
Chapter 10
Thermodynamic Curvature and Black Holes

George Ruppeiner

Inmy talk, Iwill discuss black hole thermodynamics, particularlywhat happenswhen
you add thermodynamic curvature to the mix. Although black hole thermodynamics
is a little off the main theme of this workshop, I hope nevertheless that my message
will be of some interest to researchers in supersymmetry and supergravity. Black hole
thermodynamics would appear very much in need of some microscopic foundation.
Wemight ask:what are black holesmade out of? Iwill give no answer, but Iwould like
to suggest that what I present here might offer some guidance about the microscopic
character of black holes.

Thermodynamic curvature is an element of thermodynamic metric geometry.
A pioneering paper on this was by Weinhold [1] who introduced a thermodynamic
energy inner product. This led to the work of Ruppeiner [2] who wrote a Riemannian
thermodynamic entropy metric to represent thermodynamic fluctuation theory, and
was the first to systematically calculate the thermodynamic Ricci curvature scalar
R. A parallel effort was by Andresen et al. [3] who began the systematic applica-
tion of the thermodynamic entropy metric to characterize finite time thermodynamic
processes.

This talk presents a review of thermodynamic curvature R broad in scope, though
far from complete in its coverage. I extend the themes discussed in a previous talk [4].
My main focus is on achieving some understanding of thermodynamic curvature in
the black hole setting. To accomplish this, my working assumption is that for black
holes, R follows the same physical interpretation as for ordinary thermodynamic
systems, where R gives the size of organized microscopic structures. I present a
review of what is known about ordinary thermodynamics, and what this might tell
us about black holes.
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Fig. 10.1 An infinite environ-
ment of particles and an open
volume, with fixed volume V ,
into which particles fluctuate
in and out

10.1 What is Thermodynamic Curvature R?

Thermodynamic curvature comes from thermodynamic fluctuation theory. This clas-
sical theory is described in every book on statistical mechanics; it is chapter twelve
in Landau and Lifshitz [5]. For a fluid system, the basic set-up is shown in Fig. 10.1.
There is a infinite universe of particles and some imaginary open volume with fixed
volume V , into which the particles can travel freely in and out. What is the probabil-
ity of finding some energy U and some number of particles N in the open volume?
Thermodynamic fluctuation theory gives the answer.

Let the particles in the open volume, and the environment consisting of the rest of
the particles, be two thermodynamic systems. Denote the fixed thermodynamic state
of the environment by “0”. The thermodynamic state of the open volume fluctuates
about an equilibrium characterized by maximum total entropy. The probability of a
fluctuation away from equilibrium is given by Einstein’s famous Gaussian thermo-
dynamic fluctuation formula [5–8]:

probability ∝ exp

[
− V

2
(Δ�)2

]
, (10.1)

where

(Δ�)2 = gμνΔxμΔxν, (10.2)

x1 and x2 denote a pair of independent fluctuating thermodynamic variables of
the open volume, Δxα = (

xα − xα
0

)
denotes the difference between xα and its

equilibrium value xα
0 , where the total entropy is maximized, and gμν denotes the

elements of the thermodynamic entropy metric discussed below.
Let S, X1, and X2 be the entropy, internal energy U , and particle number N ,

respectively, of the open volume. Regard S = S(X1, X2, V ), with V fixed. X1 and
X2 correspond to conserved quantities, and S is additive between the open volume
and its environment. If xα = Xα, then
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gαβ = − 1

kB V

∂2S

∂Xα∂Xβ
, (10.3)

where kB is Boltzmann’s constant [5, 9, 10]. Since probability depends only on the
thermodynamic state, the metric elements gαβ constitute a second-rank tensor. gαβ

is a positive definite matrix, since the entropy has a maximum value in equilibrium.
This is the condition of thermodynamic stability.

This is all found in Landau and Lifshitz [5]. Let me now get into some things
Landau and Lifshitz did not say. The quadratic form (Δ�)2 in (10.2) has the look of
a distance between thermodynamic states, a distance in the form of a Riemannian
metric. The physical interpretation is that: the less the probability of a fluctuation
between two states, the further apart they are.

A Riemannian metric in any context leads directly to a Ricci curvature scalar
R [11], and this is certainly the case here. R is the only geometric scalar invariant
function in thermodynamics, and so it must be very fundamental. The units of the
thermodynamic curvature are those of volume per particle, and this limits its pos-
sible physical interpretation greatly. Units alone suggest that R is a measure of the
characteristic size of some sort of organized fluctuating structures within the system.

R is readily calculable from the thermodynamic metric elements gαβ . For exam-
ple, in

(
x1, x2

) = (T, ρ) coordinates, where T is the temperature and ρ is the particle
number density, we have the Helmholtz free energy per volume f = f (T, ρ), the
entropy per volume s = − f,T (where the comma notation indicates partial differen-
tiation), and the chemical potential μ = f,ρ. The diagonal metric elements (g12 = 0)
are [12]

g11 = 1

kB T

(
∂s

∂T

)
ρ

, (10.4)

and

g22 = 1

kB T

(
∂μ

∂ρ

)
T

. (10.5)

For a diagonal metric [11]

R = 1√
g

[
∂

∂x1

(
1√
g

∂g22

∂x1

)
+ ∂

∂x2

(
1√
g

∂g11

∂x2

)]
, (10.6)

where
g = g11 g22. (10.7)

A simple example is the ideal gas, in which there is no interaction between the
particles. Here

f (T, ρ) = ρkB T ln ln ρ + ρkBh(T ), (10.8)
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Fig. 10.2 Three surfaces with constant Ricci curvature scalar R the sphere, the plane, and the
pseudosphere. For pure fluids, in Weinberg’s sign convention, R < 0 if attractive interparticle
interactions dominate, and R > 0 if repulsive interactions dominate. Regardless the sign convention
for R, attractive interactions correspond to the geometry of the sphere, and repulsive interactions
to the geometry of the pseudosphere

where h(T ) is some function of the temperature with negative second derivative.
Equation (10.6) now yields R = 0 [2]. This suggests that R is some type of measure
of interactions between particles.

