Chapter 8

The Leading Eikonal Operator in String-Brane

Scattering at High Energy

G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano

In this paper we present two (a priori independent) derivations of the eikonal operator
in string-brane scattering. The first one is obtained by summing surfaces with any
number of boundaries, while in the second one the eikonal operator is derived from
the three-string vertex in a suitable light-cone gauge. This second derivation shows
that the bosonic oscillators present in the leading eikonal operator are to be identified
with the string bosonic oscillators in a suitable light-cone gauge, while the first one
shows that it exponentiates recovering unitarity. This paper is a review of results

obtained in [1, 2].
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8.1 Introduction

High energy scattering in the Regge limit in superstring theory has been investigated
since more than 25 years. It was originally studied in elastic string-string collisions !
and has more recently been extended to the elastic scattering of a closed string on a
Dp-brane [2]. Due to the fact that, in the Regge limit, the amplitude is dominated
by the exchange of the leading Regge trajectory that has the graviton as the lowest
state, one gets a lowest order (sphere or disc) amplitude that diverges with the energy
violating unitarity at high energy. Unitarity is restored by adding higher order correc-
tions (torus or annulus etc.) and summing them up. In this way, while in field theory
one gets an exponential with a phase divergent at high energy that is consistent with
unitarity,what one obtains in string theory can be written in terms of an infinite set of
bosonic oscillators, introduced to write the amplitude in a simple and compact form,
and is called the leading eikonal operator.

This construction poses, however, various problems. What are these bosonic
oscillators? Are they connected to the bosonic oscillators of superstring theory?
Since we are studying superstring theory, why don’t we get also fermionic oscil-
lators? Although the connection of these oscillators with the string oscillators was
unclear, it was believed that they were somehow directly related to the string bosonic
oscillators. Evidence of this connection came from a paper by Black and Monni [3]
where the disk amplitude for the production of massive states, lying on the leading
Regge trajectory, from the scattering of a massless state on a Dp-brane was com-
puted and found to agree with what one gets from the eikonal operator. It turns out,
however, that this comparison is more subtle because one has to take into account
that the longitudinal polarization of the massive state gets enhanced at high energy
pretty much as the longitudinal component of the gauge boson W in the Standard
Model without the Higgs boson.

In a recent paper [1] the problems raised above were clarified showing that the
bosonic oscillators appearing in the eikonal operator are the bosonic oscillators of
superstring in a suitable light-cone gauge and that the fermionic oscillators are not
relevant at high energy. Furthermore, it was shown how to correctly treat the longi-
tudinal polarization of the massive state. This means that, if we scatter a massless
state on a Dp-brane, we produce, at high energy, only massive states involving an
arbitrary number of bosonic oscillators together with only the fermionic oscillators
already present in the massless state. Actually, the analysis of [1] is more general
because it provides the production amplitude in the Regge high energy limit of an
arbitrary state of superstring theory from the scattering of an arbitrary state on the
Dp-brane. In particular, it has been shown [1] that the leading eikonal operator can
be directly derived starting from the three-string light-cone vertex (either in the form
of Green-Schwarz or in that of Ramond-Neveu-Schwarz) and then inserting in one
of the three legs the string propagator and by closing it with the boundary state that
takes care of the presence of the Dp-branes. This provides a direct construction of

! For a complete list of references see [1].
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the leading eikonal operator from the string operator formalism. The aim of this talk
is to present these recent results. In [1] the leading eikonal operator has been also
constructed by using a covariant formalism in terms of the Reggeon vertex operator,
but this will not be reviewed here.

The content of this paper is the following. In Sect. 8.2 we derive the eikonal
operator as it was originally constructed in [2] starting from the scattering amplitudes.
In Sect. 8.3 we give a description of the physical spectrum of the first massive level
in the two light-cone formalisms (GS and RNS) and in the covariant formalism.
Then, interpreting the bosonic oscillators of the eikonal operator as the light-cone
bosonic oscillators of string theory, we show that, at high energy, the states that can
be produced by the scattering of a graviton on a Dp-brane, are only those of the type
A_y.;li, 0), while those of the type O _1.4|a, 0) are not. This is consistent with what
one gets from the eikonal operator that does not contain any fermionic oscillator.
In Sect. 8.4 we show how to derive the eikonal operator from the light-cone three-
string vertex and the boundary state. Finally, an Appendix with a discussion of the
kinematics of the scattering process is added at the end of the paper.

