
Chapter 1
Superconformal Symmetry and
Higher-Derivative Lagrangians

Antoine Van Proeyen

Superconformal methods are useful to build invariant actions in supergravity. We
have a good insight in the possibilities of actions that are at most quadratic in space-
time derivatives, but insight in general higher-derivative actions is missing. Recently
higher-derivative actions got more attention for several applications. One of these is
the understanding of finiteness of loop computations in supergravities. Divergences
can only occur if invariant counterterms or anomalies exist. One can wonder whether
conformal symmetry might also play a role in this context. In order to construct
higher-derivative supergravities with the conformal methods, one should first get
more insight in such rigid supersymmetric actions with extra fermionic symmetries.
We show howDirac–Born–Infeld actions with Volkov–Akulov supersymmetries can
be constructed in all orders.

1.1 Introduction

In the last 35years, supergravity actions with terms that are at most quadratic in
spacetime derivatives have been studied a lot. But recently higher-derivative terms
in supergravity actions got more interest. There are different reasons for this. They
appear as order α′ terms in the effective action of string theory. It has also been
realized that they lead to corrections to the black hole entropy. Furthermore, they can
give higher order results in the AdS/CFT correspondence. In this talk, we will also
consider them as counterterms for UV divergences of quantum loops.

In Sect. 1.2, we will review what we know about general sugra (supergravity)
and susy (supersymmetry) theories. Our preferred method to obtain such theories
uses the superconformal method, which we review in Sect. 1.3. We will also discuss
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there in which sugra theories these can be used. Then, in Sect. 1.4 we will turn to
higher-derivative sugra actions and explain the relation with sugra loop results. We
will see that we miss a lot of insight in the possibilities for higher-derivative actions.
In view of this, we studied Dirac–Born–Infeld actions for vector multiplets, obtain-
ing closed expressions and exhibiting extra Volkov–Akulov type supersymmetries.
They are examples of all order higher-derivative susy actions. They are the deforma-
tion of the well-known lowest order supersymmetry action, and can be considered
also perturbatively in a bottom-up construction. We will summarize this result in
Sect. 1.5, before giving conclusions in Sect. 1.6.

1.2 General Sugra/Susy Theories

An overview of possible actions with supersymmetry and supergravity has been
given in Chap. 12 of the book [1], starting from the basics. The theories considered
there are ‘ordinary’ supersymmetry and supergravity theories, which means that the
bosonic terms in the action are at most quadratic in spacetime derivatives, while
the terms with fermions are at most linear in spacetime derivatives. In 4 dimensions
they typically contain the frame field ea

μ, gauge fields AA
μ , with field strengths F A

μν,

scalars ϕu, gravitinos ψi
μ, and spin-1/2 fermions λm and a Lagrangian of the form

e−1L = 1
2 R + 1

4 (ImNAB)F A
μν FμνB − 1

8 (ReNAB)e−1εμνρσ F A
μν F B

ρσ

− 1
2guv Dμϕu Dμϕv − V (ϕ){

− 1
2 ψ̄μiγ

μνρDνψρ
i − 1

2gA
B λ̄A /DλB + h.c.

}
+ · · · , (1.1)

whereNAB, guv and gA
B are functions of the scalars ϕ. In general, the possibilities

for susy theories depend on the properties of irreducible spinors in each dimension.
For theories with Minkowski signature, these can be summarised in Table1.1. For
each spacetime dimension it is indicated whether Majorana (M), Majorana–Weyl
(MW), symplectic (S) or symplectic Weyl (SW) spinors can be defined as the ‘min-
imal spinor’, and the number of real components of this minimal spinor is given. To
make a complete list, we further use the information of what is the maximal number
of susy generators in such theories. This is based on an analysis of representations
of susy in 4 dimensions, which leads to maximal N = 8 for sugra, and maximal
N = 4 for susy. This thus translates to maximal 32 real generators for sugra and
16 for susy. This information is based on an analysis of particle states i.e. states
with momentum, spin and helicity |pμ, s, h〉. One needs that susy generators trans-
form a boson state to a fermion state and that they square to translations, which is
an invertible operator. Considering these operators as acting from bosonic states to
fermionic states or the inverse, leads to the conclusion that there are an equal number
of bosonic and fermionic states (number of degrees of freedom), and to the pos-
sible particle representations [2]. The information of the maximal number of susy
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Table 1.1 Irreducible
spinors, number of
components and symmetry
properties

Dim Spinor Min # components

2 MW 1
3 M 2
4 M 4
5 S 8
6 SW 8
7 S 16
8 M 16
9 M 16
10 MW 16
11 M 32

generators can also be used in dimensions higher than 4, since anyhigher-dimensional
theory can be reduced on tori to D = 4, keeping the same number of susy gener-
ators. We recalled the essential elements of the proofs here, in order to distinguish
supersymmetries of this kind, to the Volkov–Akulov supersymmetries. The latter do
not transform between such bosonic and fermionic states and should thus not be
included in the relevant counting of the number of supersymmetry generators. Using
this information leads to Table1.2. An entry in the table represents the possibility
to have supergravity theories in a specific dimension D with the number of (real)
supersymmetries indicated in the top row. We first repeat for every dimension the
type of spinors that can be used. Theories with up to 16 (real) supersymmetry genera-
tors allow ‘matter’ multiplets. Considering the on-shell states of the free theories we
distinguish different kinds of such multiplets. Those that contain a gauge field Aμ are
called vector multiplets or gauge multiplets, and are indicated in Table1.2 with ♥.

