
Chapter 4
Pure Spinor Superfields: An Overview

Martin Cederwall

Maximally supersymmetric theories do not allow off-shell superspace formula-
tions with traditional superfields containing a finite set of auxiliary fields. It has
become clear that off-shell supersymmetric action formulations of such models can
be achieved by the introduction of pure spinors. In this talk, an overview of this
formalism is given, with emphasis on D = 10 super-Yang–Mills theory and D = 11
supergravity. This a somewhat expanded version of a talk presented at the workshop
“Breaking of supersymmetry and ultraviolet divergences in extended supergravity”
(BUDS), Laboratori Nazionali di Frascati, March 25–28, 2013.

4.1 Introduction

The search for formalisms treating maximally supersymmetric models in a “covari-
ant” way—covariance here taken in the sense of manifestly exhibiting Lorentz sym-
metry as well as the full supersymmetry—has a long history. To a large extent it has
been pursued in terms of first-quantised particle (or string) theories, with the purpose
of then applying second quantisation to obtain a covariant field theory. Let us remind
how the problem arises, first in a particle or string theory, and then in field theory.

The Brink–Schwarz superparticle [1, 2], where the fermions are Lorentz spinors,
exhibits a problematicmixture offirst and second class constraints, as does theGreen–
Schwarz superstring [3]. That thismust be the case is realised already from a counting
of the fermionic degrees of freedom describing massless supermultiplets, i.e., from
the 1/2-BPS property of a massless (short) supermultiplet. There is half a spinor of
first class constraint and half a spinor of second class constraints [4–6], and these can
not be separated in a Lorentz-covariant manner. The first class constraints generate
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the so called κ-symmetry [4]. Some attempts to a direct covariant treatment of the
κ-symmetry have appeared (see e.g. [7, 8]), but most of the proposed solutions to
the problem have involved drastic changes of variables, such as twistor [9] methods.

Supertwistors solve the problem of covariant quantisation of superparticles in
3, 4, 6 and 10 dimensions [10–15], and make manifest not only super-Poincaré
but the whole superconformal symmetry (except, of course in D = 10). We
mention the supertwistor track here partly since it has similarities with our main
focus of attention, pure spinors, in that both twistors and pure spinors are bosonic
spinors (i.e., of “wrong” statistics), and partly since twistor methods (of a differ-
ent flavor) have been of revived interest later and used for amplitude calculations
[16–22]. Some works seems to point towards a deeper relation between pure spinors
and twistors [23]. It should be mentioned that, although some attempts have been
made [24, 25], twistor transform methods seem less powerful in string theory than
in particle theory, due to the massive spectrum.

The corresponding problem is of course seen also in field theory. There, the natural
way of manifesting supersymmetry is to use superfields, that depend not only on the
bosonic coordinates xm , but also on some fermions θμ, that together form a (Wess–
Zumino) superspace [26]. If the field theory in question is a gauge theory [27],
the superfield formulation will be a gauge theory on superspace [28–32], and if it
contains gravity [33–37], it will be described as superspace geometry [26, 37–44].
In both cases, the maximally supersymmetric models (which means 16 supercharges
for super-Yang–Mills theory (SYM) and 32 for supergravity (SG)) only have on-
shell formulations in superspace. This can be stated in a couple of equivalent ways.
The supersymmetry transformations close only modulo the equations of motion. In
a component formalism, there is no set of auxiliary (non-dynamical) fields, that can
be added so that the bosonic and fermionic numbers of fields agree off-shell and fill a
representation of supersymmetry. We will come back to the superspace formulations
of some maximally supersymmetric models later, and examine them in more detail,
because it is precisely the traditional superspace theories that form the basis of the
pure spinor superfield formalism.

Pure spinors are interesting objects from a mathematical point of view. The orig-
inal definition by E. Cartan [45, 46] is valid in even dimensions. A Cartan pure
spinor is a spinor annihilated by half-dimensional isotropic (light-like) subspace. If
the dimension is D = 2n, then this can be expressed as γ+i λ = 0, i = 1, . . . , n, for
a suitable choice of basis (depending on the pure spinor λ). Here, we think of the
signature of space-time as split. For euclidean signature, take the γ-matrices with
holomorphic indices. Modulo a complex scale, the pure spinor space is isomorphic
to the space of isotropic n-planes, which is SO(2n)/U (n). This condition can be
translated into certain bilinear conditions on the spinor. The first case where the pure
spinor condition is non-trivial is n = 4. Up to n = 6, the pure spinors form the
only non-trivial orbit of the rotation group in between the full orbit of unconstrained
spinors and the trivial orbit of 0, but for higher n there are more orbits [47–49], of
which the pure spinor is the most constrained.
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The “pure spinors” we will use sometimes coincide with Cartan pure spinors,
sometimes not. The canonical example of D = 10 SYM is an example where they
are identical. The important and defining property, that we will give a geometric
interpretation, is a bilinear identity (λγaλ) = 0, which in D = 10 coincides with
the constraint on a Cartan pure spinor. Even if Cartan pure spinors are uninteresting
in D < 8, we will encounter non-trivial “pure spinor” constraints e.g. in D = 6 and
D = 3, essentially due to the presence of R-symmetry. We will also use the bilinear
constraint in odd dimensions, notably D = 11.

We are mainly concerned with field theories, including supergravity, and will not
say much about the use of pure spinors in superstring theory. From investigations
of the superspace formulation of maximally supersymmetric theories, it was early
recognised that pure spinors might have a rôle to play in an off-shell formulation
[50–52]. The discovery of the precise rôle of pure spinors came from two independent
(but in retrospect clearly related) lines of research. One, the covariant quantisation
of the superstring, provided a valid set of ghost variables for a covariant superstring,
and thereby also for its massless sector [53, 54]. The other was the systematic search
for higher-derivative terms in maximally supersymmetric theories, where revisiting
the structure of the superspace constraints revealed a cohomological structure of the
deformations [55–57], which later was realised to be equivalent to that of the pure
spinor BRST operator. The latter formalism led to results on deformations of SYM
[55, 58, 59] (e.g. the full form of the terms related to F4) as well as SG [60–65]
models.

Pure spinor superfield models have been given for SYM [54, 55, 58, 59, 66–68]
for D = 11 supergravity [69, 70] and for D = 3 superconformal models [71–73].
It is quite clear that the method applies to any maximally supersymmetric model that
does not contain selfdual fields.

Thewide breakthrough of the use of pure spinors in connectionwith supersymme-
try came with the realisation of Berkovits that they provide a good set of variables for
covariant quantisation of the superstring [53, 74, 75]. The formalism has been exten-
sively used in superstring theory, see e.g. [76–99]. Applications to supermembrane
theory have also been attempted, but with less clear results [100–102].