Calculations in critical point models show that |R| diverges as the correlation
volume ξd , where d is the spatial dimension of the system [2, 9, 13]. The connection
of |R| to fluctuating structure size has also been established directly by means of a
covariant thermodynamic fluctuation theory [9, 12, 14–16].

R is a signed quantity, as shown in Fig. 10.2. I use the sign convention ofWeinberg
[17]. (Sign conventions differ among authors. I express all results reported here in
Weinberg’s sign convention). For fluid and solid systems, an overall pattern is that
R is negative for systems where attractive interparticle interactions dominate, and
positive where repulsive interactions dominate. The sign of R alone thus offers direct
information about the character of the interactions among the particles.

10.2 R for Ordinary Thermodynamics

R has been worked out in a number of cases in ordinary thermodynamics. On sys-
tematic tabulation, patterns readily become evident. Such patterns might lend insight
into the nature of black hole microscopic properties.

In this section I attempt a classification of the “basic food groups” of R for ordi-
nary thermodynamics. Thermodynamics divides neatly into atomic and molecular
systems, like fluids and solids, and discrete lattice systems, like magnetic spin sys-
tems. I will treat them separately.

10.2.1 R for Fluid and Solid Systems, Basic Models

In this section, I tabulate results for fluid and solid systems, including the quantum
gasses. I pay special attention to Lennard-Jones type interacting systems, for which
there are a number of interesting recent results.
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Table 10.1 The thermodynamic curvature R for a number of simple models for which R has only
one sign

System n d R sign |R| divergence
Ideal Bose gas [18, 19] 2 3 − T → 0
q-Deformed bosons [20] 2 3 − Critical line
Critical regime [2, 9, 21] 2 · · · − Critical point
Mean-field theory [22] 2 · · · − Critical point
van der Waals (critical regime) [9, 21, 23] 2 3 − Critical point
Spherical model [13, 24] 2 3 − Critical point
Tonks gas [25] 2 1 − |R| small
Ideal gas [2, 26] 2 3 0 |R| small
Multicomponent ideal gas [27] >2 3 + |R| small
Ideal gas paramagnet [28] 3 3 + |R| small
q-Deformed fermions [20] 2 3 + T → 0
Ideal Fermi gas [18, 19, 29] 2 2,3 + T → 0
Ideal gas Fermi paramagnet [28] 3 3 + T → 0

Tabulated are the number of independent thermodynamic parameters n, the spatial dimension d,
the sign of R, and the possible divergences of R. For some models, there is no particular spatial
dimension d, and this is denoted by . . .. “|R| small” means that the value of |R| is on the order of
the volume of an interparticle spacing or less

Table 10.1 shows R for a number of simple models for which R has only one sign.
These models were worked out by a number of authors over a period of years. In
these models interactions between particles may take place by virtue of a potential
between the particles, or through quantum statistics. In either case, particles tend
to either bunch together (attract) or to push apart (repel) compared with the ideal
gas. The results in Table 10.1 clearly show the relation between the character of
the interparticle interactions and the sign of R. If interactions between particles
are attractive, R is negative. Prominent here is the ideal Bose gas,1 and the typical
critical point models. If interactions are repulsive, R is positive. Prominent examples
are ideal Fermi gasses. In systems with weak interactions, |R| is zero or “small,”
where “small” means on the order of the molecular volume v, |R| ∼ v or smaller.
Cases with |R| ∼ v are typical also of systems dominated by strong short-range
repulsive interactions, such as dense liquids and solids. Table 10.1 also shows where
|R| diverges, typically either at absolute zero or at critical points.

Table 10.2 shows four additional models, each having R with both signs. The
Takahashi gas has negative R for the gas-like phase, where attractive interactions
dominate, and small |R| in the liquid-like phase. Increasing the density at constant
low temperature yields a pseudophase transition from a gas-like phase to a liquid-like
phase. This pseudophase transition is accompanied by a sharp positive spike in R.
Conceptually simpler than the Takahashi gas are the remaining three models in Table
10.2, which are all quantum gasses intermediate between Fermions and Bosons, and

1 The calculation of R for the ideal Bose gas was done with a continuous density of states, and so
a possible divergence of R at a Bose-Einstein phase transition with T > 0 would not have been
revealed.
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Table 10.2 The thermodynamic curvature R for models where R has both signs

System n d R sign R = 0 |R| divergence
Takahashi gas [25] 2 1 ± Yes T → 0
Gentile’s statistics [19] 2 3 ± Yes T → 0
M-statistics [30] 2 2, 3 ± Yes T → 0
Anyons [31] 2 2 ± Yes T → 0

In each case, R changes sign through R = 0

with sign of R switching from positive to negative through R = 0 on transitioning
from Fermionic to Bosonic behavior. Gentile statistics have an integer parameter p
giving the maximum occupation number of a state, with p = 1 corresponding to a
pure Fermi gas, and p → ∞ to a pure Bose gas. In the same spirit is the M-statistics
model, with state occupation number M . For any temperature and chemical potential,
R eventually transitions in sign from positive to negative as M increases from 1.
R thus offers a convincing method of determining when the M-statistics model
transitions from Fermionic to Bosonic. The quantum gas of anyons is intrinsically
two-dimensional, and has particles with fractional spin α whose variation allows us
to change it continuously from a Bose gas to a Fermi gas (α : 0 → 1); the sign of R
changes correspondingly from negative to positive.