Tensor multiplets in D = 6 contain an antisymmetric tensor Tμν, are are indicated
by ♦. Multiplets with only scalars and spin-1/2 fields are indicated with ♣. They are
the hypermultiplets in case of 8 supersymmetry generators, or theWess–Zumino chi-
ral multiplets for N = 1, D = 4. At the bottom is indicated whether these theories
exist only in supergravity (SG), or also with just global supersymmetry (SUSY).1

For each entry in Table1.2 there are basic supergravities and ‘deformations’. Basic
supergravities have only gauged supersymmetry and general coordinate transforma-
tions (and U(1)s of vector fields). There is no potential for the scalars, and there
are only Minkowski vacua. A deformation means that, without changing the kinetic
terms of the fields, the couplings are changed.Many deformations are ‘gauged super-
gravities’. That means that a Yang–Mills group is gauged, introducing a potential.
Such supergravities are produced by fluxes on branes in string theory. There are
also other deformations (e.g. massive deformations, the superpotential in N = 1
supersymmetry, …).

1 Some exotic possibilities, like (4, 0), (2, 1) theories, for which no full action exists, are omitted
here.
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Table 1.2 Supersymmetry and supergravity theories in dimensions 4 to 11

D SUSY 32 24 20 16 12 8 4

11 M M

10 MW IIA IIB
I
♥

9 M N = 2
N = 1

♥
8 M N = 2

N = 1
♥

7 S N = 4
N = 2

♥
6 SW (2, 2) (2, 1)

(1, 1)
♥

(2, 0)
♦

(1, 0)
♥,♦,♣

5 S N = 8 N = 6
N = 4

♥
N = 2

♥,♣
4 M N = 8 N = 6 N = 5

N = 4
♥

N = 3
♥

N = 2
♥,♣

N = 1
♥,♣

SG SG/SUSY SG SG/SUSY

The embedding tensor formalism offers a way to classify the gauged supergrav-
ities. It defines the gauge group as a subgroup of the isometry group G, as can be
seen from the covariant derivative

(
∂μ − Aμ

MΘM
αδα

)
φ.Here, α labels all the rigid

symmetries, while M labels those that are gauged. The ‘embedding tensor’ ΘM
α

determines which symmetries are gauged and in which amount they contribute.
E.g. the coupling constants are part of this tensor. The tensor should satisfy a num-
ber of constraints, whose solutions determine the possible gaugings [3–5]. This thus
allows to get a complete picture of supergravities with at most two spacetime deriv-
atives in Lagrangian, though it still needs more work to get all the explicit solutions
of the constraints.

For higher-derivative actions there is no such systematic knowledge. There are
various constructions of higher derivative terms, e.g. using supersymmetric Dirac–
Born–Infeld actions, but there is no systematic construction or classification of pos-
sibilities; certainly not for supergravity, but even not for supersymmetry.

1.3 The Superconformal Method

There are various ways to construct supergravity actions. A basic way is the order-
by-order Noether method: starting from a globally symmetric action, next order
terms in the gravitational coupling constant are added using the concepts of Noether
currents. This is in fact the only possibility for the theories with more than 16 susy
generators. The superspace method is very useful for rigid N = 1 supersymmetry.
However, it becomes very difficult for supergravity. One needs many fields andmany
gauge transformations to get to a supergravity action. There is also the (super)group
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Table 1.3 Conformal construction of Poincaré gravity

manifold approach,where optimal use ismade of the symmetries using constraints on
the curvatures.We adhere to the method of superconformal tensor calculus whenever
possible. This method has the advantage that it uses the nice features of superspace,
like the the structure of multiplets, but it avoids its immense number of unphysical
degrees of freedom. The extra symmetries that are used in this method often lead to
insight in the structure of a supergravity theory.

Superconformal symmetry is the maximal extension of spacetime symmetries
according to the Coleman–Mandula theorem. What we have in mind, is not the

constructionof the supersymmetric completionofWeyl gravity,
∫
d4x

√
g

[
R2

μνρσ − 2

R2
μν + 1

3 R2
]
, but the construction of Poincaré gravity,

SPoinc =
∫

d4x
1

2κ2

√
g R, (1.2)

using conformal methods, where the dimensionful gravitational coupling constant κ
signals a breaking of the conformal symmetry. Thus, we use the conformal symmetry
as a tool for the construction of actions. It allows us to use multiplet calculus similar
to superspace, and it makes hidden symmetries explicit.

Wefirst explain the strategy for the constructionof pure gravity in a conformalway.
One startswith a conformal couplingof a scalar field,whichwill act as ‘compensator’:

L = − 1
2
√

g φ�Cφ = − 1
2
√

g φ�φ + 1
12

√
g Rφ2. (1.3)

This action has local scale transformations δφ(x) = λD(x)φ(x).These can be gauge-
fixed by choosing a value

φ = √
6/κ. (1.4)

This introduces the scale κ, indicating the breaking of conformal symmetry. Using
(1.4) in (1.3) leads to (1.2). The mechanism thus starts with a conformal invariant
action, and has a Poincaré invariant action as a result after gauge fixing. This is
systematically indicated in Table1.3.

For the supersymmetric theories, a similar construction allows to get more insight
in the structure of supergravity actions. A main difference between supersymmetry
and supergravity is that multiplets have a clear structure in supersymmetry, but after
coupling to supergravity they often get mixed, and they are not clearly identifiable
in the final action. In another language: superfields are an easy conceptual tool for
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globally supersymmetric theories. With the similar method as described above for
gravity, supergravity can also be obtained by starting with an action with supercon-
formal symmetry and gauge fixing the superfluous symmetries. This is especially
useful for matter-coupled supergravities. Before the gauge fixing, everything looks
like in global supersymmetry, just adding covariantizations for the superconformal
symmetries. Only after the gauge fixing, the multiplets get mixed.

