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Preface

The AdS/CFT correspondence, which states that D ¼ 4;N ¼ 4 super Yang-Mills
is equivalent to Type IIB superstring on AdS5 9 S5, is a remarkable manifestation
of the holographic principle. This correspondence has given rise to a plethora of
trends, approaches, techniques, and developments in nowadays physics. They
range from ‘‘standard’’ pure theoretical aspects to those having interesting
experimental applications. This correspondence is extremely useful for stringy
interpretation of large N gauge theory with a subsequent application to problems of
gravity physics such as entropy characterization of black hole physics. It also turns
out useful to understand strongly coupled high-energy systems such as RHIC and
LHC experiments, and intricate condensed matter systems.

Inspired by this success, one could try to involve another far reaching idea
which is partially already present in the AdS/CFT correspondence. This idea is a
duality which generalizes the notion of electromagnetic duality in Maxwell theory.
Combined with supersymmetry, it leads to intriguing developments.

Namely, N ¼ 2 supergravity, deformed by a genuine supersymmetric com-
pletion of the kR4 term, makes the previously ‘‘silent’’ ingredient play an active
role. This (R….)4 counterterm in supergravity had its ups and downs since the time
it was first proposed as a candidate for the UV divergence in N ¼ 1 supergravity.
For N ¼ 2, a linearized version of the candidate for the UV divergence was
proposed a year later and its N ¼ 8 version was constructed 4 years later. Its
gravitational part is the square of the Bel–Robinson tensor and it also has a term
quartic in graviphotons. Its 3-loop UV finiteness was explained via the E7(7)

duality discovered by Cremmer and Julia.
This book is based upon lectures held on 25–28 March, 2013 at the INFN-

Laboratori Nazionali di Frascati Breaking of supersymmetry and Ultraviolet
Divergences in extended Supergravity Workshop BUDS 2013, directed by Stefano
Bellucci, with the participation of prestigious lecturers, including E. Bergshoeff,
M. Cederwall, T. Dennen, P. Di Vecchia, A. Karlsson, M. Koehn, B. Ovrut,
G. Ruppeiner, A. Van Proeyen, R. Kallosh, P. Aschieri, and S. Ferrara; a special
attention is devoted to discuss topics related to the cancelation of ultraviolet
divergences in extended supergravity and Born-Infeld like actions.

All talks were followed by extensive discussions and related reworking of the
various, contributions, a feature which reflects itself in the specific ‘‘flavor’’ of this
volume.
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Superconformal symmetry and higher derivative Lagrangians were discussed. It
was stressed that the interest in higher derivative terms has several motivations:

• they appear as a0 terms in the effective action of string theory,
• they yield corrections to the black hole entropy,
• they provide higher orders in the AdS/CFT correspondence, and
• they give counterterms for UV divergences of quantum loops.

The current knowledge about general supergravity/supersymmetry theories was
reviewed. The superconformal method (and in which supergravity theories we can
use it) was discussed. Higher derivative supergravity actions and supergravity loop
results were extensively re-examined. The Dirac-Born-Infeld-Volkov-Akulov
actions were analyzed and the deformation of supersymmetry was provided as an
example of an all order higher derivative supersymmetry action. Quantum calcu-
lations show that there are unknown relevant properties of supergravity theories.
An interesting question is whether (broken) superconformal symmetry can be such
an extra quantum symmetry. The nonexistence of (broken) superconformal-
invariant counterterms and anomalies in N ¼ 4;D ¼ 4 could in that case explain
‘miraculous’ vanishing results.

Progress toward determining the UV Behavior of Maximal Supergravity was
then discussed extensively. After 35 years of supergravity, we can only now make
very precise statements about the D ¼ 4 ultraviolet structure. No D ¼ 4 diver-
gence of pure supergravity has been found to date. Supersymmetry forbids 1, 2
loop divergences, and pure gravity was found to be 1-loop finite, 2-loop divergent
by Goroff and Sagnotti. Including matter, the theory becomes 1-loop divergent as
it was demonstrated by ‘t Hooft and Veltman. Naively, supersymmetry allows for
a 3-loop divergence. N ¼ 8 SG and N ¼ 4 SG are found to be 3-loop finite! In
N ¼ 8 supergravity no divergence can be there before 7 loops. A 7-loop diver-
gence in D ¼ 4 implies a 5-loop divergence in D ¼ 24=5, a calculation currently
in progress, which the groups involved reported at the Workshop.

If N ¼ 8 supergravity is perturbatively finite, the interest will lie in the reason
behind the finiteness. Several possibilities arise for such a reason, a hidden new
symmetry, for example. Understanding the mechanism might open a host of
possibilities. Potential indications of hidden structures include the following fas-
cinating options:

• Gravity is a double copy of gauge theories.
• Color-Kinematics according to which kinematics is a Lie algebra.
• Constraints from electric–magnetic duality.
• Hidden superconformal N ¼ 4 supergravity.

Let us recall that N ¼ 4 and N ¼ 8 supergravities arise as the low-energy limit
of strings. String theory provides a consistent ultraviolet finite theory of quantum
gravity. One could wonder if one can remove the string massive modes and
address the question of ultraviolet behavior of pure supergravity. In the Workshop,
also the String theory approach to UV divergences in supergravity was discussed,
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in order to elucidate the role of supersymmetry in perturbative computation, as
well as the role of non-perturbative duality symmetries in string theory.

This is the seventh volume in a series of books on the general topics of
supersymmetry, supergravity, black holes, and the attractor mechanism. Indeed,
based on previous meetings, six volumes were already published:

BELLUCCI S. (2006). Supersymmetric Mechanics—Vol. 1: Supersymmetry,
Noncommutativity and Matrix Models. (vol. 698, pp. 1–229). ISBN: 3-540-33313-4.
BERLIN HEIDELBERG: Springer Verlag (GERMANY). Springer Lecture Notes in
Physics Vol. 698.

BELLUCCI S., S. FERRARA, A. MARRANI. (2006). Supersymmetric
Mechanics—Vol. 2: The Attractor Mechanism and Space Time Singularities. (vol.
701, pp. 1–242). ISBN 13: 9783540341567. BERLIN HEIDELBERG: Springer
Verlag (GERMANY). Springer Lecture Notes in Physics Vol. 701.

BELLUCCI S. (2008). Supersymmetric Mechanics—Vol. 3: Attractors and
Black Holes in Supersymmetric Gravity. (vol. 755, pp. 1–373). ISBN-13:
9783540795223. BERLIN HEIDELBERG: Springer Verlag (GERMANY).
Springer Lecture Notes in Physics Vol. 755.

BELLUCCI S. (2010). The Attractor Mechanism. Proceedings of the INFN-
Laboratori Nazionali di Frascati School 2007. ISSN 0930-8989, ISBN 978-3-642-
10735-1, e-ISBN 978-3-642-10736-8. DOI 10.1007/978-3-642-10736-8. Springer
Heidelberg Dordrecht London New York. Springer Proceedings in Physics
Vol. 134.

BELLUCCI S. (2013). Supersymmetric Gravity and Black Holes. Proceedings
of the INFN-Laboratori Nazionali di Frascati School on the Attractor Mechanism
2009. ISSN 0930-8989, ISBN 978-3-642-31379-0, ISBN 978-3-642-31380-6
(eBook), DOI 10.1007/978-3-642-31380-6, Springer Heidelberg New York
Dordrecht London. Springer Proceedings in Physics Vol. 142.

BELLUCCI S. (2013). Black Objects in Supergravity. Proceedings of the
INFN-Laboratori Nazionali di Frascati School 2011. ISBN 978-3-319-00214-9,
Springer Heidelberg New York Dordrecht London. Springer Proceedings in
Physics Vol. 144.

I wish to thank all speakers and participants to the Workshop for contributing to
the success of the Workshop, which prompted the realization of this volume.
I wish to thank my wife Gloria and our beloved daughters Costanza, Eleonora,
Annalisa, Erica, and Maristella for love and inspiration, in want of which I would
have never had the strength to complete this effort.

October 2013 Stefano Bellucci
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Chapter 1
Superconformal Symmetry and
Higher-Derivative Lagrangians

Antoine Van Proeyen

Superconformal methods are useful to build invariant actions in supergravity. We
have a good insight in the possibilities of actions that are at most quadratic in space-
time derivatives, but insight in general higher-derivative actions is missing. Recently
higher-derivative actions got more attention for several applications. One of these is
the understanding of finiteness of loop computations in supergravities. Divergences
can only occur if invariant counterterms or anomalies exist. One can wonder whether
conformal symmetry might also play a role in this context. In order to construct
higher-derivative supergravities with the conformal methods, one should first get
more insight in such rigid supersymmetric actions with extra fermionic symmetries.
We show howDirac–Born–Infeld actions with Volkov–Akulov supersymmetries can
be constructed in all orders.

1.1 Introduction

In the last 35years, supergravity actions with terms that are at most quadratic in
spacetime derivatives have been studied a lot. But recently higher-derivative terms
in supergravity actions got more interest. There are different reasons for this. They
appear as order α→ terms in the effective action of string theory. It has also been
realized that they lead to corrections to the black hole entropy. Furthermore, they can
give higher order results in the AdS/CFT correspondence. In this talk, we will also
consider them as counterterms for UV divergences of quantum loops.

In Sect. 1.2, we will review what we know about general sugra (supergravity)
and susy (supersymmetry) theories. Our preferred method to obtain such theories
uses the superconformal method, which we review in Sect. 1.3. We will also discuss

A. Van Proeyen (B)
Instituut voor Theoretische Fysica, KU Leuven,
Celestijnenlaan 200D, 3001 Leuven, Belgium
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2 A. Van Proeyen

there in which sugra theories these can be used. Then, in Sect. 1.4 we will turn to
higher-derivative sugra actions and explain the relation with sugra loop results. We
will see that we miss a lot of insight in the possibilities for higher-derivative actions.
In view of this, we studied Dirac–Born–Infeld actions for vector multiplets, obtain-
ing closed expressions and exhibiting extra Volkov–Akulov type supersymmetries.
They are examples of all order higher-derivative susy actions. They are the deforma-
tion of the well-known lowest order supersymmetry action, and can be considered
also perturbatively in a bottom-up construction. We will summarize this result in
Sect. 1.5, before giving conclusions in Sect. 1.6.

1.2 General Sugra/Susy Theories

An overview of possible actions with supersymmetry and supergravity has been
given in Chap. 12 of the book [1], starting from the basics. The theories considered
there are ‘ordinary’ supersymmetry and supergravity theories, which means that the
bosonic terms in the action are at most quadratic in spacetime derivatives, while
the terms with fermions are at most linear in spacetime derivatives. In 4 dimensions
they typically contain the frame field ea

μ, gauge fields AA
μ , with field strengths F A

μν,

scalars ϕu, gravitinos ψi
μ, and spin-1/2 fermions λm and a Lagrangian of the form

e−1L = 1
2 R + 1

4 (ImNAB)F A
μν FμνB − 1

8 (ReNAB)e−1εμνρσ F A
μν F B

ρσ

− 1
2guv Dμϕu Dμϕv − V (ϕ){

− 1
2 ψ̄μiγ

μνρDνψρ
i − 1

2gA
B λ̄A /DλB + h.c.

}
+ · · · , (1.1)

whereNAB, guv and gA
B are functions of the scalars ϕ. In general, the possibilities

for susy theories depend on the properties of irreducible spinors in each dimension.
For theories with Minkowski signature, these can be summarised in Table1.1. For
each spacetime dimension it is indicated whether Majorana (M), Majorana–Weyl
(MW), symplectic (S) or symplectic Weyl (SW) spinors can be defined as the ‘min-
imal spinor’, and the number of real components of this minimal spinor is given. To
make a complete list, we further use the information of what is the maximal number
of susy generators in such theories. This is based on an analysis of representations
of susy in 4 dimensions, which leads to maximal N = 8 for sugra, and maximal
N = 4 for susy. This thus translates to maximal 32 real generators for sugra and
16 for susy. This information is based on an analysis of particle states i.e. states
with momentum, spin and helicity |pμ, s, h∼. One needs that susy generators trans-
form a boson state to a fermion state and that they square to translations, which is
an invertible operator. Considering these operators as acting from bosonic states to
fermionic states or the inverse, leads to the conclusion that there are an equal number
of bosonic and fermionic states (number of degrees of freedom), and to the pos-
sible particle representations [2]. The information of the maximal number of susy
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Table 1.1 Irreducible
spinors, number of
components and symmetry
properties

Dim Spinor Min # components

2 MW 1
3 M 2
4 M 4
5 S 8
6 SW 8
7 S 16
8 M 16
9 M 16
10 MW 16
11 M 32

generators can also be used in dimensions higher than 4, since anyhigher-dimensional
theory can be reduced on tori to D = 4, keeping the same number of susy gener-
ators. We recalled the essential elements of the proofs here, in order to distinguish
supersymmetries of this kind, to the Volkov–Akulov supersymmetries. The latter do
not transform between such bosonic and fermionic states and should thus not be
included in the relevant counting of the number of supersymmetry generators. Using
this information leads to Table1.2. An entry in the table represents the possibility
to have supergravity theories in a specific dimension D with the number of (real)
supersymmetries indicated in the top row. We first repeat for every dimension the
type of spinors that can be used. Theories with up to 16 (real) supersymmetry genera-
tors allow ‘matter’ multiplets. Considering the on-shell states of the free theories we
distinguish different kinds of such multiplets. Those that contain a gauge field Aμ are
called vector multiplets or gauge multiplets, and are indicated in Table1.2 with ♥.

Tensor multiplets in D = 6 contain an antisymmetric tensor Tμν, are are indicated
by ♦. Multiplets with only scalars and spin-1/2 fields are indicated with ♣. They are
the hypermultiplets in case of 8 supersymmetry generators, or theWess–Zumino chi-
ral multiplets for N = 1, D = 4. At the bottom is indicated whether these theories
exist only in supergravity (SG), or also with just global supersymmetry (SUSY).1

For each entry in Table1.2 there are basic supergravities and ‘deformations’. Basic
supergravities have only gauged supersymmetry and general coordinate transforma-
tions (and U(1)s of vector fields). There is no potential for the scalars, and there
are only Minkowski vacua. A deformation means that, without changing the kinetic
terms of the fields, the couplings are changed.Many deformations are ‘gauged super-
gravities’. That means that a Yang–Mills group is gauged, introducing a potential.
Such supergravities are produced by fluxes on branes in string theory. There are
also other deformations (e.g. massive deformations, the superpotential in N = 1
supersymmetry, …).

1 Some exotic possibilities, like (4, 0), (2, 1) theories, for which no full action exists, are omitted
here.
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Table 1.2 Supersymmetry and supergravity theories in dimensions 4 to 11

D SUSY 32 24 20 16 12 8 4

11 M M

10 MW IIA IIB
I
♥

9 M N = 2
N = 1

♥
8 M N = 2

N = 1
♥

7 S N = 4
N = 2

♥
6 SW (2, 2) (2, 1)

(1, 1)
♥

(2, 0)
♦

(1, 0)
♥,♦,♣

5 S N = 8 N = 6
N = 4

♥
N = 2

♥,♣
4 M N = 8 N = 6 N = 5

N = 4
♥

N = 3
♥

N = 2
♥,♣

N = 1
♥,♣

SG SG/SUSY SG SG/SUSY

The embedding tensor formalism offers a way to classify the gauged supergrav-
ities. It defines the gauge group as a subgroup of the isometry group G, as can be
seen from the covariant derivative

(
∂μ − Aμ

MΘM
αδα

)
φ.Here, α labels all the rigid

symmetries, while M labels those that are gauged. The ‘embedding tensor’ ΘM
α

determines which symmetries are gauged and in which amount they contribute.
E.g. the coupling constants are part of this tensor. The tensor should satisfy a num-
ber of constraints, whose solutions determine the possible gaugings [3–5]. This thus
allows to get a complete picture of supergravities with at most two spacetime deriv-
atives in Lagrangian, though it still needs more work to get all the explicit solutions
of the constraints.

For higher-derivative actions there is no such systematic knowledge. There are
various constructions of higher derivative terms, e.g. using supersymmetric Dirac–
Born–Infeld actions, but there is no systematic construction or classification of pos-
sibilities; certainly not for supergravity, but even not for supersymmetry.

1.3 The Superconformal Method

There are various ways to construct supergravity actions. A basic way is the order-
by-order Noether method: starting from a globally symmetric action, next order
terms in the gravitational coupling constant are added using the concepts of Noether
currents. This is in fact the only possibility for the theories with more than 16 susy
generators. The superspace method is very useful for rigid N = 1 supersymmetry.
However, it becomes very difficult for supergravity. One needs many fields andmany
gauge transformations to get to a supergravity action. There is also the (super)group
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Table 1.3 Conformal construction of Poincaré gravity

manifold approach,where optimal use ismade of the symmetries using constraints on
the curvatures.We adhere to the method of superconformal tensor calculus whenever
possible. This method has the advantage that it uses the nice features of superspace,
like the the structure of multiplets, but it avoids its immense number of unphysical
degrees of freedom. The extra symmetries that are used in this method often lead to
insight in the structure of a supergravity theory.

Superconformal symmetry is the maximal extension of spacetime symmetries
according to the Coleman–Mandula theorem. What we have in mind, is not the

constructionof the supersymmetric completionofWeyl gravity,
∫
d4x

√
g

[
R2

μνρσ − 2

R2
μν + 1

3 R2
]
, but the construction of Poincaré gravity,

SPoinc =
∫

d4x
1

2κ2

√
g R, (1.2)

using conformal methods, where the dimensionful gravitational coupling constant κ
signals a breaking of the conformal symmetry. Thus, we use the conformal symmetry
as a tool for the construction of actions. It allows us to use multiplet calculus similar
to superspace, and it makes hidden symmetries explicit.

Wefirst explain the strategy for the constructionof pure gravity in a conformalway.
One startswith a conformal couplingof a scalar field,whichwill act as ‘compensator’:

L = − 1
2
√

g φ�Cφ = − 1
2
√

g φ�φ + 1
12

√
g Rφ2. (1.3)

This action has local scale transformations δφ(x) = λD(x)φ(x).These can be gauge-
fixed by choosing a value

φ = √
6/κ. (1.4)

This introduces the scale κ, indicating the breaking of conformal symmetry. Using
(1.4) in (1.3) leads to (1.2). The mechanism thus starts with a conformal invariant
action, and has a Poincaré invariant action as a result after gauge fixing. This is
systematically indicated in Table1.3.

For the supersymmetric theories, a similar construction allows to get more insight
in the structure of supergravity actions. A main difference between supersymmetry
and supergravity is that multiplets have a clear structure in supersymmetry, but after
coupling to supergravity they often get mixed, and they are not clearly identifiable
in the final action. In another language: superfields are an easy conceptual tool for
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globally supersymmetric theories. With the similar method as described above for
gravity, supergravity can also be obtained by starting with an action with supercon-
formal symmetry and gauge fixing the superfluous symmetries. This is especially
useful for matter-coupled supergravities. Before the gauge fixing, everything looks
like in global supersymmetry, just adding covariantizations for the superconformal
symmetries. Only after the gauge fixing, the multiplets get mixed.

To elucidate the superconformal symmetry, it is useful to consider it in the way
of transformations of supermatrices of the form

(
conformal algebra Q, S

Q, S R−symmetry

)
. (1.5)

Q is the ordinary supersymmetry and S is the extra, ‘special’ supersymmetry. The
R-symmetry depends on the dimension and extension of supersymmetry. It is clari-
fying to order the generators according to their weight under dilatations (here for the
N = 1 superconformal algebra)

1 : Pa
1
2 : Q

0 : D, Mab, T

− 1
2 : S

−1 : Ka . (1.6)

Pa, D, Mab and Ka are the conformal generators. The R-symmetry is in this case
just U(1), whose generator is indicated by T . The weights in the first column of (1.6)
determine the commutators involving D, for example

[D, Q] = 1
2 Q, [D, S] = − 1

2 S. (1.7)

As we discussed above, T is an R-symmetry. All (anti)commutators are consistent
with the weights, e.g.

{
Qα, Qβ

}
= − 1

2 (γ
a)α

β Pa ,
{

Sα, Sβ
}

= − 1
2 (γ

a)α
β Ka,

{
Qα, Sβ

}
= − 1

2δα
β D − 1

4 (γ
ab)α

β Mab + 1
2 i(γ∗)αβT . (1.8)

The strategy for the superconformal construction of N = 1 supergravity is anal-
ogous as for gravity in Table1.3. It is depicted in Table1.4.

A similar scheme holds for N = 4 supergravity [6, 7] as shown in Table1.5.
The special feature is that the gauge compensating multiplets are on-shell multiplets.
Remember that in any case the action should be invariant without use of the field
equations, but the algebra of the symmetries may close only modulo field equations.
However, the problem is that in this way there is no flexibility in the field equations.
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Table 1.4 Superconformal construction of pure N = 1 supergravity

Table 1.5 Superconformal construction of pure N = 4 supergravity

They are already fixed by the supersymmetry transformation laws. This gives thus a
problem when we want to modify the action with higher-derivative terms, since then
the field equations will change. Therefore, higher-derivative terms cannot be added
to N = 4 supergravity without a modification of the field equations. The hyper-
multiplets of N = 2 supergravity already have this feature of an ‘on-shell algebra’
(at least for a generic hyper-Kählermanifold). TheN = 4 gaugemultiplets also share
this property. This is especially relevant since they are compensating multiplets. It
implies that the supersymmetry transformations of the N = 4 super-Poincaré the-
ory can only close modulo field equations. But one can apply the superconformal
method.

In which supergravity theories canwe use the superconformal methods? There are
two necessary ingredients. First, one should have a superconformal algebra. Second,
there should be compensatingmultiplets.Which theories allow superconformal alge-
bras was already analysed by Nahm [8]. He analysed in which simple superalgebras
the conformal algebra so(D, 2) is a factor in the bosonic subalgebra. This lead to
Table1.6 (also a long list of superconformal algebras exist for D = 2). In each case
the bosonic subgroup contains the covering group2 of SO(D, 2), such that spinor rep-
resentations are possible, and a compact R-symmetry group. The last column gives
the number of real supersymmetry generators. Other superconformal algebras have
been considered where the conformal algebra is not a factor, but still a subalgebra of
the bosonic part of the superalgebra. E.g. SO(11, 2) ⊂ Sp(64) ⊂ OSp(1|64) [9, 10].
However, these have not been successfully applied for constructing actions. Thus,
the superconformal methods are restricted to the dimensions and extensions that

2 The equality sign in the ‘conf’ column of Table1.6 is only valid at the level of the algebra.
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Table 1.6 Superconformal algebras

D Supergroup Conf. R Ferm.

3 OSp(N |4) SO(3, 2) = Sp(4) SO(N ) 4N
4 SU(2, 2|N ) SO(4, 2) = SU(2, 2) U(N ) for N ∞= 4 8N

SU(4) for N = 4
5 F2(4) SO(5, 2) SU(2) 16
6 OSp(8∗|2N ) SO(6, 2) = SO∗(8) USp(2N ) 16N

Table 1.7 Supergravity theories for which superconformal methods can be used

D SUSY 32 24 20 16 12 8 4

11 M M
10 MW IIA IIB I
9 M N = 2 N = 1
8 M N = 2 N = 1
7 S N = 4 N = 2

6 SW (2, 2) (2, 1) (1, 1) (2, 0) (1, 0)

5 S N = 8 N = 6 N = 4 N = 2

4 M N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

appear in Table1.6 and furthermore to a number of supersymmetries ≤16, such that
compensating multiplets exist.3 This leads to those indicated in boxes in Table1.7.

1.4 Higher Derivative Sugra Actions and Sugra Loop Results

For many years it was believed that supergravity could not be a finite theory. How-
ever, since the calculations of [12] revealed the 3-loop finiteness of N = 8, D = 4
supergravity, we realize that quantum supergravity has more surprising features than
we understood so far. In [13] the result was extended to 4 loops and even to D = 5.
But then, alsoN = 4 supergravity in D = 4 turned out to be finite up to 3 loops [14]
(and further results followed for D = 5). This brings us to reflections on the nature
of supergravity and possible counterterms. Divergences would imply that supersym-
metric counterterms should exist (or there should be supersymmetric anomalies). But
our present knowledge on higher-derivative terms in supergravity is not sufficient to
be sure about which invariants can be consistently defined.

3 For D = 10 with 16 supersymmetries, a superconformal formulation, not based on a Lie super-
algebra but rather on a soft algebra has been found in [11].
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1.4.1 Superconformal Methods for the N = 2 Example

Superconformal methods have been used to construct higher-derivative supergrav-
ities, starting with the work of Cecotti and Ferrara [15]. Especially for N = 2
supergravity, the tensor calculus allows us to construct various terms [16]. The con-
structions use tensor calculus with chiral multiplets, which are similar to chiral super-
fields. The multiplets contain fields

S = {X,Ωi , . . . , C}. (1.9)

Any sum and product of these gives another chiral multiplets. These manipulations
allow ‘tensor calculus’. A useful tool is the kinetic multiplet of a chiral multiplet
(which is also chiral) and starts with the complex conjugate of the highest component
of a chiral multiplet:

T(S̄) = {C̄, . . .}. (1.10)

To construct higher-derivative terms, one needs also another chiral multiplet, formed
from the N = 2 Weyl multiplet

W 2 = {T −
abT ab −, . . .}. (1.11)

It starts from the square of an auxiliary field (antisymmetric tensor) of the Weyl
multiplet. One can then use tensor calculus on these multiplets to construct new chi-
ral multiplets, of which the highest components defines actions. In order to be able
to define these in the superconformal framework, one has to take into account the
dilatation symmetry. This implies that the function of chiral multiplets that is used to
construct actions should satisfy homogeneity properties. Using such homogeneous
functions of the chiral multiplets, one obtains supergravity theories using supercon-
formal covariantization of the expressions used for global supersymmetry. Hence
this leads to many possibilities, which are invariants contributing to the entropy and
central charges of black holes.

In order to see how these actions lead to DBI theories, R4 actions are considered
in [17], using the above-mentioned constructions with

[
S2 + λ

W 2

S2 T

(
W̄ 2

S̄2

)]

C
. (1.12)

It uses the action formula ‘C’, which means in global supersymmetry the highest
component of th chiral multiplet. In superconformal calculus, there are some cor-
rection terms involving the gravitino, to obtain local conformal symmetry. S is the
chiral compensating multiplet (which due to constraints is in fact a vector multiplet).
Using just the first term in (1.12) would lead to pure supergravity.4 The second term

4 In fact, a second compensating multiplet is necessary in N = 2, but we do not discuss this here,
since this can be neglected for the present purposes.
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in (1.12) uses the multiplet (1.11) and the construction of a kinetic multiplet (1.10).
The powers of S are chosen in order to satisfy the homogeneity properties leading
to conformal-invariant actions. That second term is taken with a coupling constant
λ, in which an expansion will be considered.

Apart from a term of the form λC4····, where C···· is the Weyl tensor, and thus
creating terms of the form R4, the action formula in (1.12) produces also terms of
the type λ(∂T )4, where T stands for the auxiliary field of the Weyl multiplet. In the
standard supergravity action, the field equations imply that T is on-shell proportional
to the graviphoton. For the action (1.12), we get, symbolically

Tab = 2

X
Fab + λ(∂4T 3)ab, (1.13)

where X is the scalar of the compensating multiplet, which is in the Poincaré theory
dependent on κ similar to (1.4). This equation is solved recursively, and we thus get
an expression with an infinite number of higher derivative terms with higher and
higher powers of the graviphoton F :

Tab = 2

X
Fab + λ(∂4F3)ab + λ2∂4F2∂4F3 + · · · . (1.14)

The action with auxiliary field eliminated leads to a DBI-type action with higher
derivatives

Sdeformed = − 1
4 F2 + λ(∂F)4 + λ2∂8F6 + · · · . (1.15)

Note that before the elimination of the auxiliary field, this action has a finite number
of terms with auxiliary fields. The infinite series is produced by the elimination of
the auxiliary fields. They lead thus to a deformation of the lowest order action in
powers of λ. At the same time also the transformation laws are deformed. Again,
the transformation laws are finite expressions before the elimination of the auxiliary
fields. E.g. for the gravitino transformation

δψi
μ = Dμεi − 1

16γ
abT −

abε
i jγμε j − γμηi , (1.16)

where the covariant derivative uses the superconformal connections, and S-
supersymmetrywith parameter ηi is included. Then the on-shell value of the auxiliary
fields is used as a power series in λ:

φaux = φ(0)
aux + Δφaux, Δφaux =

∑
n=1

λnφ(n)
aux. (1.17)

This leads, with (1.14), to deformations in the supersymmetry transformation law of
the gravitino of the form [17]

Δψi
μ = −4λ[∂4F3]μνγνε

i + · · · . (1.18)
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Here also contributions have been used that originate from the ‘decomposition law’
expressing the parameter ηi in terms of εi after gauge fixing of S-supersymmetry.

We conclude that the tensor calculus allows us to obtain higher-derivative terms,
determined first off-shell, which can lead to deformations of the action and trans-
formation laws on-shell. They are obtained from (broken) superconformal actions.
For pure gravity, the 3-loop counterterm that contains R4 is obtained from the local
conformal expression ∫

d4
√

g φ−4(CμνρσCμνρσ)2, (1.19)

where φ is the compensating scalar and Cμνρσ is the Weyl tensor. For N = 2 a
superconformal R4 counterterm can be obtained from the λ-term in (1.12). What do
we know about N = 4, where miraculous cancelations have been found?

1.4.2 Problem and Conjecture for N = 4 Supergravity

The problem is that it is not easy to construct counterterms forN = 4 supergravity.
We cannot multiply the compensating multiplets to suitable powers, and thus we
cannot make constructions as those for N = 2. The essential problem is that the
algebra of supersymmetry holds only on shell. When we would like to write a mod-
ified action, then it implies modified field equations, and thus the transformations
have to be modified (or in other words: the structure of the multiplets). For N = 2,
deformed transformations could be found due to the possibility to work first with
auxiliary fields. The field equations for the latter lead to deformed transformation
laws on shell. ForN = 4 we do not know auxiliary fields. How can we then establish
the the existence or non-existence of the consistent order by order deformation of
N = 4 supergravity?

This question lead to the conjecture made in [18]. If such counterterms do not
exist, this may explain finiteness results (if meanwhile the explicit calculations do not
find that N = 4, D = 4 is divergent at higher loops). Until invariant counterterms
are constructed we have no reason to expect UV divergences. We can also conjecture
that such counterterms should be broken superconformal expressions, if conformal
symmetry is more than a classical symmetry. Thus there are two points of view. The
first one is that legitimate counterterms are not available yet, and we still have to
construct them. The second one is that legitimate counterterms are not available, and
cannot be constructed, offering an explanation of finiteness.

In fact, if the UV finiteness will persist in higher loops, one would like to view
this as an opportunity to test some new ideas about gravity. One possible idea is that
superconformal symmetry, used in the classical theory as a tool to construct actions,
is more fundamental and has also a quantum significance. As mentioned in Sect. 1.3,
the classical theory can be obtained from gauge fixing a superconformal action. In
that way, the Planck mass appears only in the gauge-fixing procedure. This looks
analogous to the appearance of the masses of W and Z vector mesons in the standard
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model. They are not present in the gauge-invariant action, and show up when the
gauge symmetry is spontaneously broken. In the unitary gauge these masses give
the impression of being fundamental. In the renormalizable gauge, where the UV
properties are analysed, they are absent. One may hope that a similar understanding
can be obtained in the future to give amore fundamental significance to the supercon-
formal symmetry. The possible non-existence of (broken) superconformal-invariant
counterterms and anomalies in N = 4, D = 4 supergravity could then explain the
’miraculous’ results of the quantum calculations.

Such ideas would give a simple explanation of the 3-loop finiteness and
predict perturbative UV finiteness in higher loops. The same conjecture applies
to higher-derivative superconformal invariants and to the existence of a consistent
superconformal anomaly. Also for the latter, one may either say that we still have
to understand how to construct such an anomaly, or maybe it does not exist. There-
fore, the conjecture is economical, sparing in the use of resources: either the local
N = 4 superconformal symmetry is a good symmetry, or it is not. The conjecture
is falsifiable by the N = 4 4-loop computations (which are already underway, as
we heard during the conference). If the conjecture survives these computations (if
they show further UV finiteness), then this gives a further hint that the models with
superconformal symmetry serve as a basis for constructing a consistent quantum
theory where the Planck mass appears only in the process of gauge fixing the super-
conformal symmetry. However, it is also falsifiable by our own calculations: if we
find a way to construct (non-perturbative) superconformal invariants that can serve
as counterterms, then this conjecture is circumvented. We will start to search in that
direction, following a quote of R. Feynman: “We are trying to prove ourselves wrong
as quickly as possible, because only in that way can we find progress.”

1.5 Dirac–Born–Infeld-Volkov–Akulov and Deformation
of Supersymmetry

The main problem for the superconformal construction of counterterms in N = 4
supergravity is thus that the compensating multiplets have only been defined with
transformations that close on-shell using the field equations of the 2-derivative action.
These compensating multiplets are vector multiplets. In our recent work [19] we
search for deformations of vector multiplet actions such that higher-derivative terms
occur. We will find all-order higher derivative globally supersymmetric invariant
actions. They are of the Dirac–Born–Infeld (DBI) type, and have extra symmetries,
ofVolkov–Akulov (VA) type. The latter are not yet S-supersymmetry transformations
that wewould like in the context of the superconformal programmementioned above,
but we will comment on this at the end.

Wewill consider vector multiplets with a gauge vector and a spinor field.Wewant
that the supersymmetry algebra is closed, but not necessary off-shell, since the main
problems that we want to address are theories with only an on-shell closed algebra.
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A gauge vector in D dimensions has D − 2 on-shell degrees of freedom,5 while a
spin-1/2 fermion has on-shell half the number of degrees of freedom of the number
of components of the spinor. Considering Table1.1 shows that one can have an equal
number of bosonic and fermionic degrees of freedom for these fields in the cases
D = 10 with Majorana–Weyl spinors, D = 6 with symplectic Majorana–Weyl
spinors, D = 4 with Majorana spinors, and even D = 3 with Majorana spinors.
Comparing with Table1.2 shows that these are the maximal dimensions to have
vector multiplets for supersymmetries with 16, 8, 4 and 2 generators. Other vector
multiplets are obtained from these by dimensional reduction, which generates also
scalar on-shell degrees of freedom.

These theories are described by an action of the form6

S =
∫

dDx
{ − 1

4 (Fμν)
2 − 1

2 λ̄/∂λ
}
. (1.20)

They are invariant under supersymmetry transformations7

δε Aμ = − 1
2 ε̄Γμλ, δελ = 1

4Γ
μν Fμνε, (1.21)

where the spinors are of the appropriate type mentioned before, and for the case
of symplectic Majorana-Weyl spinors also the extension index i = 1, 2 has been
suppressed with the understanding that e.g.

ε̄Γμλ = ε̄iΓμλi = εi j ε̄ jΓμλi . (1.22)

The action has also an extra trivial (global) fermionic shift symmetry

δη Aμ = 0, δηλ = − 1
2αη, (1.23)

where the normalization with a constant α has been used in order to match with
formulas that will follow below.

1.5.1 The Bottom-Up Approach

We first attempt a ‘bottom-up’ approach. This means that we define a deformation
of the action with terms proportional to a parameter α, and adapt simultaneously the
transformation laws. In this we follow [20], where this was considered for D = 6,

5 All these ingredients are well defined and discussed in [1].
6 With respect to [19] all barred spinors are multiplied with a factor −1/2 in order to agree with
the normalizations as in (1.8) and [1].
7 We use here Γ rather than γ for the gamma matrices in the D, to distinguish them later from the
4-dimensional matrices, see (1.45).
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and an action was obtained of the form

S =
∫

dDx
{ − 1

4 F2 − 1
2 λ̄/∂λ

} + αc4Fμνλ̄Γμ∂νλ

+ 1
8α

2
[
TrF4 − 1

4

(
F2

)2 − 2(1 + 4c24)
(
F2)μν

λ̄Γμ∂νλ

− 1
2 (1 − 4c24)Fμ

λ
(
∂λFνρ

)
λ̄Γ μνρλ − 1

4 (c1 + 8c24)F2λ̄/∂λ

+ 1
4c2Fμν

(
∂λFλ

ρ

)
λ̄Γ μνρλ + 1

4 (c3 + 4c24)Fμν Fρσλ̄Γ μνρσ /∂λ
]

+O(α2λ4) + O(α3). (1.24)

The parameters λi are undetermined. However, they are all related to field redefini-
tions

Aμ(0) = Aμ + 1
32α

2c2Fνρλ̄Γμνρλ,

λ(0) = λ + 1
2αc4FμνΓ

μνλ + 1
32α

2c1F2λ − 1
32α

2c3Fμν FρσΓ μνρσλ, (1.25)

where on the right-hand side are the fields corresponding to ci = 0, and on the
left-hand side those for arbitrary ci . Hence, up to these redefinitions, the answer is
unique up to this order. Remark e.g. that it contains in the bosonic part the unique
combination

Tr F4 − 1
4

(
F2

)2
, Tr F4 ≡ Fμν FνρFρσ Fσμ, F2 = Fμν Fμν . (1.26)

Also the transformation laws are deformed with respect to (1.21). As well ordinary
supersymmetry transformations (parameter ε) as the extra supersymmetry (1.23) can
be defined. E.g. for the latter we have now

δη Aμ = −α
8 η̄FνμΓνλ − α

16 η̄Γ μνρFνρλ + 1
32αc2Fνρη̄Γ μνρλ + O(αηλ3) + O(α2),

δηλ = − 1
2αη + α

[
− 1

32 F2 − 1
64Γ μνρσ Fμν Fρσ

]
η

+ 1
4 c4Fμν(c)Γ μν

[
η − 1

2αc4Fρσ(c)Γ ρση
]

+ 1
64αc1F2η − 1

64αc3Fμν FρσΓ μνρση + O(αηλ2) + O(α2). (1.27)

It turns out that we can write this for all D = 10, 6, 4, 3 with the appropriate spinors
types (Majorana, Majorana–Weyl, symplectic Majorana–Weyl) as mentioned above.
The only spinor properties that we need are the Majorana flip relations, like

λ̄1Γ
μλ2 = −λ̄2Γ

μλ1, λ̄1Γ
μνρλ2 = λ̄2Γ

μνρλ1, (1.28)

and the cyclic Fierz identity

Γμλ1λ̄2Γ
μλ3 + Γμλ2λ̄3Γ

μλ1 + Γμλ3λ̄1Γ
μλ2 = 0. (1.29)
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These are valid for all these cases. Note that all bilinears in spinors contain odd-rank
gamma matrices, as is consistent with the fact that the spinors are all of the same
chirality in D = 10 and D = 6. But this property holds also for e.g. D = 4.

The results look very complicated and it seems hopeless to continue this to all
orders in α and adding higher order spinor terms.

1.5.2 The Top-Down Approach

We [19] found a solution to the problem of the construction of the infinite series of
deformations starting from the κ-symmetric action for Dp branes. This action is of
the form

SDBI + SWZ = − 1

α2

∫
dp+1σ

√− det(Gμν + αFμν) + 1

α2

∫
Ωp+1, (1.30)

where the first term is a DBI action, and κ-supersymmetry implies that it should be
complemented with a Wess–Zumino (WZ) term in terms of an appropriate (p + 1)-
form Ωp+1 (see e.g. (45) in [21]). In the DBI term appear

Gμν ≡ ηmnΠ
m
μ Πn

ν , Πm
μ ≡ ∂μ Xm + 1

2 θ̄Γ
m∂μθ,

Fμν ≡ Fμν + α−1θ̄σ3Γm∂[μθ
(
∂ν]Xm + 1

4 θ̄Γ
m∂ν]θ

)
. (1.31)

We consider these actions in the context of the IIB theory, and thus Xm with m =
0, . . . , 9 denote the spacetime coordinates of the D = 10 theory. The coordinates
on the brane are indicated by μ = 0, . . . , p, and p should be odd. θ is a doublet
of Majorana–Weyl spinors, of which we omit again the extension index. Fμν is an
Abelian field strength.

This action has the following symmetries. First, there is a rigid supersymme-
try doublet parameter ε1, ε2. There is also rigid Poincaré symmetry in D = 10.
Furthermore, there are local symmetries on the brane. On the bosonic side these
are the worldvolume general coordinate transformations. Furthermore there is the
κ-supersymmetry doublet. Effectively only half of these are present, since they this
is a reducible symmetry, which means that it appears only in the form

δκθ = (1 + Γ )κ, (1.32)

where Γ is a matrix such that (1 + Γ ) is a projection on half of the spinor space.
Though this has been obtained from IIB superstring theory in D = 10, it turns

out that the action (1.30) has also the same symmetries when we consider D = 6,
just changing the index range to m = 0, . . . , 5 and using symplectic Majorana–
Weyl spinors. This implies that we consider the (2, 0) theory in the D = 6, 16
supersymmetries entry of Table1.2. This theory is often called iib. The action has
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then also a brane interpretation, (using again odd p) [22] as has been clarified in the
talk of E.Bergshoeff in this conference.Moreover,we can also consider it solutions of
D = 4,N = 2 supergravitywithworldvolume action as in (1.30) (thusm = 0, . . . , 3
and p = 3 or 1).

We then gauge-fix local symmetries imposing for a p-brane (describing here the
embedding in D = 10, but the other cases are obtained by changing the range of
indices)

Xm = {δm→
μ σμ,φI }, m→ = 0, 1, . . . , p, I = 1, . . . , 9 − p

θ = (θ1 = 0, θ2 ≡ αλ). (1.33)

The first line fixes the worldvolume general coordinate transformations by identify-
ing the coordinates in the embedding spacetime with the worldvolume coordinates.
This leaves 9− p scalars. In the second line, the effectiveκ-symmetry is fixed, and the
remaining coordinate is renamed λ in order to make the connection with the down-up
approach. These gauges lead to decomposition laws, implying that the parameters of
the worldvolume general coordinate transformations and κ-symmetry become func-
tions of the remaining (global) symmetries. There are thus two, deformed, fermionic
symmetries ε1 and ε2. Two combinations of these symmetries are called ε and ζ, and
can be related to the ε and η symmetries of the bottom-up approach.

We first consider the action for the case p = 9 in this gauge, which reduces
(1.30) to

S = − 1

α2

∫
d10x

{√− det(Gμν + αFμν) − 1
}

, (1.34)

where

Gμν = ηmnΠm
μ Πn

ν , Πm
μ = δm

μ + 1
2α

2λ̄Γ m∂μλ,

Fμν ≡ Fμν − αλ̄Γ[ν∂μ]λ, μ = 0, 1, . . . , 9, m = 0, 1, . . . , 9. (1.35)

This action possesses 16 ε transformations, which are deformations of the Maxwell
supermultiplet supersymmetries:

δελ = − 1
2α ( − β) ε + 1

4α∂μλλ̄Γ μ ( + β) ε,

δε Aμ = 1
4 λ̄Γμ

( + β
)
ε

+ 1
8α

2λ̄Γm( 13 + β)ελ̄Γ m∂μλ + 1
4αλ̄Γ ρ ( + β) εFρμ, (1.36)

where β is a matrix (Γ̂ μ = Π
μ
mΓ m)

β = [
det

(
δμ

ν + αFμρGρν
)]−1/2

5∑
k=0

αk

2kk! Γ̂
μ1ν1...μkνkFμ1ν1 . . .Fμkνk

= 1 + O(α). (1.37)
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Furthermore, there are 16 ζ transformations:

δζλ = α−1ζ − 1
2α∂μλλ̄Γ μζ,

δζ Aμ = − 1
2 λ̄Γμζ − 1

2αλ̄Γ ρζFρμ − 1
12α

2λ̄Γmζλ̄Γ m∂μλ. (1.38)

Note that these transformations do not transform states of a fermion field to states of
a bosonic field, and are thus not regular supersymmetries. They are transformations
of the Volkov–Akulov (VA)-type. To stress this difference, we say that the theory
has 16 + 16 supersymmetries.

When we expand the action in orders of α, we find that the action (1.34) agrees
with (1.24) when we choose the coefficients

c1 = 2, c2 = 0, c3 = −1, c4 = − 1
2 . (1.39)

This eliminates in fact all ∂F terms from (1.24).
Also the transformation laws (1.36) and (1.38) can be identified with those in the

bottom-up approach, modulo a ‘zilch symmetry’, i.e. a trivial on-shell symmetry. To
complete the identification, ζ is recognized as a linear combination of ε and η.

This proves that our all-order result is indeed the full deformed theory that we
were looking for.

The theories that we can obtain in this way are schematically indicated in Fig. 1.1.
The supergravities with each a doublet of local symmetries from which one starts
are indicated as open yellow boxes. The branes type DBI actions are the D9, D7, D5,
D3 when we start from D = 10, and are indicated as V5 and V3 when we start from
D = 6. The V stands for vector branes as explained in the talk of Eric Bergshoeff.
This thus shows that we can construct deformed super-Maxwell theories for various
dimensions and supersymmetry extensions, including N = 4, N = 2 and N = 1
in 4 dimensions.

1.5.3 D = 4, N = 4 Gauge Multiplet

Let us in particular consider the D3 case, i.e. the D = 4, N = 4 theory that we
discussed in previous sections. The full action of the deformed theory is

S = − 1

α2

∫
d4x

{√− det(Gμν + αFμν) − 1
}

, μ = 0, 1, 2, 3, (1.40)

with

Gμν = ηmnΠm
μ Πn

ν = ηm→n→Πm→
μ Πn→

ν + δI J Π I
μΠ J

ν , m→ = 0, 1, 2, 3,

Πm→
μ = δm→

μ + 1
2α

2λ̄Γ m→
∂μλ , Π I

μ = ∂μφI + 1
2α

2λ̄Γ I ∂μλ, I = 1, . . . , 6,

Fμν ≡ Fμν + αλ̄Γ[μ∂ν]λ + αλ̄ΓI ∂[μλ∂ν]φI . (1.41)
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Fig. 1.1 The IIB supergravities have solutions denoted as D9, D7, D5, D3. The (2, 0) theory has
solutions V5, V3 and N = 2 supergravity has a N = 1 solution. The red circles indicate the basic
super-Maxwell theories that we started from in the bottom-up approach and are obtained asmaximal
p theories

There are 16 ε and 16 ζ symmetries, and the remainders of the rigid Poincaré trans-
formations in D = 10 lead to shift symmetries for the 6 scalars φI . We can compare
this with the usual formulation of the N = 4, D = 4 super-Maxwell theory:

SMaxw =
∫

d4x
(

− 1
4 Fμν Fμν − ψ̄i /∂ψi − 1

8∂μϕi j∂
μϕi j

)
. (1.42)

Fμν is the field strength of the vector field, the ψi are 4 Majorana spinors, written as
Weyl spinors using the notations ψi = 1

2 (1 + γ∗)ψi and ψi = 1
2 (1 − γ∗)ψi . The 6

scalar fields are here represented as antisymmetric tensors ϕi j , with

ϕi j ≡ (ϕi j )
∗ = − 1

2ε
i jk�ϕk�. (1.43)

One can find (1.42) and the transformation laws as the α = 0 part of (1.40) and
(1.36), by making some identifications. The scalars φI representing the 6 remaining
coordinates in D = 10 according to (1.33) are divided in two triplets φa and φa+3
and we identify

αϕi j = φaβa
i j − iφa+3α

a
i j , a = 1, 2, 3, (1.44)

where αa
i j and βa

i j are the Gliozzi–Scherk–Olive 4 × 4 matrices [23, 24]. These are
also used to identify the D = 10 Majorana–Weyl spinor λ introduced in (1.33),
with the 4 Majorana spinors ψi . This is done with the D = 10 gamma matrix
representation
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Γ μ = γμ ⊗ 8, Γ a = γ∗ ⊗
(
0 βa

−βa 0

)
, Γ a+3 = γ∗ ⊗

(
0 iαa

iαa 0

)
,

C10 = C4 ⊗
(
0 4

4 0

)
, Γ∗ = γ∗ ⊗

(
4 0
0 − 4

)
, (1.45)

where C10 and C4 are the charge conjugation matrices (for notation, see [1]) in
10 and 4 dimensions, and γμ are the D = 4 gamma matrices. In this basis, λ is
decomposed as

λ =
(

ψi

ψi

)
. (1.46)

With these identifications, the α = 0 part of (1.40) agrees with (1.42). Since the
action (1.40) is invariant to all orders in α under the 16 + 16 supersymmetries,
it gives the fully consistent deformation of the N = 4, D = 4 gauge multiplet.
It has both type of supersymmetries: ordinary SUSY and VA-type supersymmetry.
It can be written in the usual 4-dimensional notations using the translations (1.44)
and (1.46), but the D = 10 formulation is much simpler.

1.5.4 Worldvolume Theory in AdS Background

In order to make progress for N = 4, D = 4 supergravity, we would need the
deformed gauge multiplet with the superconformal symmetries. The extra VA sym-
metries are not of the type of S-supersymmetry. Inspiration may come from old
work [25–27] where the worldvolume theories of branes were considered in an AdS
background, leading to a superconformal theory on the brane. The AdS backgrounds
exist only in particular dimensions and extensions, corresponding to the fact that the
superconformal theories also only exist for particular cases as explained at the end
of Sect. 1.3, see Table1.7. These actions on the brane are of the form

Scl = SDBI + SWZ,

SDBI = −
∫

dp+1σ

√
− det

(
gindμν + Fμν

)
,

gindμν = ∂μ X M∂ν X N G M N , (1.47)

where G M N denotes the AdS × sphere metric that is a solution of the embedding
theory. The theory has then rigid symmetries inherited from the solution. These are
the AdS isometries and the isometries of the sphere and the corresponding super-
symmetries. The brane theory has as in Sect. 1.5.2 the worldvolume general coordi-
nate transformations and kappa symmetries as local symmetries. After gauge fixing
these, the remaining (global) symmetries appear as conformal symmetries on the
brane. The fermionic ones are then ε ordinary supersymmetry and η special super-
symmetry. Hence this is very similar to the appearance of ordinary and VA type
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supersymmetries in our new work [19]. This gives us a hope to obtain an all-order
deformation of gaugemultiplet theorieswith superconformal symmetries in the cases
where the superalgebras exist, which includes the D3 brane with N = 4, D = 4
supersymmetry.

1.6 Conclusions

Superconformal symmetry has been used as a tool for constructing classical actions of
supergravity. Also higher-derivative terms can be constructed with superconformal
tensor calculus [16, 28–32]. Quantum calculations show that there are unknown
relevant properties of supergravity theories. We have investigated the possibility that
(broken) superconformal symmetry be such an extra quantum symmetry [18]. The
non-existence of (broken) superconformal-invariant counterterms and anomalies for
N = 4, D = 4 supergravity could in that case explain ’miraculous’ vanishing
results. However, we do not have a systematic knowledge of which higher-derivative
supergravity actions can be invariant under supersymmetry at all orders in derivatives.

In order to get more insight, we have been looking to gauge multiplets in global
supersymmetry [19]. We first considered a perturbative approach, i.e. constructing
actions and transformation laws order by order in a dimensionful parameterα,which
can be related to the string coupling constant. Starting fromDp brane actions in D =
10 we can construct DBI-type actions that have ordinary supersymmetry plus VA-
type supersymmetry with 16+ 16 components. They are related to IIB supergravity,
and thus exist for p = 9, 7, 5, 3, . . . , leading to global supersymmetry actions for
gauge multiplets in p + 1 dimensions. For p = 3 this is the deformation ofN = 4,
D = 4 with higher order derivatives. One can also start from the iib theory in
D = 6. Also in that case DBI-VA actions (related to objects called vector branes or
‘V-branes’ [22]) with 8 + 8 supersymmetries. This leads e.g. to the deformation of
D = 4, N = 2 vector multiplets. We hope that insight in these new constructions
can lead also to supergravity actions using the superconformal methods.
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Chapter 2
Constitutive Relations, Off Shell Duality
Rotations and the Hypergeometric Form
of Born-Infeld Theory

Paolo Aschieri, Sergio Ferrara and Stefan Theisen

We review equivalent formulations of nonlinear and higher derivatives theories of
electromagnetism exhibiting electric-magnetic duality rotations symmetry. We study
in particular on shell and off shell formulations of this symmetry, at the level of action
funcitonals as well as of equations of motion. We prove the conjecture that the action
functional leading to Born-Infeld nonlinear electromagnetism, that is duality rotation
invariant off shell and that is known to be a root of an algebraic equation of fourth
order, is a hypergeometric function.