10.2.2 R for Fluid and Solid Systems, Lennard-Jones Potential

A major element in the study of fluid and solid systems is the Lennard-Jones type
potential between particles, shown schematically in Fig. 10.3. This potential approx-
imates the interaction between particles in real fluids and solids. The Lennard-Jones
type potential is strongly repulsive at short range and weakly attractive at long range.
There is aminimum in the potentialwhere repulsion and attraction balance, andwhere
particles in a condensed liquid or solid phase like to reside. Fluid phases typically
posses average separation distances between particles greater than that correspond-
ing to the bottom of the potential well, and so the attractive part of the potential
usually dominates. Hence, R should be mostly negative for real pure fluids, which
is indeed the case. The study of the Lennard-Jones type interaction supplements that
for the simple models above, and takes us a long way towards completing the picture
for R for fluid and solid systems.

Letme present results fromfluid studies based on experimental fluid data [32, 33],
and on computer simulations in fluids and solids on particles interacting via an
actual Lennard-Jones potential [34, 35]. In each case R was determined by (10.6),
differentiating f (T, ρ) obtained from fits to numerical experimental or computer
data. Results of this effort, and the results for the simple models shown above, are
summarized in Fig. 10.4. Figure 10.4 shows schematic graphs of R as a function of
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Fig. 10.3 The Lennard-Jones
type potential, in which
two particles separated by
a distance r experience a
potential φ(r), repulsive at
short range and attractive at
long range

T along curves with the specified v. Particle configurations corresponding to each
situation are also shown alongside the schematic graphs.

Figure 10.4a shows the ideal gas, which has R = 0. Figure 10.4b shows the behav-
ior of R perhaps more typical of weakly interacting systems. Here, widely spaced
particles interact via the attractive tail of the Lennard-Jones potential. Typically R
is negative, and 0 < |R| � v. I characterize such situations as having “small” |R|,
even in cases such as near ideal gases where v might get very large. The idea is that at
size scales of one molecular volume, the system gets “grainy,” and thermodynamic
properties such as R based on averages have increasing difficulty being accurate.

The liquid state is shown in Fig. 10.4c. We have a compactly arranged, disorga-
nized system of particles held together by attractive interactions, and with negative
R, and |R| ∼ v. On compressing the liquid state, there is the possibility of the sys-
tem organizing into a crystalline solid state, where the predominant interaction is
repulsive in character, with R changing sign to positive, and |R| ∼ v, as shown in
Fig. 10.4d. Typical is a discontinuous jump from the liquid into the solid state [35].

An essential case is the critical point regime, with R shown in Fig. 10.4e. There
are two curves for R, separated by the critical temperature Tc. The curve at lower
temperature represents R along the coexistence curve for both liquid and vapor
phases, and the curve at higher temperature represents R along the critical isochore
v = vc, where vc is the critical molar volume. R diverges to negative infinity at the
critical point along both curves. On the right side of Fig. 10.4e, I sketch a near critical
point particle configuration where a loose cluster has been formed by the attractive
long-range tail of the Lennard-Jones type potential. The size of this cluster is given
by the correlation length ξ, with |R| ∼ ξ3. Another critical point theme is shown
in Fig. 10.4f, where we have equal values of R for the coexisting liquid and vapor
phases, Rl = Rv , as the two phases have identical organized droplet sizes [32–34].

Figure 10.4g shows a somewhat subtle vapor phase theme [32]. Attractive interac-
tions have formed a tight cluster of solid, which is then pressed together by impacts
from surrounding particles. Repulsive interactions hold the structure up and R is
positive, with |R| ∼ cluster size. Such clusters have been reported in computer
simulations in the vapor phase of Water near the critical point [36].
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Fig. 10.4 Schematic graphs for R and corresponding particle configurations: a the ideal gas, with
R = 0; b the weakly interacting gas, with negative R and 0 < |R| � v, where v is the molecular
volume; c the liquid, with negative R and |R| ∼ v; d the transition from liquid to solid, with R
changing sign to positive in the solid, typically discontinuously; e the critical point, with R → −∞
and |R| ∼ ξ3; f the coexisting gas and liquid phases, with R equal in the vapor and the liquid
phases very near the critical point, Rl = Rv ; g an organized compact repulsive cluster held up by
the repulsive part of the interparticle interactions, with positive R and |R| ∼ cluster size; h the ideal
Bose gas, with R → −∞ as T → 0; i the ideal 2D or 3D Fermi gas, with R → +∞ as T → 0;
and j the anyon gas, with a transition from Bose to Fermi behavior as T decreases at fixed v
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Fig. 10.5 R for Water in
the coexisting liquid and
vapor phases from the triple
point to the critical point.
Demonstrated are the points
made in Fig. 10.4b–g

Figure 10.4h shows the ideal Bose gas, with R always negative, and with R
diverging to negative infinity as T → 0. Figure 10.4i shows the ideal Fermi gas,
with R always positive, and with R diverging to positive infinity as T → 0. The
ideal Fermi gas shows the same qualitative behavior in 3D [18, 19] or 2D [29].
Figure 10.4j shows the gas of anyons with 0 < α < 1. As we cool at constant v,
starting from a high T , R starts with the Bosonic negative sign, but eventually there
is a transition to the Fermionic positive sign. Aside from its intrinsic interest, the
natural spatial dimension, two, of the anyon gas matches the dimension of black hole
event horizons.

Lest the reader think that this is all theoretical, I show R for Water in Fig. 10.5,
along the coexistence curve in both the liquid and vapor phases. Figure 10.5 was
worked out with data from the NIST Chemistry WebBook [37, 38]. R is in units of
cubic nanometers, and is shown from the critical point T = Tc to the triple point
T = Tt , where Tt is the triple point temperature. Demonstrated are a number of
the principles sketched in Fig. 10.4. The predominant sign of R is negative, as the
attractive tail of the Lennard-Jones type potential dominates in the fluid.