To elucidate the superconformal symmetry, it is useful to consider it in the way
of transformations of supermatrices of the form

(
conformal algebra Q, S

Q, S R−symmetry

)
. (1.5)

Q is the ordinary supersymmetry and S is the extra, ‘special’ supersymmetry. The
R-symmetry depends on the dimension and extension of supersymmetry. It is clari-
fying to order the generators according to their weight under dilatations (here for the
N = 1 superconformal algebra)

1 : Pa
1
2 : Q

0 : D, Mab, T

− 1
2 : S

−1 : Ka . (1.6)

Pa, D, Mab and Ka are the conformal generators. The R-symmetry is in this case
just U(1), whose generator is indicated by T . The weights in the first column of (1.6)
determine the commutators involving D, for example

[D, Q] = 1
2 Q, [D, S] = − 1

2 S. (1.7)

As we discussed above, T is an R-symmetry. All (anti)commutators are consistent
with the weights, e.g.

{
Qα, Qβ

}
= − 1

2 (γ
a)α

β Pa ,
{

Sα, Sβ
}

= − 1
2 (γ

a)α
β Ka,

{
Qα, Sβ

}
= − 1

2δα
β D − 1

4 (γ
ab)α

β Mab + 1
2 i(γ∗)αβT . (1.8)

The strategy for the superconformal construction of N = 1 supergravity is anal-
ogous as for gravity in Table1.3. It is depicted in Table1.4.

A similar scheme holds for N = 4 supergravity [6, 7] as shown in Table1.5.
The special feature is that the gauge compensating multiplets are on-shell multiplets.
Remember that in any case the action should be invariant without use of the field
equations, but the algebra of the symmetries may close only modulo field equations.
However, the problem is that in this way there is no flexibility in the field equations.
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Table 1.4 Superconformal construction of pure N = 1 supergravity

Table 1.5 Superconformal construction of pure N = 4 supergravity

They are already fixed by the supersymmetry transformation laws. This gives thus a
problem when we want to modify the action with higher-derivative terms, since then
the field equations will change. Therefore, higher-derivative terms cannot be added
to N = 4 supergravity without a modification of the field equations. The hyper-
multiplets of N = 2 supergravity already have this feature of an ‘on-shell algebra’
(at least for a generic hyper-Kählermanifold). TheN = 4 gaugemultiplets also share
this property. This is especially relevant since they are compensating multiplets. It
implies that the supersymmetry transformations of the N = 4 super-Poincaré the-
ory can only close modulo field equations. But one can apply the superconformal
method.

In which supergravity theories canwe use the superconformal methods? There are
two necessary ingredients. First, one should have a superconformal algebra. Second,
there should be compensatingmultiplets.Which theories allow superconformal alge-
bras was already analysed by Nahm [8]. He analysed in which simple superalgebras
the conformal algebra so(D, 2) is a factor in the bosonic subalgebra. This lead to
Table1.6 (also a long list of superconformal algebras exist for D = 2). In each case
the bosonic subgroup contains the covering group2 of SO(D, 2), such that spinor rep-
resentations are possible, and a compact R-symmetry group. The last column gives
the number of real supersymmetry generators. Other superconformal algebras have
been considered where the conformal algebra is not a factor, but still a subalgebra of
the bosonic part of the superalgebra. E.g. SO(11, 2) ⊂ Sp(64) ⊂ OSp(1|64) [9, 10].
However, these have not been successfully applied for constructing actions. Thus,
the superconformal methods are restricted to the dimensions and extensions that

2 The equality sign in the ‘conf’ column of Table1.6 is only valid at the level of the algebra.
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Table 1.6 Superconformal algebras

D Supergroup Conf. R Ferm.

3 OSp(N |4) SO(3, 2) = Sp(4) SO(N ) 4N
4 SU(2, 2|N ) SO(4, 2) = SU(2, 2) U(N ) for N 
= 4 8N

SU(4) for N = 4
5 F2(4) SO(5, 2) SU(2) 16
6 OSp(8∗|2N ) SO(6, 2) = SO∗(8) USp(2N ) 16N

Table 1.7 Supergravity theories for which superconformal methods can be used

D SUSY 32 24 20 16 12 8 4

11 M M
10 MW IIA IIB I
9 M N = 2 N = 1
8 M N = 2 N = 1
7 S N = 4 N = 2

6 SW (2, 2) (2, 1) (1, 1) (2, 0) (1, 0)

5 S N = 8 N = 6 N = 4 N = 2

4 M N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

appear in Table1.6 and furthermore to a number of supersymmetries ≤16, such that
compensating multiplets exist.3 This leads to those indicated in boxes in Table1.7.

1.4 Higher Derivative Sugra Actions and Sugra Loop Results

For many years it was believed that supergravity could not be a finite theory. How-
ever, since the calculations of [12] revealed the 3-loop finiteness of N = 8, D = 4
supergravity, we realize that quantum supergravity has more surprising features than
we understood so far. In [13] the result was extended to 4 loops and even to D = 5.
But then, alsoN = 4 supergravity in D = 4 turned out to be finite up to 3 loops [14]
(and further results followed for D = 5). This brings us to reflections on the nature
of supergravity and possible counterterms. Divergences would imply that supersym-
metric counterterms should exist (or there should be supersymmetric anomalies). But
our present knowledge on higher-derivative terms in supergravity is not sufficient to
be sure about which invariants can be consistently defined.