2.1 Introduction

Electric-magnetic duality is a symmetry of Maxwell electromagnetism and also, as
remarked by Schrödinger [1], of the nonlinear theory of electromagnetism proposed
by Born and Infeld [2]. This symmetry does not leave the Lagrangians invariant, only

P. Aschieri (B)

Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, INFN,
Sezione di Torino, Gruppo collegato di Alessandria, Viale T. Michel 11, 15121 Alessandria, Italy
e-mail: aschieri@to.infn.it

S. Ferrara
Physics Department, Theory Unit, CERN, CH 1211, 23 Geneva, Switzerland

S. Ferrara
INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati, Italy

S. Ferrara
Department of Physics and Astronomy, University of California Los Angeles,
Los Angeles, CA 90095-1547, USA
e-mail: sergio.ferrara@cern.ch

S. Theisen
Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm, Germany
e-mail: stefan.theisen@aei.mpg.de

S. Bellucci (ed.), Breaking of Supersymmetry and Ultraviolet Divergences 23
in Extended Supergravity, Springer Proceedings in Physics 153,
DOI: 10.1007/978-3-319-03774-5_2, © Springer International Publishing Switzerland 2014



24 P. Aschieri et al.

the equations of motion, and therefore it is not immediately detectable. This sym-
metry was subsequently discovered to be present in extended supergravity theories
[3–6]. In [4] the first example of a noncompact duality rotation group was consid-
ered, it is due to scalar fields transforming nonlinearly under duality rotations. These
results triggered further investigations in the general structure of self-dual theories.
In particular the symplectic formalism for nonlinear electromagnetism coupled to
scalar and fermion fields was initiated in [7], there the duality groups were shown to
be subgroups of noncompact symplectic groups (compact groups being recovered in
the absence of scalar fields). Also nonlinear theories admit noncompact duality sym-
metry, a most studied example is Born-Infeld electrodynamics coupled to axion and
dilaton fields [8]. A relevant aspect of Born-Infeld theory [9] is that the spontaneous
breaking of N = 2 rigid supersymmetry to N = 1 can lead to a Goldstone vec-
tor multiplet whose action is the supersymmetric and self-dual Born-Infeld action
[10, 11]. Higher supersymmetric Born-Infeld type actions are also self-dual and
related to spontaneous supersymmetry breakings in field theory [12–15] and in string
theory [16, 17].

Another recent motivation for the renewed study of duality symmetry is due to
its relevance for investigating the structure of possible counterterms in extended
supergravity. After the explicit computations that showed the 3-loop UV finiteness
of N = 8 supergravity [18], an explanation based on E7(7) duality symmetry was
provided [19–22]. Furthermore duality symmetry arguments have also been used
to suggest all loop finiteness of N = 8 supergravity [23, 24]. Related to these
developments, in [25] a proposal on how to implement duality rotation invariant
counterterms in a corrected action S[F] leading to a self-dual theory was put for-
ward under the name of “deformed twisted self-duality conditions”. The proposal
(renamed “nonlinear twisted self-duality conditions”) was further elaborated in
[26] and [27]; see also [28], and [29–31], for the supersymmetric extensions and
examples. The proposal encompasses theories that depend nonlinearly on the field
strength F and also on the partial derivative terms ∂F, ∂∂F, ... . That is why we
speak of nonlinear and higher derivatives theories.

The proposal is equivalent to a formulation of self-dual theories using auxiliary
fields studied in [32] and [33] in case of nonlinear electromagnetism without higher
derivatives of the field strength. This coincidence has been brought to light in a recent
paper [34]. In [35] two of us presented a systematic and general study of the different
formulations of U (1) gauge theories and of self-dual ones. This lead to a closed form
expression of the duality invariant action functional describing Born-Infeld theory.

Before outlining the content of the present work let us recall the notion of constitu-
tive relations. A nonlinear and higher derivative electromagnetic theory is determined
by defining, eventually implicitly, the relation between the electric field strength
F (given by the electric field

−→
E and the magnetic induction

−→
B ) and the magnetic

field strength G (given by the magnetic field
−→
H and the electric displacement

−→
D ).

We call constitutive relations the relations defining G in terms of F or vice versa.
Different constitutive relations determine different U (1) gauge theories.
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In this paper we first review and clarify the relations between constitutive relations
and action functionals in nonlinear and higher derivative electromagnetism. Then we
provide a pedagogical analysis of the “deformed twisted self duality conditions” and
introduce the action functional I[T −, T −] obtained via a Legendre transformation
from the usual S[F] action functional in the field strength F . All theories defined
via an action functional S[F] and having duality symmetry have a formulation via
an action functional I[T −, T −] that is off shell invariant under duality rotations.

We then further study the different formulations of the constitutive relations of
nonlinear and higher derivatives electromagnetism and then of self-dual theories.
These different formulations are all equivalent on shell. Finally we prove the con-
jecture formulated in [35] concerning the hypergeometric function expression of
the functional I of Born-Infeld theory. The proof uses Cauchy residue theorem
in order to show that the hypergeometric function satisfies the algebraic quartic
equation characterizing the functional I.

2.2 U(1) Duality Rotations in Nonlinear and Higher
Derivatives Electromagnetism

2.2.1 Action Functionals from Equations of Motion

Nonlinear and higher derivatives electromagnetism is described by the equations of
motion

∂μ F̃μν = 0, (2.1)

∂μG̃μν = 0, (2.2)

G̃μν = hμν[F,λ]. (2.3)

The first two simply state that the 2-forms F and G are closed, d F = dG = 0,
indeed F̃μν ∼ 1

2εμνρσ Fρσ , G̃μν ∼ 1
2εμνρσGρσ (with ε0123 = 1). The last set G̃μν =

hμν[F,λ], where λ is the dimensionful parameter typically present in a nonlinear
theory,1 are the constitutive relations. They specify the dynamics and determine the
magnetic field strength G as a functional in terms of the electric field strength F ,
and, vice versa, determine F in term of G, indeed F and G should be treated on
equal footing in (2.1)–(2.3). The square bracket notation hμν[F,λ] stems from the
possible dependence of hμν on derivatives of F .

Since in general we consider curved background metrics gμν , it is convenient
to introduce the ♥-Hodge operator; on an arbitrary antisymmetric tensor Fμν it is
defined by

F♥ μν = 1

2
♦

g
gμαgνβ εαβρσ Fρσ = 1♦

g
F̃μν, (2.4)

1 Nonlinear and higher derivatives theories of electromagnetism admit one (or more) dimensionful
coupling constant(s) λ.
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where g = − det(gμν), and it squares to minus the identity. The constitutive relations
(2.3) implicitly include also a dependence on the background metric gμν and for
example in case of usual electromagnetism they read Gμν = F♥ μν = 1♦

g F̃μν , while
for Born-Infeld theory,

SB I = 1

λ

∫
d4x

♦
g
(

1 −
√

1 + 1

2
λF2 − 1

16
λ2(F F♥ )2

)
, (2.5)

where F2 = F F = Fμν Fμν and F F♥ = Fμν F♥ μν , they read

Gμν = F♥ μν + 1
4λ(F F♥ ) Fμν√

1 + 1
2λF2 − 1

16λ2(F F♥ )2
. (2.6)

The constitutive relations (2.3) define a nonlinear and higher derivatives extension
of electromagnetism because we require that setting λ = 0 in (2.3) we recover usual
electromagnetism: Gμν = F♥ μν .

We now recall [35] that in the general nonlinear case (where the constitutive
relations do not involve derivatives of F) the equations of motion (2.1)–(2.3) can
always be obtained from a variational principle provided they satisfy the integrability
conditions

∂hμν

∂Fρσ
= ∂hρσ

∂Fμν
. (2.7)

These conditions are necessary in order to obtain (2.3) from an action S[F] =∫
d4xL(F). Indeed if2 hμν = 2 ∂L

∂Fμν
then (2.7) trivially holds.

In order to show that (2.7) is also a sufficient condition we recall that the field
strength Fμν(x) locally is a map from spacetime to R

6 (with coordinates Fμν , μ < ν).
We assume hμν(F,λ) to be well defined functions on R

6 or more generally on an
open submanifold M ♣ R

6 that includes the origin (Fμν = 0) and that is a star shaped
region w.r.t. the origin (e.g. a 6-dimensional ball or cube centered in the origin).

Then condition (2.7) states that the 1-form , is closed, and hence,
by Poincaré lemma, exact on M ; we write We have
for any curve γ(c) of coordinates γμν(c) such that γμν(0) = 0 and γμν(1) = Fμν .
In particular, choosing the straight line from the origin to the point with coordinates
Fμν , and setting S = ∫

d4x L(F), we immediately conclude:
Under the integrability conditions (2.7) locally the equations of motion of

nonlinear electromagnetism (2.1)–(2.3) can be obtained from the action

S = 1

2

∫
d4x

∫ 1

0
dc cF G̃c, (2.8)

2 The factor 2 is due to the convention ∂Fρσ

∂Fμν
= δ

μ
ρ δν

σ adopted in [7] and in the review [37]. It will
be used throughout the paper.
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where G̃c = 1
c h(cF,λ).

One can also consider the more general case of nonlinear and higher derivatives
electromagnetism. Here too if the theory is obtained from an action functional S[F]
then we have

S[F] = 1

2

∫
d4x

∫ 1

0
dc F h[cF,λ], (2.9)

that we simply rewrite S = 1
2

∫
d4x

∫ 1
0 dc cF G̃c.

Proof Consider the one parameter family of actions Sc[F] = 1
c2 S[cF]. Deriving

with respect to c we obtain

− c
∂Sc

∂c
= 2Sc −

∫
d4x F

δSc[F]
δF

, (2.10)

i.e. −c ∂Sc
∂c = 2Sc − 1

2

∫
d4x FG̃c. It is easy to see that Sc = 1

2c2

∫
d4x

∫ c
0 dc√ c√F G̃c√

is the primitive with the correct behaviour under rescaling of c and F . We conclude
that 1

c2 S[cF] = 1
2c2

∫
d4x

∫ c
0 dc√ c√F G̃c√ , and setting c = 1 we complete the proof.

An equivalent form of the expression S = 1
2

∫
d4x

∫ 1
0 dc cF G̃c has been consid-

ered, for self-dual theories, in [27] and called reconstruction identity. It has been used
to reconstruct the action S from equations of motion with duality rotation symmetry
in examples with higher derivatives of F .

2.2.2 Conditions for U(1) Duality Rotation Symmetry
of the Equations of Motion

Nonlinear and higher derivatives electromagnetism admits U (1) duality rotation
symmetry if given a field configuration F, G that satisfies (2.1)–(2.3) then the rotated
configuration (

F √
G √

)
=

(
cos α − sin α
sin α cos α

)(
F
G

)
, (2.11)

that is trivially a solution of ∂μ F̃μν = 0 , ∂μG̃μν = 0 , satisfies also G̃ √
μν = hμν

[F √,λ], so that F √, G √ is again a solution of the equations of motion. If we consider
an infinitesimal duality rotation, F → F + ΔF , G → G + ΔG then condition
G̃ √

μν = hμν[F √,λ] reads ΔG̃μν = ∫
d4x

δhμν

δFρσ
ΔFρσ , i.e., F̃μν = − ∫

d4x
δhμν

δFρσ
Gρσ ,

that we simply rewrite

F̃μν = −
∫

d4x
δG̃μν

δFρσ
Gρσ. (2.12)

It is straightforward to check that electromagnetism and Born-Infeld theory satisfy
(2.12).

If the theory is obtained from an action functional S[F] (in the field strength F
and its derivatives) then (2.3) is given by
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G̃μν = 2
δS[F]
δFμν

. (2.13)

In particular it follows that

δG̃μν

δFρσ
= δG̃ρσ

δFμν
, (2.14)

hence the duality symmetry condition (or self-duality condition) (2.12) equivalently

reads F̃μν = − ∫
d4x δG̃ρσ

δFμν
Gρσ. Now writing F̃μν = δ

δFμν

1
2

∫
d4x Fρσ F̃ρσ we equiv-

alently have

δ

δFμν

∫
d4x (F F̃ + GG̃) = 0, (2.15)

where F F̃ = Fρσ F̃ρσ and similarly for GG̃. We require this condition to hold
for any field configuration F (i.e. off shell of (2.1), (2.2)) and hence we obtain the
Noether-Gaillard-Zumino (NGZ) self-duality condition3

∫
d4x (F F̃ + GG̃) = 0. (2.16)

The vanishing of the integration constant is determined for example by the condition
G = F♥ for weak and slowly varying fields, i.e. by the condition that in this regime
the theory is approximated by usual electromagnetism.

We also observe that the NGZ self-duality condition (2.16) is equivalent to the
invariance of Sinv = S − 1

4

∫
d4x FG̃, indeed under a rotation (2.11) with infinites-

imal parameter α we have Sinv[F √] − Sinv[F] = −α
4

∫
d4x (F F̃ + GG̃) = 0.

From this relation it follows that the action S[F] is not invariant under duality
rotations and that under a finite transformation (2.11) we have

S[F √] = S[F] + 1

8

∫
d4x

(
sin(2α)(F F̃ − GG̃) − 4 sin2(α)FG̃

)
. (2.17)

Thus the action changes by the integral of the four-forms F ∗ F − G ∗ G and
F ∗ G, that, on the equations of motion d F = dG = 0 ((2.1) and (2.2)), are locally
total derivatives. This is a sufficient condition for the transformation (2.11) with
G̃μν = 2 δS[F]

δFμν
to be a symmetry.

We summarize the results thus far obtained: The self-duality condition (2.16) is
off shell of (2.1) and (2.2) but on shell of (2.3). The action functional S[F] provides

3 Note that (2.16) (the integrated form of the more restrictive self-duality condition F F̃ + GG̃)
also follows in a straightforward manner by repeating the passages in [7] but with G the functional
derivatives of the action rather than the partial derivatives of the lagrangian [13, 37]. This makes a
difference for nonlinear theories which also contain terms with derivatives of F .
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a variational principle for the equation (2.3) and under duality rotations changes by
a term that on shell of (2.1) and (2.2) is a total derivative.

2.2.3 Off Shell Formulation of Duality Symmetry

We here provide an off shell formulation of duality symmetry by considering a
Legendre transformation to new variables. The new action functional, off shell of the
equations of motion (2.1)–(2.3), is invariant under duality rotations. This formulation
allows for a classification of duality rotation symmetric theories (an ackward task
using the action functional S[F]).

An example of functional invariant under duality rotations is provided by the
Hamiltonian action functional. Indeed the Hamiltonian itself (and more generally the
energy-momentum tensor) of duality symmetric theories is invariant under duality
rotations [7].4 The problem with the Hamiltonian formulation is however the lack of
explicit Lorentz covariance.

These observations lead to consider a Legendre transformation of S[F] to an
action functional in new variables that transform linearly under duality rotations and
that are Lorentz tensors.

The action S[F] determines the submanifold of equations G̃ = 2 ∂S[F]
∂F in the plane

of coordinates F and G. Equivalently, defining the complex self-dual combinations

F− = 1

2
(F − i F♥ ), (2.18)

G− = 1

2
(G − i G♥ ), (2.19)

and their complex conjugates F− = F+ = 1
2 (F + i F♥ ), G− = G+ = 1

2 (G + i G♥ ),

the action S[F−, F−] = S[F] determines the submanifold of equations G− =
−2i ∂S

∂F− in the plane of coordinates F−, G−.
We want to retrieve this submanifold using the new variables

T − = F− − iG−, (2.20)

T + = F− + iG− = 2F− − T −, (2.21)

and their complex conjugates T − = F+ + iG+, T + = F+ − iG+ = 2F+ − T −.
These variables transform simply with a phase under duality rotations, T − √ =

4 In a general nonlinear theory the Hamiltonian depends on the magnetic field
−→
B and on the

electric displacement
−→
D = δS[F]

δ
−→
E

, that rotate into each other under the duality (2.11),
( −→

B
√

−−→
D

√
)

=
(

cos α − sin α
sin α cos α

) ( −→
B−D

)
. Since the composite fields

−→
B

2 +−→
D

2
and (

−→
B ×−→

D )2 are duality invariant,

Hamiltonians that depend upon these combinations and their derivatives are trivially duality invariant
and lead to duality symmetric theories.
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eiαT −, T + √ = e−iαT +; hence the formulation of a theory symmetric under du-
ality rotations should be facilitated in these variables. The change of variables
(F−, G−) → (T −, T +) is achieved by first changing from G− to T −, then
by a Legendre transformation so that T − become the independent variables and
F− the dependent ones, and finally changing further the dependent variables from
F− to T + = 2F− − iT −. Schematically we undergo the following chain of change
of variables

(F−, G−) −→ (F−, T −) −→ (T −, F−) −→ (T −, T +). (2.22)

More explicitly the equation in the (F−, G−)-plane

G− = −2i
∂S

∂F− (2.23)

is equivalent to the equation in the (F−, T −)-plane

T − = ∂U

∂F− (2.24)

where U [F−, F+] = −2S[F−, F+] + 1
2

∫
d4x

♦
g
(
F−2 + F+2). Furthermore, via

Legendre transform, this last equation is equivalent to the equation in the (T −, F−)-
plane

F− = δV

δT − (2.25)

where V [T −, T −] = −U [F−, F+] + ∫
d4x

♦
g (T −F− + T −F+). Finally we

rewite this equation in the (T −, T +)-plane as

T + = δI
δT − (2.26)

where

I[T −, T −] = 2V [T −, T −] − 1

2

∫
d4x

♦
g

(
T −2 + T −2)

. (2.27)

In conclusion, as pioneered in [33] (in the case of no derivatives of F in the action),
we have that I[T −, T −] and S[F] are related by

1

4
I[T −,T −] = S[F] +

∫
d4x

♦
g

(1

2
T −F− − 1

8
T −2

− 1

4
F−2 + 1

2
T −F+ − 1

8
T −2 − 1

4
F+2

)
. (2.28)
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The equations of motion (2.26) were studied in [25], where a nontrivial example of
a self-dual action with an infinite number of derivatives of the field strength F is
considered (see also the generalizations in the appendix of [35]).

Let’s now study duality rotations. We consider F to be the elementary fields and
let S[F] be the action functional of a self-dual theory. Under infinitesimal duality
rotations (2.11), F → F + ΔF = F − αG, G → G + ΔG = G + αF we have
(since T − = F− − 2♦

g
δS

δF− ) that T − → T − + ΔT − = T − − iαT −. We calculate
the variation of (2.28) under duality rotations. After a little algebra we see that

ΔI = I[T − + ΔT −, T − + ΔT −] − I[T −, T −]
= S[F + ΔF] − S[F] + α

4

∫
d4x

♦
g

(
GG̃ − F F̃

)

= −α

4

∫
d4x

♦
g

(
GG̃ + F F̃

) = 0 (2.29)

where we used that S[F + ΔF] − S[F] = ∫
d4x δS

δF ΔF = −α
2

∫
d4x G̃G, and the

self-duality conditions (2.16). Hence I is invariant under duality rotations.
Vice versa, we can consider T −, T − to be the elementary fields and assume

I[T −, T −] to be duality invariant. Then from 2F− − T − = 1♦
g

δI[T −,T −]
δT −

μν
, and

F−−iG− = T −, it follows that under the infinitesimal rotation T − → T −+ΔT − =
T − − iαT − we have F → F + ΔF = F − αG, G → G + ΔG = G + αF , and
from (2.29) we recover the self-duality conditions (2.16) for the action S[F].

This shows the equivalence betweeen the S[F] and the I[T −, T −] formulations
of self-dual constitutive relations. Hence the deformed twisted self-duality condition
proposal originated in the context of supergravity counterterms is actually the general
framework needed to discuss self-dual theories starting from a variational principle.

We stress that while we needed to use the equations of motion in order to verify
that the action S[F] leads to a duality rotation symmetric theory, we do not need to
use the equations of motion in order to verify that the action I[T −, T −] is duality
invariant. In the formulation with the I[T −, T −] action functional duality rotations
are an off shell symmetry provided that I[T −, T −] is invariant under T − → eiαT −
and T − → e−iαT −.

2.3 Constitutive Relations without Self-Duality

2.3.1 The N and M Matrices

More insights in the constitutive relations (2.3) can be obtained if we restrict our
study to the wide subclass that can be written as

G♥ μν = N2 Fμν + N1 F♥ μν, (2.30)
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where N2 is a real scalar field, while N1 is a real pseudo-scalar field (i.e., it is not
invariant under parity, or, if we are in curved spacetime, it is not invariant under an
orientation reversing coordinate transformation). As usual in the literature we set

N = N1 + iN2. (2.31)

In nonlinear theories N depends on the field strength F , and in higher derivatives
theories also on derivatives of F , we have therefore in general a functional depen-
dence N = N [F,λ]. Furthermore N is required to satisfy N → −i in the limit
λ → 0 so that we recover classical electromagnetism when the coupling constant(s)
λ → 0, or otherwise stated, in the weak and slowly varying field limit, i.e., when we
discard higher powers of F and derivatives of F . Since N2 → −1 for λ → 0, N2,
at least for sufficiently weak and slowly varying fields, is invertible. It follows that
the constitutive relation (2.30) is equivalent to the more duality symmetric one

(
F♥
G♥

)
=

(
0 −1
1 0

)
M

(
F
G

)
(2.32)

where the matrix M is given by

M(N ) =
(

1 −N1
0 1

)(N2 0
0 N−1

2

)(
1 0

−N1 1

)
=

(
N2 + N1 N−1

2 N1 − N1 N−1
2

−N−1
2 N1 N−1

2

)
. (2.33)

The matrix M is symmetric and sympletic and M → −1 for λ → 0. Actually any
such matrix is of the kind (2.33) with N1 real and N2 real and negative.

Finally, in order to really treat on equal footing the electric and magnetic field
strengths F and G, we should consider functionals N1[F, G,λ] and N2[F, G,λ] such
that the constitutive relations G♥ = N2[F, G,λ] F + N1[F, G,λ] F♥ are equivalent
to (2.30), i.e., such that on shell of these relations, N1[F, G,λ] = N1[F,λ] and
N2[F, G,λ] = N2[F,λ]. Henceforth, with slight abuse of notation, from now on
the N , N1, N2 fields in (2.30)–(2.33) will in general be functionals of both F and G.

We now reverse the argument that led from (2.30) to (2.32). We consider consti-
tutive relations of the form

(
F♥
G♥

)
=

(
0 −1
1 0

)
M[F, G,λ]

(
F
G

)
(2.34)

that treat on equal footing F and G, and whereM = M[F, G,λ] is now an arbitrary
real 2×2 matrix (with scalar entries Mi j ). We require M → −1 for λ → 0, so that
we recover classical electromagnetism when the coupling constant λ → 0. A priory
(2.34) is a set of 12 real equations, twice as much as those present in the constitutive
relations (2.30). We want only 6 of these 12 relations to be independent in order to
be able to determine G in terms of independent fields F (or equivalently F in terms
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of independent fields G). Only in this case the constitutive relations are well given.
In [35] we show,

Proposition 1 The constitutive relations (2.34) with M[F, G,λ]|λ=0 = −1 are
well given if and only if on shell of (2.34) the matrix M[F, G,λ] is symmetric and
symplectic. They are equivalent to the constitutive relations (2.30) provided that on
shell the relation between the M and N matrices is as in (2.33).

Notice that off shell of (2.34) the matrix M does not need to be symmetric and
symplectic. This is what happens with Schrödinger’s formulation of Born-Infeld
theory (see (2.50) and comments thereafter).

2.3.2 Schrödinger’s Variables

Following Schrödinger [1, 36] it is fruitful to consider the complex variables

T = F − iG, T = F + iG. (2.35)

The transition from the real to the complex variables is given by the symplectic and
unitary matrix At where

A = 1♦
2

(
1 1
−i i

)
, A−1 = A†. (2.36)

The equation of motions in these variables read dT = 0, with constitutive relations
obtained applying the matrix At to (2.34):

(
T♥
T

♥
)

= −i

(
1 0
0 −1

)
AtMA

(
T
T

)
, (2.37)

where AtMA, on shell of (2.37), is complex symplectic and pseudounitary w.r.t the
metric

(
1
0

0−1

)
, i.e. it belongs to Sp(2,C) ⊂ U (1, 1) = SU (1, 1). It is also Hermitian

and negative definite. These properties uniquely characterize the matrices AtMA
as the matrices

(−♦
1 + ττ −iτ
iτ −♦

1 + ττ

)
(2.38)

where τ = τ [T, T ] is a complex field that depends on T , T and possibly also their
derivatives. We then see that the constitutive relations (2.37) are equivalent to the
equations

T♥
μν = i

♦
1 + ττ Tμν − τ Tμν . (2.39)
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In conclusion the most general set of equations in the T variables that is well defined
in the sense that it allows to express G = i

2 (T + T ) in terms of F = 1
2 (T + T ) as in

(2.30) (equivalently F in terms of G) is equivalent, on shell, to the equations (2.39)
for a given τ = τ [T, T ]. In this sense equations (2.39) are the most general way of
defining constitutive relations of electromagnetism. The constitutive relations (2.30)
are determined by the complex function N (depending on F, G and their derivatives
N = N [F, G]) the equivalent constitutive relations (2.39) are determined by the
complex function τ (depending on T, T and their derivatives τ = τ [T, T ]).

2.4 Schrödinger’s Approach to Self-Duality Conditions

In the previous section we have clarified the structure of the constitutive relations
for an arbitrary nonlinear theory of electromagnetism. The theory can also be with
higher derivatives of the field strength because the complex field N , or equivalently
the matrix M in (2.34) of (pseudo)scalar entries, can depend also on derivatives of
the electric and magnetic field strengths F and G.

We now further examine the constitutive relations for theories that satisfy the
NGZ self-duality condition

F F̃ + GG̃ = 0, (2.40)

i.e., T T̃ = 0, or equivalently,

T T♥ = 0. (2.41)

We multiply (2.39) by T♥ and obtain

− T 2 = i
♦

1 + ττ T T♥ (2.42)

It is convenient to consider modulus and argument of these complex scalar
expressions. Setting

T 2 = |T 2|eiα (2.43)

from (2.42) we have

T T♥ = |T T♥ |ieiϕ (2.44)

We also contract (2.39) with ♥T μν and obtain −T T = −τT T♥ that implies

|τ | = T T

|T T♥ | . (2.45)
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Use of (2.42) then gives the moduli relations

|T 2|2 = |T T♥ |2 + (T T )2. (2.46)

The constitutive relations (2.39) can also be rewritten using the chiral variables
T ± = T ± i T♥ , they read

T +
μν = teiϕT −

μν (2.47)

where t = T T
|T 2|+|T T♥ | . In order to obtain the explicit relation between the ratio

|τ | = T T /|T T♥ | and t we calculate

|T −2|(1 − t2) = 1

2
(|T 2| + |T T♥ |)(1 − t2) = |T T♥ |, (2.48)

multiply this last equality by |τ | and obtain

(1 − t2)|τ | = 2t. (2.49)

Example 1 Linear electromagnetism (G = F♥ ) corresponds to |τ | = 0. Born-Infeld
nonlinear theory satisfies the relations

T♥
μν = − T 2

T T♥ Tμν − λ

8
(T T♥ ) T μν (2.50)

as remarked by Schrödinger [1], see [36] for a clear account in nowadays notations.
Comparison with (2.39) shows that, on shell of (2.50) and (2.41), i.e. using (2.42) and
(2.45), T 2

T T♥ = i
♦

1 + ττ and τ = λ
8 T T♥ . Hence Born-Infeld theory is determined

by

|τ | = λ

8
|T T♥ |. (2.51)

Schrödinger’s formulation of Born-Infeld theory uses the freedom, dicussed in
Proposition 1, of considering a matrix M that off shell of (2.34) is not symmetric
and symplectic. Indeed the term T 2

T T♥ is not pure imaginary off shell. Schrödinger’s
elegant variational principle formulation of Born-Infeld constitutive relations is also
due to this freedom. Defining the “Lagrangian” ϒ(T ) = 4 T 2

T T♥ we have that (2.50) is

equivalent to

λ T
♥ μν = ∂

∂Tμν
ϒ(T ). (2.52)
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2.5 Nonlinear Theories without Higher Derivatives

We now consider theories (possibly in curved spacetime) that depend only on

the (pseudo) scalars F2 and F F♥ , or T −2 and T − 2
. Since the action functional

I[T −, T −] studied in Sect. 2.2.3 and the scalar field t defined in (2.47) are
duality invariant, and under a duality of angle α we have the phase rotation
T −2 → e2iαT −2, we conclude that I and t depend only on the modulus of T −2,
hence I = I[T −, T −] and t = t[T −, T −] simplify to

I = 1

λ

∫
d4x

♦
g I (u), t = t (u), (2.53)

where I (u) is an adimensional scalar function, and the variable u is defined by

u ∼ 2λ|T −2| = λ(|T 2| + |T T♥ |). (2.54)

Similarly, the constitutive relations (2.26) simplify to

T +μν = 1

λ

∂ I

∂T −
μν

= 1

λ

d I

du

∂u

∂T −
μν

, (2.55)

and comparison with (2.47) leads to

t = 2
d I

du
. (2.56)

(Hint: calculate ∂u2

∂T −
μν

and use T −2 = |T −2|eiϕ ).

2.5.1 Born-Infeld Nonlinear Theory

We determine the scalar field t = t (u) = 2 d I
du in case of Born-Infeld theory. This

is doable thanks to Schrödinger’s formulation (2.50) of Born-Infeld theory, that
explicitly gives |τ | = λ

8 |T T♥ |, see (2.51). Then from (2.48) we have

|τ | = 1

16
u(1 − t2), (2.57)

and recalling (2.49) we obtain [34, 35]

(1 − t2)2u = 32t. (2.58)
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Now in the limit u → 0, i.e., λ → 0, we see from the definition of t that t → 0. The
function t = t (u) defining Born-Infeld theory is then given by the unique positive
root of the fourth order polynomial equation (2.58) that has the limit t → 0 for
λ → 0. Explicitly,

t = 1♦
3

(√
1 + s + s−1 −

√
2 − s − s−1 + 24

♦
3

u
♦

1 + s + s−1

)
, (2.59)

where

s = 1

u

(
216 u + 12

♦
3
√

108 + u2 u + u3
) 1

3
. (2.60)

2.5.2 The Hypergeometric Function and its Hidden Identity

In [26] the action functional I and the function t (u) corresponding to the Born-Infeld
action were found via an iterative procedure order by order in λ (or equivalently
in u). The first coefficients of the power series expansion of t (u) were recognized
to be those of a generalized hypergeometric function, leading to the conclusion

t (u) = u

32
3 F2

(1

2
,

3

4
,

5

4
; 4

3
,

5

3
; − u2

33 · 22

)
,

= 2u

32

∞∑
k=0

(4k + 1)!
(3k + 2)!k!

(
− u2

45

)k
(2.61)

and, integrating (2.56),

I (u) = 6

(
1 − 3 F2

(
− 1

2
,−1

4
,

1

4
,

1

3
,

2

3
; − u2

33 · 22

))
. (2.62)

In [35] we conjectured, and checked up to order O(u1000), that the expansion in
power series of u of the closed form expression of t (u) derived in (2.59), (2.60)
coincides with the power series expansion in (2.61).

We here present a proof by showing that the power series in (2.61) satisfies the
quartic equation (2.58). We consider the generic power series

t =
∞∑

m=1

amum (2.63)



38 P. Aschieri et al.

with the initial condition t = O(u) for u → 0, and determine the coefficients am so
as to satisfy the quartic equation (2.58). The initial condition t = O(u) for u → 0 is
compatible with (2.58), indeed from (2.58) we see that for u → 0 we have t = u

32 .
We extend the variables t and u to the complex plane so that use of Cauchy’s

residue theorem gives

am = 1

2πi

∮

C0

tu−m−1du (2.64)

We next calculate from (2.58) the differential

du = 32d
t

(1 − t2)2 = 32
1 + 3t2

(1 − t2)3 dt, (2.65)

and observe that, since for u → 0, t = O(u), infinitesimal closed paths surrounding
the origin of the complex u-plane are mapped to infinitesimal ones surrounding the
origin of the complex t-plane (that we still denote C0). We hence obtain

am = 32

2πi

∮

C0

t + 3t3

(1 − t2)3

(1 − t2)2m+2

(32t)m+1 dt

= 1

32m 2πi

∮

C0

(t−m + 3t2−m)(1 − t2)2m−1dt

= 1

32m 2πi

∮

C0

(t−m + 3t2−m)

2m−1∑
n=0

(−1)nt2n
( 2m − 1

n

)
dt

= 1

32m

2m−1∑
n=0

(−1)n
( 2m − 1

n

)
(δ2n−m+1,0 + 3δ2n−m+3,0). (2.66)

We see that only the coefficients am with m odd are nonvanishing, setting m = 2k +1
we have

a2k+1 = (−1)k

322k+1

[( 4k + 1
k

)
− 3

( 4k + 1
k − 1

)]

= (−1)k 2

322k+1

(4k + 1)!
(3k + 2)!k! (2.67)

that proves the conjecture.
As a corollary we have that the hypergeometric function in (2.61)

F(u2) ∼ 3 F2

(1

2
,

3

4
,

5

4
; 4

3
,

5

3
; − u2

33 · 22

)
= 2

∞∑
k=0

(4k + 1)!
(3k + 2)!k!

(
− u2

45

)k
(2.68)
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has the closed form expression F(u2) = 32
u t (u) where t (u) is given in (2.59), (2.60),

and, because of (2.58), that it satisfies the “hidden” identity

F(u2) =
(

1 − u2

45
F(u2)

2
)2

. (2.69)

2.5.3 General Nonlinear Theory

Since Born-Infeld theory is singled out by setting |τ | = λ
8 |T T♥ |, and Maxwell theory

by setting |τ | = 0 (Example 1), it is convenient to describe a general nonlinear theory
without higher derivatives by setting

|τ | = λ

8
|T T♥ | f (u)/u (2.70)

where f (u) is a positive function of u. We require the theory to reduce to electro-
magnetism in the weak field limit, i.e., G♥ μν = −F +o(F) for F → 0. Then we have

T − = O(F), T + = o(F), u = O(F2). Hence from (2.47) we obtain limu→0 t = 0.
Moreover from (2.49), r = O(t) and from r = 1

16 f (u)(1 − t2) (that follows from
(2.70) and (2.48)) f = O(t). Hence the theory reduces to electromagnetism in the
weak field limit if and only if limu→0 f (u) = 0.

From r = 1
16 f (u)(1 − t2) (that follows from (2.70) and (2.48)) and (2.49) we

obtain that the composite function t ( f (u)) satisfies the fourth order polynomial
equation

(1 − t2)2 f (u) = 32t, (2.71)

so that t ( f (u)) is obtained with the substitution u → f (u) in (2.59) and (2.60), or
in (2.61).

More explicitly, generalizing the results of Example 1, we conclude, as in [35],
that the constitutive relations à la Schrödinger

T♥
μν = − T 2

T T♥ Tμν − λ

8

f (u)

u
(T T♥ ) T μν, (2.72)

are (on shell) equivalent to the constitutive relations (deformed twisted self-duality
conditions)

T +μν = 1

2λ
t ( f (u))

∂u

∂T −
μν

, (2.73)

where t ( f (u)) satisfies the quartic equation (2.71), and we recall that u = 2λ|T −2| =
λ(|T 2| + |T T♥ |).
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In other words the appearence of the quartic equation (2.71) is a general feature
of the relation between the constitutive relations (2.72) and (2.73), it appears for any
self-dual theory and it is not only a feature of the Born-Infeld theory.
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Chapter 3
Vector Branes

Eric A. Bergshoeff and Fabio Riccioni

We show how the recent classification of half-supersymmetric branes of maximal
supergravity has a simple group-theoretical characterization in terms of the longest
weights of the T-duality representation to which the potentials that couple to these
branes belong. We identify the branes of half-maximal supergravity that have Dirac-
Born-Infeld-Volkov-Akulov worldvolume dynamics. We show that reducing the
branes of ten-dimensional string theory leads to the half-supersymmetric branes
in lower dimensions provided we impose simple wrapping rules for these branes.
The origin and interpretation of these wrapping rules is discussed.

3.1 Introduction

“Branes”, i.e. massive objects with a number of worldvolume and transverse direc-
tions, play a crucial role in string theory and M-theory. Historically, the first exam-
ple of a brane other than a string was the eleven-dimensional supermembrane [1].
An important class of branes are the Dirichlet branes or, shortly, D-branes of ten-
dimensional superstring theory [2]. These branes are non-perturbative in the sense
that their brane tension scales with the inverse of the string coupling constant.
D-branes played a decisive role in the calculation of the entropy of a certain class of
black holes [3]. Branes also play a central role in the AdS/CFT correspondence [4]
and the brane-world scenario [5, 6].
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Much information about branes can be obtained by studying the low-energy
approximation of string theory and/or M-theory which is a supergravity theory. For
instance, the mere fact that eleven-dimensional supergravity contains a 3-form poten-
tial is already indicative of the fact that M-theory contains a membrane since 3-forms
naturally couple to membranes. The fact that this membrane is actually a superme-
mbrane which breaks half of the supersymmetry follows from the construction of
a kappa-symmetric supermembrane action [1]. Kappa symmetry requires that the
worldvolume action describing the dynamics of the brane contains a Nambu-Goto
and a Wess-Zumino (WZ) term. The latter describes the coupling of the brane to the
potentials of supergravity. A classification of branes therefore necessarily involves a
classification of the supergravity potentials.

Due to their different nature it is important to distinguish between branes with
more than 2 transverse directions and branes with 2 or less transverse directions.
The half-supersymmetric branes with more than 2 transverse directions have been
classified a long time ago. We will refer to them collectively as the “standard” branes.
The classification of the remaining branes is more subtle and has only recently been
obtained [7–9]. We will refer to them as the “non-standard” branes. We call the ones
with 2, 1 and 0 transverse directions “defect-branes”, “domain-walls” and “space-
filling branes”, respectively. To summarize:

standard branes: more than 2 transverse directions

non-standard branes: 2,1 or 0 transverse directions

One difference between the standard and non-standard branes is that the non-
standard ones are not asymptotically flat. Furthermore, they are only well-defined
if one considers multiple brane configurations together with an orientifold. For our
purposes it will be enough to consider single brane configurations. Another differ-
ence is that the standard branes couple, via the WZ term, to potentials that describe
continuous degrees of freedom. For the non-standard branes this is only the case
for the defect branes which couple to the dual of the supergravity scalars. Even this
case is different from the standard brane case in the sense that the number of dual
potentials that fit into a U-duality representation is not equal to the number of phys-
ical scalars. From the higher-dimensional point of view the origin of this mismatch
is the fact that some of the scalars originate from the higher-dimensional metric for
which no dual metric can be defined. The potentials that couple to domain walls can
be viewed as dual to a discrete degree of freedom such as a mass parameter or a
gauge coupling constant. The space-filling branes are a bit special since they couple
to potentials that do not describe any degree of freedom at all.

To verify whether a given potential couples to a half-supersymmetric brane or
not we require that a gauge-invariant WZ term can be constructed. This often
requires that, besides the embedding scalars, more world-volume potentials are
introduced that transform under (some of) the gauge transformations of the super-
gravity potentials with non-trivial shifts. In this way gauge-invariance of the WZ
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term can always be achieved but it is not clear whether the newly introduced
worldvolume potentials together with the embedding scalars fit into a worldvolume
supermultiplet. This so-called “WZ-term requirement” imposes restrictions on the
number of half-supersymmetric branes. Using the WZ-term requirement we have
found that there is another difference between the standard and non-standard branes.
Whereas for standard branes every supergravity potential (and its dual) couples to
a half-supersymmetric brane, for the non-standard ones we find that there are less
half-supersymmetric branes than there are potentials:

# half-susy standard branes = # potentials,

# half-susy non-standard branes < # potentials.

In the next section we will discuss in more detail the relation between branes
and the WZ terms. We will review a so-called “light-cone rule” which provides a
simple way, by using a light-cone basis for the T-duality indices, to specify which
potentials couple to a half-supersymmetric brane and which do not. In Sect. 3.3
we will show that the light-cone rule has a simple group-theoretical interpretation in
terms of a “longest-weight rule” which states that the number of half-supersymmetric
branes is equal to the number of longest weights of the T-duality representation
to which the potentials in question belong. In Sect. 3.4 we will resolve a puzzle
that arises when one investigates the half-supersymmetric branes of half-maximal
supergravity. In particular, we will discuss the so-called ‘vector branes’, i.e. branes
whose worldvolume dynamics is described by a single vector super multiplet, and
show how these vector branes arise in half-maximal supergravity. Having classified
the half-supersymmetric branes of maximal supergravity it is natural to ask how the
branes in different dimensions are related to each other via dimensional reduction.
In Sect. 3.5 we will show that reducing the branes of ten-dimensional string theory
one obtains the half-supersymmetric branes in lower dimensions we just classified
provided we impose simple wrapping rules for these branes. In the conclusions, see
Sect. 3.6, we will discuss the origin and interpretation of these wrapping rules.

3.2 Branes and Wess-Zumino Terms

It is instructive to first consider the branes of Type IIB string theory. These branes
can be analysed by looking at the field content of the low-energy IIB supergravity
effective action. This includes not only the propagating fields and their magnetic
duals—an SL(2,R) doublet of 2-forms, corresponding to the F1 fundamental string
and the D1-brane, the magnetic dual 6-forms, corresponding to the D5-brane and
the NS5-brane, and a selfdual 4-form, corresponding to the D3-branes—but also
forms of higher rank. These forms can be obtained by imposing the closure of
the supersymmetry algebra, and they are a triplet of 8-forms and a quadruplet of
10-forms [10, 11]. In [12] the half-supersymmetric branes associated to these latter
fields were derived by looking at the corresponding brane effective action. The result
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of this analysis is that only two components of the triplet of 8-forms and only two
components of the quadruplet of 10-forms are associated to half-supersymmetric
branes. A simple explanation of this result can be given by looking at the WZ term
in the effective action. Denoting with A8,αβ the triplet of 8-forms (α,β = 1, 2 are
SL(2,R) doublet indices), gauge invariance implies that such a term must be of the
form

T αβ[A8,αβ + A6,(αF2,β) + · · · ], (3.1)

where T αβ is the 7-brane charge, A6,α are the doublet of 6-forms and F2,α =
da1,α+ A2,α are a doublet of world-volume 2-form field-strengths (a1,α are a doublet
of world-volume vectors and A2,α are the 2-forms). In order for the effective action
to preserve one-half of the supersymmetries, we must impose that the world-volume
fields fit in an 8-dimensional 16-supercharge multiplet, that is a vector multiplet (one
vector and two scalars). The two scalars are the transverse scalars, while the request
that (3.1) contains only one world-volume vector imposes that the charge must be
either T 11 or T 22 (the third component T 12 would result in a WZ term containing
both components of the doublet of world-volume vectors). The same analysis leads
to two 9-branes in the quadruplet of 10-forms. The main lesson of this analysis is
that in the IIB theory the number of standard branes is the same as the number of
corresponding potentials, while the number of non-standard branes is less than the
number of components of the corresponding potentials.

We now move to consider maximally supersymmetric theories in any dimension.
A full classification of the potentials of these theories for all dimensions was given
in [13, 14] making use of the properties of the very extended Kac-Moody algebra
E11 [15]. Starting from this result, the study of the half-supersymmetric branes as
components of the U-duality representations of the corresponding potentials, based
on the analysis of the WZ terms was initiated in [16]. This analysis, completed in
[7, 9], shows that as in ten dimensions the number of half-supersymmetric non-
standard branes is less than the dimension of the corresponding U-duality represen-
tations. Here we are interested in the analogous analysis in terms of representations
of the T-duality group. Denoting with E11−D the U-duality group in D dimensions,
one has

E11−D → SO(10 − D, 10 − D) × R
+, (3.2)

where SO(10 − D, 10 − D) is the T-duality group, that will be denoted from now on
as SO(d, d), with d = 10 − D. Decomposing the U-duality representations under
T-duality allows to classify the branes according to the way their tension T scales
with respect to the D-dimensional string coupling,

T ∼ gα
s , (3.3)
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where α is related to the R
+ weight. The value of α is always non-positive, and

α = 0 corresponds to the fundamental branes, while the other branes, with α < 0,
are non-perturbative objects in string theory.

It turns out that the classification of the potentials associated to branes as
representations of SO(d, d) is universal for α > −4. For our present purposes, it is
enough to consider only fundamental branes (α = 0), Dirichlet branes (α = −1)
and solitonic branes (α = −2). The fields with α = 0 are a 1-form B1,A in the vector
representation of SO(d, d) and a 2-form singlet B2. The RR fields, with α = −1,
belong to spinor representations with alternating chirality, and we denote them
with C2n+1,a and C2n,ȧ . The fields with α = −2 are DD−4, DD−3,A, DD−2,A1 A2 ,
DD−1,A1 A3 A4 and DD,A1 A2 A3 A4 , where sets of indices A1 . . . An are always meant
to be antisymmetrised. It turns out that the fields with α = −3 are in irreduccible
tensor-spinor representations.

In [17] the α = −2, i.e. solitonic branes were classified by looking at the world-
volume field content of the WZ terms. The outcome of that analysis is that the
components of the T-duality representations of the α = −2 potentials that correspond
to branes are obtained from the following “light-cone rule”:

We introduce light-like indices i±, i = 1, . . . , d for SO(d, d). The α = −2 fields
are then denoted as DD−4+n,i1±...in±, with n = 0, 1, . . . , 4. The components
associated to half-supersymmetric branes are those for which the i’s are all different.
The number of (D − 5 + n)-branes is therefore

(
d

n

)
× 2n, (3.4)

which is smaller than the dimension of the representation, which is
(2d

n

)
.

As can be deduced from (3.4), there are no solitonic branes with world-volume
dimension higher than 6, because they correspond to fields with n > d, for which
(3.4) clearly gives a vanishing result. The case n = d, which can only occur in D ♥ 6
and always corresponds to a 5-brane, is special because the T-duality representation
with d antisymmetric indices of SO(d, d) splits into a selfdual and an anti-selfdual
part. Correspondingly, the 2d branes that come from (3.4) split into 2d−1 branes
supporting a vector multiplet and 2d−1 branes supporting a tensor multiplet. In all
the other cases the branes support a world-volume vector multiplet.

The peculiarity of the branes with α > −4 is that for each T-duality representation
there is always at least one brane that comes from torus dimensional reduction from
the 10-dimensional branes (either wrapped or unwrapped along some of the internal
directions). There is also an α = −4 brane in Type IIB string theory, namely the
S-dual of the D9-brane. In D dimensions, this brane wraps along the T d internal
torus to give a spacefilling (D − 1)-brane. The potential associated to this brane is
the field F+

D,A1...Ad
in the selfdual representation of T-duality with d antisymmetric

indices. According to the light-cone rule, the number of branes associated to this
potential is given by (3.4) with n = d, divided by two because of the selfduality
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condition. This gives 2d−1 branes, which is clearly less than the dimension of the
representation, 1

2

(2d
d

)
.

Starting from D = 7, there are also half-supersymmetric branes with α ♦ −4 that
belong to T-duality representations that do not contain any brane coming from 10
dimensions. These branes will not be discussed here, but their number was obtained
by the WZ term analysis in [7, 9].

Before we proceed, it is important to mention that all the results discussed so
far have been also obtained in [8] using a different method, namely by counting the
real roots of the E11 Kac-Moody algebra. In the next section we will show that the
light-cone rule discussed above can be replaced by an alternative group-theoretical
rule, which we will denominate the “longest-weight rule”. This new rule also reveals
why the WZ requirement and the E11 method give the same result.

3.3 Branes and Weights

The counting of branes that results from the analysis of the WZ terms in [7, 9] has
a simple group-theoretical explanation: the components of the U-duality represen-
tations of the potentials that correspond to half-supersymmetric branes are those
associated to the longest weights [18]. The potentials corresponding to standard
branes belong to representations whose weights have all the same length, and this
explains why in that case the number of half-supersymmetric branes coincides with
the dimension of the representation. On the other hand, the potentials correspond-
ing to non-standard branes belong to representations whose weights have different
lengths, and therefore in this case the number of branes is less than the dimension of
the representation. As an example one can consider the defect branes, associated to
the (D −2)-form potentials, which belong to the adjoint representation. The number
of such branes is equal to the dimension of the group minus the rank [19], which
is the number of roots. Given that the symmetry groups of maximal supergravities
are always simply laced, which means that all the roots have the same length, this
implies that the roots are the longest weights of the adjoint (the other weights being
the Cartan, which have zero length). The longest weights of the U-duality represen-
tation precisely correspond to the real roots of E11, and therefore the observation that
the branes correspond to the longest weights explains why the WZ analysis of [7, 9]
and the E11 analysis of [8] give the same result.

We now want to give a characterisation of the length of the various weights within
a representation in terms of the so-called “dominant weights”. An irreducible repre-
sentation is denoted in terms of the Dynkin labels of the highest weight. We recall
that a weight is defined as the eigenvalue of the Cartan generators in a given represen-
tation, and the corresponding eigenvector is called a weight vector. A highest-weight
vector is a weight vector annihilated by all the positive-root generators, and the
non-zero (i.e. positive) Dynkin labels identify the negative-root generators that do
not annihilate the highest-weight vector. As an example we can consider the group
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SL(3,R), with simple roots α1 and α2. We first consider the fundamental repre-
sentation, which is the 3, whose Dynkin labels of the highest weight W 3 are 1 0 .

From this we read the weight W 3−α1, with Dynkin labels −1 1 . The lowest weight

of the representation is W 3 − α1 − α2, with Dynkin labels 0 −1 . The reader can
see that only the highest weight of the 3 has Dynkin labels that are all non-negative.
In general one defines a dominant weight as a weight whose Dynkin labels are all
non-negative. Clearly a highest weight is a dominant weight, but the opposite is not
necessarily true. As we have seen, the 3 of SL(3,R) has only one dominant weight,
which is the highest weight. However, this is no longer the case if we consider instead
the symmetric product 3 ♣S 3, which is the 6. This representation has highest weight
2 0 , but it also contains the weight 0 1 , which is a dominant weight.

In general, each dominant weight in a representation identifies a set of weights
which all have the same length as that dominant weight. We can consider again
SL(3,R) as an example. In the case of the 3, all the weights have the same length,
which is the length of the highest weight. In the case of the 6 instead, there are
three long weights, one of them being the highest weight 2 0 , and three short

weights, one of them being the second dominant weight 0 −1 . This implies that
the standard branes are associated to potentials belonging to representations that
have only one dominant weight (which is the highest weight) while the non-standard
branes are associated to potentials that are in representations with more than one
dominant weight, and one can count for each representation the number of weights
with the same length as each dominant weight. This was done in [18] for the U-duality
representations associated to all the non-standard branes in any dimension. Here we
want to apply the same analysis of [18] to the representations of the T-duality group
SO(d, d) that are associated to branes. We will show that the longest-weight rule of
[18] is the same as the light-cone rule reviewed in the previous section.

We first review what are the Dynkin labels of the highest weights of the repre-
sentations of SO(d, d) that are relevant for our discussion. We are assuming that
we are labelling the nodes of the Dynkin diagram of SO(d, d) in the standard way,
with the last two nodes (node d − 1 and node d) corresponding to the two spinor
representations. The highest weight of the vector representation is 1 0 0 . . . 0 0 ,
while more generally the highest weight of the representation with n antisym-
metric indices (n < d − 1) has all zero Dynkin labels apart from the nth label,
whose value is 1. The highest weight of the representation with d − 1 antisym-
metric indices is 0 0 0 . . . 0 1 1 , and the ones with d antisymmetric indices are

0 0 0 . . . 0 2 0 (selfdual) and 0 0 0 . . . 0 0 2 (anti-selfdual). The spinor represen-

tations are 0 0 0 . . . 0 0 1 (chiral, denoted with the index a) and 0 0 0 . . . 0 1 0
(anti-chiral, denoted with the index ȧ).