In conclusion, for fluid and solid systems major elements of the thermodynamic
curvature seem tobeunderstood in principle, at least for caseswithn = 2 independent
thermodynamic parameters. Cases with n > 2, such as fluid mixtures, are largely
unexplored.

10.2.3 R for Discrete Systems

The thermodynamic curvature for discrete systems has been less investigated. Spin
systems with ferromagnetic interactions tend to have aligned adjacent spins, and to
have critical point properties analogous to those for fluid systems. Indeed, R tends to
be nicely negative for ferromagnetic spin systems, with |R| ∼ ξd . By analogy with
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Table 10.3 The thermodynamic curvature R for several simple spin models for which R has only
one sign

System n d R sign |R| divergence
Ising ferromagnet [22, 40] 2 1 − T → 0
Ising on Bethe lattice [41] 2 . . . − Critical point
Ising on random graph [13, 42] 2 2 − Critical point
Ising antiferromagnet [22, 40] 2 1 − |R| small
Ideal paramagnet [22, 40] 2 · · · 0 |R| small

the fluid systems, then, we might think of ferromagnetic interactions as somehow
“attractive.” We might also logically think of antiferromagnetic interactions, which
tend to disalign adjacent spins, as “repulsive,” and with positive R. But there is little
evidence that it works out like this. Mirza and Talaei [39] worked out R for a model
with frustrated spins, and found a regime with large positive R. Perhaps the presence
or absence of frustration is the key to interpreting the sign of R for spin systems.More
calculations in spin systems would appear indicated before any definitive judgement
could be made.

For spin systems, we commonly have a temperature T and a magnetic field H
(more than one magnetic field may be present, but this possibility is not explored
here). For such models, the partition function gets worked out in terms of β =
1/T and h = −H/T ; namely, Z = Z(β, h). The partition function leads to the
thermodynamic potential per spin φ(β, h) = ln Z, and the metric elements gαβ =
φ,αβ , in coordinates

(
x1, x2

) = (β, h) [9]. Here, we set kB = 1. It is fashionable in
magnetic models to write R as

R =

∣∣∣∣∣∣
φ,11 φ,12 φ,22
φ,111 φ,112 φ,122
φ,112 φ,122 φ,222

∣∣∣∣∣∣
2

∣∣∣∣φ,11 φ,12
φ,12 φ,22

∣∣∣∣
2 . (10.9)

Many of the results for discrete models were worked out with this formula.
Table 10.3 lists R for some spin models simple enough that R has only one sign

(or R = 0). The first three models in Table 10.3 have ferromagnetic nearest neighbor
interactions. For these, R is negative, with a divergence R → −∞ either as T → 0
(for d = 1), or at a critical point with T > 0 (for d �= 1), as interspin coupling brings
about a long-range ordering of aligned spins. This situation would appear analogous
to the fluid critical point regime. The Ising antiferromagnet has a negative R with
magnitude of the order of a lattice spacing, and is similar in this sense to the liquid
state of the previous section.

Table 10.4 shows four discrete systems for which R has both signs. The sign
of R for the one-dimensional q-state Potts model is related to the number of states
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Table 10.4 The thermodynamic curvature R for discrete models for which R has both signs

System n d R sign R = 0 |R| divergence
Potts model (d > 2) [13, 43] 2 1 ± Yes T → 0
Finite Ising ferromagnet [44] 2 1 ± Yes T → 0
Ising-Heisenberg [45] 2 1 ± Yes T → 0
Kagome Ising lattice [39] 2 2 ± No Critical line

per spin q. For q > 2, and nonzero magnetic field, there are significant regimes of
positive R at low temperature. An abrupt change in the sign of R is present in the one-
dimensional Ising ferromagnet of finite N spins. R is appropriately negative for large
N , but sharply increases to large positive values as N is decreased through a volume
N∗ ∼ |R(N → ∞)|. Work calculating R is in progress for the one-dimensional
Ising-Heisenberg model, which shows ferromagnetism, antiferromagnetism, ferri-
magnetism, and frustration. The ferrimagnetic phases show substantial regimes of
positive R. R for the kagome Ising lattice has recently been worked out, mostly in
zero magnetic field. This model has a critical line T = Tc(H) in (T, H) space along
which R diverges on both sides, negative on the high T side with dominant ferro-
magnetic interactions, and positive on the low T side with dominant ferrimagnetic
interactions.

The physical interpretation of R for discrete systems is less conclusive than that
for the fluid and solid systems. More worked examples are clearly necessary.

10.3 R for Black Hole Thermodynamics

This section discusses black hole thermodynamics, mostly in the context of general
relativity [46]. String theory and other quantum black holes are beyond the scope of
this talk.