3 For D = 10 with 16 supersymmetries, a superconformal formulation, not based on a Lie super-
algebra but rather on a soft algebra has been found in [11].
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1.4.1 Superconformal Methods for the N = 2 Example

Superconformal methods have been used to construct higher-derivative supergrav-
ities, starting with the work of Cecotti and Ferrara [15]. Especially for N = 2
supergravity, the tensor calculus allows us to construct various terms [16]. The con-
structions use tensor calculus with chiral multiplets, which are similar to chiral super-
fields. The multiplets contain fields

S = {X,Ωi , . . . , C}. (1.9)

Any sum and product of these gives another chiral multiplets. These manipulations
allow ‘tensor calculus’. A useful tool is the kinetic multiplet of a chiral multiplet
(which is also chiral) and starts with the complex conjugate of the highest component
of a chiral multiplet:

T(S̄) = {C̄, . . .}. (1.10)

To construct higher-derivative terms, one needs also another chiral multiplet, formed
from the N = 2 Weyl multiplet

W 2 = {T −
abT ab −, . . .}. (1.11)

It starts from the square of an auxiliary field (antisymmetric tensor) of the Weyl
multiplet. One can then use tensor calculus on these multiplets to construct new chi-
ral multiplets, of which the highest components defines actions. In order to be able
to define these in the superconformal framework, one has to take into account the
dilatation symmetry. This implies that the function of chiral multiplets that is used to
construct actions should satisfy homogeneity properties. Using such homogeneous
functions of the chiral multiplets, one obtains supergravity theories using supercon-
formal covariantization of the expressions used for global supersymmetry. Hence
this leads to many possibilities, which are invariants contributing to the entropy and
central charges of black holes.

In order to see how these actions lead to DBI theories, R4 actions are considered
in [17], using the above-mentioned constructions with

[
S2 + λ

W 2

S2 T

(
W̄ 2

S̄2

)]

C
. (1.12)

It uses the action formula ‘C’, which means in global supersymmetry the highest
component of th chiral multiplet. In superconformal calculus, there are some cor-
rection terms involving the gravitino, to obtain local conformal symmetry. S is the
chiral compensating multiplet (which due to constraints is in fact a vector multiplet).
Using just the first term in (1.12) would lead to pure supergravity.4 The second term

4 In fact, a second compensating multiplet is necessary in N = 2, but we do not discuss this here,
since this can be neglected for the present purposes.
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in (1.12) uses the multiplet (1.11) and the construction of a kinetic multiplet (1.10).
The powers of S are chosen in order to satisfy the homogeneity properties leading
to conformal-invariant actions. That second term is taken with a coupling constant
λ, in which an expansion will be considered.

Apart from a term of the form λC4····, where C···· is the Weyl tensor, and thus
creating terms of the form R4, the action formula in (1.12) produces also terms of
the type λ(∂T )4, where T stands for the auxiliary field of the Weyl multiplet. In the
standard supergravity action, the field equations imply that T is on-shell proportional
to the graviphoton. For the action (1.12), we get, symbolically

Tab = 2

X
Fab + λ(∂4T 3)ab, (1.13)

where X is the scalar of the compensating multiplet, which is in the Poincaré theory
dependent on κ similar to (1.4). This equation is solved recursively, and we thus get
an expression with an infinite number of higher derivative terms with higher and
higher powers of the graviphoton F :

Tab = 2

X
Fab + λ(∂4F3)ab + λ2∂4F2∂4F3 + · · · . (1.14)

The action with auxiliary field eliminated leads to a DBI-type action with higher
derivatives

Sdeformed = − 1
4 F2 + λ(∂F)4 + λ2∂8F6 + · · · . (1.15)

Note that before the elimination of the auxiliary field, this action has a finite number
of terms with auxiliary fields. The infinite series is produced by the elimination of
the auxiliary fields. They lead thus to a deformation of the lowest order action in
powers of λ. At the same time also the transformation laws are deformed. Again,
the transformation laws are finite expressions before the elimination of the auxiliary
fields. E.g. for the gravitino transformation

δψi
μ = Dμεi − 1

16γ
abT −

abε
i jγμε j − γμηi , (1.16)

where the covariant derivative uses the superconformal connections, and S-
supersymmetrywith parameter ηi is included. Then the on-shell value of the auxiliary
fields is used as a power series in λ:

φaux = φ(0)
aux + Δφaux, Δφaux =

∑
n=1

λnφ(n)
aux. (1.17)

This leads, with (1.14), to deformations in the supersymmetry transformation law of
the gravitino of the form [17]

Δψi
μ = −4λ[∂4F3]μνγνε

i + · · · . (1.18)
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Here also contributions have been used that originate from the ‘decomposition law’
expressing the parameter ηi in terms of εi after gauge fixing of S-supersymmetry.

We conclude that the tensor calculus allows us to obtain higher-derivative terms,
determined first off-shell, which can lead to deformations of the action and trans-
formation laws on-shell. They are obtained from (broken) superconformal actions.
For pure gravity, the 3-loop counterterm that contains R4 is obtained from the local
conformal expression ∫

d4
√

g φ−4(CμνρσCμνρσ)2, (1.19)

where φ is the compensating scalar and Cμνρσ is the Weyl tensor. For N = 2 a
superconformal R4 counterterm can be obtained from the λ-term in (1.12). What do
we know about N = 4, where miraculous cancelations have been found?

1.4.2 Problem and Conjecture for N = 4 Supergravity

The problem is that it is not easy to construct counterterms forN = 4 supergravity.
We cannot multiply the compensating multiplets to suitable powers, and thus we
cannot make constructions as those for N = 2. The essential problem is that the
algebra of supersymmetry holds only on shell. When we would like to write a mod-
ified action, then it implies modified field equations, and thus the transformations
have to be modified (or in other words: the structure of the multiplets). For N = 2,
deformed transformations could be found due to the possibility to work first with
auxiliary fields. The field equations for the latter lead to deformed transformation
laws on shell. ForN = 4 we do not know auxiliary fields. How can we then establish
the the existence or non-existence of the consistent order by order deformation of
N = 4 supergravity?