We now discuss the various dominant weights of the T-duality representations
associated to the half-supersymmetric branes discussed in the previous section for
the different values of α, see (3.3). The α = 0, i.e. fundamental, branes correspond
to the potentials B1,A (F0-branes) and B2 (F1-brane). The vector representation
clearly has only one dominant weight, which is the highest weight 1 0 0 . . . 0 0 . The
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F0-branes correspond to the lightlike directions B1,i±, and their number is 2d,
which is equal to the dimension of the representation. There always is a single
F1-brane (i.e. the fundamental string) associated to the T-duality singlet B2. The
α = −1 branes, i.e. the Dp-branes, belong to the chiral (p even) and anti-chiral
(p odd) representations. These representations have only one dominant weight
(i.e. the highest weight) and therefore the number of branes is equal to the dimension
of the representation, which is 2d−1.

We then consider the α = −2, i.e. solitonic, branes. The discussion for the
(D − 5)-branes and the (D − 4)-branes is the same as for the fundamental branes, of
which they are the magnetic dual. The (D − 3)-branes correspond to the potentials
DD−2,A1 A2 . The dimension of the representation (which is the adjoint of SO(d, d))
is
(2d

2

)
. There are

(d
2

) × 4 long weights (i.e. the roots) associated to the dominant

weight 0 1 0 0 . . . 0 0 0 , and d weights of zero length (the Cartan) which means

that the dominant weight 0 0 0 . . . 0 0 0 has multiplicity d. In components, the long
weights correspond to DD−2,i1±i2± with i1 √= i2, and the short weights to DD−2,i+i−,
and given that i takes d values, this explains the degeneracy d of the short dominant
weight.

The (D − 2)-branes are associated to the potential DD−1,A1 A2 A3 . In the rep-
resentation of SO(d, d) with three antisymmetric indices, there are

(d
3

) × 8 long

weights, one of which being the highest weight 0 0 1 0 . . . 0 0 0 , corresponding to
the components DD−1,i1±i2±i3± with i1, i2 and i3 all different. The remaining com-
ponents are DD−1,i± j+ j−, with i √= j . These are associated to the dominant weight

1 0 0 0 . . . 0 0 0 , which has multiplicity (d − 1) because there are d − 1 possible
values for j once i is fixed. The total number of short weights is 2d(d − 1). Clearly,
the sum of the long weights and the short weights is

(2d
3

)
, which is the dimension of

the representation.
The last type of solitonic branes are the (D − 1)-branes, corresponding to the

potentials DD,A1...A4 . The representation has
(d

4

) × 16 longest weights, which are

of the same length as the highest weight 0 0 0 1 . . . 0 0 0 . They correspond to the
components DD,i1±i2±i3±i4±, with the i’s all different. The next-to-longest weights
correspond to the components of the form DD,i1±i2± j+ j−, with i1, i2 and j all

different. The corresponding dominant weight is 0 1 0 0 . . . 0 0 0 , and its multiplicity
is (d −2) because these are the possible choices that can be made for j once i1 and i2
are fixed. The total number of next-to-longest weights is

(d
2

)×4×(d −2). Finally, the
shortest weights correspond to the components DD,i+i− j+ j−, with i √= j . They all

correspond to the dominant weight 0 0 0 0 . . . 0 0 0 , with multiplicity
(d

2

)
because

these are all the possible choices for i and j . This gives a total of
(d

2

)
shortest weights.

The sum of the longest, next-to-longest and shortest weights gives the dimension of
the representation, which is

(2d
4

)
.

The discussion above is valid if D ♦ 5. In D = 6 the spacefilling branes split
into tensor and vector branes, corresponding to the representation with 4 antisym-
metric indices of SO(4, 4) splitting into selfdual and anti-selfdual. For each of the
two irreducible representations the number of longest, next-to-longest and shortest
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Table 3.1 This table gives the dominant weights and the number of weights of same length of each
dominant weight for the solitonic (α = −2) non-standard branes

Branes Field Dim. repr. Dominant weights Weights

Defect branes DD−2,A1 A2

(2d
2

)
0 1 0 0 . . . 0 0 0

(d
2

)× 4

d × 0 0 0 0 . . . 0 0 0 d

Domain walls DD−1,A1 A2 A3

(2d
3

)
0 0 1 0 . . . 0 0 0

(d
3

)× 8

(d − 1) × 1 0 0 0 . . . 0 0 0 2d(d − 1)

Space-filling branes DD,A1 A2 A3 A4

(2d
4

)
0 0 0 1 . . . 0 0 0

(d
4

)× 16

(d − 2) × 0 1 0 0 . . . 0 0 0 (d − 2)
(d

2

)× 4
(d

2

)× 0 0 0 0 . . . 0 0 0
(d

2

)

weights is simply half of what one would get putting d = 4 in the analysis above.
In D = 7 the representation of SO(3, 3) with 4 antisymmetric indices is dualised
to the one with two antisymmetric indices. This is consistent with the fact that if
one puts d = 3 in the formulas above for the longest weights of the representation
with four antisymmetric indices one obtains zero, which implies that there are no
solitonic spacefilling branes in D = 7. Similar considerations apply in D = 8 and
D = 9. The complete result of this analysis for the non-standard solitonic (α = −2)
is summarised in Table 3.1.

3.4 Vector Branes and Half-Maximal Supergravity

It is well-known that the worldvolume dynamics of the 10D Dirichlet branes of
maximal supergravity is governed by a supersymmetric Born-Infeld system with
16 supercharges. For a recent discussion of supersymmetric Born-Infeld systems in
the context of finiteness properties of quantum supergravity, see [20]. We will from
now on denominate branes whose worldvolume dynamics is governed by a vector
multiplet as ‘vector branes’. Such branes can be associated with supersymmetric
Born-Infeld systems. Examples of 10D vector branes of maximal supergravity are
the Dirichlet branes and the NS5B brane.

When considering the vector branes of half-maximal supergravity the follow-
ing puzzle arises. It is well-known that supersymmetric Born-Infeld systems with
16 supercharges can be truncated to Born-Infeld systems with 8 supercharges. One
would expect that these truncated worldvolume theories describe the dynamics of
some vector branes of half-maximal supergravity. However, when considering the
Dirichlet (α = −1) branes of half-maximal supergravity one finds that their world-
volume dynamics is not described by a vector multiplet but a hyper multiplet. For
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Table 3.2 This table indicates the potentials with α = 0 and α = −2 of heterotic supergravity

α Fields

0 B1,A B2

−2 DD−4 DD−3,A DD−2,A1 A2 DD−1,A1 A2 A3 DD,A1 A2 A3 A4

The D-potentials are antisymmetric in the A indices

instance, when truncating IIB supergravity to heterotic supergravity one sets the RR
potentials equal to zero which eliminates all Dirichlet branes. On the other hand,
if one truncates the IIB theory to Type I supergravity, one sets the NS-NS 2-form
field equal to zero. This means no (fundamental) string can end on the brane and
the worldvolume dynamics of the relevant α = −1 branes is described by a hyper
multiplet instead of a vector multiplet.

The following question therefore arises:

where are the half-supersymmetric vector branes of half-maximal supergravity?

To answer this question, it is sufficient to consider heterotic supergravity and to
apply the brane classification techniques described in the previous section. The field
content of the D = 10 − d dimensional U (1)16 heterotic supergravity theory is
given by

{eμ
a, B2, d × B1,φ} plus (16 + d) × {B1, d × φ}. (3.5)

The vectors transform as the fundamental representation of SO(d, 16+d) while the
scalars parametrize the coset

SO(d, 16 + d)/[SO(d) × SO(16 + d)]. (3.6)

It turns out that the heterotic branes only occur with tensions

TH ∼ (gs)
α with α = 0,−2,−4, . . .

In particular, we find the potentials with α = 0 and α = −2 given in Table 3.2.
It turns out that at this point we find only branes whose worldvolume dynamics is

described by hypermultiplets with 8 supercharges. We do not find any vector branes
sofar. However, a new feature that arises in 6D is the occurrence of a 2-form potential
D2 with α = −2, i.e. one that couples to a solitonic string. This gives us the new
possibility to have branes on which not fundamental strings but solitonic strings may
end. Of course, such objects are highly non-perturbative and less under control than
the Dirichlet branes since now we are dealing with imposing Dirichlet boundary
conditions on the solitonic instead of the fundamental string.

To be concrete, as an example we find that heterotic supergravity allows
F-potentials F5,A, with α = −4, that transform in the fundamental representation of
SO(d, 16 + d) [18]. These potentials are dual to a set of gauge coupling constants
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gA or Romans mass parameters m A. The heterotic supergravity theory allows both
deformations [21]. These potentials couple to half-supersymmetric domain walls
whose worldvolume dynamics is governed by a vector multiplet with 8 supercharges.
The schematic form of these so-called ‘V4-branes’ is given by

LWZ(V4) ∼ TA[ F5,A + H2 D3,A
−4 −2 −2

]
, H2 = dd1 − D2, (3.7)

where TA are the tensions and d1 is the Born-Infeld vector that corresponds to the soli-
tonic string. The numbers indicate the α values of the different fields. Note that both
terms in the above Wess-Zumino term have the same total α-weight. This V4 Wess-
Zumino term is very similar to the Wess-Zumino term used for Dirichlet-branes. For
instance, the Wess-Zumino term for a D4-bran with tension T has the form:

LWZ(D4) ∼ T
[

C5 + F2 C3−1 0 −1
+ · · · ], F2 = db1 − B2, (3.8)

where b1 is the Born-Infeld vector corresponding to the fundamental string. The main
difference is that the V4-brane has a more negative α-weight than the D4-brane and is
therefore more non-perturbative, and also more difficult to study, than the D4-brane.

The V4-brane is just one example of a vector brane in half-maximal supergravity.
We find that, similarly, Vp-branes are present in both heterotic, Type I as well as
chiral (2,0) supergravity [18]. The world-volume dynamics of all these vector branes
is described by a Born-Infeld theory with 8 supercharges. Similar vector branes are
expected to arise in supergravity theories with less supersymmetry but none of these
vector branes will have α = −1.

3.5 Wrapping Rules

Now that we know the numbers of half-supersymmetric branes, resulting from either
the light-cone rule or the longest-weight rule, it is natural to ask oneself how all the
branes in different dimensions are related to each other via dimensional reduction,
if that can be done at all. Since the scaling of the brane tension T with respect to the
D-dimensional dilaton gs does not change under dimensional reduction it is natural to
consider the reduction of branes whose tension has a given scaling. We are interested
in studying the dimensional reduction of the ten-dimensional branes, whose tension
scales like gα

s with α = 0,−1,−2,−3,−4. This means that in any dimension we are
interested in the branes with these values of α. Explicitly, we refer to these branes as:

TF ∼ 1: Fundamental branes,
TD ∼ 1/gs : Dirichlet branes (D-branes),
TS ∼ 1/g2

s : Solitonic branes,
TE ∼ 1/g3

s : Exotic branes,
TSF ∼ 1/g4

s : Space-filling α = −4 branes.

(3.9)
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Note that this distinction of branes with different dilaton scaling is different from
the distinction between standard and non-standard branes. For instance, one has both
standard as well as non-standard D-branes.

If a brane saw a standard geometry we would expect that upon dimensional reduc-
tion it would always lead to two different branes. Either one reduces along a transverse
direction or along a worldvolume direction. The latter case corresponds to the wrap-
ping of the brane, which leads to a brane with a reduced world-volume direction.
We summarize this by saying that the “wrapping rules” corresponding to standard
geometry are given by

any brane

{
wrapped ∗ undoubled,
unwrapped ∗ undoubled.

(3.10)

The use of the word ‘undoubled’ stresses the fact that in both cases, wrapped or
un-wrapped, only a single brane is obtained. Giving these wrapping rules and given
the branes of ten-dimensional string theory with a given scaling α it is non-trivial
that we precisely obtain the number of half-supersymmetric brane we obtained in
our earlier brane classification. Indeed, it turns out that this only happens in the case
of D-branes. Given the D-branes of Type IIA or IIB string theory and applying the
wrapping rules (3.10) one precisely obtains the lower-dimensional D-branes which
organize themselves into spinor representations of the T-duality group.

The same strategy does not work for the fundamental branes. As we saw earlier,
in each dimension we have a singlet fundamental string and fundamental 0-branes
that form the components of a vector representation of the T-duality group SO(d, d).
This means that we need for each compactified direction two fundamental 0-branes.
Clearly only one of these two branes can come from a wrapped fundamental string.
We need another source to explain the occurrence of the second 0-brane. This is
provided by the T-dual of the fundamental string, which is a pp-wave which upon
reduction gives rise to the second 0-brane. The extra contribution due to the pp-waves
gives rise to the following effective wrapping rules for the fundamental branes [22]:

TF ∼ 1:
{

wrapped ∗ doubled,
unwrapped ∗ undoubled.

(3.11)

These wrapping rules remind the ‘doubled geometry’ proposal of [23] where each
compactified direction is doubled with a T-dual direction. Note that the doubled
geometry proposal is based on a perturbative symmetry and therefore only applies
to the fundamental branes and not necessarily to the other type of branes. Indeed, as
we saw above, the D-branes have their own wrapping rules (3.10) corresponding to
standard geometry.

Things get more interesting when we consider the solitonic branes. Again we find
that the wrapping rules (3.10) corresponding to standard geometry do not lead to
the right number of half-supersymmetric solitonic branes in lower dimensions. In
this case, however, the extra input comes from the Kaluza-Klein (KK) monopoles.
In each dimension D ♥ 5 there is a KK monopole which can be considered as
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the dual of the pp-wave. The KK monopole divides spacetime into three different
directions:

KK monopole:
⎧⎨
⎩

p + 1 worldvolume directions,
1 isometry direction,
3 transverse directions.

(3.12)

A brane in lower dimensions is obtained by reducing over the single isometry direc-
tion. In each dimension we have a singlet solitonic (D − 5)-brane which is dual to
the fundamental string. This singlet follows from the worldvolume reduction of the
ten-dimensional NS5-brane. We also have solitonic (D −4)-branes which transform
as a vector of the T-duality group. This implies that for each compactified direc-
tion we need two (D − 4)-branes. Consider, for instance, the doublet of solitonic
5-branes in 9D. The first 5-brane follows from a transverse reduction of the ten-
dimensional NS5-brane. To obtain the second 5-brane we need the help from the
10D KK-monopole. Indeed, the ten-dimensional KK monopole has 6 worldvolume,
1 isometry and 3 transverse directions. Reducing over the isometry direction leads
to the second 5-brane. We thus obtain the following effective wrapping rules for
solitonic branes [24]:

TS ∼ 1/g2
s :

{
wrapped ∗ undoubled,
unwrapped ∗ doubled.

(3.13)

These rules can be viewed as dual to the fundamental wrapping rules (3.11).
An issue arises if we now also consider the non-standard solitonic (D − 3)-,

(D − 2)- and (D − 1)-branes which transform according to anti-symmetric tensor
representations of the T-duality group, see Table 3.1. The precise number of such
branes, which is given by the red entries in the last column, first three rows of
Table 3.1, is reproduced if we apply the solitonic wrapping rules (3.13) also for these
cases [24]. However, the KK monopole, upon reduction over the isometry directions,
only gives rise to a standard brane with three transverse directions. We need to
introduce something new to explain the numbers of the non-standard solitonic branes.
One possibility is that one introduces ‘generalized’ KK monopoles which have less
than three transverse directions. Such monopoles have already been considered a
long time ago using T-duality arguments [25]. At the moment it is not clear how
rigorously such generalized objects can be defined within string theory. Note that
such objects, if they exist at all, seem to couple to mixed-symmetry tensors instead of
p-form potentials. The possibility of including such mixed-symmetry tensors into a
supergravity multiplet is as yet unknown. Another attitude is to say that the solitonic
branes ‘see’ a different so-called ‘dual doubled geometry’ which is different from
the ‘doubled’ geometry sensed by the fundamental branes or the standard geometry
as viewed by the D-branes. In some sense, the generalized KK-monopoles represent
information about this dual doubled geometry.

The pattern that arises is that each type of brane, depending on the scaling of
the brane tension with the string coupling constant, sees a different geometry. For
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instance, the ten-dimensional Type IIB string theory has only one brane with a tension
that scales with T ∼ 1/g3

s . This is the S-dual of the D7-brane. Clearly, this type
of brane is highly non-perturbative and therefore difficult to study with the usual
string theory techniques that one can use for the Dirichlet branes. Nevertheless, IIB
supergravity suggests that this type of ‘exotic’ branes do exist. We find that, in order
to explain the number of ‘exotic’ α = −3 branes in lower dimensions that follows
from our classification (see the red entries in the last column, forth and fifth row of
Table 3.1) we need to impose the following new wrapping rule:

TS ∼ 1/g3
s :

{
wrapped ∗ doubled,
unwrapped ∗ doubled.

(3.14)

We call the new geometry defined by these wrapping rules ‘exotic geometry’. Like
in the previous cases the realization of this wrapping rule requires the input of new
objects. How to precisely define these new objects within string theory is not clear
but one could think about them as ‘generalized’ KK monopoles with less than three
transverse and/or more than one isometry direction.

The only other type of brane that exists within ten-dimensional string theory is a
space-filling brane whose tension scales as T ∼ 1/g4

s . It is the S-dual of the D9-brane.
Space-filling branes are a bit special in the sense that they can only wrap to give a
space-filling brane in lower dimensions. As we reviewed in the previous sections, the
field that contains the (D − 1)-brane that comes from the wrapping of this brane is
the D-form F+

D,A1...Ad
, and from the light-cone rule (or the longest-weight rule) one

obtains 2d−1 branes in D dimensions. To explain this number from the wrapping of
the S-dual D9-brane we need to impose the following wrapping rule:

TSF ∼ 1/g4
s : wrapped ∗ doubled. (3.15)

Since these branes can only wrap, one cannot tell whether they see a doubled geom-
etry or an exotic geometry.

Based upon the above wrapping rules we conclude that the different branes of
ten-dimensional string theory see the following kind of geometries:

fundamental branes: doubled geometry
Dirichlet branes: standard geometry
solitonic branes: dual doubled geometry
exotic branes: exotic geometry.

This is not yet the end of the story. Starting from D = 7, there are additional
α = −4 branes apart from those associated to the potential F+

D,A1...Ad
. More gener-

ally, maximal supergravity in lower dimensions suggests the existence of branes with
α < −4. Clearly, all such branes can never result from the reduction of any brane in
ten dimensions. They should either follow from the reduction of new objects within
string theory or result as the effect of a new kind of geometry. Clearly, the last word
has not been said on this issue.
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3.6 Conclusions

We have classified the half-supersymmetric branes of maximal supergravity by
investigating the worldvolume WZ term that describes the coupling of the supergrav-
ity potentials to these branes. By requiring that a gauge-invariant WZ term could be
constructed involving only worldvolume fields that fit into a half-maximally super-
symmetric matter multiplet we were able to classify the branes. The worldvolume
content of these branes is either a vector multiplet or a 6-dimensional (self-dual) ten-
sor multiplet. We call such branes vector branes and tensor 5-branes, respectively.
Note that for branes with a low-dimensional world-volume, such as membranes and
strings, the vector multiplet becomes equivalent to a scalar multiplet.1 The dynam-
ics of vector branes is governed by a Dirac-Born-Infeld/Volkov-Akulov (DBI-VA)
action. Such vector branes have recently been considered in discussions on the quan-
tum properties of 4D supergravity theories [20].

The investigation of the WZ term led to two simple, equivalent, rules that specify
the number of half-supersymmetric branes. The first, so-called ‘light-cone rule’,
is based on decomposing the SO(d, d) indices into its light-cone directions. The
second, so-called ‘longest-weight rule’, states that the light-cone rule is equivalent
to the group-theoretical rule that the half-supersymmetric branes correspond to the
longest weights of the T-duality representation in which the supergravity potentials
transform. We have not commented on the role of the next-to-longest weights etc.
They are related to bound states of half-supersymmetric branes. These states, unlike
bound states of standard branes, can be 1/2-supersymmetric threshold bound states
[18, 26].

We showed that vector branes not only occur in maximal supergravity but also in
supergravity theories with less supersymmetry. In particular, we investigated the case
of half-maximal supergravity. The difference with the maximal case is that the vector
branes of half-maximal supergravity are more non-perturbative in the sense that they
have a lower value of α. We gave an example of a 6D domain wall, i.e. a V4-brane,
with a solitonic string ending on it. This solves a puzzle which we formulated as a
question in Sect. 3.4.

Having classified the branes we went on to investigate the way in which the branes
in different dimensions are related to each other by dimensional reduction. This led us
to consider the introduction of several wrapping rules, one set of rules for each brane
with a given brane tension scaling α for α = 0,−1,−2,−3,−4. These wrapping
rules can be found in (3.11), (3.10), (3.13), (3.14) and (3.15), respectively. In some
cases, the origin of the doubling in the wrapping rules is understood. They come from
pp-waves and KK monopoles that upon reduction give rise to additional branes. But
this is not enough. In order to explain the doubling in all cases something new is
needed. Here there are two different points of view. Either one introduces new objects
in string theory. We called them ‘generalized KK monopoles’ but the precise status
of these monopoles in string theory is not clear. They seem to be related to the issue
whether mixed-symmetry tensors can be introduced in supergravity. Another point

1 In 3D a vector is dual to a scalar, whereas in 2D a vector is equivalent to an integration constant.
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of view is to say that the extra branes result from a new geometry that is described by
the brane wrapping rules. This is more in line with the doubled geometry proposal
that can be used to explain the wrapping rules of the fundamental branes.

We did not discuss several other interesting brane properties that follow from our
methods. For instance, our techniques allow to determine the BPS conditions of the
branes and their relation to the central charges in the supersymmetry algebra.2 Again,
we find here an important distinction between the standard and non-standard branes.
Whereas for the standard branes each brane has its own BPS condition, in the case
of non-standard branes the same BPS condition can be satisfied by several branes.
We have calculated the degeneracies of each BPS condition [18]. Apart from this,
one may also study brane orbits and multi-charge configurations [9, 18].3

It remains to be seen what the precise role is of the non-standard branes we
discussed. Recently, is has been argued that in particular the defect branes play a role
in describing the microscopic degrees of freedom of black holes [30] and that they
are related to non-geometric Q-fluxes [31].

Our methods may be generalized and applied to study the half-supersymmetric
branes of supergravities with less supersymmetry. The branes of half-supersymme-
tric supergravity have already been studied [32]. We hope to report on the half-
supersymmetric branes of a quarter-supersymmetric supergravity shortly [33].

Finally, we hope that all this new information on branes will lead to a better
understanding of their role in string theory and, most importantly, of the geometry
underlying string theory.
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Chapter 4
Pure Spinor Superfields: An Overview

Martin Cederwall

Maximally supersymmetric theories do not allow off-shell superspace formula-
tions with traditional superfields containing a finite set of auxiliary fields. It has
become clear that off-shell supersymmetric action formulations of such models can
be achieved by the introduction of pure spinors. In this talk, an overview of this
formalism is given, with emphasis on D = 10 super-Yang–Mills theory and D = 11
supergravity. This a somewhat expanded version of a talk presented at the workshop
“Breaking of supersymmetry and ultraviolet divergences in extended supergravity”
(BUDS), Laboratori Nazionali di Frascati, March 25–28, 2013.

4.1 Introduction

The search for formalisms treating maximally supersymmetric models in a “covari-
ant” way—covariance here taken in the sense of manifestly exhibiting Lorentz sym-
metry as well as the full supersymmetry—has a long history. To a large extent it has
been pursued in terms of first-quantised particle (or string) theories, with the purpose
of then applying second quantisation to obtain a covariant field theory. Let us remind
how the problem arises, first in a particle or string theory, and then in field theory.

The Brink–Schwarz superparticle [1, 2], where the fermions are Lorentz spinors,
exhibits a problematicmixture offirst and second class constraints, as does theGreen–
Schwarz superstring [3]. That thismust be the case is realised already from a counting
of the fermionic degrees of freedom describing massless supermultiplets, i.e., from
the 1/2-BPS property of a massless (short) supermultiplet. There is half a spinor of
first class constraint and half a spinor of second class constraints [4–6], and these can
not be separated in a Lorentz-covariant manner. The first class constraints generate
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the so called α-symmetry [4]. Some attempts to a direct covariant treatment of the
α-symmetry have appeared (see e.g. [7, 8]), but most of the proposed solutions to
the problem have involved drastic changes of variables, such as twistor [9] methods.

Supertwistors solve the problem of covariant quantisation of superparticles in
3, 4, 6 and 10 dimensions [10–15], and make manifest not only super-Poincaré
but the whole superconformal symmetry (except, of course in D = 10). We
mention the supertwistor track here partly since it has similarities with our main
focus of attention, pure spinors, in that both twistors and pure spinors are bosonic
spinors (i.e., of “wrong” statistics), and partly since twistor methods (of a differ-
ent flavor) have been of revived interest later and used for amplitude calculations
[16–22]. Some works seems to point towards a deeper relation between pure spinors
and twistors [23]. It should be mentioned that, although some attempts have been
made [24, 25], twistor transform methods seem less powerful in string theory than
in particle theory, due to the massive spectrum.

The corresponding problem is of course seen also in field theory. There, the natural
way of manifesting supersymmetry is to use superfields, that depend not only on the
bosonic coordinates xm , but also on some fermions νμ, that together form a (Wess–
Zumino) superspace [26]. If the field theory in question is a gauge theory [27],
the superfield formulation will be a gauge theory on superspace [28–32], and if it
contains gravity [33–37], it will be described as superspace geometry [26, 37–44].
In both cases, the maximally supersymmetric models (which means 16 supercharges
for super-Yang–Mills theory (SYM) and 32 for supergravity (SG)) only have on-
shell formulations in superspace. This can be stated in a couple of equivalent ways.
The supersymmetry transformations close only modulo the equations of motion. In
a component formalism, there is no set of auxiliary (non-dynamical) fields, that can
be added so that the bosonic and fermionic numbers of fields agree off-shell and fill a
representation of supersymmetry. We will come back to the superspace formulations
of some maximally supersymmetric models later, and examine them in more detail,
because it is precisely the traditional superspace theories that form the basis of the
pure spinor superfield formalism.

Pure spinors are interesting objects from a mathematical point of view. The orig-
inal definition by E. Cartan [45, 46] is valid in even dimensions. A Cartan pure
spinor is a spinor annihilated by half-dimensional isotropic (light-like) subspace. If
the dimension is D = 2n, then this can be expressed as ϕ+i ψ = 0, i = 1, . . . , n, for
a suitable choice of basis (depending on the pure spinor ψ). Here, we think of the
signature of space-time as split. For euclidean signature, take the ϕ-matrices with
holomorphic indices. Modulo a complex scale, the pure spinor space is isomorphic
to the space of isotropic n-planes, which is SO(2n)/U (n). This condition can be
translated into certain bilinear conditions on the spinor. The first case where the pure
spinor condition is non-trivial is n = 4. Up to n = 6, the pure spinors form the
only non-trivial orbit of the rotation group in between the full orbit of unconstrained
spinors and the trivial orbit of 0, but for higher n there are more orbits [47–49], of
which the pure spinor is the most constrained.
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The “pure spinors” we will use sometimes coincide with Cartan pure spinors,
sometimes not. The canonical example of D = 10 SYM is an example where they
are identical. The important and defining property, that we will give a geometric
interpretation, is a bilinear identity (ψϕaψ) = 0, which in D = 10 coincides with
the constraint on a Cartan pure spinor. Even if Cartan pure spinors are uninteresting
in D < 8, we will encounter non-trivial “pure spinor” constraints e.g. in D = 6 and
D = 3, essentially due to the presence of R-symmetry. We will also use the bilinear
constraint in odd dimensions, notably D = 11.

We are mainly concerned with field theories, including supergravity, and will not
say much about the use of pure spinors in superstring theory. From investigations
of the superspace formulation of maximally supersymmetric theories, it was early
recognised that pure spinors might have a rôle to play in an off-shell formulation
[50–52]. The discovery of the precise rôle of pure spinors came from two independent
(but in retrospect clearly related) lines of research. One, the covariant quantisation
of the superstring, provided a valid set of ghost variables for a covariant superstring,
and thereby also for its massless sector [53, 54]. The other was the systematic search
for higher-derivative terms in maximally supersymmetric theories, where revisiting
the structure of the superspace constraints revealed a cohomological structure of the
deformations [55–57], which later was realised to be equivalent to that of the pure
spinor BRST operator. The latter formalism led to results on deformations of SYM
[55, 58, 59] (e.g. the full form of the terms related to F4) as well as SG [60–65]
models.

Pure spinor superfield models have been given for SYM [54, 55, 58, 59, 66–68]
for D = 11 supergravity [69, 70] and for D = 3 superconformal models [71–73].
It is quite clear that the method applies to any maximally supersymmetric model that
does not contain selfdual fields.

Thewide breakthrough of the use of pure spinors in connectionwith supersymme-
try came with the realisation of Berkovits that they provide a good set of variables for
covariant quantisation of the superstring [53, 74, 75]. The formalism has been exten-
sively used in superstring theory, see e.g. [76–99]. Applications to supermembrane
theory have also been attempted, but with less clear results [100–102].

This presentation takes its starting point in the traditional superspace formulation
of supersymmetric field theories. In Sect. 4.2 we explain why the basics of the pure
spinor superfield formalism is (almost) inherent in the superspace formalism. We
derive the BRST operator of the linearised models. Section 4.3 deals with the calcu-
lation of the field content, i.e., the BRST cohomology, which is illustrated with some
examples. In order to formulate actions, a measure is needed, which is developed
in Sect. 4.4, based on the “non-minimal” variables of Berkovits. Section 4.5 gives
the field–antifield machinery needed in order to formulate consistent interactions.
The following sections deal with gauge fixing, necessary for quantum calculations,
and with an application: to find higher-derivative terms. Finally, in Sect. 4.8 some
(hopefully) interesting open questions and possible developments are mentioned.
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4.2 Pure Spinors from Superspace

We denote bosonic and fermionic indices in coordinate basis (“curved indices”) by
M, N . . . = (m, n, . . . ;μ, λ, . . .) and in Lorentz basis (“flat indices”) by A, B, . . . =
(a, b, . . . ;ε,ρ, . . .). Wess–Zumino superspace has a torsion

Tερ
a = 2ϕa

ερ (4.1)

(there might be slight formal variations on this expression, e.g. when there is some
R-symmetry in case of extended supersymmetry, butwith a liberal interpretation (4.1)
is always true). Note that we always express components in Lorentz indices, since
fermionic directions otherwise can not be seen as spinors. This is typically the only
non-vanishing torsion component at dimension zero (in on-shell theories), dimension
here being defined so that a bosonic derivative has dimension 1 and a fermionic 1

2 .
In flat superspace, this statement amounts to the anticommutator between fermionic
covariant derivatives being

{Dε, Dρ} = −Tερ
aσa = −2ϕa

ερσa . (4.2)

In flat space, these are the ordinary derivatives

Dε = σ

σνε
− (

ϕaν
)
ε

σa , (4.3)

which anticommute with the global supersymmetry generators (superspace Killing
vectors)

Qε = σ

σνε
+ (ϕaν)εσa . (4.4)

Some special possible rôle of pure spinors can be seen already here. Suppose that
ψ is pure (in the sense mentioned in the introduction), i.e., that

(ψϕaψ) = 0 . (4.5)

If one forms the scalar fermionic operator

Q = ψε Dε , (4.6)

it becomes immediately clear from (4.1) and (4.5) that

Q2 = 0 . (4.7)

It is possible to think of Q as a BRST operator, and examine its cohomology. This
cohomologywill be non-trivial due to the pure spinor constraint. This will actually be
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the BRST operator used in the (minimal) pure spinor formalism, and its cohomology
will consist of the physical states.

In order to understand why this happens, and why it indeed is little more than
a reformulation of the traditional superspace formalism, it is suitable to reexamine
the canonical example, D = 10 SYM (the procedure describes equally well its
dimensional reductions) [31, 50]. For simplicity, we will use an abelian field.

Note that we aim at going directly to the field theory, without passing via a
first-quantised superparticle model. The BRST operator (4.6) is not obtained as the
BRST operator for some local symmetry on the world-line of a superparticle, but
postulated more or less ad hoc. It will soon bemotivated from superspace arguments,
though. Some work has been done on showing the equivalence of the first-quantised
superparticle or string with the formulation based on Q [103–105]. We take a more
pragmatic point of view—if the correct field theories are produced we are happy
with that.

4.2.1 SYM

We work in D = 10, where a chiral spinor has 16 components. The theory starts
from a gauge theory on superspace [31, 50]. This means that the connection 1-form
a priori is completely general,

A = E A AA = Ea Aa(x, ν) + Eε Aε(x, ν) (4.8)

(where E A = d Z M EM
A is the superspace vielbein). In order to reduce the very large

number of component fields, some constraintsmust be imposed. One such constraint,
which goes under the name of conventional constraint, completely expresses the
superfield Aa in terms of Aε. This is desirable, since there is another component
1-form at level ν in Aε, and only one in the physical theory. The conventional
constraint is formulated in terms of the field strength, in order not to destroy gauge
symmetry, and reads (in the abelian case)

ϕερ
a Fερ = 0 . (4.9)

Since this part of F is expressed as

Fερ = 2D(ε Aρ) + Tερ
a Aa , (4.10)

the conventional constraint does exactly what it is supposed to. Then, one is left with
Aε, the lowest-dimensional superfield.

In order to take the fields on-shell the remaining part of Fερ is also set to zero. This
is a selfdual 5-form. We will not exhibit the detailed calculation here, but contend
ourselves with the well known statement the setting the dimension-0 field strength
to zero gives the equations of motion for the component fields. These sit in the
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superfield at order ν (the gauge connection) and ν2 (the fermion) (and of course
also at higher orders if they contain non-zero modes). Traditionally, to keep gauge
invariance manifest, the superfield Aa is not actually eliminated. Instead one uses the
Bianchi identities for the superspace field strength F , which will give the equations
of motions once Fερ = 0. This is not the path taken here. Instead we leave Aa

completely aside and focus on Aε.
We can then observe that the conditions imposed are exactly those implied by

demanding that a field Θ = ψε Aε(x, ν) is annihilated by the BRST operator
Q = ψε Dε. The fermionic covariant derivative acts on the superfield Aρ , and the
bilinear in ψ contains only the 5-form part, due to the pure spinor condition. In addi-
tion, gauge invariance is implemented as γΩΘ = QΩ (that this is true for the the
bosonic connection at level ν of course requires a small calculation), which makes
clear that the cohomology of Q describes precisely the on-shell physical fields. The
cohomology will be examined to greater generality in the following section.

Expanding out the ψ-dependence of the field Θ , we thus have an infinite set of
superfields,

Θ (x, ν,ψ) =
→∑

n=0

ψε1 . . . ψεn Aε1...εn (x, ν) . (4.11)

In order for Q = ψD to behave as a BRST operator, it is natural to assign a ghost
number 1 to ψ. We have already mentioned that the cohomology of Q at order ψ
reproduces the gauge connection and the fermion, subject to their linearised equations
of motion (the remaining cohomology will be left for Sect. 4.3). The field Θ then
also carries ghost number 1, so that the physical fields have ghost number 0.

Already at this point we see that relaxing the equations of motion is equivalent
to relaxing the condition QΘ = 0. If a suitable integration measure is found, a true
off-shell formulation could be provided by an action of the type S ∼ ∫

Θ QΘ +· · · ,
which will be the objective of Sects. 4.4 and 4.5.

4.2.2 SG

What will be said in this section will apply to D = 11 supergravity, and its dimen-
sional reductions.

A spinor in D = 11 has 32 components. The symmetric spinor bilinears are a
1-form, a 2-form and a 5-form. In addition to the metric field, D = 11 SG also
contains a 3-form potential C with 4-form field strength H = dC and a gravitino.
The component action for the bosonic fields,

S = 1

2α2

(∫
d11x

(
R − 1

48
H2

)
+ 1

6

∫
C ♥ H ♥ H

)
, (4.12)

contains a Chern–Simons term for C .
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There are twowaysof approaching the superspace constructionof the supergravity.
The first one is via the actual supergeometry, examined in [41, 42, 60–62, 106]. Here
one starts with the vielbein on superspace EM

A together with a Lorentz algebra-
valued connection ΔM . Just like in the case of gauge theory, all the superfields
except the one of lowest dimension, Eμ

a , are effectively eliminated as indepen-
dent degrees of freedom via conventional constraints [62, 107, 108]. This is slightly
more involved than in the SYM case, and we refer to [62] for a complete treatment.
Essentially, by formulating constraints on the superspace torsion,

T A = d E A + E B ♥ ΔB
A , (4.13)

all connection superfields and all of the vielbein become expressible in Eμ
a . The

conventional constraints reduce the possible dimension-0 torsion T a
ερ (apart from

the standard part 2ϕa
ερ) to the irreducible modules

♦ , (4.14)

where the 2 or 5 antisymmetrised indices come from the contraction of the two spinor
indices with ϕab or ϕabcde.

Like in SYM, the standard procedure for deriving the full equations of motion
is not to actually solve for the vielbein and spin connection superfields, but to use
torsion Bianchi identities [39],

DT A = E B ♥ RB
A , (4.15)

to obtain the equations of motion without giving up any manifest gauge invariance.
Suppose we now want to interpret this, at the linearised level, in terms of pure

spinors. Then we again leave all the superfield except the lowest-dimensional one
out. After converting the form index on Eμ

a to a flat spinor index, we have a field
∂ε

a . It is actually only its ϕ-traceless part that is not eliminated by conventional
constraints. Note that the spinor bilinears appearing above in the torsion Tερ

a after
conventional constraints have been used, the 2-form and and 5-form, are exactly
those which are non-vanishing for a pure spinor. It looks reasonable to think of
the linearised superfield ∂ε

a as appearing at order ψ in a pure spinor superfield
Γa(x, ν,ψ). The linearised equations of motion then come from QΓa = 0. There is
only a small ingredient missing here, namely that ∂ε

a is ϕ-traceless, as are the two
torsion modules. This is achieved by declaring an equivalence relation

Γa ♣ Γa + (ψϕaδ) . (4.16)

We call this type of equivalence relation a “shift symmetry” [69–72, 109], and we
will come back to its rôle in the following sections.
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The other way of obtaining the linearised equations of motion is from the 3-form
C , which extends to a 3-form on superspace. This method has not traditionally been
used alone as a formulation of supergravity, since the geometry (via the torsion)
will enter its Bianchi identities. Nevertheless, at the linearised level this produces
all the supergravity fields, without involving superspace geometry; this will be made
clear in Sect. 4.3. Without going into details about conventional constraints, it is
again the lowest-dimensional superfield that is relevant. This is Cερϕ , of dimension
− 3

2 , and actually only the irreducible modules consisting of ϕ-traceless 2-form- and
5-form-spinors. These modules fit perfectly in the expansion of a scalar pure spinor
superfield Θ (x, ν,ψ) to third order in ψ,

Θ = · · · + 1

6
ψεψρψϕCερϕ + · · · (4.17)

The linearised supergravity equations of motion come from demanding that

Hερϕγ

∣∣∣∣ ♦ ♦ = 0 , (4.18)

which is equivalent to the condition

QΘ = 0 , (4.19)

since these three irreduciblemodules are precisely the ones occurring in aquadrilinear
of a pure spinor.

4.2.3 Summary

We have seen, in the two main examples of D = 10 SYM and D = 11 SG, that
the linearised equations of motion (and gauge symmetries) are reproduced precisely
by considering the physical fields as part of a pure spinor superfield with appropri-
ate properties annihilated by the pure spinor BRST operator Q = ψD. The price
paid for this is that interactions are (for the moment) ignored, and that only some
lowest-dimensional superfield is considered. This also means that gauge symmetry
(including diffeomorphisms and local supersymmetry in the SG case) are not kept
“manifest” or “geometrical”. We will comment more on this issue when interactions
are introduced, in Sect. 4.5.2.

4.3 Cohomology

In this section, we will take a closer look at the cohomology of the BRST operator
in the two examples of Sect. 4.2 and some other models. The statements about it
reproducing the fields of the models in question will be made more precise, and
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some interesting structure pointing forward to a field–antifield formalism will be
pointed out.

Notice that if ψ had been unconstrained (and there was no shift symmetry, for the
case of non-scalar fields), the cohomology had been trivial. It is the pure spinor prop-
erty of ψ that gives room for some interesting cohomology. Consider, for example, a
scalar pure spinor superfield Θ (x, ν,ψ), and let us for the moment forget about the
x-dependence. A field Θ = (ψϕaν)Aa represents cohomology: acting with Q gives

Q · (ψϕaν)Aa = (ψ
σ

σν
) · (ψϕaν)Aa = (ψϕaψ)Aa = 0 , (4.20)

and it is also obvious that such a field can not be written as a Q-exact expression. In
the SYM case, this cohomology is precisely the zero mode of the gauge connection.
Obviously, Θ should be taken to be fermionic.

It is clear that the algebraic properties of the pure spinor ψ play a decisive rôle
for determining the cohomology. Indeed, as we will see in the following sections, a
partition function for the pure spinor contains essentially all information needed to
determine the full cohomology.

We have seen one example above of an element of the cohomology of a scalar
superfield, the zero mode of the gauge connection. We also argued in Sect. 4.2.1 that
the cohomology at order ψ precisely reproduces the fields of D = 10 SYM, subject
to the linearised equations of motion. What is the general cohomology? One more
example is the constant field,Θ = c. This is a cohomology of ghost number 1 (given
the ghost number assignment of Sect. 4.2.1), and given the gauge transformation of
Θ it is natural to identify it as the ghost for the gauge symmetry.

Both these examples concern zero mode cohomology, i.e., elements of coho-
mology independent of the coordinates x . It turns out to be very instructive to first
consider general zero mode cohomology. Not only is it much easier to calculate,
since it is a purely algebraic problem (the operator Q reduces to ψε σ

σνε ), it will also
give all essential information concerning the full cohomology. Namely, consider a
zero mode cohomology of Θ at order ψpνq . Such a cohomology will have ghost
number gh#(Θ ) − p and dimension dim(Θ ) + 1

2 (p + q). If then x-dependence is
introduced, how will the corresponding cohomology behave? The only possibility is
to have some field in the same module as the zero mode, but subject to some differ-
ential equation, an equation of motion. This equation of motion must in turn have
support in the zero mode cohomology. This means that the zero mode cohomology
can be used to read off the possible full cohomology. If there is also a zero mode
cohomology at ψp+1νq+2n−1 (i.e., at ghost number gh#(Θ ) − p − 1 and dimension
dim(Θ )+ 1

2 (p + q)+ n), a field ∂(x) in some module determined by the zero mode
cohomology at ψpνq can be subject to a (linearised) equation of motion of the form
σn∂ = 0, given that the modules of the two zero mode cohomologies match. The
corresponding x-dependent cohomology will of course take the generic form

Θ ∼ ψp(νq∂ + νq+2σ∂ + νq+4σ2∂ + · · · ) . (4.21)
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4.3.1 SYM

As mentioned, the algebraic problem of calculating the zero mode cohomology can
be used to gain information about the full cohomology [54, 57, 110]. The problem
can be solved by computer methods [57] or algebraically [111]. For the field Θ of
ghost number 1 and dimension 0, the result may be summarised in Table 4.1, where
the horizontal direction is the expansion in ψ (i.e., decreasing ghost number of the
component fields) and the vertical is the expansion in ν (i.e., increasing dimension
within each superfield). The expansion of the superfields in ν has been shifted, so
that components on the same horizontal level have the same dimension. Themodules
have been labeled by the Dynkin labels of the Lorentz group Spin(1, 9). As already
discussed we see the gauge ghost at ψ0 and the physical fields (gauge connection Aa

and spinor φε) at ψ1. In addition there are cohomologies at ψ2 and ψ3. The ones at
ψ2 indicate, according to the discussion above, that the physical fields are subject to
equations of motion. Their interpretation as components of the fieldΘ is as antifields
A√a and φ√

ε, fields of ghost number −1 with the same dimensions as the equations
of motion. The singlet at ψ3ν5 is the ghost antifield c√. Its presence in cohomology
in turn implies the divergencelessness of the on-shell antifield, corresponding to
conservation of the gauge current. This is then strong evidence that using a pure spinor
to go off shell implies introducing aBatalin–Vilkovisky field–antifield structure. This
will be formalised in detail in Sect. 4.5.

As argued in the beginning of the present section, there is a more direct way of
deducing the zero mode cohomology (and thereby the full cohomology) from the
partition function for a pure spinor. Consider the expansion of a function f (ψ) in a
power series expansion in ψ, just as we have done for the pure spinor superfield. The
pure spinor ψ itself is in the module (00001), and the pure spinor constraint ensures
that only the module (0000n) occurs at ψn . Therefore, the component fields in the
expansion will come in the conjugate module Rn = (000n0). A formal partition
function [111–113] containing all information about the expansion is

P(t) =
→⊕

n=0

Rntn =
→⊕

n=0

(000n0)tn . (4.22)

A less refined partition function is one that only counts the dimensions of themodules,
i.e.,

P(t) =
→∑

n=0
dim(000n0)tn =

→∑
n=0

1
10

(n+7
7

)(n+5
3

)
tn

= (1 − t)−11(1 + t)(1 + 4t + t2)
= (1 − t)−16(1 − 10t2 + 16t3 − 16t5 + 10t6 − t8) .

(4.23)

Various information can be collected here. The next to last line indicates that the
number of degrees of a pure spinor in D = 10 is 11 (more on this in Sect. 4.4).
The last line (where the factor (1 − t)−16 represents the partition function of an
unconstrained spinor) is where the zero mode cohomology can be read off: note
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Table 4.1 The zero mode cohomology in Θ for D = 10 super-Yang–Mills theory

dim gh#
1 0 −1 −2 −3

0 (00000)
1

2
• •

1 • (10000) •
3

2
• (00001) • •

2 • • • • •
5

2
• • (00010) • •

3 • • (10000) • •
7

2
• • • • •

4 • • • (00000) •
9

2
• • • • •

The horizontal direction represents the expansion of the superfield in terms of ψ whereas the cor-
responding for the vertical (in each row) is ν (downward). The irreducible representations of the
component fields are listed at the positions which describe their ghost numbers and dimensions

the agreement between the numbers in the polynomial 1 − 10t2 + 16t3 − 16t5 +
10t6 − t8 and the dimensions of the modules in Table 4.1. In addition, the signs
of the monomials indicate the bosonic (plus) or fermionic (minus) character of the
cohomologies (remember that Θ is fermionic, so all signs change). This property
is of course expressible also in the more refined partitionP , which can be shown to
be

P(t) =
( →⊕

k=0

∗k(00010)tk

)

⊂ (
(00000) ♦ (10000)(−t2) ♦ (00001)t3

♦ (00010)(−t5) ♦ (10000)t6 ♦ (00000)(−t8)
)

, (4.24)

where ∗ denotes the symmetric product, and the first line is the refined partition
function for an unconstrained spinor. This unconstrained factor can formally be
written as (1 − t)−(00010), see [114], where the pure spinor partition function is
related to a certain Borcherds algebra.
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4.3.2 Supergravity

The analogous procedure can be performed for D = 11 supergravity, and the result-
ing zero mode cohomologies [57] are listed in Table 4.2. This list is based on the
cohomologies in a scalar superfield of ghost number 3 and dimension −3, i.e., the
field Θ of Sect. 4.2.2, based on the superspace 3-form. This field must indeed be
taken as the basic field of D = 11 supergravity, since the “geometric field” Γa does
not exhibit the gauge invariance of the C-field—only the field strength H appears in
the torsion—so one can not hope to reproduce the Chern–Simons term of the action
of (4.12) from Γa alone (although the equations of motion are reproducible, one of
them being the Bianchi identity for H ). We will not bother to write down the detailed
partition function for the D = 11 pure spinor [111]; the relation to the cohomology
is completely analogous to the case of SYM.

The reason for Θ having ghost number −3 is now obvious; the lowest coho-
mology represents the ghost for ghost for ghost of the the twice reducible gauge
transformations of the 3-form field. Consequently, the “highest” cohomology, the
corresponding antifield, is a scalar at ψ7ν9. The content of Table 4.2 verifies that
indeed all degrees of freedom of the supergravity are present at ψ3, also the gravi-
tational ones (and even some without local degrees of freedom, related to the Weyl
invariance of [106]). We also note the presence of ghosts for diffeomorphisms and
local supersymmetry, appearing alongside the ghost for tensor gauge transformations
at ψ2. As in the SYM case, the zero mode cohomology (and the partition function)
is completely symmetric with respect to exchange of fields and antifields.

4.3.3 Other Models

The method may be extended to other models. Specifically, it has been used
[71–73] for superconformal models in D = 3: the N = 8 Bagger–Lambert–
Gustavsson (BLG) [115–117] and N = 6 Aharony–Bergman–Jafferis–Maldacena
(ABJM) [118] models. Here the Chern–Simons connection comes in one (scalar)
pure spinor superfield, and the matter multiplets in another, which, in the absence of
ghosts, comes in the same module as the scalar fields, subject to a shift symmetry.
We refer to the papers [71–73] for details.

We can also note that models containing selfdual fields follow part of the pattern.
Take for example the N = (2, 0) tensor multiplet in D = 6. Without exhibiting
the details [57] here, we note that the correct cohomologies for fields and ghosts are
produced.When it comes to “antifields”, however, the pattern is broken. The equation
of motion for the tensor field is the selfduality of its field strength, and there is no
symmetry between fields and antifields in the cohomology. Therefore, equations of
motion QΘ = 0 are meaningful, but the construction of an action along the lines of
Sect. 4.5 becomes obstructed.
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Table 4.2 The zero mode cohomology in Θ for D = 11 supergravity

dim gh#
3 2 1 0 −1 −2 −3 −4 −5

−3 (00000)

−5

2
• •

−2 • (10000) •

−3

2
• • • •

−1 • • (01000) • •
(10000)

−1

2
• • (00001) • • •

0 • • • (00000) • • •
(00100)
(20000)

1

2
• • • (00001) • • • •

(10001)

1 • • • • • • • • •
3

2
• • • • (00001) • • • •

(10001)

2 • • • • (00000) • • • •
(00100)
(20000)

5

2
• • • • • (00001) • • •

3 • • • • • (01000) • • •
(10000)

7

2
• • • • • • • • •

4 • • • • • • (10000) • •
9

2
• • • • • • • • •

5 • • • • • • • (00000) •
11

2
• • • • • • • • •
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Table 4.3 The zero mode cohomology in Θ for D = 6 N = (1, 0) super-Yang–Mills theory

dim gh#
1 0 −1

0 (000)(0)
1

2
• •

1 • (100)(0) •
3

2
• (001)(1) •

2 • (000)(2) •
5

2
• • •

4.3.4 Less than Maximal Supersymmetry

The procedure sketched here is not unique for maximally supersymmetric models,
although it is there that it seems to have its highest potential. What happens if the
method is attempted for a theory with less than maximal supersymmetry? If the pure
spinors are appropriately chosen, the traditional superspace formulation should be
reproduced also here. This is indeed the case. If such a superspace formulation results
in an off-shell supermultiplet including auxiliary fields, this also happens in the pure
spinor formulation. The result, then, will be a cohomology without the antifields,
since we have argued that the presence of antifield cohomology is what puts the
physical fields on shell.

This can be illustrated by N = (1, 0) SYM in D = 6 [119]. There is an SU (2) R-
symmetry, andwith standard assignment ofDynkin labels for Spin(1, 5)×SU (2)we
letψε transform in themodule (001)(1).With the pure spinor constraint (ψϕaψ) = 0,
the only remaining spinor bilinear is the SU (2) triplet selfdual 3-form (002)(2). Note
that such a pure spinor is non-trivially constrained, unlike a Cartan pure spinor in
D = 6, which has no R-symmetry. The superfields in the ψ expansion of a scalar
pure spinor superfield Θ are fields Aε1...εn in (00n)(n). A direct calculation of the
zero mode cohomology, or equivalently, of the pure spinor partition function, gives
at hand that cohomology only occurs at ψ0 (the ghost) and ψ1 (the physical fields).
No higher cohomologies exist, and there is no room for equations of motion for
the physical fields. The cohomology is listed in Table 4.3, where it is clear that in
addition to the gauge connection and fermion field, the triplet of auxiliary fields also
appears.