10.3.1 Introduction

The classical (nonquantum) properties of black holes date to Schwarzchild’s solu-
tion of Einstein’s field equations [47]. This solution obtains on assuming a static,
charge free, spherically symmetric point mass M , located at a central singularity.
The solution yields a spherical event horizon, centered on the mass, and with radius
r = 2M (in geometrized units). This event horizon bounds an interior from which
there may be no escape, even by light. Einstein’s field equations may also be solved
if we add charge Q (the Reissner-Nordström solution), angular momentum J (the
Kerr solution), or if we have all three quantities (M, J, Q) (the Kerr-Newman solu-
tion). Hawking, Penrose, and others proved the celebrated uniqueness theorems, that
if the collapsing matter is dense enough, then we inevitably approach one of these
solutions.
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Fig. 10.6 Extremal black holes have so much charge Q that they are on the verge of exploding
out under their electrostatic repulsion, or so much angular momentum J that they are on the verge
of spinning apart. Both of these scenarios, or any combination of them, are forbidden by cosmic
censorship

Frequently discussed is the idea of extremal black holes. Could we add enough
charge to a black hole so that it explodes outward under its electrostatic repulsion,
as in Fig. 10.6? Or could we add enough angular momentum so that it tears apart
under its spin? Cosmic censorship forbids both these scenarios, or any combination
of them. We refer to black holes as extremal if they are as close as possible to these
mechanical limits. For the Kerr-Newman black hole, the condition of mechanical
stability is

M4 − J 2 − M2Q2 > 0. (10.10)

At the extremal limit, the black hole temperature T = 0, and cosmic censorship is a
way of expressing the unattainability of absolute zero temperature. It is important to
appreciate, however, that the third law of thermodynamics will not always hold for
black holes, as extremal black holes do not always have zero area. Hence, the black
hole entropy does not always go to zero at zero temperature. This marks an important
difference between black hole thermodynamics and ordinary thermodynamics.

An oft quoted principle of black holes is the “no-hair theorem” [47]. After matter
collapses to form a black hole, there is a brief period of settling downduringwhich the
history of the black hole’s creation is forgotten. The final equilibrium state depends
only on (M, J, Q). Such a reduction of complexity is essential for black hole thermo-
dynamics. Taken to its logical extreme, however, and the no-hair conjecture denies
the possibility of any form of a distribution of equilibrium black hole microstates.
A distribution of microstates is central to statistical mechanics, as well as for thermo-
dynamic fluctuations, and thermodynamic fluctuations are arguably logically neces-
sary to any thermodynamic formalism [48].Myworking assumption is then certainly
to consider fluctuations about the black hole equilibrium thermodynamic state. If we
magnify the regime around the black hole event horizon we might expect to see a
fluctuating structure perhaps like in Fig. 10.7. And if we have fluctuations in some
quantum structure, would there not be associated fundamental particles?
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Fig. 10.7 Fluctuating event
horizon. Are particles associ-
ated with these fluctuations?

Table 10.5 Comparison
between pure fluid
thermodynamics and
Kerr-Newman black hole
thermodynamics

Pure fluid Kerr-Newman

Conserved variables (U, N , V ) (M, J, Q)

Conjugate variables (T,μ,−p) (T, �,�)

Entropy? Yes Yes
Thermodynamic laws (0,1,2)? Yes Yes
Third law (3)? Yes No
Extensive? Yes No
Thermodynamically stable? Yes No
Statistical mechanics? Yes Unclear

10.3.2 Kerr-Newman Black Hole Thermodynamics

Consider now the Kerr-Newman black hole thermodynamics, beginning with a com-
parison to pure fluids; see Table 10.5. First, I identify the conserved variables; these
play a special role in thermodynamic fluctuation theory [49]. ForKerr-Newman black
hole thermodynamics, the conserved variables are (M, J, Q), with corresponding
conjugate quantities temperature T , angular velocity�, and electric potential� [50].
Like pure fluid thermodynamics, black hole thermodynamics has well established
notions of entropy, and zeroth, first, and second laws (0, 1, 2) of thermodynamics.
The third law (3) of thermodynamics, however, is not obeyed in Kerr-Newman black
hole thermodynamics since the entropy does not go to zero at zero temperature.

A clear difference between fluid and black hole thermodynamics is that black
hole thermodynamics is not extensive [51]. Namely, we cannot scale the mass of the
black hole up in such a way as to leave all of the conjugate variables fixed. However,
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this point poses few difficulties for the black hole thermodynamic fluctuation theory
employed here.

Significant is the frequent absence of black hole thermodynamic stability. One
manifestation of this are negative heat capacities, which are a fixture of gravita-
tional thermodynamic problems. A black hole lacking thermodynamic stability can-
not reach thermodynamic equilibrium with its environment, a significant deficit for
the physical interpretation of any quantity, such as R, coming from thermodynamic
fluctuation theory. The Kerr-Newman black hole thermodynamics is not stable for
any set of values of (M, J, Q) [52]. However, stable black hole cases do exist.
These result on either restricting the number of fluctuating variables, adding an AdS
background, or altering the assumptions about the black hole’s topology. Stable ther-
modynamic cases get most of the attention in this talk.

There is no consensus on the question of the correct microstructure support-
ing black hole thermodynamics. String theorists have attempted to calculate such
microstructures, particularly for near extremal black holes, starting with Strominger
and Vafa [53]; see Bellucci and Tiwari [54, 55] and Wei et al. [56] for recent refer-
ences.2 In string theory calculations, the microscopic model is always explicit. By
contrast, for general relativity solutions there is no evident microscopic foundation,
and I direct my efforts to these in this talk.

10.3.3 Laws of Black Hole Thermodynamics

The Bekenstein-Hawking area law [57, 58] sets the black hole entropy SB H propor-
tional to the area A of the event horizon:

SB H

kB
= 1

4

(
A

L2
p

)
, (10.11)

where

L p =
√

�G

c3
(10.12)

is the Planck length. Here, � is Planck’s constant divided by 2π, G is the universal
gravitation constant, and c is the speed of light. The area A may be calculated in
terms of the conserved variables, given a black hole solution from general relativity.
Such a calculation yields the full black hole thermodynamics. For example, here is
the formula for A for the Kerr-Newman black hole [59]:

2 If a paper starts with a spacetime metric, and calculates the thermodynamic from the area of
the event horizon, it is a general relativistic solution. If the paper starts with a Lagrangian, and a
quantum action then it is beyond the scope of my talk.
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A = 4π
(
2M2 − Q2 + 2