This question lead to the conjecture made in [18]. If such counterterms do not
exist, this may explain finiteness results (if meanwhile the explicit calculations do not
find that N = 4, D = 4 is divergent at higher loops). Until invariant counterterms
are constructed we have no reason to expect UV divergences. We can also conjecture
that such counterterms should be broken superconformal expressions, if conformal
symmetry is more than a classical symmetry. Thus there are two points of view. The
first one is that legitimate counterterms are not available yet, and we still have to
construct them. The second one is that legitimate counterterms are not available, and
cannot be constructed, offering an explanation of finiteness.

In fact, if the UV finiteness will persist in higher loops, one would like to view
this as an opportunity to test some new ideas about gravity. One possible idea is that
superconformal symmetry, used in the classical theory as a tool to construct actions,
is more fundamental and has also a quantum significance. As mentioned in Sect. 1.3,
the classical theory can be obtained from gauge fixing a superconformal action. In
that way, the Planck mass appears only in the gauge-fixing procedure. This looks
analogous to the appearance of the masses of W and Z vector mesons in the standard
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model. They are not present in the gauge-invariant action, and show up when the
gauge symmetry is spontaneously broken. In the unitary gauge these masses give
the impression of being fundamental. In the renormalizable gauge, where the UV
properties are analysed, they are absent. One may hope that a similar understanding
can be obtained in the future to give amore fundamental significance to the supercon-
formal symmetry. The possible non-existence of (broken) superconformal-invariant
counterterms and anomalies in N = 4, D = 4 supergravity could then explain the
’miraculous’ results of the quantum calculations.

Such ideas would give a simple explanation of the 3-loop finiteness and
predict perturbative UV finiteness in higher loops. The same conjecture applies
to higher-derivative superconformal invariants and to the existence of a consistent
superconformal anomaly. Also for the latter, one may either say that we still have
to understand how to construct such an anomaly, or maybe it does not exist. There-
fore, the conjecture is economical, sparing in the use of resources: either the local
N = 4 superconformal symmetry is a good symmetry, or it is not. The conjecture
is falsifiable by the N = 4 4-loop computations (which are already underway, as
we heard during the conference). If the conjecture survives these computations (if
they show further UV finiteness), then this gives a further hint that the models with
superconformal symmetry serve as a basis for constructing a consistent quantum
theory where the Planck mass appears only in the process of gauge fixing the super-
conformal symmetry. However, it is also falsifiable by our own calculations: if we
find a way to construct (non-perturbative) superconformal invariants that can serve
as counterterms, then this conjecture is circumvented. We will start to search in that
direction, following a quote of R. Feynman: “We are trying to prove ourselves wrong
as quickly as possible, because only in that way can we find progress.”

1.5 Dirac–Born–Infeld-Volkov–Akulov and Deformation
of Supersymmetry

The main problem for the superconformal construction of counterterms in N = 4
supergravity is thus that the compensating multiplets have only been defined with
transformations that close on-shell using the field equations of the 2-derivative action.
These compensating multiplets are vector multiplets. In our recent work [19] we
search for deformations of vector multiplet actions such that higher-derivative terms
occur. We will find all-order higher derivative globally supersymmetric invariant
actions. They are of the Dirac–Born–Infeld (DBI) type, and have extra symmetries,
ofVolkov–Akulov (VA) type. The latter are not yet S-supersymmetry transformations
that wewould like in the context of the superconformal programmementioned above,
but we will comment on this at the end.

Wewill consider vector multiplets with a gauge vector and a spinor field.Wewant
that the supersymmetry algebra is closed, but not necessary off-shell, since the main
problems that we want to address are theories with only an on-shell closed algebra.



1 Superconformal Symmetry and Higher-Derivative Lagrangians 13

A gauge vector in D dimensions has D − 2 on-shell degrees of freedom,5 while a
spin-1/2 fermion has on-shell half the number of degrees of freedom of the number
of components of the spinor. Considering Table1.1 shows that one can have an equal
number of bosonic and fermionic degrees of freedom for these fields in the cases
D = 10 with Majorana–Weyl spinors, D = 6 with symplectic Majorana–Weyl
spinors, D = 4 with Majorana spinors, and even D = 3 with Majorana spinors.
Comparing with Table1.2 shows that these are the maximal dimensions to have
vector multiplets for supersymmetries with 16, 8, 4 and 2 generators. Other vector
multiplets are obtained from these by dimensional reduction, which generates also
scalar on-shell degrees of freedom.

These theories are described by an action of the form6

S =
∫

dDx
{ − 1

4 (Fμν)
2 − 1

2 λ̄/∂λ
}
. (1.20)

They are invariant under supersymmetry transformations7

δε Aμ = − 1
2 ε̄Γμλ, δελ = 1

4Γ
μν Fμνε, (1.21)

where the spinors are of the appropriate type mentioned before, and for the case
of symplectic Majorana-Weyl spinors also the extension index i = 1, 2 has been
suppressed with the understanding that e.g.

ε̄Γμλ = ε̄iΓμλi = εi j ε̄ jΓμλi . (1.22)

The action has also an extra trivial (global) fermionic shift symmetry

δη Aμ = 0, δηλ = − 1
2αη, (1.23)

where the normalization with a constant α has been used in order to match with
formulas that will follow below.

