozafari, and A. Zarei

the paths whose height has a zero digit in its m digit octal representation. So
if Φ doesn’t have a satisfying assignment, we have a longer solution for TDPP.
To this end, we use three kinds of gadgets : Splitter gadget, Filter gadget and
Eliminator gadget. We assign a legal region to the left side of each gadget such
that each gadget performs a special operation on any incoming semi-optimal
path that enters horizontally to its legal region.

The Splitter gadget S(r) has one positive real parameter r. This gadget gen-
erates two equivalent semi-optimal paths from any incoming semi-optimal path
whose heights differ by r. Precisely, if an incoming semi-optimal path with height
h0 enters horizontally into the legal region of this gadget, it can leave this gadget
at one of two equivalent possible heights h0 + cS(r) and h0 + cS(r) + r while it
remains semi-optimal where cS(r) is constant for this gadget. Therefore, it dou-
bles the number of incoming semi-optimal paths. Note that some of these paths
may be coincident after leaving the gadget.

The Filter gadget F (d) with non-negative integer parameter d, increases the
length of any incoming semi-optimal path of height (xd...x0)8 with xd = 0 by a
sufficiently small ε > 0 compare to any incoming semi-optimal path with xd �= 0.
In fact, this increment guarantees that the length of any extension of paths with
xd = 0 is greater than LΦ, where extension, we meant following this path to
traverse next gadgets to reach t (Note that some of these extensions can still be
an optimal path).

An Eliminator gadget E(d) with the non-negative integer parameter d, elimi-
nates the leftmost digit of height of any incoming semi-optimal path whose height
is a d+1 digit octal number. Strictly speaking, if an incoming semi-optimal path
with height (xdxd−1...x0)8 enters to the legal region of E(d), it leaves this gadget
with height (xd−1...x0)8 while it remains semi-optimal. Also E(0) reduces the
height of any incoming semi-optimal path with height (x0)8 to 0.

Now, we can describe the structure of PΦ as follows : By locating s at an ap-
propriate height and putting n consecutive splitter gadgets (S1, . . . , Sn) in front
of s, we generate 2n equivalent semi-optimal paths whose heights are exactly
all numbers of Γ . Then, we stretch all semi-optimal paths whose heights have
a zero digit in their octal representation. This can be done by checking all m
digits of heights of these paths by putting m consecutive Filter-Eliminator gad-
gets (Fm−1Em−1, . . . , F0E0) and putting t after the last Eliminator. We set LΦ

as the length of an optimal path if we remove all filter gadgets. So, Φ(X,C) has
a satisfying assignment if and only if the length of a solution of TDPP on PΦ is
no longer than LΦ. Fig. 2 shows the total structure of PΦ.

Now, we go through the details of the gadgets. We inductively arrange these
gadgets in the plane in such a way that all semi-optimal paths must traverse
horizontally from s to the first gadget, between the gadgets and from the last
gadget to t. In addition, each gadget must be located in the plane in such a way
that all leaving semi-optimal paths from its previous gadget horizontally enter
to the legal region.

Touring Disjoint Polygons Problem Is NP-Hard 355

Fig. 2. Total configuration of PΦ

Fig. 3 shows the structure of the Splitter gadget S(r). This gadget consists
of 8 disjoint polygons (P1, . . . , P8) and generates two equivalent semi-optimal
paths from each incoming semi-optimal path. Let p be such a path and O be
the last intersection of p and the last gadget before entering into the Splitter.
After p intersects P1, it has two equivalent choices to intersect P2. Let p1 and
p2 be such paths as indicated in the figure. Because the angle between P3 and
horizontal line is −π/4, these paths traverse equal distances to reach P4.

Fig. 3. Splitter gadget S(r)

On the other hand, the distance that p1 traverses from P5 to P6 is equal to the
distance that p2 traverses from the point I to P5 plus the distance it traverses
from P5 to the point I to reach P7. So, the distances that p1 and p2 traverse
from P4 to P8 are equal. So, the distances that p1 and p2 traverse from O to P8

are equal.
Let (A,B,C) be a sequence of non-intersecting line segments that completely

lie on the isosceles triangle of their supporting lines. Also, the supporting line of
A is either vertical or horizontal and is perpendicular to the supporting line of
C. Let O be a point on A such that M is its C directed image on B and N is

356 A. Ahadi, A. Mozafari, and A. Zarei

A directed image of M on C (Fig 4. (a)). We call such a structure a triangular
structure (A,B,C) defined by A, B and C.

Lemma 2. The path OMN is the shortest visiting path in any Lp norm from
A to C starting from O and its length is equal for all such O points.

Proof. Let C′ be the reflection of C on the supporting line of B and OIJ
be a visiting path from A to C. Consider IJ ′ as a reflection of IJ by the ex-
tension of B. So, any visiting path from A to C corresponds to a path from
A to C′ having the same length and vice versa. But, the shortest path from A
to C′ in any Lp norm is the straight line that corresponds to the path OMN
(Fig. 4(b)). �

Fig. 4. A Triangular Structure

Lemma 3. There is no path from O to P8 in Splitter gadget S(r) with length
shorter than the length of p1 or p2 in any Lp norm.

Proof. We show that S(r) can be considered as a sequence of triangular struc-
tures and p1 and p2 are only optimal paths in any Lp norm according to lemma 2.
According to the Fig. 5, it is trivial that the horizontal path is the shortest path
from O to P1. Now, we have two cases : (1) passing P1 to reach P2 (path p1)
and (2) reflecting at P1 to reach P2 (path p2). In each case an optimal path
should intersect DF to reach P3. So for the case (1), we have the triangular
structure (P1, BC,EF) and for the case (2) we have (P1, AB,DE) and then, we
have (DF,P3, P4). It is obvious that there is no path for case (2) from P4 to P8

with length shorter than the length that p2 traverses from P4 to P8. In the case
(1), an optimal path should intersect P4 in HG and we have (HG, IJ, LK) and
then (LK,P6, NM) to reach P7 and a straight line to P8. Therefore, there is no
path from P1 to P8 with the length shorter than the length of p1 and p2 in any
Lp norm and the result of this lemma follows. �.

Touring Disjoint Polygons Problem Is NP-Hard 357

Fig. 5. Splitter proof

Fig. 6 shows the structure of the Filter gadget F (d). Let p be an incoming semi-
optimal path for this gadget with height (xd, . . . , x0)8. This gadget, increases the
length of p by a fixed ε > 0 if xd = 0 and let p pass the gadget without bending
if xd �= 0. It is trivial that in both cases, p can’t traverse the gadget by a shorter
distance.

Fig. 6. Filter Gadget F (d)

Fig. 7 shows the structure of the Eliminator gadget E(d) that decreases the
height of any incoming semi-optimal path p with height (xd, . . . , x0)8 by remov-
ing the (d+1)’th digit (which is the highest digit) of the octal representation of
its height.

The legal region of this gadget is all heights (xd, . . . , x0)8 such that xi ∈
{0, 1, 2, 3} (0 ≤ i ≤ d). In this gadget, for all 0 ≤ k ≤ 5 the upper endpoint
3k + 2 polygons is sufficiently close to the intersection point of segments of
3k + 1 polygons. Since all digits of heights of all incoming semi-optimal paths
are in {0, 1, 2, 3}, these paths are not close to the joint point of 3k+ 1 polygons
and they enter to the legal region of this gadget. It is easy to check that all

358 A. Ahadi, A. Mozafari, and A. Zarei

Fig. 7. Eliminator Gadget E(d) and an example path

incoming semi-optimal paths traverse the same distance in this gadget. In fact,
each incoming semi-optimal path p traverses a sequence of triangular structures
and straight lines and it will be remained semi-optimal if and only if (as it shown
in Fig. 7) its height when leaving this gadget is equal to its height when entering
this gadget without its (d+ 1)’th digit.

Now, we describe the total structure of PΦ in details. We put s on the point
(0, y0) (y0 will be determined later) in the plane. Then, we arrange the sequence
of splitters (S1, . . . , Sn) in which Si = S(|αi − βi|) in front of s in such a way
that a semi-optimal path from s goes directly and horizontally to the legal re-
gion of S1 and for 2 ≤ i ≤ n, we put a sufficiently large Si in front of Si−1 such
that all possible semi-optimal paths of Si−1 go directly and horizontally to the
legal region of Si. By choosing y0 in such a way that the height of the lowest
semi-optimal path of Sn be equal to the minimum element of Γ , the heights
of all possible semi-optimal paths of Sn exactly correspond to all the numbers
in Γ . Note that all semi-optimal paths of Sn have non-negative integer heights
less than 8m. Then, we use the sequence (F (m− 1), E(m− 1), ..., F (0), E(0)) of
Filter-Eliminator gadgets to force semi-optimal paths with zero digit in the octal
representation of their heights traverse longer distances. Finally, all semi-optimal
paths must leave E(0) with height zero. We end PΦ by putting the target point
t in front of E(0) along the x-axis. So we have PΦ = (s, S1, . . . , Sn, F (m −
1), E(m − 1), . . . , F (0)E(0), t). Let G be any Splitter or Eliminator gadget.

Touring Disjoint Polygons Problem Is NP-Hard 359

We let L(G) be the distance that any optimal path traverses in G. Let G1

and G2 be gadgets in PΦ such that G1 appears earlier than G2 in the sequence
and let D(G1, G2) be the horizontal distance between the last segment of G1

and the first segment of G2. So, we define LΦ as

LΦ = D(s, S1) +
n−1∑
i=1

(L(Si) +D(Si, Si+1)) + L(Sn) +D(Sn, E(m− 1))

+ L(Em−1) +
m−2∑
i=0

(L(E(i)) +D(E(i + 1), E(i))) +D(E(0), t).

So LΦ is polynomially computable and according to the reduction Φ(X,C) has
a satisfying assignment if and only if the length of the solution of the TDPP on
PΦ is not greater than LΦ.

3 Conclusion

In this paper, we proved that the touring polygons problem is NP-hard for
disjoint polygons. This result complements the proof of Dror et.al [3] given
only for the intersecting polygons. In our reduction we use segments with the
exponential length ratio. What is the complexity of TDPP for polygons such
that the ratio between each pair of them are constant or polynomial ? We leave
this question as an open problem. Also there is no hardness result for TPP and
TDPP. Finding such hardness results can be considered as future works.

References

1. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning prob-
lems. In: Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., pp. 49–60 (1987)

2. Chin, W., Ntafos, S.: Shortest Watchman Routes in Simple Polygons. Discrete and
Computational Geometry 6(1), 9–31 (1991)

3. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In:
STOC 2003, pp. 473–482 (2003)

4. Dror, M.: Polygon plate-cutting with a given order. IIE Transactions 31, 271–274
(1999)

5. Hershberger, J., Snoeyink, J.: An efficient solution to the zookeeper’s problem. In:
Proc. 6th Canadian Conf. on Comp. Geometry, pp. 104–109 (1994)

6. Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest
path problems. In: Proc. Computing: Theory and Applications, The Indian Statis-
tical Institute, The Indian Statistical Institute, Kolkata, pp. 9–18. IEEE (2007)

7. Li, F., Klette, R.: Approximate Algorithms for Touring a Sequence of Polygons.
MI-tech TR-24, The University of Auckland, Auckland (2008),
http://www.mi.auckland.ac.nz/tech-reports/MItech-TR-24.pdf

http://www.mi.auckland.ac.nz/tech-reports/MItech-TR-24.pdf

360 A. Ahadi, A. Mozafari, and A. Zarei

8. Tan, X., Hirata, T.: Constructing Shortest Watchman Routes by Divide and Con-
quer. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.)
ISAAC 1993. LNCS, vol. 762, pp. 68–77. Springer, Heidelberg (1993)

9. Tan, X., Hirata, T.: Shortest safari routes in simple polygons. In: Du, D.-Z., Zhang,
X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 523–531. Springer, Heidelberg (1994)

10. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of
pairwise disjoint simple polygons. In: Proc. Canadian Conf. Computational Geom-
etry, Winnipeg, Canada, pp. 175–178 (2010)

Walking in Streets with Minimal Sensing

Azadeh Tabatabaei1 and Mohammad Ghodsi2,�

1 Department of Computer Engineering, Sharif University of Technology
atabatabaei@ce.sharif.edu

2 Sharif University of Technology and School of Computer Science,
Institute for Research in Fundamental Sciences (IPM)

ghodsi@sharif.edu

Abstract. We consider the problem of walking in an unknown street,
starting from a point s, to reach a target t by a robot which has a
minimal sensing capability. The goal is to decrease the traversed path
as short as possible. The robot cannot infer any geometric properties of
the environment such as coordinates, angles or distances. The robot is
equipped with a sensor that can only detect the discontinuities in the
depth information (gaps) and can locate the target point as soon as it
enters in its visibility region. In addition, a pebble as an identifiable
point is available to the robot to mark some position of the street. We
offer a data structure similar to Gap Navigation Tree to maintain the
essential sensed data to explore the street. We present an online strategy
that guides such a robot to navigate the scene to reach the target, based
only on what is sensed at each point and is saved in the data structure.
Although the robot has a limited capability, we show that the detour
from the shortest path can be restricted such that generated path by our
strategy is at most 11 times as long as the shortest path to target.

1 Introduction

Path planning is one of the basic problems in computational geometry, online
algorithms, and robotics [6, 8, 12]. Specifically, path planning appears in many
applications where the environment is unknown and no geometric map of the
scene is available [3]. In robot path planning, the robot’s sensor is the only
tool to collect information from the scene, and the volume of the information
gathered from the environment depends on the capability of the sensor. A robot
with a simple sensing model has many advantage such as: it is low cost, less
sensitive to failure, robust against sensing uncertainty and noise, and applicable
to many situations [3].

The robot that we use in this research, has a limited ability. It has an abstract
sensor that can only detect the order of discontinuities in the depth information
(or gaps) in its visibility region. Each discontinuity corresponds to a portion of
the environment that is not visible to the robot, (Fig. 1). The robot assigns
to every gap g a label L or R depending on which side of the gap the hidden

� This research was in part supported by a grant from IPM. (No. CS1390-2-01).

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 361–372, 2013.
c© Springer International Publishing Switzerland 2013

362 A. Tabatabaei and M. Ghodsi

region is. Also, the robot recognizes a target point t when it is in the robot’s
omnidirectional and unbounded field of view. In order to cover the hidden region
behind each gap, the robot moves towards the gap in an arbitrary steps. Note
that the robot cannot measure any angles or distances to the walls of the scene
or infer its position. In addition, we assume that the robot has access to a single
pebble which is a detectable object that can be put anyplace and can be lifted
again.

Throughout this paper, the workspace is assumed to be a restricted simple
polygon called a street. A simple polygon P with two vertices s and t is called
a street if the counter-clockwise polygonal chain Rchain from s to t and the
clockwise chain Lchain from s to t are mutually weakly visible [7]. This means
that each point on the left chain Lchain can see at least one point on the right
chain Rchain and vice versa, (Fig. 1.a). In some literatures, a street is also known
as L-R visible polygon [2]. A point robot that is equipped with the gap sensor
starts navigating this environment from s to reach its target t. The robot has no
geometric map of the scene and only based on the information gathered through
the sensor has to make decisions to achieve the target.

Klein proposed the first competitive online strategy for searching a target
point in a street [7]; called walking in streets. The robot employed in [7] is
equipped with a 360 degree vision system. Also, it can measure each angle or
distance to the walls of the street. As the robot moves, a partial map is con-
structed from what has been seen so far. Klein proved an upper bound of 5.72
for the competitive ratio (the ratio of the length of the traversed path to the
shortest path from s to t) of this problem. Also, it was proved later that there
is no strategy with the competitive ratio less than

√
2 for this problem. A strat-

egy similar to Klein’s with the competitive ratio of π + 1 has been introduced
in [9, 10] which is robust under small navigation errors. Other researchers have
presented several algorithms with the competitive ratios between

√
2 and the

upper bound of 5.72 [8, 10]. Icking et al. presented an optimal strategy with the
competitive ratio of

√
2 [6].

The limited sensing model that we use in this paper was first introduced by
Lavalle et al. [16]. Gap Navigation Tree (GNT) has been proposed to maintain
and update the gaps seen along the navigating path. This tree is built by detect-
ing the discontinuities in the depth information and updated by the topological
changes of the information. The topological changes are: appearances, disappear-
ances, merges, and splits of gaps. Once the GNT is completed, it can encode the
shortest path from its root (start point of the navigation) to any place in a simply
connected environment. It is shown in [15] that, using this data structure, the
globally optimal navigation is impossible in multiply connected environments,
but locally optimal exploration can be achieved. Guilamo et al. [5, 13] presented
an online algorithm for the well-known visibility problem pursuit-evasion in an
unknown simply connected environment using GNT. As mentioned in [15], GNT
is well suited for solving other visibility problems. An optimal search strategy
using GNT is presented for a disc robot to find a target point t, starting from s
in a simply connected environment [11].

Walking in Streets 363

(a) (b)

gap A

gap B
gap C

q

q

gap A
gap C

gap B

st
Lchain

Rchain

Fig. 1. (a) A street in which Lchain is the left chain and Rchain is the right chain.
The colored region is the visibility polygon of the point robot q in the street. (b) The
position of discontinuities in the depth information detected by the sensor.

Another minimal sensing model introduced by Suri and Vicari [14] for a simple
robot. They assume that the robot can only sense the combinatorial (non-metric)
properties of their surroundings. The sensor can detect vertices of the polygon
in its visibility region, and can report if there is a polygon edge between con-
secutive vertices. The information maintain in two combinatorial vectors, called
the combinatorial visibility vector (cvv) and the point identification vector (piv).
Despite of minimal capability, they shown the robot can obtain many geometric
reasoning and can accomplish many non-trivial tasks.

In this paper we propose an online search strategy for a point robot equipped
with the gap sensor and the single pebble to reach the target point t in a street
environment, starting from s. The minimal sensing model that we use here is
in contrast with the strong sensing model that Klein used for walking in streets
problem. A data structure that is maintained and updated similar to GNT is
introduced for designing the robot search path. We show that the search path
which is generated by our strategy is at most 11 times as long as the shortest
path. Also, we show that if the robot has access to many pebbles, this ratio
reduces to 9. To our knowledge, this is the first result providing some competitive
ratio for walking in streets with the minimal sensing model.

2 GNT Data Structure and the Sensing Model

2.1 Gap Sensor

Gap sensor is a naive visual sensing model. At any position q of the environment,
a cyclically ordered location of the depth discontinuities in the visibility region
of the point (V (q)) is what the robot’s sensor detects, as shown in Fig. 1. When
the robot reports the discontinuities counterclockwise from a visibility region, it
assigns a left label to a transition from far to near and assigns a right label to a
transition from near to far [15]. The robot can only walk towards the gaps.

GNT data structure has been introduced as a mean to navigate in an unknown
scene for the robot system. Here, we briefly explain the data structure from [15],

364 A. Tabatabaei and M. Ghodsi

and refer to it as Tg. The root of Tg is the robot’s location. Each child of the
root is a gap g that appears as the robot moves; these gaps are circularly ordered
around the root. Each node, except the root, has a label of L or R. L means that
the part of the scene which is hidden behind the gap is in the left side of the
gap. R means that the part of the scene hidden behind the gap is in the right
side of the gap, (Fig. 2).

As the robot moves, the critical events occur that change the combinatorial
structure of the visibility region of the robot. There are four critical events in
which Tg is updated: the appearance and disappearance events happen when
the robot crosses the inflection rays, the merge and split events occur when the
robot crosses the bitangent complements. In the disappearance event in which a
gap g disappears, the node g will be eliminated from Tg. When a gap appears,
a child is augmented to the root of Tg in a location that the circular ordering
of the gaps is maintained. Each of these added nodes shows a portion of the
environment that was so far visible, and now is invisible. These new nodes are
specified as primitive (others are non-primitive). If a gap g splits into g1 and g2,
then it will be replaced by the new nodes g1 and g2, (Fig. 2). If two gaps g1 and
g2 merge into g , then g1 and g2, the adjacent children of the root, will be the
children of a new node g which is added to the root.

The robot follows the non-primitive gaps until it reaches a point at which
all leaf nodes are primitive. At this point, the robot has observed the entire
environment. This data structure, after completion, can encode the shortest
paths from the start point to any point of the environment.

L
R

L

R

inflection ray

R

bitangent
complement

R
L

(b) (c)

(d) (e)

L
R R

L

R

R
L

R

L
R

bitangent
complement

L

R
L

L

R

bitangent
complement

R
L

R

R
L

R

R

R

R

(a)

Fig. 2. The dark circle denotes the location of the robot. (a) Existing gaps at the
beginning. (b) A split event. (c) A disappearance event. (d) Another split event. (e) A
merge event.

Walking in Streets 365

2.2 The Sensor and Motion Primitive

All times, our robot’s sensor reports the gaps, with their labels, in their coun-
terclockwise cyclic order as they appear in its visibility region. The robot carries
a pebble which is a marker device and is distinguishable for it. The robot can
orient its heading with the gaps, and walks towards them in an arbitrary number
of steps, for example: 2 steps towards a gap gx, or 4 steps towards a gap gy. Each
step is a constant distance which is already specified for the robot by its manu-
facturer, for example it may be 1 meter, 2 meters and etcetera. When the robot
moves towards a gap, it comes close to the gap, but the robot cannot report its
distance to gaps and walls, size of gaps, and angles. Whenever a new event in
the sensing of the environment happens, the robot can stop to make a reliable
decision to reach the target. Also, the robot can move towards the pebble and
the target, as soon as they enter in its visibility region, until it touches them.

3 Preliminarily Results

At each point p of the robot’s search path, the gap sensor either sees the target, or
achieves a set of gaps with the label of L or R (l-gap and r-gap for abbreviation).
If the target is seen, the robot moves towards the goal and reaches it. In the other
case in which the robot reports the position of the gaps (nonprimitive gaps), the
robot should move towards the gaps to achieve the target.

Definition 1. In the set of l-gaps, the gap which is in the right side of the
others is called the most advanced left gap and is denoted by gl. Analogously, in
the set of r-gaps, the gap which is in the left side of the others is called the most
advanced right gap and is denoted by gr, (Fig. 3.a).

Each gap is adjacent to a reflex vertex. The corresponding reflex vertices of gl
and gr are denoted by vl and vr, (Fig. 3.a). The two gaps have the following
property.

Lemma 1. On any point of the robot search path, if the target is not visible,
then it is behind one of the most advanced gaps.

Proof. Let the target be behind of another gap, except gl or gr. Without loss of
generality, it is behind an r-gap, so the points that are immediately behind gr
are not visible by any point on the opposite chain, this contradicts the definition
of the street.

Above attribute of the two gaps is similar to the main feature of top most left
packet and top most right pocket in [7].

As the robot moves in the environment, gl and gr may dynamically change.
The critical events in which the structure of the robot’s visibility region changes,
can also change gl and gr. In the next section, we show how the critical events
change the left most advanced gaps such that a sequence of the left most
advanced gaps, [gl1, gl2, ..., glm], appears in the robot’s visibility region, while

366 A. Tabatabaei and M. Ghodsi

s

t

gl =gl1

gr =gr1
gl2

gr2 gr3
gr4

d

s

tgr1

vr1

gr2 gr3
gr4

vr2

vr3

vr4

(b) (c)

Critical point
Critical point

vr1

vr
2

s

t

gl

gr

(a)

vrvl

Fig. 3. (a) gr and gl are the most advanced gaps at the start point s. vr and vl are
the corresponding reflex vertices. (b) Sequences of the most advanced gaps may occur,
as the robot moves. The funnel situation which ends as soon as the robot crosses over
the segment d. Dotted chains, starting from s, are the two convex chains of the funnel.
(c) In this case there is only one most advanced gap, at start point s.

exploring the street. Similarly the sequence of the right most advanced gaps,
[gr1, gr2, ..., grn], may occur, (Fig. 3.b).