Since all equations of motion follow from setting the auxiliary fields to zero, it
is natural that the antifields should occur as cohomology of a separate pure spinor
superfield of dimension 2 and ghost number −1 transforming as a triplet. This is
indeed the case. The antifields (or, the current multiplet) is described by a pure
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Table 4.4 The zero mode cohomology in Θ √I for the antifields of D = 6 N = (1, 0) super-Yang–
Mills theory

dim gh#
−1 −2 −3

2 (000)(2)
5

2
(010)(1) •

3 (100)(0) • •
7

2
• • •

4 • (000)(0) •
9

2
• • •

spinor superfield Θ √I , which has a shift symmetry of the form

Θ √I ♣ Θ √I + (ψκ I β) . (4.25)

The cohomology in Θ √ is the mirror of the one in Θ , and listed in Table 4.4.
The condition forΘ being on-must be separately formulated as another condition

s I Θ = 0, where s I is an operator with ghost number −1 and dimension 2, such that
s I Θ effectively starts out with the auxiliary field [119].

Similar considerations could be applied to other non-maximally supersymmetric
models. It has been used to check the multiplet structure of D = 3, N = 8 super-
gravity [120]. The cohomology (Cederwall, unpublished) of D = 10, N = 1 SG has
also been verified to agree with known results [122, 123].

4.4 Pure Spinor Space and Integration

As noted in Sect. 4.2.1, if a reasonable (non-degenerate) integrationmeasure [d Z ] (Z
denoting the ordinary superspace coordinates together with the pure spinor variables)
can be found, an action of the form

S = 1

2

∫
[d Z ]Θ QΘ + interactions (4.26)

will provide an off-shell formulation of the model in question, and a solution to
the problem of finding an action for maximally supersymmetric models. In view of
the discussion on cohomology of the previous section, such an action would be a
classical Batalin–Vilkovisky (field–antifield) action (see Sect. 4.5).
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A measure on the pure spinor space has to fulfil a number of requirements. First,
as already noted, it has to be non-degenerate in order that the variation of the action
actually implies the equations of motion QΘ = 0. In addition, and depending on
the model at hand, there are restrictions on the dimension and ghost number of the
integration.

For the case of D = 10 SYM, Θ has ghost number 1 and dimension 0. Therefore∫ [d Z ] needs to have have ghost number−3, and since 1
g2

∫
d10x d16ν has dimension

−4 + 1
2 × 16 = 4, “

∫ [dψ]” must have dimension 4. Correspondingly, in D = 11
SG, the pure spinor integration measure must contribute ghost number−7 and, since
the dimension of 1

α2

∫
d11x d32ν is −2 + 1

2 × 32 = 14 and that of Θ is −3, it also
must give dimension −8. In addition the measures should have the property that∫ [d Z ]QΩ = 0, so that BRST-trivial states have zero integral and partial integration
with respect to Q is possible.

The second thing to note is there are natural operations with precisely these quan-
tum numbers. If we check the highest ghost antifield cohomology, they come at ψ3ν5

and ψ7ν9, respectively. So, an “integration” that picks out the corresponding term
in the expansion of a pure spinor superfield would have (gh# , dim) = (−3, 4) and
(−7, 8) respectively, as desired. This is correct in spirit, but is still a degenerate
measure, since the expansion in ψ only contains positive powers. Some adjustment
is needed.

The solution to this problemwas provided, for D = 10 pure spinors, by Berkovits
[74] with the introduction of so called non-minimal variables. By the introduction
of another set of pure spinors called ψ̄ε and a spinor of fermionic variables rε which
is pure relative ψ̄, i.e., fulfilling (ψ̄ϕar) = 0, the measure could be made non-
degenerate. Non-minimal sets of variables are quite standard when it comes to field-
antifield quantisation, but the present ones are even more natural, even from a purely
geometric point of view. Namely, although solutions to the pure spinor constraints
are complex (unless one is in split signature), we have so far assumed that the fields
depend on ψ and not on ψ̄. Unless we have some kind of residue measure, it seems
more natural to integrate over the full complex variable (ψ, ψ̄). The interpretation
of the fermion rε is as the differential dψ̄ε (with the fermionic statistics coming
from the wedge product), which obviously satisfies (ψ̄ϕadψ̄) = 0 [80]. When more
variables are introduced, the BRST operator must be changed accordingly in order
to keep the cohomology intact. This is done by adding a term to Q:

Q = (ψD) +
(

r
σ

σψ̄

)
= Q0 +

(
dψ̄

σ

σψ̄

)
= Q0 + σ̄ , (4.27)

where σ̄ is the antiholomorphic exterior derivative, the Dolbeault operator. The
cohomology is unchanged, and any cohomology will have a representative that is
independent of ψ̄ and dψ̄.

A field Θ
(
x, ν;ψ, ψ̄, dψ̄

)
is then seen as an antiholomorphic form on pure spinor

space (meaning, it can depend on both ψ and ψ̄, but has only antiholomorphic indices,
seen as a tensor). A suitable assignment of quantum numbers for ψ̄ and dψ̄ is that
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ψ̄ has ghost number −1 and dimension 1
2 (the opposite to ψ), while dψ̄ has ghost

number 0 and dimension 1
2 (there is some irrelevant arbitrariness in the assignment,

as long as it comes out right for the BRST operator).
Suppose that the integration can be written as an integral of a form over the pure

spinor space. Since no fields contain dψ, the integration measure needs to contain
a top form Δ with the maximum number of holomorphic indices. In D = 10, this
number is 11 (see below). In order for partial integration of σ̄ to be allowed, this form
should in addition depend on ψ only, so that σ̄Δ = 0. We now try an expression for
the full integral over the non-minimal pure spinor variables,

∫
[dψ]X =

∫
Δ ♥ X . (4.28)

Again counting quantum numbers (for the D = 10 case), the ψ and ψ̄ integrals
cancel, while the r integration (“removal of d11ψ̄”) provides ghost number 0 and
dimension − 11

2 . In order to land at the desired quantum numbers for the integration,
ghost number −3 and dimension −4, the components of Δ must have ghost number
−3 and dimension 3

2 , which is accomplished by precisely three negative powers of ψ,

Δ ∼ ψ−3d11ψ (4.29)

(we leave it as a trivial exercise to show that the same applies to any assignment of
quantum numbers to ψ̄ and dψ̄ that respects the ones of Q, and that the assignments
for dψ are irrelevant).

The requirement that the holomorphic top formwith σ̄Δ exists is equivalent to the
existence of a Calabi–Yau structure on the pure spinor space, defined by Δ . There
is indeed a unique Spin(10)-invariant Calabi–Yau metric (up to a scale) on the pure
spinor space, following from the Kähler potential [124]

K (ψ, ψ̄) = (
ψψ̄

)8/11
. (4.30)

The pure spinor constraint may be solved in a basis where manifest Spin(10)
is broken to SU (5) × U (1). Then, 16 ∞ 1−5/2 ♦ 10−1/2 ♦ 5̄3/2, and a spinor is
represented by a 0-form Π, a 2-form Ω and a 4-form M . The pure spinor constraint
reads ΠM − 1

2Ω ♥ � = 0, so the 11 coordinates can be taken as Π and Ω in a patch
where Π ≤= 0. It is obvious that

Δ = Π−3dΠd10Ω (4.31)

has vanishing U (1) charge, and it can be checked that it is fully Spin(10)-invariant.
In [124], it was checked by explicit calculation that this is the Calabi–Yau top form
corresponding to theKähler potential (4.30). It can of course also be given a covariant
form. The expression

Δ ∼ (ψψ̄)−3ψ̄ε1 ψ̄ε2 ψ̄ε3�T ε1ε2ε3
ρ1...ρ11dψρ1 ♥ . . . ♥ dψρ11
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is indeed independent of ψ̄ [125] (which thus can be replaced by any constant spinor),
where the the tensor T is precisely what, after dualisation of the 11 antisymmetric
lower indices to 5 upper ones, defines the ghost antifield cohomology,

Θ ∼ Tε1ε2ε3,ρ1ρ2ρ3ρ4ρ5ψ
ε1ψε2ψε3νρ1νρ2νρ3νρ4νρ5

∼ (ψϕaν)(ψϕbν)(ψϕcν)(νϕabcν) .
(4.32)

This whole procedure may be repeated for the D = 11 pure spinors. The intro-
duction of non-minimal variables is completely analogous, as is the formulation of
the integration in terms of a Calabi–Yau top form. The dimension of the pure spinor
space is 23, which can be deduces from an explicit solution similar to the one for
D = 10. When Spin(11) ∞ SU (5) × U (1),

32 ∞ 1−5/2 ♦ 5−3/2 ♦ 10−1/2 ♦ 1̄01/2 ♦ 5̄3/2 ♦ 15/2 . (4.33)

A spinor is thus parametrised by an arbitrary form. If we write it as

ψ = Π ♦
5⊕

p=1

Ωp (4.34)

(Π being the 0-form, and the subscript p denoting form degree), the solution to the
pure spinor constraint is

Ω3 = Π−1Ω1 ♥ Ω2 + Σ,

Ω4 = Π−1(−Ω1 ♥ Ω3 + 1
2Ω2 ♥ Ω2),

Ω5 = Π−2Ω2 ♥ Ω3 − 1
2Ω1 ♥ Ω2 ♥ Ω2,

(4.35)

where Σ is a 3-from satisfying

ıvΣ ♥ Σ = 0 (4.36)

for all vectors v, i.e., ε jklmnΣi jkΣlmn = 0 [111, 126].
An important difference compared to the D = 10 pure spinors is that there is a sin-

gular locus away from the origin, where the 3-form Σ vanishes. It is straightforward
to see that then (ψϕabψ) = 0. This is the space of D = 12 Cartan pure spinors, a
16-dimensional space. The degrees of freedom contained in Σ consists, modulo a
scale, of the Grassmannian Gr(2, 5) = SU (5)

S(U (3)×U (2)) of 2-planes in 5-dimensions.
So the appearance of Σ provides 14 more real, or 7 complex dimensions, to make
a total of 23. A similar parametrisation of the solution of the constraint on Σ in
terms of modules of su(3) ♦ su(2) ♦ u(1), with s being the singlet, gives at hand
that the the measure, i.e., the holomorphic top form carries the factor Π−5s−2 [126],
and here is the ghost number −7 as announced. Again, the measure can be cast in
a Lorentz-covariant form, but we will not go into the details (see [69, 100, 127]).
The above reflects the fact that the top cohomology at ψ7ν9 contains 2 powers of



4 Pure Spinor Superfields: An Overview 79

Fig. 4.1 A rough sketch of the D = 10 and D = 11 pure spinor spaces, with their respective
singular subspaces marked

(ψϕ(2)ψ). The corresponding Kähler potential and metric have not been explicitly
constructed, but this should be straightforward.

We finally want to say a few words about integration and regularisation [74].
It was mentioned that the cohomology, also after the introduction of (ψ̄, dψ̄), has
representatives that are independent of these variables. In other words, they are
holomorphic functions (0-forms). How can integrals of (products of) such functions
give a non-vanishing result? One will always obtain 0, due the undersaturation of the
form degree (the fermionic variables). On the other hand, the polynomial behaviour
of the cohomologies at infinity gives →, if radial integration is performed first.
The integrals are ill-defined, of the form 0 × →. This can been remedied in two
(equivalent) ways. Either we note that the representatives in the minimal variables
are a bad choice, and change them into some BRST-equivalent representatives that
givewell-defined integrals, or we use aBRST-invariant regularisation of themeasure.
The same type of regulator, an expression of the form e−t{Q,φ}, works in both cases.
A standard choice for φ is φ = νεψ̄ε, giving a regulator

e−t ((ψψ̄)+(νdψ̄)) . (4.37)

If such a regulated measure (with t > 0) is used with the minimal representatives, we
see that it regulates the bosonic integrals at infinity. At the same time 11 (D = 10)
or 23 (D = 11) dψ̄’s are needed to saturate the form degree (fermionic integral),
and the corresponding term in the expansion of the exponential carries 11 (23) ν’s.
In order to saturate the ν integration, another 5 (9) are needed, and we see that this
agrees with picking out the top cohomology, as was the first, too naïve, candidate for
integration. It is thus no coincidence that the number of ν’s in the top cohomology
agrees with the number of independent constraints on a pure spinor (Fig. 4.1).

The regulated integrals will of course be independent of the parameter t . This
looks much like localisation—taking t to be very big localises the integral close to
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the origin. The dependence on the pure spinor variables is indeed “topological”, in
the sense that they do not provide new functional dependence, only a finite spectrum.
We have not seen any good way of making use of localisation. The origin is not a
regular point in pure spinor space, rather a boundary [128].

4.5 Batalin–Vilkovisky Formalism and Actions

We have seen in Sect. 4.3 that the content of the pure spinor superfields is not only the
physical fields, but also a full set of ghosts and antifields (at least for maximal super-
symmetry). This indicates that the proper framework for introducing interactions (so
far, everything has been at a linearised level) is the Batalin–Vilkovisky formalism
[129–131].

4.5.1 Field-Antifield Structure

The Batalin–Vilkovisky (BV) formalism can be thought of in several ways. It seems
to have originated as an attempt to find something similar to aHamiltonian formalism,
without breaking manifest Lorentz symmetry, in that sense uniting the advantages of
the Lagrange and Hamilton methods. Another way of viewing it is that it naturally
lifts the BRST method to possible include nonlinear terms and transformations, i.e.,
interactions. It should be noted that some textbooks (e.g. [132]) introduce the BV
formalism in connection with gauge fixing, which tends to somewhat obscure the
simplicity.What wewill do here is classical BVfield theory, althoughwewill discuss
gauge fixing in Sect. 4.7.

In the BV framework, a ghost field is introduced for each gauge symmetry (and
reducibility) and each of the fields ∂I (by which is meant physical fields as well
as ghosts) is supplemented by its antifield ∂√

I with opposite statistics and a ghost
number assignment fulfilling gh# (∂)+gh# (∂√) = −1. A fermionic bracket, the so
called antibracket, between functions of fields and antifields is introduced as

(A, B) =
∫

d Dx

(
A

≡−
γ

γ∂I (x)

−∞
γ

γ∂√
I (x)

B − A
≡−
γ

γ∂√
I (x)

−∞
γ

γ∂I (x)
B

)
. (4.38)

The (classical) BV action is defined as a solution to the master equation

(S, S) = 0 , (4.39)

which reduces to the action for the physical fields when ghosts and antifields are
removed. The action itself generates gauge transformations via the antibracket (in a
generalised sense, where e.g. antifields are transformed by the equations of motion
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for the physical fields), so the master equation (4.39) can be seen as the invariance
of the action itself.

In the situation at hand, with the pure spinor superfields for maximally super-
symmetric theories, we have seen that the cohomology describes both fields and
antifields, so a split in the two sets looks problematic. In addition, it is of course
necessary to define the antibracket off shell, so that also components outside coho-
mology takes part. The field–antifield symmetry of the cohomology makes it natural
to think of a field Θ as self-conjugate with respect to the antibracket, and define it
as [69]

(A, B) =
∫

A
≡−
γ

γΘ (Z)
[d Z ]

−∞
γ

γΘ (Z)
B . (4.40)

It is straightforward to show that this antibracket (in all cases we have considered)
carries the correct quantum numbers, and that a free action of the form

S2 = 1

2

∫
[d Z ]Θ QΘ (4.41)

indeed generates gauge transformations. At this non-interacting level, the master
equation is equivalent to the nilpotency of the BRST operator. Actions of this form
thus describes both SYM and SG at linearised order.

4.5.2 Interactions from the Master Equation

We now have at our disposal all ingredients necessary to introduce interactions in a
consistent way. The guiding principle is the master equation (4.39).

4.5.2.1 SYM

The SYMcase is easy. The linearised action has the formof an abelianChern–Simons
action, and sinceΘ and Q carry the same quantum numbers aΘ 3 term can be added,
turning the full action into Chern–Simons form,

S =
∫

[d Z ] tr
(
1

2
Θ QΘ + 1

3
Θ 3

)
. (4.42)

This leads to equations of motion

QΘ + Θ 2 = 0 , (4.43)

which could of course equally well be directly deduced from the superspace formal-
ism, where its restriction to the ghost number zero fields reads ψεψρ Fερ = 0.
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A notable feature is that although the component action contains 4-point cou-
plings, such terms are not present in the manifestly supersymmetric pure spinor
superfield action. Instead they are reproduced when the equations of motion are
solved sequentially in the ν expansion of the superfields Aε. Such simplifications
are typical. We mentioned them in passing for the 3-dimensional conformal models
of Sect. 4.3.3, and similar simplifications turn out to happen also for supergravity.

4.5.2.2 SG

The interactions of D = 11 supergravity [69, 70] are more subtle. Remember
that Q has ghost number 1 and dimension 0, while Θ has ghost number 3 and
dimension −3. The first step will be to construct a 3-point coupling. How can it
be formed, given that the integrand in the action must have ghost number 7 and
dimension −6?

Here, the geometric fieldΓa comes into play. We remind that it has ghost number
1 and dimension −1. It contains the field strength H but not the potential C . Guided
by the form of the Chern–Simons term C ♥ H ♥ H , is it possible that something like
Θ Γ2 may work? Such a combination has ghost number 5 and dimension −5. If it
is supplemented by two powers of ψ, the quantum numbers are the correct ones. A
hypothetical 3-point coupling is then

S3 ∼
∫

[d Z ](ψϕabψ)Θ ΓaΓb . (4.44)

Apart from thematching of quantumnumbers, the factor (ψϕabψ) has two other rôles:
the antisymmetry in [ab] makes it possible to contract the indices on the (fermionic)
Γ fields; and it ensures the invariance under the shift symmetry of (4.16), thanks to
the Fierz identity (ϕbψ)ε(ψϕabψ) = 0, satisfied by a pure spinor ψ (but not by an
unconstrained one).

This is of course not the final answer for the 3-point coupling. We have argued
that Θ is the fundamental field, but (4.44) is meaningless until we declare how 
a is
formed from Θ . Let us assume that there is some operator Ra of ghost number −2
and dimension 2 (defined modulo shift symmetry) such that

Γa = RaΘ . (4.45)

Then the master equation, stating the consistency of the tentative 3-point coupling,
demands that [Q, Ra] = 0 (again modulo shift symmetry). Such an operator was
constructed in [69], and it takes the form

Ra = η−1
(
ψ̄ϕabψ̄

)
σb + · · · , (4.46)
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where η = (
ψϕabψ

)
(ψ̄ϕabψ̄) is the scalar invariant vanishing on the the codimension-

7 subspace of 12-dimensional pure spinors, and where the ellpsis denotes terms with
dψ̄ and dψ̄2.

This means that we have a consistent 3-point interaction. It is clearly also non-
trivial, and since already the 3-point coupling for gravity is cohomologically unique
[133], it must be the full 3-point coupling of D = 11 SG in Minkowski space. A
concrete check on component field couplings would nevertheless be encouraging. In
[69, 70], it has been verified that the Chern–Simons term is correctly reproduced,
and that the ghost couplings corresponding to the diffeomorphism algebra are the
right ones.

Surprisingly, the 3-point interactions provide almost the full answer.When check-
ing the master equation to higher order in Θ , a very simple 4-point coupling arises,
containing a simple nilpotent operator T . The properties of this operator ensures that
the master equation is satisfied to all orders, and the full action for D = 11 SG is

S =
∫

[d Z ]
[
1

2
Θ QΘ + 1

6
(ψϕabψ)

(
1 − 3

2
T Θ

)
Θ RaΘ RbΘ

]
. (4.47)

We refer to [70] for the details.
Strikingly enough, the full action for D = 11 supergravity becomes polynomial.

The 4-point coupling may even be removed by a field redefinition (at the price of
having a redefined fieldwhich is not canonical with respect to the antibracket, and has
a less standard kinetic term). However, it should be said that geometry is somewhat
obscured.By basing the formulation on the lowest-dimensional part of the superspace
fields, and treating the fields as deformation of the flat background, geometry is not
manifest. Still, the appearance of all ghosts, including the ones for diffeomorphisms
and local supersymmetry, in the cohomology, together with the master equation,
ensures full gauge invariance, although in a form that is not easily recognisable as
geometric. Therefore it may be interesting to try to “rebuild” a geometric picture
based on the present formalism. We do not have any concrete ideas about how this
may be done, but it might involve further variables, reintroducing the superfields
that were discarded (the higher-dimensional parts of the super-vielbein). Formally,
an analogue statement is true for the SYM action, but the simple Chern–Simons
form there makes gauge invariance (almost) manifest. In close connection with this,
it is not clear how to best find solutions to the equations of motion. It is not known
even how to embed simple, purely gravitational, solutions like the Schwarzschild
geometry into the superfield Θ . For perturbation theory around flat space, on the
other hand, the formulation is ideal, both for keeping control over the symmetries
and for having a very limited number of couplings, and it has been used for amplitude
calculations [126, 134].
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4.5.2.3 Other Models

Actions, along the lines drawn up here, can also be constructed for the BLG
and ABJM models described briefly in Sect. 4.3.3. Since the fields describing the
scalar multiplets are non-scalar, their kinetic terms contain extra ψ’s ensuring shift
symmetry. The interactions consist essentially of a minimal coupling to the Chern–
Simons field, replacing and reproducing the higher order interactions among the
component fields (e.g. a sixth order potential in the scalars). We again refer to
[71–73] for details.

In principle, actions could be formed also for models with less supersymmetry.
Then we know from the discussion in Sect. 4.3.4 that separate pure spinor super-
fields must be introduced for the fields and the antifields. The full formalism for
lower supersymmetry has not been developed. In [119] minimal D = 6 SYM was
treated, but only at the level of equations of motion, and in a minimal pure spinor for-
malism. Especially issues concerning gauge fixing may turn out to be easier in such
models (see Sect. 4.7). In particular, D = 10, N = 1 supergravity and its dimen-
sional reductions may be interesting, e.g. concerning the investigation of possible
counterterms.

4.6 Higher Derivative Terms and Born–Infeld Theory

As an example of an application of our formalism, we will briefly describe the
construction of a higher-derivative term. Even though the example is specific—the
F4 deformation of D = 10, N = 1 SYM, it may be applied to any supersymmetric
deformation of a maximally supersymmetric model with a pure spinor action. As
we will see, the drastic simplifications of interaction terms persist also here, and
although an F4 deformation in component language will come together with an
infinite number of terms of arbitrarily high order in derivatives, a single quartic term
turns out to contain the full deformation in the pure spinor superfield language for
the abelian model. We conjecture that it describes Born–Infeld theory.

The question addressed here was actually one starting point for the development
of the present formalism [55–59]. The work described in this section is based on
[109].

Precisely as for any interaction term, the guide to consistent deformation is the
master equation. What is needed is some Ansatz for the form of the interactions. In
[55, 58], it was observed that the 5-form part of Fερ = 0 must be changed in order
to deform the theory. It was also noted that the appropriate ε⊗2F4 terms for SYM
were generated by

F A
ερ ∼ ε⊗2t A

BC D(ϕaφB)ε(ϕbφC )ρ F D
ab , (4.48)

where t is a symmetric invariant tensor, and φ and F denote the superfields with the
corresponding component fields as lowest components. We will from now on drop
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the explicit factor ε⊗2. This was then used in [58] in order to derive for the first time
the complete deformation at this order, including all fermion couplings.

We need some systematics for lifting expressions like (4.48) to full pure spinor
superfield expressions, containing not only fields of definite ghost number. The
method introduced in [109] was to form “physical operators”, solving this prob-
lem. Take for example the physical fermion. We would like to find an operator φ̂ε

that, roughly speaking, strips the pure spinor superfield Θ of one power of ψ and two
powers of ν and forms a pure spinor superfield that “starts” with φε, and similarly
for other component fields. These operators were systematically constructed in the
non-minimal formalism. For example, the operator φ̂ε takes the form

φ̂ε = 1

2
(ψψ̄)−1(ϕaψ̄)εσa + · · · , (4.49)

with the ellipsis denoting termswithmore singular behaviour in (ψψ̄) andwith one or
two powers of dψ̄. The physical operators turn out to satisfy a number of interesting
algebraic and differential relations (among them, a somewhat surprising relation to
the b operator of Sect. 4.7).

We found that a quartic term in the action

S4 = 1

4

∫
[d Z ]Θ (ψϕaφ̂)Θ (ψϕbφ̂)Θ F̂abΘ (4.50)

solves the master equation in the Maxwell case, not only to this order but to all
orders, and conjectured that it describe supersymmetric Born–Infeld theory. In the
non-abelian case, the same term, dressed up with a four-index tensor, describes the
full totally symmetric part of the interaction to all orders. We found various ways of
rewriting this 4-point coupling in more symmetric ways, and refer to [109] for the
details.

The generalisation to supergravity has not been performed, but should not present
any other difficulties than purely technical, and may be useful in the search for
supersymmetric counterterms. Note that, while in a component language one must
make separate Ansätze for the deformed action and the deformed supersymmetry,
here everything is uniformly encoded in the master equation.

4.7 Gauge Fixing

We will finally briefly mention gauge fixing, which is an important issue when it
comes to quantum calculations and path integrals.

There is a well developed theory of gauge fixing in the BV framework. One must
of course eliminate the antifields as independent propagating degrees of freedom,
and this is achieved by the introduction of a gauge fermion φ. One then demands
that
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∂√
I = γφ

γ∂I
. (4.51)

This makes physical quantities independent of gauge choice. Normally, in a gauge
theory, this procedure involves extra non-minimal fields, the “antighost” and
Nakanishi-Lautrup fields.

In the pure spinor superfield framework (for maximally supersymmetric models),
we have fields Θ which effectively contain both fields and antifields and are self-
conjugate under the antibracket. We can not form a condition like (4.51) without a
contrived and unnatural splitting of the field Θ . Therefore it is necessary to fix the
gauge in some other way.

A standard way to fix gauge in string theory is Siegel gauge [135]. The gauge
fixing condition is

bΘ = 0 , (4.52)

where b is a ghost field corresponding to the Virasoro constraint. However, in the
pure spinor formalism, no world-sheet or world-line reparametrisation is a priori
present—as we have seen the equations of motion of the massless fields is an “indi-
rect” consequence of cohomology, and do not follow from “p2 = 0” of some particle
model with reparametrisation symmetry. Such a b operator has to be constructed as
a composite operator if it exists. This was done for string theory in [74]. The field
theory version of this b operator, relevant for SYM, is

b = − 1

2

(
ψψ̄

)−1
(ψ̄ϕa D)σa + 1

16

(
ψψ̄

)−2
(ψ̄ϕabcdψ̄)

(
Nabσc + 1

24
(Dϕabc D)

)

− 1

64

(
ψψ̄

)−3
(dψ̄ϕabcdψ̄)(ψ̄ϕa D)Nbc (4.53)

− 1

1024

(
ψψ̄

)−4
(ψ̄ϕabedψ̄)(dψ̄ϕcd

edψ̄)Nab Ncd ,

where Nab = (ψϕab
σ
σψ ). The defining property of the b operator is

{Q, b} = � . (4.54)

The whole purpose of gauge fixing is of course to make the kinetic operator (in
this case Q) invertible.With this gauge choice, the propagator G (“Q−1”) is formally

G = b

� . (4.55)

So, even if b is a complicated operator, it does precisely what is needed for gauge
fixing: it eliminates almost all the antifields and implies Lorenz gauge for the gauge
connection. By “almost all” we mean that there is a small remainder of the antifield
A√a , connected to its on-shell divergencelessness, that gives place for the antighost,
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which otherwise is normally introduced by hand. That this happens follows from the
deliberations in [87].

The consistency of the gauge fixing also relies on the property b2 = 0. This
identity is quite cumbersome to show—in string theory so much so that the full
calculation was performed only recently [136, 137].

In D = 11 the b operator is quite complicated,

b = 1

2
η−1(ψ̄ϕabψ̄)(ψϕabϕc D)σc + · · · (4.56)

We will not display it in full detail here, and refer to [126].
The fact that the b operators, and also other operators carrying negative ghost

number such as the Ra operator of the supergravity and the physical operators of
Sect. 4.6, have quite complicated expression has been the source of some activity
searching for simpler versions. See e.g. [78, 81, 126, 138].

Once gauge fixing has thus been performed, it is possible to use the pure spinor
superfield formalism for calculation of amplitudes. There will be further (resolvable)
questions about regularisation that we will completely forgo here, see [80, 126, 139,
140]. In [126], amplitudes derived from the supergravity action were shown to be
finite up to six loops, in agreement with [139, 140] (see the talk presented by Anna
Karlsson [134]).

It might be expected that gauge fixing inmodelswith less thanmaximal supersym-
metry can be performed in a way which is more along the standard lines of the BV
formalism, i.e., with a gauge fixing fermion, since then fields and antifields are nat-
urally separated in different pure spinor superfields. This remains to be investigated.

4.8 Discussion

We have given a brief overview of the pure spinor superfield formalism, and how
it leads to off-shell superfield actions for maximally supersymmetric models. The
main focus has been on D = 10 SYM and D = 11 SG, but also other models have
been mentioned. Some of the more technically intricate parts of the formalism have
been left out, but we hope that the general message is clear: this is a solution to the
problem of going off-shell with maximal supersymmetry.

We have repeatedly pointed out the simplicity of the resulting actions. Indeed,
the many terms in a supersymmetric component action generically reduce to some
quite simple expression, which is of lower order in fields than the component interac-
tions. In a couple of cases, we even get polynomial expressions where the component
ones are non-polynomial. This is of course an advantage when it comes to quantum
calculations: the number of vertices is very limited. The other advantage for ampli-
tude calculations is that the presence of an action (as opposed to a first-quantised
formalism) directly yields the form of the vertices consistent with all symmetries.
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The formulation of supergravity has some drawbacks, though. Since only part
of the supervielbein is used, the geometric structure of the theory is obscured.
Background invariance is not manifest, since some background is needed in order
even to define the BRST operator. In this sense, the behaviour is similar to closed
string field theory [135]. It is not clear whether geometry, or some aspects of it can be
regained without losing the obvious advantages of the pure spinor formalism. This
means also that solutions beyond the linearised level around some background are
difficult to find, as is e.g. the dynamics of extended abjects and their coupling to
supergravity.

We believe that there is something to learn from the application of pure spinor
techniques to theorieswith less supersymmetry.This is however a largely unexplorsed
subject.

Finally, we would be very interested in extending the formalism to other structure
groups. The type of models we primarily have in mind are models with “manifest U-
duality”, formulated as gauge theorieswithin the framework of generalised geometry.
Some supermultiplets are already known in connection with U-duality [141–144],
and it would be very interesting to continue to a superfield formalism and maybe
a (generalisation of the) pure spinor version. A manifest control over both super-
symmetry and U-duality would be the ideal situation for examining the ultraviolet
properties of maximal supergravity.
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Chapter 5
Loop Amplitude Diagrams in Manifest,
Maximal Supergravity

Anna Karlsson

The issue of finiteness of maximal supergravity has been subject to research for
quite some time. Here, we approach that question through an examination of how to
describe amplitude diagrams in D = 11 maximal supergravity from a field theory
point of view. The strength of the formulation is the presence of manifest supersym-
metry through the use of pure spinors. An initial analysis of what the subsequent
characteristics turn out to be, partly in lower dimensions through dimensional reduc-
tion, gives at hand results that agree with previous work, pointing towards a first
divergence for the 7-loop contribution to the 4-point amplitude in four dimensions.
The text is mainly based on [1] and may be regarded as an introduction to the main
points presented there.

5.1 Introduction

Maximally supersymmetric Yang–Mills theory was proven to be perturbatively finite
in up to four dimensions, and no further, in the 1980s. The question of whether or
not maximal supergravity provides a well-defined quantum theory on its own in four
dimensions, possible to treat perturbatively, has proven far more difficult to settle,
though not for a lack of attempts. Investigations through U-duality arguments have
pointed at a first possible divergence at 7 loops in four dimensions [2, 3], but the
presence and elimination of the counterterms that govern the ultraviolet divergences
are uncertain when more than 6 loops are present in the amplitude diagrams.

For the investigations in question, supersymmetry and U-duality properties have
proven crucial for simplifications to occur, in order for results to be obtainable.
However, the presently most promising examinations are performed through explicit
calculations for the 4-graviton amplitude in four dimensions [4–6], that so far have
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reached four loops. They are important as they may provide the way of actually
proving the existence of a divergence in the description of the amplitudes. No devia-
tion from the case of maximally supersymmetric Yang–Mills theory has been shown
yet, but such are sought for at five loops and, in the general opinion, expected to
occur, as well as eventual divergences in the theory.

However, along the lines of utilising as much of the supersymmetric properties
as possible, formulations with manifest supersymmetry, obtained through the use of
pure spinors, have been investigated as well. In specific, this has been done from a
string theory point of view in [7, 8], to begin with, and later in [9, 10], with results
corresponding to the ones obtained for the U-duality examinations, as mentioned
above.

The last raised the question of what a description of amplitude diagrams in max-
imal supergravity would look like from a field theory approach, constructed from
the superfield action in D = 11, N = 1 supergravity [11] which provides a way
to examine manifest, maximal supergravity through the use of pure spinors. This is
whatwas presented in [1], including remarks on significant amplitude characteristics,
such as the ultraviolet behaviour in a dimensional reduction to D = 4, in agreement
with the results in [10]. The following text presents the very same thing, in a slightly
shorter format and with a focus on the most important concepts of the construction
and the analysis that so far have been deduced. Section 5.2 concerns the formulation
of manifest, maximal supergravity, Sect. 5.3 contains the field theory description of
the amplitude diagrams and Sect. 5.4 describes a way to make a rough estimate of
the ultraviolet behaviour. Finally, some desired improvements are mentioned in the
outlook.

5.2 Maximal Supergravity with Manifest Supersymmetry

Conventional formulations of maximally supersymmetric theories, such as maximal
supergravity, typically have supersymmetry variations that only close on-shell, when
the equations of motion are fulfilled. Because of this, it is impossible to formulate
an action in terms of superfields in such a formulation. However, a formulation with
an action is highly desirable, as the presence of an action simplifies examinations of
various characteristics of a theory. This is why a formulation where supersymmetry
holds both on- and off-shell, a formulation with manifest supersymmetry, is very
useful in many contexts.

5.2.1 Manifesting Maximal Supersymmetry with Pure Spinors

The only manner known so far in which a formulation with manifest, maximal
supersymmetry can be obtained is through the introduction of pure spinors [12, 13].
The motivation is quite natural, as the description is built straight from a superspace
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formulation, modified in order to fit the conventional free, on-shell theory while
allowing for an off-shell formulation as well. The construction can be performed for
both supersymmetric Yang–Mills theory and supergravity, the latter which is what is
discussed here, in a rather brief way. For a more extensive, general description, see
for example [14], where more extensive references with respect to the Yang–Mills
case, where the procedure was first discovered and developed, also are to be found.

5.2.1.1 The Superspace Formulation of a Free Theory

Typically, the superspace formulation of a maximally supersymmetric theory:

1. Lacks a spinor derivative that maps superfields into superfields, so that such a
derivative (Dα) must be introduced into the formulation.

2. Contains too many field components of the same sort (double copies), a redun-
dancy that must be removed through some condition on at least one of the field
strengths.

A characteristic of the superspace formulations is that a suitable condition on one
of the field strengths removes the unasked for redundancy in a way which respects
the Bianchi identities. Moreover, a pattern for how to put fields on-shell and how to
allow them to go off-shell in a physical manner emerges.

For maximal supergravity, the spinor derivative acting on the 3-form Cαβγ turns
out to represent the equations of motion, with certain irreducible representations
removed. This absence of components is exactlywhat is reproduced by a construction
with an operator Q = λD acting on λαλβλγCαβγ with λα being a pure spinor; a
bosonic spinor of ghost number 1 obeying a constraint [15]:

λα : λγaλ = 0 (5.1)

As certain irreducible representations are left untouched as long as the equations of
motion are not required to hold, off-shell degrees have been allowed aswell. Yetmore
can be introduced by taking a step away from the original theory; by incorporating
the 3-form into a more extensive pure spinor superfield:

ψ = λαλβλγCαβγ(x, θ) + · · · (5.2)

In this way, by allowing the equation of motion for the BRST formulation to be
Qψ = 0, a lot of fields, antifields etc. have been allowed into the theory, at other
powers of the pure spinor in the series expansion above, at the same time as the
original, free theory is obtainable at ghost number zero. Nothing is lost, but a lot
is gained, as the necessary components for a formulation with an action have been
incorporated into the theory.

This overall construction is useful for a formulation of an action as Q is nilpotent
due to the pure spinor condition, and as the equations of motion in this way are
given by a BRST operator. The BRST formulation in turn has a natural extension to
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a theory of interactions in the Batalin–Vilkovisky formalism, so the free theory just
described in the pure spinor formalism can be extended to a theory of interactions
described by an action.

5.2.1.2 A Theory of Interactions: The Batalin–Vilkovisky Formulation

For a Batalin–Vilkovisky formulation (interactions included) [16, 17] of the BRST
pure spinor formulation (a free theory), the symmetry operator Q which in the BRST
formulation acts linearly on fields simply is replaced by a generalised action which
acts on fields through an antibracket (nonlinearly):

(A, B) →
∫

δA

δψ

δB

δψ
[dZ ] (5.3)

The above is the only available option that is similar to a conventional Batalin–
Vilkovisky antibracket and possible to form in the pure spinor formalism, as the
formalism only contains one superfield, where both fields and antifields reside in
a way which is not desirable to alter or split up into components in any way. The
formulation has the equation of motion (S,ψ) = 0 and the action is obtained through
the master equation (S, S) = 0, corresponding to the BRST nilpotency demand. For
consistency, it is constructed from a starting point in the BRST action:

S →
∫

ψQψ[dZ ]. (5.4)

5.2.2 The Action in the Pure Spinor Formalism

For a proper action, a few more things than the solution to the master equation
must be known. For example, the presence of a well-defined integration has been
presumed in the reasoning above, and a well-defined gauge fixing ought to be present
as well. There is, however, another very important characteristic of this formalism,
originating in the BRST equivalence, which is best discussed first, before we get to
the parts of and the final expression for the action.

5.2.2.1 BRST Equivalence

Due to the fact that all calculations in maximal supergravity are performed between
on-shell, free external states, there is a “hidden” freedom of the theory, such that any
term is defined up to BRST equivalent terms, as the equation of motion is Qψ = 0
andQ is nilpotent. In practice, this gives at hand that a factor of 1 or that of 1+{Q,χ},
with χ a fermion of appropriate dimension and ghost number, are treated on an equal
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basis. BRST equivalent terms can be added or removed at will, whenever that helps
with the interpretation of the characteristics of the pure spinor formalism. The last
is especially handy with respect to so called regulators, e{Q,χ}, that can be inserted
into or removed from an expression at any time.

5.2.2.2 Gauge Fixing Through a Siegel Gauge

The process of gauge fixing normally is performed in order to eliminate the antifields
of a formalism, so that a gauge fixing fermion expressed in the fields is given at hand.
In the pure spinor formalism though, the single superfield ψ contains both fields and
antifields, in a way which we do not want to alter by dividing it into components etc.
Conventional gauge fixing is therefore abandoned for an imitation of gauge fixing
in string theory through a Siegel gauge [18], which originally is performed for the
scalar particle. This process gives at hand a propagator b/p2 for the theory, which
contains a nilpotent b-ghost, the expression for which can be found in [1]:

{Q, b} = ∂2 bψon−shell = 0. (5.5)

5.2.2.3 Integration in the Non-minimal Formalism

As to the issue of defining a working integral measure for the formalism, the super-
space formulation extended with the presence of the pure spinor falls somewhat
short. The most intuitive way of constructing an integral measure would chop off the
integrand at some order of (λ, θ)with respect to a series expansion in those variables,
which is not wished for. The easiest way to deal with this is through an extension of
the superspace to the so called non-minimal formalism, in which two more variables
exist: counterparts to (λα, θα) which are (λ̄α, rα). In the presence of these “extra”
variables, it is possible to construct a regulator so that a well-defined integral mea-
sure, in the non-minimal formalism, exists. The first of the “new” variables obey the
same condition as the pure spinor, but has the opposite ghost number. The other is a
fermionic spinor of 23 degrees of freedom through rγaλ̄ = 0 [19].

5.2.2.4 General Regularisations

With the extension of the superspace into the non-minimal formalism, the kinetic
operator Q is enlarged so that it incorporates the non-minimal variables as well, but
the most notable difference is that it is possible to form scalars out of the variables:

(
λλ̄
)
,
(
λγabλ

) (
λ̄γabλ̄

)
(5.6)
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Negative powers of these can show up in the integrands in a way as to create
superficial divergences, and a closer look upon this matter shows that they in fact
tend to do just that. However, any operator that is singular with respect to the bosonic
spinors can be shown to be BRST equivalent to an operator which shows no such
singularity. The process is quite complicated and involves the introduction of a
new set of non-minimal superspace variables, or several, and the use of regula-
tors with respect to these; a so called general regularisation. However, the important
thing is that such an alteration can be performed. Moreover, it can be performed
at any time of the analysis of an integrand, and as the process typically renders
any examinations of an integrand impossible to perform or at least highly difficult
to go through with, it typically is left implicit up to the point of integration. As
the latter process is not performed in practice, though vital to the existence of an
action and the examination of different characteristics of an integrand, the process
of general regularisation falls within the very same category of utilisation: it is
not put into use explicitly [7, 10].

5.2.2.5 The Action in Maximal Supergravity

The final expression for the supergravity action in D = 11, N = 1 which is given
by the master equation is [11]:

S = 1

κ2

∫
[dZ ]

(1
2
ψQψ + 1

6
(λγabλ)

(
1 − 3

2
T ψ

)
ψRaψRbψ

)
(5.7)

Here, the first term originates in the free theory, whereas the second and third term
correspond to 3- and 4-point couplings, respectively. A few things can be noted about
these terms. To begin with, the couplings show up as there in D = 11maximal super-
gravity exists one more pure spinor field than ψ, which is expressible in terms of ψ
through the operator Ra . This lays the foundation for the description of a 3-point cou-
pling as shown above, and allows for the construction of a 4-point coupling through
the master equation, where the operator T turns out to be nilpotent, thus putting
an end to what might go into the action, again with respect to the master equation.
These terms and operators all have implications for the description of the theory and
the amplitude diagrams in it, some of which will be discussed later. However, for a
detailed description of the action and its constituent parts, see [1, 11, 15].

5.3 Field Theory Construction of Amplitude Diagrams

In order to capture the field theory description of amplitude diagrams in maximal
supersymmetry, as well as to incorporate the desirable characteristic of manifest
supersymmetry into the investigations, we start off from the pure spinor action in
N = 1, D = 11 supergravity, displayed in (5.7). In principle, it tells us what
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kind of vertices that are part of the theory straight off, and allows us to define the
constituent parts of the tree diagrams. In order to capture loop characteristics, that
description then needs to be extended slightly, before any amplitude characteristics
can be analysed.

5.3.1 Building Blocks from the Action

The first term in the action merely tells us the free behaviour of the pure spinor
superfield. When it is off-shell, it propagates with a propagator proportional to b/p2,
as described in Sect. 5.2.2. Moreover, as each end of the propagator is supposed to
connect to vertices etc. as a superfield of ghost number 3, the propagator must have
ghost number 6. It also needs to connect the sets of variables in the fields, that is, it
needs to contain a delta function with respect to the superspace variables. The last
has ghost number 7 and the b-ghost has ghost number −1, so the addition gives at
hand the correct propagator in a very natural way. The relation in (5.5) also gives at
hand a propagator identity:

(5.8)

Here, it is implicit that the two propagators on the right hand side depend on two
different sets of variables.

As to the second term in the action, it describes a vertex, which in contrast to the
propagator can connect to on-shell fields as well as off-shell fields. In specific, it is
a 3-point coupling with two operators acting on two of the connected fields. Which
ones can be chosen freely, but both operators cannot act on the same field:

(5.9)

The third term describes a 4-point coupling, which resembles the 3-point coupling
except for that it connects to a fourth field and has one more operator acting on one
of the fields, different from the other operators:

(5.10)
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These tree components, the propagator and the two different vertices, are easily
combined into any tree diagram. Vertices are connected through propagators, and
external fields are connected to vertices. By construction, the total ghost number of
any amplitude diagram, may it be a tree or a loop diagram, is zero, as ought to be for
a physical quantity.

5.3.2 Loop Regularisation

At an extension of the field theory tree amplitude description to one including loops,
the field theory description fails to describe the new degrees of freedom of momenta
which are allowed when loops are formed. The propagator expressed in terms of
the b-ghost is too local in terms of some of the variables, for example in the pure
spinor, where the dependence corresponds to a function δ(λα − λ∼

α) in terms of the
two sets of variables that the propagator connects. In a phase space description of
loops, this results in a nonsensical integration over δ(0), and the traditional way
of circumventing this problem, by moving to a description in momentum space, is
not feasible for two of the bosonic variables: the pure spinor and its non-minimal
counterpart. There are no kinetic terms for them, corresponding to what is given for x
by the gauge fixing, the last which consequentially has a propagator in themomentum
space which is expressible as an exponential of the Laplacian, corresponding to a
Gaussian curve in phase space:

1

p2
→

♥∫

0

e−ap2da ♦ e−a(x−y)2 , a > 0 (5.11)

With no specific description for the kinetic terms, regulators must be introduced
in order for the integration over a loop to make any sense. This is performed in
the manner described in Sect. 5.2.2. In specific, it is performed in combination with
the introduction of the newmomenta that need to be present in a loop description: the
momenta that may propagate freely in the loop, which also need to be integrated out
for a full, final description [7, 10]. Note that this is just one example ofmaking the too
local propagator less so. Effectively, the regulators play the role of kinetic terms, but it
may also be possible to change the expression for the b-ghost into something BRST
equivalent, yet less local. Also, the general regularisation described in Sect. 5.2.2
might do the very same thing, yet as the result of such a regularisation is very
difficult to interpret, another alternative is necessary.

There are a few consequences of the above choice of a regularisation of the loop
amplitudes, noticeable when all loop momenta but the ones corresponding to the
original superspace variables have been integrated out:
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• In each loop, there are additional degrees of freedom of loop momenta pa and
loop spinor momenta Dα. Each original momentum becomes split between the
different loops the propagator it acts along is part of.

• For each loop integration, 9 spinor derivatives belonging to the loop in question
need to be claimed for a non-zero result, the rest may combine into momenta pa .

• The regulators allow for a transformation of one of the non-minimal variables, the
fermionic rα with 23 degrees of freedom:

rα ♣
⎧
(λD)λ̄α

(λγab D)(λ̄γab)α
(5.12)

• At the final integration over the loop momenta p, the combined terms (with the
modifications described above) threaten to have too high a power of p2 so that
the result diverges in the ultraviolet limit. This will be discussed in more detail in
Sect. 5.4.

It is also important to note that this regularisation differs greatly from the general
regularisation in Sect. 5.2.2 since it alters the behaviour of the constituent parts,
as illustrated in (5.12). For example, any term with r x: x > 23 is not identically
equal to zero, but needs to be transformed for a correct interpretation. Moreover, this
cannot be done after antisymmetric properties between these variables have been
used, at least not for more than 23 of them, for which the BRST equivalence holds.
This matter complicates analyses of the amplitudes slightly, as the constituent parts
typically combine to a high power of rα, so that “new” spinor derivatives that can
combine in many different ways show up in the descriptions.

5.3.3 Amplitude Characteristics

Despite the complications brought on by the loop regularisations, simple character-
istics of the amplitudes can be examined quite easily. Through a look at how the
components in the operators in the vertices, the propagator and the loop regulari-
sations may interact to create a final expression for a part of an amplitude, certain
characteristics can be discerned.

5.3.3.1 No Bubbles or Triangles

Notably, the no bubble or triangle observation which has been made for ampli-
tude diagrams in maximal supergravity follows directly from the loop regularisation
requirement of that 9 spinor derivatives, part of the loop in question, must be claimed
for each loop integration. Loopswith less than four vertices connected to them simply
cannot fulfil this requirement, so no bubbles or triangles can exist.
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5.3.3.2 No More than One 4-Point Vertex

A second characteristic that is obvious already from the building blocks is that an
amplitude diagram at most can contain one 4-point vertex. This occurs due to the
fact that the operator T that is present in the 4-point vertex is nilpotent, so that the
presence of two such operators in the same diagram renders the entire expression to
zero. Of course, loops with four vertices are still allowed, and after an integration of
such a loop, something similar to a 4-point vertex shows up, but as to the number
of 4-point vertices that can be present without any impact on the number of loops in
the diagram in question, that is, pure vertices, its upper limit is one.

5.3.3.3 Splitting and Combination of Momenta in Different Diagrams

As mentioned above, the introduction of loop momenta transforms for example the
momentum pa according to

pa ♣ pa +
⎨

I

pI
a (5.13)

where the sum is over the different loops the propagator the momentum acts along
is part of. The corresponding happens for the other momenta as well, which all of
them, apart from the spinor derivative, can be integrated out easily.

Whereas structures with no more than 23 r’s present (in a superfluous way, not
required to transform), such as bubbles and triangles, easily can be examined, the
transformations in (5.12) need to be taken into account otherwise, with BRST equiv-
alence in mind. This represents a quite complicated process for diagrams with a
high number of loops, and needs further investigation, especially as it has a decisive
impact on the ultraviolet behaviour of the diagrams, the currently discernible one
which will be presented in the next section. For example, it would be interesting to
know:

• How the operators in the vertices behave in combination with each other.
• If and how the structure of a loop diagram of a certain genus (how the loops are
placed with respect to each other) changes its properties with respect to integration
over the loop variables.

The last issue, the possibility of transformations between diagrams with the same
number of loops, is very interesting. The structures have the same number of con-
stituent components, which seemingly would not allow for the same type of com-
binations, in a perhaps deceptive way. Note though, that this refers to structures of
loops that cannot be divided into blocks with a single propagator in between. Such
constructions can be analysed separately, as can tree structures connected to a loop
structure.
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5.4 Behaviour in the Ultraviolet Limit

The ultraviolet divergences in maximal supergravity expressed in the pure spinor for-
malism show up due to the integrations over the loop momenta. These are performed
in D dimensions for each loop, where contributions show up from the denomina-
tors in the propagators and through spinor derivatives Dα that have combined into
powers of p2. What this looks like in the infrared limit is not yet determined, but
examinations can be performed in the ultraviolet region. The relevant requirement
for finiteness in the ultraviolet limit originates in that the power of momenta in the
total expression must be negative, and corresponds to:

L D − 2m + 2n < 0,

⎩⎣
⎤

L: number of loops
m: number of propagators
n: number of p2’s made out of D’s, n √ 0

(5.14)

Of course, the various combinations are restricted by the characteristics of the loop
structures, which are not completely known, but aworst case scenariowith the known
restrictions can easily be examined.

The procedure for discerning a “worst case scenario” simply consists of a power
counting of the r’s and D’s present in a loop structure, as they can be treated on an
equal footing according to (5.12) and {D, D} ∗ p so that:

r → D → p1/2 (5.15)

For example, an Ra contains the equivalent of r2 and the b-ghost r3. Moreover, a
loop structure (no tree structures attached) only constructed out of 3-point vertices
contains 3(L − 1) propagators and 2(L − 1) inner vertices as well as some required
vertices connecting to external states, for example via tree structures.

As many as possible of the r’s in an amplitude diagram are then assumed to
combine into powers of loop momenta p2, apart from the ones required for loop
integrations and the 23 already allowed. The known characteristics are also taken
into account, for example the absence of an impact from:

• The operators in the vertices which without a loss of generality can be assumed to
act out of the loop structure, without any impact on the loop integrations.

• Structures with a 4-point vertex, which can be shown not to have any worse an
impact than structures made solely out of 3-point vertices.

• Connections to external states or other loop structures through tree diagrams.

In total, this gives at hand the same result for the ultraviolet divergences as given in
[9, 10], though the relevant counterterms are not specified. For a high number of
loops, the procedures of the two different approaches are very similar, though a bit
more straightforward in the field theory approach, as towhat goes into the calculation.
The resulting demand for ultraviolet finiteness is dependent on the number of loops
L in a loop structure and identical to the case of Yang–Mills theory up until the n in
(5.14) exceeds zero. For n √ 0 the condition is
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D < 2 + 14

L
, L √ 4 (5.16)

which implies a first divergence at 7 loops in 4 dimensions. However, the properties of
the transformations in (5.12) do not set in until at 5 loops. What precisely this means
for the combination of the loop momenta into p2 thus remains an open question, so
that the real result as of yet is uncertain.