1.5.1 The Bottom-Up Approach

We first attempt a ‘bottom-up’ approach. This means that we define a deformation
of the action with terms proportional to a parameter α, and adapt simultaneously the
transformation laws. In this we follow [20], where this was considered for D = 6,

5 All these ingredients are well defined and discussed in [1].
6 With respect to [19] all barred spinors are multiplied with a factor −1/2 in order to agree with
the normalizations as in (1.8) and [1].
7 We use here Γ rather than γ for the gamma matrices in the D, to distinguish them later from the
4-dimensional matrices, see (1.45).
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and an action was obtained of the form

S =
∫

dDx
{ − 1

4 F2 − 1
2 λ̄/∂λ

} + αc4Fμνλ̄Γμ∂νλ

+ 1
8α

2
[
TrF4 − 1

4

(
F2

)2 − 2(1 + 4c24)
(
F2)μν

λ̄Γμ∂νλ

− 1
2 (1 − 4c24)Fμ

λ
(
∂λFνρ

)
λ̄Γ μνρλ − 1

4 (c1 + 8c24)F2λ̄/∂λ

+ 1
4c2Fμν

(
∂λFλ

ρ

)
λ̄Γ μνρλ + 1

4 (c3 + 4c24)Fμν Fρσλ̄Γ μνρσ /∂λ
]

+O(α2λ4) + O(α3). (1.24)

The parameters λi are undetermined. However, they are all related to field redefini-
tions

Aμ(0) = Aμ + 1
32α

2c2Fνρλ̄Γμνρλ,

λ(0) = λ + 1
2αc4FμνΓ

μνλ + 1
32α

2c1F2λ − 1
32α

2c3Fμν FρσΓ μνρσλ, (1.25)

where on the right-hand side are the fields corresponding to ci = 0, and on the
left-hand side those for arbitrary ci . Hence, up to these redefinitions, the answer is
unique up to this order. Remark e.g. that it contains in the bosonic part the unique
combination

Tr F4 − 1
4

(
F2

)2
, Tr F4 ≡ Fμν FνρFρσ Fσμ, F2 = Fμν Fμν . (1.26)

Also the transformation laws are deformed with respect to (1.21). As well ordinary
supersymmetry transformations (parameter ε) as the extra supersymmetry (1.23) can
be defined. E.g. for the latter we have now

δη Aμ = −α
8 η̄FνμΓνλ − α

16 η̄Γ μνρFνρλ + 1
32αc2Fνρη̄Γ μνρλ + O(αηλ3) + O(α2),

δηλ = − 1
2αη + α

[
− 1

32 F2 − 1
64Γ μνρσ Fμν Fρσ

]
η

+ 1
4 c4Fμν(c)Γ μν

[
η − 1

2αc4Fρσ(c)Γ ρση
]

+ 1
64αc1F2η − 1

64αc3Fμν FρσΓ μνρση + O(αηλ2) + O(α2). (1.27)

It turns out that we can write this for all D = 10, 6, 4, 3 with the appropriate spinors
types (Majorana, Majorana–Weyl, symplectic Majorana–Weyl) as mentioned above.
The only spinor properties that we need are the Majorana flip relations, like

λ̄1Γ
μλ2 = −λ̄2Γ

μλ1, λ̄1Γ
μνρλ2 = λ̄2Γ

μνρλ1, (1.28)

and the cyclic Fierz identity

Γμλ1λ̄2Γ
μλ3 + Γμλ2λ̄3Γ

μλ1 + Γμλ3λ̄1Γ
μλ2 = 0. (1.29)
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These are valid for all these cases. Note that all bilinears in spinors contain odd-rank
gamma matrices, as is consistent with the fact that the spinors are all of the same
chirality in D = 10 and D = 6. But this property holds also for e.g. D = 4.

The results look very complicated and it seems hopeless to continue this to all
orders in α and adding higher order spinor terms.

1.5.2 The Top-Down Approach

We [19] found a solution to the problem of the construction of the infinite series of
deformations starting from the κ-symmetric action for Dp branes. This action is of
the form

SDBI + SWZ = − 1

α2

∫
dp+1σ

√− det(Gμν + αFμν) + 1

α2

∫
Ωp+1, (1.30)

where the first term is a DBI action, and κ-supersymmetry implies that it should be
complemented with a Wess–Zumino (WZ) term in terms of an appropriate (p + 1)-
form Ωp+1 (see e.g. (45) in [21]). In the DBI term appear

Gμν ≡ ηmnΠ
m
μ Πn

ν , Πm
μ ≡ ∂μ Xm + 1

2 θ̄Γ
m∂μθ,

Fμν ≡ Fμν + α−1θ̄σ3Γm∂[μθ
(
∂ν]Xm + 1

4 θ̄Γ
m∂ν]θ

)
. (1.31)

We consider these actions in the context of the IIB theory, and thus Xm with m =
0, . . . , 9 denote the spacetime coordinates of the D = 10 theory. The coordinates
on the brane are indicated by μ = 0, . . . , p, and p should be odd. θ is a doublet
of Majorana–Weyl spinors, of which we omit again the extension index. Fμν is an
Abelian field strength.

This action has the following symmetries. First, there is a rigid supersymme-
try doublet parameter ε1, ε2. There is also rigid Poincaré symmetry in D = 10.
Furthermore, there are local symmetries on the brane. On the bosonic side these
are the worldvolume general coordinate transformations. Furthermore there is the
κ-supersymmetry doublet. Effectively only half of these are present, since they this
is a reducible symmetry, which means that it appears only in the form

δκθ = (1 + Γ )κ, (1.32)

where Γ is a matrix such that (1 + Γ ) is a projection on half of the spinor space.
Though this has been obtained from IIB superstring theory in D = 10, it turns

out that the action (1.30) has also the same symmetries when we consider D = 6,
just changing the index range to m = 0, . . . , 5 and using symplectic Majorana–
Weyl spinors. This implies that we consider the (2, 0) theory in the D = 6, 16
supersymmetries entry of Table1.2. This theory is often called iib. The action has
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then also a brane interpretation, (using again odd p) [22] as has been clarified in the
talk of E.Bergshoeff in this conference.Moreover,we can also consider it solutions of
D = 4,N = 2 supergravitywithworldvolume action as in (1.30) (thusm = 0, . . . , 3
and p = 3 or 1).