At each point, if there is exactly one of the two gaps (gr or gl), then the goal
is hidden behind that gap. Thus, there is no ambiguity and the robot moves
towards the gap, (Fig. 3.c). If both of gr and gl exist, then the target is hidden
behind one of these gaps. This case is called a funnel, (Fig. 3.b). As soon as the
robot enters a point in which both of gr and gl exist, a funnel situation starts.
This case continues until one of gr or gl disappears, (Fig. 3.b), or they become
collinear, (point 2 in Fig. 4.a). When the robot enters a point in which there is
a funnel situation, the only non-trivial case in this navigation occurs.

In a funnel situation, previous strategies proposed by Kelin et.al [6–10] were
based on choosing a walking direction within the angle between vr and vl. In
other words, in this case, their robots select a point to move towards which is in
equal distance with vr and vl and repeat this process until the funnel case ends.
But, the robot that we use in this research cannot compute the point between vr
and vl. So, applying their strategy for this robot is impossible. Before describing
our strategy, we state some features of a street and the gaps that are applied in
the algorithm.

When the robot enters in a funnel situation, there are two convex chains in
front of it: the left convex chain that lies on the left chain (Lchain) of the street,
and the right convex chain that lies on the right chain (Rchain) of the street,
(Fig. 3.b). The two chains have the following main property.

Lemma 2. When a funnel situation starts, shortest path from s to t lies com-
pletely on the left convex chain, or on the right convex chain of the funnel.

Proof. Obviously, the point in which the funnel situation starts, belongs to short-
est path from s to t. So, this claim is a straight result of the lemma 1 and the
theorem below.

Walking in Streets 367

Theorem 1. [4] For any vertex vj ∈ Lchain(or, vj ∈ Rchain), shortest path from
s to vj makes a left turn (respectively, a right turn) at every vertex of Lchain

(respectively, Rchain) in the path.

Definition 2. Between the two convex chains, in a funnel situation, the one
which is a part of the shortest path is called exact chain of the funnel.

Lemma 3. Each of the two convex chains, in a funnel situation, contains a
point in which the funnel situation ends or a new funnel situation starts.

Proof. While the robot explores the street in a funnel case, the situation ends
in two conditions: (1) When the robot enters a point in which one of the most
advanced gaps (gl or gr) disappears. The inflection ray of the gap intersects the
two convex chains. The intersection points are the points which are claimed,
(Fig. 3.b). (2) When the robot enters a point in which the two most advanced
gaps are collinear. The bitangent of the corresponding reflex vertices of the
current most advanced gaps intersects the two convex chains. So, the claimed
points exist, (points 2 and 3 in Fig. 4.a).

We refer to the points, which is mentioned in the above lemma as funnel
critical points. Clearly, one of the two points belongs to shortest path from s to
t.

Lemma 4. Assume the robot is walking along one of the convex chain of a
funnel. The exact chain of the funnel can be specified as soon as the robot touches
the critical point that belongs to the chain.

Proof. There are two situations in which the robot touches a critical point: (1)
The robot reaches a point in which one of the most advanced gaps disappears,
obviously the convex chain which contains the existing gap is the exact chain,
(Fig. 3.b). (2) The robot reaches a point in which gl and gr are collinear. If the
point is the corresponding reflex vertex of the gap that the robot was moving
towards, the chain that the robot was walking on it is the exact chain, (point 3
in Fig. 4.a). Otherwise the other chain is the exact chain, (point 2 in Fig. 4.a).

4 Main Strategy

Now, we explain our strategy for the robot to move in the street from s to t
such that the generated path is at most a constant times as long as the shortest
path. In the situation in which only one of the most advanced gaps exists each
reasonable strategy directs the robot towards the gap.

The robot, based on the information gathered through its sensor and the
pebble which it is equipped with, searches the scene. In the funnel situation, we
lead the robot to reach the critical point. Our idea for directing the robot in this
case is inspired by the algorithm for searching a point on a line, called doubling.
In the doubling strategy, the robot moves back and forth on the line, such that
at each stage i, it walks 2i steps in one direction, comes back to the origin, walks
2i+1 steps in the opposite direction until the target is reached.

368 A. Tabatabaei and M. Ghodsi

t

gl1

grs

s

1

23

4

6 gr1

gls

gl2

gr2 5gr4

gl5
gr5 gr6

bitangent
complement

L L

L

L L

L L

Rggr2

gr3gl2

Rg

gl2

gr1

gr1gl1

gl2

gl1

gl2

s

t

(b)(a)

Fig. 4. (a)There is a funnel situation at start point s. Points 2 and 3 are the critical
points of the funnel. grs and gls are the most advanced gaps at the start point. gri
and gli are the most advanced gaps at point i, for i = 1, 2, ..., 6. (b) Illustration of
constructing and updating the data structure, as the robot walks along the right convex
chain. Dark circle denote the robot’s location and it is the root of the data structure.
The path leads to Rg is the return path.

Theorem 2. [1] The doubling strategy for searching a point on a line has a
competitive factor of 9, and this is optimal.

If we assume the two convex chains as a line then, by applying the doubling
strategy on this line, we can find the critical point. Therefore, directing the robot
along these two chains avoiding any detour to other places of the environment
is what is important in this exploration.

Lemma 5. The robot traces the left/ right convex chain and detects its critical
point if and only it walks towards the left/ right most advanced gap maintaining
the dynamically changes of the two most advanced gaps.

Proof. When a funnel situation starts, the first vertex of the left/ right convex
chain coincides with the corresponding reflex vertex of the currently left/ right
most advanced gap. This most advanced gap doesn’t change until the robot
touches the reflex vertex. Then the first segment of the convex chain and robot’s
path are the same. Other segments are similarly coincident. As soon as the robot
reaches a point in which one of the most advanced gaps disappears, or they are
collinear, the critical point is achieved.

In the following subsection, we describe the process of constructing and updating
the required data structure for leading the robot along the two convex chains
and coming back to the origin (the point in which funnel case starts).

Walking in Streets 369

4.1 Data Structure

In the funnel situation, the robot puts a pebble on the point to mark this point
as origin. In order to follow each of the two convex chains to reach the critical
point, it must dynamically maintain the changes of gr and gl. Furthermore, the
required information to come back to the origin must be preserved. This data is
saved in a tree which we called S-GNT (street GNT).

The root of this tree is the start point of the funnel (current location of the
robot). gr and gl are the only leaf of the tree, at the point. As the robot moves,
the critical events, appearance, disappearance, merge and split, may dynamically
change gr and gl. Moreover, these critical events generate the comeback path to
origin as follows: (Assume the robot follows the right convex chain, in other words
it moves towards gr. The situation in which it moves towards gl is symmetric
and the S-GNT is constructed analogously.)

– When the robot crosses a bitangent complement of gl and another l-gap,
then gl splits and will be replaced by the l-gap, (point 1 in Fig. 4.a).

– When the robot crosses a bitangent complement of gl and an r-gap, then gl
splits into two gaps. gr will be replaced by the r-gap. At this point gl and
gr are collinear and the funnel situation ends, (point 2 in Fig. 4.a).

– When the robot crosses a bitangent of gr and another r-gap, at the point
in which gr disappears, gr will be replaced by the r-gap, in the tree. (dis-
appearance and split events occur simultaneously.) In this situation, if there
are more than one gap similar to the r-gap, gr will be replaced by the one
which is in the left side of the others, (point vr1 in Fig. 3.b).

– When the robot crosses a bitangent of gr and another l-gap, at the point
in which gr disappears, gl will be replaced by the l-gap, in the tree. (disap-
pearance and split events occur simultaneously.) In this situation, if there
are more than one gap similar to the l-gap, gl will be replaced by the one
which is in the right side of the others, (point 5 in Fig. 4.a).

– When the robot crosses over an inflection ray, each of gl or gr which is
adjacent to the ray, disappears and is eliminated from the data structure.
each of the critical point of the funnel in Fig. 3.b is an example for this
event.

– When the robot crosses over an inflection ray, a gap may appear. If this gap
hides the pebble that was so far visible, a child is augmented to the root of
S-GNT in a location that the circular ordering of the gap and gr and gl is
maintained. We refer to this gap as comeback gap. This gap is maintained
in the tree for generating the comeback path to the origin, (point vr1 in
Fig. 3.b). Other appearance events don’t change the data structure.

– When the robot crosses a bitangent of reflex vertex of gr and reflex vertex
of the comeback gap, these two gaps merge. So, the comeback gap will be a
child of a new node which is added to the root, (point vr2 in Fig. 3.b).

Note, the last two events update the data structure such that the return path
to the origin is generated. In Fig. 4.b, the process of constructing the data
structure, as the robot traces the right convex chain in the funnel situation in
Fig. 3.b, is illustrated.

370 A. Tabatabaei and M. Ghodsi

4.2 Algorithm

The robot starts navigating the environment based on the information gathered
about the most advanced gaps until reaches a point in which the target is visible.

At each point, if there is exactly one of the two gaps (gr or gl), then the goal
is hidden behind that gap. Thus, there is no ambiguity and the robot moves
towards the gap.

In the funnel case in which both of gr and gl exist, the robot is not sure that
the target is hidden behind which of these gaps. The robot put a pebble at this
point, and saves the location of the two most advanced gaps at this point as grf
and glf . At each stage i, the robot while constructing S-GNT, walks 2i steps
along the right convex chain, and returns to origin by following the return path,
then walks 2i+1 steps along the opposite convex chain until a critical point of
the funnel is achieved. As soon as the robot touches a critical point of current
funnel, from lemma 4, the exact chain of the funnel is determined. So, at the
critical point, the robot returns to the origin to pick up the pebble and walks
along the exact chain to reach the target while constructing the S-GNT. The
robot continues walking along the convex chain until the target is achieved or a
new funnel case starts again. In the later case, the procedure for a funnel case
(the doubling procedure) is repeated.

Note that at each stage i in a funnel case that the robot start going forth
along one of the two convex chains, gr and gl in S-GNT are set to grf and glf ,
and as the robot moves S-GNT dynamically is constructed again, as explained
in the previous section. Also, When no pebble is put on the environment, no
return path generates in the S-GNT.

5 Correctness and Analysis

In this section, we show that the robot by following the path generated with
our strategy achieves the target t starting from s. Also, we compare the length
of the generated path with the shortest path and prove a constant competitive
ratio for our strategy.

Theorem 3. By executing our strategy, the robot rightly reaches target t, start-
ing from start point s.

Proof. In the walking in streets problem, the target constantly lies behind gl
or gr. Thus, the events in which gr and gl are updated must be considered as
critical events in the problem. Now, we show that these critical events are only
the two types of the critical events: Split and disappearance. Each appearance
event creates a primitive gap which was once visible by the robot. Obviously,
the target is not behind this gap. A critical event which merges gr and gl occurs
when the robot crosses the bitangent complement of the corresponding reflex
vertices of the two gaps. As shown in Fig. 4.a, the bitangent complement either
is in the left side of the line which connects the current position of the robot
to gl or is in the right side of the line which connects the current position of

Walking in Streets 371

the robot to gr. According to the algorithm, the robot cannot cross over the
bitangent complement. Also, a most advanced gap merges with another gap at
the point in which the most advanced gap will disappear. Hence, just the split
and the disappearance are the critical events which change gr and gl. The merge
and appearance are handled for constructing the return path to origin in data
structure S-GNT.

We now compare the length of the path constructed by our online search
strategy, and the length of shortest path. Each online walking strategy for a
robot with the minimal sensing capability (the gap sensor) can significantly
detour from the shortest path. Here, we prove a competitive ratio for the length
of the generated search path by the algorithm.

Lemma 6. In each funnel case, if we eliminate the robot movement to reach
the critical point of the funnel, and comeback path to the origin of the funnel
from the generated path by our strategy, the remained path and shortest path are
coincide.

Proof. When a funnel situation stars, the robot isn’t sure which chain is the exact
convex chain. From lemma 4, if the robot achieves the critical point, the exact
chain is specified. So, the only detour from the shortest path is the movement
to reach the critical point and comeback path to origin, in each funnel case.

Theorem 4. By executing our strategy the robot can search a goal in an un-
known street with a competitive ratio of at most 11. If the robot was allowed
carrying many pebbles, it can search a goal with a competitive ratio of at most 9.

Proof. By lemma 6, if an algorithm achieves a competitive factor in each funnel
case, then it achieves the same ratio in every streets. So, we compare these two
paths in one funnel in order to find the detour from the shortest path. The robot,
using the information gather through its sensor about the most advanced gaps,
searches the convex chains of the funnel, by executing the doubling strategy,
until it reaches the critical point of the funnel. The robot traverses at most 9
times as long as the shortest path to reach the critical point. At this point, the
robot comes back to the origin to pick up the pebble then walks along the exact
chain. So, in each funnel situation the robot traverses at most 11 times as long
as the length of shortest path to reach the critical point of the funnel which is
on the shortest path.

6 Conclusions

In this study, we proposed an online strategy for the walking in streets problem
for a point robot that has a minimal sensing capability. The robot can only detect
the gaps and the target in the street. Also, it carry a pebble to mark some
locations of the environment. Our strategy generates a path with a bounded
detour from the shortest. We proved that our strategy has a competitive ratio of
11. Improving this upper bound can be considered as an opportunity for future
research. Introducing more general classes of polygons which admit competitive
searching with minimal sensing is an interesting open problem.

372 A. Tabatabaei and M. Ghodsi

References

1. Baezayates, R.A., Culberson, J.C., Rawlins, G.J.: Searching in the plane. Informa-
tion and Computation 106(2), 234–252 (1993)

2. Das, G., Heffernan, P.J., Narasimhan, G.: LR-visibility in polygons. Computational
Geometry 7(1), 37–57 (1997)

3. Gfeller, B., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Counting targets with
mobile sensors in an unknown environment. In: Kuty�lowski, M., Cichoń, J., Kubiak,
P. (eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp. 32–45. Springer, Heidelberg
(2008)

4. Ghosh, S.K.: Visibility algorithms in the plane. Cambridge University Press (2007)
5. Guilamo, L., Tovar, B., LaValle, S.M.: Pursuit-evasion in an unknown environment

using gap navigation trees. In: Proceedings of the 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2004), vol. 4, pp. 3456–3462.
IEEE (September 2004)

6. Icking, C., Klein, R., Langetepe, E.: An optimal competitive strategy for walking in
streets. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 110–120.
Springer, Heidelberg (1999)

7. Klein, R.: Walking an unknown street with bounded detour. Computational Ge-
ometry 1(6), 325–351 (1992)

8. Kleinberg, J.M.: On-line search in a simple polygon. In: Proceedings of the Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 8–15. Society for
Industrial and Applied Mathematics (January 1994)

9. Lopez-Ortiz, A., Adviser-Ragde, P.: On-line target searching in bounded and un-
bounded domains. University of Waterloo (1996)

10. Lopez-Ortiz, A., Schuierer, S.: Simple, efficient and robust strategies to traverse
streets. In: Proc. 7th Canad. Conf. on Computational Geometry (1995)

11. Lopez-Padilla, R., Murrieta-Cid, R., LaValle, S.M.: Optimal Gap Navigation for a
Disc Robot. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorith-
mic Foundations of Robotics X. STAR, vol. 86, pp. 123–138. Springer, Heidelberg
(2013)

12. Mitchell, J.S.: Geometric shortest paths and network optimization. In: Handbook
of computational geometry. Elsevier Science Publishers B.V. North-Holland, Am-
sterdam (1998)

13. Sachs, S., LaValle, S.M., Rajko, S.: Visibility-based pursuit-evasion in an unknown
planar environment. The International Journal of Robotics Research 23(1), 3–26
(2004)

14. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local
visibility to global geometry. The International Journal of Robotics Research 27(9),
1055–1067 (2008)

15. Tovar, B., Murrieta-Cid, R., LaValle, S.M.: Distance-optimal navigation in
an unknown environment without sensing distances. IEEE Transactions on
Robotics 23(3), 506–518 (2007)

16. Tovar, B., La Valle, S.M., Murrieta, R.: Optimal navigation and object finding
without geometric maps or localization. In: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 464–470. IEEE
(September 2003)

Robust Optimization for the Hazardous

Materials Transportation Network Design
Problem

Chunlin Xin1,2, Qingge Letu1,2, and Yin Bai3

1 School of Economics and Management, Beijing University of Chemical Technology,
100029, China

2 Research Center for Operations Management and Strategy Decision
3 Data Mining Group, NEC Laboratories, 100084, China

xinchl@mail.buct.edu.cn

Abstract. We consider the problem of designing a transportation net-
work for hazardous materials (HTNDP). For HTNDP, it was shown that
deciding whether there exists an optimal path of risk 0 is NP-hard. A
natural way to handle NP-hard problems is approximation solutions or
FPT algorithms. We prove that HTNDP does not admit any approxi-
mation, neither any FPT algorithm, unless P=NP. The hazmat network
design problem faces significant uncertainty in conflicting numbers of
edge risk reported by different researchers and many factors affecting
edge risk could induce different results since the edge risk is often dif-
ficult to characterize. In this paper, we use maximum regret criterion
robust optimization to model the problem as a bi-level integer program-
ming problem under edge risk uncertainty where an interval of possible
risk values is associated with each arc. We present a heuristic approach
that always finds a robust and stable hazmat network. At the end, we test
our method on a random instance on a network of Guangdong province
in China to illustrate the efficiency of our model and algorithm. Our
experimental tests illustrate that the robust interval risk scenario net-
work performs very well, and can handle the risk change better compared
with the deterministic scenario network. Overall, the numerical analysis
reveals that the maximum regret criterion robust optimization used in
HTNDP is more conservative but has the merit of robustness.

Keywords: Hazmat network design, Computational Complexity,
Robust optimization, Heuristic method.

1 Introduction

The production and transportation of hazardous materials (hazmats) plays an
important role in industrial development. Although the probability of hazmat
transportation accidents is low, the vast majority of transporting hazmats and
inadequate supervision by the government causes frequent hazmat transporta-
tion accidents, which arouse close national attention in China. The total annual
hazmat transport volume reached about 400 million tons in China. Among them,

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 373–386, 2013.
c© Springer International Publishing Switzerland 2013

374 C. Xin, Q. Letu, and Y. Bai

about 95% of hazmats need to be transported from one place to another and
road transportation accounts for approximately 82%. What differentiates haz-
mat transport from the transportation of other materials is the risk associated
with an accidental release of hazmats during transportation. Due to the nature
of the hazmats, in case accidents happen, it may cause unpredictable harm to
people, property and the environment. Thus, mitigation of hazmat transporta-
tion risk is an increasingly significant challenge and concern for the government
of China. One way to mitigate hazmat transportation risk for government is to
close certain roads to hazmat vehicles since it cannot force specific routes for
individual shipments.

1.1 The Hazmat Transportation Network Design Problem

At present, most of the literature on hazmat transportation focused on risk
assessment, routing and scheduling, and facility location. The Hazmat Trans-
portation Network Design Problem (HTNDP) was first proposed by Kara and
Verter in 2004 [2] and received more attention of researchers recently. They stud-
ied the problem of hazardous material transportation network design where the
government can decide which road segments have to be closed to hazmats so
as to minimize the overall risk of the shipments; and the carriers choose the
routes on the designated network to minimize their route costs. HTNDP con-
sists of finding a sub-graph of the existing road network so that the total risk
resulting from the carriers’ route choices is minimized. They provided a bi-level
programming formulation for this network design problem, but such a bi-level
model may fail to find a stable solution when there exist multiple minimum cost
routes with different risk selected by the carriers in the follower model, which
may result in a much higher risk than the government expected. Erkut and Alp
[3] modeled HTNDP as a Steiner tree problem, and formulated the problem as
a single level integer programming with the objective of minimizing the total
risk. Erkut and Gzara [4] considered a similar problem to generalize their model
to the undirected case. In order to protect the government from the worst case
when the problem becomes unstable, they proposed a heuristic algorithm to
handle the bi-level model stability. Verter and Kara [5] provided a single level
path-based formulation for HTNDP, where a set of alternative paths for each
hazmat commodity incorporate carriers’ cost concerns in the government’s risk-
reduction decisions. Amaldi and Bruglieri [6] proved that HTNDP, where a set
of arcs can be forbidden, is NP-hard even when a single commodity has to be
shipped.

1.2 Robust Shortest Path Problems

Soyster [11] first proposed a linear optimization model with uncertain data to
construct a solution which is feasible for all input data. A significant step for-
ward for developing a theory for robust optimization was taken by Ben-Tal et
al. [12-14]. Specifically for discrete optimization problems, Kouvelis and Yu[16]

Hazardous Materials Transportation Network Design 375

proposed a framework for robust discrete optimization and showed that the ro-
bust counterparts of a number of polynomial solvable combinatorial problems
are NP-hard. Zielinski [18] showed that the problem of minimizing the maximum
regret criterion robust shortest path is NP-hard for directed graphs. Averbakh
and Lebedev [19] proved that the problem of minimizing the maximum regret
criterion robust shortest path is strongly NP-hard for non-directed graphs. Bert-
simas and Sim [13] considered the interval model for cost uncertainty and showed
that the problem can be solved by solving at most nominal problems. In partic-
ular, some models where an interval of possible values is associated with each
arc have been studied [22-24].

All the models studied in the field of hazmat network design are based on
the deterministic risk on each arc. However, the hazmat transportation acci-
dents are recognized as low probability-high consequence events and the risk is
a significant ingredient which separates hazmat transportation problems from
other transportation problems. It is not easy to estimate the risk on each arc ex-
actly, since it depends on many unpredictable factors. When the risk changes on
the road segments, the prior optimal network might not be an optimal network,
then the network is lack of robustness. To design a robust hazmat transportation
network is reasonable and necessary.

In this paper, we use the maximum regret criterion called robust deviation
solution in HTNDP, and the result is based on the following property, proposed
by Karasan et al. [15].

Property 1. Given a path p from s to t, the scenario r which maximizes the
robust deviation for p is the one where each arc (i, j) on p has cost uij and each
arc (k, h) not on p has cost lkh,i.e. c

r
ij = uij , ∀(i, j) ∈ p and crkh = lkh, ∀(k, h) /∈ p.

Particularly, the maximum regret criterion methodology is applied to deal
with the risk uncertainty in HTNDP. We combine different risk assessment mea-
sure and make a full consideration about that potential influence factors which
may cause huge damage to give an interval risk rijk ∈ [rijk , rijk] on each arc
(i, j) for each commodity k. rijk represents a maximum risk for commodity k
on arc (i, j), rijk represents a minimum risk for commodity k on arc (i, j). Each
interval represents a range of possible risk values on each arc for each commodity.

The paper is organized as follows. In Section 2, we present a bi-level net-
work design formulation. In Section 3, we discuss the computational complex-
ity of hazardous material transportation network design problem. In Section 4,
we describe the robust heuristic solution procedure which guarantees a feasible
stable solution. In Section 5, we test our heuristic algorithm on the highway
transportation network for the province of Guangdong, China. This network
involves 21 nodes and 30 edges. We have four different classified hazmats origin-
destination data on this network, explosive solid product flammable gas toxic
gas and corrosive substances. In Section 6,we provide some conclusions and
remarks.