This presentation takes its starting point in the traditional superspace formulation
of supersymmetric field theories. In Sect. 4.2 we explain why the basics of the pure
spinor superfield formalism is (almost) inherent in the superspace formalism. We
derive the BRST operator of the linearised models. Section 4.3 deals with the calcu-
lation of the field content, i.e., the BRST cohomology, which is illustrated with some
examples. In order to formulate actions, a measure is needed, which is developed
in Sect. 4.4, based on the “non-minimal” variables of Berkovits. Section 4.5 gives
the field–antifield machinery needed in order to formulate consistent interactions.
The following sections deal with gauge fixing, necessary for quantum calculations,
and with an application: to find higher-derivative terms. Finally, in Sect. 4.8 some
(hopefully) interesting open questions and possible developments are mentioned.
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4.2 Pure Spinors from Superspace

We denote bosonic and fermionic indices in coordinate basis (“curved indices”) by
M, N . . . = (m, n, . . . ;μ, ν, . . .) and in Lorentz basis (“flat indices”) by A, B, . . . =
(a, b, . . . ;α,β, . . .). Wess–Zumino superspace has a torsion

Tαβ
a = 2γa

αβ (4.1)

(there might be slight formal variations on this expression, e.g. when there is some
R-symmetry in case of extended supersymmetry, butwith a liberal interpretation (4.1)
is always true). Note that we always express components in Lorentz indices, since
fermionic directions otherwise can not be seen as spinors. This is typically the only
non-vanishing torsion component at dimension zero (in on-shell theories), dimension
here being defined so that a bosonic derivative has dimension 1 and a fermionic 1

2 .
In flat superspace, this statement amounts to the anticommutator between fermionic
covariant derivatives being

{Dα, Dβ} = −Tαβ
a∂a = −2γa

αβ∂a . (4.2)

In flat space, these are the ordinary derivatives

Dα = ∂

∂θα
− (

γaθ
)
α

∂a , (4.3)

which anticommute with the global supersymmetry generators (superspace Killing
vectors)

Qα = ∂

∂θα
+ (γaθ)α∂a . (4.4)

Some special possible rôle of pure spinors can be seen already here. Suppose that
λ is pure (in the sense mentioned in the introduction), i.e., that

(λγaλ) = 0 . (4.5)

If one forms the scalar fermionic operator

Q = λα Dα , (4.6)

it becomes immediately clear from (4.1) and (4.5) that

Q2 = 0 . (4.7)

It is possible to think of Q as a BRST operator, and examine its cohomology. This
cohomologywill be non-trivial due to the pure spinor constraint. This will actually be
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the BRST operator used in the (minimal) pure spinor formalism, and its cohomology
will consist of the physical states.

In order to understand why this happens, and why it indeed is little more than
a reformulation of the traditional superspace formalism, it is suitable to reexamine
the canonical example, D = 10 SYM (the procedure describes equally well its
dimensional reductions) [31, 50]. For simplicity, we will use an abelian field.

Note that we aim at going directly to the field theory, without passing via a
first-quantised superparticle model. The BRST operator (4.6) is not obtained as the
BRST operator for some local symmetry on the world-line of a superparticle, but
postulated more or less ad hoc. It will soon bemotivated from superspace arguments,
though. Some work has been done on showing the equivalence of the first-quantised
superparticle or string with the formulation based on Q [103–105]. We take a more
pragmatic point of view—if the correct field theories are produced we are happy
with that.

4.2.1 SYM

We work in D = 10, where a chiral spinor has 16 components. The theory starts
from a gauge theory on superspace [31, 50]. This means that the connection 1-form
a priori is completely general,

A = E A AA = Ea Aa(x, θ) + Eα Aα(x, θ) (4.8)

(where E A = d Z M EM
A is the superspace vielbein). In order to reduce the very large

number of component fields, some constraintsmust be imposed. One such constraint,
which goes under the name of conventional constraint, completely expresses the
superfield Aa in terms of Aα. This is desirable, since there is another component
1-form at level θ in Aα, and only one in the physical theory. The conventional
constraint is formulated in terms of the field strength, in order not to destroy gauge
symmetry, and reads (in the abelian case)

γαβ
a Fαβ = 0 . (4.9)

Since this part of F is expressed as

Fαβ = 2D(α Aβ) + Tαβ
a Aa , (4.10)

the conventional constraint does exactly what it is supposed to. Then, one is left with
Aα, the lowest-dimensional superfield.

In order to take the fields on-shell the remaining part of Fαβ is also set to zero. This
is a selfdual 5-form. We will not exhibit the detailed calculation here, but contend
ourselves with the well known statement the setting the dimension-0 field strength
to zero gives the equations of motion for the component fields. These sit in the
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superfield at order θ (the gauge connection) and θ2 (the fermion) (and of course
also at higher orders if they contain non-zero modes). Traditionally, to keep gauge
invariance manifest, the superfield Aa is not actually eliminated. Instead one uses the
Bianchi identities for the superspace field strength F , which will give the equations
of motions once Fαβ = 0. This is not the path taken here. Instead we leave Aa

completely aside and focus on Aα.
We can then observe that the conditions imposed are exactly those implied by

demanding that a field Ψ = λα Aα(x, θ) is annihilated by the BRST operator
Q = λα Dα. The fermionic covariant derivative acts on the superfield Aβ , and the
bilinear in λ contains only the 5-form part, due to the pure spinor condition. In addi-
tion, gauge invariance is implemented as δΛΨ = QΛ (that this is true for the the
bosonic connection at level θ of course requires a small calculation), which makes
clear that the cohomology of Q describes precisely the on-shell physical fields. The
cohomology will be examined to greater generality in the following section.

Expanding out the λ-dependence of the field Ψ , we thus have an infinite set of
superfields,

Ψ (x, θ,λ) =
∞∑

n=0

λα1 . . . λαn Aα1...αn (x, θ) . (4.11)

In order for Q = λD to behave as a BRST operator, it is natural to assign a ghost
number 1 to λ. We have already mentioned that the cohomology of Q at order λ
reproduces the gauge connection and the fermion, subject to their linearised equations
of motion (the remaining cohomology will be left for Sect. 4.3). The field Ψ then
also carries ghost number 1, so that the physical fields have ghost number 0.

Already at this point we see that relaxing the equations of motion is equivalent
to relaxing the condition QΨ = 0. If a suitable integration measure is found, a true
off-shell formulation could be provided by an action of the type S ∼ ∫

Ψ QΨ +· · · ,
which will be the objective of Sects. 4.4 and 4.5.

4.2.2 SG

What will be said in this section will apply to D = 11 supergravity, and its dimen-
sional reductions.

A spinor in D = 11 has 32 components. The symmetric spinor bilinears are a
1-form, a 2-form and a 5-form. In addition to the metric field, D = 11 SG also
contains a 3-form potential C with 4-form field strength H = dC and a gravitino.
The component action for the bosonic fields,

S = 1

2κ2

(∫
d11x

(
R − 1

48
H2

)
+ 1

6

∫
C ∧ H ∧ H

)
, (4.12)

contains a Chern–Simons term for C .
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There are twowaysof approaching the superspace constructionof the supergravity.
The first one is via the actual supergeometry, examined in [41, 42, 60–62, 106]. Here
one starts with the vielbein on superspace EM

A together with a Lorentz algebra-
valued connection ΩM . Just like in the case of gauge theory, all the superfields
except the one of lowest dimension, Eμ

a , are effectively eliminated as indepen-
dent degrees of freedom via conventional constraints [62, 107, 108]. This is slightly
more involved than in the SYM case, and we refer to [62] for a complete treatment.
Essentially, by formulating constraints on the superspace torsion,

T A = d E A + E B ∧ ΩB
A , (4.13)

all connection superfields and all of the vielbein become expressible in Eμ
a . The

conventional constraints reduce the possible dimension-0 torsion T a
αβ (apart from

the standard part 2γa
αβ) to the irreducible modules

⊕ , (4.14)

where the 2 or 5 antisymmetrised indices come from the contraction of the two spinor
indices with γab or γabcde.

Like in SYM, the standard procedure for deriving the full equations of motion
is not to actually solve for the vielbein and spin connection superfields, but to use
torsion Bianchi identities [39],

DT A = E B ∧ RB
A , (4.15)

to obtain the equations of motion without giving up any manifest gauge invariance.
Suppose we now want to interpret this, at the linearised level, in terms of pure

spinors. Then we again leave all the superfield except the lowest-dimensional one
out. After converting the form index on Eμ

a to a flat spinor index, we have a field
φα

a . It is actually only its γ-traceless part that is not eliminated by conventional
constraints. Note that the spinor bilinears appearing above in the torsion Tαβ

a after
conventional constraints have been used, the 2-form and and 5-form, are exactly
those which are non-vanishing for a pure spinor. It looks reasonable to think of
the linearised superfield φα

a as appearing at order λ in a pure spinor superfield
Φa(x, θ,λ). The linearised equations of motion then come from QΦa = 0. There is
only a small ingredient missing here, namely that φα

a is γ-traceless, as are the two
torsion modules. This is achieved by declaring an equivalence relation

Φa ≈ Φa + (λγa�) . (4.16)

We call this type of equivalence relation a “shift symmetry” [69–72, 109], and we
will come back to its rôle in the following sections.