Worthwhile to notice its that the exact same type of investigation for the case of
maximally supersymmetric Yang–Mills theory, which do not have operators in the
vertices, apart from quite naturally showing the same result up to 4 loops, also shows
the well-established requirement with respect to finiteness and dimension versus
number of loops present. That is, without the necessity of any further investiga-
tions of characteristics of the amplitude diagrams etc. The complications in maximal
supergravity seem to be brought on by nothing but the operators in the vertices, and
the way they behave.

5.5 Outlook

The results of the examinations of the loop amplitudes in maximal supergravity
through a formulation with manifest supersymmetry has as of yet provided no results
other than those already known, perhaps with the exception of its advantages of
constituting a field theory description. However, further investigations with respect
to how the components of the amplitude diagrams may combine are of interest, as
well as other examinations.

To begin with, other characteristics may come into play for the behaviour of
the amplitude diagrams, for example U-duality. Such arguments are commonplace
when discussing these questions in general, but it is not known how to incorporate
U-duality into a formulation with pure spinors. A most desirable formulation would
have both U-duality and supersymmetry as manifest properties.

Lastly, themore detailed calculations of Bern et al. may give hints at integral, basic
properties once the amplitude with 5 loops has been examined in full. The possible
outcome ranges between a scenario similar to that which takes place in Yang–Mills
theory and the above proposed one, and the resultmightmake it possible to predict the
ultraviolet behaviour of the amplitudes inmaximal supergravitywithmore reliability.
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Chapter 6
Perturbative Ultraviolet Calculations
in Supergravity

Tristan Dennen

There has been an abundance of recent progress in calculating and understanding the
ultraviolet properties of supergravity theories. On the calculation side, the duality
between color and kinematics proposed in [1] has opened new avenues for con-
structing supergravity amplitude integrands at relatively high loop order. In this talk,
I explain how the color-kinematics duality is used to construct gravity integrands,
and I detail how to extract ultraviolet divergences once the integrands are known.
In the specific case of the three-loop four-point amplitude of N = 4 supergravity,
this leads to a surprising cancellation of the coefficient of the R4 counterterm, whose
presence was expected based on symmetry arguments [2].

6.1 Ultraviolet Divergences via the Double Copy

An n-point tree-level Yang-Mills amplitude can always be written in the form

An = gn−2
∑

i

ni ci

Di
, (6.1)

where the sum is over all trivalent diagrams i, ni are kinematic numerator factors,
ci are f abc color factors, and Di are the propagators of diagram i. This is achieved
simply by regrouping kinematic terms according to their associated color factors and
multiplying numerator and denominator by inverse propagators where necessary.

By a further rearrangement, it is also possible for the kinematic numerator fac-
tors to satisfy linear identities in one-to-one correspondence with the color Jacobi
identities [1],
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ci ± c j ± ck = 0 → ni ± n j ± nk = 0. (6.2)

For the four-point amplitude, simply writing down the Feynman diagrams in
Feynman gauge suffices. For five points and above, the required rearrangement is
nontrivial.

As conjectured in [1] and proven in [3], once the numerators are put into this
color-dual form, one can replace the color factors in the amplitude with another copy
of the kinematic numerators to obtain a gravity amplitude,

Mn = i
(α

2

)n−2∑
i

ni ñi

Di
. (6.3)

This is called the double-copy method of constructing the gravity amplitude. The
two sets of numerators ni and ñi can come from different Yang-Mills theories, and
different choices will lead to different gravity theories. In the later part of this talk,
we are concerned with N = 4 supergravity, which is formed as a double copy of
pure YM and N = 4 SYM.

We are also primarily interested in multi-loop amplitudes. Luckily, the double-
copy method still works to construct multi-loop gravity amplitudes. Again we begin
by regrouping Yang-Mills amplitudes into sums over trivalent diagrams,

A(L)
n = i Lgn−2+2L

∑
i

∫ L∏
l=1

d DΘl

(2ν)D

1

Si

ni ci

Di
, (6.4)

where the only new ingredients are the loop momentum dependence and the symme-
try factors Si . If one is able to rearrange the kinematic numerators in this expression
into a form where they satisfy the same identities as the color factors, then it is
possible to replace the color factors ci with another set of Yang-Mills kinematic
numerators ñi to obtain a corresponding multi-loop gravity amplitude [4],

M(L)
n = i L+1

(α

2

)n−2+2L ∑
i
∫ L∏

l=1

d DΘl

(2ν)D

1

Si

ni ñi

Di
. (6.5)

The path to calculating ultraviolet divergences in supergravity is now clear:

1. Find a representation of the SYM amplitude that satisfies the color-kinematics
duality.

2. Construct the integrand for the gravity amplitude using the double copy method.
3. Extract the ultraviolet divergences from the integrals.

In the next section, we will discuss some recent advancements regarding point 1. In
the subsequent section, we will discuss point 3 in more detail.
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6.2 Obtaining Color-Dual Numerators

Finding a representation of a multi-loop SYM amplitude that satisfies the color-
kinematics duality is generally a difficult task. Such a representation has been found
for the four-point amplitude through four loops [4, 5], and for the five-point amplitude
through three loops [6]. Progress on higher-point amplitudes requires a better finesse
of the Jacobi identities between the kinematic numerators, and until recently little
was known above five points, except in restricted kinematic regimes [7–9].

At one loop, however, it is possible to see explicitly how to use the Jacobi identities
to reconstruct the loop-momentum dependence of the numerators from a relatively
small ansatz for box numerators. This is well illustrated in the example of the five-
point amplitude. Consider the pentagon numerator npent(1, 2, 3, 4, 5; Θ), where the
loop momentum Θ flows between legs 5 and 1. By using Jacobi identities to commute
leg 1 all the way around the loop, it is possible to obtain an equation for the pentagon
numerator in terms of box numerators:

npent(1, 2, 3, 4, 5; Θ) − npent(1, 2, 3, 4, 5; Θ − k1) =
∑

nbox (6.6)

This has the structure of a finite difference equation for npent, and assuming the box
numerators are independent of loop momentum (as is the case for N = 4 SYM), it
can be solved by a function linear in loop momentum,

npent(. . . ; Θ) = n0,pent(. . .) + n1,pent(. . .)μΘμ. (6.7)

With this form, the loop momentum drops out of the difference equation, and we are
left with

k1 · n1,pent(1, 2, 3, 4, 5) =
∑

nbox. (6.8)

It is straightforward to reconstruct n1,pent from any four independent projections of
itself, which gives n1,pent in terms of box numerators. More generally, if the (m −1)-
gon numerators are known for a given amplitude, it is possible to reconstruct all of
the loop-momentum dependence of the m-gon numerators in the same way (see [10]
for further details).

Similarly, it is possible to use the reflection symmetry of the pentagon to obtain
n0,pent in terms of box numerators. Using this method, we have explicitly constructed
color-dual numerators for six- and seven-pointN = 4 SYM numerators in theMHV
and NMHV sectors. We have conjectured that this construction will work at any
multiplicity. This also points towards a strategy for obtaining color-dual numerators
at higher loops; one can hope to use global properties of the systemof Jacobi identities
to constrain the loop momentum dependence of numerators in terms of simpler
quantities.
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6.3 Extracting Ultraviolet Divergences

Once the appropriate kinematic numerators have been rearranged into a color-dual
form, multi-loop N = 4 gravity amplitudes can be constructed via the double copy
method, which yields the amplitude in the form

M(L)
n = i L+1

(α

2

)n−2+2L ∑
i

∫ L∏
l=1

d DΘl

(2ν)D

1

Si

ni ñi

Di
(6.9)

where ni are numerators from the pureYang-Mills theory, and ñi are numerators from
N = 4 SYM. TheN = 4 SYM copy satisfies the BCJ duality, and was constructed
at three loops in [4]. The pure YM copy does not need to satisfy the BCJ duality,
so we construct its numerators using Feynman diagrams in Feynman gauge. This
has the advantage of being straightforward and easy to pipeline, as well as being
D-dimensional. On the other hand, there are a lot of diagrams, so time and memory
constraints need to be considered.

Once the integrand of the gravity amplitude has been constructed, the extraction
of the ultraviolet divergences proceeds in five steps:

1. Series expand the integrand and select the logarithmic terms.
2. Reduce all of the tensor integrals to scalar integrals using Lorentz invariance.
3. Regulate the infrared divergences with a uniform mass.
4. Subtract away all subdivergences.
5. Evaluate the vacuum integrals.

This procedure is explained in more detail in [14], but we summarise the salient
points here.

Each integral in the problem contributes a polynomial to the overall ultraviolet
divergence, so we can count up its degree using the differential operator

Ω =
∑

kμ ϕ

ϕkμ
. (6.10)

For example,

Ω

∫
d6−2ψΘ

Θ2(Θ + k)2
= 2

∫
d6−2ψΘ

Θ2(Θ + k)2
. (6.11)

But because Ω is a differential operator, it serves to explicitly extract the polynomial
dependence of the integral on the external momenta. After all of the dependence on
external momenta has been extracted in this way, we can drop k from the propagators,
and we get

∫
d6−2ψΘ

Θ2(Θ + k)2
=
∫

d6−2ψΘ

{
4(k · Θ)2

[Θ2]4 − k2

[Θ2]3
}

+ O(ψ0). (6.12)
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This is equivalent to performing a simple series expansion on the integrand and
keeping only those terms that are logarithmically divergent by power counting.

The next step in the extraction of the ultraviolet divergence is to reduce the tensor
integrals to scalar integrals using the Lorentz invariance of the integral. For example,
a rank-two tensor integral must be proportional to the metric tensor,

∫
d6−2ψΘ

ΘμΘλ

[Θ2]4 = Aεμλ . (6.13)

The scalar integral A is found by contracting both sides with the metric,

∫
d6−2ψΘ

Θ2

[Θ2]4 = A(6 − 2ψ). (6.14)

In this way, the rank-two tensor integral is given in terms of a logarithmically diver-
gent scalar integral, which is easier to evaluate directly. This generalises straightfor-
wardly to higher-rank tensors.

As described long ago in [11], the infrared divergences can be sidestepped by
introducing a uniform mass regulator in all of the integrals. With a mass regulator,
the integrals will begin at ψ−L

U V instead of the ψ−L
U V ψ−L

I R that comes with a dimensional
regulator, and they are thus significantly easier to evaluate. The down side is that
the integral-by-integral subdivergences are not guaranteed to cancel from the final
answer—in other words, the subleading UV divergences of the integrals are individ-
ually regulator-dependent, and so the subdivergences must be subtracted at the level
of individual integrals.

The subtraction of subdivergences proceeds recursively,

S

⎧∫ L∏
i=1

dpi I

⎨
= Div

⎧∫ L∏
i=1

dpi I

⎨

−
L−1∑
l=1

×
∑
l-loop

subloops

Div

⎩
⎣
∫ L∏

j=l+1

dp∼
j S

⎧∫ l∏
i=1

dp∼
i I

⎨⎤
⎦, (6.15)

where S[. . .] is a subtracted divergence. This is in direct analogy with how countert-
erms work, but applied to individual integrals. After subtracting all of the subdiver-
gences, the quantity S[. . .] is free of infrared regulator dependence.

At the final stage, all of the remaining integrals are scalar, single-scale vacuum
integrals. These can be evaluated by reducing them to a basis using IBP relations
[12] and Mellin-Barnes techniques [13]. At three loops, there are about 600 such
vacuum integrals.

By performing the three-loop four-point ultraviolet calculation in N = 4 super-
gravity in the manner described here, in [14] we have demonstrated that the R4 type
counterterm is not present. This result was largely unexpected by the supergravity
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community based on symmetry arguments. Since its appearance, a number of
possible explanations have appeared [15–19]. To disentangle these arguments, the
calculation of the four-loop divergence will be crucial; this calculation is currently
underway.1
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Chapter 7
Scalars with Higher Derivatives in Supergravity
and Cosmology

Michael Koehn, Jean-Luc Lehners and Burt A. Ovrut

We construct N = 1 supergravity extensions of scalar field theories with
higher-derivative kinetic terms. Special attention is paid to the auxiliary fields, whose
elimination leads not only to corrections to the kinetic terms, but to new expressions
for the potential energy as well. Our formalism allows one to write a supergravity
extension of any higher-derivative scalar field theory and therefore has applications to
both particle physics and cosmological model building. For instance, the ghost con-
densate vacuum spontaneously breaks local supersymmetry without the super-Higgs
effect taking place. Supersymmetric cubic Galileons are shown to imply equations
of motion of higher than second order, thus leading to the appearance of ghosts.

7.1 Introduction

Supersymmetry [1–3] is believed to be a symmetry of particle physics at high ener-
gies. This is based on the result that the supersymmetry algebra is the only graded
Lie algebra of S-matrix symmetries that is consistent with relativistic quantum field
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theory [4]. Representations of the supersymmetry algebra contain bosonic and fermi-
onic degrees of freedom in equal numbers. Moreover, particles belonging to the
same representation have equal mass. Since superpartners with the same mass as
conventional particles have not been observed, four-dimensional supersymmetry
cannot be an unbroken low-energy symmetry. But supersymmetry—particularly
four-dimensionalN = 1 supersymmetry—might be relevant at higher energies. For
example, when N = 1 supersymmetry is taken into account, the gauge couplings
of the electroweak and strong forces unite to good precision at high energies [5],
suggesting the existence of supersymmetric grand unification. Moreover, supersym-
metric theories enjoy special finiteness properties that help to explain the hierarchy
between the electroweak and the unification/gravitational scales [6, 7]. Last, but not
least, N = 1 supersymmetry is a central feature of phenomenologically realistic
string theories—see, for example [8, 9].

Hence it is of natural interest to study the cosmology of the early universe within
the context of N = 1 supersymmetry. Since cosmology quintessentially involves
gravitation, such theories must be constructed using “local” supersymmetry, i.e.
N = 1 supergravity in this case. This has been done within the context of two-
derivative kinetic theories, both in local quantum field theory and superstrings. More
recently, however, it has become clear that higher-derivative theories of cosmology
are potentially important, with applications including DBI inflation [10], ekpyrotic
theories with brane collisions [11, 12] and ghost condensation [13–15]. These pro-
ceedings are intended to report recent results of the authors concerning the devel-
opment of a framework for constructing higher-derivative kinetic theories of chiral
superfields coupled toN = 1 supergravity [16] (building on previous work [17, 18]
concerning it global supersymmetry). As an application of these results, we study
supergravitational DBI inflation [19], and show how supersymmetric cubic Galileons
[20–22] necessarily imply the existence of ghosts [23]. For the application of our
framework to ghost condensation [24], we refer the reader to the article by Professor
Ovrut, also in the proceedings of this workshop.

We neglect fermions because (a) they are typically unimportant in models of early
universe cosmology and (b) since their inclusion greatly complicates all equations.
Instead, we focus on the physics of the scalar bosons and the associated auxiliary
fields, and refer to [24].When the fermions are set to zero, our supergravity extension
of (∂φ)4 has a special—perhaps unique—property; namely, it can be multiplied by
an arbitrary function of the scalar fields and their spacetime derivatives, while not
altering the pure supergravity sector of the Lagrangian. Because this multiplicative
factor is arbitrary, our formalism allows one to write a supergravity extension of any
higher-derivative Lagrangian built out of scalar fields and their spacetime derivatives.

There are many further potential applications of our results, particularly in early-
universe cosmology. For example, cosmological models that are constructed in—or
inspired by—string theory should admit an effective N = 1 supergravity descrip-
tion in four-dimensions. These theories typically have scalar fields arising as the
moduli associated with branes [25], flux [26, 27] or the compactification man-
ifold. For most—if not all—of these models, whether they are of DBI inflation
[10], k-inflation [28], k-essence [28], ekpyrotic/cyclic cosmology [11, 13, 29, 30],



7 Scalars with Higher Derivatives in Supergravity and Cosmology 117

effective theories of Galileons [31] or higher-derivative induced cosmic bounces
[32–34], the proper setting is supergravity—andall contain phaseswhere the dynamic
description includes scalar higher-derivative terms.

The plan of this talk is the following. We begin by reviewing the construction of
higher-derivative kinetic terms for chiral multiplets in global supersymmetry; that is,
when gravity is neglected. Then, we show how this construction can be generalized
to supergravity. We proceed by eliminating the auxiliary fields, where the auxiliary
fields Fi of the chiral multiplets require special attention.We outline the implications
of our formalism for DBI inflation. It turns out that in order for DBI inflation to work,
additional modifications of the theory are necessary. The rest of the talk is devoted
to a study of cubic Galileons. We show that their supersymmetric generalizations
contain ghosts, and discuss the realm of this ghost. The notation and conventions of
the book by Wess and Bagger [35] are used throughout the paper.

7.2 Higher-Derivative Chiral Superfield Actions
in N = 1 Supergravity

7.2.1 Higher-Derivative Chiral Superfields
in Flat Superspace

We begin by considering global N = 1 supersymmetry in flat four-dimensional
spacetime. The associated supersymmetry algebra is given by

{Qα, Q̄α̇} = −2σm
αα̇ Pm, (7.1)

where Qα, Q̄α̇ and Pm = −i∂m generate supersymmetry and translations respec-
tively. Here α,β, . . . and α̇, β̇, . . . are the conjugate indices of two-component Weyl
spinors andm, n . . . are spacetime indices. To construct supersymmetric Lagrangians
in this context, it is useful to work in flat superspace where, in addition to the
four ordinary spacetime dimensions (with coordinates xm), one adds four fermionic,
Grassmann-valued dimensions (with coordinates θα, θ̄α̇). In terms of these coordi-
nates, the supersymmetric generators are represented by the superspace derivatives

Dα = ∂

∂θα
+ iσm

αα̇θ̄α̇∂m, D̄α̇ = − ∂

∂θ̄α̇
− iθασm

αα̇∂m (7.2)

which satisfy the algebra
{Dα, D̄α̇} = −2iσm

αα̇∂m . (7.3)

Any supermultiplet can be obtained as an expansion of a superfield, appropriately
constrained, in the anti-commuting coordinates θ, θ̄. The expansion terminates at
order θθθ̄θ̄ because of the Grassmann nature of these coordinates. For example, a
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chiral superfield Θ, defined by the constraint

D̄Θ = 0, (7.4)

has the expansion

Θ = A(x) + →
2θχ(x) + θθF(x)

+ iθσm θ̄∂m A(x) − i→
2
θθ∂mχ(x)σm θ̄ + 1

4
θθθ̄θ̄�A(x), (7.5)

where A is a complex scalar, χα is a spin- 12 fermion and F is a complex auxiliary
field—which, for Lagrangians with canonical kinetic energy, is not a dynamical
degree of freedom. (A,χ, F) are the component fields of the chiral supermultiplet.
The component expansion (7.5) can be simplified by using the coordinates ym =
xm + iθσm θ̄, in terms of which

Θ = A(y) + →
2θχ(y) + θθF(y). (7.6)

This form of the component expansion has a straightforward generalization to curved
superspace, as we will see shortly. It also suggests an alternative way of defining
component fields, which turns out to be more useful in supergravity. Consider, for
example, the chiral supermultipletΘ.Wenote that one can alsodefine the components
of Θ as

A ∼ Θ | (7.7)

χα ∼ 1→
2

DαΘ | (7.8)

F ∼ −1

4
D2Θ | (7.9)

where | denotes taking the lowest component. It is straightforward to check that these
fields are identical to those in the θ, θ̄ expansion (7.5).

A general feature of superspace is that the highest component (that is, the θθθ̄θ̄
component) transforms under supersymmetry into a total spacetime derivative. Thus,
the highest component of a superfield can be used to construct a supersymmetric
Lagrangian. Because of the Grassmann nature of the fermionic coordinates, one can
isolate the top component by integrating over superspace with d2θd2θ̄. Moreover,
one can replace the d2θd2θ̄ integral over all superspace by a chiral integral− 1

4d
2θD̄2

using the chiral projector D̄2. This follows from the flat superspace relation D̄3 = 0.
In [17], it was shown how to construct supersymmetric actions involving higher

derivatives of chiral superfields. The construction is based on a particular supersym-
metric extension of the scalar-field Lagrangian (∂φ)4 given by DαΘDαΘ D̄α̇Θ†

D̄α̇Θ†. Ignoring the fermion χ, this superfield contains only the θθθ̄θ̄ component
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DαΘDαΘ D̄α̇Θ† D̄α̇Θ† = θθ̄θ̄
(
16(∂ A)2(∂ A♥)2

− 32|∂ A|2|F |2 + 16|F |4
)
, (7.10)

where the complex scalar A is composed of two real scalars φ, ξ as

A = 1→
2
(φ + iξ) (7.11)

and |∂ A|2 ∼ ∂ A · ∂ A♥. Thus, the superspace integral of the superfield (7.10) yields
the term

16(∂ A)2(∂ A♥)2 = 4(∂φ)4 + 4(∂ξ)4 − 8(∂φ)2(∂ξ)2 + 16(∂φ · ∂ξ)2 (7.12)

plus terms involving the auxiliary field F . Hence, (7.10) constitutes a possible super-
symmetric extension of (∂φ)4. The superfield expression (7.10) possesses several
particularly useful properties1:

• It constitutes a supersymmetric extension of the precise expression (∂φ)4, and
does not contain other terms involving φ alone.

• Despite the higher-derivative nature of the superfield, the auxiliary field F does
not obtain a kinetic energy. This is non-trivial, as on dimensional grounds a term
such as |A|2|∂F |2 could have arisen, and implies that F remains truly auxiliary.

• As pointed out in [17], the auxiliary field now appears at quartic order in the action
and, thus, its equation of motion is cubic. Hence, in contrast to the usual two-
derivative supersymmetric theories, there exist now up to three different solutions
for F . We will explore this issue much further in Sect. 7.3.

• Finally, the most crucial property for our present purposes is the fact that the
bosonic part of DαΘDαΘ D̄α̇Θ† D̄α̇Θ†, given in (7.10), only contains a non-
zero top θθθ̄θ̄ component—all lower components vanish. It follows that if one
multiplies this superfield with any function T of Θ, Θ† and (an arbitrary number
of) their spacetime derivatives, then the component expansion will be given by
(7.10) times T |, where inside T | the chiral superfield Θ is simply replaced by
its lowest component A. This allows one to easily construct a supersymmetric
extension of any higher-derivative scalar Lagrangian containing (∂φ)4 as a factor,
simply by performing the replacement φ ♦ →

2A ♦ →
2Θ in the co-factor.

This last property was used in [17] to construct a supersymmetric extension of
theories with Lagrangian P(X,φ), where X ∼ − 1

2 (∂φ)2. Specifically, for

P(X,φ) =
∑
n♣1

an(φ)Xn (7.13)

1 There exists a different supersymmetric extension of (∂φ)4 [36, 37], which however doesn’t live
up to every point of this list of useful properties that (7.10) has, and which thus feels much less
natural, particularly so when it comes to the extension to supergravity.
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it was shown that the higher-derivative terms in the supersymmetric generalization
are the d2θd2θ̄ integral of

1

16
DΘDΘ D̄Θ† D̄Θ† T (Θ,Θ†, ∂mΘ, ∂nΘ†), (7.14)

where

T (Θ,Θ†, ∂mΘ, ∂nΘ†) =
∑
n♣2

an

(
1

32
{D, D̄}(Θ + Θ†){D, D̄}(Θ + Θ†)

)n−2

=
∑
n♣2

an

(
1

4
∂m(Θ + Θ†)∂m(Θ + Θ†)

)n−2

, (7.15)

an = an

(
Θ+Θ†→

2

)
and we have made use of (7.3) to write {D, D̄} √ ∂m .

Particular applications were a supersymmetric form of the DBI action, as well
as a supersymmetric ghost condensate theory—both in flat spacetime. However,
the most interesting phenomenological consequences occur when these models are
coupled to gravity—for example, inflation driven by the DBI part of the action or
cosmic bounces induced by a ghost condensate. It is, therefore, of interest to include
gravity in the analysis. In a supersymmetric context, this means extending the above
construction to curved superspace. This will be the topic of the next section.

7.2.2 Higher-Derivative Kinetic Terms in Supergravity

In [16], we showed how to couple chiral superfields with higher-derivative kinetic
terms to four-dimensionalN = 1 supergravity.2 To keep the equation length reason-
able in this contribution, and since we are interested in cosmological applications,
fermionic component fields will be ignored throughout. The construction takes place
in curved superspace [35], which is themost natural setting for writing actions invari-
ant under local supersymmetry transformations. A chiral superfield Θ then admits
the expansion

Θ = A + ΩαΩαF, (7.16)

where A is a complex scalar field and F is a complex auxiliary field. The Ω coordi-
nates are Grassmann-valued and carry local Lorentz indices (α denotes the index of a
two-componentWeyl spinor). They extend ordinary spacetime to curved superspace,
and are defined precisely so that A and F arise as the components of Θ in the above
expansion. In curved superspace, supersymmetric Lagrangians can be constructed
from the chiral integrals

2 Also see [38], where related results were obtained. Earlier work of interest includes [17, 18,
39–44].
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∫
d2Ω(D̄2 − 8R)L , (7.17)

where L is a scalar, Hermitean function. The chiral projector in curved superspace
is D̄2 − 8R, where D̄α̇ is a spinorial component of the curved superspace covariant
derivative DA = {Da,Dα, D̄α̇} and R is the curvature superfield. In its compo-
nent expansion, R contains the Ricci scalar R as well as the auxiliary fields of
supergravity—namely a complex scalar M and a real vector bm . The purely bosonic
components in the Ω expansion of R are

R = −1

6
M + Ω2

(
1

12
R − 1

9
M M♥ − 1

18
bmbm + 1

6
iea

mDmba
)

. (7.18)

Another superfield that we will need is the chiral density E with expansion

2E = e(1 − Ω2M♥), (7.19)

where e is the determinant of the vierbein. Note that the tangent space Lorentz
indices A = {a,α, α̇} are related to the spacetime indices M = {m,μ, μ̇} via the
supervielbein EM

A and its inverse, with Em
a = em

a being the ordinary vierbein.
For a complete discussion of curved superspace we refer the reader to [35].

We start by introducing an Hermitean Kähler potential K (Θ i , Θ†k♥) of the chiral
superfields Θ i (where i = 1, 2, . . . enumerates the fields), along with a holomorphic
superpotential W (Θ i ). The associated Lagrangian is given by

1

e
L = 1

e

∫
d2Ω2E

[3
8
(D̄2 − 8R)e−K (Θi ,Θ†k♥)/3 + W (Θ i )

]
+ h.c. (7.20)

= e−K/3
(

−1

2
R − 1

3
M M♥ + 1

3
baba

)

+ 3

(
∂2e−K/3

∂ Ai∂ Ak♥

)(
∂ Ai · ∂ Ak♥ − Fi Fk♥)

+ ibm
(

∂m Ai ∂e−K/3

∂ Ai
− ∂m Ak♥ ∂e−K/3

∂ Ak♥

)
+ M Fi ∂e−K/3

∂ Ai

+ M♥Fk♥ ∂e−K/3

∂ Ak♥ − W M♥ − W ♥M + ∂Wi Fi + ∂W ♥
k♥Fk♥, (7.21)

where ∂Wi = ∂W
∂ Ai . This Lagrangian is obtained after integration by parts; it is meant

to be integrated over spacetime to yield an action.
We now add the higher-derivative kinetic terms for the chiral superfields in a

manifestly diffeomorphism invariant manner. Specifically, we introduce

Lh−d = −1

8

∫
d2Ω2E(D̄2 − 8R)DΘ iDΘ j D̄Θ†k♥D̄Θ†l♥ Ti jk♥l♥ + h.c.

= 16 e(∂ Ai · ∂ A j )(∂ Ak♥ · ∂ Al♥) Ti jk♥l♥|
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− 32 eFi Fk♥(∂ A j · ∂ Al♥) Ti jk♥l♥|
+ 16eFi F j Fk♥Fl♥ Ti jk♥l♥|, (7.22)

where Ti jk♥l♥| is the lowest component of the tensor superfield Ti jk♥l♥. Let us clarify
the meaning of Ti jk♥l♥. First, this superfield transforms as a four-index tensor on
the Kähler manifold in which the scalar fields take their values and, thus, ensures
target space diffeomorphism invariance. Second, Ti jk♥l♥ is required to be Hermitean
and symmetric in the pair of indices i, j as well as in k♥, l♥. Third, any tensor sat-
isfying these constraints can be multiplied by an arbitrary real function of the chiral
superfields and an unlimited number of their Dm covariant derivatives, as long as
all indices stemming from the covariant derivatives are contracted. Examples of
Ti jk♥l♥| include 1

2 (gik♥g jl♥ + gil♥g jk♥), where gi j♥ is the Kähler metric, and the
Riemann tensor Rik♥ jl♥. However, more general—non-geometric—choices respect-
ing the required symmetries are equally possible.3 The fact that one can multiply this
tensor with an arbitrary function of the chiral superfields and their spacetime deriv-
atives means that we can obtain a supergravity extension of any term that involves
(∂φ)4 as a factor and, thus, by dividing out by (∂φ)4 if necessary, of any higher-
derivative scalar Lagrangian (e.g. DBI action).

The sum of the two actions (7.21) + (7.22) does not lead to ordinary Einstein
frame gravity but, rather, to a scalar-gravity theory of the form e−K/3R. One can
transform the action into Einstein frame by performing the Weyl rescaling

en
a ♦ en

aeK/6. (7.23)

Note that the higher-derivative term does not contribute to the gravity-scalar coupling
and, hence,we can perform the sameWeyl rescaling as in ordinary chiral supergravity
without higher-derivatives. This is a non-trivial feature of our framework, which
greatly facilitates subsequent calculations. After Weyl-rescaling and elimination of
the auxiliary fields bm and F , the action reads

1

e
LWeyl = −1

2
R − gik♥∂ Ai · ∂ Ak♥ + gik♥eK/3Fi Fk♥

+ e2K/3
[

Fi (DAW )i + Fk♥(DAW )♥k♥
]

+ 3eK W W ♥

+ 16(∂ Ai · ∂ A j )(∂ Ak♥ · ∂ Al♥) Ti jk♥l♥Weyl|
− 32 eK/3Fi Fk♥(∂ A j · ∂ Al♥) Ti jk♥l♥Weyl|
+ 16e2K/3Fi F j Fk♥Fl♥ Ti jk♥l♥Weyl|. (7.24)

We next move on to the remaining auxiliary field F , which reveals some subtleties
of the higher-derivative theory.

3 In all examples in this paper, we will, for specificity, choose Ti jk♥l♥| to be proportional to
1
2 (gik♥g jl♥ + gil♥g jk♥).



7 Scalars with Higher Derivatives in Supergravity and Cosmology 123

7.3 New Potentials from the Equation
for the Auxiliary Field F

We now consider the most interesting of the auxiliary fields, namely F. The equation
of motion for F is easily derived from the action (7.24) and reads

gik♥Fi + eK/3(DAW )♥k♥ + 32Fi (eK/3F j Fl♥− ∂ A j ·∂ Al♥)Ti jk♥l♥Weyl| = 0. (7.25)

This equation is now cubic in F and, thus, it can have up to three inequivalent
solutions. As we will see, these different solutions lead to different theories! From
now on, we will restrict our analysis to a single chiral superfield Θ1 = Θ, the
extension to multiple superfields being straightforward to implement. In this case,
the equation of motion for F becomes

K,AA♥ F + eK/3(DAW )♥ + 32F(eK/3|F |2 − |∂ A|2)T = 0, (7.26)

where

|∂ A|2 = ∂ A · ∂ A♥ = gmn∂m A∂n A♥ (7.27)

and where we use the simplified notation

T ∼ T111♥1♥Weyl|. (7.28)

Note thatT is effectively an arbitrary real scalar function of A, A♥ and their spacetime
covariant derivatives Dm . . . ∂n A, Dm . . . ∂n A♥. Multiplying (7.26) with F♥ shows
that (DAW )♥F♥ must be real. Thus, one can relate F and F♥ via

F♥ = DAW

(DAW )♥
F (7.29)

as long as DAW ∗= 0, which we now assume. One can use this relation to obtain a
cubic equation for F alone. This is given by

K,AA♥ F + eK/3(DAW )♥ + 32

(
eK/3 DAW

(DAW )♥
F3 − |∂ A|2F

)
T = 0. (7.30)

In general, this equation admits three distinct solutions—which we denote by
F1, F2, F3—leading to three different theories. One can find these solutions using
Cardano’s formula. Define

p = e−K/3 (DAW )♥

DAW

(
K,AA♥

32T − |∂ A|2
)

, (7.31)
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q = 1

32T
(DAW )♥2

DAW
, (7.32)

D =
(q

2

)2 +
( p

3

)3

= 1

(64T )2

(DAW )♥4

(DAW )2
+ 1

27eK

(DAW )♥3

(DAW )3

(
K,AA♥

32T − |∂ A|2
)3

. (7.33)

Then the solutions are given by

Fk+1 = ωk F+ + ω−k F−, (7.34)

where k = 0, 1, 2, ω = e2πi/3 = − 1
2 + i

→
3
2 is a cube root of unity and

F+ =
(
−q

2
+ D1/2

)1/3
, F− =

(
−q

2
− D1/2

)1/3
. (7.35)

Substituting these back into the action generates three different branches of the
theory. We call the theory that results from substituting F1 the ordinary branch, as
only this solution approaches the usual solution when T ♦ 0. The new branches
are discussed in detail in [16].

The higher-derivative terms are all proportional to the T tensor. Therefore, by
assuming that T contains a factor that can be tuned to be small, one can treat such
terms as sub-leading. The T ♦ 0 limit then corresponds to q ⊂ p3/2, and hence

F1 = −K ,AA♥
eK/3(DAW )♥

+ 32T e4K/3(K ,AA♥
)4(DAW )♥2DAW

− 32T eK/3(K ,AA♥
)2(DAW )♥|∂ A|2 + O(T 2). (7.36)

Note that this corresponds to a small correction to the usual solution for the auxil-
iary field F in the presence of a superpotential. Correspondingly, we obtain small
corrections in the Lagrangian by substituting this solution for F . To first order in the
higher-derivative terms, the Lagrangian becomes

1

e
Lordinary,T ♦0 = − 1

2
R − K,AA♥ |∂ A|2 − eK (K ,AA♥ |DAW |2 − 3|W |2)

− 32 eK K ,AA♥ |DAW |2K ,AA♥ |∂ A|2 T
+ 16 (∂ A)2(∂ A♥)2 T
+ 16e2K (K ,AA♥ |DAW |2)2 (K ,AA♥

)2T . (7.37)

An interesting feature is that both the kinetic terms and the potential get corrected.
The potential now becomes
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V = eK (K ,AA♥ |DAW |2 − 3|W |2)
−16(eK K ,AA♥ |DAW |2)2 (K ,AA♥

)2Tno der., (7.38)

where Tno der. stands for the part of T that does not contain spacetime derivatives.
Note that all the correction terms in the Lagrangian above are invariant under Kähler
transformations.

As an example, consider the case where K = ΘΘ†, T = τ (K,AA♥)2 is of
canonical form with τ a small parameter and W = Θ. Near the minimum at A = 0,
to first order in τ , the potential is given by V = V̄ + δV and can be approximated by

V̄n=1 ∞ 1 + 1

2
|A|4 + · · · . (7.39)

Note that the |A|2 = φ2 + ξ2 term cancels in the expansion. Therefore, this potential
is very flat near the origin, rising only quartically as (φ2 + ξ2)2. The leading order
correction to this potential is given by

δVn=1 ∞ −16τ (1 + 6|A|2 + 16|A|4 + · · · ). (7.40)

For 1
128 > τ > 0, the minimum at A = 0 becomes a local maximum. The potential

is now minimized along a circle defined by |A|2 = 12τ/(1− 128τ ). In other words,
the potential changes from a slowly rising quartic potential with a minimum at the
origin to a “Mexican hat”.

7.3.1 Supergravitational DBI Inflation: Large Higher-Derivative
Terms

Although our work concers purely the supergravity context, the motivation stems
from string theory. There, the dynamics of D-branes and M5-branes are described
by the Dirac-Born-Infeld (DBI) action [45].4 This action is unusual in that it con-
tains higher-derivative terms which are essential to understanding its dynamics.5

Furthermore, interactions between branes (and anti-branes) can generate an effec-
tive potential [26, 48–51]. In such a setting, inflationary models based on the DBI
action, in which the inflaton field is identified with a position modulus of the brane,
have been constructed and shown to lead to interesting observational predictions—
such as equilateral non-Gaussianities [10, 52]. These models have mainly been
analyzed in non-supersymmetric effective field theory. However, realistic string

4 The effective description in terms of the DBI action is valid at arbitrary velocity, but only as long
as the proper acceleration of the branes is small.
5 Higher-derivative terms involving the extrinsic and intrinsic brane curvatures—such as those
discussed in [46, 47]—can arise as well. We will not consider these couplings here, but note that
they might be significant in certain applications.
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compactifications typically preserve minimal supersymmetry in four dimensions—
see, for example [8, 9]. It is of interest, therefore, to re-formulate these models within
the context of four-dimensional, N = 1 supergravity.

By choosing the function T in (7.24) appropriately, we can write a supergravity
version of the single real scalar field DBI action. It turns out that we need to consider
a Kähler potential with the property

∂2K

∂Θ∂Θ† | = K,AA♥ = 1 (7.41)

and a tensor superfield [16, 53]

16T = f (Θ,Θ†)

1 + f ∂Θ · ∂Θ†eK/3 + √
(1 + f ∂Θ · ∂Θ†eK/3)2 − f 2(∂Θ)2(∂Θ†)2e2K/3

.

(7.42)

Here f (Θ,Θ†) is an arbitrary hermitian function and we have used the notation that
∂Θ · ∂Θ† = gmnDmΘDnΘ†. In a brane setting, the lowest component of the f
function can be identified with the warp factor of the direction in which the brane
moves. Then the Lagrangian reduces to

1

e
L = − 1

2
R + 3eK |W |2

− 1

f

(√
1 + 2 f ∂ A · ∂ A♥ + f 2 (∂ A · ∂ A♥)2 − f 2 (∂ A)2(∂ A♥)2 − 1

)

+ eK/3|F |2 + e2K/3(F(DAW ) + F♥(DAW )♥
)

− 32 eK/3|F |2∂ A · ∂ A♥ T + 16e2K/3|F |4 T . (7.43)

Here T , which is the Weyl rescaled lowest component of T, is given by

16T = f

1 + f ∂ A · ∂ A♥ + √
(1 + f ∂ A · ∂ A♥)2 − f 2 (∂ A)2(∂ A♥)2

(7.44)

with f = f (A, A♥). The second line of (7.43) can be recognized as the DBI action
for the two real scalar fields φ, ξ that make up the complex scalar A [53]. That is,
the simplest N = 1 supergravity generalization of the single real scalar DBI action
naturally produces a DBI theory for both real scalar component fields. As can be seen
from the action, when the fields depend only on time there exists an upper bound on
the velocity of A given by

| Ȧ|2 ≤ 1

2 f
. (7.45)
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The so-called relativistic regime corresponds to the situation where this bound is
(almost) saturated. Models of DBI inflation [10] exploit this inequality. As the brane
moves towards a region of large f, the scalars are automatically constrained to move
slowly—allowing for inflation to occur on potentials that would otherwise be too
steep.

When f is small, then so is T , and F approaches the usual solution

F ∞ −eK/3(DAW )♥. ( f small) (7.46)

In this non-relativistic limit, after substituting for F one obtains the usual potential

Vnon-rel. = eK ( |DAW |2 − 3|W |2). (7.47)

Note that this expression is only valid as long as the higher-derivative terms in A are
irrelevant.

More interesting for our purposes is the relativistic limit, where f is large and | Ȧ|2
correspondingly small, with T ∞ f/8. In that case, the solution for F approaches

F ∞ −
(

(DAW )♥2

4 f DAW

)1/3

. ( f large) (7.48)

After substituting for F in the relativistic limit, the Lagrangian becomes

1

e
Lrel. = − 1

2
R + 3eK |W |2 − 3

2

eK |DAW |2(
4 f eK |DAW |2)1/3

− 1

f

(√
1 + 2 f ∂ A · ∂ A♥ + f 2 (∂ A · ∂ A♥)2 − f 2 (∂ A)2(∂ A♥)2 − 1

)

+O( f −2/3). (7.49)

Thus, to leading order the potential is given by

Vrel. = −3eK |W |2, (7.50)

which is negative for any choice of superpotential. The term arising from eliminating
F is sub-leading. It is evident, therefore, that inflation cannot occur since a phase
of de-Sitter-like expansion requires a positive energy density in the universe. Thus,
supergravitational relativistic DBI inflation with a single chiral superfield does not
work!

Let us now extend this theory by coupling it to a second chiral superfield S with
component expansion

S = B + ΩαΩαFB . (7.51)
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Here B is a complex scalar and FB the complex auxiliary field associated with S.

We will assume that this second field has a two-derivative action.6 Then, choosing a
Kähler potential such that

K,AA♥ = 1 , (7.52)

K,AB♥ = 0 = K,A♥ B , (7.53)

and after the same manipulations as in the previous section—for example, Weyl
rescaling the action and eliminating the auxiliary fields bm, M—we obtain the
Lagrangian

1

e
L = − 1

2
R + 3eK |W |2 − K,B B♥∂B · ∂B♥

− 1

f

(√
1 + 2 f ∂ A · ∂ A♥ + f 2 (∂ A · ∂ A♥)2 − f 2 (∂ A)2(∂ A♥)2 − 1

)

+ K,B B♥eK/3|FB |2 + e2K/3(FB(DB W ) + F♥
B(DB W )♥

)

+ eK/3|F |2 + e2K/3(F(DAW ) + F♥(DAW )♥
)

− 32 eK/3|F |2∂ A · ∂ A♥ T + 16e2K/3|F |4 T . (7.54)

In this expression, the auxiliary fields F, FB of the two chiral multiplets have not yet
been eliminated. Their equations of motion are given by

F + eK/3(DAW )♥ + 32F T (eK/3|F |2 − ∂ A · ∂ A♥) = 0, (7.55)

K,B B♥ FB + eK/3(DB W )♥ = 0. (7.56)

Note that these equations are not coupled and, thus, F can be eliminated as in the
previous section. It is also straightforward to substitute for FB, since its equation
of motion is algebraic and linear. In the non-relativistic limit—that is, when f is
small—one obtains the usual potential

Vnon-rel.,2 superfields = eK ( |DAW |2 + K ,B B♥ |DB W |2 − 3|W |2). (7.57)

However, in the relativistic limit the |DAW |2 term again is subdominant and the
potential becomes

Vrel.,2 superfields = eK (
K ,B B♥ |DB W |2 − 3eK |W |2). (7.58)

Comparing this to expression (7.50),we see that in the two superfield case a new, posi-
tive definite terms enters the potential energy! Hence, by choosing the superpotential

6 One could equally well assume that it also has higher-derivative kinetic terms, but that they are
unimportant in the vacuum. For simplicity, we will not pursue this option here.
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appropriately, the overall potential can be made positive along the direction(s) of
interest in field space—thus enabling inflation to occur.

We will first be interested in the case where one allows the two real scalars in

A = 1→
2
(φ + iξ) (7.59)

to be dynamically relevant. These scalars both have kinetic terms of the DBI form—
as is evident, for example, from (7.49). Our formalism also implies that, after the
potential energy has been chosen for the first scalar, the potential of the second
scalar is automatically determined. Moreover, when the Kähler potential satisfies
certain additional requirements—which we derive below—this second scalar can be
stabilized. In this case, our construction allows one to obtain an arbitrary positive
potential. Choosing this appropriately leads effectively to a single real component
field model of DBI inflation.

We choose for the superpotential W an Ansatz first used in [54] and analyzed,
in detail, in [55] within the context of ordinary two-derivative supergravity. This
Ansatz is

W = Sw(Θ), (7.60)

where w(Θ) is a “real” holomorphic function of Θ; that is, w(Θ) = ∑
n cnΘn with

cn ≡ R. The coefficients are chosen to be real for simplicity. The lowest component
of W is given by Bw(A). On the B = 0 plane, we have W = 0, DB W = w(A) and,
hence, the potential energy (7.58) becomes

VB=0 = eK (A,A♥)K ,B B♥ |w(A)|2. (7.61)

Here, the Kähler potential is also evaluated at B = 0. The B field can always be
rescaled so that its kinetic term is canonical (when B = 0). Correspondingly, we
will take K,B B♥ |B=0 = 1. Then the potential further simplifies to

VB=0 = eK (A,A♥)|w(A)|2. (7.62)

For this expression to be physically relevant, one must ensure that the dynamics is
restricted to the B = 0 plane. That is, the two real scalar fields b, d, defined by

B = 1→
2
(b + id) (7.63)

must be stabilized with zero vacuum expectation values. In an inflationary context,
this means that around b = d = 0 the scalar squared massesm2

b, m2
d must be positive

and at least as large as the Hubble expansion scale H2.A straightforward calculation
shows that
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m2
b = ∂2V

∂b2
|b=d=0

=
(1
2

∂2V

∂B2 + ∂2V

∂B∂B♥ + 1

2

∂2V

∂B♥2
)
|B=0

= −eK (A,A♥)|w(A)|2K,B B B♥ B♥ , (7.64)

with a similar expression form2
d . One can assume that, during inflation, the dynamics

is dominated by the potential and, thus, the Friedmann equation implies that V ∞
3H2. Then the requirement that m2

b, m2
d � H2 translates into the stability condition

K,B B B♥ B♥ � −1

3
. (7.65)

This condition is analogous to that found in two-derivative supergravity models [55].
It can be satisfied, for example, if the Kähler potential includes a term ζ(B B♥)2 with
ζ � −1/12.

Now note that for the superpotential (7.60), DAW √ B and hence vanishes on
the B = 0 plane. Thus, the potential term eK |DAW |2 that becomes subdominant in
the relativistic limit, is actually zero on the inflationary trajectory for models of this
type. This can also be seen directly from the equation of motion (7.55) for F–for the
Ansatz (7.60) the ordinary branch solution for F is simply the trivial solution F = 0
if we restrict to the B = 0 plane. In other words, in going from the approximately
two-derivative regime to the relativistic DBI regime, the potential does not change
for the models considered here. This special feature is entirely non-trivial, and arises
as a direct consequence of the choice (7.60). It greatly facilitates the analysis of the
corresponding inflationary models.

Let us now restrict the theory further, so that only a single real scalar field in (7.59)
remains dynamical. For this purpose, choose theKähler potential to depend onΘ,Θ†

via the combination − 1
2 (Θ − Θ†)2 only. Then, the Kähler potential will not depend

on φ. Correspondingly, if ξ is now stabilized around ξ = 0 with a sufficiently high
mass, then the dynamics will take place entirely in the φ direction with the potential

Vφ = w

(
φ→
2

)2

. (7.66)

Thus, any smooth positive potential can be engineered in this way, simply by iden-
tifying w with the square root of the desired potential and analytically continuing
w to the complex plane [55]. However, for consistency, one must check under what
conditions ξ is stabilized. Itsmass along the putative inflationary trajectory is given by

m2
ξ = ∂2V

∂ξ2
|ξ=b=d=0

=
(

− 1

2

∂2V

∂ A2 + ∂2V

∂ A∂ A♥ − 1

2

∂2V

∂ A♥2
)
|ξ=B=0
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= −ww⊗⊗ + w⊗2 + 2w2(1 − K,AA♥ B B♥), (7.67)

where w⊗ = w,A|ξ=0. This mass is identical to that obtained in two-derivative super-
gravity theories [55]. A working model of single real component field DBI inflation
must then satisfy m2

ξ � H2—otherwise perturbations in the ξ field also become

relevant. When w⊗⊗/w and (w⊗/w)2 are small (bearing in mind that for DBI inflation
they need not be as small as for two-derivative inflation), this translates into the
requirement

K,AA♥ B B♥ � 5

6
. (7.68)

An example of a Kähler potential satisfying all of the above assumptions and stability
constraints was discussed in [55]. Here, we will simply repeat it for specificity. It is
given by

K = −1

2
(Θ − Θ†)2 + SS† + ζ(SS†)2 + γ

2
SS†(Θ − Θ†)2 (7.69)

with ζ � −1/12 and γ � 5/6.
DBI inflation was inspired by string theory, and is of importance because it has a

more direct link tomicrophysics thanmost inflationarymodels. The higher-derivative
terms play a crucial role in DBI theories, since they lead to the speed limit (7.45).
They also imply the generation of significant equilateral non-Gaussianity [10, 52].
Interestingly, models of single real scalar field DBI inflation are already tightly
constrained by current observations—precisely because of the constraints imposed
by the underlying microphysics. Such models could be ruled out in the near future
[56–59]. However, restricting to a single real scalar field is not necessary within a
string theory context. For example,manyDBImodels that havebeen considered focus
on a D3-branemoving along a warped throat of an internal Calabi-Yaumanifold. The
radial direction is typically identified with the inflaton. By construction, however,
such models naturally have multiple real scalar fields, with the angular directions in
the Calabi-Yau space providing the additional degrees of freedom [60]. Hence, it is
of interest to also study multi-field models of DBI inflation. For such theories, the
constraints arising from the comparison with observational data are typically less
severe. An interesting recent example is provided in [61], which is in agreement with
all current observations, but where significant non-Gaussianities of both local and
equilateral type are predicted.

The models studied in the previous section, if the second real scalar ξ is not sta-
bilized, can be regarded as two real scalar field models. This can be achieved by
removing restriction (7.68) on the Kähler potential. However, the form of the poten-
tial (7.62) is then rather restrictive. We found that an essentially arbitrary positive
potential could be obtained in the purely φ direction by choosing w(A) appropri-
ately. But, given w(A), the potential for the second field ξ is then determined at the
same time. Hence, there is a risk that the second direction spoils the suitability of
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the potential for inflationary dynamics [62]. It turns out that more flexibility in con-
structing multi-real-scalar-field potentials can be obtained by coupling our theory to
a third chiral superfield Δ = C + ΩαΩαFC , see [19] for details.

7.4 Supersymmetric Galileons

Galileon theories of a real scalar field are special because they have two-derivative
equations of motion despite having higher-derivative Lagrangians. They are a sub-
class of the most general scalar theories with two-derivative equations of motion,
known as Horndeski’s theories [20] (see also [22]). The “standard” Galileons [21]
have the additional property that in the equations of motion there are precisely two
derivatives acting on each field. An immediate consequence is that the standard
Galileons are invariant under a so-called Galilean shift symmetry φ ♦ φ + c +
bμxμ with c, bμ being constants, whence they derive their name. Many variants of
the original model have been constructed, such as conformal Galileons [63], DBI
Galileons [64], Galileons with an internal symmetry [65, 66], bi-Galileons [67, 68]
and so on. The crucial property of all of these theories is that they have equations
of motion with no more than two derivatives acting on a field. This helps to evade
Ostrogradsky’s theorem [69]—that is, despite the higher-derivative nature of the
Lagrangians, for suitable coefficients of the Galileon Lagrangians these theories do
not contain ghosts.

Galileons have attracted considerable interest due to their rather remarkable prop-
erties. For example, they admit de-Sitter-like solutions in the absence of a cosmo-
logical constant [70–72] and they lead to a Vainshtein-type screening mechanism so
that they can be in agreement with solar system “fifth force” constraints while con-
tributing a fifth force on large scales [73, 74]. Moreover, they allow for solutions that
violate the null energy conditionwithout leading to the appearance of ghosts [63, 75].
This last property means that Galileons also have applications to early universe cos-
mology, allowing the construction of emergent cosmologies (see, for example, the
model of Galilean genesis [76]) and non-singular bouncing cosmologies such as
new ekpyrotic theory [13–15, 34, 77, 78] or the matter bounce model [79]. Such
alternativemodels to inflation even play a significant role in eternal inflation [80–82].