√
M4 − J 2 − M2Q2

)
. (10.13)

The black hole entropy may be added to the ordinary entropy So to get the total
entropy of the universe:

Suniverse = SB H + So. (10.14)

We generalize the second law of thermodynamics in the obvious way, that in any
process starting from some initial state and going to some final state:

ΔSuniverse ≥ 0. (10.15)

Drop now the subscript “BH” (SB H → S), and turn to the first law of black hole
thermodynamics. Writing M = M(S, J, Q) leads to

d M = T d S + �d J + �d Q, (10.16)

where we define the temperature

T =
(

∂M

∂S

)
J,Q

, (10.17)

the angular velocity

� =
(

∂M

∂ J

)
S,Q

, (10.18)

and the electric potential

� =
(

∂M

∂Q

)
S,J

. (10.19)

The first law of black hole thermodynamics (10.16) expresses the change in black
hole energy d M to mechanical work terms, �d J and �d Q, and a heat term T d S.

Also essential is the 0’th law of black hole thermodynamics, which equates T to
the effective surface tension of the event horizon. Calculations show this quantity
to be constant over the event horizon, resulting in a unique value for the black hole
temperature T . � and � are similarly constant over the event horizon [59].

Letmemake onemore observation about the correspondences inTable 10.5 before
discussing black hole thermodynamic curvature. While there are natural correspon-
dences between fluid and black hole energy, temperature, entropy, and (I argue)
thermodynamic curvature R, there is always uncertainty in making correspondences
among other thermodynamic variables. For example, if we have some fluid critical
point property, say a divergence in the heat capacity at constant volume, one could
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not naturally say how this property translates to black hole thermodynamics. This
point will be discussed further below in connection with black hole phase transitions.

10.3.4 Black Hole Thermodynamic Curvature R

Blackhole thermodynamics leads naturally to corresponding rules for blackhole ther-
modynamic fluctuations, described by an information metric [49, 60–62] of the type
in (10.2). In conserved independent coordinates (x1, x2, x3, . . .) = (X1, X2, X3, . . .)

= (M, J, Q, · · · ), the thermodynamic metric for black hole fluctuations is (in appro-
priate units)

gαβ = − ∂2S

∂Xα∂Xβ
, (10.20)

where S is the black hole entropy. The form of the thermodynamic metric in (10.20)
requires us to know S = S(X1, X2, X3, . . .). Frequently, however, we know instead
M = M(Y 1, Y 2, Y 3, . . .), where (Y 1, Y 2, Y 3, . . .) = (S, J, Q, . . .). In this event,
simplification results on writing the thermodynamic metric in the Weinhold energy
form, with an additional prefactor 1/T [9, 63]:

gαβ = 1

T

∂2M

∂Y α∂Y β
. (10.21)

No matter how the thermodynamic metric is written, however, we will get the same
value for R for a given thermodynamic state, since R is a thermodynamic invariant.3

Thermodynamic fluctuation metrics must be positive definite for thermodynamic
stability. With two independent fluctuating variables, this requires three conditions:

g11 > 0, (10.22)

g22 > 0, (10.23)

and

g11g22 − g212 > 0. (10.24)

3 The line element (10.2) transforms as a scalar, since probability is a scalar quantity. Hence, the
metric elements gαβ transform as the elements of a second-rank tensor, which the relation between
(10.20) and (10.21) satisfies. The resulting thermodynamic curvature R transforms as a scalar. These
transformation properties hold under all coordinate transformations, including those resulting from
Legendre transformations. This is the case in both ordinary and black hole thermodynamics, despite
erroneous claims to the contrary [64].
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Fig. 10.8 The event horizon
broken up into Planck area
pixels. The dark pixels are
portrayed as correlated. I
propose that |R| measures the
average number of correlated
pixels

Pioneering papers introducing thermodynamic curvature R into the black hole arena
are [60, 65, 66]. In particular, Åman and Pidokrajt [60] first evaluated R for sev-
eral solutions from general relativity. For nondiagonal thermodynamic metrics with
n = 2, such as those in (10.20) and (10.21):

R = − 1√
g

[
∂

∂x1

(
g12

g11
√

g

∂g11

∂x2
− 1√

g

∂g22

∂x1

)

+ ∂

∂x2

(
2√
g

∂g12

∂x1
− 1√

g

∂g11

∂x2
− g12

g11
√

g

∂g11

∂x1

)]
, (10.25)

where

g = g11g22 − g212. (10.26)

But what is the physical interpretation of the black hole thermodynamic curvature
R? In my view there is only one rational way to approach this question, and that is to
follow the ideas developed in ordinary thermodynamics. It has been argued [29] that
the natural units of the thermodynamic curvature are the square of the Planck length
L2

p. Figure 10.8 shows the event horizon broken up into Planck area pixels. Perhaps
|R| measures the correlation between fluctuating Planck length pixels? Since I bring
no microscopic theory of black holes into play in this talk, I have no direct evidence
for such a conjecture. But, by analogy with the case in ordinary thermodynamics,
how else could we interpret the black hole thermodynamic curvature?

The picture in Fig. 10.8 assumes that all the black hole statistical activity takes
place on the two-dimensional event horizon. This assumption is an element of the
black hole membrane paradigm [67]. The motivation of the membrane paradigm is
that if you cannot in principle know what is going on inside the black hole, then
assume that all of the interesting stuff must be happening on the event horizon. One
element of this idea is that if we are going to associate black hole statistics with some
familiar model in statistical mechanics, then perhaps we should look most closely at
two-dimensional models.