68 M. Cederwall

The other way of obtaining the linearised equations of motion is from the 3-form
C , which extends to a 3-form on superspace. This method has not traditionally been
used alone as a formulation of supergravity, since the geometry (via the torsion)
will enter its Bianchi identities. Nevertheless, at the linearised level this produces
all the supergravity fields, without involving superspace geometry; this will be made
clear in Sect. 4.3. Without going into details about conventional constraints, it is
again the lowest-dimensional superfield that is relevant. This is Cαβγ , of dimension
− 3

2 , and actually only the irreducible modules consisting of γ-traceless 2-form- and
5-form-spinors. These modules fit perfectly in the expansion of a scalar pure spinor
superfield Ψ (x, θ,λ) to third order in λ,

Ψ = · · · + 1

6
λαλβλγCαβγ + · · · (4.17)

The linearised supergravity equations of motion come from demanding that

Hαβγδ

∣
∣∣∣ ⊕ ⊕ = 0 , (4.18)

which is equivalent to the condition

QΨ = 0 , (4.19)

since these three irreduciblemodules are precisely the ones occurring in aquadrilinear
of a pure spinor.

4.2.3 Summary

We have seen, in the two main examples of D = 10 SYM and D = 11 SG, that
the linearised equations of motion (and gauge symmetries) are reproduced precisely
by considering the physical fields as part of a pure spinor superfield with appropri-
ate properties annihilated by the pure spinor BRST operator Q = λD. The price
paid for this is that interactions are (for the moment) ignored, and that only some
lowest-dimensional superfield is considered. This also means that gauge symmetry
(including diffeomorphisms and local supersymmetry in the SG case) are not kept
“manifest” or “geometrical”. We will comment more on this issue when interactions
are introduced, in Sect. 4.5.2.

4.3 Cohomology

In this section, we will take a closer look at the cohomology of the BRST operator
in the two examples of Sect. 4.2 and some other models. The statements about it
reproducing the fields of the models in question will be made more precise, and
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some interesting structure pointing forward to a field–antifield formalism will be
pointed out.

Notice that if λ had been unconstrained (and there was no shift symmetry, for the
case of non-scalar fields), the cohomology had been trivial. It is the pure spinor prop-
erty of λ that gives room for some interesting cohomology. Consider, for example, a
scalar pure spinor superfield Ψ (x, θ,λ), and let us for the moment forget about the
x-dependence. A field Ψ = (λγaθ)Aa represents cohomology: acting with Q gives

Q · (λγaθ)Aa = (λ
∂

∂θ
) · (λγaθ)Aa = (λγaλ)Aa = 0 , (4.20)

and it is also obvious that such a field can not be written as a Q-exact expression. In
the SYM case, this cohomology is precisely the zero mode of the gauge connection.
Obviously, Ψ should be taken to be fermionic.

It is clear that the algebraic properties of the pure spinor λ play a decisive rôle
for determining the cohomology. Indeed, as we will see in the following sections, a
partition function for the pure spinor contains essentially all information needed to
determine the full cohomology.

We have seen one example above of an element of the cohomology of a scalar
superfield, the zero mode of the gauge connection. We also argued in Sect. 4.2.1 that
the cohomology at order λ precisely reproduces the fields of D = 10 SYM, subject
to the linearised equations of motion. What is the general cohomology? One more
example is the constant field,Ψ = c. This is a cohomology of ghost number 1 (given
the ghost number assignment of Sect. 4.2.1), and given the gauge transformation of
Ψ it is natural to identify it as the ghost for the gauge symmetry.

Both these examples concern zero mode cohomology, i.e., elements of coho-
mology independent of the coordinates x . It turns out to be very instructive to first
consider general zero mode cohomology. Not only is it much easier to calculate,
since it is a purely algebraic problem (the operator Q reduces to λα ∂

∂θα ), it will also
give all essential information concerning the full cohomology. Namely, consider a
zero mode cohomology of Ψ at order λpθq . Such a cohomology will have ghost
number gh#(Ψ ) − p and dimension dim(Ψ ) + 1

2 (p + q). If then x-dependence is
introduced, how will the corresponding cohomology behave? The only possibility is
to have some field in the same module as the zero mode, but subject to some differ-
ential equation, an equation of motion. This equation of motion must in turn have
support in the zero mode cohomology. This means that the zero mode cohomology
can be used to read off the possible full cohomology. If there is also a zero mode
cohomology at λp+1θq+2n−1 (i.e., at ghost number gh#(Ψ ) − p − 1 and dimension
dim(Ψ )+ 1

2 (p + q)+ n), a field φ(x) in some module determined by the zero mode
cohomology at λpθq can be subject to a (linearised) equation of motion of the form
∂nφ = 0, given that the modules of the two zero mode cohomologies match. The
corresponding x-dependent cohomology will of course take the generic form

Ψ ∼ λp(θqφ + θq+2∂φ + θq+4∂2φ + · · · ) . (4.21)
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4.3.1 SYM

As mentioned, the algebraic problem of calculating the zero mode cohomology can
be used to gain information about the full cohomology [54, 57, 110]. The problem
can be solved by computer methods [57] or algebraically [111]. For the field Ψ of
ghost number 1 and dimension 0, the result may be summarised in Table 4.1, where
the horizontal direction is the expansion in λ (i.e., decreasing ghost number of the
component fields) and the vertical is the expansion in θ (i.e., increasing dimension
within each superfield). The expansion of the superfields in θ has been shifted, so
that components on the same horizontal level have the same dimension. Themodules
have been labeled by the Dynkin labels of the Lorentz group Spin(1, 9). As already
discussed we see the gauge ghost at λ0 and the physical fields (gauge connection Aa

and spinor χα) at λ1. In addition there are cohomologies at λ2 and λ3. The ones at
λ2 indicate, according to the discussion above, that the physical fields are subject to
equations of motion. Their interpretation as components of the fieldΨ is as antifields
A∗a and χ∗

α, fields of ghost number −1 with the same dimensions as the equations
of motion. The singlet at λ3θ5 is the ghost antifield c∗. Its presence in cohomology
in turn implies the divergencelessness of the on-shell antifield, corresponding to
conservation of the gauge current. This is then strong evidence that using a pure spinor
to go off shell implies introducing aBatalin–Vilkovisky field–antifield structure. This
will be formalised in detail in Sect. 4.5.

As argued in the beginning of the present section, there is a more direct way of
deducing the zero mode cohomology (and thereby the full cohomology) from the
partition function for a pure spinor. Consider the expansion of a function f (λ) in a
power series expansion in λ, just as we have done for the pure spinor superfield. The
pure spinor λ itself is in the module (00001), and the pure spinor constraint ensures
that only the module (0000n) occurs at λn . Therefore, the component fields in the
expansion will come in the conjugate module Rn = (000n0). A formal partition
function [111–113] containing all information about the expansion is

P(t) =
∞⊕

n=0

Rntn =
∞⊕

n=0

(000n0)tn . (4.22)

A less refined partition function is one that only counts the dimensions of themodules,
i.e.,

P(t) =
∞∑

n=0
dim(000n0)tn =

∞∑
n=0

1
10

(n+7
7

)(n+5
3

)
tn

= (1 − t)−11(1 + t)(1 + 4t + t2)
= (1 − t)−16(1 − 10t2 + 16t3 − 16t5 + 10t6 − t8) .