8.2 The Eikonal Operator I

In this section we derive the leading eikonal operator from the elastic scattering of a
massless state of superstring theory on a Dp-brane, following [2]. The starting point
is the disk amplitude given by:

d*z1d*z _ _
Ai(E, 1) ~ OI/ 2 2 W21, 21) Walza. 22)|B)
dVape
1-p ’ 2 o
2R} I(—o/E)I(—%1)
= _T K(p1, €15 p2, €2) p— ;, (8.1)
where
7— (277\/ )7 4 27‘{'%
RP p o Vsn = T (82)
N oves ALY s

W1 and W, are the vertex operators of a massless state and | B) is the boundary state
that identifies the right with the left oscillators and imposes Dirichlet (Neumann)
boundary conditions along the directions transverse (longitudinal) to the world-
volume of the stack of N parallel Dp-branes. The scattering is described by two
Mandelstam-like variables:

L, 06
t = —(p1L+ p21)* = —4E?sin® S s= E>=I|piil*=Ipl* (83)
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O is the angle between the (9 — p)-dim vectors pj; and —pa .
Along the directions of the world-volume of the Dp-branes, there is conservation
of energy and momentum:

(P1+p) =0, pi=p3=0 (8.4)

The amplitude has simultaneously poles for E2 suchthat 1+o/E> =n(n = 1,2...)
corresponding to open strings exchanged in the s-channel and poles for ¢ such that
2+ %/t = 2m(m = 1,2...) corresponding to closed strings exchanged in the
t-channel. At high energy:

K(p1,e1; pas e2) = (' E*)?Tr(ereh) (8.5)

and the amplitude has Regge behaviour for o/s > o/t ~ 0 (s = E?):

., 9 o /
AI(E, 1) RZ, Pr=2" e i T (a/s) 1T T

2E rs2) 2E sin(rg(—1) I'(1+ 945

Ti(E, 1) = (8.6)

T1 has a real and an imaginary part. The real part describes the scattering of the
closed string on the Dp-brane, while the imaginary part describes the absorption
of the closed string by the Dp-brane. When o/ — 0 the real part reduces to the
field theoretical result (graviton exchange), while for o’ # 0 we have the graviton
exchange dressed with string corrections. Notice that the imaginary part is a pure
string correction that, however, is not relevant at very large impact parameter because
it is not divergent at t = 0 as the real part. The disk amplitude in (8.6) diverges at
high energy and violates unitarity. In order to restore unitarity we have to include
higher order corrections and sum them up.

Before we proceed further it is instructive to write the corresponding amplitude
that one gets in the bosonic string for the elastic scattering of a closed string tachyon
on a Dp-brane:

!

r(-1—as)r (—“Tf - 1) I (=Qopen(®)) I (——‘*dos;d(”)
A~ , = —+ 87
F (—o/s — % — 2) F (_aopen (S) _ ”cl(u‘;d ))

where appen(s) =1+ o's and oejpsea(t) = 2 + %t. It has the same form as the
original Veneziano model except having two different trajectories in the two channels:
one corresponding to the open string and the other to the closed string.

The next diagram is the annulus diagram that is given by:

A =N / d*z1d* Y as(BIW,” @1, 2 W5 (22. 22) DI B)a
a,f
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N is a normalization factor and 3’ ;3 1s the sum over the spin structures.

The sum over the spin structures can be explicitly performed obtaining in practice
only the contribution of the bosonic degrees of freedom without the bosonic partition
function.