196 G. Ruppeiner

Table 10.6 The thermodynamic curvature R for black hole solutions from general relativity

Name of solution Dimension Variables Stable R sign R = 0 |R| divergence
Reissner-Nordström[60] 3 + 1 (M, Q) None 0 – None
Kerr [60] 3 + 1 (M, J ) None + No Extremal
Kerr-Newman [29, 60, 69] 3 + 1 (M, J, Q) None + No Extremal
Black hole [70] 4 + 1 (M, J ) None + No Extremal
Small black ring [70] 4 + 1 (M, J ) None ± Yes Ext + crit line

The solutions shown here have no regimes of thermodynamic stability. “Extremal” denotes a curve
in the space of variables with T = 0, and “crit” denotes a critical line with T �= 0, along which |R|
diverges

10.3.5 Solutions from General Relativity

The thermodynamic curvature R for black holes has been worked out for a number
of systems, and I make no attempt to be complete in my reporting below. Rather,
I present some thoughts about how results from various general relativity solutions
might be comparedwith one another, and to solutions fromordinary thermodynamics.
In Tables 10.6 and 10.7, I consider only thermodynamic states with S > 0, M > 0,
and T > 0. Within this physical range of variables, the solutions divide into two
categories, those for which there are no regimes satisfying thermodynamic stability
(10.22)–(10.24), and those for which there are such regimes. In either category, R can
be readily worked out from (10.25); it is real in all the cases I calculated. However,
the physical interpretation I have presented for R for ordinary thermodynamics is
based on fluctuation theory, and this assumes thermodynamic stability. I key on the
stable cases below.

Table 10.6 shows results for R for several general relativity solutions having
no stable thermodynamic states. Tabulated are the dimension (spatial + time), the
fluctuating conserved variables, whether or not there are regimes of thermodynamic
stability (no cases in Table 10.6), the sign of R (or an indication “0” if R is identically
zero), whether or not there are places where the sign of R changes through zero, and
whether or not there are divergences |R| → ∞. Of the older solutions: Reissner-
Nordström, Kerr, and Kerr-Newman, none are thermodynamically stable for any
thermodynamic state. Also, not thermodynamically stable are the two solutions listed
with a higher dimension = 4+ 1. Some of the older solutions have been worked out
in higher dimensions, but with no reports of thermodynamically stable cases [68].

Table 10.7 shows results for R for several general relativity solutions with “some”
or “all” states thermodynamically stable. Thermodynamic stability results on either
adding anAdSbackground, restricting the number of fluctuating variables, or altering
the assumptions about the black hole’s topology.

Black holes in an AdS background have significant regimes of thermodynamic
stability. The simplest member of this category is the BTZ black hole, which is ther-
modynamically stable for all of its states, and has identically zero R. This behavior
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Table 10.7 The thermodynamic curvature R for black hole solutions from general relativity

Name of solution Dimension Variables Stable R sign R = 0 |R| divergence
BTZ [60, 66] 2 + 1 (M, J ) All 0 0 None
RN-AdS [60, 71–73] 3 + 1 (M, Q) Some ± Yes Ext + crit line
K-AdS [72, 74, 75] 3 + 1 (M, J ) Some − No Critical line
Restricted KN [29, 49] 3 + 1 (J, Q) All + No Extremal
Large black ring [70] 4 + 1 (M, J ) All − No Ext + crit line

These solutions all have at least some thermodynamically stable regimes. The characterization of
R is based only on states in the stable regime. “Extremal” denotes a curve in the space of variables
with T = 0, and “crit” denote a critical line with T �= 0 along which |R| diverges

is shown schematically in Fig. 10.9a, and it resembles the behavior for the ideal gas
in Fig. 10.4a.

In the thermodynamically stable regime, Reissner-Nordström-AdS black holes
have an extremal curve T = 0, as well as a line of critical points where |R| diverges
to infinity. This critical line obtains for Q < Qc, where the critical value Qc depends
on the cosmological constant. For a fixed Q > Qc, as we reduce T from a large value,
R diverges to positive infinity at the extremal curve. However, for fixed Q < Qc, as
we reduce T from a large value, R diverges to negative infinity along the critical line.
As T is decreased further, we enter a thermodynamically unstable regime followed
by a stable regime where R increases.

The general black hole thermodynamic behavior for RN-AdS has been associated
with a phase transition analogous to a van der Waals model by Chamblin et al.
[76, 77]. A number of researchers have calculated R for this case [60, 71–73]. The
behavior of R for RN-AdS is shown schematically in Fig. 10.9b. For Q > Qc the
behavior of R resembles that in the Fermi gas, shown in Fig. 10.4i. For Q < Qc, R
resembles the critical point behavior in Fig. 10.4e. This correspondence is certainly
consistent with the association with the van der Waals model. I add that the Q < Qc

curve in Fig. 10.9b has a bump resembling the one in Fig. 10.4g.
Kerr-AdS black holes have no extremal curve in the thermodynamically stable

regime. However, a critical line depending on the cosmological constant bounds the
thermodynamically stable regime at low T . Along this critical line, R diverges to
negative infinity. For theKerr-AdS black hole thermodynamics, R is always negative.
Figure 10.9c sketches R as T is decreased from a large value at constant J . The sketch
resembles the critical point behavior in Fig. 10.4e.However, oncewe cross the critical
line, there are no more thermodynamically stable regimes. Banerjee et al. [78, 79]
have discussed phase transitions in AdS black holes using the Ehrenfest relations,
with special attention to the orders of the phase transitions.