376 C. Xin, Q. Letu, and Y. Bai

2 A Bi-level Network Design Formulation

Different from the relative deviation criterion [17], we apply the absolute devi-
ation criterion (maximum regret criterion) to deal with the risk uncertainty in
HTNDP where the government can decide which road segments have to be closed
to hazmats so as to minimize the overall risk of the shipments; while the carriers
choose the routes on the designated network to minimize their route costs. The
hazmat transport network design problem consists of finding a sub-graph of the
existing road network so that the total risk resulting from the carriers’ route
choices is minimized. Each hazmat commodity has its own risk on each arc in
the transportation network. Suppose a hazmat transportation network is defined
on an undirected graph G = (V,A), where V is the set of vertices corresponding
to road intersections, and A is the set of arcs corresponding to road segments.
There are K hazmat commodities which need to be transported from their ori-
gins s(k) to destinations t(k). Let cijk be a cost associated with a unit flow of
commodity k transporting on arc (i, j) ∈ A and dk be the corresponding trans-
porting amount. Let rijk and rijk refer to the interval risk associated with a unit
flow of commodity on arc (i, j) ∈ A, denoted as rijk ∈ [rijk, rijk], this interval
risk represents the set of possible values for each commodity k(k = 1, 2, 3, . . . ,K)
on arc (i, j) ∈ A.

We define the decision variables on the network below

xijk =

{
1 if arc (i,j) is chosen by the commodity k
0 otherwise

yij =

{
1 if arc (i,j) is available for hazmat transport
0 otherwise

The bi-level multi-commodity hazmat network design integer formulation is

min
yij∈{0,1}

∑
k∈{1,...,K}

∑
(i,j)∈A

drrijkxijk rijk ∈ [rijk , rijk] (1)

s.t. yij = yji, (i, j), (j, i) ∈ A (2)

xijk ∈ argmin
∑

k∈{1,...,K}

∑
(i,j)∈A

dkcijkxijk (3)

s.t.
∑
i∈V

xijk −
∑
i∈V

xjik =

⎧⎨⎩
−1 if j=s(k)
1 if j=t(k)
0 otherwise

j ∈ V, k ∈ 1, . . . ,K (4)

xijk ≤ yij , (i, j) ∈ A, k ∈ 1, . . . ,K (5)

xijk ∈ {0, 1}, (i, j) ∈ A, k ∈ 1, . . . ,K (6)

The objective (1) represents the government minimizing the total risk chosen
by the carriers, each commodity of risk can vary in the interval on the arc of the

Hazardous Materials Transportation Network Design 377

network, while that of the carriers (3) is to minimize the cost. Constraints (2)
state that both arcs (i, j) and (j, i) can be traversed in both directions used by
any of the shipments. Constraints (4) ensure the flow of commodity k from its
origin to the destination. Constraints (5) ensure that only edges selected by the
government can be used by the carriers. Constraints (6) are binary requirements
on the variables.

3 Computational Complexity

In Lemma 1 [6], it was shown that HTNDP is NP-hard.

Lemma 1. HTNDP is strongly NP-hard even for a single commodity.

A natural way to handle NP-hard problems is approximation solutions or
FPT algorithms. Let (I, k) be an instance of parameterized problem. An FPT
algorithm decides (I, k) in time O(f(k) ·nc, where f is an arbitrary computable
function that only depends on k and c is a constant. We often use the notation
O∗(f(k)) to suppress the polynomial term. The class of fixed-parameter tractable
parameterized problems is denoted FPT [25].

However, in this section, we prove that HTNDP does not admit any approxi-
mation, neither any FPT algorithm, unless P = NP .

Theorem 1. HTNDP does not admit any polynomial time approximation (re-
gardless of its approximation factor), unless P = NP .

Proof. HTNDP is a minimization problem, then the result in [6] implies that
deciding whether OPT = 0 is NP-hard. Let A be any approximation algorithm
for HTNDP with factor α.By definition A returns an approximation solution
value APP , with APP ≤ α×OPT

When OPT = 0, clearly APP must also satisfy APP = 0. In other words,A
would be able to solve the instance in[6] in polynomial time. This, however,
contradicts with the corresponding NP-hard result (unless P = NP). ��
Theorem 2. The HTNDP does not admit any FPT algorithm, unless P = NP .

Proof. HTNDP is a minimization problem, then the result in [6] implies that
deciding whether OPT = 0 is NP-hard. Let B be any algorithm for FPT which
runs in O(f(k) · nc) time. When OPT = k = 0,B solves HTNDP in O(f(0) ·
nc) = O(nc) time. In other words,B would be able to solve the instance in [6]
in polynomial time. This, again, contradicts with the corresponding NP-hard
result, unless P = NP . ��

4 A Robust Heuristic Approach

Since HTNDP does not admit any approximation, neither any FPT algorithm,
unless P = NP , we describe a heuristic algorithm inspired by Erkut and Gzara
[4] that always finds a solution with stability and robustness. A feasible solution

378 C. Xin, Q. Letu, and Y. Bai

of HTNDP is called stable if the sub-network does not admit for any commodity
multiple minimum cost paths with different risk values. We use the maximum
regret criterion to find the robust risk shortest path for each commodity k, and
then we obtain the sub-network of G formed by k robust risk shortest routes.
Let the resulting network be ψ(G) with an associated risk value of R, which is
the sum of min maximum regret value of each commodity k. Then, the carriers
choose their own routes with an objective of minimum cost on ψ(G), hence
obtain a new sub-network ψ′(G) ,each route chosen by each commodity k has
a corresponding maximum regret value. When there are multiple minimum cost
routes with different maximum regret value for each commodity, we always use
the maximum sum of total maximum regret risk value of each commodity, with
an associated total risk value of Rmax.If R = Rmax, and then a solution is found.
Otherwise, there is at least one commodity k uses a different path designated by
the government under the robust minimum risk objective. In order to eliminate
the difference between ψ(G) and ψ′(G), we remove the maximum upper bound
of interval risk arc not used by the government solution but used in the solution
of the carriers for some commodity k. We remove arcs iteratively on the original
network with the residual network. When the algorithm stops, we obtain a robust
stable sub-network.

The detailed steps of designing a robust network algorithm are given below.
Step 1: Firstly, we use maximum regret criterion to find the robust risk shortest
path for each commodity k, and then we obtain the sub-network of G formed by
k risk robust shortest routes, call the resulting network ψ(G) with an associated
total min-max risk value of value of Rt. According to the property 1 [4], we follow
the mixed integer programming formulation presented by Karasan et al.[15],to
solve K robust risk shortest path problems on G

min
yij∈{0,1}

∑
k∈{1,...,K}

∑
(i,j)∈A

dkrijkxijk − xt(k)

s.t.
∑
i∈V

xijk −
∑
i∈V

xjik =

⎧⎨⎩−1 if j=s(k)
1 if j=t(k) j ∈ V, k ∈ {1, . . . ,K}
0 otherwise

xj ≤ xi + rijk + (rijk − rijk)xijk , (i, j) ∈ A, k ∈ {1, . . . ,K}

xs(k) = 0

xijk ∈ {0, 1}, (i, j) ∈ A, k ∈ {1, . . . ,K}

Where variables xijk represent a path μ as follows: xijk =

{
1 if(i, j) ∈ μ
0 otherwise

,

and xi represents the length of the shortest path from 1 to i under scenario s(μ)
; Rt

k represents the corresponding min-max regret value for each commodity k ;
Rt represents the total min-max risk value of K commodities.

Hazardous Materials Transportation Network Design 379

Step 2: Secondly, the carriers select the minimum cost routes on ψ(G), and the
total risk of ψ(G) depends on the routes chosen by the carriers with a maximum
regret risk value of each commodity k.If there exist multiple routes with the
same cost but different maximum regret risk value, we sort the total maximum
regret value as < Rt

min, R
t
1, . . . , R

t
m, R

t
max >.

Solve K minimum-cost path problems on ψ(G)

min
∑

k∈{1,...,K}

∑
(i,j)∈A

dkcijkxijk

s.t.
∑
i∈V

xijk −
∑
i∈V

xjik =

⎧⎨⎩−1 if j=s(k)
1 if j=t(k) j ∈ V, k ∈ {1, . . . ,K}
0 otherwise

xijk ∈ {0, 1}, (i, j) ∈ A, k ∈ {1, . . . ,K}

Step 3: If
Rt

max−Rt

Rt ≤ Δ, then a potential robust heuristic network is determined
by ψ′(G), else ψ′(G)is not a stable network. Go to Step 4.

Step 4: Let (i, j) be an arc found according to the selection rule, which remove
arcs (i, j) and (j, i) from the network, update t = t+1 , Gt+1 = Gt−{(i, j), (j, i)}.
We remove the maximum upper bound of interval risk arc from the routes in
Rt

max that is not used in the government solution but used in the solution of the
carriers for some commodity k .

Step 5: Go to step 1.
. The deterministic risk scenario network design heuristic algorithm is:

—————————————————————————————————

Repeat:
1: Solve K minimum-risk path problems on G.
2: Solve K minimum-cost path problems on ψ(G).

3: If
Rt

max−Rt

Rt ≤ Δ, then a potential heuristic network is determined by ψ′(G),
else ψ′(G) is not a stable network. Go to Step 4.

4: Let (i, j) be an arc found according to the selection rule, which remove arcs
(i, j) and (j, i) from the network, update t = t+1, Gt+1 = Gt−{(i, j), (j, i)}.
We remove the maximum risk arc from the routes in Rt

max that is not used
in the government solution but used in the solution of the carriers for some
commodity k.

5: Go to step 1.

—————————————————————————————————

5 Application on Guangdong Province

In this section, we present some results on HTNDP applied in Guangdong
province, China. We first describe the problem data in detail and then discuss
the analyses and our interesting findings.

380 C. Xin, Q. Letu, and Y. Bai

5.1 The Data

The primary source of our data is Statistics China, State Administration of
Work Safety and Ministry of Transportation of the People’s Republic of China,
which contains actual distance between two connecting nodes, the population
exposure around the edges, the locations where potential high risk exist such as
buildings, bridges and road intersections and population concentration points,
such as schools, factories and commercial centers, etc. Our study is focused
on shipments of explosive solid product, flammable gas, toxic gas and corro-
sive substances, these four materials account for about 67% of all the hazmats
transported through Guangdong highways. The Guangdong highway system is
composed of China-highway (Gao Su Gong Lu) and national highways (Guo
Dao), contains 21 vertices and 31 edges, as depicted in Figure 1. In order to see
the original network directly, we simply draw the routes between each two nodes
with straight line in right side of Figure 1.

Fig. 1. The highway system of Guangdong province in China

According to the 2010 population census, our model represents the spatial
distribution of 93.87 million people, which covers 90% of the total population of
Guangdong province. The data set includes the origin and destination of each
hazmat shipment, as well as the frequency of four hazmats in the Guangdong
highway system, as depicted in Table 1.

We assume that each truck is fully loaded with up to 8 tons and can trans-
port the same kind of hazardous material. Because of the scale of network
of Guangdong highway system, we set the number of origin-destination pairs
K = 4, 8, 12, 16. For each value of K, we generate 4 random instances and fix

Hazardous Materials Transportation Network Design 381

Table 1. The frequency of four hazmats in the Guangdong highway system

The probability of four commodities, unit: number of accident times/kilometer

explosive solid product 0.043 × 10−6

flammable gas 0.049 × 10−6

toxic gas 0.028 × 10−6

corrosive substances 0.025 × 10−6

the number of distinct origins and distinct destinations, as depicted in Table 2,
from which we can see that K different kinds of hazmats transporting from their
distinct origins to their distinct destinations in which the origins and destina-
tions are generated randomly. The each edge transportation risk is computed by
multiplying the probability of an undesirable event by population figure within
1600 meters of the edges and the actual road distance between two nodes. The
transporting cost is given by the actual distance for each kind of commodity.
i.e., each kind of commodity has the same cost value on the same arc of net-
work. Based on the deterministic risk on each arc for each kind of commodity, we
make a full consideration of detailed factors which may cause high consequence
in accidents to give an interval risk for each commodity on each arc.

5.2 Numerical Analysis

The following numbers <0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20>
represent the 21 cities, respectively<Shaoguan, Qingyuan, Meizhou, Guangzhou,
Jieyang, Heyuan, Chaozhou, Shantou, Shanwei, Huizhou, Dongguan, Foshan,
Zhuhai, Zhongshan, Jiangshan, Yangjiang, Shenzhen, Zhaoqing, Yunfu, Maom-
ing, Zhenjiang>.

The statistic data provide no information about the origins, destinations and
hazmat type of each shipment. So we perform testing on randomly generated
pairs. We investigate the significance of robust solution network and compare
to the deterministic risk solution network. Table 2 shows the detailed results
on the random instances. For example, for 4 commodities originating points
< 6, 3, 16, 4 > to destination points < 4, 16, 17, 9 >. All tests are performed
using the aggregate risk measure and max risk arc selection rules. The results
obtained by deterministic risk scenario network and interval risk scenario net-
work respectively for the different commodities with instances are described in
Table 3. Firstly, we calculate the total risk of the heuristic solution network on
the deterministic bi-level model, and then calculate the total risk when the risk
changes on arcs. Secondly, we obtain a robust network, use the same determin-
istic risk on each arc to calculate the total risk on the robust network, and then
use the same changing risk value on the robust network. The deterministic risk
of each arc for each commodity belongs to the interval risk of each commodity
on each arc.

382 C. Xin, Q. Letu, and Y. Bai

Table 2.

K origin vertices destination vertices

4

<6,3,16,4> <4,16,17,9>
<11,1,0,3> <2,10,16,8>
<7,2,18,11> <16,6,2,5>
<7,2,18,11> <16,6,2,5>

8

<6,3,16,4,1,0,5,2> <4,16,17,9,2,1,10,9>
<6,0,16,8,1,10,5,12> <1,20,17,3,2,19,11,9>
<10,1,19,15,5,16,2,11> <1,2,6,10,17,19,12,3>
<17,8,2,7,14,12,0,20> <3,7,11,13,17,20,19,0>

12

<1,7,0,1,6,5,2,1,3,6,2,1> <6,3,10,3,5,2,6,11,5,2,8,2>
<1,2,7,8,2,13,2,11,8,7,8,2> <4,3,2,9,1,14,13,10,12,2,9,3>
<2,4,3,4,2,1,3,4,6,2,9,1> <6,2,10,0,11,12,7,5,3,1,8,6>
<2,3,6,0,2,3,6,8,9,10,5,3> <7,2,4,2,5,2,1,2,3,11,2,5>

16

<0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15> <3,2,5,8,7,9,0,2,3,5,1,9,3,8,2,4>
<0,1,1,2,3,3,4,5,6,6,11,12,13,13,14,14> <2,8,2,7,2,1,5,9,2,7,1,3,10,2,11,9>
<0,0,1,2,2,3,4,5,7,8,10,11,12,12,13,13> <1,2,5,3,9,5,7,1,6,2,3,4,11,1,7,6>
<4,5,6,7,7,8,10,11,12,13,13,17,18,2,2,3> <11,2,9,5,3,12,12,2,11,2,15,18,15,10,6,5>

From the Table 3, we find that the robust heuristic finds good quality solu-
tions, especially when the risk changes on the network compared to the deter-
ministic model.

In Table 3, the first column indicates the number of commodities K, the
second column identifies the instance generated for each value of K, the third
column is devoted to analyze the behavior of the total risk of network under
deterministic risk, and the fourth column presents the total risk under changed
arc risk. The fifth column reports the total risk of the robust network using the
same arc risk in first column. The sixth column indicates the total risk of robust
network using the same changing arc risks in the second column. The seventh
column indicates that arcs whose risk value is changed. The eighth column show
that the arc risk value before change, while the ninth column show that the arc
risk value after change. The tenth column of [rij , rij](k) show that the commod-
ity k interval risk on arc (i, j), k = Null indicates that no transport on that
corresponding arc (i, j).

This section shows the computational results achieved by the deterministic
risk hazmat transportation network and the robust hazmat transportation net-
work. We can see from the Table 3, most of the results show that robust network
performs relatively well when the risk changes. The robust network always gives
robustness and stable solution, which always avoid the arcs have higher upper
bound of the interval risk. Because of the total risk of resulting transport network
is decided by carriers’ route choices, the routes selected by carriers in determin-
istic network and robust network have four different cases, as depicted in Table
4, where

√
represents the arc risk change on the network and × represents the

arc risk have no change on the network.

Hazardous Materials Transportation Network Design 383

Table 3.

K Run R1 R2 R1 R1 (i, j) rij rij [rij , rij](k)

4

1 368 832 467 467 (6,4) 80 554 [22, 878](4)
2 390 590 465 465 (16,8) 18 218 [17, 311](3)
3 414 833 646 646 (2,4) 20 100 [16, 520](1)

(2,4) 21 130 [10, 419](2)
(2,4) 10 150 [8, 316](3)

4 414 833 435 515 (2,4) 20 100 [16, 220](1)

8

1 674 974 837 837 (0,2) 14 314 [12, 222](1)
1 674 974 837 837 (0,3) 19 115 [19, 146](null)

2 1138 1438 1158 1158 (7,8) 31 331 [31, 527](2)
2 1138 1138 1158 1188 (4,6) 30 60 [27, 68](0)
3 819 833 825 839 (1,3) 30 44 [18, 54](3)
4 931 1031 938 938 (13,15) 33 235 [33, 328](7)

12

1 913 1112 964 964 (12,15) 24 84 [24, 117](0)
(12,15) 33 100 [31, 210](6)
(12,15) 45 117 [43, 310](11)

2 1003 1003 1040 1040 (9,16) 33 97 [33, 97](null)

3 925 1032 925 1032 (0,3) 57 80 [57, 104](5)
(0,6) 64 84 [64, 96](7)
(4,7) 55 95 [55, 108](11)
(3,10) 45 69 [45, 95](12)

4 796 796 836 836 (4,8) 19 84 [19, 97](null)

(10,16) 37 103 [21, 142](null)

16

1 1396 1546 1457 1457 (9,16) 50 200 [44, 274](13)
2 1560 1610 1608 1658 (5,9) 33 83 [33, 87](15)
3 1636 1636 1711 1741 (14,15) 30 60 [22, 85](14)
4 1679 1739 1679 1739 (3,13) 37 97 [27, 104](8)

Table 4.

scenarios

cases
I II III IV

Deterministic risk scenario network √ × √ ×
Interval risk scenario network × √ √ ×

Case I : If some arcs risk change in the deterministic network but not in the
robust network, have the changing increase to the deterministic network and
have no influence to the robust network. For example, in 4{1,2,3}, 8{1,2,4},
12{1},16{1}.Because the robust network does avoid selecting the routes with
high potential changing risk, as shown in 4{1,2,3}. When some commoditys
upper bound of interval risk is not that high, the robust network may select this
link, as shown in 4{4}. So when commodity 1’ risk changes on arc(2,4), the same
increase to robust network. But the change is not high.

Case II : If some arcs’ risk change in the robust network but not in the
deterministic network, have the changing increase to the robust network and

384 C. Xin, Q. Letu, and Y. Bai

have no influence to the deterministic network. But the margin of the changing
risk is not high.For example, in 8{*2*}, 16{3}.

Case III: If some common arcs risk change, which both selected by carriers
in deterministic network and the robust network, the same increase to both de-
terministic network and the robust network. For example, in 4{*4*},8{3},12{3},
16{2, 4}.

Case IV :Δ > 0 in step 3 indicates the government allows carriers choose some
links which not exactly the links the government designated for some commodi-
ties. So some arcs risk change from the external factors which in the network
but not selected by carriers have no influence to both deterministic network and
the robust network. For example, in 8{*1*},12{2,4}. When Δ = 0, the Case IV
does not happen.

We find that if the margin of the interval risk of each commodity on each arc
is not that higher, the deterministic network and the robust network almost the
same.

Generally speaking, the robust interval scenario network performs not bad
comparing to the deterministic scenario network under fixed risk on each arc
for each commodity, but performs really better when the risk changes since the
robust interval scenario network avoid selecting the potential high risk arcs.

6 Concluding Remarks

We consider the problem of designing a network for hazardous material trans-
portation. In this paper, we have proved that the problem does not admit any
approximation, neither any FPT algorithm, unless P=NP. We present a robust
optimization-based formulation for HTNDP under edge risk uncertainty and
tested a simple heuristic for a robust bi-level network design problem for hazmat
transportation that the heuristic algorithm was able to give always robustness
and stable solution and always avoid the arcs have higher upper bound of the
interval risk. One of the challenges in designing a hazardous network is the use
of common road links for different shipments. When some of common links for
different shipments removed from original network, we guarantee that after a
number of iterations less than the number of network links the algorithms stops
with a feasible stable solution for the residual network.

In order to evaluate the effectiveness of the proposed model and algorithm,
we concentrated our analysis on a real-world case study. We considered the road
network of the Guangdong province in China which contains 21 vertices and 31
edges. Comparing to the solutions of the bi-level model with the results coming
from two scenarios, called deterministic risk scenario network and interval risk
scenario network respectively, we find that the robust network performed not
bad comparing to the deterministic network under deterministic risk on each
arc for each commodity, but performed really better when the risk changes since
the robust network avoid selecting the potential high risk arcs. The robust opti-
mization for hazmat transport network design is more reasonable and performed
good quality in robustness.

Hazardous Materials Transportation Network Design 385

The solution to the problem depends on the input data, in particular, the
origin-destination flows, the topology of the original road network, the spatial
distribution of population centers, the location of the origin-destination pairs,
and the type of hazmats being shipped. In general but not absolutely, we find
that when the number of hazmats growing, the iteration times and CPU require-
ment are increasing. Due to the scale of our original road network, the heuristic
algorithm performed only several times to gain a stable network, which fully
depends on the input data of the original network.

Acknowledgement. The research reported in this paper has been partially
supported by the National Natural Science Foundation of China (70971008), and
the Ministry of Education, Humanities and Social Sciences Planning Project of
China(09YJC630008).

References

[1] China Chemical Safety Association, http://www.chemicalsafety.org.cn
[2] Kara, B.Y., Verter, V.: Designing a Road Network for Hazardous Materials Trans-

portation. Transportation Science 38(2), 188–196 (2004)
[3] Erkut, E., Alp, O.: Designing a road network for hazardous materials shipments.