(4.23)

Various information can be collected here. The next to last line indicates that the
number of degrees of a pure spinor in D = 10 is 11 (more on this in Sect. 4.4).
The last line (where the factor (1 − t)−16 represents the partition function of an
unconstrained spinor) is where the zero mode cohomology can be read off: note
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Table 4.1 The zero mode cohomology in Ψ for D = 10 super-Yang–Mills theory

dim gh#
1 0 −1 −2 −3

0 (00000)
1

2
• •

1 • (10000) •
3

2
• (00001) • •

2 • • • • •
5

2
• • (00010) • •

3 • • (10000) • •
7

2
• • • • •

4 • • • (00000) •
9

2
• • • • •

The horizontal direction represents the expansion of the superfield in terms of λ whereas the cor-
responding for the vertical (in each row) is θ (downward). The irreducible representations of the
component fields are listed at the positions which describe their ghost numbers and dimensions

the agreement between the numbers in the polynomial 1 − 10t2 + 16t3 − 16t5 +
10t6 − t8 and the dimensions of the modules in Table 4.1. In addition, the signs
of the monomials indicate the bosonic (plus) or fermionic (minus) character of the
cohomologies (remember that Ψ is fermionic, so all signs change). This property
is of course expressible also in the more refined partitionP , which can be shown to
be

P(t) =
( ∞⊕

k=0

∨k(00010)tk

)

⊗ (
(00000) ⊕ (10000)(−t2) ⊕ (00001)t3

⊕ (00010)(−t5) ⊕ (10000)t6 ⊕ (00000)(−t8)
)

, (4.24)

where ∨ denotes the symmetric product, and the first line is the refined partition
function for an unconstrained spinor. This unconstrained factor can formally be
written as (1 − t)−(00010), see [114], where the pure spinor partition function is
related to a certain Borcherds algebra.
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4.3.2 Supergravity

The analogous procedure can be performed for D = 11 supergravity, and the result-
ing zero mode cohomologies [57] are listed in Table 4.2. This list is based on the
cohomologies in a scalar superfield of ghost number 3 and dimension −3, i.e., the
field Ψ of Sect. 4.2.2, based on the superspace 3-form. This field must indeed be
taken as the basic field of D = 11 supergravity, since the “geometric field” Φa does
not exhibit the gauge invariance of the C-field—only the field strength H appears in
the torsion—so one can not hope to reproduce the Chern–Simons term of the action
of (4.12) from Φa alone (although the equations of motion are reproducible, one of
them being the Bianchi identity for H ). We will not bother to write down the detailed
partition function for the D = 11 pure spinor [111]; the relation to the cohomology
is completely analogous to the case of SYM.

The reason for Ψ having ghost number −3 is now obvious; the lowest coho-
mology represents the ghost for ghost for ghost of the the twice reducible gauge
transformations of the 3-form field. Consequently, the “highest” cohomology, the
corresponding antifield, is a scalar at λ7θ9. The content of Table 4.2 verifies that
indeed all degrees of freedom of the supergravity are present at λ3, also the gravi-
tational ones (and even some without local degrees of freedom, related to the Weyl
invariance of [106]). We also note the presence of ghosts for diffeomorphisms and
local supersymmetry, appearing alongside the ghost for tensor gauge transformations
at λ2. As in the SYM case, the zero mode cohomology (and the partition function)
is completely symmetric with respect to exchange of fields and antifields.

4.3.3 Other Models

The method may be extended to other models. Specifically, it has been used
[71–73] for superconformal models in D = 3: the N = 8 Bagger–Lambert–
Gustavsson (BLG) [115–117] and N = 6 Aharony–Bergman–Jafferis–Maldacena
(ABJM) [118] models. Here the Chern–Simons connection comes in one (scalar)
pure spinor superfield, and the matter multiplets in another, which, in the absence of
ghosts, comes in the same module as the scalar fields, subject to a shift symmetry.
We refer to the papers [71–73] for details.

We can also note that models containing selfdual fields follow part of the pattern.
Take for example the N = (2, 0) tensor multiplet in D = 6. Without exhibiting
the details [57] here, we note that the correct cohomologies for fields and ghosts are
produced.When it comes to “antifields”, however, the pattern is broken. The equation
of motion for the tensor field is the selfduality of its field strength, and there is no
symmetry between fields and antifields in the cohomology. Therefore, equations of
motion QΨ = 0 are meaningful, but the construction of an action along the lines of
Sect. 4.5 becomes obstructed.
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Table 4.2 The zero mode cohomology in Ψ for D = 11 supergravity

dim gh#
3 2 1 0 −1 −2 −3 −4 −5

−3 (00000)

−5

2
• •

−2 • (10000) •

−3

2
• • • •

−1 • • (01000) • •
(10000)

−1

2
• • (00001) • • •

0 • • • (00000) • • •
(00100)
(20000)

1

2
• • • (00001) • • • •

(10001)

1 • • • • • • • • •
3

2
• • • • (00001) • • • •

(10001)

2 • • • • (00000) • • • •
(00100)
(20000)

5

2
• • • • • (00001) • • •

3 • • • • • (01000) • • •
(10000)

7

2
• • • • • • • • •

4 • • • • • • (10000) • •
9

2
• • • • • • • • •

5 • • • • • • • (00000) •
11

2
• • • • • • • • •
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Table 4.3 The zero mode cohomology in Ψ for D = 6 N = (1, 0) super-Yang–Mills theory

dim gh#
1 0 −1

0 (000)(0)
1

2
• •

1 • (100)(0) •
3

2
• (001)(1) •

2 • (000)(2) •
5

2
• • •

4.3.4 Less than Maximal Supersymmetry

The procedure sketched here is not unique for maximally supersymmetric models,
although it is there that it seems to have its highest potential. What happens if the
method is attempted for a theory with less than maximal supersymmetry? If the pure
spinors are appropriately chosen, the traditional superspace formulation should be
reproduced also here. This is indeed the case. If such a superspace formulation results
in an off-shell supermultiplet including auxiliary fields, this also happens in the pure
spinor formulation. The result, then, will be a cohomology without the antifields,
since we have argued that the presence of antifield cohomology is what puts the
physical fields on shell.

This can be illustrated by N = (1, 0) SYM in D = 6 [119]. There is an SU (2) R-
symmetry, andwith standard assignment ofDynkin labels for Spin(1, 5)×SU (2)we
letλα transform in themodule (001)(1).With the pure spinor constraint (λγaλ) = 0,
the only remaining spinor bilinear is the SU (2) triplet selfdual 3-form (002)(2). Note
that such a pure spinor is non-trivially constrained, unlike a Cartan pure spinor in
D = 6, which has no R-symmetry. The superfields in the λ expansion of a scalar
pure spinor superfield Ψ are fields Aα1...αn in (00n)(n). A direct calculation of the
zero mode cohomology, or equivalently, of the pure spinor partition function, gives
at hand that cohomology only occurs at λ0 (the ghost) and λ1 (the physical fields).
No higher cohomologies exist, and there is no room for equations of motion for
the physical fields. The cohomology is listed in Table 4.3, where it is clear that in
addition to the gauge connection and fermion field, the triplet of auxiliary fields also
appears.