The final result is rather explicit. In the closed string channel the coefficient of
the term with Tr(e; ezT ) (relevant at high energy) of the annulus is equal to:

m(als)? R
A2(S,t) = (7 ) . T-p
r2 (%’) Qa2
© g\ 1 1 1 1
X 2/ = / dpl/ dpz/ dwl/ dwry T (8.8)
o A2t Jo 0 0 0
where
I = e_a/SVS_{YT/[Vt; 712 = eZW(—)\Pl,2+iw1_2) (89)
and
1A+ PIIAN)O1EA — pDiN)
Ve = =21\p” +1 8.10
8 AP 08 G A+ )iV @1 GAC — )iV .10
and

1A+ WINO (i Ap — wW)liN)
V, = 87\ I 8.11
S AL O A F )iV @ GAC — ) iN) @.11)

withp=p; —p2; (=p1+p2; w=w; —ws.

The high energy behaviour (E — 00) of the annulus diagram can be studied, by
the saddle point technique, looking for points where V; vanishes. This happens for
A — ooand p — 0.

Performing the calculation one gets the leading term for £ — oo:

AP ED i / a5y AvE, 1)
2E 211 ) @msr T 2E

2
x 68 ki —q) Valt, i, 1) 1= —kjs 1 =—¢> (8.12)

i=1

where

F(1+%(f1+t2—t))

Va(ti, i, 1) = -
1"2(1—1-%01 +t2—t))

(8.13)
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In order to find the complete leading eikonal operator we write it in a more suggestive
way, in terms of an infinite set of (§ — p)-dim bosonic oscillators:

2
Va(t, 12, 1) = <0|H[/ ‘;T : efki-X (i) :] 0) (8.14)

/ . % .
Xy =i)3> (ﬂe’"“ + %e—'””) (8.15)
2 prd n n

The two vacuum states correspond to the two external massless states (states with
no bosonic excitations: (e, %" ;" | |0)).

where

Then the leading order fromzthe ;nnulus can be written as follows:

2E Qm8—r  2E g

0|H[/ doi ik X () :] 10) (8.16)

where the two vertex operators correspond to the two leading Reggeons exchanged
in the two #-channels: ¢; and ;.

It can be naturally generalized to the leading term coming from a surface with &
boundaries:

(3) .2 8— 2 2
E t d Pkl. A (E, _kl) —
o ED S
i=1

A" (s, 1) ih—ll’_[ 48Pk Ai(s, —k?)
2E W) emsr 2k

27 , .
> 5(8—p)(zki —q) (0] H [/0 % - oiki-X (o) :} 0) (8.17)

i=1 i=1

Going to impact parameter space

(h—i—l)( b) d8—pq eibq (h—i—l)(s 1)
2E @m)8-r 2E
itk Ais, kD) ]
St emdr 2E

0) (8.18)

doi ik b+X(or
0|H / doi . i+ .
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and summing all contributions:

00 (h+1)
Ay (s, b) LT 2i56s,)
> T <0|7[e —1] 10), (8.19)

h=1

we get the leading eikonal operator

2
8- 2 )
26(s, b) =/‘21_0 A"’k A6 =KD ikpko)
7
0

Qm8—r  2E
27 <
A (s, b+X(0)) :
_ / do ( ) (8.20)
2 2F
0

The final result that includes all string corrections is obtained from the field theoretical
one with the substitution:

< < o A ing On —ino
b=—b+X; X()=i EZ —reM 4 —te (8.21)

n#0

and normal ordering.

This is the way that the leading eikonal operator was originally constructed both
in string-string and string-brane scattering. From this derivation it is not clear what
the bosonic oscillators represent. It was, however, somehow believed that, when the
eikonal operator is saturated with a couple of physical states, it will reproduce the
high energy behaviour of their scattering amplitude.

For the states of the leading Regge trajectory it has been shown [3] that the quantity

d¥ Pk A(E, —k?) 5
m)8-r 2F

21 d )
=Pk —q) (Ol/ 2—0 ek X@) 1\ (8.22)
0 ™

reproduces the high energy behaviour of the disk amplitude involving a massless state
({0]) and a state of the leading Regge trajectory (]A)). It turned out, however, that
this computation is more subtle because the longitudinal polarization of the massive
state gets enhanced at high energy. The annulus diagram for a massless state and an
excited state of the leading Regge trajectory has also been computed [4].