Computers & Operations Research 34(5), 1389–1405 (2007)
[4] Erkut, E., Gzara, F.: Solving the hazmat transport network design problem. Com-

puters & Operations Research 35(7), 2234–2247 (2008)
[5] Verter, V., Kara, B.Y.: A Path-Based Approach for Hazmat Transport Network

Design. Management Science 54(1), 29–40 (2008)
[6] Amaldi, E., Bruglieri, M., Fortz, B.: On the Hazmat Transport Network Design

Problem. Network Optimization, 327–338 (2011)
[7] Bianco, L., Caramia, M., Giordani, S.: A bilevel flow model for hazmat trans-

portation netwokrk design. Transportation Research Part C: Emerging Technolo-
gies 17(2), 175–196 (2009)

[8] Erkut, E., Verter, V.: Modeling of transport risk for hazardous materials. Opera-
tions Research 46(5), 625–642 (1998)

[9] Erkut, E., Tjandra, S.A., Verter, V.: Chapter 9 Hazardous Materials Transporta-
tion 14, 539–621 (2007)

[10] Zhu, B.: Approximability and Fixed-Parameter Tractability for the Exemplar Ge-
nomic Distance Problems. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS,
vol. 5532, pp. 71–80. Springer, Heidelberg (2009)

[11] Soyster, A.: Convex programming with set-inclusive constraints and applications
to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)

[12] Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robustness Optimization. Princeton
University Press, Princeton (2009)

[13] Bertsimas, D., Sim, M.: Robust discrete optimization and network flows, Math.
Program.Ser. B 98, 49–71 (2003)

[14] Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
[15] Karasan, O.E., Pinar, M.C., Yaman, H.: The robust shortest path problem with

interval data. Technical report, Bilkent University (2001)
[16] Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluwer

Academic Publishers, Boston (1997)

http://www.chemicalsafety.org.cn

386 C. Xin, Q. Letu, and Y. Bai

[17] Gabrel, V., Murat, C.: Robust shortest path problems. Annales du LAMSADE (7),
71–93 (2007)

[18] Zielinski, P.: The computational complexity of the relative robust shortest path
problem with interval data. European Journal of Operational Research 158,
570–576 (2004)

[19] Averbakh, I., Lebedev, V.: Interval data minmax regret network optimization-
problems. Discrete Applied Mathematics 138, 289–301 (2004)

[20] Wen, U., Hsu, S.: Linear Bi-Level Programming Problems – A Review. The Journal
of the Operational Research Society 42(2), 125–133 (1991)

[21] Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals
of Operations Research 153(1), 235 (2007)

[22] Montemanni, R., Gambardella, L.M.: An exact algorithm for the robust short-
est path problem with interval data. Computers and Operations Research 31,
1667–1680 (2004)

[23] Montemanni, R., Gambardella, L.M.: The robust path problem with interval data
via benders decomposition. 4OR 3(4), 315–328 (2005)

[24] Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algo-
rithm for the robust shortest path problem with interval data. Operations Re-
search Letters 32, 225–232 (2004)

[25] Zhang, C., Jiang, H., Zhu, B.: Radiation hybrid map construction problem param-
eterized. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 127–137. Springer,
Heidelberg (2012)

Online Bin Packing with (1,1) and (2,R) Bins

Jing Chen1, Xin Han2, Kazuo Iwama1, and Hing-Fung Ting3

1 Graduate School of Informatics, Kyoto University
chen@algo.cce.i.kyoto-u.ac.jp

iwama@kuis.kyoto-u.ac.jp
2 Software School, Dalian University of Technology

hanxin@dlut.edu.cn
3 Departent of Computer Science, The University of Hong Kong

hfting@cs.hku.hk

Abstract. We study a variant of online bin packing problem, in which
there are two types of bins: (1, 1) and (2, R), i.e., unit size bin with cost 1
and size 2 bin with cost R > 1, the objective is to minimize the total cost
occurred when all the items are packed into the two types of bins. It is
not difficult to see that the offline version of the problem is equivalent to
the classical bin packing problem when R > 3. In this paper, we focus on
the case R ≤ 3, and propose online algorithms and obtain lower bounds
for the problem.

1 Introduction

In this paper we consider a variant of online bin packing problem in which there
are two types of bins: (1, 1) and (2, R), i.e., unit size bin with cost 1 and size 2
bin with cost R > 1, items are online given, we are asked to pack all the items
into the two types of bins such that the total cost of used bins is minimal. For
short, we call the problem as OBP1R. The problem is related to the generalized
cost variable sized bin packing problem, which is a generalization of the variable
sized bin packing problem([11],[12],[13]) and in special case our problem becomes
the classical bin packing problem([2], [3], [4], [5], [6], [7], [16]).

In the Generalized Cost Variable Sized Bin Packing problem(GCVS) [1], there
will be infinite supply of r types of bins whose sizes are 0 < br < ... < b1 = 1,
each bin of type i is associated with cost bi, input items have sizes in (0, 1], the
goal is to find a feasible solution with a minimal cost. In [1], the authors allow
to use a (general) set of bins with different sizes(the cost is the bin size), and
give APTAS (Asymptotic Polynomial Time Approximation Scheme). However,
the APTAS does not give us too much idea about how the different costs affect
packing items. In this paper we consider the most basic case that only two
different types of bins are used.

The OBP1R problem is also related to the parametric bin packing problem, in
which all the items are with sizes in (0, 1/r], where r > 0 is an integer, the goal
is to pack all the items in a minimum number of unit size bins. We find that
when R ≤ 2, our problem is almost equivalent to the parametric bin packing
problem with r = 2.

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 387–401, 2013.
c© Springer International Publishing Switzerland 2013

388 J. Chen et al.

Formally the offline version of our problem is defined as follows: given an input
L = {a1, a2, ...an} of n items with each ai ∈ (0, 1], we partition L into subsets {Lj},
if all the items in Lj are packed in a unit size bin, then define π(Lj) = 1, else
define π(Lj) = 2. Define vectors size and cost as: size = {1, 2} and cost = {1, R}.
The objective is to minimize

∑
j

cost[π(Lj)] s.t.
∑

ai∈Lj

ai ≤ size[π(Lj)].

In the problem, the value of R has a critical effect on the solution of the
problem. It is not difficult to see that the above problem is equivalent to the
classical bin packing when R > 3, i.e., in an optimal packing all the items have
to be packed into unit size bins. Otherwise, if there is a size 2 bin used, then we
can use at most three unit size bins to replace it, and the cost decreases since
R > 3.

In our paper, we study the online case for R ≤ 3, i.e., items are given one
by one, once items are packed, we cannot repack them. To evaluate online algo-
rithms, we use one of standard measures: competitive ratio. Formally, let L be
an list of input items, let costA(L) be the cost used by an online algorithm A
on L, let OPT (L) be the cost of an optimum solution of packing L, then the
competitive ratio of an online algorithm A is defined as:

R∞
A = lim

n→∞ sup sup
L

{
costA(L)

OPT (L)
|OPT (L) = n

}
.

Related Work: Bin packing is one of the most well-studied problems, which was
first studied by Ullman[2], Lee and Lee[7] provided the first harmonic algorithm
based on the idea of interval classification, the method was developed to the
most recent version called Harmonic++ by Seiden[9]. It provides the present
upper bound 1.58889 for the online bin packing problem for the past decade.
The lower bound 1.5401 about the online algorithm for this problem is provide
by Vliet[16],[10]. There are many variants of bin packing problems, one of them
is the generalized cost variable sized bin packing problem, Epstein[1] provided
an APTAS for the problem.

Our Contributions: when R > 3, the problem is equivalent to the classical bin
packing problem; so we focus on the case 1 < R ≤ 3 and give online algorithms
and calculate lower bounds for the problem (refer to Fig. 1). For the large values
of R, we tend to use only unit bins to pack all the items, while for the small
values of R, we tend to use only size 2 bins to pack all the items, and for the
medium values of R, we will use both types of bins to pack the items, therefore
we partition R into three intervals, by calculations the intervals are defined as:
1)2.6915 < R ≤ 3; 2)2.040 < R ≤ 2.6915; and 3)1 < R ≤ 2.040.

When 2.6915 < R ≤ 3, we use Harmonic++ [9] to pack all the items into unit
size bins and prove the upper bound of the competitive ratio is still 1.58889.
When 2.040 < R ≤ 2.6915, we develop an online algorithm called MAIN, in

Online Bin Packing 389

which some items are packed into size two bins and others are packed into unit
size bins, and prove the competitive ratio is below 1.58889; when 1 < R ≤ 2.040,
we pack all the items into size two bins by a Refined Harmonic algorithm and
prove the competitive ratio is 1.4078. As to the lower bound of the competitive
ratio, we cannot give a general formula of R. However given a value of R, we can
calculate the lower bound of the online problem by using linear programs.

KKK

R

R R

R

R

R

Lower bound
Upper bound

Fig. 1. Upper and Lower bounds

2 Online Algorithms for R ≤ 3

When R ≤ 3, we have three cases. Case 1: 2.6915 < R ≤ 3, we use Harmonic++
[9] to pack all the items into unit size bins and prove the upper bound of the
competitive ratio is 1.58889. Case 2: 2.040 < R ≤ 2.6915, we develop an online
algorithm called MAIN, in which some items are packed into size two bins and
others are packed into unit size bins, and prove the competitive ratio is below
1.58889. Case 3: 1 < R ≤ 2.040, we pack all the items into size two bins by
a Refined Harmonic algorithm and prove the upper of the competitive ratio is
1.4078. The general algorithm for OBP1R is summarized as follows.

2.1 Online Algorithm for R > 2.6915

In this subsection, we prove that online algorithm H++ [9] is 1.58889 competitive
for our problem when R > 2.6915, i.e., all the items are packed in unit size bins
by H++. Observe if an optimal packing uses only unit size bins, then we are done
since the competitive ratio 1.58889 follows directly from [9]. Otherwise instead
of calculating how many bins (2, R) used, we prove that the total weight in one

390 J. Chen et al.

Algorithm 1. Online algorithm for OBP1R

Input: cost R > 1, items (ai)1≤i≤n, where ai ∈ (0, 1].

1. if R > 2.6915, use algorithm H++ [9] to pack all items in unit size bins.
2. if R ∈ (2.040, 2.6915], first calculate a parameter K ≥ 1, then call MAIN(K) to

pack items.
3. if R ≤ 2.040, use algorithm PAR to pack items to size two bins.

Output: online packing for OBP1R.

bin (2, R) is at most 1.58889R. To prove the result, we will use the definition of
weighting system from [9].

Weighting System: a tuple (Rm, wA, ξA) is called as a weighting system for
algorithm A, if it satisfies the following conditions:

– Rm is a vector space over the real numbers with dimension m, where m is a
constant.

– The function wA : (0, 1] → Rm is called the weighting function.
– The function ξA : Rm → R is called the consolidation function.
– For any input L = {a1, ..., an}, we have costA(L) ≤ ξA

(
wA(L)

)
+O(1), where

wA(L) =
∑n

i=1 wA(ai) and costA(L) is the cost by algorithm A.

By the definition of consolidation function ξA(·) [9], we have the following
lemmas.

Lemma 1. Given any set L = L1 ∪ L2, we have ξA
(
wA(L)

) ≤ ξA
(
wA(L1)

)
+

ξA
(
wA(L2)

)
.

Lemma 2. [9] For any set S = {x1, x2, ..., xs|
∑s

i=1 xi ≤ 1}, we have
ξA
(
wA(S)

) ≤ 1.58889 and ξA
(
wA(xi)

) ≤ 1 for all i, if algorithm A is H++.

Theorem 1. Online algorithm H++ is still 1.58889 for our problem when R >
2.63.

Proof. In our proof, the weighting function is exactly the same as the one in
[9]. Consider an optimal solution, assume the number of (1, 1) bins used is X
and the number of (2, R) bins used is Y . So the optimal cost is X + R · Y .
Assume all the items packed in the unit size bins is in set L1, all the others
is in set L2. By Lemma 2, we have ξA(wA(L1)) ≤ 1.58889 · X . If we have
ξA(wA(L2)) ≤ 1.58889 · R · Y , then by Lemma 1, we have this theorem. To
get the above result, we are going to prove that

ξA(wA(T)) ≤ 1.58889 ·R,

where T = {x1, x2, ..., xt|
∑t

i=1 xi ≤ 2} is any set fitted for a size two bin. It
is not difficult to see that set T can be partitioned into three sets Ti, where

Online Bin Packing 391

1 ≤ i ≤ 3, such that all the items in Ti fit in a unit size bin, and there is only
one item in T3. By Lemma 2, we have

ξA(wA(Ti)) ≤ 1.58889, ξA(wA(T3)) ≤ 1,

then by Lemma 1, we have

ξA(wA(T)) ≤ 1.58889× 2 + 1 ≤ 1.58889 · R,

where the last inequality holds from R ≥ 2.63. ��

2.2 Online Algorithm MAIN for 2.040 < R ≤ 2.6915

In our algorithm, the ideas of Refined Harmonic and interval classification [7] are
used. However comparing with Refined Harmonic, we have a different partition
for the interval (0, 1] for different values of R. Based on the partition, we group
all the items into two classes, F and J . For all the items in F , we pack them
into unit size bins by Harmonic algorithm; for all the items in J , we pack them
into size two bins by Refined Harmonic algorithm.

Grouping: Let M = 20. Given a constant K, we classify all the items by
partitioning the interval (0, 1] into sets F and J , where F = ∪M

k=1Fk such that
Fk = (2/(2k+1), 1/k] for 1 ≤ k ≤ K, Fk = (1/(k+1), 1/k], for K+1 ≤ k ≤ M−1, and
FM = (0, 1/M]; for K = 1, J = J1 = (1/2, 2/3], for K ∈ {2, 3}, J = Ja ∪ Jb ∪K

i=1 Ji,
where

Ja = (
1

2
,
13

24
], J1 = (

13

24
,
2

3
], Jb = (

1

3
,
3

8
], J2 = (

3

8
,
2

5
], J3 = (

1

4
,
2

7
].

For K = 2, the definitions of F∗ and J∗ are showed in Fig. 2.

1
10 2

2
5

3
8

1
3

1
4

1
M

2
3

J1JaJ2Jb

.....

13
24

1F3F 2FM
F

Fig. 2. Partition of Interval (0, 1] for K = 2

The value of K is dependent on R, and its value is given in the following
table 1.

Naming: An item ai is called as an Fk-piece if ai ∈ Fk, and a Jk-pieces if ai ∈ Jk.
Bin BFi is a unit bin designated to pack Fi-pieces. Except for items Ja and Jb,
a BJi -bin (1 ≤ i ≤ K) is (2, R) bin designated to pack Ji-pieces exclusively.

392 J. Chen et al.

Table 1. Setting of K for MAIN

Interval of R (2.040, 7
3
] (7

3
, 28
11
] (28

11
, 2.6915]

Value of K 3 2 1

Packing Items Ja and Jb: We pack items Ja and Jb into size two bins. It is not
difficult to verify that a size 2 bin can accept exactly three pieces of Ja-pieces,
and the remaining space in the bin is larger than 3

8 , which is enough for one item
of Jb-piece.

First we define two types of bins with size 2: i) BA bin is designed to contain
three Ja-pieces and one Jb-piece; ii) BB bin is designed to contain five Jb-pieces.
The packing of Ja and Jb pieces is below: given a Ja piece, if there is a type BA

bin with less than three Ja pieces, then we pack it into this bin, else we open a
new BA bin for the item. Given a Jb piece, if there is a BA bin with no Jb piece
in it, then put the item into this bin, else we open a new (2, R) bin and pack the
item there. Let the total number of Jb items be nb, and the total number of BB

bins be m5b. If m5b

nb
< 11

56 , then name it as BB bin, else as BA bin.
Given an item ai with type x ∈ {F1, ..., FM , J1, ..., JK}, algorithm MAIN is

described as below.

Algorithm 2. MAIN

1. if x is Ja then
if there is a BA bin and the number of Ja items is less than three, then pack

ai in this bin.
else pack ai into a new BA bin.

2. if ai is Jb then nb = nb + 1,
if there is a BB bin with Jb items less than five, then pack ai in this bin.
else

if there is a BA bin without Jb item; then pack ai in this bin.
else

if m5b ≤ 11nb
56

then place ai in a new BB bin, m5b = m5b + 1.
else place ai in a new BA bin.

3. else pack ai by Harmonic algorithm into bin Bx.

Observation: there is at most one bin of type BA with content from the set
{a, aa, ab, aab}. In bins BA, a bin with content {aaa} and a bin with content {b}
do not coexist.

2.3 Performance Analysis of MAIN

Our analysis is based on weighting functions, which is in the framework of the
weighting system. Given an input L, we construct weighting functions wi() such

Online Bin Packing 393

that the cost by our algorithm cost(L) ≤ maxiwi(L) +O(1). Then we prove for
each i,

wi(S) ≤ ρ, wi(T) ≤ ρ · R,
where S = {x1, x2, ..., xs|

∑s
i=1 xi ≤ 1} and T = {x1, x2, ..., xt|

∑t
i=1 xi ≤ 2}.

Finally our work is to calculate the value of ρ, which is much more complicated
than the calculation used in the classical bin packing, since we have many cases
to be considered.

Weighting Functions: There are two cases.
Case 1: K = 1. Given an item with size x, the weighting functions are defined

as follows:

w1(x) = w2(x) =

⎧⎨⎩
1
k , if x ∈ Fk, 1 ≤ k ≤M − 1,

M·x
M−1 , if x ∈ FM ,

R
3 , if x ∈ J1.

Case 2 K ≥ 2. The weighting functions are defined as follows:

w1(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
k , if x ∈ Fk and 1 ≤ k ≤ M − 1,

Mx
M−1 , if x ∈ FM ,
12R
56 , if x ∈ Jb,
0, if x ∈ Ja,

R
2k+1 , else x ∈ Jk and 1 ≤ k ≤ K.

w2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
k , if x ∈ Fk and 1 ≤ k ≤ M − 1,

Mx
M−1 , if x ∈ FM ,
11R
56 , if x ∈ Jb,
R
3 , if x ∈ Ja,

R
2k+1 , else x ∈ Jk and 1 ≤ k ≤ K.

Lemma 3. Given an input L, the cost of our algorithm is at most maxi wi(L)+
O(1).

Proof. Let fk be the number of Fk-items, and jk be the number of Jk-items in
input list L respectively. Also, let sM be the total size of all FM -item in L.

When K = 1, the cost of algorithm MAIN

cost(L) ≤ f1
1

+
f2
2

+ ...+
fM−1

M − 1
+

M · sM
M − 1

+
j1
3

·R +O(1), (1)

≤
∑
x∈L

w1(x) +O(1). (2)

Consider K ≥ 2. Let na denote the number of Ja-items. Let nb denote the
number of Jb-items. Let m5b be the number of bins BB. Let mb be the number
of bins BA with only one item Jb and without any Ja. Let mab be the number
of bins BA with one item Jb and at least one Ja. Let m3a be the number of bins
BA with three Ja items and without Jb.

nb = 5m5b +mb +mab, (3)
3(m3a − 1) + 3(mab − 1) < na ≤ 3m3a + 3mab. (4)

The algorithm maintains 11
56

· nb − 1 < m5b < 11
56

· nb + 1. Thus we have

11nb

56
− 1 ≤ m5b ≤ 11nb

56
+ 1, (5)

nb

56
− 55

56
≤ mb +mab ≤ nb

56
+

55

56
, (6)

394 J. Chen et al.

The algorithm ensures that a BA-bin with only Ja-items and a BA-bin with one
Jb-item never coexist. That is m3a ·mb = 0, throughout the running of algorithm.

Let mk be the number of BJk
-bins. Then mk = � jk

2k+1�, where 1 ≤ k ≤ K.
The cost of algorithm MAIN

cost(L) ≤
M−1∑
k=1

fk
k

+
M · sM
M − 1

+R(
K∑

k=1

mk +m3a +mb +mab +m5b) +O(1).

We distinguish two cases based on m3a ·mb = 0.
Case 1. m3a = 0, we will prove that cost(L) ≤ w1(L) +O(1).

By (5), (6), we have

cost(L) ≤
M−1∑
k=1

fk
k

+
M · sM
M − 1

+R · (j1
3

+ ...+
jK

2K + 1
+mab +mb +m5b) +O(1),(7)

≤
M−1∑
k=1

fk
k

+
M · sM
M − 1

+

K∑
k=1

R

2k + 1
jk +

12R

56
nb +O(1), (8)

≤
∑
x∈L

w1(x) +O(1) = w1(L) +O(1). (9)

Case 2. mb = 0, we will prove that cost(L) ≤ w2(L) +O(1).
In this case, by (5), (6), we have

cost(L) ≤
M−1∑
k=1

fk
k
+
M · sM
M − 1

+R(
j1
3

+ ...+
jK

2K + 1
+m3a +mab +m5b) +O(1),(10)

=

M−1∑
k=1

fk
k

+
M · sM
M − 1

+

K∑
k=1

R

2k + 1
jk +

R

3
na +

11R

56
nb +O(1), (11)

=
∑
x∈L

w2(x) +O(1) = w2(L) +O(1). (12)

��
Definition ofW : given S = {x1, x2, ..., xs|

∑s
j=1 xj ≤ 1} and T = {x1, x2, ..., xt|∑t

j=1 xj ≤ 2}, for 1 ≤ i ≤ 2, we define

W1,i = max
S

wi(S), W2,i = max
T

wi(T), W = max
i

max{W1,i,W2,i/R}.

Lemma 4. For an input L, we have maxi wi(L) ≤W ·OPT , where OPT is the
optimal cost.

Proof. Consider an optimal solution, assume the number of (1, 1) bins used is
X and the number of (2, R) bins used is Y . So the optimal cost is X + R · Y .
Assume all the items packed in the unit size bins is in set L1, all the others is
in L2. For 1 ≤ i ≤ 2, we have

wi(L) = wi(L1) + wi(L2).

Online Bin Packing 395

By the definitions of W1,i and W2,i, we have

wi(L1) ≤W1,i ·X, wi(L2) ≤W2,i · Y =
W2,i

R
·R · Y.

Then we have

wi(L) ≤ max{W1,i,
W2,i

R
}(X +R · Y) ≤W · (X +R · Y). (13)

��
Calculating W :

Lemma 5. When K = 1, we have W1,j ≤ R
3
+ 552

798
, where R < 2.6915 and

1 ≤ j ≤ 2.

Lemma 6. When K = 2, i.e., 7
3 < R ≤ 28

11 , we have W1,j ≤ R
3
+ 11R

56
+ 153

798
, for

j = 1, 2.

Lemma 7. When R ≥ 2.25, W2,j ≤ 4R
3

.

Lemma 8. When K = 3, i.e., 2.040 ≤ R ≤ 7
3 , W1,j ≤ max{ 4474

3192
, 1+ R

7
+ 267

2964
, R

3
+

11R
56

+ 153
798

}.
Lemma 9. When K=3, i.e., 2.040 < R ≤ 7

3 , we have W2,j ≤ max{1.381R, 1749
798

+
R
3
} .

Proofs of the above Lemmas can be referred to the full version.

Theorem 2. Algorithm 1 applied to OBP1R problem has competitive ratios as
Table 2.

Table 2. Upper bounds for 2.040 < R ≤ 2.6915

R Upper bound
28
11

< R ≤ 2.6915 R
3
+ 1

2
+ 153

798

2.3219 < R ≤ 28
11

R
3
+ 11R

56
+ 153

798

2.1808 < R ≤ 2.3219 1 + R
7
+ 267

2964

2.0513 < R ≤ 2.1808 4474
3192

= 1.40163

2.040 < R ≤ 2.0513 1749
798R

+ 1
3

Proof. By inequality (13), the competitive ratio of the algorithm is the maximum
of W1,j and W2,j

R . By Lemmas 5 and 7, for 28
11 < R ≤ 2.6915, we have the

competitive ratio is R
3 + 1

2 + 153
798 . By Lemmas 6 and 7, for 7

3 < R ≤ 28
11 , the

competitive ratio is R
3 + 11R

56 + 153
798 . By Lemmas 8 and 9, for 2.3219 < R ≤ 7

3 ,
the competitive ratio is R

3 + 11R
56 + 153

798 ; for 2.1808 < R ≤ 2.3219, the competitive
ratio is 1 + R

7 + 267
2964 ; for 2.0513 < R ≤ 2.1808, the competitive ratio is 1.40163;

for 2.040 < R ≤ 2.0513, the competitive ratio is 1749
798R + 1

3 . We summarized these
results in Table 2. ��

396 J. Chen et al.

2.4 Algorithm PAR for R ≤ 2.040

It is not difficult to see that when 1 < R ≤ 2, there will be at most one unit bin in
an offline optimum packing, i.e., almost all items are packed into size two bins.
For online version, we pack all the items into size two bins by a refined harmonic
algorithm, our algorithm is called as PAR, and also useful for the parametric bin
packing problem(with parameter r = 2).