Special thermodynamically stable cases result from the Kerr-Newman solution
when we fix one of the three parameters (M, J, Q), and allow the other two to
fluctuate. This restriction is not just a mathematical convenience; it has a physical
basis. For example, consider adding an electron to the black hole, and calculate
the contribution of each of changing (M, J, Q) to the change in the total entropy.
We expect one of (M, J, Q) to contribute least to the changing entropy, and if it
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Fig. 10.9 Schematic graphs for R for thermodynamically stable general relativistic black hole
solutions: a the BTZ solution, with R = 0; b the RN-AdS solution, with R diverging to positive
infinity at the extremal curve for Q > Qc, and with R diverging to negative infinity, at temperature
Tc > 0, along the critical line for Q < Qc; c the K-AdS solution, with R diverging to negative
infinity at the critical line, d the restricted KN (J, Q) solution, with R diverging to positive infinity
at the extremal limit; e the large black ring solution, with R diverging to positive infinity at the
extremal curve, and with R diverging to negative infinity along the critical line

contributes much less, we could just ignore the change in that parameter, and let
the other two parameters fluctuate. For a black hole with mass on the order of the
Planck mass (a quantum black hole), contributions to the changing entropy from
the electron mass are hugely less important to the change in total entropy than the
changes resulting from its (J, Q). This restrictedKN (J, Q) solution has some highly
desirable properties, as Table 10.7 shows. This solution is sketched in Fig. 10.9d. In
addition, there are some detailed analogies to the 2D ideal Fermi gas in the extremal
limit, which may be interesting.
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The large black ring solution also has significant regimes of stability, bounded by
an extremal curve and a critical line. R diverges to positive infinity at the extremal
curve, and to negative infinity along the critical line.

A few patterns present themselves for the thermodynamically stable general rel-
ativity solutions considered in this section. In all cases, the divergence of R at the
extremal curve is to positive infinity, resembling in this sense the divergence for the
ideal Fermi gasses from ordinary thermodynamics. Where there are critical lines
(with |R| diverging with T �= 0), the divergence of R is to negative infinity, resem-
bling the critical point divergences in ordinary thermodynamics. But I have consid-
ered too few cases here to assert with any confidence that these patterns are general.
Further study is obviously necessary.

10.3.6 Discussion of “Inconsistencies”

Much debated in black hole thermodynamics has been the possibility raised by
Davies [50] that the curve of diverging heat capacity CJ, Q = T (∂S/∂T )J, Q in
the Kerr-Newman black hole solution corresponds to a phase transition. Diverging
heat capacities are a feature of second-order phase transitions in ordinary fluid and
spin systems, so Davies’ association would appear logical.

Closer examination, however, raises some questions about Davies’ correspon-
dence. First, an ordinary thermodynamic system generally has at its foundation some
known microscopic model. Such a model offers direct insight not only into the char-
acter of the thermodynamic variables, but into the microscopic signatures of any
thermodynamic anomaly. In the absence of a knownmicroscopic model we have dif-
ficulty answering basic questions. If some heat capacity diverges, how could we be
sure that we have not just made an inappropriate choice of thermodynamic variables,
which reveals infinitieswith no really fundamental significance?What dowemake of
curves in thermodynamic state space where one heat capacity diverges, but the other
heat capacities stay regular? What if various heat capacities diverge along different
curves, as happens in the Kerr-Newman black hole [29, 52], as in Fig. 10.10. Which
curve corresponds to a true phase transition? One of them? All of them? Perhaps it
is safer to associate curves of diverging R with black hole phase transitions. R has a
unique status in identifying microscopic order from thermodynamics. and ordering
at the microscopic level is at the foundation of phase transitions.

Black hole solutions with R identically zero, of which Tables 10.6 and 10.7 each
have one, have also given rise to debate; see [80] for a review. If R measures in some
sense the range of interactions, then one might expect |R| to always be large for
black hole thermodynamics, reflecting the concentrated gravitational forces present
in these objects. But such reasoning need not obtain. In a classical black hole, the
gravitating particles have collapsed to a central singularity, shrinking the interactions
between them to zero volume. The statistics underlying the thermodynamics might
reside on the event horizon, where unknown constituents might interact with each
other by forces perhaps not gravitational. In this scenario, gravity might merely be
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Fig. 10.10 Characteristic
curves for the Kerr-Newman
black hole. The curve along
which CJ,Q diverges is the
Davies curve. R diverges
at the extremal limit and
along curves corresponding to
a change of thermodynamic
stability, which have diverging
CJ,� and C�,Q . R does not
diverge along the Davies
curve. Here α = J 2/M4 and
β = Q2/M2

a nonstatistical force holding the assembly together, and a result R = 0, where the
unknown constituents move independently of each other, would make perfect sense.

10.4 Conclusions

What are black holes made out of? This question has not been answered here. How-
ever, one way to address this question is by following an agenda of matching the
statistical mechanics of known microscopic models to black hole thermodynamic
solutions from general relativity, or other theories of gravity. I hope that I have con-
vinced the audience that the thermodynamic curvature R has a contribution to make
to this game.

I have given a broad survey of thermodynamic curvature R, one spanning results
in fluids and solids, spin systems, and black hole thermodynamics. R results from the
unique thermodynamic informationmetric giving thermodynamic fluctuations. R has
a unique status in thermodynamics as being a geometric invariant, the same for any
given thermodynamic state no matter what coordinates we calculate in. In ordinary
thermodynamics, the sign of R indicates the character of microscopic interactions,
and |R| indicates the average size of organized fluctuations. Although I have given
no direct evidence that this interpretation holds for black hole thermodynamics, if
we believe in the broad generality of thermodynamic principles, this interpretation
of R should transcend specific scenarios.

Most incomplete in this talk has been the presentation of spin systems. Frustration
in spin systems may be necessary as a way to deal with the frequent failure of the
third law of thermodynamics for black holes. Missing entirely from this talk have
been results on string theorymodels, which were simply beyond reach of the speaker.
These may ultimately yield the best picture of what is going on in the black hole.
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