Since all equations of motion follow from setting the auxiliary fields to zero, it
is natural that the antifields should occur as cohomology of a separate pure spinor
superfield of dimension 2 and ghost number −1 transforming as a triplet. This is
indeed the case. The antifields (or, the current multiplet) is described by a pure
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Table 4.4 The zero mode cohomology in Ψ ∗I for the antifields of D = 6 N = (1, 0) super-Yang–
Mills theory

dim gh#
−1 −2 −3

2 (000)(2)
5

2
(010)(1) •

3 (100)(0) • •
7

2
• • •

4 • (000)(0) •
9

2
• • •

spinor superfield Ψ ∗I , which has a shift symmetry of the form

Ψ ∗I ≈ Ψ ∗I + (λσ I ρ) . (4.25)

The cohomology in Ψ ∗ is the mirror of the one in Ψ , and listed in Table 4.4.
The condition forΨ being on-must be separately formulated as another condition

s I Ψ = 0, where s I is an operator with ghost number −1 and dimension 2, such that
s I Ψ effectively starts out with the auxiliary field [119].

Similar considerations could be applied to other non-maximally supersymmetric
models. It has been used to check the multiplet structure of D = 3, N = 8 super-
gravity [120]. The cohomology (Cederwall, unpublished) of D = 10, N = 1 SG has
also been verified to agree with known results [122, 123].

4.4 Pure Spinor Space and Integration

As noted in Sect. 4.2.1, if a reasonable (non-degenerate) integrationmeasure [d Z ] (Z
denoting the ordinary superspace coordinates together with the pure spinor variables)
can be found, an action of the form

S = 1

2

∫
[d Z ]Ψ QΨ + interactions (4.26)

will provide an off-shell formulation of the model in question, and a solution to
the problem of finding an action for maximally supersymmetric models. In view of
the discussion on cohomology of the previous section, such an action would be a
classical Batalin–Vilkovisky (field–antifield) action (see Sect. 4.5).
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A measure on the pure spinor space has to fulfil a number of requirements. First,
as already noted, it has to be non-degenerate in order that the variation of the action
actually implies the equations of motion QΨ = 0. In addition, and depending on
the model at hand, there are restrictions on the dimension and ghost number of the
integration.

For the case of D = 10 SYM, Ψ has ghost number 1 and dimension 0. Therefore∫ [d Z ] needs to have have ghost number−3, and since 1
g2

∫
d10x d16θ has dimension

−4 + 1
2 × 16 = 4, “

∫ [dλ]” must have dimension 4. Correspondingly, in D = 11
SG, the pure spinor integration measure must contribute ghost number−7 and, since
the dimension of 1

κ2

∫
d11x d32θ is −2 + 1

2 × 32 = 14 and that of Ψ is −3, it also
must give dimension −8. In addition the measures should have the property that∫ [d Z ]QΛ = 0, so that BRST-trivial states have zero integral and partial integration
with respect to Q is possible.

The second thing to note is there are natural operations with precisely these quan-
tum numbers. If we check the highest ghost antifield cohomology, they come at λ3θ5

and λ7θ9, respectively. So, an “integration” that picks out the corresponding term
in the expansion of a pure spinor superfield would have (gh# , dim) = (−3, 4) and
(−7, 8) respectively, as desired. This is correct in spirit, but is still a degenerate
measure, since the expansion in λ only contains positive powers. Some adjustment
is needed.

The solution to this problemwas provided, for D = 10 pure spinors, by Berkovits
[74] with the introduction of so called non-minimal variables. By the introduction
of another set of pure spinors called λ̄α and a spinor of fermionic variables rα which
is pure relative λ̄, i.e., fulfilling (λ̄γar) = 0, the measure could be made non-
degenerate. Non-minimal sets of variables are quite standard when it comes to field-
antifield quantisation, but the present ones are even more natural, even from a purely
geometric point of view. Namely, although solutions to the pure spinor constraints
are complex (unless one is in split signature), we have so far assumed that the fields
depend on λ and not on λ̄. Unless we have some kind of residue measure, it seems
more natural to integrate over the full complex variable (λ, λ̄). The interpretation
of the fermion rα is as the differential dλ̄α (with the fermionic statistics coming
from the wedge product), which obviously satisfies (λ̄γadλ̄) = 0 [80]. When more
variables are introduced, the BRST operator must be changed accordingly in order
to keep the cohomology intact. This is done by adding a term to Q:

Q = (λD) +
(

r
∂

∂λ̄

)
= Q0 +

(
dλ̄

∂

∂λ̄

)
= Q0 + ∂̄ , (4.27)

where ∂̄ is the antiholomorphic exterior derivative, the Dolbeault operator. The
cohomology is unchanged, and any cohomology will have a representative that is
independent of λ̄ and dλ̄.

A field Ψ
(
x, θ;λ, λ̄, dλ̄

)
is then seen as an antiholomorphic form on pure spinor

space (meaning, it can depend on both λ and λ̄, but has only antiholomorphic indices,
seen as a tensor). A suitable assignment of quantum numbers for λ̄ and dλ̄ is that
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λ̄ has ghost number −1 and dimension 1
2 (the opposite to λ), while dλ̄ has ghost

number 0 and dimension 1
2 (there is some irrelevant arbitrariness in the assignment,

as long as it comes out right for the BRST operator).
Suppose that the integration can be written as an integral of a form over the pure

spinor space. Since no fields contain dλ, the integration measure needs to contain
a top form Ω with the maximum number of holomorphic indices. In D = 10, this
number is 11 (see below). In order for partial integration of ∂̄ to be allowed, this form
should in addition depend on λ only, so that ∂̄Ω = 0. We now try an expression for
the full integral over the non-minimal pure spinor variables,

∫
[dλ]X =

∫
Ω ∧ X . (4.28)

Again counting quantum numbers (for the D = 10 case), the λ and λ̄ integrals
cancel, while the r integration (“removal of d11λ̄”) provides ghost number 0 and
dimension − 11

2 . In order to land at the desired quantum numbers for the integration,
ghost number −3 and dimension −4, the components of Ω must have ghost number
−3 and dimension 3

2 , which is accomplished by precisely three negative powers of λ,

Ω ∼ λ−3d11λ (4.29)

(we leave it as a trivial exercise to show that the same applies to any assignment of
quantum numbers to λ̄ and dλ̄ that respects the ones of Q, and that the assignments
for dλ are irrelevant).

The requirement that the holomorphic top formwith ∂̄Ω exists is equivalent to the
existence of a Calabi–Yau structure on the pure spinor space, defined by Ω . There
is indeed a unique Spin(10)-invariant Calabi–Yau metric (up to a scale) on the pure
spinor space, following from the Kähler potential [124]

K (λ, λ̄) = (
λλ̄

)8/11
. (4.30)

The pure spinor constraint may be solved in a basis where manifest Spin(10)
is broken to SU (5) × U (1). Then, 16 → 1−5/2 ⊕ 10−1/2 ⊕ 5̄3/2, and a spinor is
represented by a 0-form �, a 2-form Λ and a 4-form M . The pure spinor constraint
reads �M − 1

2Λ ∧ � = 0, so the 11 coordinates can be taken as � and Λ in a patch
where � �= 0. It is obvious that

Ω = �−3d�d10Λ (4.31)

has vanishing U (1) charge, and it can be checked that it is fully Spin(10)-invariant.
In [124], it was checked by explicit calculation that this is the Calabi–Yau top form
corresponding to theKähler potential (4.30). It can of course also be given a covariant
form. The expression

Ω ∼ (λλ̄)−3λ̄α1 λ̄α2 λ̄α3�T α1α2α3
β1...β11dλβ1 ∧ . . . ∧ dλβ11
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is indeed independent of λ̄ [125] (which thus can be replaced by any constant spinor),
where the the tensor T is precisely what, after dualisation of the 11 antisymmetric
lower indices to 5 upper ones, defines the ghost antifield cohomology,