First we give useful definitions for PAR algorithm. In PAR we set Jk =

(2
k+1

, 2
k
], k ≥ 4, JM = (0, 2/M] = (0, 1/20], M = 40, Jb = (1

2
, 11
20
], J3 = (11

20
, 2
3
],

Ja = (2
3
, 29
40
], and J2 = (29

40
, 1]. Bin BJk of size 2 is desigened to pack Jk items.

First we define two types of bins: i) BA bin is designed to contain two Ja-
pieces and one Jb-piece; ii) BB bin is designed to contain three Jb-pieces. The
packing of Ja and Jb pieces is below: given a Ja piece, if there is a type BA with
less than two Ja pieces, then we pack it into this bin, else we open a new BA bin
for the item. Given a Jb piece, if there is a BA bin with no Jb piece in it, then
put the item into this bin, else we open a new bin with size two and pack the
item there. Let the total number of Jb items be nb, and the total number BB

bins be m53b. If m3b

nb
< 6

19 , then open a new BB bin, else BA bin.
Given an item ai with type x ∈ {J1, ..., JM , Ja, Jb}, PAR is described as Al-

gorithm 3.

Algorithm 3. PAR

1. if x is Ja then
if there is a BA bin and the number of Ja items is less than two, then pack

ai in this bin.
else pack ai into a new BA bin.

2. if ai is Jb then nb = nb + 1,
if there is a BB bin with Jb items less than three, then pack ai in this bin.
else

if there is a BA bin without Jb items; then pack ai in this bin.
else

if m3b ≤ 6nb
19

then place ai in a new BB bin, m3b = m3b + 1.
else place ai in a new BA bin.

3. else pack ai by Harmonic algorithm into bin Bx.

We then analyze he performance of PAR. Similarly we have weighting func-
tions for PAR:

h1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
k
, x ∈ Jk, 2 ≤ k ≤ M − 1,

Mx
2M−2

, x ∈ JM ,
7
19
, x ∈ Jb,

0, x ∈ Ja.

h2(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
k
, x ∈ Jk, 2 ≤ k ≤ M − 1,

Mx
2M−2

, x ∈ JM ,
6
19
, x ∈ Jb,

1
2
, x ∈ Ja.

Let w1(x) = h1(x) ·R, w2(x) = h2(x) ·R, the way of calculating performance of
PAR is similar as showed one in MAIN.

Online Bin Packing 397

Lemma 10. For R ≤ 2.040, we have W1,j ≤ 556R
819

.

Lemma 11. When R ≤ 2.040, we have W2,j ≤ 219053R
155610

≤ 1.4078 · R for all j.

Proofs of the Lemmas can be referred to the full version.
By Lemmas 4, 10, 11, and equations (13), We have the following theorem.

Theorem 3. The competitive ratio cr of PAR is:

cr ≤ max{W1,j ,W2,j} ≤ max{556R
819

,
219053

155610
} ≤ 1.4078. (14)

3 Lower Bounds

We first introduce the framework for calculating the lower bound of our problem,
which follows from the previous work for the classical bin packing [14],[15],[16],[10].
Then we give two input sequences based on concrete values of R. We find the pre-
vious approach does not go through for a variableR. So, we fix the parameterR as
some constants, then apply the previous framework to get the lower bound of our
problem. And more our problem is more complicated than the classical bin pack-
ing, since the number of all the possible patterns in our problem is much more
than the one used in the classical bin packing.

3.1 Framework for Calculating the Lower Bound

Let ρ = {s1, s2, ..., sk} be a sequence of item sizes such that 0 < s1 < s2 <
... < sk ≤ 1, where constant k is a positive integer and si = δi + ε, and ε is a
sufficiently small positive number. With respect to ρ, a pattern p is defined as
below:

p = 〈size(p), cost(p), p1, ..., pk〉, where
k∑

i=1

pisi ≤ size(p)

pi is the number of items of size si, if size(p) = 1 then cost(p) = 1, else if
size(p) = 2 then cost(p) = R. Set P(ρ) denotes the set of all patterns p

P = {p : pattern|size(p) = 2 or size(p) = 1}.

Since k is a constant, then P(ρ) is finite.

Online Input: Define L0 to be the empty input. Input Li consists of input
Li−1 and follows with items of size δi + ε for 1 ≤ i ≤ k. The online input Li is
constructed as below:

L2︷ ︸︸ ︷
δ1 + ε, . . . , δ1 + ε,︸ ︷︷ ︸

L1

δ2 + ε, . . . , δ2 + ε, . . . δk + ε, . . . , δk + ε.

︸ ︷︷ ︸
Lk

398 J. Chen et al.

Given an input with sizes from ρ, any algorithm A is defined as a function
Φ : P(ρ) → N . The algorithm uses Φ(p) bins containing items as content of
pattern p.

Consider the function Φ that determines by online algorithm A for list Lk.
Each pattern is assigned to a class, defined as

class(p) = min{i|pi �= 0}.

Define

Pi = {p ∈ P(ρ)|class(p) ≤ i}.

Then, the cost of algorithm A for Li can be calculated by Φ∑
p∈Pi

Φ(p) cost(p).

Since the algorithm must pack every item, it comes the following constraints:∑
p∈P(ρ)

Φ(p)pi ≥ |Li − Li−1|, for 1 ≤ i ≤ k and |Li| is the length of Li.

Define X(Li) to be the optimal offline cost for packing the items in Li, which
can be calculated by the following linear program.

Minimize
∑
p∈Pi

cost(p)Φ(p) (15)

subject to |Lj − Lj−1| ≤
∑

p∈P(ρ)

Φ(p)pj, for 1 ≤ j ≤ k, (16)

where constraints (16) assure that Φ is a feasible solution for Li.
Let costA(Li) be the cost by online algorithm A for packing Li. Then the

lower bound of the online problem can be expressed as below:

c = min
A∈A

max {costA(L1)

X(L1)
,
costA(L2)

X(L2)
, · · · , costA(Lk)

X(Lk)
}

We use the following linear program to estimate c. Note that the optimal value
of the following linear programming is not larger than c.

Minimize c

subject to c ≥
∑

p∈Pi
cost(p)Φ(p)

X(Li)
, for 1 ≤ i ≤ k

|Lj − Lj−1| ≤
∑

p∈P(ρ)

Φ(p)pj , for 1 ≤ j ≤ k.

Dominant Patterns: A pattern p of class i is dominant if

si +
k∑

j=1

pjsj > size(p),

which helps us to reduce the cases when we estimate the lower bound c.

Online Bin Packing 399

3.2 Two Sequences and Lower Bounds

We calculate the lower bound of the OBP1R problem by the method described
above. When 1 < R ≤ 2.178, we use Parametric sequence, when 2.178 < R ≤ 3,
we use Greedy sequence.

Given a sequence, we have enumerate its dominant patterns first, then calcu-
late the optimal solution for Li, finally we use LP to estimate the value of c.

Greedy Sequence: we have k = 4 and s1 = 1
43+ε, s2 = 1

7+ε, s3 = 1
3+ε, s4 =

1
2 + ε and |Li − Li−1| = n for all i. The dominant patterns of the sequence is
given in the full version.

Consider integer programming (15) and (16), there are at most k non-zero
variables in an optimal solution. Since cost(p) is at most R, where R is the cost
of a bin with size two, suppose the objective value will decrease μ, then μ will
be at most k ·R if we solve (15) and (16) as all variables are real numbers rather
than integers. Let

X∗
i = lim|Li|→∞ X(Li)/|Li|.

By the definition of X∗
i , we have X∗

i is also equal to lim|Li|→∞
X(Li)−μ

|Li| , μ ≤ k ·R.
Define φ(p) = Φ(p)/n. Therefore we can use the following linear programming
to calculate X∗

i .

LP 31:

Minimize
∑
p∈Pi

cost(p)φ(p)

subject to 1 ≤
∑

p∈P(ρ)

φ(p)pj, for 1 ≤ j ≤ i.

we use the X∗
i , 1 ≤ i ≤ k, and the following linear programming to calculate

lower bound.

LP 32:

Minimize c

subject to c ≥ 1

X∗
i

∑
p∈Pi

cost(p)φ(p), for 1 ≤ i ≤ k

1 ≤
∑

p∈P(ρ)

φ(p)pi, for 1 ≤ i ≤ k.

Lemma 12. We get results as following:

Table 3. Lower bounds of OBP1R for 2.178 < R ≤ 3

R 2.178 2.25 2.4 2.5 2.545 2.6915 2.832 3

Lower bound 1.314 1.346 1.410 1.452 1.461 1.488 1.512 1.539

400 J. Chen et al.

Parametric Sequence: we have k = 4 and s1 = 2
157 + ε, s2 = 2

13 + ε, s3 =
1
2 + ε, s4 = 2

3 + ε and |Li − Li−1| = n for all i ≤ 3 and |L4 − L3| = 2n. The
dominant patterns of the sequence is left in the full version.

Define φ(p) = Φ(p)/n. Let X∗
i = lim|Li|→∞X(Li)/|Li|. We use the following

linear programming to calculate X∗
i and the lower bound.

LP 33:

Minimize
∑
p∈Pi

cost(p)φ(p)

subject to 1 ≤
∑

p∈P(ρ)

φ(p)pj, for 1 ≤ j ≤ min{i, k − 1},

2 ≤
∑

p∈P(ρ)

φ(p)pk.

LP 34:

Minimize c

subject to c ≥ 1

X∗
i

∑
p∈Pi

cost(p)φ(p), for 1 ≤ i ≤ k,

1 ≤
∑

p∈P(ρ)

φ(p)pi, for 1 ≤ i ≤ k − 1,

2 ≤
∑

p∈P(ρ)

φ(p)pk.

Lemma 13. We get results as following:

Table 4. Lower bounds of OBP1R for 1 ≤ R ≤ 2.178

R 1 2 2.010 2.030 2.040 2.071 2.074 2.15 2.178

Lower bound 1.3896 1.3896 1.3851 1.375 1.372 1.356 1.356 1.325 1.314

Accuracy in Processing: As mentioned we enumerated all the dominant pat-
terns using a recursion program, the recursion is not difficult to construct, and
the point is that we should avoid float operations in the processing, since float
operations will drop small figures, but the small operator like ε are important in
our lower bound calculating, and we defined integer operation for our calculation,
every operator are presented in fraction of integers.

We define an extra-long integer data type XLong, which can handle integers
with more than hundreds or thousands figures. This type of data is defined to
avoid the inaccurateness of calculation in enumerating the dominant patterns
when using float arithmetic operations. In our calculation, any data is present
in fraction, and arithmetic operations are redefined for XLong data in the forms
of fraction operations. For eaxmple, subtraction M − S can be described as
:M − S= MN

MD
− SN

SD
, where M = MN

MD
, S = SN

SD
, MN , MD, SN , SD, are integers,

then the subtraction becomes MN∗SD−SN∗MD

MD∗SD
. The fraction operation we defined

Online Bin Packing 401

can help us enumerating the dominant patterns exactly, but the disadavantage
of these integer operators is that the figures of the Numerator and Denominator
may becomes increasing as the recursion progress, and typical integer operations
with the figures of argument integer under hundred is not sufficient to handle
these, we defined XLong data types which can handle integers with the number
of figures we assigned(thousand figures or more).

Acknowledgements. This research has been partially supported by "the
Fundamental Research Funds for the Central Universities(DUT12LK09)” and
NSFC(11101065), RGC(HKU716412E).

References

1. Epstein, L., Levin, A.: An APTAS for Generalized Cost Variable-Sized Bin Packing.
SIAM J. Comput. 38(1), 411–428 (2008)

2. Ullman, J.D.: The performance of a memory allocation algorithm. Technical Report
100, Princeton University, Princeton, NJ (1971)

3. Johnson, D.S.: Fast algorithm for bin packing. Journal of Computer and System
Sciences 8, 272–314 (1974)

4. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput. 3, 256–278 (1974)

5. Yao, A.C.C.: New algorithms for bin packing. J. ACM 27, 207–227 (1980)
6. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin

packing: A survey. In: Hochbaum, D. (ed.) Approximation Algorithms. PWS Pub-
lishing Company (1997)

7. Lee, C.C., Lee, D.T.: A simple on-line bin packing algorithm. J. ACM 32(3),
256–278 (1985)

8. Van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Infor-
mation Processing Letters 43(5), 277–284 (1992)

9. Seiden, S.S.: On the online bin packing problem. J. ACM 49, 640–671 (2002)
10. Seiden, S.S., Van Stee, R., Epstein, L.: New bounds for variable-sized online bin

packing. SIAM J. Comput. 32(2), 455–469 (2002)
11. Friesten, D.K., Langston, M.A.: Variable sized bin packing. SIAM J. Comput. 15,

222–230 (1986)
12. Kinnerseley, N.G., Langston, M.A.: Online variable-sized bin packing. Discrete

Applied Mathematics 22(2), 143–148 (1988)
13. Csirik, J.: An on-line algorithm for variable-sized bin packing. Acta Informat-

ica 26(8), 697–709 (1989)
14. Brown, D.J.: A lower bound for on-line one-dimensional bin packing algorithms.

Tech. report -864. Coordinated Science Laboratory Urbana IL (1979)
15. Liang, F.M.: A lower bound for on-line bin packing. Information Processing Let-

ters 10, 76–79 (1980)
16. Van Vliet, A.: An improved lower bound for online bin packing algorithm. Inform.

Process. Lett. 43, 277–284 (1992)
17. Van Vliet, A.: Lower and upper bounds for online bin packing and scheduling

heuristics. Thesis Publishers, Amsterdam (1995)
18. Blitz, D., Van Vliet, A., Woeginger, G.J.: Lower bounds on the asymptotic worst-

case ratio of online bin packing algorithms (1996) (unpublished manuscript)
19. Valerio de Carvalho, J.M.: LP models for bin packing and cutting stock problem.

European Journal of Operational Research 141, 253–273 (2002)

Disclosing Barriers: A Generalization

of the Canonical Partition Based on Lovász’s
Formulation

Nanao Kita

Keio University, Yokohama, Japan
kita@a2.keio.jp

Abstract. Given a graph, a barrier is a set of vertices determined by
the Berge formula—the min-max theorem characterizing the size of max-
imum matchings. The notion of barriers plays important roles in numer-
ous contexts of matching theory, since barriers essentially coincides with
dual optimal solutions of the maximum matching problem. In a special
class of graphs called the elementary graphs, the family of maximal bar-
riers forms a partition of the vertices; this partition was found by Lovász
and is called the canonical partition. The canonical partition has pro-
duced many fundamental results in matching theory, such as the two
ear theorem. However, in non-elementary graphs, the family of maximal
barriers never forms a partition, and there has not been the canonical
partition for general graphs. In this paper, using our previous work, we
give a canonical description of structures of the odd-maximal barriers—a
class of barriers including the maximal barriers—for general graphs; we
also reveal structures of odd components associated with odd-maximal
barriers. This result of us can be regarded as a generalization of Lovász’s
canonical partition.

1 Introduction

A matching of a graph G is a set of edges no two of which have common ver-
tices. A matching of cardinality |V (G)|/2 (resp. |V (G)|/2 − 1) is called a per-
fect matching (resp. a near-perfect matching). We call a graph factorizable if it
has at least one perfect matching. Now let G be a factorizable graph. An edge
e ∈ E(G) is called allowed if there is a perfect matching containing e. Let M̂ be
the union of all the allowed edges of G. For each connected component C of the
subgraph of G determined by M̂ , we call the subgraph of G induced by V (C)
as factor-connected component or factor-component for short. The set of all the
factor-components of G is denoted by G(G). Therefore, a factorizable graph is
composed of factor-components and some edges joining between different factor-
components. A factorizable graph with exactly one factor-component is called
elementary.

Matching theory is of central importance in graph theory and combinatorial
optimization, with numerous practical applications [1]. In matching theory, the

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 402–413, 2013.
c© Springer International Publishing Switzerland 2013

A Generalization of the Canonical Partition 403

notion of barriers plays significant roles. Given a graph, we call a connected com-
ponent of it with an odd (resp. even) number of vertices odd component (resp.
even component). Given X ⊆ V (G) of a graph G, we denote as qG(X) the num-
ber of odd components that the graph resulting from deleting X from G has; we
denote the cardinality of a maximum matching of G as ν(G). There is a min-max
theorem called the Berge formula [2] that for any graph G, |V (G)| − 2ν(G) =
max{qG(X) − |X | : X ⊆ V (G)}. A set of vertices that attains the maximum in
the right side of the equation is called a barrier. Roughly speaking, barriers essen-
tially coincide with dual optimal solutions of the maximum matching problem,
and decompose graphs so that one can see the structures of maximum matchings.
However, compared to numerous results on maximum matchings, “much less is
known about barriers [2]”.

There is a structure of elementary graphs called the canonical partition; Kotzig
first introduced it as the equivalence classes of a certain equivalence relation, and
later Lovász reformulated it from the point of view of barriers, stating that the
family of maximal barriers forms a partition of the vertices in elementary graphs.
This reformulation by Lovász has produced many fundamental properties in
matching theory such as the two ear theorem [1,2], and the brick decomposition or
the tight cut decomposition, and underlies polyhedral studies of matching theory;
see the survey article [3].

However, in non-elementary graphs, the family of maximal barriers never forms
a partition of the vertices, and there has not been known the counterpart struc-
ture of Lovász’s canonical partition for general graphs. In this paper, therefore,
we reveal canonical structures of maximal barriers and obtain a generalization of
Lovász’s canonical partition for general graphs; here, our previous work on canon-
ical structures of general factorizable graphs [4,5], the generalized cathedral struc-
ture (see Section 2.3), serves as a language to describe barriers. (Actually, we work
on a wider notion called odd-maximal barriers; see Section 2.2.) In [4,5], we defined
an equivalence relation and introduced a generalization of the canonical partition
based on Kotzig’s formulation: the generalized canonical partition. In this paper,
we show that it can be also regarded as a generalization based on Lovász’s formu-
lation, stating that the family of equivalence classes of the generalized canonical
partition are “atoms” that constitute (odd-)maximal barriers in general graphs
(which shall be introduced in Section 3). We also reveal the structure of odd com-
ponents associated with (odd-)maximal barriers.

Because the canonical partition and the notion of barriers are important, we are
sure that our result will produce many applications in matching theory. There has
been known a close relationship between algorithms in matching theory, barriers,
and canonical structure theorems [1,2]; therefore, our result will have algorithmic
applications. Lovász’s canonical partition has been the foundation in the study of
polyhedral aspects of matchings; therefore, our results will make a contribution to
this field. So far we have already obtained some consequences [6] on the optimal
ear-decomposition [7].

404 N. Kita

2 Preliminaries

2.1 Definitions and Some Preliminary Facts

In this paper wemostly observe those given by Schrijver [8] for standard definitions
and notations. We list here those additional or non-standard.

Hereafter for a while letG be a graph. ForX ⊆ V (G), we define the contraction
of G by X as the graph obtained by contracting X into one vertex, and denote it
as G/X . For simplicity, we identify vertices, edges, subgraphs of G/X with those
of G naturally corresponding to them.

In many contexts, we often regard a subgraphH ofG as a vertex set V (H). For
example, G/H means G/V (H). We treat paths and circuits as graphs. For a path
P and x, y ∈ V (P), xPy means the subpath of P whose end vertices are x and y.

We say a matching M of G exposes v ∈ V (G) if δ(v) ∩M = ∅, otherwise say
it covers v. For a matchingM of G and u ∈ V (G) covered by M , u′ denotes the
vertex to which u is matched byM . For X ⊆ V (G), MX denotesM ∩ E(G[X]).

Hereafter for a while letM be a matching ofG. For a subgraphQ ofG, which is
a path or circuit, we callQM -alternating if E(Q)\M is a matching ofQ. Let P be
anM -alternating path of G with end vertices u and v. If P has an even number of
edges andM ∩E(P) is a near-perfect matching of P exposing only v, we call it an
M -balanced path from u to v. We regard a trivial path, that is, a path composed of
one vertex and no edges as anM -balanced path. If P has an odd number of edges
andM ∩E(P) (resp. E(P)\M) is a perfect matching of P , we call itM -saturated
(resp.M -exposed).

LetX ⊆ V (G). We say a path P ofG is an ear relative toX if both end vertices
of P are in X while internal vertices are not. So do we to a circuit if exactly one
vertex of it is in X . For simplicity, we call the vertices of V (P) ∩ X end vertices
of P , even if P is a circuit. For an ear P of G relative to X , we call it an M -ear
if P − X is an M -saturated path. Given an ear P and Y ⊆ V (G), we say P is
through Y if P has some internal vertices in Y .

Factor-components of a bipartite factorizable graph are known to have the fol-
lowing partially ordered structure1:

Theorem 1 (The Dulmage-Mendelsohn Decomposition [2, 9–12]). Let
G = (A,B;E) be a bipartite factorizable graph, and let G(G) =: {Gi}i∈I. Let
Ai := A ∩ V (Gi) and Bi := B ∩ V (Gi) for each i ∈ I. Then, there exists a partial
order)A on G(G) such that for any i, j ∈ I,

(i) E[Bj , Ai] �= ∅ yields Gj)A Gi, and
(ii) if Gj)A H)A Gi yields Gi = H or Gj = H for any H ∈ G(G), then

E[Bj , Ai] �= ∅.

We call this decomposition ofG into a poset the Dulmage-Mendelsohn decomposi-
tion (in short, the DM-decomposition), and each element of G(G), in this context,
a DM-component. The DM-decomposition is uniquely determined by a graph, up

1 This is different from the one in [4,5]. Though it is sometimes presented as a theorem
for general bipartite graphs, we introduce it as one for bipartite factorizable graphs.

A Generalization of the Canonical Partition 405

to the choice of roles of color classes. In this paper, we call the DM-decomposition
of G = (A,B;E) as in Theorem 1 the DM-decomposition with respect to A.

Proposition 1 (Dulmage and Mendelsohn [9–12]). Let G = (A,B;E) be a
bipartite factorizable graph, andM be a perfect matching of G. Let G1, G2 ∈ G(G),
and let u ∈ A ∩ V (G1), v ∈ A ∩ V (G2), and w ∈ B ∩ V (G2). Then there is an
M -balanced path from u to v if and only if G1)A G2; additionally, there is an
M -saturated path between u to w if and only if G1)A G2.

Hereafter in this section we present some basic properties used explicitly or im-
plicitly throughout this paper. These are easy to see and the succeeding two propo-
sitions are well-known and might be folklores. A graph is called factor-critical if
any deletion of an arbitrary vertex leaves an empty graph or a factorizable graph.

Proposition 2 (folklore). Let M be a near-perfect matching of a graph G that
exposes v ∈ V (G). Then, G is factor-critical if and only if for any u ∈ V (G) there
exists an M -balanced path from u to v.

Given a graph G and X ⊆ V (G), we denote the vertices contained in the odd
components of G −X as DX , and V (G) \ X \DX as CX . The next proposition
can be easily observed by the Berge formula.

Proposition 3 (folklore). Let G be a factorizable graph, and X ⊆ V (G) be a
barrier of G. Then for any perfect matching M of G,

(i) each vertex of X is matched to a vertex of DX ,
(ii) for each component K of G[DX], MK is a near-perfect matching of K, ac-

cordingly |δ(K) ∩M | = 1,
(iii) M contains a perfect matching of G[CX], and
(iv) no edge in E[X,CX] nor E(G[X]) is allowed.