We then gauge-fix local symmetries imposing for a p-brane (describing here the
embedding in D = 10, but the other cases are obtained by changing the range of
indices)

Xm = {δm′
μ σμ,φI }, m′ = 0, 1, . . . , p, I = 1, . . . , 9 − p

θ = (θ1 = 0, θ2 ≡ αλ). (1.33)

The first line fixes the worldvolume general coordinate transformations by identify-
ing the coordinates in the embedding spacetime with the worldvolume coordinates.
This leaves 9− p scalars. In the second line, the effectiveκ-symmetry is fixed, and the
remaining coordinate is renamed λ in order to make the connection with the down-up
approach. These gauges lead to decomposition laws, implying that the parameters of
the worldvolume general coordinate transformations and κ-symmetry become func-
tions of the remaining (global) symmetries. There are thus two, deformed, fermionic
symmetries ε1 and ε2. Two combinations of these symmetries are called ε and ζ, and
can be related to the ε and η symmetries of the bottom-up approach.

We first consider the action for the case p = 9 in this gauge, which reduces
(1.30) to

S = − 1

α2

∫
d10x

{√− det(Gμν + αFμν) − 1
}

, (1.34)

where

Gμν = ηmnΠm
μ Πn

ν , Πm
μ = δm

μ + 1
2α

2λ̄Γ m∂μλ,

Fμν ≡ Fμν − αλ̄Γ[ν∂μ]λ, μ = 0, 1, . . . , 9, m = 0, 1, . . . , 9. (1.35)

This action possesses 16 ε transformations, which are deformations of the Maxwell
supermultiplet supersymmetries:

δελ = − 1
2α ( − β) ε + 1

4α∂μλλ̄Γ μ ( + β) ε,

δε Aμ = 1
4 λ̄Γμ

( + β
)
ε

+ 1
8α

2λ̄Γm( 13 + β)ελ̄Γ m∂μλ + 1
4αλ̄Γ ρ ( + β) εFρμ, (1.36)

where β is a matrix (Γ̂ μ = Π
μ
mΓ m)

β = [
det

(
δμ

ν + αFμρGρν
)]−1/2

5∑
k=0

αk

2kk! Γ̂
μ1ν1...μkνkFμ1ν1 . . .Fμkνk

= 1 + O(α). (1.37)
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Furthermore, there are 16 ζ transformations:

δζλ = α−1ζ − 1
2α∂μλλ̄Γ μζ,

δζ Aμ = − 1
2 λ̄Γμζ − 1

2αλ̄Γ ρζFρμ − 1
12α

2λ̄Γmζλ̄Γ m∂μλ. (1.38)

Note that these transformations do not transform states of a fermion field to states of
a bosonic field, and are thus not regular supersymmetries. They are transformations
of the Volkov–Akulov (VA)-type. To stress this difference, we say that the theory
has 16 + 16 supersymmetries.

When we expand the action in orders of α, we find that the action (1.34) agrees
with (1.24) when we choose the coefficients

c1 = 2, c2 = 0, c3 = −1, c4 = − 1
2 . (1.39)

This eliminates in fact all ∂F terms from (1.24).
Also the transformation laws (1.36) and (1.38) can be identified with those in the

bottom-up approach, modulo a ‘zilch symmetry’, i.e. a trivial on-shell symmetry. To
complete the identification, ζ is recognized as a linear combination of ε and η.

This proves that our all-order result is indeed the full deformed theory that we
were looking for.

The theories that we can obtain in this way are schematically indicated in Fig. 1.1.
The supergravities with each a doublet of local symmetries from which one starts
are indicated as open yellow boxes. The branes type DBI actions are the D9, D7, D5,
D3 when we start from D = 10, and are indicated as V5 and V3 when we start from
D = 6. The V stands for vector branes as explained in the talk of Eric Bergshoeff.
This thus shows that we can construct deformed super-Maxwell theories for various
dimensions and supersymmetry extensions, including N = 4, N = 2 and N = 1
in 4 dimensions.

1.5.3 D = 4, N = 4 Gauge Multiplet

Let us in particular consider the D3 case, i.e. the D = 4, N = 4 theory that we
discussed in previous sections. The full action of the deformed theory is

S = − 1

α2

∫
d4x

{√− det(Gμν + αFμν) − 1
}

, μ = 0, 1, 2, 3, (1.40)

with

Gμν = ηmnΠm
μ Πn

ν = ηm′n′Πm′
μ Πn′

ν + δI J Π I
μΠ J

ν , m′ = 0, 1, 2, 3,

Πm′
μ = δm′

μ + 1
2α

2λ̄Γ m′
∂μλ , Π I

μ = ∂μφI + 1
2α

2λ̄Γ I ∂μλ, I = 1, . . . , 6,

Fμν ≡ Fμν + αλ̄Γ[μ∂ν]λ + αλ̄ΓI ∂[μλ∂ν]φI . (1.41)
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Fig. 1.1 The IIB supergravities have solutions denoted as D9, D7, D5, D3. The (2, 0) theory has
solutions V5, V3 and N = 2 supergravity has a N = 1 solution. The red circles indicate the basic
super-Maxwell theories that we started from in the bottom-up approach and are obtained asmaximal
p theories

There are 16 ε and 16 ζ symmetries, and the remainders of the rigid Poincaré trans-
formations in D = 10 lead to shift symmetries for the 6 scalars φI . We can compare
this with the usual formulation of the N = 4, D = 4 super-Maxwell theory:

SMaxw =
∫

d4x
(

− 1
4 Fμν Fμν − ψ̄i /∂ψi − 1

8∂μϕi j∂
μϕi j

)
. (1.42)

Fμν is the field strength of the vector field, the ψi are 4 Majorana spinors, written as
Weyl spinors using the notations ψi = 1

2 (1 + γ∗)ψi and ψi = 1
2 (1 − γ∗)ψi . The 6

scalar fields are here represented as antisymmetric tensors ϕi j , with

ϕi j ≡ (ϕi j )
∗ = − 1

2ε
i jk�ϕk�. (1.43)

One can find (1.42) and the transformation laws as the α = 0 part of (1.40) and
(1.36), by making some identifications. The scalars φI representing the 6 remaining
coordinates in D = 10 according to (1.33) are divided in two triplets φa and φa+3
and we identify

αϕi j = φaβa
i j − iφa+3α

a
i j , a = 1, 2, 3, (1.44)

where αa
i j and βa

i j are the Gliozzi–Scherk–Olive 4 × 4 matrices [23, 24]. These are
also used to identify the D = 10 Majorana–Weyl spinor λ introduced in (1.33),
with the 4 Majorana spinors ψi . This is done with the D = 10 gamma matrix
representation
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Γ μ = γμ ⊗ 8, Γ a = γ∗ ⊗
(
0 βa

−βa 0

)
, Γ a+3 = γ∗ ⊗

(
0 iαa

iαa 0

)
,

C10 = C4 ⊗
(
0 4

4 0

)
, Γ∗ = γ∗ ⊗

(
4 0
0 − 4

)
, (1.45)

where C10 and C4 are the charge conjugation matrices (for notation, see [1]) in
10 and 4 dimensions, and γμ are the D = 4 gamma matrices. In this basis, λ is
decomposed as

λ =
(

ψi

ψi

)
. (1.46)

With these identifications, the α = 0 part of (1.40) agrees with (1.42). Since the
action (1.40) is invariant to all orders in α under the 16 + 16 supersymmetries,
it gives the fully consistent deformation of the N = 4, D = 4 gauge multiplet.
It has both type of supersymmetries: ordinary SUSY and VA-type supersymmetry.
It can be written in the usual 4-dimensional notations using the translations (1.44)
and (1.46), but the D = 10 formulation is much simpler.

1.5.4 Worldvolume Theory in AdS Background

In order to make progress for N = 4, D = 4 supergravity, we would need the
deformed gauge multiplet with the superconformal symmetries. The extra VA sym-
metries are not of the type of S-supersymmetry. Inspiration may come from old
work [25–27] where the worldvolume theories of branes were considered in an AdS
background, leading to a superconformal theory on the brane. The AdS backgrounds
exist only in particular dimensions and extensions, corresponding to the fact that the
superconformal theories also only exist for particular cases as explained at the end
of Sect. 1.3, see Table1.7. These actions on the brane are of the form

Scl = SDBI + SWZ,

SDBI = −
∫

dp+1σ

√
− det

(
gindμν + Fμν

)
,

gindμν = ∂μ X M∂ν X N G M N , (1.47)

where G M N denotes the AdS × sphere metric that is a solution of the embedding
theory. The theory has then rigid symmetries inherited from the solution. These are
the AdS isometries and the isometries of the sphere and the corresponding super-
symmetries. The brane theory has as in Sect. 1.5.2 the worldvolume general coordi-
nate transformations and kappa symmetries as local symmetries. After gauge fixing
these, the remaining (global) symmetries appear as conformal symmetries on the
brane. The fermionic ones are then ε ordinary supersymmetry and η special super-
symmetry. Hence this is very similar to the appearance of ordinary and VA type
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supersymmetries in our new work [19]. This gives us a hope to obtain an all-order
deformation of gaugemultiplet theorieswith superconformal symmetries in the cases
where the superalgebras exist, which includes the D3 brane with N = 4, D = 4
supersymmetry.

1.6 Conclusions

Superconformal symmetry has been used as a tool for constructing classical actions of
supergravity. Also higher-derivative terms can be constructed with superconformal
tensor calculus [16, 28–32]. Quantum calculations show that there are unknown
relevant properties of supergravity theories. We have investigated the possibility that
(broken) superconformal symmetry be such an extra quantum symmetry [18]. The
non-existence of (broken) superconformal-invariant counterterms and anomalies for
N = 4, D = 4 supergravity could in that case explain ’miraculous’ vanishing
results. However, we do not have a systematic knowledge of which higher-derivative
supergravity actions can be invariant under supersymmetry at all orders in derivatives.

In order to get more insight, we have been looking to gauge multiplets in global
supersymmetry [19]. We first considered a perturbative approach, i.e. constructing
actions and transformation laws order by order in a dimensionful parameterα,which
can be related to the string coupling constant. Starting fromDp brane actions in D =
10 we can construct DBI-type actions that have ordinary supersymmetry plus VA-
type supersymmetry with 16+ 16 components. They are related to IIB supergravity,
and thus exist for p = 9, 7, 5, 3, . . . , leading to global supersymmetry actions for
gauge multiplets in p + 1 dimensions. For p = 3 this is the deformation ofN = 4,
D = 4 with higher order derivatives. One can also start from the iib theory in
D = 6. Also in that case DBI-VA actions (related to objects called vector branes or
‘V-branes’ [22]) with 8 + 8 supersymmetries. This leads e.g. to the deformation of
D = 4, N = 2 vector multiplets. We hope that insight in these new constructions
can lead also to supergravity actions using the superconformal methods.
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