Ψ ∼ Tα1α2α3,β1β2β3β4β5λ
α1λα2λα3θβ1θβ2θβ3θβ4θβ5

∼ (λγaθ)(λγbθ)(λγcθ)(θγabcθ) .
(4.32)

This whole procedure may be repeated for the D = 11 pure spinors. The intro-
duction of non-minimal variables is completely analogous, as is the formulation of
the integration in terms of a Calabi–Yau top form. The dimension of the pure spinor
space is 23, which can be deduces from an explicit solution similar to the one for
D = 10. When Spin(11) → SU (5) × U (1),

32 → 1−5/2 ⊕ 5−3/2 ⊕ 10−1/2 ⊕ 1̄01/2 ⊕ 5̄3/2 ⊕ 15/2 . (4.33)

A spinor is thus parametrised by an arbitrary form. If we write it as

λ = � ⊕
5⊕

p=1

Λp (4.34)

(� being the 0-form, and the subscript p denoting form degree), the solution to the
pure spinor constraint is

Λ3 = �−1Λ1 ∧ Λ2 + Σ,

Λ4 = �−1(−Λ1 ∧ Λ3 + 1
2Λ2 ∧ Λ2),

Λ5 = �−2Λ2 ∧ Λ3 − 1
2Λ1 ∧ Λ2 ∧ Λ2,

(4.35)

where Σ is a 3-from satisfying

ıvΣ ∧ Σ = 0 (4.36)

for all vectors v, i.e., ε jklmnΣi jkΣlmn = 0 [111, 126].
An important difference compared to the D = 10 pure spinors is that there is a sin-

gular locus away from the origin, where the 3-form Σ vanishes. It is straightforward
to see that then (λγabλ) = 0. This is the space of D = 12 Cartan pure spinors, a
16-dimensional space. The degrees of freedom contained in Σ consists, modulo a
scale, of the Grassmannian Gr(2, 5) = SU (5)

S(U (3)×U (2)) of 2-planes in 5-dimensions.
So the appearance of Σ provides 14 more real, or 7 complex dimensions, to make
a total of 23. A similar parametrisation of the solution of the constraint on Σ in
terms of modules of su(3) ⊕ su(2) ⊕ u(1), with s being the singlet, gives at hand
that the the measure, i.e., the holomorphic top form carries the factor �−5s−2 [126],
and here is the ghost number −7 as announced. Again, the measure can be cast in
a Lorentz-covariant form, but we will not go into the details (see [69, 100, 127]).
The above reflects the fact that the top cohomology at λ7θ9 contains 2 powers of
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Fig. 4.1 A rough sketch of the D = 10 and D = 11 pure spinor spaces, with their respective
singular subspaces marked

(λγ(2)λ). The corresponding Kähler potential and metric have not been explicitly
constructed, but this should be straightforward.

We finally want to say a few words about integration and regularisation [74].
It was mentioned that the cohomology, also after the introduction of (λ̄, dλ̄), has
representatives that are independent of these variables. In other words, they are
holomorphic functions (0-forms). How can integrals of (products of) such functions
give a non-vanishing result? One will always obtain 0, due the undersaturation of the
form degree (the fermionic variables). On the other hand, the polynomial behaviour
of the cohomologies at infinity gives ∞, if radial integration is performed first.
The integrals are ill-defined, of the form 0 × ∞. This can been remedied in two
(equivalent) ways. Either we note that the representatives in the minimal variables
are a bad choice, and change them into some BRST-equivalent representatives that
givewell-defined integrals, or we use aBRST-invariant regularisation of themeasure.
The same type of regulator, an expression of the form e−t{Q,χ}, works in both cases.
A standard choice for χ is χ = θαλ̄α, giving a regulator

e−t ((λλ̄)+(θdλ̄)) . (4.37)

If such a regulated measure (with t > 0) is used with the minimal representatives, we
see that it regulates the bosonic integrals at infinity. At the same time 11 (D = 10)
or 23 (D = 11) dλ̄’s are needed to saturate the form degree (fermionic integral),
and the corresponding term in the expansion of the exponential carries 11 (23) θ’s.
In order to saturate the θ integration, another 5 (9) are needed, and we see that this
agrees with picking out the top cohomology, as was the first, too naïve, candidate for
integration. It is thus no coincidence that the number of θ’s in the top cohomology
agrees with the number of independent constraints on a pure spinor (Fig. 4.1).

The regulated integrals will of course be independent of the parameter t . This
looks much like localisation—taking t to be very big localises the integral close to
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the origin. The dependence on the pure spinor variables is indeed “topological”, in
the sense that they do not provide new functional dependence, only a finite spectrum.
We have not seen any good way of making use of localisation. The origin is not a
regular point in pure spinor space, rather a boundary [128].

4.5 Batalin–Vilkovisky Formalism and Actions

We have seen in Sect. 4.3 that the content of the pure spinor superfields is not only the
physical fields, but also a full set of ghosts and antifields (at least for maximal super-
symmetry). This indicates that the proper framework for introducing interactions (so
far, everything has been at a linearised level) is the Batalin–Vilkovisky formalism
[129–131].

4.5.1 Field-Antifield Structure

The Batalin–Vilkovisky (BV) formalism can be thought of in several ways. It seems
to have originated as an attempt to find something similar to aHamiltonian formalism,
without breaking manifest Lorentz symmetry, in that sense uniting the advantages of
the Lagrange and Hamilton methods. Another way of viewing it is that it naturally
lifts the BRST method to possible include nonlinear terms and transformations, i.e.,
interactions. It should be noted that some textbooks (e.g. [132]) introduce the BV
formalism in connection with gauge fixing, which tends to somewhat obscure the
simplicity.What wewill do here is classical BVfield theory, althoughwewill discuss
gauge fixing in Sect. 4.7.

In the BV framework, a ghost field is introduced for each gauge symmetry (and
reducibility) and each of the fields φI (by which is meant physical fields as well
as ghosts) is supplemented by its antifield φ∗

I with opposite statistics and a ghost
number assignment fulfilling gh# (φ)+gh# (φ∗) = −1. A fermionic bracket, the so
called antibracket, between functions of fields and antifields is introduced as

(A, B) =
∫

d Dx

(
A

←−
δ

δφI (x)

−→
δ

δφ∗
I (x)

B − A
←−
δ

δφ∗
I (x)

−→
δ

δφI (x)
B

)
. (4.38)

The (classical) BV action is defined as a solution to the master equation

(S, S) = 0 , (4.39)

which reduces to the action for the physical fields when ghosts and antifields are
removed. The action itself generates gauge transformations via the antibracket (in a
generalised sense, where e.g. antifields are transformed by the equations of motion
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for the physical fields), so the master equation (4.39) can be seen as the invariance
of the action itself.

In the situation at hand, with the pure spinor superfields for maximally super-
symmetric theories, we have seen that the cohomology describes both fields and
antifields, so a split in the two sets looks problematic. In addition, it is of course
necessary to define the antibracket off shell, so that also components outside coho-
mology takes part. The field–antifield symmetry of the cohomology makes it natural
to think of a field Ψ as self-conjugate with respect to the antibracket, and define it
as [69]

(A, B) =
∫

A
←−
δ

δΨ (Z)
[d Z ]

−→
δ

δΨ (Z)
B . (4.40)

It is straightforward to show that this antibracket (in all cases we have considered)
carries the correct quantum numbers, and that a free action of the form

S2 = 1

2

∫
[d Z ]Ψ QΨ (4.41)

indeed generates gauge transformations. At this non-interacting level, the master
equation is equivalent to the nilpotency of the BRST operator. Actions of this form
thus describes both SYM and SG at linearised order.

4.5.2 Interactions from the Master Equation

We now have at our disposal all ingredients necessary to introduce interactions in a
consistent way. The guiding principle is the master equation (4.39).