Now let G be a factorizable graph. We say X ⊆ V (G) is separating if any H ∈
G(G) satisfies V (H) ⊆ X or V (H) ∩ X = ∅. The next one is easy to see by the
definitions.

Proposition 4. Let G be a factorizable graph, and let X ⊆ V (G). Then, the fol-
lowing four properties are equivalent:

(i) X is separating.
(ii) X is an empty set, or there exists H1, . . . , Hk ∈ G(G) such that X =

V (H1)∪̇ · · · ∪̇V (Hk).
(iii) For any perfect matching M of G, δ(X) ∩M = ∅.
(iv) For any perfect matching M of G, MX forms a perfect matching of G[X].

2.2 Our Aim

Given an elementary graph G, we say u ∼ v for u, v ∈ V (G) if u = v holds
or G − u − v is not factorizable. Kotzig [13–15] found that ∼ is an equivalence
relation. Later Lovász redefined it:

406 N. Kita

Theorem 2 (Lovász [2]). Let G be an elementary graph. Then, the family of
maximal barriers forms a partition of V (G). Additionally, this partition coincides
with the equivalence classes by ∼.

This partition by the maximal barriers is called the canonical partition. As we
mention in Section 1, it plays fundamental and significant roles inmatching theory.
On the other hand, as for non-elementary graphs, the family of maximal barriers
never forms a partition of the vertices (see [2]). The question remains: how all the
maximal barriers exist and what is the counterpart in general graphs? Therefore,
we are going to investigate it. Actually, we work on a wider notion: odd-maximal
barriers.2

Definition 1. Let G be a graph. A barrier X ⊆ V (G) is called an odd-maximal
barrier if it is a barrier which is maximal with respect to X ∪DX , i.e., no Y ⊆ DX

with Y �= ∅ satisfies that X ∪ Y is a barrier of G.

Odd-maximal barriers have some nice properties (see [16, 17]): First, A maxi-
mal barrier is an odd-maximal barrier. Second, for elementary graphs, the notion
of maximal barriers and the notion of odd-maximal barriers coincide. Hence, it
seems reasonable to work on the odd-maximal barriers. Actually, with the Gallai-
Edmonds structure theorem and the theorem by Király [16], we can see that it
suffices to work on factorizable graphs. Given the above facts, in this paper we
give canonical structures of odd-maximal barriers in general factorizable graphs
that can be regarded as a generalization of Lovász’s canonical partition, aiming
to contribute to the foundation of matching theory.

2.3 The Generalized Cathedral Structure

In this section we are going to introduce the canonical structure theorems of
factorizable graphs, which shall serve as a language to describe odd-maximal bar-
riers. They are composed of three parts: a partially ordered structure on the factor-
components (Theorem 3), a generalization of the canonical partition (Theorem 4),
and a relationship between these two (Theorem 5).3

Definition 2. Let G be a factorizable graph, and let G1, G2 ∈ G(G). We say X ⊆
V (G) is a critical-inducing set forG1 toG2 ifX is separating, V (G1)∪V (G2) ⊆ X
holds, and G[X]/G1 is factor-critical. Additionally, we say G1 � G2 if there is a
critical-inducing set for G1 to G2.

Theorem 3 (Kita [4, 5]). For any factorizable graph G, � is a partial order on
G(G).
Definition 3. Let G be a factorizable graph. For u, v ∈ V (G) we say u ∼G v if
u and v are contained in the same factor-component of G, and G− u− v is NOT
factorizable.

2 This is identical to those Király calls strong barriers [16], however we call it in the
different way so as to avoid the confusion with the notion of strong end by Frank [7].

3 All the statements in [5] can be also found in [4].

A Generalization of the Canonical Partition 407

Theorem 4 (Kita [4, 5]). For any factorizable graph G, ∼G is an equivalence
relation on V (G).

As you can see by the definition, if G is an elementary graph then ∼ and ∼G co-
incide. Therefore, we call the equivalence classes by ∼G, i.e. V (G)/ ∼G, the gen-
eralized canonical partition or just the canonical partition, and denote by P(G).
For each H ∈ G(G), we define PG(H) := {S ∈ P(G) : S ⊆ V (H)}; then, PG(H)
forms a partition of V (H), since by the definition each equivalence class is respec-
tively contained in one of the factor-components. Note that PG(H) is always a
refinement of P(H), which equals to PH(H).

For eachH ∈ G(G), we denote the family of the upper bounds ofH in the poset
(G(G), �) as U∗

G(H), and U∗
G(H)\{H} as UG(H). Moreover, we denote the vertices

contained in U∗
G(H) as U∗

G(H); i.e., U∗
G(H) :=

⋃
H′∈U∗

G(H) V (H ′). We also denote

U∗
G(H)\V (H) as UG(H). Actually, the next theorem states that each strict upper

bound of H ∈ G(G) in (G(G), �) is respectively “assigned” to some S ∈ PG(H):

Theorem 5 (Kita [4, 5]). Let G be a factorizable graph, and let H ∈ G(G). For
each connected component K of G[UG(H)], there exists SK ∈ PG(H) such that
N(K) ∩ V (H) ⊆ SK .

Based on Theorem 5, we define UG(S) as follows: H ′ ∈ UG(S) if and only if
H �H ′ andH �= H ′ holds and there exists a connected componentK of G[U(H)]
with N(K) ∩ V (H) ⊆ S such that V (H ′) ⊆ V (K). Additionally, we denote
the vertices contained in UG(S) as UG(S); i.e., UG(S) :=

⋃
H′∈UG(S) V (H ′). We

also define U∗
G(S) := UG(S) ∪ S. Regarding these eight notations we some-

times omit the subscripts “G” if they are apparent from the contexts. Note that⋃̇
T∈PG(H)U(T) = U(H).
We call the canonical structures of factorizable graphs given by Theorems 3, 4,

and 5 the generalized cathedral structures or just the cathedral structures. Now let
us add some propositions used later in this paper:

Proposition 5 (Kita [4, 5]). Let G be a factorizable graph, and let H ∈ G(G).
Then, G[U∗(H)]/H is factor-critical, so is each block of it.

Proposition 6 (Kita [4, 5]). Let G be a factorizable graph and M be a perfect
matching of G, and let H ∈ G(G). Let P be an M -ear relative to H.

(i) Let H ′ ∈ G(G). If P is through H ′, then H �H ′.
(ii) The end vertices u, v ∈ V (H) of P satisfies u ∼G v.

3 AGeneralization of Lovász’s Canonical Partition

3.1 Our Main Result

Our main result is the following:

Main Theorem. Let G be a factorizable graph, and X ⊆ V (G) be an odd-
maximal barrier of G. Then, X is a disjoint union of some members of P(G);

408 N. Kita

namely, there exists S1, . . . , Sk ∈ P(G) such that X = S1∪̇ · · · ∪̇Sk. Addition-
ally, odd components of G − X have structures as follows: DX = (U∗(G1) \
U∗(S1))∪̇ · · · ∪̇(U∗(Gk) \ U∗(Sk)), where Gi ∈ G(G) is such that Si ∈ PG(Gi)
for each i ∈ {1, . . . , k}.
This theorem states that in general graphs the equivalence classes of the gener-
alized canonical partition are the “atoms” that constitute odd-maximal barriers,
and that odd components associated to odd-maximal barriers are also described
canonically by the generalized cathedral structure. As we see in previous sec-
tions, among two formulations of the canonical partition of elementary graphs, the
generalization of the canonical partition introduced in [4, 5] is attained based on
Kotzig’s formulation; here we show it is as well a generalization based on Lovász’s
formulation.

This theorem is an immediate corollary of Theorem 8, and the rest of this paper
is to prove Theorem 8.We shall prove it by examining the reachability of alternat-
ing paths from two viewpoints— regarding odd-maximal barriers and regarding
the generalized cathedral structure—and showing their equivalence. Let us men-
tion an additional property used later in this paper.

Proposition 7 (Király [16]). A barrier X ⊆ V (G) of a graph G is odd-maximal
if and only if all the odd components of G−X are factor-critical.

3.2 Barriers vs. Alternating Paths

In this subsection we introduce some lemmas on the reachability of alternating
paths regarding odd-maximal barriers. Given an odd-maximal barrierX of a fac-
torizable graph G, we generate a bipartite graph, thus canonically decompose
X ∪ DX and state the reachability using the DM-decomposition as a language.
This technique of generating a bipartite graph has been known [2,7] and essences
of ideas are found there. However, we first reveal it thoroughly to obtain Propo-
sition 10 and Theorem 6.

Proposition 8 (might be a folklore). Let G be a factorizable graph, M be a
perfect matching, and X ⊆ V (G) be an odd-maximal barrier. Then, for any u ∈ X
and v ∈ X ∪ CX there is no M -saturated path between u and v.

Definition 4. Let G be a graph, X ⊆ V (G), and K1, . . . ,Kl be the odd compo-
nents of G − X. We denote the bipartite graph resulting from deleting the even
components of G − X, removing the edges whose vertices are all contained in X,
and contracting eachKi, where i = 1, . . . , l, respectively into one vertex, asHG(X).
Namely, HG(X) := (G− CX − E(G[X]))/K1/ · · · /Kl.

The next proposition is easily seen by Propositions 3 and 7 and enables us to dis-
cuss Proposition 10 and so on.

Proposition 9 (might be a folklore). LetG be a factorizable graph andX be an
odd-maximal barrier of G. IfM ⊆ E(G) is a perfect matching of G, then M ∩δ(X)
forms a perfect matching of HG(X). Conversely, if M ′ is a perfect matching of
HG(X), there is a perfect matching M of G such that M ′ =M ∩ δ(X).

A Generalization of the Canonical Partition 409

The next proposition shows that the reachabilities of alternating paths are equiv-
alent between G and HG(X), which, with Proposition 1, derives Theorem 6
immediately.

Proposition 10. Let G be a factorizable graph, X ⊆ V (G) be an odd-maximal
barrier of G, and K := {Ki}li=1 be the family of odd components of G−X, where
l = |X |. Let M be a perfect matching of G, and M ′ be the perfect matching of
HG(X) such that M ′ = M ∩ δ(X). Let u, v ∈ X, and w ∈ V (K), where K ∈ K,
and let wK be the contracted vertex of HG(X) corresponding to K.

(i) Then, for any M -balanced path (resp. M -saturated path) P of G from u to v
(resp. between u and w), P ′ = P/K1/ · · · /Kl is an M ′-balanced path (resp.
M ′-saturated path) of HG(X) from u to v (resp. between u and wK).

(ii) Conversely, for any M ′-balanced path (resp. M ′-saturated path) P ′ from u to
v in HG(X) (resp. between u and wK), there is an M -balanced path (resp. M -
saturated path) P from u to v in G (resp. between u and w) such that P ′ =
P/K1/ · · · /Kl.

Given a factorizable graph G and an odd-maximal barrierX , we denote the DM-
decomposition of HG(X) with respect to X as just the DM-decomposition of
HG(X). In this case, we sometimes denote)X as just), omitting the subscript
“X”.

Definition 5. Let G be a factorizable graph, and X be an odd-maximal barrier
of G. Let D be a DM-component of HG(X), whose vertices in V (D) \ X are the
contracted vertices resulting from some odd components of G−X, say K1, . . . ,Kl,
where l ≤ |X |. We say D̂ is the expansion of D if it is the subgraph of G induced

by (V (D) ∩X) ∪⋃l
i=1 V (Ki).

The next proposition is a basic observation on expansions.

Proposition 11. Let G be a factorizable graph, and X be an odd-maximal barrier
of G. Let D1, . . . , Dk be the DM-components of HG(X). For each i = 1, . . . , k, let

D̂i be the expansion of Di. Then,

(i) {V (D̂i)}ki=1 forms a partition of X ∪DX ,

(ii) V (D̂i) is separating, accordingly D̂i is factorizable,

(iii) X ∩ V (D̂i) is an odd-maximal barrier of D̂i, and

(iv) HD̂i
(X ∩ V (D̂i)) is isomorphic to Di, for each i = 1, . . . , k.

Theorem 6. Let G be a factorizable graph, X be an odd-maximal barrier, and M
be a perfect matching of G. Let u, v ∈ X, and w ∈ DX , and for each α = u, v, w let
Dα be the DM-component of HG(X) whose expansion D̂α contains α. Then, there
is an M -balanced path from u to v (resp. an M -saturated path from u to w) in G if
and only if Du) Dv (resp. Du) Dw).

The following lemma is obtained by Propositions 10 and 11, and Theorem 6.

410 N. Kita

Lemma 1. Let G be a factorizable graph, X be an odd-maximal barrier, and M be
a perfect matching ofG. Let D̂1 and D̂2 be the subgraphs ofG which are respectively
the expansions of DM-components D1 and D2 such that D1) D2. Then, for any
u ∈ X ∩ V (D̂1) and w ∈ V (D̂2) \ X, any M -saturated path P between u and w

traverses X ∩ V (D̂2).

3.3 Canonical Structures of Odd-Maximal Barriers

In this subsection we examine the reachability of alternating paths regarding the
cathedral structure and derive the main theorem. The next lemma is obtained by
Proposition 5 and Proposition 2.

Lemma 2. Let G be a factorizable graph and M be a perfect matching of G, and
let H ∈ G(G) and S ∈ PG(H). Then, for any x ∈ U∗(S), there is an M -balanced
path from x to some vertex y ∈ S, whose vertices except y are contained in U(S).

Immediately by Theorem 4, we can see the next proposition:

Proposition 12. Let G be a factorizable graph and M be a perfect matching of
G, and let H ∈ G(G). A set of vertices S ⊆ V (H) is a member of PG(H) if and
only if it is a maximal subset of V (H) satisfying that there is no M -saturated path
between any two vertices of it.

The next one is by Proposition 6 and Lemma 2.

Lemma 3. Let G be a factorizable graph and M be a perfect matching of G, and
let H ∈ G(G) and S ∈ PG(H). Then, for any s ∈ S and x ∈ U(S), there is no
M -saturated path between s and x nor M -balanced path from s to x.

The next one, Lemma 4, is rather easy to see by Proposition 6, and combining it
with Lemma 2 we can obtain Lemma 5.

Lemma 4. Let G be a factorizable graph and M be a perfect matching of G. Let
H ∈ G(G), and let u, v ∈ V (H) be such that u �∼G v. Let P be an M -saturated path
between u and v such that E(P) \E(H) �= ∅, and let P1, . . . , Pl be the components
of P − E(H). Let S0, Sl+1 ∈ PG(H) be such that u ∈ S0 and v ∈ Sl+1. Then,

(i) two end vertices of Pi belong to the same member of PG(H), say Si,
(ii) Pi is, except its end vertices, contained in U(Si) for each i = 1, . . . , l, and
(iii) for any i, j ∈ {0, . . . , l+ 1} with i �= j, Si �= Sj.

Lemma 5. Let G be a factorizable graph and M be a perfect matching of G. Let
H ∈ G(G), and let S, T ∈ PG(H) be such that S �= T . Then, for any s ∈ S and
t ∈ U∗(T), there is an M -saturated path P between s and t, which is contained in
U∗(H) \ U(S).

Lemma 5 immediately yields the following: Lemma 6.

Lemma 6. Let G be a factorizable graph and M be a perfect matching of G. Let
H ∈ G(G), and let S, T ∈ PG(H) be such that S �= T . Then, for any s ∈ S and
t ∈ U∗(T), there is an M -saturated path P between s and t such that for any u ∈ S
and v ∈ V (P) \ S there is an M -saturated path between u and v.

A Generalization of the Canonical Partition 411

Theorem 7. Let G be a factorizable graph, M be a perfect matching of G, and
u, v ∈ V (G) be such that G − u − v is not factorizable. If there are M -balanced
paths respectively from u to v and from v to u, then u and v are in the same factor-
component of G.

Now we are ready to prove the main theorem, combining up the results in this
section.

Theorem 8. LetG be a factorizable graph, andX be an odd-maximal barrier ofG.
Let D1, . . . , Dk be the DM-components of HG(X). Let V̂1, . . . , V̂k be the partition

of X ∪ DX such that for each i = 1, . . . , k, D̂i := G[V̂i] is the expansion of Di.

Then, for each i = 1, . . . , k, Si := X ∩ V̂i coincides with a member of PG(Hi) for

some Hi ∈ G(G), and V̂i coincides with U∗(Hi) \ U(Si).

Proof. Note that such a partition of X ∪DX surely exists by Proposition 11. Let
M be a perfect matching of G. Let i ∈ {1, . . . , k}.
Claim 1. There is noM -saturated path between any two vertices of Si.

Proof. This is immediate from Proposition 8. ��
Claim 2. Si is contained in the same factor-component of G, say Hi.

Proof. Take u, v ∈ Si arbitrarily. Note first that there is no M -saturated path
between u and v, by Claim 1. Additionally, there are M -balanced paths from
u to v and from v to u respectively, which is immediate from Theorem 6 and
Proposition 1. Therefore by Theorem 7, u and v are contained in the same factor-
component. Thus, we have the claim. ��
Since V̂i is separating by Proposition 11,

Claim 3. V (Hi) ⊆ V̂i.

Claim 4. For any u ∈ Si and any v ∈ V̂i \ Si, there is an M -saturated path

between u and v whose vertices are contained in V̂i.

Proof. Note thatMV̂i
is a perfect matching of D̂i, Si is an odd-maximal barrier of

D̂i, andHD̂i
(Si) is a factorizable bipartite graph with exactly one DM-component

by Proposition 11. Thus, by applying Theorem 6 to D̂i, MV̂i
and Si, there is an

M -saturated path between any u ∈ Si and any v ∈ V̂i \ Si, which is contained in

V̂i. ��
By combining Claims 1, 2, 3, and 4, we obtain that Si is a maximal subset of V (Hi)
such that there is noM -saturated path between any two vertices of it. Hence, by
Proposition 12, Si ∈ PG(Hi) holds.

412 N. Kita

Claim 5. V̂i ⊇ U∗(Hi) \ U(Si).

Proof. Take y ∈ U∗(Hi) \ U(Si) arbitrarily. If y ∈ Si, then of course y ∈ V̂i.
Hence hereafter let y ∈ U∗(Hi) \U∗(Si), and let T ∈ PG(Hi) \ {Si} be such that
y ∈ U∗(T).

Let u ∈ Si. There is an M -saturated path P between u and y by Lemma 5.
Hence, by Proposition 8, y ∈ DX . Therefore, there exists j ∈ {1, . . . , k} such that

y ∈ V̂j . By Theorem 6 and Proposition 1, Di) Dj .
If i �= j, then by Lemma 1, P has some internal vertices which belong to Sj .

However, by Proposition 8, there is noM -saturated path between any two vertices
respectively in Si and Sj, and of course V (P)∩Sj is disjoint from Si. This contra-
dicts Lemma 6. Hence, we obtain i = j; accordingly, U∗(Hi) \ U(Si) is contained

in V̂i. ��
Claim 6. V̂i ⊆ U∗(Hi) \ U(Si).

Proof. Let z ∈ V̂i \ V (Hi). By Claim 4, there is anM -saturated path P between

z and some vertex of Si which is contained in V̂i. Trace P from z and let w be
the first vertex we encounter that is in V (Hi). Since V (Hi) is separating, zPw is

an M -balanced path from z to w by Proposition 4. In D̂i/Hi, zPw corresponds
to an M -balanced path from z to the contracted vertex h, corresponding to Hi.
Obviously,M contains a near-perfect matching of D̂i/Hi exposing only h.

Therefore, D̂i/Hi is factor-critical by Proposition 2; accordingly, V̂i is contained

in U∗(Hi). Additionally, by Claim 4 again and Lemma 3, we can see that V̂i is

disjoint from U(Si) and that V̂i is contained in U∗(Hi) \ U(Si). ��

Thus, by Claims 5 and 6, we have V̂i = U∗(Hi) \ U(Si). ��
Remark 1. If G in Theorem 8 is elementary, then Theorem 8 claims that P(G)
is the family of (odd-)maximal barriers; namely, Theorem 8 coincides with Theo-
rem 2. Therefore, Theorem 8 can be regarded as a generalization of Theorem 2.

Remark 2. Let G be a factorizable graph. For an arbitrary vertex x ∈ V (G), take
amaximal barrier ofG−x, sayX . Then,X∪{x} is amaximal barrier ofG; namely,
for any vertex x there is an odd-maximal barrier that contains x. Therefore, for
any S ∈ P(G), there exists an odd-maximal barrier that contains S.

Remark 3. Let A(G), D(G), C(G) ⊆ V (G) be those of so-called the Gallai-
Edmonds structure theorem [2]. With Király [16], ifG is a non-factorizable graph,
then {A(G)}∪P(G[C(G)]) are the “atoms” that constitute odd-maximal barriers.
For each odd-maximal barrier X , the odd components of G −X are the compo-
nents ofG[D(G)] and the odd components ofG[C(G)]−(X \A(G)); hereG[C(G)]
forms a factorizable graph and X \A(G) is an odd-maximal barrier.

Acknowledgment. The author is grateful to Prof. Y. Oda and Prof. T. Sei for
carefully reading the paper and giving useful comments.

A Generalization of the Canonical Partition 413

References

1. Carvalho, M.H., Cheriyan, J.: An O(V E) algorithm for ear decompositions of
matching-covered graphs. ACM Transactions on Algorithms 1(2), 324–337 (2005)

2. Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publishing (2009)
3. Carvalho, M.H., Lucchesi, C.L., Murty, U.S.R.: The matching lattice. In: Reed,

B., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics. Springer
(2003)

4. Kita, N.: A partially ordered structure and a generalization of the canonical parti-
tion for general graphs with perfect matchings. CoRR abs/1205.3816 (2012)

5. Kita, N.: A partially ordered structure and a generalization of the canonical par-
tition for general graphs with perfect matchings. In: Chao, K.-M., Hsu, T.-S., Lee,
D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 85–94. Springer, Heidelberg (2012)

6. Kita, N.: A generalization of the Dulmage-Mendelsohn decomposition for general
graphs (preprint)

7. Frank, A.: Conservative weightings and ear-decompositions of graphs. Combinator-
ica 13(1), 65–81 (1993)

8. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer
(2003)

9. Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Canadian Journal
of Mathematics 10, 517–534 (1958)

10. Dulmage, A.L., Mendelsohn, N.S.: A structure theory of bipartite graphs of finite
exterior dimension. Transactions of the Royal Society of Canada, Section III 53,
1–13 (1959)

11. Dulmage, A.L., Mendelsohn, N.S.: Two algorithms for bipartite graphs. Journal of
the Society for Industrial and Applied Mathematics 11(1), 183–194 (1963)

12. Murota, K.: Matrices and matroids for systems analysis. Springer (2000)
13. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. I. Mathematica Slo-

vaca 9(2), 73–91 (1959) (in slovak)
14. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. II. Mathematica Slo-

vaca 9(3), 136–159 (1959) (in slovak)
15. Kotzig, A.: Z teórie konečných grafov s lineárnym faktorom. III. Mathematica Slo-

vaca 10(4), 205–215 (1960) (in slovak)
16. Király, Z.: The calculus of barriers. Technical Report TR-9801-2, ELTE (1998)
17. Kita, N.: A canonical characterization of the family of barriers in general graphs.