There exists a suggestive construction of Galileon Lagrangians as the theories
describing the dynamics of co-dimension-one branes [64]. This has led people to
speculate that Galileons might arise naturally out of string theory and, hence, enjoy a
more fundamental status than other higher-derivative terms, in analogy to the Dirac-
Born-Infeld action. Brane backgrounds in string theory typically preserve some
amount of unbroken supersymmetry. Therefore, if Galileons are to arise from string
theory it will be in a supersymmetric context. Hence, it is of importance to study
the supersymmetric extensions of Galileon theories. In previous work [18], it was
shown that conformal Galileons can be made globally N = 1 supersymmetric—
these theories arising naturally as a way of obtaining correct sign spatial gradients
in supersymmetric ghost-condensates (see also [16, 17]). It was found that the new
fields required by supersymmetry (a second real scalar, a spin 1

2 fermion and a com-
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plex auxiliary field) admit stable, positive-energy fluctuations around specific back-
grounds, namely those where the second scalar field is constant. However, possible
ghost instabilities associated with vacua with a spacetime-dependent second scalar
were not explored. We will do this in the present paper, restricting our discussion for
the most part to the cubic Galileons within the context of four-dimensional global
N = 1 supersymmetry.

7.4.1 Galileons and Complex Fields

In this and the following two sections, we will focus on the simplest non-trivial
Galileon Lagrangian given by [21]

L3 = −1

2
(∂φ)2�φ. (7.70)

By varying with respect to φ, one can immediately see that the equation of motion
is second order and given by

(�φ)2 − φ,μνφ,μν = 0. (7.71)

Thus, despite the higher-derivative nature of the Lagrangian, the equation of motion
is well-behaved and the Cauchy problem is well-posed. In four dimensions, there are
two more such Galileon Lagrangians,

L4 = −1

2
(∂φ)2

(
(�φ)2 − φ,μνφ,μν

)
, (7.72)

L5 = −1

2
(∂φ)2

(
(�φ)3 − 3�φφ,μνφ,μν + 2φ,μνφ,μρφ,ν

ρ
)

(7.73)

which also lead to second-order equations of motion. In N = 1 supersymmetry, the
lowest component of a superfieldΘ is a complex scalar A,which can be decomposed
into two real scalars as A = 1→

2
(φ + iξ). One consequence is that supersymmet-

ric scalar-field actions can always be written as hermitian combinations of A and
its complex conjugate A♥. Motivated by this, but before imposing any supersym-
metry condition, it is of interest to consider the possible extensions of the Galileon
Lagrangian (7.70) from the real scalar field φ to the complex scalar A. Specifically,
we are interested in Lagrangians which, when the second real scalar ξ is set to zero,
reduce to the Galileon Lagrangian L3 presented in (7.70). There are, in principle,
a large number of such Lagrangians. Let us here just illustrate using two concrete
examples that, even though by construction these extended Lagrangians contain
the L3 Lagrangian for φ, the properties of the second scalar ξ can vary consider-
ably, and it is in no way guaranteed that the second scalar also shares the desired
Galilean symmetries. Having established this, we will then—in Sect. 7.3—move on
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to supersymmetry (where we will give a completely exhaustive treatment) in order
to determine which such complex scalar field generalizations of L3 supersymmetry
allows.

Our first example of a generalization of (7.70) from the real scalar φ to a complex
scalar field A is straightforward. It is obtained simply by replacing φ ♦ →

2A and
then taking the real part. For L3 above, this amounts to considering the Lagrangian

LC
3 = − 1→

2
(∂ A)2�A + h.c., (7.74)

where h.c. stands for “hermitian conjugate”. It is then evident that the resulting
equations of motion are still second order, since they are given by

(�A)2 − A,μν A,μν = 0, (�A♥)2 − A♥,μν A♥
,μν = 0. (7.75)

In terms of the real scalars φ and ξ, the Lagrangian and equations of motion are

LC
3 = −1

2

(
(∂φ)2�φ − (∂ξ)2�φ − 2∂φ · ∂ξ�ξ

)
, (7.76)

0 = (�φ)2 − φ,μνφ,μν − (�ξ)2 + ξ,μνξ,μν, (7.77)

0 = �φ�ξ − φ,μνξ,μν, (7.78)

clearly exhibiting that we nowhave a coupled two-fieldGalileon system.Not only are
the equations of motion of second order, but both fields admit independent Galileon-
type shift symmetries φ ♦ φ+c(φ) +b(φ)

μ xμ and ξ ♦ ξ+c(ξ) +b(ξ)
μ xμ respectively.

However, using a second concrete example, we now demonstrate that other exten-
sions of the L3 Lagrangian to complex scalar field A do not necessarily lead to
second-order equations of motion. To illustrate this important point, consider the
action

L̃C
3 = − 1→

2
∂ A · ∂ A♥�A + h.c. (7.79)

= −1

2

(
(∂φ)2�φ + (∂ξ)2�φ

)
, (7.80)

leading to the equations of motion

0 = (�φ)2 − φ,μνφ,μν − ξ,μνξ,μν − ξ,μξ,ν
νμ, (7.81)

0 = �ξ�φ + ξ,μφ,ν
νμ. (7.82)

Clearly, these are higher-order in time and, thus, by Ostrogradsky’s theorem [69],
lead to the appearance of ghosts.
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Given these two contrasting examples, a crucial question is then: which kinds of
complex scalar field generalizations of the Galileon Lagrangian does supersymmetry
allow? We now turn to this question.

7.4.2 Supersymmetric Cubic Galileons

In this section, we will construct all possible supersymmetric Lagrangians involving
the product of three fields and four space-time derivatives, in order to see if there
might exist inequivalent supersymmetric extensions of the L3 Lagrangian (7.70). This
means that we should consider all possible superfield expressions involving the cubic
product of a chiral superfield and two spacetime derivatives (and linear combinations
of all such terms). The superfieldLagrangians of potential interest are straightforward
to write down. They are given by the θθθ̄θ̄ components of the following expressions
(where derivatives act only on the immediately following superfield):

∂μΘ∂μΘΘ + h.c. (7.83)

∂μΘ∂μΘ†Θ + h.c. (7.84)

∂μΘ∂μΘΘ† + h.c. (7.85)

All other terms of potential interest can be related to these via linear combinations
and using integration by parts.

One might be concerned that there could be other allowed terms involving the
superspace derivatives Dα and D̄α̇. Once again, however, upon integration by parts,
using the algebra (7.3) and the chiral superfield constraint, it follows that these
are always equivalent to some linear combination of (7.83)–(7.85). As a concrete
example, consider the term

∫
d4xd4θD̄α̇ D2Θ D̄α̇Θ†Θ. (7.86)

Using integration by parts, algebra (7.3) and the chiral superfield constraint, this
becomes

∫
d4xd4θD̄α̇ D2Θ D̄α̇Θ†Θ (7.87)

=
∫

d4xd4θ(−D̄2D2Θ)Θ†Θ (7.88)

=
∫

d4xd4θ(−16�Θ)Θ†Θ (7.89)

=
∫

d4xd4θ[16∂μΘ∂μΘ†Θ + 16∂μΘ∂μΘΘ†] (7.90)
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and, hence, is simply a linear combination of (7.84) and (7.85), as claimed. It is
straightforward to show that this is always the case.

Having established this, let us systematically discuss the Lagrangian associated
with each of the three supersymmetric terms (7.83)–(7.85). First consider (7.83).
Note that this is the only one of the three terms that can possibly lead to the complex
Galileon LC

3 given in (7.74) of the previous section. This follows from the fact that it
is the sole term containing only Θ’s or only Θ†’s in a single term. Hence, it appears
that this might be a suitable supersymmetric extension of the L3 Lagrangian with
purely second order equations of motion. However, the chirality of Θ immediately
implies that the supersymmetric Lagrangian associated with (7.83) is, in fact, zero.
To see this, instead of integrating over d4θ, one canmake use of theGrassmann nature
of the θ, θ̄ coordinates and replace d4θ by a D2 D̄2 derivative of the corresponding
superfield expression. Since D̄ commutes with partial derivatives, it immediately
follows that superfield expressions constructed exclusively out of Θ’s and partial
derivatives must vanish, since the D̄ derivative will necessarily act on a chiral field
Θ thus yielding zero. That is, the supersymmetric action associated with (7.83) is

∫
d4xd4θ∂μΘ∂μΘΘ = 0. (7.91)

Note that this argument relies solely on holomorphicity and, thus, also extends to
potential supersymmetric extensions of complex Galileons with higher powers of
fields, such as LC

4 and LC
5 .

It follows that we are left with only two possible supersymmetric extensions of
the L3 Lagrangian—namely, with integrands (7.84) and (7.85). These are

∫
d4xd4θ∂μΘ∂μΓ†Θ =

∫
d4x

(−A�A�A♥ − �A♥(∂ A)2
)

(7.92)

and
∫

d4xd4θ∂μΘ∂μΘΓ† =
∫

d4x �A♥(∂ A)2 (7.93)

respectively, plus their hermitian conjugates. Note that we have used integration by
parts to simplify these terms as much as possible. Let us first examine the action
given in (7.92). We immediately see that this term is not an appropriate extension of
the L3 Galileon Lagrangian. This follows from the fact that, when the scalar ξ is set
to zero, this Lagrangian does not reduce to L3 and in fact results in a fourth-order
equation of motion for φ. Hence, we are left with a single possible supersymmetric
extension of the L3 Galileon Lagrangian, namely the real part of (7.93). We note
that this Lagrangian is equivalent to the supersymmetric Galileon Lagrangian used
in [18]. Thus, we define the supersymmetric extension of L3 as
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L SU SY
3 ∼ − 1→

2

∫
d4 θ∂μΘ∂μΘΓ† + h.c.

= − 1→
2
�A♥(∂ A)2 + h.c.

= − 1

2

(
(∂φ)2�φ − (∂ξ)2�φ + 2∂φ · ∂ξ�ξ

)
. (7.94)

Compared to the complex Galileon (7.76), only the sign of the last term has changed!
Nevertheless, this has profound consequences, since the resulting equations ofmotion
are now of third order in derivatives. They read

0 = (�φ)2 − φ,μνφ,μν + (�ξ)2 + ξ,μνξ,μν + 2ξ,μξ,ν
νμ, (7.95)

0 = ξ,μνφ,μν + ξ,μφ,ν
νμ. (7.96)

As one can clearly see, it is the presence of the second scalar ξ that induces the
dangerous higher-derivative terms. That is, L SU SY

3 in (7.94), similarly to the second
of our concrete examples given in (7.79), has higher-order equations of motion. We
will show explicitly in the next section that the presence of these higher derivatives
leads to the appearance of a ghost.

7.4.3 Hiding from the Ghost

We would now like to explicitly demonstrate the ghost degree of freedom in L SU SY
3 .

The presence of a ghost is already implied by Ostrogradsky’s theorem [69] and we
will, in fact, analyze a supersymmetric version of L4 from this point of view in the
following section. Nevertheless, we prefer to also analyze the Lagrangian L SU SY

3
directly, both because it is instructive to see the ghost appearing at the level of the
Lagrangian and because such an analysis elucidates in what regime the ghost can
be harmless. For this purpose, it suffices to look at the time-derivative terms in the
Lagrangian, since it is these that are associated with ghosts. Adding a canonical
kinetic term L SU SY

2 = ∫
d4θΘΘ† = −∂μ A∂μ A♥, as well as an overall constant c3

in front of the L SU SY
3 Lagrangian, the Lagrangian of interest becomes

L SU SY
2+3 ∼ L SU SY

2 + c3L SU SY
3 = 1

2
φ̇2 + 1

2
ξ̇2 + c3ξ̇

2φ̈, (7.97)

where we have integrated by parts in order to place all double derivatives on φ
rather than ξ. Note that this is a completely arbitrary choice and does not reduce the
generality of our analysis. We consider a time-dependent background and would like
to study perturbations around it. Thus, we define

φ = φ̄(t) + δφ(xμ), ξ = ξ̄(t) + δξ(xμ). (7.98)
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Even though the perturbations depend on both time and space, we will only be inter-
ested in the time dependence here. To quadratic order in fluctuations, the Lagrangian
then becomes

L SU SY
2+3 quad = 1

2
(δ̇φ)2 + 1

2
(1 + 2c3

¨̄φ)(δ̇ξ)2 + 2c3
˙̄ξ δ̇ξδ̈φ. (7.99)

By defining a new fluctuation variable

δ̇b ∼ δ̇ξ + 2c3
˙̄ξ

1 + 2c3
¨̄φ
δ̈φ, (7.100)

the quadratic Lagrangian can then be diagonalized to become

L SU SY
2+3 quad = 1

2
(δ̇φ)2 + 1

2
(1 + 2c3

¨̄φ)

(
(δ̇b)2 − 4c23

˙̄ξ2
(1 + 2c3

¨̄φ)2
(δ̈φ)2

)
. (7.101)

Note that (δ̇b)2 and (δ̈φ)2 enter with opposite signs and, hence, one of these two

terms is ghost-like.7 Assuming that the factor (1 + 2c3
¨̄φ) is positive, the ghost then

resides in δ̈φ. As the Lagrangian shows, the significance of the ghost is essentially

controlled by the size of c3
˙̄ξ. This can be confirmed by looking at the dispersion

relation of δφ. If one denotes the four-momentum of δφ by pμ, then the associated
dispersion relation is given by

p20
(
1 − 4c23

˙̄ξ2
(1 + 2c3

¨̄φ)
p20

) = 0, (7.102)

where we have assumed that ξ̇ and φ̈ are slowly varying. The mass m is defined via
p2 = −p20 = −m2 and, hence, the dispersion relation implies that δφ consists of
two modes. The first is a massless mode which arises from the ordinary correct-sign
kinetic term. The second is the ghost, which has a mass

m2
g = (1 + 2c3

¨̄φ)

4c23
˙̄ξ2

. (7.103)

Note that, as there is an overall wrong sign for the ghost in the Lagrangian, this mass
is formally tachyonic. However, it is important to realize that this mass does not arise
from a potential, but rather from the kinetic term (δ̇φ)2. The implication is that this
mass does not indicate a time scale over which the (perturbative) vacuum becomes
unstable, but rather an energy scale associated with the ghost. In other words, as

7 This ghost was not seen in [18] because in that paper the perturbation analysis was performed
solely around ξ̄ = constant backgrounds.
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long as we are considering fluctuations with energy below mg, the ghost does not
get excited. From an effective field theory point of view, we are protected from the
catastrophic instabilities associated with the ghost if we take the cut-off Π of the
effective field theory to lie below mg. At the same time, we must ensure that the

background itself, that is, ˙̄ξ, remains within the range of validity of the effective

theory. Hence, an additional requirement is that | ˙̄ξ| < Π2, and similar inequali-
ties must also hold for higher time derivatives of ξ. Together with the requirement

Π < mg , this implies that we must impose (assuming |c3 ¨̄φ| ⊂ 1)

| ˙̄ξ| <
1

|c3|2/3 , | ¨̄ξ| <
1

|c3| , · · · (7.104)

in order to safely suppress the ghost. Thus, as expected, for general backgrounds one
must take the prefactor of the Galileon term to be small for consistency.

7.5 Conclusions and Outlook

This talk was concerned with a new formalism that allows one to obtain an N = 1
supergravity extension of any scalar field theory with higher-derivative kinetic terms.
This was accomplished by constructing a superfield—quartic in chiral scalars—
which contains the term (∂φ)4 and, when the fermions are set to zero, consists
entirely of its top component. Thus, when multiplied by any other superfield, the
resulting Lagrangian contains only the lowest component of themultiplicative factor.
This property enables one to directly construct a supergravity extension any higher-
derivative scalar field termof interest.Moreover, the discussed supergravity extension
of (∂φ)4 is likely to be the unique one that does not modify the gravitational sector
of the theory. We discussed the investigation of the properties of the auxiliary fields
in this context, which are crucial to the structure of supergravity, and their effect on
the expressions for the potentials.

Namely, there is one new, and important, property of our formalism. That is,
although the auxiliary fields F satisfy an algebraic equation of motion, that equation
is now cubic—as opposed to the linear equation in the usual second-order kinetic
theory. Hence, this equation admits up to three distinct solutions. These solutions
lead to different theories that cannot dynamically transition from one to another.
One solution is directly related to the one ordinarily obtained in the absence of
higher-derivative terms. This leads to corrections to both the kinetic and potential
terms when substituted into the action. In the limit that the higher-derivative terms
become large, the effect of eliminating the auxiliary field is to suppress certain
contributions to the potential. The result is that the negative term−3eK |W |2 becomes
the dominant contribution to the potential energy. Thus, in the large higher-derivative
limit, supergravity manifests once more its predilection for negative potentials. This
feature implies that the supergravity implementation of inflationary and k-essence
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models—such as DBI inflation—that rely on higher-derivative kinetic terms in an
essential way, become more challenging. In addition to this ordinary solution for F ,
there exist up to two new solutions. We refer to [16] for details.

We hope that our results can eventually be used to bridge the gap between stan-
dard model building in cosmology and full-blown string compactifications, leading
to well-motivated effective theories of early-universe dynamics. One of the most
important problems in cosmology is to find a scenario for the early universe that
is not only in agreement with observations, but is also rooted in a sensible micro-
physical theory. Only in this way can cosmology and particle physics can be united,
and a consistent theory of our universe be obtained. While still far from this goal,
we discussed a small aspect of the problem—showing how to construct models of
DBI inflation in four-dimensional N = 1 supergravity. We saw that if one tries to
construct a model of DBI inflation from a single chiral superfield, it is bound to
fail—since the potential becomes negative when the higher-derivative terms become
important. This obstacle can be circumvented by coupling the theory to one or more
additional chiral superfields. In fact, the construction can be generalized to an arbi-
trary number N of chiral superfields—then, not only can the potential energy be
positive but one can construct a wide range of potential functions for the original
DBI scalar φ = →

2⇒(φ1) and N −1 additional real scalars. Our analysis shows that
models of multi-real-scalar-field DBI inflation in fact can be constructed in N = 1
supergravity. Of course this leaves open the question of whether there exist other
ways of realizing DBI inflation within the context of supergravity. More importantly,
however, is the question of whether or not such constructions can be obtained from
a full-fledged string compactification, or from some other fundamental theory of
particle physics. These are pertinent questions for future research.

We also discussed the N = 1 supersymmetric extension of Galileons theories.
Those containing the product of three chiral fields necessarily admit higher-derivative
equations of motion, which implies that these theories contain ghosts. This means
that when supersymmetry is included, cubic Galileons, both of the standard and the
conformal variety, lose their special status among higher-derivative scalar theories
and should be treated in much the same way as other higher-derivative terms. That
is to say, they should be regarded as correction terms in a perturbative, effective
field theory framework. By extension, our results are also likely to apply to the
relevant parts of Horndeski’s most general scalar-tensor theory [20]. We stress that
our work has been done in the context of minimal N = 1 supersymmetry. It would
be interesting to carry out a similar analysis for extended supersymmetries.
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Chapter 8
The Leading Eikonal Operator in String-Brane
Scattering at High Energy

G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano

In this paper we present two (a priori independent) derivations of the eikonal operator
in string-brane scattering. The first one is obtained by summing surfaces with any
number of boundaries, while in the second one the eikonal operator is derived from
the three-string vertex in a suitable light-cone gauge. This second derivation shows
that the bosonic oscillators present in the leading eikonal operator are to be identified
with the string bosonic oscillators in a suitable light-cone gauge, while the first one
shows that it exponentiates recovering unitarity. This paper is a review of results
obtained in [1, 2].
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8.1 Introduction

High energy scattering in the Regge limit in superstring theory has been investigated
since more than 25 years. It was originally studied in elastic string-string collisions 1

and has more recently been extended to the elastic scattering of a closed string on a
Dp-brane [2]. Due to the fact that, in the Regge limit, the amplitude is dominated
by the exchange of the leading Regge trajectory that has the graviton as the lowest
state, one gets a lowest order (sphere or disc) amplitude that diverges with the energy
violating unitarity at high energy. Unitarity is restored by adding higher order correc-
tions (torus or annulus etc.) and summing them up. In this way, while in field theory
one gets an exponential with a phase divergent at high energy that is consistent with
unitarity,what one obtains in string theory can be written in terms of an infinite set of
bosonic oscillators, introduced to write the amplitude in a simple and compact form,
and is called the leading eikonal operator.

This construction poses, however, various problems. What are these bosonic
oscillators? Are they connected to the bosonic oscillators of superstring theory?
Since we are studying superstring theory, why don’t we get also fermionic oscil-
lators? Although the connection of these oscillators with the string oscillators was
unclear, it was believed that they were somehow directly related to the string bosonic
oscillators. Evidence of this connection came from a paper by Black and Monni [3]
where the disk amplitude for the production of massive states, lying on the leading
Regge trajectory, from the scattering of a massless state on a Dp-brane was com-
puted and found to agree with what one gets from the eikonal operator. It turns out,
however, that this comparison is more subtle because one has to take into account
that the longitudinal polarization of the massive state gets enhanced at high energy
pretty much as the longitudinal component of the gauge boson W ± in the Standard
Model without the Higgs boson.

In a recent paper [1] the problems raised above were clarified showing that the
bosonic oscillators appearing in the eikonal operator are the bosonic oscillators of
superstring in a suitable light-cone gauge and that the fermionic oscillators are not
relevant at high energy. Furthermore, it was shown how to correctly treat the longi-
tudinal polarization of the massive state. This means that, if we scatter a massless
state on a Dp-brane, we produce, at high energy, only massive states involving an
arbitrary number of bosonic oscillators together with only the fermionic oscillators
already present in the massless state. Actually, the analysis of [1] is more general
because it provides the production amplitude in the Regge high energy limit of an
arbitrary state of superstring theory from the scattering of an arbitrary state on the
Dp-brane. In particular, it has been shown [1] that the leading eikonal operator can
be directly derived starting from the three-string light-cone vertex (either in the form
of Green-Schwarz or in that of Ramond-Neveu-Schwarz) and then inserting in one
of the three legs the string propagator and by closing it with the boundary state that
takes care of the presence of the Dp-branes. This provides a direct construction of

1 For a complete list of references see [1].
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the leading eikonal operator from the string operator formalism. The aim of this talk
is to present these recent results. In [1] the leading eikonal operator has been also
constructed by using a covariant formalism in terms of the Reggeon vertex operator,
but this will not be reviewed here.

The content of this paper is the following. In Sect. 8.2 we derive the eikonal
operator as it was originally constructed in [2] starting from the scattering amplitudes.
In Sect. 8.3 we give a description of the physical spectrum of the first massive level
in the two light-cone formalisms (GS and RNS) and in the covariant formalism.
Then, interpreting the bosonic oscillators of the eikonal operator as the light-cone
bosonic oscillators of string theory, we show that, at high energy, the states that can
be produced by the scattering of a graviton on a Dp-brane, are only those of the type
A−1; j |i, 0→, while those of the type Q−1;a |ȧ, 0→ are not. This is consistent with what
one gets from the eikonal operator that does not contain any fermionic oscillator.
In Sect. 8.4 we show how to derive the eikonal operator from the light-cone three-
string vertex and the boundary state. Finally, an Appendix with a discussion of the
kinematics of the scattering process is added at the end of the paper.

8.2 The Eikonal Operator I

In this section we derive the leading eikonal operator from the elastic scattering of a
massless state of superstring theory on a Dp-brane, following [2]. The starting point
is the disk amplitude given by:

A1(E, t) ∼ ♥0|
∫

d2z1d2z2
dVabc

W1(z1, z̄1)W2(z2, z̄2)|B→

= −α
9−p
2 R7−p

p

Θ (
7−p
2 )

K(p1, ν1; p2, ν2)
Θ (−ϕ♦E2)Θ (−ϕ♦

4 t)

Θ (1 − ϕ♦E2 − ϕ♦
4 t)

(8.1)

where

R7−p
p = gN

(2α
♣

ϕ♦)7−p

(7 − p)VS8−p
, VSn = 2α

n+1
2

Θ ( n+1
2 )

, (8.2)

W1 and W2 are the vertex operators of a massless state and |B→ is the boundary state
that identifies the right with the left oscillators and imposes Dirichlet (Neumann)
boundary conditions along the directions transverse (longitudinal) to the world-
volume of the stack of N parallel Dp-branes. The scattering is described by two
Mandelstam-like variables:

t = −(p1√ + p2√)2 = −4E2 sin2
Ω

2
; s = E2 = |p1√|2 = |p2√|2 (8.3)
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Ω is the angle between the (9 − p)-dim vectors p1√ and −p2√.
Along the directions of the world-volume of the Dp-branes, there is conservation

of energy and momentum:

(p1 + p2)∗ = 0; p21 = p22 = 0 (8.4)

The amplitude has simultaneously poles for E2 such that 1+ϕ♦E2 = n (n = 1, 2 . . .)

corresponding to open strings exchanged in the s-channel and poles for t such that
2 + ϕ♦

2 t = 2m(m = 1, 2 . . .) corresponding to closed strings exchanged in the
t-channel. At high energy:

K(p1, ν1; p2, ν2) = (ϕ♦E2)2T r(ν1ν
t
2) (8.5)

and the amplitude has Regge behaviour for ϕ♦s ⊂ ϕ♦t ∼ 0 (s ∞ E2):

T1(E, t) ∞ A1(E, t)

2E
= R7−p

p α
9−p
2

Θ (
7−p
2 )

αe−i ϕ♦
4 t (ϕ♦s)1+ ϕ♦

4 t

2E sin(α ϕ♦
4 (−t)) Θ (1 + ϕ♦t

4 )
(8.6)

T1 has a real and an imaginary part. The real part describes the scattering of the
closed string on the Dp-brane, while the imaginary part describes the absorption
of the closed string by the Dp-brane. When ϕ♦ ≤ 0 the real part reduces to the
field theoretical result (graviton exchange), while for ϕ♦ ≡= 0 we have the graviton
exchange dressed with string corrections. Notice that the imaginary part is a pure
string correction that, however, is not relevant at very large impact parameter because
it is not divergent at t = 0 as the real part. The disk amplitude in (8.6) diverges at
high energy and violates unitarity. In order to restore unitarity we have to include
higher order corrections and sum them up.

Before we proceed further it is instructive to write the corresponding amplitude
that one gets in the bosonic string for the elastic scattering of a closed string tachyon
on a Dp-brane:

A1 ∼
Θ
(−1 − ϕ♦s

)
Θ
(
−ϕ♦t

4 − 1
)

Θ
(
−ϕ♦s − ϕ♦t

4 − 2
) =

Θ
(−ϕopen(s)

)
Θ
(
−ϕclosed (t)

2

)

Θ
(
−ϕopen(s) − ϕclosed (t)

2

) (8.7)

where ϕopen(s) = 1 + ϕ♦s and ϕclosed(t) = 2 + ϕ♦
2 t . It has the same form as the

originalVenezianomodel except having twodifferent trajectories in the two channels:
one corresponding to the open string and the other to the closed string.

The next diagram is the annulus diagram that is given by:

A2 = N
∫

d2z1d2z2
∑
ϕ,ψ

ϕψ♥B|W (0)
1 (z1, z̄1)W (0)

2 (z2, z̄2)D|B→ϕ,ψ
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N is a normalization factor and
∑

ϕ,ψ is the sum over the spin structures.
The sum over the spin structures can be explicitly performed obtaining in practice

only the contribution of the bosonic degrees of freedomwithout the bosonic partition
function.

The final result is rather explicit. In the closed string channel the coefficient of
the term with Tr(ν1νT

2 ) (relevant at high energy) of the annulus is equal to:

A2(s, t) = α3(ϕ♦s)2

Θ 2
(
7−p
2

) R14−2p
p

(2ϕ♦)
7−p
2

×
⎧
2
∫ ⊗

0

dλ

λ
5−p
2

∫ 1
2

0
dε1

∫ 1
2

0
dε2

∫ 1

0
dρ1

∫ 1

0
dρ2 I

⎨
(8.8)

where

I ∞ e−ϕ♦sVs− ϕ♦
4 tVt ; z1,2 ∞ e2α(−λε1,2+iρ1,2) (8.9)

and

Vs = −2αλε2 + log
Ω1(iλ(σ + ε)|iλ)Ω1(iλ(σ − ε|)iλ)

Ω1(iλσ + ρ)|iλ)Ω1(iλσ − ρ)|iλ)
(8.10)

and

Vt = 8αλε1ε2 + log
Ω1(iλε + ρ)|iλ)Ω1(iλε − ρ)|iλ)

Ω1(iλσ + ρ)|iλ)Ω1(iλσ − ρ)|iλ)
(8.11)

with ε ∞ ε1 − ε2; σ = ε1 + ε2; ρ ∞ ρ1 − ρ2.
The high energy behaviour (E ≤ ⊗) of the annulus diagram can be studied, by

the saddle point technique, looking for points where Vs vanishes. This happens for
λ ≤ ⊗ and ε ≤ 0.

Performing the calculation one gets the leading term for E ≤ ⊗:

A(3)
2 (E, t)

2E
≤ i

2

2⎩
i=1

⎣∫
d8−pki

(2α)8−p

A1(E, ti )

2E

⎤

× γ(8−p)(

2∑
i=1

ki − q) V2(t1, t2, t); ti ∞ −k2
i ; t = −q2 (8.12)

where

V2(t1, t2, t) =
Θ
(
1 + ϕ♦

2 (t1 + t2 − t)
)

Θ 2
(
1 + ϕ♦

4 (t1 + t2 − t)
) (8.13)
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In order to find the complete leading eikonal operator wewrite it in amore suggestive
way, in terms of an infinite set of (8 − p)-dim bosonic oscillators:

V2(t1, t2, t) = ♥0|
2⎩

i=1

⎣∫ 2α

0

d∂i

2α
: eiki ·X (∂i ) :

⎤
|0→ (8.14)

where

X̂(∂) = i

⎦
ϕ♦
2

∑
n ≡=0

(
ϕn

n
ein∂ + ϕ̃n

n
e−in∂

)
(8.15)

The two vacuum states correspond to the two external massless states (states with
no bosonic excitations: (νμδφ

μ

− 1
2
φ̃δ

− 1
2
|0→).

Then the leading order from the annulus can be written as follows:

A(3)
2 (E, t)

2E
≤ i

2

2⎩
i=1

⎧∫
d8−pki

(2α)8−p

A1(E,−k2
i )

2E

⎨
γ(8−p)(

2∑
i=1

ki − q)

× ♥0|
2⎩

i=1

⎣∫ 2α

0

d∂i

2α
: eiki ·X (∂i ) :

⎤
|0→ (8.16)

where the two vertex operators correspond to the two leading Reggeons exchanged
in the two t-channels: t1 and t2.

It can be naturally generalized to the leading term coming from a surface with h
boundaries:

A(h+1)
h (s, t)

2E
∼ i h−1

h!
h⎩

i=1

⎧∫
d8−pki

(2α)8−p

A1(s,−k2
i )

2E

⎨

× γ(8−p)(

h∑
i=1

ki − q) ♥0|
h⎩

i=1

⎣∫ 2α

0

d∂i

2α
: eiki ·X (∂i ) :

⎤
|0→ (8.17)

Going to impact parameter space

i
A(h+1)

h (s, b)

2E
=
∫

d8−pq
(2α)8−p

eibq i
A(h+1)

h (s, t)

2E

= i h

h!
h⎩

i=1

⎧∫
d8−pki

(2α)8−p

A1(s,−k2
i )

2E

⎨

♥0|
h⎩

i=1




2α∫

0

d∂i

2α
: eiki (b+X̂(∂i )) :


 |0→ (8.18)
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and summing all contributions:

⊗∑
h=1

A(h+1)
h (s, b)

2E
∼ ♥0|1

i

[
e2i γ̂(s,b) − 1

]
|0→, (8.19)

we get the leading eikonal operator

2γ̂(s, b) =
2α∫

0

d∂

2α

∫
d8−pk

(2α)8−p

A1(s,−k2)

2E
: eik(b+X̂(∂)) :

=
2α∫

0

d∂

2α

: A1

(
s, b + X̂(∂)

)
:

2E
(8.20)

Thefinal result that includes all string corrections is obtained from thefield theoretical
one with the substitution:

b =⇒ b + X̂; X̂(∂) = i

⎦
ϕ♦
2

∑
n ≡=0

(
ϕn

n
ein∂ + ϕ̃n

n
e−in∂

)
(8.21)

and normal ordering.
This is the way that the leading eikonal operator was originally constructed both

in string-string and string-brane scattering. From this derivation it is not clear what
the bosonic oscillators represent. It was, however, somehow believed that, when the
eikonal operator is saturated with a couple of physical states, it will reproduce the
high energy behaviour of their scattering amplitude.

For the states of the leadingRegge trajectory it has been shown [3] that the quantity

∫
d8−pk

(2α)8−p

A1(E,−k2)

2E
γ(8−p)(k − q) ♥0|

∫ 2α

0

d∂

2α
: eik·X (∂) : |λ→ (8.22)

reproduces the high energy behaviour of the disk amplitude involving amassless state
(♥0|) and a state of the leading Regge trajectory (|λ→). It turned out, however, that
this computation is more subtle because the longitudinal polarization of the massive
state gets enhanced at high energy. The annulus diagram for a massless state and an
excited state of the leading Regge trajectory has also been computed [4].

In any case, the problem of the nature of the bosonic oscillators present in the
eikonal operator remains. Given the fact that in string-string collisions they are along
the eight directions orthogonal to both the time and the direction of the fast moving
string and similarly in string-brane collisions they are along the 8 − p transverse
directions again orthogonal to the time and to the direction of the fast moving string,
strongly suggests that they should be interpreted as the string bosonic oscillators in
the light-cone gauge. But even so, why does the eikonal operator not contain the
fermionic oscillators?
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Putting this problem for a moment aside, in the next section we compute the
amplitude for the production of a massive state belonging to the first excited level of
superstring theory from the scattering of a graviton on a Dp-brane and we compare
with what one gets from the eikonal operator. We will show that, in agreement
with the eikonal operator, we produce, at high energy, only excited states of the
graviton (|i→|ĩ→) of the type A−1, j |i→ Ã−1; j̃ |ĩ→. The remaining massive states of the

type Q−1,b|a→Q̃−1;b̃|ã→, A−1, j |i→Q̃−1;b̃|ã→ and Q−1,b|a→ Ã−1; j̃ |ĩ→ are not produced
at high energy.

8.3 States of the First Massive Level Produced
at High Energy

In order to understand the problems listed at the end of the last section, in this
section we consider the production of a massive state, belonging to the first massive
level, from the scattering of amassless state on a Dp-brane andwe studywhich of the
128×128 bosonic states are produced at high energy in the Regge limit. This section
is divided in three subsections. In the first one we compare the spectrum of physical
states at the first excited level in theGreen-Schwarz light-cone formalism, in the RNS
light-cone formalism and in the covariant formalism. We introduce also the DDF
operators that connect the states in the light-cone RNS with those in the covariant
formalism. In the second short subsection we compute the three-point amplitudes
involving two gravitons and a bosonic state of the first excited level. Finally, in the
third subsection, we compute the inelastic amplitude for the production of the states
of the first excited level and we check which of them are produced at high energy.

8.3.1 Spectrum of the First Excited Level

In this subsection we discuss the spectrum of physical states of the first massive level
in closed superstring theory in the two light-cone gauges (Green-Schwarz (GS) and
Ramond-Neveu-Schwarz (RNS)) and in the covariant formalism. Any closed string
state is a product of a state with left moving oscillators times a state with right moving
oscillators. In the following we discuss only the states with one type of oscillators.
Those with the other type of oscillators can be obtained exactly in the same way.

1. GS light-cone
In the GS light-cone the bosonic physical states at the first massive level are the
following:

ϕi−1| j→ =⇒ 64 states
Qa−1|b→ =⇒ 64 states

(8.23)

where i, j = 1 . . . 8 are vector indices and a, b = 1 . . . 8 are spinor indices of
SO(8).
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2. RNS light-cone
In the RNS light-cone the bosonic physical states are the following:

Ai−1B j
− 1

2
|0→ =⇒ 64 states

Bi
− 3

2
|0→ =⇒ 8 states

Bi
− 1

2
B j

− 1
2

Bk
− 1

2
|0→ =⇒ 56 states

(8.24)

where i, j, k = 1 . . . 8 are vector indices of SO(8). The states in the first line of
(8.23) correspond to those in the first line of (8.24), while the states in the second
line of (8.23) correspond to those in the second and third line of (8.24).

3. Covariant formalism
In the covariant formalism the physical states in the center of mass frame (p =
(M, 0)) are:

T I J =
(

ϕI−1φ
J
− 1

2
+ ϕJ−1φ

I
− 1

2
− 2

9
κ I J κH K ϕH−1φ

K
− 1

2

)
|0, p→ =⇒ 44 states

V I J K = φ I
− 1

2
φ J

− 1
2
φK

− 1
2
|0, p→ =⇒ 84 states (8.25)

where I, J, K , H = 1 . . . 9 are vector indices of SO(9). We can decompose the
9-dim indices I = i, v; J = j, v in 8-dim indices and a longitudinal one that we
call v:

T i j =⇒ 36 states; T iv =⇒ 8 states

V i jk =⇒ 56 states; V i jv =⇒ 28 states (8.26)

T i j and V i jv correspond to the 64 states in the first line of (8.24), while the
others correspond to those in the second and third line of (8.24). The two states
in (8.25) can be given a covariant SO(1, 9) form by a boost, In this way one gets
the following states:

|β1→ = T ϕε
ϕ♦ε♦ϕ

ε♦
−1φ

ϕ♦
− 1

2
|0, p→ (8.27)

where

T ϕε
ϕ♦ε♦ = (κ√)

ε
ε♦(κ√)ϕϕ♦ + (κ√)

ε
ϕ♦(κ√)ϕε♦ − 2

9
κ

εϕ
√ κ√ϕ♦ε♦

κ
μδ
√ = κμδ − pμ pδ

p2
(8.28)

and

|β2→ = κ
ε
√ε♦κ∂

√∂♦κτ
√τ ♦φ

ε♦
− 1

2
φ∂♦

− 1
2
φτ ♦

− 1
2
|0, p→ (8.29)
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It can be shown that the two states in (8.27) and (8.29) are physical states:

G 1
2
|β1,2→ = G 3

2
|β1,2→ = 0 (8.30)

The connection between the RNS oscillators in the light-cone gauge and those in the
covariant formalism is provided by the DDF operators [5]. In the case of superstring
they can be found in [6] and they are reviewed in [1]. In particular, as discussed
in [1], one gets for the states at the first massive level made with one A and one B
oscillators:

A−1, j B− 1
2 ,k |pT , 0→

=
{
1

2

⎧
ϕ

j
−1φ

k
− 1

2
+ ϕk−1φ

j
− 1

2
− γ jk

3

(
8∑

i=1

ϕi−1φ
i
− 1

2
− 2ϕv−1φ

v

− 1
2

)⎨

+ 1♣
2
(vφ− 1

2
)φ

j
− 1

2
φk

− 1
2

}
|p; 0→; j, k = 1 . . . 8. (8.31)

where (ν j )μφ
μ

− 1
2

∞ φ
j
− 1

2
, (ν j )μϕ

μ
−1, pT is the momentum of the tachyon present

in the DDF state and v is the longitudinal polarization of the massive state that is
orthogonal to the momentum p. Analogously, one can also compute the connection
with the covariant states of the other two DDF states: B− 1

2 ,i B− 1
2 , j B− 1

2 ,k |0, pT → and
B− 3

2 ,i |0, pT →.

8.3.2 Three-Point Amplitudes

In this subsection we provide the three-point amplitude, in the covariant formalism,
involving two gravitons and one of the states of the first massive level. In a closed
string theory the amplitude is the product of two amplitudes of open string theory,
one for the left movers and the other for the right movers. Here, we quote only the
result for the left movers.

For the massive state in (8.28) one gets:

Aμ;I J
δ (β1) ∼ νI J

ϕε

ϕ♦

2

[
κμϕ pε

3 pδ
1 − κδϕ pε

3 pμ
3 + κμδ pϕ

3 pε
3 + κμϕκδε

]
(8.32)

where p1 and p3 are the momenta of the two gravitons and we have assumed that the
polarization matrix is symmetric, traceless and orthogonal to the four-momentum p2
of the massive state:

pϕ
2 νI J

ϕε = κϕενI J
ϕε = 0 (8.33)
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For the state in (8.29) one gets:

Aμ;I,J,K
δ (β2) ∼ νI J K

ε∂τ

⎦
ϕ♦
2

[
κδε
(

p∂
3 κμτ − pτ

3κ
μ∂
)

− pε
3

(
κδ∂κμτ − κμ∂κδτ

)+ κμε
(
κδ∂ pτ

3 − κδτ k∂
3

)]
(8.34)

In this case the polarization is completely antisymmetric and orthogonal to the four-
momentum of the massive state p2. The indices μ and δ must be saturated with the
left moving part of the polarization of the two gravitons. We have assumed that all
three states are incoming: p1 + p2 + p3 = 0.

8.3.3 Inelastic Amplitudes

In this subsection we use the three-point amplitudes of the previous section to com-
pute the inelastic amplitude where the graviton with momentum p1 scatters on a
Dp-brane producing a massive state with momentum p2. This can be done by con-
sidering the product of any of the two amplitudes (one for the right movers and the
other for the left movers) constructed above and by saturating the indices δ and δ̄ of
the graviton with momentum p3 first with the graviton propagator in the De Donder
gauge:

Dδλ;δ̄λ̄ = κδλκδ̄λ̄ + κδλ̄κδ̄λ − 1
4κ

δδ̄κλλ̄

2p23
(8.35)

and then with the coupling of the graviton to the Dp-brane given by

1

2
Tp

κλλ̄ + Rλλ̄

2
; Tp = ♣

α(2α
♣

ϕ♦)3−p (8.36)

where R is the reflection matrix:

Rμ
δ = γμ

δ, μ, δ = 0, . . . , p; Rμ
δ = −γμ

δ, μ, δ = p + 1, . . . , 9. (8.37)

In this way one obtains:

1

2
Tpη10 Aδ

(
Rδδ̄ + 3−p

4 κδδ̄
)

(−t)
Āδ̄ (8.38)

where 2η2
10 = (2α)7g2(ϕ♦)4, A and Ā stand for one of the two amplitudes of the

previous subsection and t = −p23 = −(p1 + p2)2 is the momentum transfer in the
inelastic process. It is easy to check that
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1

2
Tpη10 = α

9−p
2 R7−p

p

Θ (
7−p
2 )

(8.39)

appearing in (8.1). Let us consider the case where both the right and left three-point
amplitudes are as in (8.32). We get:

1

2
Tpη10 νI J

εϕ

{
ϕ♦

2

[
κμϕkδ

1 + κδϕqμ − κμδqϕ
]

qε − κμϕκδε

}(
Rδδ̄ + 3 − p

4
κδδ̄

)

ν Ī J̄
ε̄ϕ̄

{
ϕ♦

2

[
κμ̄ϕ̄k δ̄

1 + κδ̄ϕ̄q μ̄ − κμ̄δ̄q ϕ̄
]

q ε̄ − κμ̄ϕ̄κδ̄ε̄

}
(8.40)

The term ϕ♦
2 k1Rk1 = (−ϕ♦s) gives a divergent term at high energy. Furthermore, we

have to remember that in the case of a massive state the longitudinal polarization is
also enhanced at high energy. Taking this into accountweget the following amplitude:

1

2
Tpη10 νI J

εϕν Ī J̄
ε̄ϕ̄(−ϕ♦s)ϕ

♦

2

⎣
κμϕ

(
qε − vε

♣
ϕ♦

)
+ ϕ♦

2
qεqμ vϕ

♣
ϕ♦

⎤

×
⎣
κμ̄ϕ̄

(
q ε̄ − vε̄

♣
ϕ♦

)
+ ϕ♦

2
q ε̄q μ̄ vϕ̄

♣
ϕ♦

⎤
(8.41)

If we use the two amplitudes as those in (8.34), we get

1

2
Tpη10 νI J K

ε∂τ

[
qε (κδ∂κμτ − κμ∂κδτ )+ q∂ (κμεκδτ − κδεκμτ )

+ qτ (κδεκμ∂ − κμεκδ∂)]
(

Rδδ̄ + 3 − p

4
κδδ̄

)
ϕ♦
2

ν Ī J̄ K̄
ε̄∂̄τ̄

×
[
q ε̄
(
κδ̄∂̄κμ̄τ̄ − κμ̄∂̄κδ̄τ̄

)
+ q ∂̄

(
κμ̄ε̄κδ̄τ̄ − κδ̄ε̄κμ̄τ̄

)
+ q τ̄

(
κδ̄ε̄κμ̄∂̄ − κμ̄ε̄κδ̄∂̄

)]

(8.42)

Taking again into account the enhancement at high energy due to the longitudinal
polarization one gets:

1

2
Tpη10

(−ϕ♦s)
2

ϕ♦
2

νI J K
ε∂τ

× [qε (κμ∂vτ − κμτ v∂)+ q∂ (κμεvτ − vεκμτ )+ qτ (κμεv∂ − vεκμ∂)]

ν Ī J̄ K̄
ε̄∂̄τ̄

[
q ε̄
(
κμ̄∂̄vτ̄ − κμ̄τ̄ v∂̄

)
+ q ∂̄

(
κμ̄ε̄vτ̄ − vε̄κμ̄τ̄

)
+ q τ̄

(
κμ̄ε̄v∂̄ − vε̄κμ̄∂̄

)]

(8.43)

Using the kinematics of the Appendix one can write the quantity in one of the two
squared brackets in (8.41) as follows:
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AI J
k = νk

μνI J
εϕ

⎣
κμϕ

(
qε − vε

♣
ϕ♦

)
+ ϕ♦

2
qεqμ vϕ

♣
ϕ♦

⎤

= 1

2

⎣
p̄ I
1γ

k J + p̄ J
1 γk I − 1

3
p̄k
1γ

I J
⎤

+ 1

2
p̄k
1γ

Ivγ Jv (8.44)

where k = 1 . . . 8; I, J = 1 . . . 8, v. If we divide the 9-dim indices I = (i, v) and
J = ( j, v) in an 8-dim part and a part along v, from the previous expression we get:

Ai j
k = 1

2

[
p̄i
1γ

k j + p̄ j
1γ

ki
]
; i ≡= j

Aii
k = p̄k

1

(
γik − 1

6

) ; i = 1 . . . 8

Avv
k = −∑8

i=1 Aii
k = 1

3 p̄k
1

Aiv = Avi = 0

(8.45)

Performing the same analysis with the antisymmetric amplitude in (8.43), we get:

AI J H
k = 1

2
νk
μνI J H

ε∂τ

[
p̄ε
1

(
κμ∂vτ − κμτv∂

)− p̄∂
1

(
κμεvτ − vεκμτ

)

+ p̄τ
1

(
κμεv∂ − vεκμ∂

)]
(8.46)

that implies

Ai jh
k = Aivv = 0

Ai jv = 1

2

(
p̄i
1γ

K j − p̄ j
1γ

K i
)

(8.47)

Remembering the connection between covariant and light-cone states, from the pre-
vious expressions we see that the scattering of a graviton on a Dp-brane will produce
only closed string states with left or right movers of the type A−1; j B− 1

2 ;k |0→ in the
RNS case corresponding to the states A−1; j |k→ in the GS case, while the states with
left or right movers of the type B− 3

2 ; j |0→ and to B− 1
2 ;i B− 1

2 ; j B− 1
2 ;k |0→, corresponding

to Q−1;i | j→ in the GS case, are not produced at high energy. This is in agreement with
what one gets from the eikonal operator interpreting the bosonic oscillators as the
string bosonic oscillators in the light-cone gauge. In the next section we will derive
the eikonal operator directly from string theory without needing to go through the
scattering amplitude and require unitarity as it was done in Sect. 8.2.

8.4 The Eikonal Operator II

In this section we sketch the construction of the eikonal operator that was done in [1].
The first ingredient is the GS three-string vertex given by:
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|VGS→ =
(

Pi − ϕ1ϕ2ϕ3
n

ϕq
N q

n Aq
−n,i

)
VbV f |Vi →|V0→, (8.48)

where

Vb = exp

(
1

2
Ap

−n,i N pq
mn Aq

−m,i + Pi N q
n Aq

−n,i

)
,

V f = exp

(
1

2
Q p

−n,a X pq
mn Qq

−m,a − Sa
n

ϕq
N q

n Qq
−n,a

)
,

|Vi → = 1

ϕ1
|i j j→ + 1

ϕ2
| j i j→ + 1

ϕ3
| j j i→ + ϕ1 − ϕ2

4ϕ3
|aai→ + ϕ1 − ϕ3

4ϕ2
|aia→

+ ϕ2 − ϕ3

4ϕ1
|iaa→ + 1

4
θ

i j
ab (|baj→ + |bja→ + | jba→). (8.49)

To insure momentum conservation we have included in the vertex a part with the
bosonic zero modes given by:

|V0→ =
∫

d10x |x→1 |x→2 |x→3
= (2α)10γ(10)( p̂1 + p̂2 + p̂3)|x = 0→1 |x = 0→2 |x = 0→3 (8.50)

where the state |x→ is an eigenstate of the position operator: q̂|x→ = x |x→. The
operators Pi and Sa stand for the following combinations of the bosonic and fermionic
zero-modes

Pi ∞
(
ϕr p̄(r+1)

i L − ϕr+1 p̄(r)
i L

)
, Sa ∞ ϕr Q(r+1)

0a − ϕr+1Q(r)
0a . (8.51)

which, with the cyclic identification between r = 4 and r = 1, are independent of
the choice of r = 1, 2, 3. Finally, the ‘Neumann’ coefficients encoding the actual
value of the various couplings are

Nrs
nm = − nmϕ1ϕ2ϕ3

nϕs + mϕr
Nr

n N s
m; Xrs

nm = nϕs − mϕr

2ϕrϕs
Nrs

nm, (8.52)

Nr
n = − 1

nϕr+1

(−n ϕr+1
ϕr

n

)
= 1

ϕr n!
Θ
(
−n ϕr+1

ϕr

)

Θ
(
−n ϕr+1

ϕr
+ 1 − n

) . (8.53)

Remember that the light-cone three-string vertex depends on a light-like vector k
that in general can be chosen as we want. It turns out, however, that, if we choose it
to be along the direction of the two energetic strings, at high energy the vertex gets
enormously simplified. Since we have chosen the momentum of incoming gravi-
ton and massive state as in (8.68) and (8.71), this means that we have to choose
k = 1♣

2
(−1, 0p; 08−p, 1). Momentum conservation implies that the momentum of
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the third string is given by p2 = (0, 0p;− p̄1,−q9).2 Proceeding in this way, at high
energy, we get the following GS vertex:

|VGS→ ∼ Pi

ϕ2
exp

{
−
⎦

ϕ♦
2

p̄1Δ
n

(
A3−nΔ + (−1)n A1−nΔ

)}⎣
| j i j→ + ϕ1 − ϕ3

4
|aia→

⎤
.