4.5.2.1 SYM

The SYMcase is easy. The linearised action has the formof an abelianChern–Simons
action, and sinceΨ and Q carry the same quantum numbers aΨ 3 term can be added,
turning the full action into Chern–Simons form,

S =
∫

[d Z ] tr
(
1

2
Ψ QΨ + 1

3
Ψ 3

)
. (4.42)

This leads to equations of motion

QΨ + Ψ 2 = 0 , (4.43)

which could of course equally well be directly deduced from the superspace formal-
ism, where its restriction to the ghost number zero fields reads λαλβ Fαβ = 0.
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A notable feature is that although the component action contains 4-point cou-
plings, such terms are not present in the manifestly supersymmetric pure spinor
superfield action. Instead they are reproduced when the equations of motion are
solved sequentially in the θ expansion of the superfields Aα. Such simplifications
are typical. We mentioned them in passing for the 3-dimensional conformal models
of Sect. 4.3.3, and similar simplifications turn out to happen also for supergravity.

4.5.2.2 SG

The interactions of D = 11 supergravity [69, 70] are more subtle. Remember
that Q has ghost number 1 and dimension 0, while Ψ has ghost number 3 and
dimension −3. The first step will be to construct a 3-point coupling. How can it
be formed, given that the integrand in the action must have ghost number 7 and
dimension −6?

Here, the geometric fieldΦa comes into play. We remind that it has ghost number
1 and dimension −1. It contains the field strength H but not the potential C . Guided
by the form of the Chern–Simons term C ∧ H ∧ H , is it possible that something like
Ψ Φ2 may work? Such a combination has ghost number 5 and dimension −5. If it
is supplemented by two powers of λ, the quantum numbers are the correct ones. A
hypothetical 3-point coupling is then

S3 ∼
∫

[d Z ](λγabλ)Ψ ΦaΦb . (4.44)

Apart from thematching of quantumnumbers, the factor (λγabλ) has two other rôles:
the antisymmetry in [ab] makes it possible to contract the indices on the (fermionic)
Φ fields; and it ensures the invariance under the shift symmetry of (4.16), thanks to
the Fierz identity (γbλ)α(λγabλ) = 0, satisfied by a pure spinor λ (but not by an
unconstrained one).

This is of course not the final answer for the 3-point coupling. We have argued
that Ψ is the fundamental field, but (4.44) is meaningless until we declare how 
a is
formed from Ψ . Let us assume that there is some operator Ra of ghost number −2
and dimension 2 (defined modulo shift symmetry) such that

Φa = RaΨ . (4.45)

Then the master equation, stating the consistency of the tentative 3-point coupling,
demands that [Q, Ra] = 0 (again modulo shift symmetry). Such an operator was
constructed in [69], and it takes the form

Ra = η−1
(
λ̄γabλ̄

)
∂b + · · · , (4.46)
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where η = (
λγabλ

)
(λ̄γabλ̄) is the scalar invariant vanishing on the the codimension-

7 subspace of 12-dimensional pure spinors, and where the ellpsis denotes terms with
dλ̄ and dλ̄2.

This means that we have a consistent 3-point interaction. It is clearly also non-
trivial, and since already the 3-point coupling for gravity is cohomologically unique
[133], it must be the full 3-point coupling of D = 11 SG in Minkowski space. A
concrete check on component field couplings would nevertheless be encouraging. In
[69, 70], it has been verified that the Chern–Simons term is correctly reproduced,
and that the ghost couplings corresponding to the diffeomorphism algebra are the
right ones.

Surprisingly, the 3-point interactions provide almost the full answer.When check-
ing the master equation to higher order in Ψ , a very simple 4-point coupling arises,
containing a simple nilpotent operator T . The properties of this operator ensures that
the master equation is satisfied to all orders, and the full action for D = 11 SG is

S =
∫

[d Z ]
[
1

2
Ψ QΨ + 1

6
(λγabλ)

(
1 − 3

2
T Ψ

)
Ψ RaΨ RbΨ

]
. (4.47)

We refer to [70] for the details.
Strikingly enough, the full action for D = 11 supergravity becomes polynomial.

The 4-point coupling may even be removed by a field redefinition (at the price of
having a redefined fieldwhich is not canonical with respect to the antibracket, and has
a less standard kinetic term). However, it should be said that geometry is somewhat
obscured.By basing the formulation on the lowest-dimensional part of the superspace
fields, and treating the fields as deformation of the flat background, geometry is not
manifest. Still, the appearance of all ghosts, including the ones for diffeomorphisms
and local supersymmetry, in the cohomology, together with the master equation,
ensures full gauge invariance, although in a form that is not easily recognisable as
geometric. Therefore it may be interesting to try to “rebuild” a geometric picture
based on the present formalism. We do not have any concrete ideas about how this
may be done, but it might involve further variables, reintroducing the superfields
that were discarded (the higher-dimensional parts of the super-vielbein). Formally,
an analogue statement is true for the SYM action, but the simple Chern–Simons
form there makes gauge invariance (almost) manifest. In close connection with this,
it is not clear how to best find solutions to the equations of motion. It is not known
even how to embed simple, purely gravitational, solutions like the Schwarzschild
geometry into the superfield Ψ . For perturbation theory around flat space, on the
other hand, the formulation is ideal, both for keeping control over the symmetries
and for having a very limited number of couplings, and it has been used for amplitude
calculations [126, 134].
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4.5.2.3 Other Models

Actions, along the lines drawn up here, can also be constructed for the BLG
and ABJM models described briefly in Sect. 4.3.3. Since the fields describing the
scalar multiplets are non-scalar, their kinetic terms contain extra λ’s ensuring shift
symmetry. The interactions consist essentially of a minimal coupling to the Chern–
Simons field, replacing and reproducing the higher order interactions among the
component fields (e.g. a sixth order potential in the scalars). We again refer to
[71–73] for details.

In principle, actions could be formed also for models with less supersymmetry.
Then we know from the discussion in Sect. 4.3.4 that separate pure spinor super-
fields must be introduced for the fields and the antifields. The full formalism for
lower supersymmetry has not been developed. In [119] minimal D = 6 SYM was
treated, but only at the level of equations of motion, and in a minimal pure spinor for-
malism. Especially issues concerning gauge fixing may turn out to be easier in such
models (see Sect. 4.7). In particular, D = 10, N = 1 supergravity and its dimen-
sional reductions may be interesting, e.g. concerning the investigation of possible
counterterms.

4.6 Higher Derivative Terms and Born–Infeld Theory

As an example of an application of our formalism, we will briefly describe the
construction of a higher-derivative term. Even though the example is specific—the
F4 deformation of D = 10, N = 1 SYM, it may be applied to any supersymmetric
deformation of a maximally supersymmetric model with a pure spinor action. As
we will see, the drastic simplifications of interaction terms persist also here, and
although an F4 deformation in component language will come together with an
infinite number of terms of arbitrarily high order in derivatives, a single quartic term
turns out to contain the full deformation in the pure spinor superfield language for
the abelian model. We conjecture that it describes Born–Infeld theory.

The question addressed here was actually one starting point for the development
of the present formalism [55–59]. The work described in this section is based on
[109].

Precisely as for any interaction term, the guide to consistent deformation is the
master equation. What is needed is some Ansatz for the form of the interactions. In
[55, 58], it was observed that the 5-form part of Fαβ = 0 must be changed in order
to deform the theory. It was also noted that the appropriate α′2F4 terms for SYM
were generated by

F A
αβ ∼ α′2t A

BC D(γaχB)α(γbχC )β F D
ab , (4.48)

where t is a symmetric invariant tensor, and χ and F denote the superfields with the
corresponding component fields as lowest components. We will from now on drop
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the explicit factor α′2. This was then used in [58] in order to derive for the first time
the complete deformation at this order, including all fermion couplings.