In any case, the problem of the nature of the bosonic oscillators present in the
eikonal operator remains. Given the fact that in string-string collisions they are along
the eight directions orthogonal to both the time and the direction of the fast moving
string and similarly in string-brane collisions they are along the 8 — p transverse
directions again orthogonal to the time and to the direction of the fast moving string,
strongly suggests that they should be interpreted as the string bosonic oscillators in
the light-cone gauge. But even so, why does the eikonal operator not contain the
fermionic oscillators?
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Putting this problem for a moment aside, in the next section we compute the
amplitude for the production of a massive state belonging to the first excited level of
superstring theory from the scattering of a graviton on a Dp-brane and we compare
with what one gets from the eikonal operator. We will show that, in agreement
with the eikonal operator, we produce, at high energy, only excited states of the
graviton (|i)|i)) of the type Ay |i)A71;Jv|17). The remaining massive states of the
type Q_l,b|a)Q_l;5|&), A_l,.,'|i)Q_1;l;|Zl) and Q_l,bla)A_l;ﬂi) are not produced
at high energy.

8.3 States of the First Massive Level Produced
at High Energy

In order to understand the problems listed at the end of the last section, in this
section we consider the production of a massive state, belonging to the first massive
level, from the scattering of a massless state on a Dp-brane and we study which of the
128 x 128 bosonic states are produced at high energy in the Regge limit. This section
is divided in three subsections. In the first one we compare the spectrum of physical
states at the first excited level in the Green-Schwarz light-cone formalism, in the RNS
light-cone formalism and in the covariant formalism. We introduce also the DDF
operators that connect the states in the light-cone RNS with those in the covariant
formalism. In the second short subsection we compute the three-point amplitudes
involving two gravitons and a bosonic state of the first excited level. Finally, in the
third subsection, we compute the inelastic amplitude for the production of the states
of the first excited level and we check which of them are produced at high energy.

8.3.1 Spectrum of the First Excited Level

In this subsection we discuss the spectrum of physical states of the first massive level
in closed superstring theory in the two light-cone gauges (Green-Schwarz (GS) and
Ramond-Neveu-Schwarz (RNS)) and in the covariant formalism. Any closed string
state is a product of a state with left moving oscillators times a state with right moving
oscillators. In the following we discuss only the states with one type of oscillators.
Those with the other type of oscillators can be obtained exactly in the same way.

1. GS light-cone
In the GS light-cone the bosonic physical states at the first massive level are the
following: .
a' ||j) = 64 states
09 ,1b) = 64 states (8.23)
where i, j = 1...8 are vector indices and a, b = 1...8 are spinor indices of
SO(8).
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2. RNS light-cone
In the RNS light-cone the bosonic physical states are the following:

AL B |0) — 64 states
R -2
B' 410) = 8 states (8.24)
2,
B B’ B* |0) = 56 states
-2 T2 72

where i, j, k = 1...8 are vector indices of SO (8). The states in the first line of
(8.23) correspond to those in the first line of (8.24), while the states in the second
line of (8.23) correspond to those in the second and third line of (8.24).

3. Covariant formalism
In the covariant formalism the physical states in the center of mass frame (p =
(M, 0)) are:

9
ylIIK — wi%¢i%¢f%lo’ p) = 84 states (8.25)

[S]

2
Tl = (o/lwi] + aiﬂ/}il — —nIJnHKaHldjfl) |0, p) = 44 states
3 b

where I, J, K, H = 1...9 are vector indices of SO (9). We can decompose the
9-dim indices I =i, v; J = j, v in 8-dim indices and a longitudinal one that we
call v:

TV — 36 states; TV =—> 8 states
Viik — 56 states; V'V = 28 states (8.26)