(8.54)

The second ingredient is the boundary state in the light-cone gauge that was con-
structed in [7]. We use a slightly modified version of it where we impose Neumann
(Dirichlet) boundary conditions along the longitudinal (transverse) directions to the
world volume of the Dp-branes. It is given by:

|B, κ, y→ ∼ exp

{
−

⊗∑
n=1

⎣
1

n
ϕi−n Di j ϕ̃

j
−n + iκSa−n Maḃ S̃ḃ−n

⎤}
|B0, κ, y→ (8.55)

where R is the reflection matrix given in (8.37),

|B0, κ, y→ =
(

Ri j |i→| j̃→ + iκMȧb|ȧ→|b̃→
)

γ(9−p)(q̂ − y)|0ϕ, p = 0→ (8.56)

and

Mȧb = i
(
θ1θ2 . . . θ p+1

)
ȧb

; Maḃ = i
(
θ1θ2 . . . θ p+1

)
aḃ

. (8.57)

The third ingredient is the light-cone propagator:

P = αϕ♦

2

∫ ⊗

0
dt e

−αt
(

ϕ♦
2 p̂2i +N+Ñ

)
; i = 1 . . . 8 (8.58)

where N and Ñ are the bosonic and fermionic number operators.
Using the three previous ingredients, we compute the quantity:

Tp

2
2♥B|P

(
η10|VGS→|˜VGS→

)
∼ R7−p

p α
9−p
2

Θ
(
7−p
2

) 2♥B0| 1

−t

(
|VGS→|˜VGS→

)
. (8.59)

In particular, in the previous equation we limit ourselves only to the pole of the gravi-
ton, as we have done in the previous section. Thenwe can neglect all oscillators in the
boundary state and in the propagator and we need only to consider the contribution
of the bosonic zero modes:

2 Notice that the state labelled here by r = 3 has momentum p2 in (8.68).
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2♥p = 0| γ9−p(q̂)
1

p̂2i
|x→2 = 2♥p = 0|

∫
d9−pk

(2α)9−p
eik·q̂ 1

p̂2i
|x→2

=
∫

d9−pk

(2α)9−p

eik·x

k2i
(8.60)

Then, assuming that the strings 1 and 3 have momentum p1 and p3, we get (♥x |p→ =
e−i px ):

∫
d10x♥p1|x→1♥p3|x→3

∫
d9−pk

(2α)9−p

eik·x

k2i
= (2α)p+1γ(p+1)(p1 + p3)

1

(−t)

(8.61)

where t = −(p1+ p3)2 is the momentum transfer. Using the following equation [1]:

2

ϕ♦
Ph Rhk Pk

ϕ2
2(−t)

= ϕ2
3

ϕ2
2

( p̄1)2

t
= −ϕ2

3

ϕ2
2

(
1 + q2

9

t

)
∼ −4E2

q2
9

− 4E2

t
, (8.62)

and neglecting the term without the pole at t = 0 we arrive at

|W → ∼ R7−p
p α

9−p
2

Θ
(
7−p
2

) 4E2

−t
exp

{
−
⎦

ϕ♦
2

p̄1Δ
n

(A3−nΔ + (−1)n A1−nΔ)

}[
| j→1| j→3 + ϕ1

2
|a→1|a→3

]

× exp

{
−
⎦

ϕ♦
2

p̄1Δ
n

( Ã3−nΔ + (−1)n Ã1−nΔ)

}[
| j̃→1| j̃→3 + ϕ1

2
|ã→1|ã→3

]
. (8.63)

Following [1] we can finally write it in a single Hilbert space getting:

W ∼ R7−p
p α

9−p
2

Θ
(
7−p
2

) 4E2

−t
: exp

{
−
⎦

ϕ♦
2

p̄1Δ
n

(A−nΔ − AnΔ)

}
:

× : exp
{

−
⎦

ϕ♦
2

p̄1Δ
n

( Ã−nΔ − ÃnΔ)

}
: (8.64)

Introducing an auxiliary string coordinate (without zero modes):

X̂ i (∂) = i

⎦
ϕ♦
2

∑
n ≡=0

(
Ani

n
ein∂ + Ãni

n
e−in∂

)
. (8.65)

we can write (8.64) in an operator form as follows
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W ( p̄1) =
∫ 2α

0

d∂

2α
: ei p̄1 X̂(∂) :

⎛
⎝ R7−p

p α
9−p
2

Θ
(
7−p
2

) 4E2

−t

⎞
⎠, (8.66)

that provides the same amplitude as in (8.64) when we saturate them with physical
states satisfying the level matching condition. This operator is identical to the eikonal
operator in (8.20) if we take the limit ϕ♦ ≤ 0 in the amplitude A1 given in (8.6).
The ϕ♦ corrections are recovered if one does not include just the contribution of the
graviton as we have done above, but add also the contribution of the other string
states.

In conclusion, we have provided two independent derivations of the eikonal
operator. The one in this section shows that the bosonic oscillators are the bosonic
oscillators of superstring theory in a suitably chosen light-cone gauge. This means
that when we sandwich the eikonal operator between two arbitrary string states, we
obtain the production amplitude of one of them from the scattering of the other on a
Dp-brane at high energy and small transverse momentum.

8.5 Kinematics

The scattering amplitude for the production of a massive string with momentum p2
from the scattering of a graviton with momentum p1 on a Dp-brane is described by
the two (Mandelstam like) variables:

t = −q2 = −(p1 + p2)
2, s = −1

4
(p1 + Rp1)

2 = −1

4
(p2 + Rp2)

2 ∞ E2,

(8.67)

where in the second equation we used the momentum conservation along the Neu-
mann directions and E > 0 will denote, hereafter, the common energy of the
incoming and outgoing closed strings. It is convenient to choose the massive string
to move along the 9-th space direction:

pμ
2 =

(
−E, 0p; 08−p,−

√
E2 − M2

)
, (8.68)

where the first p + 1 directions are parallel to the (Neumann directions of the)
Dp-branes and the entries after the semicolon are along the Dirichlet directions.
The most direct way to describe the physical polarization of massive particles is to
introduce 9 vectors perpendicular to their momentum. For instance, in the case of
the outgoing state (8.68) we have the unit vectors ŵi

ŵ1 = (0, 1, 0p−1; 08−p, 0
)
, . . . , ŵ8 = (0, 0p; 07−p1, 0

)
(8.69)
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and, as the ninth one, vμ corresponding to the longitudinal polarization:

v
μ
2 =

(♣
E2 − M2

M
, 0p; 08−p,

E

M

)
. (8.70)

The possible momenta of the ingoing massless string take the following form

pμ
1 =

(
E, 0p; p̄1,

√
E2 − M2 + q9

)
, (8.71)

qμ=9 = t + M2

2
♣

E2 − M2
, ( p̄1)

2 + (qμ=9)2 = −t ∞ (p1 + p2)
2, (8.72)

where p̄1 is a (8− p)-dim vector orthogonal to the direction of motion of the massive
string. It is convenient to choose the eight polarizations of the massless string as
follows:

ν
μ
k =

(
p̄k
1

E + ♣
E2 − M2 + q9

, γi
k,−

p̄k
1

E + ♣
E2 − M2 + q9

)
(8.73)

It is easy to check that νμ
k p1μ = 0 for any k = 1 . . . 8. Using this we can compute

νkq ∞ νk(p1 + p2) = νk p2 = p̄k
1 (8.74)

where we have kept only the leading term at high energy.
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Chapter 9
Ghost Condensation in N = 1 Supergravity

Michael Koehn, Jean-Luc Lehners and Burt Ovrut

We present the theory of an N = 1 supersymmetric ghost condensate coupled to
supergravity using a general formalism for constructing locally supersymmetric
higher-derivative chiral superfield actions. The theory admits a ghost condensate
vacuum in de Sitter spacetime. Expanded around this vacuum, the scalar sector is
shown to be ghost-free with no spatial gradient instabilities. The fermion sector is
found to consist of a massless chiral fermion and a massless gravitino. The ghost
condensate vacuum spontaneously breaks local supersymmetry with the chiral field
as the Goldstone fermion. Although potentially able to get a mass through the super-
Higgs effect, the vanishing superpotential in the ghost condensate theory renders the
gravitino massless.

9.1 Motivation

Higher-derivative scalar field theories coupled to gravitation appear in

• DBI theories [1]
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• ghost-condensate theories of NEC violation [2–5]
• Galileon theories of cosmology [6, 7]
• worldvolume actions of solitonic branes [8, 9].

Using a general formalism for constructing global N = 1 supersymmetric
higher-derivative chiral superfield Lagrangians [10], these scalar theories have been
supersymmetrized in [10–12] respectively. Can these be extended to N = 1 local
supersymmetry? Yes! We have

• given a general formalism for coupling higher-derivative chiral superfield Lagran-
gians to N = 1 supergravity [13] (also see [14, 15])

• applied this to DBI [16], ghost-condensates [17] and Galileons [18].

9.2 Scalar Ghost Condensation

Consider a real scalar field φ. Denote the standard kinetic term as X = − 1
2 (∂φ)2.

A ghost condensate arises from higher-derivative theories of the form

L = →−gP(X) (9.2.1)

where P(X) is an arbitrary differentiable function of X. In a flat spacetime with
ds2 = −dt2 + a(t)2δijdxidxj and assuming φ = φ(t), the scalar equation of motion
is

d

dt

(
a3P,X φ̇

)
= 0. (9.2.2)

The trivial solution is φ = constant. More interesting is the solution

X = 1

2
φ̇2 = constant, P,X = 0. (9.2.3)

Denoting by Xext a constant extremum of P(X), the equation of motion admits the
“ghost condensate” solution

φ = ct, c2 = 2Xext. (9.2.4)

This vacuum spontaneously breaks Loretz invariance. It can also lead to violations
of the “null energy condition” (NEC). To see this, evaluating the energy and pressure
densities ∼

ρ = 2XP,X − P, p = P ∼ ρ + p = 2XP,X . (9.2.5)

The NEC corresponds to the requirement that

ρ + p ♥ 0. (9.2.6)

Since X > 0, ∼ the NEC can be violated if
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P,X < 0. (9.2.7)

That is, if we are close to an extremum of P(X), then on one side the NEC is violated
while on the other side it is not. Since Einstein’s equations ∼

Ḣ = −1

2
(ρ + p) (9.2.8)

it is now possible to obtain a non-singular “bouncing” universe where H increases
from negative to positive values. However, is this NEC violating vacuum “stable”?

Expanding the Lagrangian around the ghost condensate

φ = ct + δφ(xm) (9.2.9)

gives to quadratic order

L→−g
= 1

2

(
(2XP,XX + P,X)(δ̇φ)2 − P,Xδφ,iδφ,i

)
. (9.2.10)

Note that Lorentz violation∼ that the coefficients of the time- and space-derivatives
are different. The vacuum will be ghost-free iff

2XP,XX + P,X > 0. (9.2.11)

This can be achieved by choosing the condensate to be at a minimum

P,XX > 0. (9.2.12)

Note that the theory can remain ghost-free even in the NEC violating region where
P,X < 0. However, in the NEC violating region the coefficient −P,X in front of the
spatial derivative term has the wrong sign. This ∼ the theory suffers from “gradient
instabilities”! These can be softened by adding small higher-derivative terms—not
of the P(X) type—such as

− (�φ)2 . (9.2.13)

These modify the dispersion relation for δφ at high momenta and suppress instabil-
ities for a short—but sufficient—period of time.

Finally, a prototypical choice for P(X) that shows all interesting properties is

P(X) = −X + X2 (∼ c = 1). (9.2.14)
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9.3 Review of Globally N = 1 Supersymmetric Ghost
Condensation

9.3.1 Higher-Derivative Chiral Superfield Lagrangian

Consider the chiral superfield

Θ = A + iθσmθ̄A,m + 1

4
θθθ̄θ̄�A + θθF + →

2θχ − i→
2
θθχ,mσmθ̄. (9.3.1)

The ordinary kinetic Lagrangian is

LΘ†Θ =
∫

d4θ Θ†Θ = Θ†Θ |θθθ̄θ̄ = −∂A · ∂A♦ + F♦F + i

2

(
χ,mσmχ̄ − χσmχ̄,m

)
.

(9.3.2)
Defining A = 1→

2
(φ + iξ), the Lagrangian becomes

LΘ†Θ = −1

2
(∂φ)2 − 1

2
(∂ξ)2 + F♦F + i

2

(
χ,mσmχ̄ − χσmχ̄,m

)
. (9.3.3)

This is the global N = 1 supersymmetric generalization of X.
What is the supersymmetric generalization of X2? Consider

LDΘDΘD̄Θ†D̄Θ† = 1

16
DΘDΘD̄Θ†D̄Θ†

∣∣
θθθ̄θ̄

. (9.3.4)

To quadratic order in the spinor component field

LDΘDΘD̄Θ†D̄Θ† = (∂A)2(∂A♦)2 − 2F♦F∂A · ∂A♦ + F♦2F2

− i

2

(
χσmσ̄lσnχ̄,n

)
A,mA♦

,l + i

2

(
χ,nσ

nσ̄mσlχ̄
)

A,mA♦
,l

+ iχσmχ̄,nA,mA♦
,n − iχ,mσnχ̄A,mA♦

,n

+ i

2
χσmχ̄

(
A♦

,m�A − A,m�A♦)

+ 1

2
(F�A − ∂F∂A) χ̄χ̄

+ 1

2

(
F♦�A♦ − ∂F♦∂A♦)χχ + 1

2
FA,m

(
χ̄σ̄mσnχ̄,n − χ̄,nσ̄

mσnχ̄
)

+ 1

2
F♦A♦

,m

(
χ,nσ

nσ̄mχ − χσnσ̄mχ,n
) + 3i

2
F♦F

(
χ,mσmχ̄ − χσmχ̄,m

)

+ i

2
χσmχ̄

(
FF♦

,m − F♦F,m
)
. (9.3.5)

Written in terms of φ, ξ the pure A term in this Lagrangian is
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(∂A)2(∂A♦)2 = 1

4
(∂φ)4 + 1

4
(∂ξ)4 − 1

2
(∂φ)2(∂ξ)2 + (∂φ · ∂ξ)2. (9.3.6)

This is the global N = 1 supersymmetric generalization of X2. It is the unique
generalization with the properties:

(a) When the spinor is set to zero, the only non-vanishing term in 1
16DΘDΘD̄Θ†D̄Θ†

is the top θ2θ̄2 component.
This is very helpful in producing higher-derivative terms that include X2.

(b) When coupled to supergravity, 1
16DΘDΘD̄Θ†D̄Θ† leads to minimal coupling

of φ, ξ to gravity.

For example, an alternative generalization of X2

− 1

16

(
Θ − Θ†

)2
D̄DΘDD̄Θ† ∼ φ2(∂ξ)2R . (9.3.7)

9.3.2 Globally Supersymmetric Ghost Condensate

Choose the scalar function P(X) to be

P(X) = −X + X2. (9.3.8)

For a pure ghost condensate can take the superpotential

W = 0 ∼ F = 0. (9.3.9)

The associated globally supersymmetric Lagrangian, to quadratic order in the
spinor, is

LSUSY =
(

− Θ†Θ + 1

16
DΘDΘD̄Θ†D̄Θ†

)∣∣∣
θθθ̄θ̄

= + 1

2
(∂φ)2 + 1

4
(∂φ)4 + 1

2
(∂ξ)2 + 1

4
(∂ξ)4 − 1

2
(∂φ)2(∂ξ)2 + (∂φ · ∂ξ)2

− i

2

(
χ,mσmχ̄ − χσmχ̄,m

) − 1

2
(∂φ)2

i

2

(
χ,mσmχ̄ − χσmχ̄,m

)

− φmφ,n
i

2

(
χ,nσmχ̄ − χσmχ̄,n) . (9.3.10)

The equations of motion admit a ghost condensate vacuum

φ = ct, ξ = 0, χ = 0. (9.3.11)

To assess stability, expand in the small fluctuations
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φ = t + δφ(t, ♣x), ξ = δξ(t, ♣x), χ = δχ(t, ♣x). (9.3.12)

To quadratic order, the result is

LSUSY = (
δ̇φ

)2 + 0 · δφ,iδφ,i

+ 0 · (δ̇ξ)2 + δξ,iδξ,i

+ 1

2

i

2

(
δχ,0σ

0δχ̄ − δχσ0δχ̄,0

)
− 1

2

i

2

(
δχ,iσ

iδχ̄ − δχσiδχ̄,i

)
.

(9.3.13)

1. δφ kinetic term: As previously, has a gradient instability in the NEC violating
region. ∼ In the pure boson case, added a −(�φ)2 term. The appropriate SUSY
extension is

− 1

211
DΘDΘD̄Θ†D̄Θ†

(
{D, D̄}{D, D̄}(Θ + Θ†)

)2∣∣∣
θθθ̄θ̄

= − (�φ)2
(1
4
(∂φ)4 + 1

4
(∂ξ)4 + (∂φ · ∂ξ)2 − 1

2
(∂φ)2(∂ξ)2

)
. (9.3.14)

Expanding around the ghost condensate using (∂φ)2 = −1

LSUSY = (
δ̇φ

)2 + 0 · δφ,iδφ,i − 1

4
(�δφ)2 + · · · (9.3.15)

which softens gradient instabilities.

2. δξ kinetic term: New to SUSY. Has vanishing time and wrong sign spatial kinetic
terms. Cured by adding supersymmetric higher-derivative terms. The appropriate
terms are

+ 8

162
DΘDΘD̄Θ†D̄Θ†

(
{D, D̄}(Θ − Θ†){D, D̄}(Θ† − Θ)

)∣∣∣
θθθ̄θ̄

− 4

163
DΘDΘD̄Θ†D̄Θ†

(
{D, D̄}(Θ + Θ†){D, D̄}(Θ − Θ†)

)

(
{D, D̄}(Θ + Θ†){D, D̄}(Θ† − Θ)

)∣∣∣
θθθ̄θ̄

= −2(∂φ)4(∂ξ)2 − (∂φ)4 (∂φ · ∂ξ)2 .

(9.3.16)

Expanding around the ghost condensate ∼

LSUSY = · · · + (δ̇ξ)2 − δξ,iδξ,i + · · · (9.3.17)

which is Lorentz covariant with the correct sign.

3. δχ kinetic term: Ghost free with gradient “instability”. Can be cured within the
context of supersymmetric Galileons but re-grow a ghost! Won’t discuss here.
To summarize: The entire supersymmetric ghost condensate Lagrangian is
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LSUSY = − Θ†Θ |θθθ̄θ̄ + 1

16
DΘDΘD̄Θ†D̄Θ† |θθθ̄θ̄

+ DΘDΘD̄Θ†D̄Θ†
[

− 1

211

(
{D, D̄}{D, D̄}(Θ + Θ†)

)2

+ 1

25
{D, D̄}(Θ − Θ†){D, D̄}(Θ† − Θ)

− 1

210

(
{D, D̄}(Θ + Θ†){D, D̄}(Θ − Θ†)

)2]∣∣∣∣
θθθ̄θ̄

.

(9.3.18)

In components, writing out all terms that are relevant for a stability analysis in a
ghost condensate background, this corresponds to

LSUSY = + 1

2
(∂φ)2 + 1

4
(∂φ)4 − 1

4
(∂φ)4(�φ)2

+ 1

2
(∂ξ)2 − 1

2
(∂φ)2(∂ξ)2 − 2(∂φ)4(∂ξ)2

+ (∂φ · ∂ξ)2 − (∂φ)4(∂φ · ∂ξ)2

+ i

2
(χ,mσmχ̄ − χσmχ̄,m)

(
− 1 − 1

2
(∂φ)2

)

− φmφ,n
i

2
(χ,nσmχ̄ − χσmχ̄,n). (9.3.19)

The ghost condensate vacuum of this theory breaks N = 1 supersymmetry sponta-
neously in a new form. Consider the SUSY transformation

δχ = i
→
2σmζ̄∂mA + →

2ζF. (9.3.20)

Usually supersymmetry is broken by a non-vanishing VEV √F∗ ⊂= 0 of the auxiliary
field. However, since in the ghost condensate Lagrangian W = 0 ∼ F = 0. Recall
that for the ghost condensate √φ∗ = ct ∼

√Ȧ∗ = √φ̇∗/→2 = c/
→
2. (9.3.21)

Therefore,

δχ = i
→
2σmζ̄∂mA = iσ0ζ̄c (9.3.22)

and the spinor trasnsforms inhomogeneously. ∼ SUSY is broken by the time-
dependent condensate.
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9.4 The Ghost Condensate in N = 1 Supergravity

In previous work, we showed that a global N = 1 supersymmetric Lagrangian of the
general form

LSUSY = K(Θ,Θ†) |θθθ̄θ̄ + 1

16
DΘDΘD̄Θ†D̄Θ†T

(
Θ,Θ†, ∂mΘ, ∂nΘ

†
)

|θθθ̄θ̄
+

(
W(Θ) |θθ +W†(Θ†) |θ̄θ̄

)
(9.4.1)

where K is any real function, T is an arbitrary hermitian function (with all derivative
indices constracted) and W is a holomorphic superpotential, can be consistently
coupled to N = 1 supergravity.

Notation: Curved N = 1 superspace

(
xm,Ωα, Ω̄α̇

)
, DA = (Da,Dα, D̄α̇

)
(9.4.2)

Gravity supermultiplet (
ea

m .ψm, M, bm
)

(9.4.3)

Two superfield expansions we will need are the chiral curvature superfield

R = − 1

6
M − 1

6
Ωα

(
σαα̇

aσ̄bα̇βψabβ − iσαα̇
aψ̄α̇

a M + iψaαba)

+ ΩαΩα

( 1

12
R − 1

6
iψ̄ a

α̇ σ̄bα̇βψabβ − 1

9
MM♦ − 1

18
baba + 1

6
iea

mDmba

− 1

12
ψ̄α̇ψ̄α̇M + 1

12
ψa

ασαα̇
aψ̄α̇

c bc

− 1

48
εabcd

[
ψ̄aα̇σ̄

α̇β
b ψcdβ + ψa

ασαα̇bψ̄
α̇

cd

] )
(9.4.4)

and the chiral density superfield

2E = e
(
1 + iΩασαα̇

aψ̄α̇
a − ΩαΩα

[
M♦ + ψ̄aα̇σ̄abα̇

β̇ ψ̄
β̇
b

])
. (9.4.5)

In terms of these quantities, the supergravity extension of global LSUGRA is

LSUGRA =
∫

d2Ω2E
[3
8
(D̄2 − 8R)e−K/3 − 1

8
(D̄2 − 8R)(DΘDΘD̄Θ†D̄Θ†T)

+ W(Θ)
]

+ h.c. (9.4.6)

Since we are interested in the pure ghost condensate, we can take

W = 0 ∼ F = M = 0. (9.4.7)
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The component expansion of LSUGRA then becomes

LSUGRA =
[

− 3

32
e
(
D2D̄2e−K/3

)
+ i

3

16
eψ̄aα̇σ̄aα̇α

(
DαD̄2e−K/3

)

− 3

8
eψ̄aσ̄abψ̄b

(
D̄2e−K/3

)
+ i

1

4
e
(
ψ̄aσ̄a)α (

Dαe
−K/3

)

− 1

4
e
(
ψabσbψ̄a + iψaba)α (

Dαe
−K/3

)
+ 1

32
eD2D̄2(DΘDΘD̄Θ†D̄Θ†T)

− 1

16
ei

(
ψ̄aσ̄a)α DαD̄2(DΘDΘD̄Θ†D̄Θ†T)

+ 1

8
eψ̄aσ̄abψ̄bD̄2(DΘDΘD̄Θ†D̄Θ†T)

]∣∣∣ + h.c.

+ e
(

− 1

2
R + 1

3
baba + 1

4
εabcd (

ψ̄aσ̄bψcd − ψaσbψ̄cd
) )

e−K(A,A♦)/3

(9.4.8)

where
∣∣ specifies taking the lowest component of the superfield and

ψmn
α = D̃mψα

n − D̃nψα
m, D̃mψα

n = ∂mψα
n + ψ

β
n ωα

mβ . (9.4.9)

Note that the auxiliary field bm remains undetermined. We must evaluate the lowest
component of the superfield term. Evaluating the first part of the Lagrangian ∼

1

e
LSUGRA

K(Θ,Θ†)
= 1

e

[ ∫
d2Ω2E 3

8
(D̄2 − 8R)e−K/3

]
+ h.c.

=
(

− 1

2
R + 1

3
baba + 1

4
εabcd(ψ̄aσ̄bψcd − ψaσbψ̄cd)

)
e−K(A,A♦)/3

+ 3|∂A|2(e−K/3),AA♦ + iba(A,a(e
−K/3),A − A♦

,a(e
−K/3),A♦

)

− i
1→
2

ba(ψaχ(e−K/3),A − ψ̄aχ̄(e−K/3),A♦
)

− →
2χσmnψmn(e

−K/3),A − →
2χ̄σ̄mnψ̄mn(e

−K/3),A♦

− i
3

2
ψaσ

abσcψ̄bA,c(e
−K/3),A − i

3

2
ψ̄aσ̄

abσ̄cψbA♦
,c(e

−K/3),A♦

+ 1

2
χσaχ̄ba(e

−K/3),AA♦ + i
3

2

(
χσaea

mDmχ̄ + χ̄σ̄aea
mDmχ

)
(e−K/3),AA♦

+ 3

2

→
2A♦

,bψaσ
bσ̄aχ(e−K/3),AA♦ + 3

2

→
2A,bψ̄aσ̄

bσaχ̄(e−K/3),AA♦

− 3

2
(∂A)2(e−K/3),AA − 3

2
(∂A♦)2(e−K/3),A♦A♦

+ i
3

2
χσaχ̄

(
A♦

,a(e
−K/3),AA♦A♦ − A,a(e

−K/3),AAA♦
)
. (9.4.10)

This is the supergravitaty extension of the −X scalar term if one takes

K(Θ,Θ†) = −ΘΘ†. (9.4.11)
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Evaluating the second part of the Lagrangian taking

T = τ

16
∼ (9.4.12)

1

e
LSUGRA
DΘDΘD̄Θ†D̄Θ†,τ

= 1

e

(
− τ

27

∫
d2Ω2E(D̄2 − 8R)(DΘDΘD̄Θ†D̄Θ†)

)
+ h.c.

=
(

+ τ

29
D2D̄2(DΘDΘD̄Θ†D̄Θ†)

− τ

28
i(ψ̄aσ̄

a)αDαD̄2(DΘDΘD̄Θ†D̄Θ†)

+ τ

27
ψ̄aσ̄

abψ̄bD̄2(DΘDΘD̄Θ†D̄Θ†)
)∣∣∣ + h.c.

= + τ (∂A)2(∂A♦)2 − 1

2

→
2τψ̄aσ̄

aσcχ̄A♦
,c(∂A)2

− 1

2

→
2τχσcσ̄aψaA,c(∂A♦)2 − →

2τ (∂A♦)2A,mχψm

− →
2τ (∂A)2A♦

,mψ̄mχ̄− i

2
τχσaχ̄A,aeb

mDmA♦
,b

+ 5

6
τχσaχ̄A,aA♦

,bbb+ i

2
τχσaχ̄A♦

,aeb
mDmA,b

+ 5

6
τχσaχ̄A♦

,aA,bbb−iτ (Dmχ)σbχ̄A,mA♦
,b

+ →
2τψ̄aσ̄

cσbχ̄A,aA♦
,bA,c + 1

3
τ χ̄σ̄bσcσ̄aχbcA,aA♦

,b

+ iτχσb(Dmχ̄)A♦,mA,b + →
2τχσbσ̄cψaA♦,aA,bA♦

,c

− i

2
τχσaσ̄bσm(Dmχ̄)A,aA♦

,b − 1

12
τχσaσ̄bσcχ̄bcA,aA♦

,b

+ i

2
τ (Dmχ)σmσ̄bσaχ̄A♦

,aA,b − 1

12
τχσcσ̄bσaχ̄bcA♦

,aA,b.

(9.4.13)

This is the supergravity extension of the X2 scalar term if one takes

τ = 1. (9.4.14)

The equation of motion of bm is given by

bm = − 3

2
i
(

A,m(e−K/3),A − A♦
,m(e−K/3),A♦

)
eK/3 − 3

4
χσmχ̄(e−K/3),AA♦eK/3

+ 3

4

→
2i

(
ψmχ(e−K/3),A − ψ̄mχ̄(e−K/3),A♦

)
eK/3
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− 5

4
τχσaχ̄

(
A,aA♦

,m + A♦
,aA,m

)
eK/3

+ 1

2
τχσaσ̄mσbχ̄A,aA♦

,be
K/3

+ 1

8
τ
(
χσaσ̄bσmχ̄ + χσmσ̄aσbχ̄

)
A,aA♦

,be
K/3. (9.4.15)

Inserting this back into the Lagrangian, Weyl rescaling as

en
a WEYL−∞ eK/6en

a

χ
WEYL−∞ e−K/12χ (9.4.16)

ψm
WEYL−∞ eK/12ψm

and shifting

ψm
SHIFT−∞ ψm + i

→
2

6
σmχ̄K,A♦ (9.4.17)

∼ keeping terms with at most two fermions

1

e
LSUGRA

K(Θ,Θ†),Weyl = 1

e

[ ∫
d2Ω2E 3

8
(D̄2 − 8R)e−K/3

]
Weyl

+ h.c.

= − 1

2
R − K,AA♦ |∂A|2

− iK,AA♦ χ̄σ̄mDmχ + εklmnψ̄k σ̄lD̃mψn

− 1

2

→
2K,AA♦A♦

,nχσmσ̄nψm − 1

2

→
2K,AA♦A,nχ̄σ̄mσnψ̄m

(9.4.18)

and

1

e
LSUGRA
DΘDΘD̄Θ†D̄Θ†,τ ,Weyl

= 1

e

[ ∫
d2Ω2E(− τ

27
)(D̄2 − 8R)(DΘDΘD̄Θ†D̄Θ†)

]
Weyl

+ h.c.

= + τ (∂A)2(∂A♦)2 − 1

2

→
2τψ̄aσ̄

aσcχ̄A♦
,c(∂A)2

− 1

2

→
2τχσcσ̄aψaA,c(∂A♦)2

− →
2τ (∂A♦)2A,mχψm − →

2τ (∂A)2A♦
,mψ̄mχ̄

− i

2
τχσaχ̄A,aebm(DmA♦

,b) + i

2
τχσaχ̄A♦

,aebm(DmA,b)

− i

6
τχσaχ̄A,aA♦

,bK ,b + i

6
τχσaχ̄A♦

,aA,bK ,b

− iτ (Dmχ)σnχ̄A,mA♦,n + →
2τψ̄aσ̄

cσbχ̄A,aA♦
,bA,c

+ i

12
τχσaχ̄A,bA♦

,aK ,b + i

6
τχσcbσaχ̄A,cA♦

,aK,b
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+ iτχσb(Dmχ̄)A♦,mA,b + →
2τχσbσ̄cψaA♦,aA,bA♦

,c

− i

12
τχσaχ̄A♦

,bA,aK ,b − i

6
τχσaσ̄bcχ̄A♦

,cA,aK,b

− i

2
τχσpσ̄qσm(Dmχ̄)A,pA♦

,q + i

2
τ (Dmχ)σmσ̄pσqχ̄A,pA♦

,q

+ i

6
τχσcσ̄bσaχ̄K,aA♦

,bA,c − i

6
τχσaσ̄bσcχ̄K,aA,bA♦

,c

− 7

4
iτχσaχ̄

(
A♦

,a(∂A)2(e−K/3),A − A,a(∂A♦)2(e−K/3),A♦
)
eK/3

− 3

2
iτχσaχ̄

(
A,a(e

−K/3),A − A♦
,a(e

−K/3),A♦
)|∂A|2eK/3.

(9.4.19)

9.4.1 The N = 1 Supergravity Ghost Condensate

Taking K(Θ,Θ†) = −ΘΘ† and τ = 1, the sum of these two terms is the N = 1
supergravity extension of the prototype scalar ghost condensate P(X) = −X + X2

given by

LSUGRA
T=1/16,Weyl = 1

8

[ ∫
d2Ω2E(D̄2 − 8R)

(
3eΘΘ†/3 − 1

24
(DΘDΘD̄Θ†D̄Θ†)

)]
Weyl

+ h.c.

(9.4.20)

The purely scalar part of this supergravity Lagrangian is simply

1

e
LSUGRA

T=1/16,Weyl = −1

2
R + |∂A|2+(∂A)2(∂A♦)2 + · · · (9.4.21)

For A = 1→
2
(φ + iξ) this becomes

1

e
LSUGRA

T=1/16,Weyl = − 1

2
R + 1

2
(∂φ)2 + 1

4
(∂φ)4

+ 1

2
(∂ξ)2 + 1

4
(∂ξ)4 − 1

2
(∂φ)2(∂ξ)2 + (∂φ · ∂ξ)2 + · · ·

(9.4.22)

The Einstein and gravitino equations can be solved in an FRW spacetime ds2 =
−dt2 + a(t)2δijdxidxj with

a(t) = e
± 1→

12
t
, ψm = 0. (9.4.23)
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The φ, ξ and χ equations continue to admit the ghost condensate vacuum of the form

φ = ct, ξ = 0, χ = 0. (9.4.24)

To assess stability, expand in the small fluctuations

φ = t + δφ(t, ♣x), ξ = δξ(t, ♣x), χ = δχ(t, ♣x). (9.4.25)

To quadratic order, the result is

1

e
LSUGRA

T=1/16,Weyl = (δ̇φ)2 + 0 · δφ,iδφ,i

+ 0 · (δ̇ξ)2 + δξ,iδξ,i

+ · · · (9.4.26)

1. δφ kinetic term: As previously, has a gradient instability in the NEC violating
region. ∼ In the global SUSY case, this was solved by adding the term

− 1

211
DΘDΘD̄Θ†D̄Θ†

(
{D, D̄}{D, D̄}(Θ + Θ†)

)2∣∣∣
θθθ̄θ̄

(9.4.27)

to the Lagrangian. In the supergravity case, this is easily generalized to

− 1

8

∫
d2Ω2E(D̄2 − 8R)(DΘDΘD̄Θ†D̄Θ†Tφ) + h.c. (9.4.28)

where

Tφ = κ

29

(
{Dα, D̄α̇}{Dα, D̄α̇}(Θ + Θ†)

)2
(9.4.29)

and κ is any real number (chosen arbitrarily to be κ = 1/4 in the global SUSY case).
Setting F = M = 0, its bosonic contribution to the Lagrangian is

− 1

8e

[ ∫
d2Ω2E(D̄2 − 8R)DΘDΘD̄Θ†D̄Θ†Tφ

]
Weyl

+ h.c.

= κ(�φ)2
(
(∂φ)4 + (∂ξ)4 − 2(∂φ)2(∂ξ)2 + 4(∂φ · ∂ξ)2

)
. (9.4.30)

Adding this to the original scalar Lagrangian 1
eLSUGRA

T=1/16,Weyl, the metric and φ solu-
tions of their equations ofmotion change—unlike in the global SUSYcase. Expanded
perturbatively in small κ, they become

√φ̇∗2 = 1 − 3κ + O(κ2), (9.4.31)

√H∗2 = 1

12
+ 1

4
κ + O(κ2). (9.4.32)
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That is, there is a shift in the condensate/FRW solution without altering its funda-
mental features. However, expanded around this new vacuum ∼

LSUGRA = 1

2

(
3√φ̇∗2 − 1

) (
δ̇φ

)2 + 1

2a2

(
1 − √φ̇∗2

)
δφ,iδφ,i + κ (�δφ)2 + · · · .

(9.4.33)
which, for κ < 0, softens the gradient instability—as anticipated.

2. δξ kinetic term: Has vanishing time andwrong sign spatial kinetic terms. In global
SUSY, this is cured by adding the higher-derivative terms
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DΘDΘD̄Θ†D̄Θ†

(
{D, D̄}(Θ − Θ†){D, D̄}(Θ† − Θ)

)∣∣∣
θθθ̄θ̄
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DΘDΘD̄Θ†D̄Θ†

(
{D, D̄}(Θ + Θ†){D, D̄}(Θ − Θ†)

)

×
(
{D, D̄}(Θ + Θ†){D, D̄}(Θ† − Θ)

)∣∣∣
θθθ̄θ̄

(9.4.34)

to the Lagrangian. In the supergravity case, this is easily generalized to

− 1

8

∫
d2Ω2E(D̄2 − 8R)(DΘDΘD̄Θ†D̄Θ†Tξ) + h.c. (9.4.35)

where

Tξ = + 2−5{Dα, D̄α̇}(Θ − Θ†){Dα, D̄α̇}(Θ† − Θ)

− 2−10
(
{Dα, D̄α̇}(Θ + Θ†){Dα, D̄α̇}(Θ − Θ†)

)2
. (9.4.36)

Setting F = M = 0, its bosonic contribution is

− 1

8e

[ ∫
d2Ω2E(D̄2 − 8R)DΘDΘD̄Θ†D̄Θ†Tξ

]
Weyl

+ h.c.

= −2(∂φ)4(∂ξ)2 − (∂φ)4(∂φ · ∂ξ)2 . (9.4.37)

The addition of these terms does not alter the supergravity ghost condensate vacuum
given above. Expanding around this vacuum, the ξ fluctuations are

1

e
LSUGRA = · · · +

(
− 1

2
+ 1

2
√φ̇∗2 + 2√φ̇∗4 − √φ̇∗6

)
(δ̇ξ)2

+
(1
2

+ 1

2
√φ̇∗2 − 2√φ̇∗4

)
δξ,iδξ,i + · · ·

= · · · +
(
1 − 9

2
κ + O(κ2)

)(
(δ̇ξ)2 − δξ,iδξ,i

)
+ · · · (9.4.38)



9 Ghost Condensation in N = 1 Supergravity 177

∼ the scalar δξ kinetic energy is renderedLorentz covariant and stable by the addition
of these terms. By suitably choosing the coefficients, this kinetic energy can be made
canonical.

3. δχ kinetic term: Ghost free with gradient “instability”. Can be cured within the
context of supergravitational Galileons—but re-grow a ghost!Won’t discuss here.

The ghost condensate vacuum of this theory breaks N = 1 supersymmetry spon-
taneously in a specific way. The SUSY transformations of the fermions in the ghost
condensate vacuum are

δχ = i
→
2σmζ̄∂mA = iσ0ζ̄c, δψm = 2Dmζ. (9.4.39)

Redefining

ψmα = ψ̃mα − 2i

(∂φ)2
Dm(φ,nσ

n
αα̇χ̄α̇) (9.4.40)

∼
δψ̃m = 0. (9.4.41)

This identifies χ as the Goldstone fermion and ψ̃mα as the physical gravitino. Since
m3/2 = eK/2|W |, then

W = 0 ∼ m3/2 = 0 (9.4.42)

consistent with an explicit calculation. Specifically–using various identities, redefin-
ing the gravitino as above and evaluating on the ghost condensate FRW background,
we find that

1

e
LSUGRA

T=1/16,Weyl = · · · + 1

2
εklmn

( ˜̄ψkσ̄lD̃mψ̃n − ψ̃kσlD̃m
˜̄ψn

)

+ i

2

(
χσmDmχ̄ + χ̄σ̄mDmχ

)

+ iφ,mφ,n
(
χ̄σ̄n(Dmχ) + χσn(Dmχ̄)

) + · · · (9.4.43)

∼ canonical gravitino kinetic term, Lorentz violating ghost-free/gradient unstable
χ kinetic term, and vanishing masses for both ψ̃m and χ.
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Chapter 10
Thermodynamic Curvature and Black Holes

George Ruppeiner

Inmy talk, Iwill discuss black hole thermodynamics, particularlywhat happenswhen
you add thermodynamic curvature to the mix. Although black hole thermodynamics
is a little off the main theme of this workshop, I hope nevertheless that my message
will be of some interest to researchers in supersymmetry and supergravity. Black hole
thermodynamics would appear very much in need of some microscopic foundation.
Wemight ask:what are black holesmade out of? Iwill give no answer, but Iwould like
to suggest that what I present here might offer some guidance about the microscopic
character of black holes.

Thermodynamic curvature is an element of thermodynamic metric geometry.
A pioneering paper on this was by Weinhold [1] who introduced a thermodynamic
energy inner product. This led to the work of Ruppeiner [2] who wrote a Riemannian
thermodynamic entropy metric to represent thermodynamic fluctuation theory, and
was the first to systematically calculate the thermodynamic Ricci curvature scalar
R. A parallel effort was by Andresen et al. [3] who began the systematic applica-
tion of the thermodynamic entropy metric to characterize finite time thermodynamic
processes.

This talk presents a review of thermodynamic curvature R broad in scope, though
far from complete in its coverage. I extend the themes discussed in a previous talk [4].
My main focus is on achieving some understanding of thermodynamic curvature in
the black hole setting. To accomplish this, my working assumption is that for black
holes, R follows the same physical interpretation as for ordinary thermodynamic
systems, where R gives the size of organized microscopic structures. I present a
review of what is known about ordinary thermodynamics, and what this might tell
us about black holes.

G. Ruppeiner (B)
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Fig. 10.1 An infinite environ-
ment of particles and an open
volume, with fixed volume V ,
into which particles fluctuate
in and out

10.1 What is Thermodynamic Curvature R?

Thermodynamic curvature comes from thermodynamic fluctuation theory. This clas-
sical theory is described in every book on statistical mechanics; it is chapter twelve
in Landau and Lifshitz [5]. For a fluid system, the basic set-up is shown in Fig. 10.1.
There is a infinite universe of particles and some imaginary open volume with fixed
volume V , into which the particles can travel freely in and out. What is the probabil-
ity of finding some energy U and some number of particles N in the open volume?
Thermodynamic fluctuation theory gives the answer.

Let the particles in the open volume, and the environment consisting of the rest of
the particles, be two thermodynamic systems. Denote the fixed thermodynamic state
of the environment by “0”. The thermodynamic state of the open volume fluctuates
about an equilibrium characterized by maximum total entropy. The probability of a
fluctuation away from equilibrium is given by Einstein’s famous Gaussian thermo-
dynamic fluctuation formula [5–8]:

probability → exp

[
− V

2
(ΘΩ)2

]
, (10.1)

where

(ΘΩ)2 = gμνΘxμΘxν, (10.2)

x1 and x2 denote a pair of independent fluctuating thermodynamic variables of
the open volume, Θxα = (

xα − xα
0

)
denotes the difference between xα and its

equilibrium value xα
0 , where the total entropy is maximized, and gμν denotes the

elements of the thermodynamic entropy metric discussed below.
Let S, X1, and X2 be the entropy, internal energy U , and particle number N ,

respectively, of the open volume. Regard S = S(X1, X2, V ), with V fixed. X1 and
X2 correspond to conserved quantities, and S is additive between the open volume
and its environment. If xα = Xα, then
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gαβ = − 1

kB V

∂2S

∂Xα∂Xβ
, (10.3)

where kB is Boltzmann’s constant [5, 9, 10]. Since probability depends only on the
thermodynamic state, the metric elements gαβ constitute a second-rank tensor. gαβ

is a positive definite matrix, since the entropy has a maximum value in equilibrium.
This is the condition of thermodynamic stability.

This is all found in Landau and Lifshitz [5]. Let me now get into some things
Landau and Lifshitz did not say. The quadratic form (ΘΩ)2 in (10.2) has the look of
a distance between thermodynamic states, a distance in the form of a Riemannian
metric. The physical interpretation is that: the less the probability of a fluctuation
between two states, the further apart they are.

A Riemannian metric in any context leads directly to a Ricci curvature scalar
R [11], and this is certainly the case here. R is the only geometric scalar invariant
function in thermodynamics, and so it must be very fundamental. The units of the
thermodynamic curvature are those of volume per particle, and this limits its pos-
sible physical interpretation greatly. Units alone suggest that R is a measure of the
characteristic size of some sort of organized fluctuating structures within the system.

R is readily calculable from the thermodynamic metric elements gαβ . For exam-
ple, in

(
x1, x2

) = (T, ρ) coordinates, where T is the temperature and ρ is the particle
number density, we have the Helmholtz free energy per volume f = f (T, ρ), the
entropy per volume s = − f,T (where the comma notation indicates partial differen-
tiation), and the chemical potential μ = f,ρ. The diagonal metric elements (g12 = 0)
are [12]

g11 = 1

kB T

(
∂s

∂T

)

ρ

, (10.4)

and

g22 = 1

kB T

(
∂μ

∂ρ

)

T
. (10.5)

For a diagonal metric [11]

R = 1∼
g

[
∂

∂x1

(
1∼
g

∂g22

∂x1

)
+ ∂

∂x2

(
1∼
g

∂g11

∂x2

)]
, (10.6)

where
g = g11 g22. (10.7)

A simple example is the ideal gas, in which there is no interaction between the
particles. Here

f (T, ρ) = ρkB T ln ln ρ + ρkBh(T ), (10.8)
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Fig. 10.2 Three surfaces with constant Ricci curvature scalar R the sphere, the plane, and the
pseudosphere. For pure fluids, in Weinberg’s sign convention, R < 0 if attractive interparticle
interactions dominate, and R > 0 if repulsive interactions dominate. Regardless the sign convention
for R, attractive interactions correspond to the geometry of the sphere, and repulsive interactions
to the geometry of the pseudosphere

where h(T ) is some function of the temperature with negative second derivative.
Equation (10.6) now yields R = 0 [2]. This suggests that R is some type of measure
of interactions between particles.

Calculations in critical point models show that |R| diverges as the correlation
volume ξd , where d is the spatial dimension of the system [2, 9, 13]. The connection
of |R| to fluctuating structure size has also been established directly by means of a
covariant thermodynamic fluctuation theory [9, 12, 14–16].

R is a signed quantity, as shown in Fig. 10.2. I use the sign convention ofWeinberg
[17]. (Sign conventions differ among authors. I express all results reported here in
Weinberg’s sign convention). For fluid and solid systems, an overall pattern is that
R is negative for systems where attractive interparticle interactions dominate, and
positive where repulsive interactions dominate. The sign of R alone thus offers direct
information about the character of the interactions among the particles.

10.2 R for Ordinary Thermodynamics

R has been worked out in a number of cases in ordinary thermodynamics. On sys-
tematic tabulation, patterns readily become evident. Such patterns might lend insight
into the nature of black hole microscopic properties.

In this section I attempt a classification of the “basic food groups” of R for ordi-
nary thermodynamics. Thermodynamics divides neatly into atomic and molecular
systems, like fluids and solids, and discrete lattice systems, like magnetic spin sys-
tems. I will treat them separately.

10.2.1 R for Fluid and Solid Systems, Basic Models

In this section, I tabulate results for fluid and solid systems, including the quantum
gasses. I pay special attention to Lennard-Jones type interacting systems, for which
there are a number of interesting recent results.



10 Thermodynamic Curvature and Black Holes 183

Table 10.1 The thermodynamic curvature R for a number of simple models for which R has only
one sign

System n d R sign |R| divergence
Ideal Bose gas [18, 19] 2 3 − T ♥ 0
q-Deformed bosons [20] 2 3 − Critical line
Critical regime [2, 9, 21] 2 · · · − Critical point
Mean-field theory [22] 2 · · · − Critical point
van der Waals (critical regime) [9, 21, 23] 2 3 − Critical point
Spherical model [13, 24] 2 3 − Critical point
Tonks gas [25] 2 1 − |R| small
Ideal gas [2, 26] 2 3 0 |R| small
Multicomponent ideal gas [27] >2 3 + |R| small
Ideal gas paramagnet [28] 3 3 + |R| small
q-Deformed fermions [20] 2 3 + T ♥ 0
Ideal Fermi gas [18, 19, 29] 2 2,3 + T ♥ 0
Ideal gas Fermi paramagnet [28] 3 3 + T ♥ 0

Tabulated are the number of independent thermodynamic parameters n, the spatial dimension d,
the sign of R, and the possible divergences of R. For some models, there is no particular spatial
dimension d, and this is denoted by . . .. “|R| small” means that the value of |R| is on the order of
the volume of an interparticle spacing or less

Table 10.1 shows R for a number of simple models for which R has only one sign.
These models were worked out by a number of authors over a period of years. In
these models interactions between particles may take place by virtue of a potential
between the particles, or through quantum statistics. In either case, particles tend
to either bunch together (attract) or to push apart (repel) compared with the ideal
gas. The results in Table 10.1 clearly show the relation between the character of
the interparticle interactions and the sign of R. If interactions between particles
are attractive, R is negative. Prominent here is the ideal Bose gas,1 and the typical
critical point models. If interactions are repulsive, R is positive. Prominent examples
are ideal Fermi gasses. In systems with weak interactions, |R| is zero or “small,”
where “small” means on the order of the molecular volume v, |R| ♦ v or smaller.
Cases with |R| ♦ v are typical also of systems dominated by strong short-range
repulsive interactions, such as dense liquids and solids. Table 10.1 also shows where
|R| diverges, typically either at absolute zero or at critical points.

Table 10.2 shows four additional models, each having R with both signs. The
Takahashi gas has negative R for the gas-like phase, where attractive interactions
dominate, and small |R| in the liquid-like phase. Increasing the density at constant
low temperature yields a pseudophase transition from a gas-like phase to a liquid-like
phase. This pseudophase transition is accompanied by a sharp positive spike in R.
Conceptually simpler than the Takahashi gas are the remaining three models in Table
10.2, which are all quantum gasses intermediate between Fermions and Bosons, and

1 The calculation of R for the ideal Bose gas was done with a continuous density of states, and so
a possible divergence of R at a Bose-Einstein phase transition with T > 0 would not have been
revealed.
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Table 10.2 The thermodynamic curvature R for models where R has both signs

System n d R sign R = 0 |R| divergence
Takahashi gas [25] 2 1 ± Yes T ♥ 0
Gentile’s statistics [19] 2 3 ± Yes T ♥ 0
M-statistics [30] 2 2, 3 ± Yes T ♥ 0
Anyons [31] 2 2 ± Yes T ♥ 0

In each case, R changes sign through R = 0

with sign of R switching from positive to negative through R = 0 on transitioning
from Fermionic to Bosonic behavior. Gentile statistics have an integer parameter p
giving the maximum occupation number of a state, with p = 1 corresponding to a
pure Fermi gas, and p ♥ ♣ to a pure Bose gas. In the same spirit is the M-statistics
model, with state occupation number M . For any temperature and chemical potential,
R eventually transitions in sign from positive to negative as M increases from 1.
R thus offers a convincing method of determining when the M-statistics model
transitions from Fermionic to Bosonic. The quantum gas of anyons is intrinsically
two-dimensional, and has particles with fractional spin α whose variation allows us
to change it continuously from a Bose gas to a Fermi gas (α : 0 ♥ 1); the sign of R
changes correspondingly from negative to positive.

10.2.2 R for Fluid and Solid Systems, Lennard-Jones Potential

A major element in the study of fluid and solid systems is the Lennard-Jones type
potential between particles, shown schematically in Fig. 10.3. This potential approx-
imates the interaction between particles in real fluids and solids. The Lennard-Jones
type potential is strongly repulsive at short range and weakly attractive at long range.
There is aminimum in the potentialwhere repulsion and attraction balance, andwhere
particles in a condensed liquid or solid phase like to reside. Fluid phases typically
posses average separation distances between particles greater than that correspond-
ing to the bottom of the potential well, and so the attractive part of the potential
usually dominates. Hence, R should be mostly negative for real pure fluids, which
is indeed the case. The study of the Lennard-Jones type interaction supplements that
for the simple models above, and takes us a long way towards completing the picture
for R for fluid and solid systems.

Letme present results fromfluid studies based on experimental fluid data [32, 33],
and on computer simulations in fluids and solids on particles interacting via an
actual Lennard-Jones potential [34, 35]. In each case R was determined by (10.6),
differentiating f (T, ρ) obtained from fits to numerical experimental or computer
data. Results of this effort, and the results for the simple models shown above, are
summarized in Fig. 10.4. Figure 10.4 shows schematic graphs of R as a function of
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Fig. 10.3 The Lennard-Jones
type potential, in which
two particles separated by
a distance r experience a
potential φ(r), repulsive at
short range and attractive at
long range

T along curves with the specified v. Particle configurations corresponding to each
situation are also shown alongside the schematic graphs.

Figure 10.4a shows the ideal gas, which has R = 0. Figure 10.4b shows the behav-
ior of R perhaps more typical of weakly interacting systems. Here, widely spaced
particles interact via the attractive tail of the Lennard-Jones potential. Typically R
is negative, and 0 < |R| √ v. I characterize such situations as having “small” |R|,
even in cases such as near ideal gases where v might get very large. The idea is that at
size scales of one molecular volume, the system gets “grainy,” and thermodynamic
properties such as R based on averages have increasing difficulty being accurate.

The liquid state is shown in Fig. 10.4c. We have a compactly arranged, disorga-
nized system of particles held together by attractive interactions, and with negative
R, and |R| ♦ v. On compressing the liquid state, there is the possibility of the sys-
tem organizing into a crystalline solid state, where the predominant interaction is
repulsive in character, with R changing sign to positive, and |R| ♦ v, as shown in
Fig. 10.4d. Typical is a discontinuous jump from the liquid into the solid state [35].

An essential case is the critical point regime, with R shown in Fig. 10.4e. There
are two curves for R, separated by the critical temperature Tc. The curve at lower
temperature represents R along the coexistence curve for both liquid and vapor
phases, and the curve at higher temperature represents R along the critical isochore
v = vc, where vc is the critical molar volume. R diverges to negative infinity at the
critical point along both curves. On the right side of Fig. 10.4e, I sketch a near critical
point particle configuration where a loose cluster has been formed by the attractive
long-range tail of the Lennard-Jones type potential. The size of this cluster is given
by the correlation length ξ, with |R| ♦ ξ3. Another critical point theme is shown
in Fig. 10.4f, where we have equal values of R for the coexisting liquid and vapor
phases, Rl = Rv , as the two phases have identical organized droplet sizes [32–34].