CoRR abs/1212.5960 (2012)

A Portable Parallel Implementation of the lrs
Vertex Enumeration Code

David Avis1 and Gary Roumanis2

1 School of Informatics, Kyoto University, Kyoto, Japan and
School of Computer Science, McGill University, Montréal, Québec, Canada

avis@cs.mcgill.ca
2 Microsoft, Seattle, USA
me@garyroumanis.com

Abstract. We describe a parallel implementation of the vertex
enumeration code lrs that automatically exploits available hardware on
multi-core computers and runs on a wide range of platforms. The imple-
mentation makes use of a C++ wrapper that essentially uses the
existing lrs code with only minor modifications. This allows the simulta-
neous development of the existing single processor code with the speedups
available from multi-core systems. It makes use of the restart feature of re-
verse search that allows for independent subtree search and the fact that
no communication is required between these searches. As such it can be
readily adapted for use in other reverse search enumeration codes.

Keywords: vertex enumeration, reverse search, parallel processing.

1 Introduction

Since its discovery in the 1990s the reverse search technique[3] [4] has been
used to solve a large number of unstructured enumeration problems of which
perhaps the most widely used is vertex enumeration using the lrs program [2].
From the outset it was realized that reverse search was imminently suitable for
parallelization. The first such code, prs was developed by Ambros Marzetta using
his ZRAM parallelization platform, as described in [6] and available online at
[10]. In this case the parallelization was built into the lrs code itself leading to
problems of maintenance and upgrading as newer parallel libraries developed.
Another parallelization of reverse search was developed by Christophe Weibel for
computing Minkowski sums [11]. This used a recursive version of reverse search
where a backtrack stack is employed and some message passing is allowed during
parallel execution. We discuss it further in Section 2.3.

The lrs code is rather complex and has been under development for over
twenty years incorporating a multitude of different functions. It has been used
extensively and basic functionality is very stable. Directly adding parallelization
code to such legacy software is extremely delicate and can easily produce bugs
that are difficult to find. The approach we use avoids this completely as the
parallelization occurs in a separate layer. This allows independent development

P. Widmayer, Y. Xu, and B. Zhu (Eds.): COCOA 2013, LNCS 8287, pp. 414–429, 2013.
c© Springer International Publishing Switzerland 2013

Implementation of the lrs Vertex Enumeration Code 415

of both parallelization ideas and basic improvements in the underlying code.
Parallelization is obtained by using the built in restart features of lrs with a
completely separate multi-thread scheduler. The concept was tested by a shell
script, tlrs developed by John White in 2009. Here the parallelization is achieved
by scheduling independent processes for subtrees via the shell. Although good
speedups were obtained several limitations of this approach materialized as the
number of processors available increased. In particular job control becomes a
major issue: there is no single controlling process. A strong point of the approach
used in tlrs was that no modification of the underlying lrs code was required.

The approach we describe here lies somewhere between the approaches of
Marzetta and White. We built a C++ wrapper that compiles in the original lrslib
library essentially maintaining the integrity of the underlying lrs code. The par-
allelization is achieved by multithreading using an initial bounded depth run of
lrs and and an additional process is used to concatenate the output streams. Job
control is easily available since one process is in charge of all threads. Furthermore
the development of the parallelization techniques can proceed independently of
the original lrs code itself.

The paper is organized as follows. In the next section we begin with back-
ground on reverse search and explain the simple modifications necessary to pre-
pare for parallelization. We use the example of generating permutations as an
illustration. We then give a high level description of the parallelization technique
illustrating on the permutation example. In Section 3 we describe the vertex enu-
meration problem and some of the properties that may potentially limit parallel
speedups. In Section 4 we describe the wrapper constructed to schedule the
parallel lrs executions, detailing various design decisions taken. Section 5 gives
numerical experiments on a wide variety of polyhedra with bench marks against
the standard solvers cddr+ [8] and lrs . We conclude with some observations and
directions for improving the parallelization performance.

2 Background

2.1 Reverse Search

Reverse search is a technique for generating large, relatively unstructured, sets
of discrete objects. We give an outline of the method here referring the reader
to [3] [4] for further details.

In its most basic form, it can be viewed as the traversal of a spanning tree,
called the reverse search tree T , of a graph G = (V,E) whose nodes are the
objects to be generated. Edges in the graph are specified by an adjacency or-
acle, and the subset of edges of the reverse search tree are determined by an
auxiliary function, which can be thought of as a local search function f for an
optimization problem defined on the set of objects to be generated. One vertex,
v∗, is designated as the target vertex. For every other vertex v ∈ V repeated
application of f must generate a path in G from v to v∗. The set of these paths
defines the reverse search tree T , which has root v∗.

416 D. Avis and G. Roumanis

A reverse search is initiated at v∗, and only edges of the reverse search tree are
traversed. When a node is visited the corresponding object is output. Since there
is no possibility of visiting a node by different paths, the nodes are not stored.
Backtracking can be performed in the standard way using a stack, but this is not
required as the local search function can be used for this purpose. This means
that it is not necessary to keep more than one node of the tree at any given time,
and this memoryless property is the main feature of reverse search. For a given
problem, there may be many choices of adjacency oracle and local search function.

However, in the basic setting described here, a few properties are required.
Firstly, the underlying graph G must be connected and an upper bound on the
maximum vertex degree, Δ, must be known. The performance of the method
depends on G having Δ as low as possible. The adjacency oracle must be capa-
ble of generating the adjacent vertices of some given vertex v sequentially and
without repetition. This is done by specifying a function Adj(v, j), where v is a
vertex of G and j = 1, 2, ..., Δ. Each value of Adj(v, j) is either a vertex adjacent
to v or null. Each vertex adjacent to v appears precisely once as j ranges over its
possible values. For each vertex v �= v∗ the local search function f(v) returns the
tuple (u, j) where v = Adj(u, j) such that u is v’s parent in T . The algorithm
is shown in Algorithm 1. The order that the vertices are output is called the
reverse search order. For convenience later, we do not output the root vertex v∗.

Algorithm 1. Generic Reverse Search

1: procedure rs(v∗, Δ, Adj, f)
2: v ← v∗ j ← 0
3: repeat
4: while j < Δ do
5: j ← j + 1
6: if f(Adj(v, j)) = v then � forward step
7: v ← Adj(v, j)
8: output v
9: j ← 0
10: end if
11: end while
12: if v �= v∗ then � backtrack step
13: (v, j) ← f(v)
14: end if
15: until v = v∗ and j = Δ
16: end procedure

These ideas can be illustrated on a simple example: generating all permuta-
tions of a set of integers. Here the goal is to generate all permutations of the
integers {1, 2, ..., n}. The underlying graph Gn = (V,E) is defined as follows.
The vertices are n-tuples, v = v1v2...vn, representing the n! permutations of
the n integers. We set the target v∗ = (12...n). The adjacency oracle simply
interchanges two consecutive integers in a permutation, and is given by

Adj(v, i) = (v1v2...vi−1vi+1vi...vn) i = 1, 2, ..., n− 1.

Implementation of the lrs Vertex Enumeration Code 417

So Gn is regular of degreeΔ = n−1. Finally we set the local search function f to
interchange the first two consecutive integers that are out of order numerically:

f(v) = (v1v2...vi−1vi+1vi...vn) for the smallest i s.t. vi > vi+1.

Figure 1 shows G4 which has 24=4! vertices and is regular of degree 3. The
edges chosen by the local search function f are shown with arrows directed
towards the root 1234. So for example starting at vertex 4231 f generates the
path

4231 "→ 2431 "→ 2314 "→ 2134 "→ 1234.

The set of all arcs with arrows defines the reverse search tree T .

Fig. 1. Permutahedron: n = 4

2.2 Extended Reverse Search

To achieve parallelization of Algorithm 1 we make use of the lack of memory
property that allows it to be restarted from any node in the reverse search tree
T . After a restart, all remaining nodes of T will be generated. We adapt this to
allow for a subtree to be enumerated from its given root.

When calling the reverse search procedure we now supply four additional
parameters:

– start vertex is vertex from which the reverse search should be initiated and
replaces v∗

– depth is initially the depth in T of start vertex and will be updated to be
the depth in T of the vertex v currently being considered in the search

418 D. Avis and G. Roumanis

– max depth is the depth at which forward steps are terminated
– min depth is the depth at which backtrack steps are terminated

The modified algorithm is shown in Algorithm 2.

Algorithm 2. Extended Reverse Search

1: procedure rs2(start vertex, Δ, Adj, f , depth, max depth, min depth)
2: j ← 0 v ← start vertex
3: repeat
4: while j < Δ and depth < max depth do
5: j ← j + 1
6: if f(Adj(v, j)) = v then � forward step
7: v ← Adj(v, j)
8: output v
9: j ← 0
10: depth ← depth+ 1
11: end if
12: end while
13: if depth > 0 then � backtrack step
14: (v, j) ← f(v)
15: depth ← depth− 1
16: end if
17: until depth = min depth and j = Δ
18: end procedure

Comparing Algorithm 1 and Algorithm 2 it is clear that the modifications
are very simple. However they enable us to extend the function of Algorithm
1 in several ways. For any vertex v in T we denote its depth by depth(v). Ini-
tially we have depth(v∗) = 0. For the generic version of reverse search we set
start vertex = v∗, depth = min depth = 0 and max depth = +∞. For a restart
from vertex v we set start vertex = v, depth = depth(v),min depth = 0 and
max depth = +∞. To output all nodes in the subtree of T rooted at v we set
start vertex = v, depth = depth(v),min depth = depth(v) and max depth =
+∞. To initialize the parallelization process we will generate the tree T down
to a fixed depth k by setting start vertex = v∗, depth = min depth = 0 and
max depth = k.

Returning to the example in Figure 1 we could do a restart from v = 2143
with depth = 2 obtaining the output 2413 4213 1423 4123. To list all nodes in
the subtree rooted at v we would in addition set min depth = 2 producing the
output 2413 4213. To do a partial enumeration down to depth = 2 we would
set start vertex = 1234, depth = min depth = 0,max depth = 2 generating the
output 2134 2314 1324 3124 1342 1243 2143 1423.

2.3 Parallelization

In this subsection we describe how the extended reverse search algorithm can
be parallelized without requiring further modification. We give a rather generic

Implementation of the lrs Vertex Enumeration Code 419

description of the parallelization which is by nature somewhat oversimplified.
The details of the actual implementation with the lrs program will be given in
Section 4.

We proceed in three phases. In the first phase we generate the reverse search
tree T down to a fixed depth init depth. Rather than output the nodes of the
tree, we store them in a list L. In the second phase we schedule threads in
parallel from L using the subtree enumeration feature. For this we require the
parameter max threads giving the maximum number of parallel threads to that
can run at the same time. We will also control where the output stream is sent. In
Phase 1 it will be directed to the list L. From L all vertices that have depth less
than init depth are removed and output. In Phase 2 we schedule threads from
the nodes in L up to the number specified by max threads. Each thread uses
lrs to enumerate the subtree rooted at the node removed for it from L. When
the list L becomes empty we move to Phase 3 in which the threads terminate
one by one until there are no more running and the procedure terminates. We
make use of a collection process which concatenates the output from the threads
into a single output stream. The procedure is outlined in Algorithm 3. It is
clear from the pseudocode the only interaction between the parallel threads is
the common output collection process. The only signalling required is when a
thread terminates. Let us return to the example in Figure 1. Suppose we set the
init depth = 2 and max threads = 3. We initiate the computation with the call

PRS(1234, 3, Adj, f, 2, 3)

Algorithm 3. Parallel Reverse Search

1: procedure prs(start vertex, Δ, Adj, f , init depth, max threads)
2: num threads ← 0
3: redirect output to a list L � Phase 1
4: RS2(start vertex, Δ, Adj, f , 0, init depth, 0)
5: redirect output to collection process
6: remove all v ∈ L with depth(v) < init depth and output(v)
7: while num threads < max threads and L �= ∅ do � Phase 2
8: remove any v ∈ L
9: RS2(v, Δ, Adj, f , depth(v), ∞, depth(v))
10: num threads ← num threads+ 1
11: end while
12: while num threads > 0 do
13: wait until a termination signal is received
14: if L �= ∅ then
15: remove any v ∈ L
16: RS2(v, Δ, Adj, f , depth(v), ∞, depth(v))
17: else � Phase 3
18: num threads ← num threads− 1
19: end if
20: end while
21: end procedure

420 D. Avis and G. Roumanis

This will generate the output list

L = {2134 2314 1324 3124 1342 1243 2143 1423}

in line 3. In line 6 we remove and output 2134 1324 1243 which have depth < 2
leaving

L = {2314 3124 1342 2143 1423}
which are at depth = 2. We assume L is processed in left to right order. In lines
8-10 we initiate three calls to RS2:

RS2(2314, 3, Adj, f, 2,∞,2), RS2(3124, 3, Adj, f, 2,∞, 2), andRS2(1342, 3, Adj, f, 2,∞, 2).

After each of the first two threads terminate, in lines 15-16, two further calls are
made:

RS2(2143, 3, Adj, f, 2,∞, 2) and RS2(1423, 3, Adj, f, 2,∞, 2).

Then L = ∅ and each subsequent termination decrements num threads until all
threads have completed.

In analyzing Algorithm 3 we observe that in Phase 1 there is no parallelization,
in Phase 2 all available cores are used, and in Phase 3 the level of parallelization
drops monotonically as threads terminate. Looking at the overhead compared
with Algorithm 1 we see that this almost entirely consists of the amount of time
required to restart the reverse search process. This leads to conflicting issues in
setting the critical init depth parameter. A larger value implies that:

– only a single thread is working for a longer time
– the list L will be typically be larger requiring more overhead in restarts, but
– the time spent in Phase 3 will typically be reduced.

The success in parallelization clearly depends on the structure of the tree T . In
the worst case it is a path and no parallelization occurs in Phase 2. Therefore
in the worst case we have no improvement in complexity over that reported by
Avis and Fukuda [3] for basic reverse search. In the best case the tree is balanced
so that the list L can be short reducing overhead and all threads terminate at
more or less the same time. Success therefore heavily depends on the structure
of the underlying enumeration problem.

For the vertex enumeration problem, discussed in the next section, both of
these extremes and everything in between is possible. We will see experimental
results to illustrate this in Section 5.

We conclude by comparing the method of Algorithm 3 with that used by
Weibel [11] for computing Minkowski sums by reverse search. The latter method
uses a more sophisticated approach. Firstly the search is recursive so that all
nodes are stored in the backtrack path. As we noted, for vertex enumeration it
is not possible in general to keep a full backtrack stack since it may contain all
of the LP dictionaries and exhaust memory. An approximation to this included
in the original lrs code, which employs a user specified parameter k and caches

Implementation of the lrs Vertex Enumeration Code 421

the last k nodes of the backtrack stack. In this way memory is not exhausted
and the number of cache misses is usually rather low.

Secondly the rather than executing a distinct Phase 1, in Weibel’s method a
given process is designated the boss and can either execute normally or spin off
nodes to other threads to be executed in parallel. When the boss runs out of
work another node is designated to be the boss and messages are sent to inform
all other nodes.

Computational experience is given for up to 8 parallel processors with reported
speedups of 5.5 to 8 times.

3 Vertex Enumeration

3.1 Reverse Search Vertex Enumeration Method

The initial application of reverse search was to the vertex enumeration problem
[3]. From this paper the lrs program was derived and a full description of its
implementation is given in [1]. We give a simplified description here.

Given an m × n matrix A = (aij) and an m dimensional vector b, a convex
polyhedron, or simply polyhedron, P is defined as:

P = {x∈Rn : b+Ax≥0}.
A polytope is a bounded polyhedron. For simplicity in this description we will
assume that we are dealing input data A, b that define full dimensional polytopes.
A point x∈P is a vertex of P iff it is the unique solution to a subset of n
inequalities solved as equations. The vertex enumeration problem is to output
all vertices of a polytope P . Figure 2 shows a typical input which defines the
polytope P sketched in Figure 3 with 5 vertices.

Fig. 2. A, b and its polyhedron P Fig. 3. P has 5 vertices

The computations are based on dictionaries, as is done for the simplex method
of linear programming. To get a dictionary for P = {x∈Rn : b+Ax≥0} we add
one new nonnegative variable for each inequality:

xn+i = bi +
n∑

j=1

aijxj , xn+i≥0 i = 1, 2, ...,m.

422 D. Avis and G. Roumanis

These new variables are called slack variables and the original variables are called
decision variables.

In order to have any vertex at all we must have m≥n, and normally m is
significantly larger than n, allowing us to solve the equations for various sets of
variables on the left hand side. The variables on the left hand side of a dictio-
nary are called basic, and those on the right hand side are called non-basic or,
equivalently, co-basic. We use the notation B = {i : xi is basic} and N = {j : xj
is co-basic}.

A pivot interchanges one index from B and N and solves the equations for
the new basic variables. A basic solution from a dictionary is obtained by setting
xj = 0 for all j∈N . It is a basic feasible solution(BFS) if xj≥0 for every slack
variable xj . A dictionary is called degenerate if it has a slack basic variable
xj = 0. As is well known, each BFS defines a vertex of P and each vertex of
P can be represented as one or more (in the case of degeneracy) BFSs. For the
example a typical BFS and dictionary are shown in Figure 4.

Fig. 4. Decision variables are all basic, N = {6, 7, 8}

To apply reverse search to this problem we first define the relevant graph
G = (V,E). Each node in V corresponds to a BFS and is labelled with the cobasic
set N . Each edge in E corresponds to a pivot between two BFSs. Formally we
may define the adjacency oracle as follows. Let B and N be index sets for the
current dictionary. For i ∈ B and j ∈ N

Adj(N, i, j) =

{
N − j + i if this gives a feasible dictionary
∅ otherwise

(The notation N − j + i is used as a convenient shorthand for N \ {j} ∪ {i}.)
For the example the graph G is shown in Figure 5. Observe that the vertex
(0, 0,−1) is degenerate and is represented by four cobases. The target v∗ for
the reverse search is found by solving a linear program over this dictionary with
any objective function z = cTx that defines a unique optimum vertex. We use
the objective function z and a non-cycling pivot selection rule to define the
local search function f . In the case of lrs we use Bland’s least subscript rule for
selecting the variable which enters the basis and a lexicographic ratio test to
select the leaving variable. This lexicographic rule simulates a simple polytope
which greatly reduces degeneracy. In the example only two of the four bases
defining vertex (0, 0,−1) would be generated. For details see [1].

Implementation of the lrs Vertex Enumeration Code 423

Fig. 5. The graph of feasible dictionaries for Figure 2

3.2 Parallelization Issues

In this subsection we discuss issues affecting how successful we can expect Algo-
rithm 3 to be when applied to vertex enumeration. Referring back to the analysis
at the end of Section 2.3 we recall the worst case is when the reverse search tree
T is a path, as no parallelization is achieved. This in fact can happen!

The Klee-Minty examples [9], and their relatives, are specially constructed
polytopes so that the simplex method with a given pivot rule will follow a
Hamiltonian path on the polytope’s skeleton. This is precisely the case when
no parallelization occurs. This creates no problem for single processor codes, as
the tree shape is largely irrelevant. Examples of various types of polytopes are
given in Section 5.

4 Implementation Description

As discussed earlier, the first attempt at parallelization was unfortunately ineffec-
tive, unportable and most importantly unmanageable. The approach essentially
used POSIX threads to initiate a system call of lrs on subtrees. Concatenating
the output to a standard location proved difficult as interprocess communica-
tion is not easily achieved. To circumvent this issue, temporary files were used
to store output data. This was inefficient with regards to memory requirements
for a given problem. These short comings were carefully reviewed when the par-
allelization problem was attacked for a second time.

In the second approach, several open source, multi-threading libraries were
considered. It was decided that the C++ Boost library offered the greatest per-
formance, adaptability and maintainability. Moreover, Boost works on almost
any modern operating system, including UNIX and Windows variants; ensuring
the portability of the final solution. Although C++ is not a strict superset of C,
the language provides mechanisms for mixing code that is compiled by compati-
ble C and C++ compilers. This allowed us to create a lightweight C++ wrapper
around the lrs codebase using the g++ compiler.

424 D. Avis and G. Roumanis

On a high level, plrs has a multi-producer single consumer architecture. What
this equates to is that several producer threads traverse subtrees of the vertex
enumeration problem, while a single consumer thread concatenates output to
a unified location. Note that threads within a process share the same state,
and same memory space. This is in contrast to processes which are independent
execution units that contain their own state information. This leads to the fact
that inter-thread communication is easily achieved.

The Boost.Atomic library is used to coordinate these multiple threads through
atomic variables. The implementation makes use of processor-specific instruc-
tions where possible and falls back to emulating atomic operations through
locking; ensuring the portability of the solution. A lock-free multiple producer
single consumer queue is used to maintain output. The specific function com-
pare exchange weak is used to post output from the producer threads to the
single consumer thread. For more details, please visit the Boost.org web site [5].

The boost::thread class is responsible for launching the consumer thread while
the boost::thread group class is used for launching and managing all producer
threads. In order to wait for the execution of all producer threads to finish,
the join all() member function is used. Essentially, this blocks the main process
thread from completing until vertex enumeration has exhausted. A similar func-
tion, join(), is used on the consumer thread to ensure all output is captured
before the completion of the entire process.

5 Numerical Experiments

We describe here some experimental results using the plrs code on two comput-
ers, mai12 1 and mai64 2 with respectively 12 and 64 cores and similar processor
speeds. When we performed the experiments, the machines were idle except for
systems functions.

Using the top command we can measure the amount of work each machine is
doing. With no work, the load average is zero and with k threads running lrs the
load average is very close to k. We initially benchmarked the two computers by
running an lrs job (single thread) when the computers were idle and then with
increasing load averages. On mai12 , with a load average of 12, the time for the
lrs run was essentially the same as with a load average of one, as one would wish
for in an ideally constructed parallel computer. In a similar test on mai64 the
performance deteriorated noticeably with high load averages. At load averages
of 32, 48, and 64 on mai64 the lrs times were respectively 1.15, 1.41 and 1.46
times longer then with a load average of one. We therefore restricted tests to
a maximum of 32 threads on this machine and, even so, these results probably
underestimate the speedup by about 15% compared to a machine such as mai12
which performs close to the ideal.

We chose a few representative polyhedra that are shown in Table 1. For each
example we first give the input file name, type (H or V-representation) and input

1 Xeon X5640, 2.66GHz, 12 core, 24GB memory, 60GB hard drive.
2 Opteron 16core 6272 X 4, 2.1GHz, 64 core, 64GB memory, 500GB hard drive.

Implementation of the lrs Vertex Enumeration Code 425

Table 1. Polyhedra tested: lrs ,cddr+ times on mai12

Name Input Output lrs cddr+
H/V m n V/H size bases depth secs secs

mit H 729 9 4861 196K 1375608 101 809 505
bv7 H 69 57 5040 867K 84707280 17 11851

perm7 H 127 8 5040 127K 5040 21 0.6 15.0
c30-15 V 30 16 341088 73.8M 319770 14 80 4652
perm10 H 1023 11 3628800 127M 3628800 45 3193
c40-20 V 40 21 40060020 15.6G 20030010 19 22458

dimensions (m rows and n columns). We then give the output size (number
of vertices or facets, respectively) and space, which ranges from 127K to an
enormous 15.6G. For lrs we give the number of bases generated, the maximum
tree depth and running time in seconds. The cddr+ times were obtained using the
default settings and are only given to emphasize the difference between pivoting
and double description methods. No attempt was made to optimize the settings.
No value implies that the cddr+ run did not terminate with 48 hours. Input files
are available from the web site [2].