T and V'V correspond to the 64 states in the first line of (8.24), while the
others correspond to those in the second and third line of (8.24). The two states
in (8.25) can be given a covariant SO (1, 9) form by a boost, In this way one gets
the following states:

|f1) = Tffﬁxa’iﬂ/ff% 0, p) (8.27)
where
ap P « 4 « 2 po
Ta’p’ = (nL)p/(nJ_)a/ + (TIJ_)(Y/(WJ_)/)/ - 6 11 NLa/p
oV
R g (8.28)
p
and

162) = 1] S Lo 07107110, p) (8.29)
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It can be shown that the two states in (8.27) and (8.29) are physical states:
Gylé12) = G3ld12) =0 (8.30)

The connection between the RNS oscillators in the light-cone gauge and those in the
covariant formalism is provided by the DDF operators [5]. In the case of superstring
they can be found in [6] and they are reviewed in [1]. In particular, as discussed
in [1], one gets for the states at the first massive level made with one A and one B
oscillators:

A-1,jB_1 41T, 0)

_ 1 J k k J 6]k i 2 v
=13 04_17/)_%4'04_11/)7% Zoz W =209 5

+7(v¢ mp’lwk ]lp, c jk=1...8. (8.31)

N

where (e j)ﬂz/ﬂi = wj_ 1, (€ j)ua/i |» pr is the momentum of the tachyon present

in the DDF state and v is the longitudinal polarization of the massive state that is

orthogonal to the momentum p. Analogously, one can also compute the connection

with the covariant states of the other two DDF states: B_1 ; B_1 jB_ 110, pr) and
2’ 2’ 2’

B_3 10, pr).

8.3.2 Three-Point Amplitudes

In this subsection we provide the three-point amplitude, in the covariant formalism,
involving two gravitons and one of the states of the first massive level. In a closed
string theory the amplitude is the product of two amplitudes of open string theory,
one for the left movers and the other for the right movers. Here, we quote only the
result for the left movers.

For the massive state in (8.28) one gets:

A () ~ eI S 5 [77"“19317 — 0" pEpy + 0" psps + 0" n’]  (8.32)

where p| and p3 are the momenta of the two gravitons and we have assumed that the
polarization matrix is symmetric, traceless and orthogonal to the four-momentum p;
of the massive state:

pyell =n"rell =0 (8.33)
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For the state in (8.29) one gets:

/
MR oy~ 18 [ (™ — e
— pé’ (nuanm _ nuanw) + nﬂﬂ (nuapg _ nwkg)] (8.34)

In this case the polarization is completely antisymmetric and orthogonal to the four-
momentum of the massive state py. The indices p and v must be saturated with the
left moving part of the polarization of the two gravitons. We have assumed that all
three states are incoming: p; + p2 + p3 = 0.

8.3.3 Inelastic Amplitudes

In this subsection we use the three-point amplitudes of the previous section to com-
pute the inelastic amplitude where the graviton with momentum p; scatters on a
Dp-brane producing a massive state with momentum p,. This can be done by con-
sidering the product of any of the two amplitudes (one for the right movers and the
other for the left movers) constructed above and by saturating the indices v and v of
the graviton with momentum p3 first with the graviton propagator in the De Donder

gauge:

nu)\nf/)\ + nl/)\nz_/)\ _ %nl/f/n/\)\

DA = 8.35
20 (8.35)
and then with the coupling of the graviton to the Dp-brane given by
1 AX + R)\S\
ET,,”T; T, = JaQuava)? (8.36)
where R is the reflection matrix:
RN, =0", pv=0,...,p; Rb,=—0", nyv=p+1,...,9. (8.37)
In this way one obtains:
Ly a5 ) 4 (8.38)
- K — Ay, .
B ph10 Ay (—1) v

where 2/@%0 = @2’ 92 (@)*, A and A stand for one of the two amplitudes of the
previous subsection and ¢ = —p% = —(p1 + p2)? is the momentum transfer in the

inelastic process. It is easy to check that
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1 T2 R;_P

ETplﬂo = (8.39)

appearing in (8.1). Let us consider the case where both the right and left three-point
amplitudes are as in (8.32). We get:

1 o 3—
) pk10 éll)cjx [? [nuakllj +n""q" — ana] q 77“(1771/'0] (RW + 1 pnw)

/

e I% [77’_” ki +n"0q" — n_“”q(_’] q° — 0oy’ ] (8.40)

The term %lq Rk| = (—d's) gives a divergent term at high energy. Furthermore, we
have to remember that in the case of a massive state the longitudinal polarization is
also enhanced at high energy. Taking this into account we get the following amplitude:

1 1J 0J of vP o v
szm() €€ (— o/s)? ' (g” — N + Eqpqﬂﬂ
- P a - oo u®
x | nid (qp _ ) + _qﬂqﬂ_i| (8.41)
[ Vaol) 2 Va!

If we use the two amplitudes as those in (8.34), we get

1
ET[JHIO E/JO'T [qp ( ROkt — 77;1,0771/7') +4° (n,upnl/'r _ nl/pn/rr)
3 -
+ g7 (n"PnH7 = ntPy?)] ( v+ = pnw) 36}']
« [qp (nuvn;w _ nucr 1/7') +q (nupnm’ _ 77ij,,],m') +47 (nypn;w' _ nupnl/(r)]
(8.42)

Taking again into account the enhancement at high energy due to the longitudinal
polarization one gets:

1 (_OZ/S) O/ 1JK
2P0 Ty Cpor
x [g° (0™ = P Tv%) + g% (PPUT — vPT) + T (P — vPy)]
/I);f [qp (UMUT _ nwvcf) +q° (nupvf _ Uﬂnm) +q (nupvff _ vﬂnﬂg)]
(8.43)

Using the kinematics of the Appendix one can write the quantity in one of the two
squared brackets in (8.41) as follows:
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v’ o e
A,{J = eﬁef,i [ﬂ’m (6]” - _/) + 5 q’q" r,}
17_ _ 1_ I _
=3 |:p{(5kj + pi okt — —3p]f(5”i| + —zplféh’éj” (8.44)

where k = 1...8;1,J = 1...8,v. If we divide the 9-dim indices I = (i, v) and
J = (j, v) in an 8-dim part and a part along v, from the previous expression we get:
Al =3 [B09 + ok s i
Al =pr (o —1); i=1...8
8 i _ 1=
AP == A = §P]f
Aiv — Avi =0

(8.45)

Performing the same analysis with the antisymmetric amplitude in (8.43), we get:

AIJH 1 k IJH [P] ( Ho T n/z'rvo) _ﬁ(lr (n/va'r _ vpn/m’)

2 €.€por
+p] (v — v"n")] (8.46)
that implies

Aljh AIUU =0

.. 1 . , ; .
AT = (pllaKf — ,3{5"’) (8.47)

Remembering the connection between covariant and light-cone states, from the pre-
vious expressions we see that the scattering of a graviton on a Dp-brane will produce
only closed string states with left or right movers of the type A_y;; B_ L «|0) in the
RNS case corresponding to the states A_; ;|k) in the GS case, while the states with
left or right movers of the type B%;j |0) and to B—%;i Bf%;j Bf%;k |0), corresponding
to Q_1.;|j) in the GS case, are not produced at high energy. This is in agreement with
what one gets from the eikonal operator interpreting the bosonic oscillators as the
string bosonic oscillators in the light-cone gauge. In the next section we will derive
the eikonal operator directly from string theory without needing to go through the
scattering amplitude and require unitarity as it was done in Sect. 8.2.