We need some systematics for lifting expressions like (4.48) to full pure spinor
superfield expressions, containing not only fields of definite ghost number. The
method introduced in [109] was to form “physical operators”, solving this prob-
lem. Take for example the physical fermion. We would like to find an operator χ̂α

that, roughly speaking, strips the pure spinor superfield Ψ of one power of λ and two
powers of θ and forms a pure spinor superfield that “starts” with χα, and similarly
for other component fields. These operators were systematically constructed in the
non-minimal formalism. For example, the operator χ̂α takes the form

χ̂α = 1

2
(λλ̄)−1(γaλ̄)α∂a + · · · , (4.49)

with the ellipsis denoting termswithmore singular behaviour in (λλ̄) andwith one or
two powers of dλ̄. The physical operators turn out to satisfy a number of interesting
algebraic and differential relations (among them, a somewhat surprising relation to
the b operator of Sect. 4.7).

We found that a quartic term in the action

S4 = 1

4

∫
[d Z ]Ψ (λγaχ̂)Ψ (λγbχ̂)Ψ F̂abΨ (4.50)

solves the master equation in the Maxwell case, not only to this order but to all
orders, and conjectured that it describe supersymmetric Born–Infeld theory. In the
non-abelian case, the same term, dressed up with a four-index tensor, describes the
full totally symmetric part of the interaction to all orders. We found various ways of
rewriting this 4-point coupling in more symmetric ways, and refer to [109] for the
details.

The generalisation to supergravity has not been performed, but should not present
any other difficulties than purely technical, and may be useful in the search for
supersymmetric counterterms. Note that, while in a component language one must
make separate Ansätze for the deformed action and the deformed supersymmetry,
here everything is uniformly encoded in the master equation.

4.7 Gauge Fixing

We will finally briefly mention gauge fixing, which is an important issue when it
comes to quantum calculations and path integrals.

There is a well developed theory of gauge fixing in the BV framework. One must
of course eliminate the antifields as independent propagating degrees of freedom,
and this is achieved by the introduction of a gauge fermion χ. One then demands
that
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φ∗
I = δχ

δφI
. (4.51)

This makes physical quantities independent of gauge choice. Normally, in a gauge
theory, this procedure involves extra non-minimal fields, the “antighost” and
Nakanishi-Lautrup fields.

In the pure spinor superfield framework (for maximally supersymmetric models),
we have fields Ψ which effectively contain both fields and antifields and are self-
conjugate under the antibracket. We can not form a condition like (4.51) without a
contrived and unnatural splitting of the field Ψ . Therefore it is necessary to fix the
gauge in some other way.

A standard way to fix gauge in string theory is Siegel gauge [135]. The gauge
fixing condition is

bΨ = 0 , (4.52)

where b is a ghost field corresponding to the Virasoro constraint. However, in the
pure spinor formalism, no world-sheet or world-line reparametrisation is a priori
present—as we have seen the equations of motion of the massless fields is an “indi-
rect” consequence of cohomology, and do not follow from “p2 = 0” of some particle
model with reparametrisation symmetry. Such a b operator has to be constructed as
a composite operator if it exists. This was done for string theory in [74]. The field
theory version of this b operator, relevant for SYM, is

b = − 1

2

(
λλ̄

)−1
(λ̄γa D)∂a + 1

16

(
λλ̄

)−2
(λ̄γabcdλ̄)

(
Nab∂c + 1

24
(Dγabc D)

)

− 1

64

(
λλ̄

)−3
(dλ̄γabcdλ̄)(λ̄γa D)Nbc (4.53)

− 1

1024

(
λλ̄

)−4
(λ̄γabedλ̄)(dλ̄γcd

edλ̄)Nab Ncd ,

where Nab = (λγab
∂
∂λ ). The defining property of the b operator is

{Q, b} = � . (4.54)

The whole purpose of gauge fixing is of course to make the kinetic operator (in
this case Q) invertible.With this gauge choice, the propagator G (“Q−1”) is formally

G = b

� . (4.55)

So, even if b is a complicated operator, it does precisely what is needed for gauge
fixing: it eliminates almost all the antifields and implies Lorenz gauge for the gauge
connection. By “almost all” we mean that there is a small remainder of the antifield
A∗a , connected to its on-shell divergencelessness, that gives place for the antighost,
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which otherwise is normally introduced by hand. That this happens follows from the
deliberations in [87].

The consistency of the gauge fixing also relies on the property b2 = 0. This
identity is quite cumbersome to show—in string theory so much so that the full
calculation was performed only recently [136, 137].

In D = 11 the b operator is quite complicated,

b = 1

2
η−1(λ̄γabλ̄)(λγabγc D)∂c + · · · (4.56)

We will not display it in full detail here, and refer to [126].
The fact that the b operators, and also other operators carrying negative ghost

number such as the Ra operator of the supergravity and the physical operators of
Sect. 4.6, have quite complicated expression has been the source of some activity
searching for simpler versions. See e.g. [78, 81, 126, 138].

Once gauge fixing has thus been performed, it is possible to use the pure spinor
superfield formalism for calculation of amplitudes. There will be further (resolvable)
questions about regularisation that we will completely forgo here, see [80, 126, 139,
140]. In [126], amplitudes derived from the supergravity action were shown to be
finite up to six loops, in agreement with [139, 140] (see the talk presented by Anna
Karlsson [134]).

It might be expected that gauge fixing inmodelswith less thanmaximal supersym-
metry can be performed in a way which is more along the standard lines of the BV
formalism, i.e., with a gauge fixing fermion, since then fields and antifields are nat-
urally separated in different pure spinor superfields. This remains to be investigated.

4.8 Discussion

We have given a brief overview of the pure spinor superfield formalism, and how
it leads to off-shell superfield actions for maximally supersymmetric models. The
main focus has been on D = 10 SYM and D = 11 SG, but also other models have
been mentioned. Some of the more technically intricate parts of the formalism have
been left out, but we hope that the general message is clear: this is a solution to the
problem of going off-shell with maximal supersymmetry.

We have repeatedly pointed out the simplicity of the resulting actions. Indeed,
the many terms in a supersymmetric component action generically reduce to some
quite simple expression, which is of lower order in fields than the component interac-
tions. In a couple of cases, we even get polynomial expressions where the component
ones are non-polynomial. This is of course an advantage when it comes to quantum
calculations: the number of vertices is very limited. The other advantage for ampli-
tude calculations is that the presence of an action (as opposed to a first-quantised
formalism) directly yields the form of the vertices consistent with all symmetries.
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The formulation of supergravity has some drawbacks, though. Since only part
of the supervielbein is used, the geometric structure of the theory is obscured.
Background invariance is not manifest, since some background is needed in order
even to define the BRST operator. In this sense, the behaviour is similar to closed
string field theory [135]. It is not clear whether geometry, or some aspects of it can be
regained without losing the obvious advantages of the pure spinor formalism. This
means also that solutions beyond the linearised level around some background are
difficult to find, as is e.g. the dynamics of extended abjects and their coupling to
supergravity.

We believe that there is something to learn from the application of pure spinor
techniques to theorieswith less supersymmetry.This is however a largely unexplorsed
subject.

Finally, we would be very interested in extending the formalism to other structure
groups. The type of models we primarily have in mind are models with “manifest U-
duality”, formulated as gauge theorieswithin the framework of generalised geometry.
Some supermultiplets are already known in connection with U-duality [141–144],
and it would be very interesting to continue to a superfield formalism and maybe
a (generalisation of the) pure spinor version. A manifest control over both super-
symmetry and U-duality would be the ideal situation for examining the ultraviolet
properties of maximal supergravity.
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