The polytope mit is a configuration polytope which required about a month
of computer time for its vertex enumeration by cdd and lrs when first run in 1993
[7]. It is a rather degenerate polytope. c40-20 is a cyclic polytope and is simple, ie,
non-degenerate. perm7 and perm10 are permutation polytopes written in their
standard formulations, and are also simple polytopes. The vertices of perm n
are the n! permutations of 1, 2, ..., n. The standard formulation using n variables
has 2n − 2 inequalities and one linearity. bv7 is an alternative formulation that
has polynomial size in n as it is based on the Birkhoff-Von Neumann polytope.
It has n2 inequalities and 3n − 1 linearities in n2 + n variables. We included
perm7 only for comparison purposes with bv7 and do not use it in parallelization
experiments.

Table 2. Times and speedups (su): no. of threads =mt, initial depth=id (mai12)

Name lrs mt = 4 mt=8 mt=12
secs secs su secs su secs su

L id L id L id

mit 809 232 3.5 142 5.7 104 7.8
284 4 613 5 1213 6

bv7 11851 3117 3.8 1580 7.5 1104 10.7
645 2 645 2 7554 3

c30-15 80 27 3.0 15 5.3 12 6.7
1716 6 1716 6 1716 6

perm10 3193 983 3.2 517 6.2 421 7.6
4489 7 4489 7 4489 7

c40-20 22458 9633 2.3 5600 4.0 3697 6.1
220 3 715 4 2002 5

426 D. Avis and G. Roumanis

Table 3. Times and speedups (su): no. of threads =mt, initial depth=id (mai64)

Name lrs mt = 4 mt=8 mt=16 mt=32
secs secs su secs su secs su secs su

L id L id L id L id

mit 1125 339 3.3 190 5.9 123 9.1 110 10.2
284 4 613 5 1213 6 2121 7

bv7 17381 4513 3.85 2345 7.4 1215 14.3 707 24.5
645 2 645 2 7554 3 7554 3

c30-15 75 34 2.2 22 3.4 20 3.8 21 3.6
1716 6 1716 6 1716 6 1716 6

perm10 4295 1317 3.3 683 6.3 566 7.6 570 7.6
4489 7 4489 7 4489 7 4489 7

c40-20 17538 9802 1.8 6707 2.6 4902 3.6 4106 4.3
220 3 715 4 2002 5 5005 6

In Tables 2 and 3 we present speedup results for plrs runs on mai12 and mai64
respectively for the problems presented in Table 1. The initial depth parameter
was chosen fairly arbitrarily to give a reasonable size list L of problems to solve in
parallel. On mai12 we observe that the speedups are roughly comparable except
for the last problem, c40-20, which are considerably smaller. As remarked, it
has huge output size. On mai64 in addition c30-15 shows very small speedups
as the number of threads increases. Note that it has short running time relative
to its output size. On both machines the speedups are largest for the highly
degenerate bv7 which generates very little output. Together this is evidence that
the collection process may be the bottleneck in these cases.

Fig. 6. mit: mt=12, id=3, mai12 Fig. 7. mit: mt=12, id=4, mai12

The only user parameter for plrs is the initial depth parameter. If this parame-
ter is too low the list of jobs L may be too short to provide adequate parallelism.
On the other hand if it is too large a relatively large amount of time will be spent
in phase 1 using only one thread, and also in restarting each job in L during

Implementation of the lrs Vertex Enumeration Code 427

Fig. 8. mit: mt=12, id=6, mai12 Fig. 9. mit: mt=12, id=10, mai12

phase 2. This is illustrated in Figures 6 to 9. These show the load average during
runs of plrs on mit using 12 cores and depths 3,4,6, 10 respectively. One can
clearly see the three phases of execution: a short start up with one core, a period
with all 12 cores active while L is depleted, then the final phase as each process
terminates. The area under the graph is the total execution time. Depths of 4
and 6 achieve the fastest elapsed time, but total execution time is higher at
depth 6. With depth 10 the first two phases are longer, the third phase shorter,
the total execution time longer. However the elapsed time to complete the run
is about 20% longer than at depth 4.

In Table 4 we show the dependence on the initial depth of speedup results
for plrs on four of the polytopes. Although there are differences in performance
they are less important than we expected. Given the previous discussion, one
would expect increasing speedups as the depth increases from a small value to
a minimum then decreasing speedups as the depth increases. Although this is
somewhat observed in the data there are obviously other competing factors at
play and the situation is more complicated.

Table 4. Comparison of various init depth(id) values with max threads(mt)=12 (
mai12)

Name lrs id = 2 id = 3 id=4 id=5 id=6
secs L secs L secs L secs L secs L secs

mit 809 35 183 115 127 284 102 613 104 1213 108
bv7 11851 645 1144 7554 1104 60966 1126 349984 1499 - -

c30-15 80 36 34 120 23 330 17 792 13 1716 12
perm10 3193 44 405 155 457 440 507 1068 530 2298 551

428 D. Avis and G. Roumanis

6 Conclusions and Future Work

We have demonstrated that very useful speedups can be obtained by a portable
parallelization of lrs that does not disturb the underlying code. The method al-
lows for independent development of the lrs code and the parallelization process
itself. We expect that similar results can be obtained by a wide range of appli-
cations using the reverse search approach. The installation is straight forward
and no special purpose hardware is required. Very noticeable improvements are
found using just quad-core personal computers.

Figure 7 shows the limitations of our approach. For the polytope mit an initial
depth of 4 achieves the shortest elapsed time. However for only 60% of the time
are all 12 cores busy. In fact for a quarter of the time only two cores are active.

To remedy this one can imagine interrupting long running tasks and then using
plrs recursively to split them into subproblems, repopulating L. We performed
some preliminary experiments along these lines, but the results were mixed. As
this increases overhead, the final result may sometimes be worse, depending on
the search tree shape. It is a fruitful area for future research. Another possibility
is to use the built in estimator function of lrs . For each leaf obtained in phase
1 it is possible to get an unbiased estimate of the size of the subtree that it
roots by using a random probe. One could then schedule jobs from L using a
list decreasing heuristic, so that longer runs are done first. The trade off is again
overhead: the random probes may require a lot of processing time if the tree is
unbalanced.

Acknowledgments. The authors would like to thank Kenji Okuda for prepar-
ing Figures 6 to 9. The research was supported by grants from NSERC and
JSPS.

References

1. Avis, D.: lrs: A Revised Implementation of the Reverse Search Vertex Enumer-
ation Algorithm. In: Kalai, G., Ziegler, G. (eds.) Polytopes - Combinatorics and
Computation, pp. 177–198. Springer (2000)

2. Avis, D.: (2013), http://cgm.cs.mcgill.ca/~avis/C/lrs.html
3. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration

of arrangements and polyhedra. Discrete & Computational Geometry 8, 295–313
(1992)

4. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathe-
matics 65, 21–46 (1993)

5. Boost.org (2013),
http://www.boost.org/doc/libs/1_53_0/doc/html/lockfree.html

6. Brungger, A., Marzetta, A., Fukuda, K., Nievergelt, J.: The parallel search bench
ZRAM and its applications. Ann. Oper. Res. 90, 45–63 (1999)

7. Ceder, G., Garbulsky, G., Avis, D., Fukuda, K.: Ground states of a ternary fcc
lattice model with nearest- and next-nearest-neighbor interactions. Phys. Rev. B
Condens. Matter 49(1), 1–7 (1994)

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.boost.org/doc/libs/1_53_0/doc/html/lockfree.html

Implementation of the lrs Vertex Enumeration Code 429

8. Fukuda, K.: (2012), http://www.inf.ethz.ch/personal/fukudak/cdd_home
9. Klee, V., Minty, G.J.: How Good is the Simplex Algorithm? In: Shisha, O. (ed.)

Inequalities III, pp. 159–175. Academic Press Inc., New York (1972)
10. Marzetta, A.: (2008) maintained by D. Bremner:

http://www.cs.unb.ca/~bremner/software/zram/

11. Weibel, C.: Implementation and parallelization of a reverse-search algorithm for
minkowski sums. In: ALENEX, pp. 34–42 (2010)

http://www.inf.ethz.ch/personal/fukudak/cdd_home
http://www.cs.unb.ca/~bremner/software/zram/

Author Index

Abu-Khzam, Faisal N. 284
Ahadi, Arash 351
Avis, David 414

Bai, Yin 373
Bielecki, W�lodzimierz 129
Burcea, Mihai 306

Chan, Hung-Chang 340
Chang, Jou-Ming 340
Chen, Jianer 260
Chen, Jing 387
Chen, Zhi-Zhong 1
Cho, Sukhyeun 295
Christ, Marie G. 226
Clautiaux, François 37

Dahmani, Nadia 37
Dong, Jianming 106
Duan, Zhenhua 214

Fan, Chenglin 202
Fan, Lidan 141
Fan, Ying 1
Faria, Luérbio 178
Favrholdt, Lene M. 226
Feng, Qilong 260
Feng, Xin 72

Ghodsi, Mohammad 361
Goebel, Randy 49
Guo, Jiong 260

Han, Xin 387
Higashikawa, Yuya 165
Hon, Wing-Kai 178, 306
Hu, Jueliang 106

Iwama, Kazuo 387

Jiang, Bo 250
Jiang, Yiwei 106

Kamiyama, Naoyuki 165
Kang, Cong X. 84

Katoh, Naoki 165
Kita, Nanao 402
Klimek, Tomasz 129
Kloks, Ton 178
Kobayashi, Yuki 165
Kraska, Krzysztof 129
Krichen, Saoussen 37

Larsen, Kim S. 226
Letu, Qingge 373
Li, Deying 141
Lin, Guohui 49
Liu, Hsiang-Hsuan 178, 306
Liu, Jin 214
Liu, Peihai 96
Liu, Tian 49, 272
Lu, Min 272
Lu, Xiwen 96
Lu, Zaixin 141
Lu, Zhao 272
Luo, Jun 202
Luo, Li 25

Ma, Huan 141
Mozafari, Amirhossein 351

Na, Joong Chae 295
Nagamochi, Hiroshi 153

Pai, Kung-Jui 340
Papadopoulou, Evanthia 238
Park, Kunsoo 295

Roumanis, Gary 414

Sim, Jeong Seop 295

Tabatabaei, Azadeh 361
Talbi, El-Ghazali 37
Tan, Xuehou 250
Tian, Cong 214
Ting, Hing-Fung 387
Tong, Weitian 49

Wang, Jianxin 260
Wang, Lusheng 1
Wang, Tao-Ming 178

432 Author Index

Wang, Yue-Li 178
Wong, Prudence W.H. 306
Wu, Bang Ye 60
Wu, Ro-Yu 340
Wu, Taoyang 190
Wu, Weili 141
Wylie, Tim 13

Xiang, Xiangzhong 117
Xiao, Mingyu 153
Xin, Chunlin 373
Xu, Jinhui 238
Xu, Ke 272
Xu, Lei 238

Yamakami, Tomoyuki 318
Yang, Min 260
Yau, David K.Y. 306
Yi, Eunjeong 84
Yu, Sheng 330

Zarei, Alireza 351
Zhang, E. 25
Zhang, Louxin 190
Zhang, Qinghui 106
Zheng, Feifeng 25, 72
Zheng, Yu 190
Zhong, Farong 202
Zhu, Yuqing 141

	Preface
	Organization
	Invited Lectures
	Table of Contents
	Contributed Papers
	Parameterized and Approximation Algorithmsfor Finding Two Disjoint Matchings
	1 Introduction
	2 Basic Definitions
	3 The Parameterized Algorithm for MTM
	4 The Approximation Algorithm for MWTM
	4.1 Outline of the Algorithm
	4.2 Computation of T2 and T3
	4.3 Analysis of the Approximation Ratio
	4.4 Derandomization

	5 OpenProblems
	References

	Discretely Following a Curve
	1 Introduction
	2 Background
	3 Discrete Set-Chain Matching
	4 Set-Chain Matching with T = |Q| (NSMC-k)
	5 Set-Chain Matching with T = |S�| (NSMS-k)
	6 Unique Set-Chain Matching (USM-k)
	7 Conclusion
	References

	NF-Based Algorithms for Online Bin Packingwith Buffer and Item Size Limitation
	1 Introduction
	1.1 Related Work

	2 Basic Description and Analysis of NF Algorithm
	2.1 Problem Description
	2.2 Algorithm NF and Its ACR Analysis

	3 An NF-Based Algorithm and Its ACR Analysis
	4 Computational Tests
	5 Conclusion
	References

	A Comparative Study of Multi-objective Evolutionary Algorithms for the Bi-objective2-Dimensional Vector Packing Problem
	1 Introduction
	2 The Bi-objective 2-Dimensional Vector Packing Problem
	3 Multi-objective Evolutionary Algorithms for the Mo2-DBPP
	3.1 Multi-objective Evolutionary Algorithms
	3.2 Application to the Mo2-DBPP
	3.3 Evolutionary Algorithms Features

	4 Experiments
	4.1 Experimental Design
	4.2 Computational Results

	5 Conclusion
	References

	Approximation Algorithms for the MaximumMultiple RNA Interaction Problem
	1 Introduction
	2 Algorithmic and Hardness Results
	2.1 MRIP with a Known RNA Interaction Order
	2.2 The General MRIP

	3 Better Approximations for General MRIP with Transitivity
	3.1 A 0.5328-Approximation for Disallowing Pseudoknots
	3.2 A 0.5333-Approximation for Allowing Pseudoknots

	References

	On the Clustered Steiner Tree Problem
	1 Introduction
	2 Notation and Definitions
	3 Steiner Ratio of CluSteiner
	4 NP-Hardness for Fixed Topologies
	5 Approximation Algorithms
	6 Conclusion
	References

	Integrated Job Scheduling with Parallel-BatchProcessing and Batch Deliveries
	1 Introduction
	2 Description and Basic Properties
	3 The Unbounded Batch Processing Model M1
	4 The Bounded Batch Processing Model M2
	5 Conclusions and Remarks
	References

	The Fractional Strong MetricDimension of Graphs
	1 Introduction
	2 Some Results on
	2 Some Results on dimf (G), as a Preliminary tosdimf (G)
	3 Basic Results on the Fractional Strong Metric Dimension of Graphs
	4 The Fractional Strong Metric Dimension of Trees and Unicyclic Graphs
	5 Nordhaus-Gaddum-Type Result on Fractional Strong Metric Dimension
	References

	Online Scheduling on Two Parallel Machineswith Release Times and Delivery Times
	1 Introduction
	2 Preliminaries
	3 An Online Algorithm
	References

	Parallel Machine Scheduling with a SingleServer: Loading and Unloading
	1 Introduction
	2 Preliminaries
	3 List Scheduling
	3.1 Structure of List Scheduling
	3.2 Worst Case Ratio

	4 Algorithm
	5 Conclusions
	References

	Prompt Mechanism for Online Auctionswith Multi-unit Demands
	1 Introduction
	1.1 The Problem
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	3 A Lower Bound on the Competitive Ratio
	4 A Prompt and Truthful Mechanism
	5 Competitive Ratios
	5.1 Competitive Ratio When Demands Are Uniform
	5.2 Competitive Ratio When Demands Are Non-uniform

	References

	Using Basis Dependence Distance Vectors to Calculate the Transitive Closure of Dependence Relations by Meansof the Floyd-Warshall Algorithm
	1 Introduction
	2 Background
	3 Calculating Transitive Closure
	4 Related Work
	5 Experimental Results
	6 Conclusion
	References

	A Nash Equilibrium Based Algorithmfor Mining Hidden Links in Social Networks
	1 Introduction
	2 Game-Theoretic Framework for Mining Hidden Links
	2.1 Relative Work in Community Identification
	2.2 Community Formation Game
	2.3 Hardness of Forming Communities Satisfying Strong Nash Equilibrium
	2.4 Models for Link Prediction

	3 Methodology
	3.1 Select Active Individual Set
	3.2 Search Hidden Links
	3.3 Algorithm Analysis

	4 Simulation
	4.1 Experimental Results

	5 Conclusion
	References

	An Improved Exact Algorithm for UndirectedFeedback Vertex Set
	1 Introduction
	2 Preliminaries
	3 Reducing the Instance
	4 A Divide-and-Conquer Algorithm Based on Cut-Vertices
	5 The Idea of the Branching Operations
	6 The Algorithm
	7 The Analysis
	7.1 Weight Setting and Basic Analysis
	7.2 Some Techniques
	7.3 The Final Result

	8 Concluding Remarks
	References

	An Inductive Construction of Minimally RigidBody-Hinge Simple Graphs
	1 Introduction
	2 Preliminaries
	3 Five Operations Which Inductively Construct Minimally Rigid Body-Hinge Simple Graphs
	3.1 Proof of Theorem 1

	4 Proof of Theorem 2
	4.1 Proof of Theorem 2

	References

	On Complexities of Minus Domination
	1 Introduction
	2 Planar Graphs and
	Degenerate Graphs
	2.1 Planar Graphs
	2.2 d-Degenerate Graphs

	3 Cographs
	3.1 Distance-Hereditary Graphs

	4 Strongly Chordal Graphs
	5 Splitgraphs
	5.1 Minus Domination Is Not FPT

	References

	A Linear-Time Algorithm for Reconciliationof Non-binary Gene Tree and Binary Species Tree
	1 Introduction
	2 Tree Reconciliation Problem
	2.1 Gene Trees and Species Trees
	2.2 Tree Reconciliation
	2.3 Reconciliation of Two Non-binary Trees

	3 Algorithm
	4 Efficient Implementation of the Algorithm
	5 Conclusion
	References

	On Some Proximity Problems of Colored Sets
	1 Introduction
	2 The Algorithm for MaxDCS
	3 The Algorithms for AFFN and FFNQ
	4 The Algorithm for
	5 Conclusions
	References

	An Extended Strange Planet Protocol
	1 Introduction
	2 mStrange Planet Protocol
	3 Principles in Transitions
	4 Properties withmStrange Planet Protocol
	5 Applications
	6 Conclusion
	References

	Online Bin Covering: Expectationsvs. Guarantees
	1 Introduction
	2 Competitive Analysis
	2.1 Limiting the Item Sizes

	3 Relative Worst Order Analysis
	4 The Random Order Ratio
	5 The Max/Max Ratio
	6 Uniform Distribution
	7 Concluding Remarks
	References

	Map of Geometric Minimal Cuts for GeneralPlanar Embedding
	1 Introduction
	2 Geometric Cuts
	3 Identifying Geometric Minimal Cuts and Minimum Inducing Regions
	3.1 Computing Geometric Minimal Cuts
	3.2 Computing Minimum Inducing Regions

	4 Generating Map of Geometric Minimal Cuts
	4.1 Properties and Plane Sweep Approach
	4.2 Events, Data Structures and Algorithm

	References

	A New Approach to the Upper Bound on the Average Distance from the Fermat-WeberCenter of a Convex Body
	1 Introduction
	2 Preliminaries
	3 1/3 ≤ c ≤ (99 − 50√3)/36
	3.1 Transforming P into a Disk
	3.2 Transforming P into a Circular Sector of Radius Δ(P)/2

	4 Concluding Remarks
	References

	Parameterized Complexity of Controland Bribery for d-Approval Elections
	1 Introduction
	2 Parameterized Complexity Results
	2.1 Unbounded d
	2.2 Approved Candidates Bounded by a Constant

	3 Problem Kernels
	4 Conclusion
	References

	Circular Convex Bipartite Graphs:Feedback Vertex Set
	1 Introduction
	2 Preliminaries
	3 Reduction
	4 Conclusions
	References

	The Multi-parameterized ClusterEditing Problem
	1 Introduction
	2 Preliminaries
	3 A Reduction Procedure
	3.1 Base-Case Reductions
	3.2 Reductions Based on Conflict-Triples
	3.3 Reductions Based on Common Neighbors
	3.4 Reductions Based on Cluster-Size
	3.5 Permanent and Isolated Cliques

	4 Complexity of Constrained Cluster Editing
	5 The(a, d, s)-Cluster Editing Problem
	6 Conclusion
	References

	Fast Order-Preserving Pattern Matching
	1 Introduction
	2 Preliminaries
	3 New Decision of Order-Isomorphism
	4 Fast Order-Preserving Pattern Matching Algorithm
	4.1 Basic Idea
	4.2 Search Algorithm

	5 Experimental Results
	References

	Scheduling for Electricity Cost in Smart Grid
	1 Introduction
	2 Preliminaries
	3 Our Algorithm
	4 Correctness
	5 Time Complexity
	6 Conclusion
	References

	Uniform-Circuit and Logarithmic-Space Approximations of Refined CombinatorialOptimization Problems
	1 Introduction
	2 Optimization and Approximation Preliminaries
	2.1 Models of Computation
	2.2 Refined Optimization Classes
	2.3 Approximation-Preserving Reductions

	3 Complete Problems
	3.1 General Complete Problems
	3.2 Polynomially-Bounded Problems

	4 Relations among Refined Optimization Classes
	References

	An Optimal Single-Machine Scheduling with Linear Deterioration Rateand Rate-Modifying Activities
	1 Introduction
	2 Problem Statement
	3 Optimal Policy for 1|pA[j] = p[j] + bS[j], l − rms|Cmax
	4 Conclusion
	References

	A Loopless Algorithm for Generating MultipleBinary Tree Sequences Simultaneously
	1 Introduction
	2 Preliminaries
	2.1 Left-Weight and Right-Weight Sequences
	2.2 Left-Child and Right-Child Sequences
	2.3 Tree Rotations

	3 A Loopless Generation of Binary Tree Sequences
	4 Concluding Remarks
	References

	Touring Disjoint Polygons Problem Is NP-Hard
	1 Introduction
	2 Proof of NP-Hardness
	3 Conclusion
	References

	Walking in Streets with Minimal Sensing
	1 Introduction
	2 GNT Data Structure and the Sensing Model
	2.1 Gap Sensor
	2.2 The Sensor and Motion Primitive

	3 Preliminarily Results
	4 Main Strategy
	4.1 Data Structure
	4.2 Algorithm

	5 Correctness and Analysis
	6 Conclusions
	References

	Robust Optimization for the Hazardous Materials Transportation Network DesignProblem
	1 Introduction
	1.1 The Hazmat Transportation Network Design Problem
	1.2 Robust Shortest Path Problems

	2 A Bi-level Network Design Formulation
	3 Computational Complexity
	4 A Robust Heuristic Approach
	5 Application on Guangdong Province
	5.1 The Data
	5.2 Numerical Analysis

	6 Concluding Remarks
	References

	Online Bin Packing with (1,1) and (2,R) Bins
	1 Introduction
	2 Online Algorithms for R ≤ 3
	2.1 Online Algorithm for R > 2.6915
	2.2 Online Algorithm MAIN for 2.040 < R ≤ 2.6915
	2.3 Performance Analysis of MAIN
	2.4 Algorithm PAR for R ≤ 2.040

	3 Lower Bounds
	3.1 Framework for Calculating the Lower Bound
	3.2 Two Sequences and Lower Bounds

	References

	Disclosing Barriers: A Generalization of the Canonical Partition Based on Lov´asz’sFormulation
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Some Preliminary Facts
	2.2 Our Aim
	2.3 The Generalized Cathedral Structure

	3 A Generalization of Lov´asz’s Canonical Partition
	3.1 Our Main Result
	3.2 Barriers vs. Alternating Paths
	3.3 Canonical Structures of Odd-Maximal Barriers

	References

	A Portable Parallel Implementation of the lrsVertex Enumeration Code
	1 Introduction
	2 Background
	2.1 Reverse Search
	2.2 Extended Reverse Search
	2.3 Parallelization

	3 Vertex Enumeration
	3.1 Reverse Search Vertex Enumeration Method
	3.2 Parallelization Issues

	4 Implementation Description
	5 NumericalExperiments
	6 Conclusions and Future Work
	References

	Author Index