8.4 The Eikonal Operator 11

In this section we sketch the construction of the eikonal operator that was done in [1].
The first ingredient is the GS three-string vertex given by:
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n

[Vgs) = (Pi - a1a2a3a—N§Aqn’i) Ve V¢lVi)I Vo), (8.48)
q

where

2 —m,i

1
Vp = exp (—Ap Non AL+ PiNgAZn,i)’

1 n
Vi = exp (307, XE Q"0 = 5 NG, ).

q
L. .. L. I ... ar—ay . oap—Q3 .
Vi) = —lijj) + —ljij) + —|jji) + ———laai) + ———laia)
o 1o a3 das 4o
az— a3, L jj . . .
+ Twllzaa) + 2 Yab (Ibaj) + |bja) + | jba)). (8.49)

To insure momentum conservation we have included in the vertex a part with the
bosonic zero modes given by:

Vo) = / d"x 1x)1 |x)2 [x)3
= 2m"19Y () + pr + p3)lx = 0)1 x = 0)2 |x = 0)3 (8.50)

where the state |x) is an eigenstate of the position operator: ¢|x) = x|x). The
operators P; and S, stand for the following combinations of the bosonic and fermionic
zero-modes

- 1 - 1
P = (arp,'(2+ - Oér+1]?,~(2))7 Sa =y Q(()::_ - QA+ Q(()ra)- (8.51)

which, with the cyclic identification between » = 4 and r = 1, are independent of
the choice of r = 1, 2, 3. Finally, the ‘Neumann’ coefficients encoding the actual
value of the various couplings are

nmaoopas nog — maoy

NS = — NINS: XT3 = NS 8.52
nm nas _"_ mar n m nm 2aras nm ( )
Qr41
1 o, Q4 1 F(—I’l " )
N = — ( "o, )= . (8.53)
noy41 n

apnl p (—na;—jl +1-— n)

Remember that the light-cone three-string vertex depends on a light-like vector k
that in general can be chosen as we want. It turns out, however, that, if we choose it
to be along the direction of the two energetic strings, at high energy the vertex gets
enormously simplified. Since we have chosen the momentum of incoming gravi-
ton and massive state as in (8.68) and (8.71), this means that we have to choose
k = %(—1, 0p; 03— p, 1). Momentum conservation implies that the momentum of



8 The Leading Eikonal Operator in String-Brane Scattering at High Energy 159

the third string is given by p> = (0, 0,; —py, —q9).% Proceeding in this way, at high
energy, we get the following GS vertex:

P; [ Pre( 3 1 ol — o3
|VGS)~Q—;exp{— 77(Alne+(—1)nA7ne) Ijl])—i-Tlam).

(8.54)

The second ingredient is the boundary state in the light-cone gauge that was con-
structed in [7]. We use a slightly modified version of it where we impose Neumann
(Dirichlet) boundary conditions along the longitudinal (transverse) directions to the
world volume of the Dp-branes. It is given by:

o]

> Yol Dial 4 inse M 5 |B ) (8.55)
n —n*l] " —n n_, ab®—n 0,7,y .

n=1

|B,n,y) ~exp{—

where R is the reflection matrix given in (8.37),

1Bo. 0. v) = (RyIDIJ) + inMasla)[B)) 5°77 (G = »)I0a, p = 0)  (8.56)
and

Mgy =i (7172 : ..vp“) M,y =i (7172 . ..71’“) 5 (8.57)

Lo
ab a

The third ingredient is the light-cone propagator:

/ o0 _ iAz i
P:W;/ dte’”(“’t‘w*’v); i=1...8 (8.58)
0

where N and N are the bosonic and fermionic number operators.
Using the three previous ingredients, we compute the quantity:

— 9—
T, —~ RZ, Pr="
L 3(BIP (m0lVos)[Ves)) ~ —Lrm—

: ()

2
In particular, in the previous equation we limit ourselves only to the pole of the gravi-
ton, as we have done in the previous section. Then we can neglect all oscillators in the

boundary state and in the propagator and we need only to consider the contribution
of the bosonic zero modes:

1 —
2Bol— (IVes)Vas)).  (859)

2 Notice that the state labelled here by r = 3 has momentum p; in (8.68).
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d> Pk Jikd L

o )9 17 F |.X>2
i
d9—pk eth
= ——— 8.60
| G e (560

Then, assuming that the strings 1 and 3 have momentum p; and p3, we get ({(x|p) =
e~iPx)y:

2p =0] &~ f'(q) S X2 =a(p= |/(

d9—pk eik-x
K 2y P+ 5+ L
(271_)9—;; ki2 = (2m) (p1+ P3)( -

(8.61)

/ ' (p1 161 (p3lx)3

wheret = —(p1 + p3)2 is the momentum transfer. Using the following equation [1]:

EPthkPk_a_%(ﬁl)z__a_g 1+q_92 N_g_ﬁ (8.62)
o a%(—t) a% t a% t ' ’

and neglecting the term without the pole at t = 0 we arrive at

R P 2" 4E2
wy ~ Kol a2 eXp{—\/;pM (A2, + (= 1)”A‘_,M>} [0 + SHlanilas ]

() -
x exp{—\/;pw(Ai”g + (=1 Al_,,p} [inlhs + SHanias). (863)

Following [1] we can finally write it in a single Hilbert space getting:

T—p %=»p 2
R w2 4FE
W S LT ep -y p”(A we = Ane)
1"( —P) —t 2
2
x exp{ ﬂ(A_,M— ne)]: (8.64)

Introducing an auxiliary string coordinate (without zero modes):
[o/ Api Anpi
=i a Z eino + Le—ino ). (8.65)
2 n n
n#0

we can write (8.64) in an operator form as follows
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Ry a2 4E?

()
that provides the same amplitude as in (8.64) when we saturate them with physical
states satisfying the level matching condition. This operator is identical to the eikonal
operator in (8.20) if we take the limit o’ — 0 in the amplitude A; given in (8.6).
The o corrections are recovered if one does not include just the contribution of the
graviton as we have done above, but add also the contribution of the other string
states.

In conclusion, we have provided two independent derivations of the eikonal
operator. The one in this section shows that the bosonic oscillators are the bosonic
oscillators of superstring theory in a suitably chosen light-cone gauge. This means
that when we sandwich the eikonal operator between two arbitrary string states, we

obtain the production amplitude of one of them from the scattering of the other on a
Dp-brane at high energy and small transverse momentum.

(8.66)

_ 2w do .
W(m):/ 2—161P1X(0)1
0 ™

8.5 Kinematics

The scattering amplitude for the production of a massive string with momentum p»
from the scattering of a graviton with momentum p; on a Dp-brane is described by
the two (Mandelstam like) variables:

1 1
= _q2 =—(p1+ P2)2, s =—=(p1+ RP1)2 = —Z(pz + Rp2)2 = Ez,

4
(8.67)

where in the second equation we used the momentum conservation along the Neu-
mann directions and E > 0 will denote, hereafter, the common energy of the
incoming and outgoing closed strings. It is convenient to choose the massive string
to move along the 9-th space direction:

Pl = (_E, 0, 0, —V/E2 — M2) : (8.68)

where the first p + 1 directions are parallel to the (Neumann directions of the)
Dp-branes and the entries after the semicolon are along the Dirichlet directions.
The most direct way to describe the physical polarization of massive particles is to
introduce 9 vectors perpendicular to their momentum. For instance, in the case of
the outgoing state (8.68) we have the unit vectors 0’

W1 = (0,1,0,—1508_p,0), ..., g =(0,0,;07_,1,0) (8.69)
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and, as the ninth one, v# corresponding to the longitudinal polarization:

VE? - M? E
v = (— 0p; 03—, —). (8.70)
M M

The possible momenta of the ingoing massless string take the following form

Py = (E.0p: 1. VE> = M2+ g), (8.71)

_ t+ M? _ _
"~ = WEL— M2 P>+ (@ =—t=(pi+p)’, 872

where p; is a (8§ — p)-dim vector orthogonal to the direction of motion of the massive
string. It is convenient to choose the eight polarizations of the massless string as
follows:

~k ~k
el = o - o (8.73)
E+VE?—M?+4q° E+VE?—M?+4q°
It is easy to check that efpm = 0forany k = 1...8. Using this we can compute

exq = ex(p1 + p2) = ewpa = pt (8.74)

where we have kept only the leading term at high energy.
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