Figure 10.4g shows a somewhat subtle vapor phase theme [32]. Attractive interac-
tions have formed a tight cluster of solid, which is then pressed together by impacts
from surrounding particles. Repulsive interactions hold the structure up and R is
positive, with |R| ♦ cluster size. Such clusters have been reported in computer
simulations in the vapor phase of Water near the critical point [36].
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Fig. 10.4 Schematic graphs for R and corresponding particle configurations: a the ideal gas, with
R = 0; b the weakly interacting gas, with negative R and 0 < |R| √ v, where v is the molecular
volume; c the liquid, with negative R and |R| ♦ v; d the transition from liquid to solid, with R
changing sign to positive in the solid, typically discontinuously; e the critical point, with R ♥ −♣
and |R| ♦ ξ3; f the coexisting gas and liquid phases, with R equal in the vapor and the liquid
phases very near the critical point, Rl = Rv ; g an organized compact repulsive cluster held up by
the repulsive part of the interparticle interactions, with positive R and |R| ♦ cluster size; h the ideal
Bose gas, with R ♥ −♣ as T ♥ 0; i the ideal 2D or 3D Fermi gas, with R ♥ +♣ as T ♥ 0;
and j the anyon gas, with a transition from Bose to Fermi behavior as T decreases at fixed v
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Fig. 10.5 R for Water in
the coexisting liquid and
vapor phases from the triple
point to the critical point.
Demonstrated are the points
made in Fig. 10.4b–g

Figure 10.4h shows the ideal Bose gas, with R always negative, and with R
diverging to negative infinity as T ♥ 0. Figure 10.4i shows the ideal Fermi gas,
with R always positive, and with R diverging to positive infinity as T ♥ 0. The
ideal Fermi gas shows the same qualitative behavior in 3D [18, 19] or 2D [29].
Figure 10.4j shows the gas of anyons with 0 < α < 1. As we cool at constant v,
starting from a high T , R starts with the Bosonic negative sign, but eventually there
is a transition to the Fermionic positive sign. Aside from its intrinsic interest, the
natural spatial dimension, two, of the anyon gas matches the dimension of black hole
event horizons.

Lest the reader think that this is all theoretical, I show R for Water in Fig. 10.5,
along the coexistence curve in both the liquid and vapor phases. Figure 10.5 was
worked out with data from the NIST Chemistry WebBook [37, 38]. R is in units of
cubic nanometers, and is shown from the critical point T = Tc to the triple point
T = Tt , where Tt is the triple point temperature. Demonstrated are a number of
the principles sketched in Fig. 10.4. The predominant sign of R is negative, as the
attractive tail of the Lennard-Jones type potential dominates in the fluid.

In conclusion, for fluid and solid systems major elements of the thermodynamic
curvature seem tobeunderstood in principle, at least for caseswithn = 2 independent
thermodynamic parameters. Cases with n > 2, such as fluid mixtures, are largely
unexplored.

10.2.3 R for Discrete Systems

The thermodynamic curvature for discrete systems has been less investigated. Spin
systems with ferromagnetic interactions tend to have aligned adjacent spins, and to
have critical point properties analogous to those for fluid systems. Indeed, R tends to
be nicely negative for ferromagnetic spin systems, with |R| ♦ ξd . By analogy with
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Table 10.3 The thermodynamic curvature R for several simple spin models for which R has only
one sign

System n d R sign |R| divergence
Ising ferromagnet [22, 40] 2 1 − T ♥ 0
Ising on Bethe lattice [41] 2 . . . − Critical point
Ising on random graph [13, 42] 2 2 − Critical point
Ising antiferromagnet [22, 40] 2 1 − |R| small
Ideal paramagnet [22, 40] 2 · · · 0 |R| small

the fluid systems, then, we might think of ferromagnetic interactions as somehow
“attractive.” We might also logically think of antiferromagnetic interactions, which
tend to disalign adjacent spins, as “repulsive,” and with positive R. But there is little
evidence that it works out like this. Mirza and Talaei [39] worked out R for a model
with frustrated spins, and found a regime with large positive R. Perhaps the presence
or absence of frustration is the key to interpreting the sign of R for spin systems.More
calculations in spin systems would appear indicated before any definitive judgement
could be made.

For spin systems, we commonly have a temperature T and a magnetic field H
(more than one magnetic field may be present, but this possibility is not explored
here). For such models, the partition function gets worked out in terms of β =
1/T and h = −H/T ; namely, Z = Z(β, h). The partition function leads to the
thermodynamic potential per spin φ(β, h) = ln Z, and the metric elements gαβ =
φ,αβ , in coordinates

(
x1, x2

) = (β, h) [9]. Here, we set kB = 1. It is fashionable in
magnetic models to write R as

R =

∣∣∣∣∣∣
φ,11 φ,12 φ,22
φ,111 φ,112 φ,122
φ,112 φ,122 φ,222

∣∣∣∣∣∣

2

∣∣∣∣
φ,11 φ,12
φ,12 φ,22

∣∣∣∣
2 . (10.9)

Many of the results for discrete models were worked out with this formula.
Table 10.3 lists R for some spin models simple enough that R has only one sign

(or R = 0). The first three models in Table 10.3 have ferromagnetic nearest neighbor
interactions. For these, R is negative, with a divergence R ♥ −♣ either as T ♥ 0
(for d = 1), or at a critical point with T > 0 (for d ∗= 1), as interspin coupling brings
about a long-range ordering of aligned spins. This situation would appear analogous
to the fluid critical point regime. The Ising antiferromagnet has a negative R with
magnitude of the order of a lattice spacing, and is similar in this sense to the liquid
state of the previous section.

Table 10.4 shows four discrete systems for which R has both signs. The sign
of R for the one-dimensional q-state Potts model is related to the number of states
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Table 10.4 The thermodynamic curvature R for discrete models for which R has both signs

System n d R sign R = 0 |R| divergence
Potts model (d > 2) [13, 43] 2 1 ± Yes T ♥ 0
Finite Ising ferromagnet [44] 2 1 ± Yes T ♥ 0
Ising-Heisenberg [45] 2 1 ± Yes T ♥ 0
Kagome Ising lattice [39] 2 2 ± No Critical line

per spin q. For q > 2, and nonzero magnetic field, there are significant regimes of
positive R at low temperature. An abrupt change in the sign of R is present in the one-
dimensional Ising ferromagnet of finite N spins. R is appropriately negative for large
N , but sharply increases to large positive values as N is decreased through a volume
N⊂ ♦ |R(N ♥ ♣)|. Work calculating R is in progress for the one-dimensional
Ising-Heisenberg model, which shows ferromagnetism, antiferromagnetism, ferri-
magnetism, and frustration. The ferrimagnetic phases show substantial regimes of
positive R. R for the kagome Ising lattice has recently been worked out, mostly in
zero magnetic field. This model has a critical line T = Tc(H) in (T, H) space along
which R diverges on both sides, negative on the high T side with dominant ferro-
magnetic interactions, and positive on the low T side with dominant ferrimagnetic
interactions.

The physical interpretation of R for discrete systems is less conclusive than that
for the fluid and solid systems. More worked examples are clearly necessary.

10.3 R for Black Hole Thermodynamics

This section discusses black hole thermodynamics, mostly in the context of general
relativity [46]. String theory and other quantum black holes are beyond the scope of
this talk.

10.3.1 Introduction

The classical (nonquantum) properties of black holes date to Schwarzchild’s solu-
tion of Einstein’s field equations [47]. This solution obtains on assuming a static,
charge free, spherically symmetric point mass M , located at a central singularity.
The solution yields a spherical event horizon, centered on the mass, and with radius
r = 2M (in geometrized units). This event horizon bounds an interior from which
there may be no escape, even by light. Einstein’s field equations may also be solved
if we add charge Q (the Reissner-Nordström solution), angular momentum J (the
Kerr solution), or if we have all three quantities (M, J, Q) (the Kerr-Newman solu-
tion). Hawking, Penrose, and others proved the celebrated uniqueness theorems, that
if the collapsing matter is dense enough, then we inevitably approach one of these
solutions.
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Fig. 10.6 Extremal black holes have so much charge Q that they are on the verge of exploding
out under their electrostatic repulsion, or so much angular momentum J that they are on the verge
of spinning apart. Both of these scenarios, or any combination of them, are forbidden by cosmic
censorship

Frequently discussed is the idea of extremal black holes. Could we add enough
charge to a black hole so that it explodes outward under its electrostatic repulsion,
as in Fig. 10.6? Or could we add enough angular momentum so that it tears apart
under its spin? Cosmic censorship forbids both these scenarios, or any combination
of them. We refer to black holes as extremal if they are as close as possible to these
mechanical limits. For the Kerr-Newman black hole, the condition of mechanical
stability is

M4 − J 2 − M2Q2 > 0. (10.10)

At the extremal limit, the black hole temperature T = 0, and cosmic censorship is a
way of expressing the unattainability of absolute zero temperature. It is important to
appreciate, however, that the third law of thermodynamics will not always hold for
black holes, as extremal black holes do not always have zero area. Hence, the black
hole entropy does not always go to zero at zero temperature. This marks an important
difference between black hole thermodynamics and ordinary thermodynamics.

An oft quoted principle of black holes is the “no-hair theorem” [47]. After matter
collapses to form a black hole, there is a brief period of settling downduringwhich the
history of the black hole’s creation is forgotten. The final equilibrium state depends
only on (M, J, Q). Such a reduction of complexity is essential for black hole thermo-
dynamics. Taken to its logical extreme, however, and the no-hair conjecture denies
the possibility of any form of a distribution of equilibrium black hole microstates.
A distribution of microstates is central to statistical mechanics, as well as for thermo-
dynamic fluctuations, and thermodynamic fluctuations are arguably logically neces-
sary to any thermodynamic formalism [48].Myworking assumption is then certainly
to consider fluctuations about the black hole equilibrium thermodynamic state. If we
magnify the regime around the black hole event horizon we might expect to see a
fluctuating structure perhaps like in Fig. 10.7. And if we have fluctuations in some
quantum structure, would there not be associated fundamental particles?
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Fig. 10.7 Fluctuating event
horizon. Are particles associ-
ated with these fluctuations?

Table 10.5 Comparison
between pure fluid
thermodynamics and
Kerr-Newman black hole
thermodynamics

Pure fluid Kerr-Newman

Conserved variables (U, N , V ) (M, J, Q)

Conjugate variables (T,μ,−p) (T, Δ,Γ)

Entropy? Yes Yes
Thermodynamic laws (0,1,2)? Yes Yes
Third law (3)? Yes No
Extensive? Yes No
Thermodynamically stable? Yes No
Statistical mechanics? Yes Unclear

10.3.2 Kerr-Newman Black Hole Thermodynamics

Consider now the Kerr-Newman black hole thermodynamics, beginning with a com-
parison to pure fluids; see Table 10.5. First, I identify the conserved variables; these
play a special role in thermodynamic fluctuation theory [49]. ForKerr-Newman black
hole thermodynamics, the conserved variables are (M, J, Q), with corresponding
conjugate quantities temperature T , angular velocityΔ, and electric potentialΓ [50].
Like pure fluid thermodynamics, black hole thermodynamics has well established
notions of entropy, and zeroth, first, and second laws (0, 1, 2) of thermodynamics.
The third law (3) of thermodynamics, however, is not obeyed in Kerr-Newman black
hole thermodynamics since the entropy does not go to zero at zero temperature.

A clear difference between fluid and black hole thermodynamics is that black
hole thermodynamics is not extensive [51]. Namely, we cannot scale the mass of the
black hole up in such a way as to leave all of the conjugate variables fixed. However,
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this point poses few difficulties for the black hole thermodynamic fluctuation theory
employed here.

Significant is the frequent absence of black hole thermodynamic stability. One
manifestation of this are negative heat capacities, which are a fixture of gravita-
tional thermodynamic problems. A black hole lacking thermodynamic stability can-
not reach thermodynamic equilibrium with its environment, a significant deficit for
the physical interpretation of any quantity, such as R, coming from thermodynamic
fluctuation theory. The Kerr-Newman black hole thermodynamics is not stable for
any set of values of (M, J, Q) [52]. However, stable black hole cases do exist.
These result on either restricting the number of fluctuating variables, adding an AdS
background, or altering the assumptions about the black hole’s topology. Stable ther-
modynamic cases get most of the attention in this talk.

There is no consensus on the question of the correct microstructure support-
ing black hole thermodynamics. String theorists have attempted to calculate such
microstructures, particularly for near extremal black holes, starting with Strominger
and Vafa [53]; see Bellucci and Tiwari [54, 55] and Wei et al. [56] for recent refer-
ences.2 In string theory calculations, the microscopic model is always explicit. By
contrast, for general relativity solutions there is no evident microscopic foundation,
and I direct my efforts to these in this talk.

10.3.3 Laws of Black Hole Thermodynamics

The Bekenstein-Hawking area law [57, 58] sets the black hole entropy SB H propor-
tional to the area A of the event horizon:

SB H

kB
= 1

4

(
A

L2
p

)
, (10.11)

where

L p =
√

�G

c3
(10.12)

is the Planck length. Here, � is Planck’s constant divided by 2π, G is the universal
gravitation constant, and c is the speed of light. The area A may be calculated in
terms of the conserved variables, given a black hole solution from general relativity.
Such a calculation yields the full black hole thermodynamics. For example, here is
the formula for A for the Kerr-Newman black hole [59]:

2 If a paper starts with a spacetime metric, and calculates the thermodynamic from the area of
the event horizon, it is a general relativistic solution. If the paper starts with a Lagrangian, and a
quantum action then it is beyond the scope of my talk.
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A = 4π
(
2M2 − Q2 + 2

√
M4 − J 2 − M2Q2

)
. (10.13)

The black hole entropy may be added to the ordinary entropy So to get the total
entropy of the universe:

Suniverse = SB H + So. (10.14)

We generalize the second law of thermodynamics in the obvious way, that in any
process starting from some initial state and going to some final state:

ΘSuniverse ∞ 0. (10.15)

Drop now the subscript “BH” (SB H ♥ S), and turn to the first law of black hole
thermodynamics. Writing M = M(S, J, Q) leads to

d M = T d S + Δd J + Γd Q, (10.16)

where we define the temperature

T =
(

∂M

∂S

)

J,Q
, (10.17)

the angular velocity

Δ =
(

∂M

∂ J

)

S,Q
, (10.18)

and the electric potential

Γ =
(

∂M

∂Q

)

S,J
. (10.19)

The first law of black hole thermodynamics (10.16) expresses the change in black
hole energy d M to mechanical work terms, Δd J and Γd Q, and a heat term T d S.

Also essential is the 0’th law of black hole thermodynamics, which equates T to
the effective surface tension of the event horizon. Calculations show this quantity
to be constant over the event horizon, resulting in a unique value for the black hole
temperature T . Δ and Γ are similarly constant over the event horizon [59].

Letmemake onemore observation about the correspondences inTable 10.5 before
discussing black hole thermodynamic curvature. While there are natural correspon-
dences between fluid and black hole energy, temperature, entropy, and (I argue)
thermodynamic curvature R, there is always uncertainty in making correspondences
among other thermodynamic variables. For example, if we have some fluid critical
point property, say a divergence in the heat capacity at constant volume, one could
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not naturally say how this property translates to black hole thermodynamics. This
point will be discussed further below in connection with black hole phase transitions.

10.3.4 Black Hole Thermodynamic Curvature R

Blackhole thermodynamics leads naturally to corresponding rules for blackhole ther-
modynamic fluctuations, described by an information metric [49, 60–62] of the type
in (10.2). In conserved independent coordinates (x1, x2, x3, . . .) = (X1, X2, X3, . . .)

= (M, J, Q, · · · ), the thermodynamic metric for black hole fluctuations is (in appro-
priate units)

gαβ = − ∂2S

∂Xα∂Xβ
, (10.20)

where S is the black hole entropy. The form of the thermodynamic metric in (10.20)
requires us to know S = S(X1, X2, X3, . . .). Frequently, however, we know instead
M = M(Y 1, Y 2, Y 3, . . .), where (Y 1, Y 2, Y 3, . . .) = (S, J, Q, . . .). In this event,
simplification results on writing the thermodynamic metric in the Weinhold energy
form, with an additional prefactor 1/T [9, 63]:

gαβ = 1

T

∂2M

∂Y α∂Y β
. (10.21)

No matter how the thermodynamic metric is written, however, we will get the same
value for R for a given thermodynamic state, since R is a thermodynamic invariant.3

Thermodynamic fluctuation metrics must be positive definite for thermodynamic
stability. With two independent fluctuating variables, this requires three conditions:

g11 > 0, (10.22)

g22 > 0, (10.23)

and

g11g22 − g212 > 0. (10.24)

3 The line element (10.2) transforms as a scalar, since probability is a scalar quantity. Hence, the
metric elements gαβ transform as the elements of a second-rank tensor, which the relation between
(10.20) and (10.21) satisfies. The resulting thermodynamic curvature R transforms as a scalar. These
transformation properties hold under all coordinate transformations, including those resulting from
Legendre transformations. This is the case in both ordinary and black hole thermodynamics, despite
erroneous claims to the contrary [64].
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Fig. 10.8 The event horizon
broken up into Planck area
pixels. The dark pixels are
portrayed as correlated. I
propose that |R| measures the
average number of correlated
pixels

Pioneering papers introducing thermodynamic curvature R into the black hole arena
are [60, 65, 66]. In particular, Åman and Pidokrajt [60] first evaluated R for sev-
eral solutions from general relativity. For nondiagonal thermodynamic metrics with
n = 2, such as those in (10.20) and (10.21):

R = − 1∼
g

[
∂

∂x1

(
g12

g11
∼

g

∂g11

∂x2
− 1∼

g

∂g22

∂x1

)

+ ∂

∂x2

(
2∼
g

∂g12

∂x1
− 1∼

g

∂g11

∂x2
− g12

g11
∼

g

∂g11

∂x1

)]
, (10.25)

where

g = g11g22 − g212. (10.26)

But what is the physical interpretation of the black hole thermodynamic curvature
R? In my view there is only one rational way to approach this question, and that is to
follow the ideas developed in ordinary thermodynamics. It has been argued [29] that
the natural units of the thermodynamic curvature are the square of the Planck length
L2

p. Figure 10.8 shows the event horizon broken up into Planck area pixels. Perhaps
|R| measures the correlation between fluctuating Planck length pixels? Since I bring
no microscopic theory of black holes into play in this talk, I have no direct evidence
for such a conjecture. But, by analogy with the case in ordinary thermodynamics,
how else could we interpret the black hole thermodynamic curvature?

The picture in Fig. 10.8 assumes that all the black hole statistical activity takes
place on the two-dimensional event horizon. This assumption is an element of the
black hole membrane paradigm [67]. The motivation of the membrane paradigm is
that if you cannot in principle know what is going on inside the black hole, then
assume that all of the interesting stuff must be happening on the event horizon. One
element of this idea is that if we are going to associate black hole statistics with some
familiar model in statistical mechanics, then perhaps we should look most closely at
two-dimensional models.
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Table 10.6 The thermodynamic curvature R for black hole solutions from general relativity

Name of solution Dimension Variables Stable R sign R = 0 |R| divergence
Reissner-Nordström[60] 3 + 1 (M, Q) None 0 – None
Kerr [60] 3 + 1 (M, J ) None + No Extremal
Kerr-Newman [29, 60, 69] 3 + 1 (M, J, Q) None + No Extremal
Black hole [70] 4 + 1 (M, J ) None + No Extremal
Small black ring [70] 4 + 1 (M, J ) None ± Yes Ext + crit line

The solutions shown here have no regimes of thermodynamic stability. “Extremal” denotes a curve
in the space of variables with T = 0, and “crit” denotes a critical line with T ∗= 0, along which |R|
diverges

10.3.5 Solutions from General Relativity

The thermodynamic curvature R for black holes has been worked out for a number
of systems, and I make no attempt to be complete in my reporting below. Rather,
I present some thoughts about how results from various general relativity solutions
might be comparedwith one another, and to solutions fromordinary thermodynamics.
In Tables 10.6 and 10.7, I consider only thermodynamic states with S > 0, M > 0,
and T > 0. Within this physical range of variables, the solutions divide into two
categories, those for which there are no regimes satisfying thermodynamic stability
(10.22)–(10.24), and those for which there are such regimes. In either category, R can
be readily worked out from (10.25); it is real in all the cases I calculated. However,
the physical interpretation I have presented for R for ordinary thermodynamics is
based on fluctuation theory, and this assumes thermodynamic stability. I key on the
stable cases below.

Table 10.6 shows results for R for several general relativity solutions having
no stable thermodynamic states. Tabulated are the dimension (spatial + time), the
fluctuating conserved variables, whether or not there are regimes of thermodynamic
stability (no cases in Table 10.6), the sign of R (or an indication “0” if R is identically
zero), whether or not there are places where the sign of R changes through zero, and
whether or not there are divergences |R| ♥ ♣. Of the older solutions: Reissner-
Nordström, Kerr, and Kerr-Newman, none are thermodynamically stable for any
thermodynamic state. Also, not thermodynamically stable are the two solutions listed
with a higher dimension = 4+ 1. Some of the older solutions have been worked out
in higher dimensions, but with no reports of thermodynamically stable cases [68].

Table 10.7 shows results for R for several general relativity solutions with “some”
or “all” states thermodynamically stable. Thermodynamic stability results on either
adding anAdSbackground, restricting the number of fluctuating variables, or altering
the assumptions about the black hole’s topology.

Black holes in an AdS background have significant regimes of thermodynamic
stability. The simplest member of this category is the BTZ black hole, which is ther-
modynamically stable for all of its states, and has identically zero R. This behavior
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Table 10.7 The thermodynamic curvature R for black hole solutions from general relativity

Name of solution Dimension Variables Stable R sign R = 0 |R| divergence
BTZ [60, 66] 2 + 1 (M, J ) All 0 0 None
RN-AdS [60, 71–73] 3 + 1 (M, Q) Some ± Yes Ext + crit line
K-AdS [72, 74, 75] 3 + 1 (M, J ) Some − No Critical line
Restricted KN [29, 49] 3 + 1 (J, Q) All + No Extremal
Large black ring [70] 4 + 1 (M, J ) All − No Ext + crit line

These solutions all have at least some thermodynamically stable regimes. The characterization of
R is based only on states in the stable regime. “Extremal” denotes a curve in the space of variables
with T = 0, and “crit” denote a critical line with T ∗= 0 along which |R| diverges

is shown schematically in Fig. 10.9a, and it resembles the behavior for the ideal gas
in Fig. 10.4a.

In the thermodynamically stable regime, Reissner-Nordström-AdS black holes
have an extremal curve T = 0, as well as a line of critical points where |R| diverges
to infinity. This critical line obtains for Q < Qc, where the critical value Qc depends
on the cosmological constant. For a fixed Q > Qc, as we reduce T from a large value,
R diverges to positive infinity at the extremal curve. However, for fixed Q < Qc, as
we reduce T from a large value, R diverges to negative infinity along the critical line.
As T is decreased further, we enter a thermodynamically unstable regime followed
by a stable regime where R increases.

The general black hole thermodynamic behavior for RN-AdS has been associated
with a phase transition analogous to a van der Waals model by Chamblin et al.
[76, 77]. A number of researchers have calculated R for this case [60, 71–73]. The
behavior of R for RN-AdS is shown schematically in Fig. 10.9b. For Q > Qc the
behavior of R resembles that in the Fermi gas, shown in Fig. 10.4i. For Q < Qc, R
resembles the critical point behavior in Fig. 10.4e. This correspondence is certainly
consistent with the association with the van der Waals model. I add that the Q < Qc

curve in Fig. 10.9b has a bump resembling the one in Fig. 10.4g.
Kerr-AdS black holes have no extremal curve in the thermodynamically stable

regime. However, a critical line depending on the cosmological constant bounds the
thermodynamically stable regime at low T . Along this critical line, R diverges to
negative infinity. For theKerr-AdS black hole thermodynamics, R is always negative.
Figure 10.9c sketches R as T is decreased from a large value at constant J . The sketch
resembles the critical point behavior in Fig. 10.4e.However, oncewe cross the critical
line, there are no more thermodynamically stable regimes. Banerjee et al. [78, 79]
have discussed phase transitions in AdS black holes using the Ehrenfest relations,
with special attention to the orders of the phase transitions.

Special thermodynamically stable cases result from the Kerr-Newman solution
when we fix one of the three parameters (M, J, Q), and allow the other two to
fluctuate. This restriction is not just a mathematical convenience; it has a physical
basis. For example, consider adding an electron to the black hole, and calculate
the contribution of each of changing (M, J, Q) to the change in the total entropy.
We expect one of (M, J, Q) to contribute least to the changing entropy, and if it
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Fig. 10.9 Schematic graphs for R for thermodynamically stable general relativistic black hole
solutions: a the BTZ solution, with R = 0; b the RN-AdS solution, with R diverging to positive
infinity at the extremal curve for Q > Qc, and with R diverging to negative infinity, at temperature
Tc > 0, along the critical line for Q < Qc; c the K-AdS solution, with R diverging to negative
infinity at the critical line, d the restricted KN (J, Q) solution, with R diverging to positive infinity
at the extremal limit; e the large black ring solution, with R diverging to positive infinity at the
extremal curve, and with R diverging to negative infinity along the critical line

contributes much less, we could just ignore the change in that parameter, and let
the other two parameters fluctuate. For a black hole with mass on the order of the
Planck mass (a quantum black hole), contributions to the changing entropy from
the electron mass are hugely less important to the change in total entropy than the
changes resulting from its (J, Q). This restrictedKN (J, Q) solution has some highly
desirable properties, as Table 10.7 shows. This solution is sketched in Fig. 10.9d. In
addition, there are some detailed analogies to the 2D ideal Fermi gas in the extremal
limit, which may be interesting.
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The large black ring solution also has significant regimes of stability, bounded by
an extremal curve and a critical line. R diverges to positive infinity at the extremal
curve, and to negative infinity along the critical line.

A few patterns present themselves for the thermodynamically stable general rel-
ativity solutions considered in this section. In all cases, the divergence of R at the
extremal curve is to positive infinity, resembling in this sense the divergence for the
ideal Fermi gasses from ordinary thermodynamics. Where there are critical lines
(with |R| diverging with T ∗= 0), the divergence of R is to negative infinity, resem-
bling the critical point divergences in ordinary thermodynamics. But I have consid-
ered too few cases here to assert with any confidence that these patterns are general.
Further study is obviously necessary.

10.3.6 Discussion of “Inconsistencies”

Much debated in black hole thermodynamics has been the possibility raised by
Davies [50] that the curve of diverging heat capacity CJ, Q = T (∂S/∂T )J, Q in
the Kerr-Newman black hole solution corresponds to a phase transition. Diverging
heat capacities are a feature of second-order phase transitions in ordinary fluid and
spin systems, so Davies’ association would appear logical.

Closer examination, however, raises some questions about Davies’ correspon-
dence. First, an ordinary thermodynamic system generally has at its foundation some
known microscopic model. Such a model offers direct insight not only into the char-
acter of the thermodynamic variables, but into the microscopic signatures of any
thermodynamic anomaly. In the absence of a knownmicroscopic model we have dif-
ficulty answering basic questions. If some heat capacity diverges, how could we be
sure that we have not just made an inappropriate choice of thermodynamic variables,
which reveals infinitieswith no really fundamental significance?What dowemake of
curves in thermodynamic state space where one heat capacity diverges, but the other
heat capacities stay regular? What if various heat capacities diverge along different
curves, as happens in the Kerr-Newman black hole [29, 52], as in Fig. 10.10. Which
curve corresponds to a true phase transition? One of them? All of them? Perhaps it
is safer to associate curves of diverging R with black hole phase transitions. R has a
unique status in identifying microscopic order from thermodynamics. and ordering
at the microscopic level is at the foundation of phase transitions.

Black hole solutions with R identically zero, of which Tables 10.6 and 10.7 each
have one, have also given rise to debate; see [80] for a review. If R measures in some
sense the range of interactions, then one might expect |R| to always be large for
black hole thermodynamics, reflecting the concentrated gravitational forces present
in these objects. But such reasoning need not obtain. In a classical black hole, the
gravitating particles have collapsed to a central singularity, shrinking the interactions
between them to zero volume. The statistics underlying the thermodynamics might
reside on the event horizon, where unknown constituents might interact with each
other by forces perhaps not gravitational. In this scenario, gravity might merely be
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Fig. 10.10 Characteristic
curves for the Kerr-Newman
black hole. The curve along
which CJ,Q diverges is the
Davies curve. R diverges
at the extremal limit and
along curves corresponding to
a change of thermodynamic
stability, which have diverging
CJ,Γ and CΔ,Q . R does not
diverge along the Davies
curve. Here α = J 2/M4 and
β = Q2/M2

a nonstatistical force holding the assembly together, and a result R = 0, where the
unknown constituents move independently of each other, would make perfect sense.

10.4 Conclusions

What are black holes made out of? This question has not been answered here. How-
ever, one way to address this question is by following an agenda of matching the
statistical mechanics of known microscopic models to black hole thermodynamic
solutions from general relativity, or other theories of gravity. I hope that I have con-
vinced the audience that the thermodynamic curvature R has a contribution to make
to this game.

I have given a broad survey of thermodynamic curvature R, one spanning results
in fluids and solids, spin systems, and black hole thermodynamics. R results from the
unique thermodynamic informationmetric giving thermodynamic fluctuations. R has
a unique status in thermodynamics as being a geometric invariant, the same for any
given thermodynamic state no matter what coordinates we calculate in. In ordinary
thermodynamics, the sign of R indicates the character of microscopic interactions,
and |R| indicates the average size of organized fluctuations. Although I have given
no direct evidence that this interpretation holds for black hole thermodynamics, if
we believe in the broad generality of thermodynamic principles, this interpretation
of R should transcend specific scenarios.

Most incomplete in this talk has been the presentation of spin systems. Frustration
in spin systems may be necessary as a way to deal with the frequent failure of the
third law of thermodynamics for black holes. Missing entirely from this talk have
been results on string theorymodels, which were simply beyond reach of the speaker.
These may ultimately yield the best picture of what is going on in the black hole.
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Chapter 11
Coset Approach to the Partial Breaking
of Global Supersymmetry

S. Bellucci, S. Krivonos and A. Sutulin

11.1 Introduction

The characteristic feature of the theories with a partial breaking of global super-
symmetries is the appearance of the Goldstone fermionic fields, associated with the
broken supertranslations, as the components of Goldstone supermultiplets of unbro-
ken supersymmetry. The natural description of such theories is achieved within the
coset approach [1–6]. The usefulness of the coset approach in the applications to
the theories with partial breaking of the supersymmetry have been demonstrated by
many authors [4–24]. The presence of the unbroken supersymmetry makes quite
reasonable the idea to choose the corresponding superfields as the basic ones, and
many interesting superspace actions describing different patterns of supersymmetry
breaking have been constructed in such a way [7, 10–12]. However, the standard
methods of coset approach fail to construct the superfield action, because the super-
space Lagrangian is weakly invariant with respect to supersymmetry—it is shifted
by the full space–time or spinor derivatives under broken/unbroken supersymmetry
transformations. Another rather technical difficulty is the explicit construction of the
component action from the superspace one, which is written in terms of the super-
fields subjected to highly nonlinear constraints. Finally, in some cases the covarianti-
zation of the irreducibility constraints with respect to the broken supersymmetry is
not evident, if at all possible. For example, it has been demonstrated in [7] that such
constraints for the vector supermultiplet can be covariantized only together with the
equations of motion.

It turned out that one can gainmore information about component off-shell actions
if an attention is shifted to the broken supersymmetry. It was demonstrated in [21–23]
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that with a suitable choice of the parametrization of the coset, the α-coordinates
of unbroken supersymmetry and the physical bosonic components do not trans-
form under broken supersymmetry. Moreover, the physical fermions transform as
the Goldstino of the Volkov-Akulov model [5] with respect to broken supersym-
metry. Therefore, the physical fermions can enter the component on-shell action
only (1) through the determinant of the vielbein (to compensate the variation of the
volume dd x), (2) through the covariant space–time derivatives, or (3) through the
Wess-Zumino term, if it exists. The first two ingredients can be easily constructed
within the coset method, while the Wess-Zumino term can be also constructed from
Cartan forms following the recipe of [25]. As a result, we will have the Ansatz for
the action with several constant parameters, which have to be fixed by the invariance
with respect to unbroken supersymmetry. The pleasant feature of such an approach
is that the fermions are “hidden” inside the covariant derivatives and determinant
of the vielbein, making the whole action short, with the explicit geometric mean-
ing of each term. In the present paper we review this procedure in applications to
the actions of the superparticle in D = 3 realizing N = 4 · 2k → N = 2 · 2k

pattern of supersymmetry breaking, the action of superparticle in D = 5 with the
N = 16 supersymmetry broken down to N = 8 one, the on-shell component actions
of N = 1, D = 5 supermembrane and its dual cousins and the component action of
N = 1 supermembrane in D = 4. All these explicit actions confirm our conjecture
about the structure of the component action. Finally, we briefly discuss some related
questions and further possible applications of our method.

11.2 Basics of the Method

In this section we present main features of the coset approach, applying to supersym-
metric models in which one half of the global supersymmetries are spontaneously
broken. Before going to supersymmetric systems, we will consider how this method
works in the purely bosonic case.

Let us split the generators of the target space of the D-dimensional Poincaré
group, which is supposed to be spontaneously broken on the world volume down to
the d-dimensional Poincaré subgroup, into the generators of unbroken {P, M, N }
and spontaneously broken {Z , K } symmetries. The generators P and Z form
D-dimensional translations, M generators span the so(1, d − 1)—Lorentz algebra
on the world volume, the generators N rotate broken translations Z among them-
selves and thus they span so(D − d) algebra, while generators K belong to the coset
so(1, D − 1)/so(1, d − 1) × so(D − d). All transformations of the D-dimensional
Poincaré group can be realized by the left action of different group elements on the
coset space1

g = ex P eq(x)Z eΘ(x)K . (11.2.1)

1 For the sake of brevity we suppress here all space–time indices.
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The spontaneous breaking of Z and K symmetries is reflected in the character of
corresponding coset coordinates which are Goldstone fields q(x) and Θ(x) in the
present case. The transformation properties of coordinates x and fields {q(x),Θ(x)}
maybe easily found in this approach,while all needed information about the geometry
of the coset space (11.2.1) is contained in the Cartan forms

g−1dg = ΩP P + ΩM M + ΩZ Z + ΩK K + ΩN N . (11.2.2)

All Cartan forms except for ΩM and ΩN are transformed homogeneously under all
symmetries.Due to the general theorem [17] not all of the aboveGoldstonefields have
to be treated as independent. In the present case the fields Θ(x) can be covariantly
expressed through x-derivatives of q(x) by imposing the constraint

ΩZ = 0. (11.2.3)

Equations encoded in the conditions (11.2.3), do not contain dynamic restrictions
and are purely kinematic. Thus, we are dealing with the fields q(x) only. It is very
important that the form ΩP defines the vielbein E (d-bein in the present case),
connecting the covariant world volume coordinate differentials ΩP and the world
volume coordinate differential dx as

ΩP = E · dx . (11.2.4)

Combining all these ingredients, one may immediately write the action

S = −
∫

dd x +
∫

dd x det E, (11.2.5)

which is invariant under all symmetries. In (11.2.5) we have added the trivial first
term to fulfill the condition Sq=0 = 0. The action (11.2.5) is just the static gauge
form of the action of p = (d − 1)-branes.

The supersymmetric generalization of the coset approach involves into the game
new spinor generators Q and S which extend the D-dimensional Poincaré group to
the supersymmetric one

{Q, Q} ∼ P, {S, S} ∼ P, {Q, S} ∼ Z . (11.2.6)

The most interesting cases are those when the Q supersymmetry is kept unbroken,
while the S supersymmetry is supposed to be spontaneously broken.2 When#Q = #S
we are facing the so-called 1/2 Partial Breaking of Global Supersymmetry cases

2 If all supersymmetries are considered as spontaneously broken, the corresponding action can be
constructed similarly to the bosonic case, resulting in the some synthesis of Volkov and Akulov [5]
and Nambu-Goto actions. An enlightening example of such a construction can be found in [24].
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(PBGS), which most of all interesting supersymmetric domain walls belong to. Only
such cases of supersymmetry breaking will be considered in this paper.

Now, all symmetries can be realized by group elements acting on the coset element

g = ex P eαQeq(x,α)Z eψ(x,α)Se�(x,α)K . (11.2.7)

The main novel feature of the supersymmetric coset (11.2.7) is the appearance of the
Goldstone superfields {q(x, α),ψ(x, α),�(x, α)}which depend on the coordinates of
the world volume superspace {x, α}. The rest of the coset approach machinery works
in the samemanner: onemay construct theCartan forms (11.2.2) for the coset (11.2.7)
(which will contain the new forms ΩQ and ΩS), one may find the supersymmetric
d-bein and corresponding bosonic ♥P and spinor ♥Q covariant derivatives, etc. One
may even write the proper generalizations of the covariant constraints (11.2.3) as

ΩZ = 0, ΩS| = 0, (11.2.8)

where | means the dα-projection of the form (see e.g. [13] and references therein).
The dα-parts of these constraints are closely related with the "geometro-dynamical"
constraint of the superembedding approach (see e.g. [26]).

Unfortunately, this similarity between purely bosonic and supersymmetric cases is
not complete due to the existence of the following important new features of theories
with partial breaking of global supersymmetry:

• In contrast with the bosonic case, not all of the physical fields appear among the
parameters of the coset. A famous example comes from the supersymmetric space-
filling D3-brane (aka N = 1 Born-Infeld theory) where the coset element (11.2.7)
contains only P , Q and S generators [8, 10], while the field strength F is “hidden”
inside the superfield ψ : F ∼ ♥Qψ|. Nevertheless, it is true that the all physical
bosonic components can be found in the quantity ♥Qψ|.

• The supersymmetric generalization (11.2.8) of the bosonic kinematic constraints
(11.2.3) in most cases contains not only kinematic conditions, but also dynamic
superfield equations of motion. A prominent example again may be found in
[8]. Moreover, in many cases it is unknown how to split these constraints into
kinematical and dynamical ones.

• But the most unpleasant feature of the supersymmetric cases is that the stan-
dard methods of nonlinear realizations fail to construct the superfield action! The
main reason for this is simple: all that we have at hands are the covariant Cartan
forms, which we can construct the superfield invariants from, while the superspace
Lagrangian is not invariant. Instead it is shifted by the full spinor derivatives under
unbroken and/or broken supersymmetries.

Nevertheless, we are going to apply a coset approach to the supersymmetric cases
and to demonstrate how on-shell component actions can be constructed within it.
The main idea is to start with the Ansatz for the action manifestly invariant with
respect to spontaneously broken supersymmetry. Funny enough, it is rather easy to
do, due to the following properties:
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• In our parametrization of the coset element (11.2.7) the superspace coordinates α
do not transformunder broken supersymmetry. Thus, all components of superfields
transform independently,

• The covariant derivatives ♥P and ♥Q are invariant under broken supersymmetry.
Therefore, the bosonic physical components which are contained in ♥Qψ(x, α)|
can be treated as “matter fields” (together with the field q(x, α)| itself) with respect
to broken supersymmetry,

• All physical fermionic components are just α = 0 projections of the superfield
ψ(x, α) and these components transform as the fermions of the Volkov-Akulov
model [5] with respect to broken supersymmetry.

The immediate consequence of these facts is the conclusion that the physical
fermionic components can enter the component on-shell action either through the
determinant of the d-bein constructedwith the help of the Cartan formΩP in the limit
α = 0, namely, E = E |, through the space–time derivatives of the “matter fields”
♥P q|, or through theWess-Zumino terms if they exist. Thus, themost general Ansatz
for the on-shell component action, which is invariant with respect to spontaneously
broken supersymmetry, has the form

S =
∫

dd x −
∫

dd x det EF(♥Qψ|,♥P q|) + SW Z . (11.2.9)

Note, that the arguments of the function F are the bosonic physical components
♥Qψ| and the covariant space–time derivatives of q (which, by the way, are also
contained in ♥Qψ|). In certain cases, for fixing an explicit form of the function F it
is sufficient that the following two conditions be satisfied

1. The action (11.2.9) should have a proper bosonic limit, which is known in almost
all interesting cases. One should note, that this limit for the action (11.2.9) is
trivial

Sbos =
∫

dd x
(
1 − F(♥Qψ|, νPq)

)
.

2. The action (11.2.9) in the linear limit should possess a linear version of unbroken
supersymmetry, i.e. it should be just the sum of the kinetic terms for all bosonic
and fermionic components with the relative coefficients fixed by unbroken super-
symmetry.

One should note that theWess-Zimino action, which is invariant under broken super-
symmetry, can be also constructed from the Cartan forms following the recipe of
[25]. Thus, the role of unbroken supersymmetry is to fix the coefficients in the action
(11.2.9) to achieve its invariance with respect to unbroken sypersymmetry.

In the next two sections of the present paper we will show how the coset approach
works in the cases of the superparticle in D = 3 and D = 5 with the chiral and
quartet Goldstone supermultiplets, respectively. Then in Sect. 11.5 we will extend
our analysis to the cases of N = 1 supermembrane in D = 4 as well as of the dual
system—N = 1 supersymmetric space filling D2-brane. In Sect. 11.6 we will show
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that in order to construct N = 2 supersymmetric action for the supermembrane action
in D = 4, one needs to add the corresponding Wess-Zumino term. In Appendices
we collect the technical details, notation and explicit proof of invariance of the
supermembrane action with respect to both, broken and unbroken supersymmetries.
We conclude with some comments and perspectives.

11.3 Superparticle in D = 3

The main goal of this section is to provide the detailed structure of the component
on-shell actions for the one-dimensional system realizing a one half breaking of
the global supersymmetry. As an example, we consider a system with N = 16 →
N = 8pattern of supersymmetry breaking based on the superalgebrawith two “semi-
central charges” (Z , Z). We show that the resulting component action describes a
superparticle in D = 3.

11.3.1 Superparticle in D = 3: Kinematics

It is a well known fact that the action for the given pattern of the supersymmetry
breaking is completely defined by the choice of the corresponding Goldstone super-
multiplet [7–14, 16]. The bosonic scalars of the supermultiplet are associated with
the "semi-central charges" in the supersymmetry algebra (11.2.6). To describe a sys-
tem with one complex boson (or two real bosons) one has to choose N = 16, d = 1
Poincaré superalgebra with two "semi-central charges" (Z , Z)

{
Qia, Q jb

}
= 2ϕa

bϕi
j P,

{
Sia, S jb

}
= 2ϕa

bϕi
j P,

{
Qia, S jb

}
= 2iψabψi j Z ,

{
Qia, S jb

} = −2iψabψi j Z . (11.3.1)

Here i, a = 1, 2 refer to the indices of the fundamental representations of two com-
muting SU (2) groups. In (11.3.1) P is the generator of one-dimensional translation,
while Qia, Qia and Sia, Sia are the generators of unbroken and spontaneously bro-
ken N = 8 supersymmetries, respectively. As we already explain in the Introduction,
in the coset approach the statement that S supersymmetry and (Z , Z) translations are
spontaneously broken is reflected in the structure of the element of the coset space

g = eit P eαia Qia+ᾱia Qia ei(q Z+q̄ Z) eψia Sia+ψ̄
ia

Sia . (11.3.2)

Once we state that the coordinates ψ and q are the superfields depending on the
N = 8, d = 1 superspace coordinates (t, α, ᾱ), then we are dealing with the
spontaneously breaking of the corresponding symmetries. Thus, in our case we will
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treat ψ(t, α, ᾱ), q(t, α, ᾱ) as N = 8, d = 1 Goldstone superfields accompanying
N = 16 → N = 8 breaking of supersymmetry in one dimension.

The transformation properties of coordinates and superfields under both unbroken
and broken supersymmetries are induced by the left multiplications of the group
element g0 on the coset (11.3.2)

g0 g = g♦.

Thus, for the unbroken supersymmetry with g0 = eψia Qia+ψ̄ia Qia one gets

ϕQt = i
(
ψia ᾱia + ψ̄iaαia

)
, ϕQαia = ψia, ϕQ ᾱia = ψ̄ia, (11.3.3)

while for the broken supersymmetry with g0 = eλia Sia+λ̄ia Sia the transformations
read

ϕSt = i
⎧
λiaψ̄

ia + λ̄iaψia
⎨
, ϕSψia = λia, ϕSψ̄

ia = λ̄ia,

ϕSq = −2λiaαia, ϕS q̄ = 2λ̄ia ᾱia . (11.3.4)

The local geometric properties of the system are specified by the left-invariant
Cartan forms

g−1dg = iεP P +(εQ)ia Qia +(ε̄Q)ia Qia +iεZ Z +i ε̄Z Z +(εS)ia Sia +(ε̄S)ia Sia

(11.3.5)
which can be explicitly written in the considered case as

εP = dt − i
⎧
ᾱiadαia + αiad ᾱia + ψ̄

ia
dψia + ψiadψ̄

ia⎨
, (εQ)ia = dαia,

(ε̄Q)ia = d ᾱia, (εS)ia = dψia, (ε̄S)ia = dψ̄
ia

, εZ = dq + 2ψiadαia,

ε̄Z = d q̄ − 2ψ̄iad ᾱia . (11.3.6)

Using the covariant differentials (εP , dαia, d ᾱia) (11.3.6), one may construct the
covariant derivatives

νt = E ♥t , E = 1 − i
(
ψia

˙̄ψia + ψ̄
ia

ψ̇ia

)
, E−1 = 1 + i

(
ψia♥t ψ̄

ia + ψ̄
ia♥tψia

)
,

♥ ia = Dia − i
(
ψkb Diaψ̄

kb + ψ̄
kb

Diaψkb

)
♥t = Dia − i

(
ψkb♥ iaψ̄

kb + ψ̄
kb♥ iaψkb

)
νt ,

♥ ia = Dia − i
(
ψkb Diaψ̄

kb + ψ̄
kb

Diaψkb

)
♥t = Dia − i

(
ψkb♥ iaψ̄

kb + ψ̄
kb♥ iaψkb

)
νt ,

(11.3.7)

where

Dia = ν

ναia
− i ᾱiaνt , Dia = ν

νᾱia
− iαiaνt ,

{
Dia, D jb

}
= −2iϕa

bϕi
jνt .

(11.3.8)
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The covariant derivatives (11.3.7) satisfy the following (anti)commutation relations

{
♥ ia,♥ jb

}
= −2i

(
♥ iaψkc♥ jbψ̄

kc + ♥ iaψ̄
kc♥ jbψkc

)
♥t ,

{♥ ia,♥ jb
} = −2i

(
♥ iaψkc♥ jbψ̄

kc + ♥ iaψ̄
kc♥ jbψkc

)
♥t ,

⎩
♥t ,♥ ia

⎣
= −2i

(
♥tψkc♥ iaψ̄

kc + ♥t ψ̄
kc♥ iaψkc

)
♥t ,

⎤♥t ,♥ ia
⎦ = −2i

(
♥tψkc♥ iaψ̄

kc + ♥t ψ̄
kc♥ iaψkc

)
♥t ,

{
♥ ia,♥ jb

}
= −2iϕa

bϕi
j♥t − 2i

(
♥ iaψkc♥ jbψ̄

kc + ♥ iaψ̄
kc♥ jbψkc

)
♥t .

(11.3.9)

To reduce the number of independent Goldstone superfields let us impose the
conditions on the dα-projections of the Cartan forms (εZ , ε̄Z ) (11.3.6)

{
εZ |α = 0,
εZ |α = 0,

♣
{♥ iaq = 0, ♥ iaq − 2ψia = 0,

♥ ia q̄ = 0, ♥ ia q̄ + 2ψ̄ia = 0.
(11.3.10)

One part of these kinematical constraints can be recognized as the covariant chirality
conditions on the superfields q and q̄, while the remaining two equations express the
fermionic Goldstone superfieldsψia and ψ̄ia as the spinor derivatives of the bosonic
superfields q and q̄, thereby realizing the Inverse Higgs phenomenon [17].

11.3.2 Superparticle in D = 3: Dynamics

It is well known that the standard chirality conditions are not enough to select an
irreducible N = 8, d = 1 supermultiplet: one has impose additional, second order
in the spinor derivatives constraints on the superfield {q, q̄} [27]. Unfortunately, as it
often happened in the coset approach, the direct covariantization of the irreducibility
constraints is not covariant [8], while the simultaneous covariantization of the con-
straints and the equations of motion works perfectly. That is why we propose the
following equations which should describe our superparticle

♥ iaψ jb = 0, ♥ iaψ̄
jb = 0. (11.3.11)

These equations are covariant with respect to both unbroken and broken supersym-
metries. One should wonder whether the equations (11.3.11) are self-consistent?
Indeed, due to (11.3.10) from (11.3.11) we have

♥ iaψ jb = 1

2
♥ ia♥ jbq = 0 ♣ {♥ ia,♥ jb} q = 0. (11.3.12)
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So, onemay expect some additional conditions on the superfield q due to the relations
(11.3.9). However, on the constraints surface in (11.3.11) we have

{
♥ ia,♥ jb

}
= 0,

{♥ ia,♥ jb
} = 0, (11.3.13)

and thus the equations (11.3.11) are perfectly self-consistent.
It is worth mentioning that the rest of the commutators in (11.3.9) are also simpli-

fied, when (11.3.11) are satisfied. Indeed, on the constraints (11.3.11) surface they
read

{
♥ ia,♥ jb

}
= −2iϕi

jϕ
a
b (1 + λλ̄)♥t ,

⎩
♥t ,♥ ia

⎣
= 2iλ̄♥tψ

ia♥t ,

⎤♥t ,♥ ia
⎦ = 2iλ♥t ψ̄ia♥t , (11.3.14)

where we introduced the superfields {λ, λ̄}
{

♥ iaψ jb + ψi jψabλ = 0,

♥ iaψ̄
jb + ψi jψabλ̄ = 0,

♣
{♥t q + iλ

1+λλ̄
= 0,

♥t q̄ − iλ̄
1+λλ̄

= 0.
(11.3.15)

The superfield equations (11.3.11) lead in the bosonic limit to the following
equation of motion for the complex scalar field q = q|α=0:

d

dt

[
q̇√

1 − 4q̇ ˙̄q

]
= 0. (11.3.16)

The last equation can be easy deduced from the bosonic action

Sbos =
∫

dt

(
1 −

√
1 − 4q̇ ˙̄q

)
. (11.3.17)

Thus, the bosonic action for a particle in D = 3 space–time is known.

11.3.3 Superparticle in D = 3: Component Action

Despite the explicit construction of the proper equations of motion within the super-
field version of the coset approach, it is poorly adapted for the construction of the
action. That is why in the paper [21] the component version of the coset approach to
construct the actions has been proposed. In the application to the present case, the
basic steps of this method can be formulated as follows:

• Firstly, on-shell our N = 8 supermultiplet {q, q̄} contains the following physical
components:
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q = q|α=0, q̄ = q̄|α=0, ρia = ψia |α=0, ρ̄ia = ψ̄
ia |α=0.

They are just the first components of the superfields parameterizing the coset
(11.3.2).

• Secondly, with respect to broken supersymmetry ϕα = ϕᾱ = 0 (11.3.4). This
means, that the transformation properties of the physical components
{q, q̄,ρia, ρ̄ia} under broken supersymmetry can be extracted from the coset

g|α=0 = eit P ei(q Z+q̄ Z) eρia Sia+ρ̄ia Sia . (11.3.18)

In other words, the fields {q, q̄,ρia, ρ̄ia} parameterize the coset (11.3.18) which
is responsible for full breaking of the S supersymmetry. Moreover, with respect
to this supersymmetry the fields {q, q̄} are just “matter fields”, because ϕSq =
ϕSq̄ = 0, while the fermions {ρia, ρ̄ia} are just Goldstone fermions. This means
that the component action has to be of theVolkov-Akulov type [5], i.e. the fermions
{ρia, ρ̄ia} may enter the action through the einbein E or through the covariant
derivatives Dt q,Dt q̄ only, with

νt = EDt , E = E |α=0 = 1 − i
(
ρia

˙̄ρia + ρ̄iaρ̇ia

)
,

E−1 = 1 + i
(
ρiaDt ρ̄

ia + ρ̄iaDtρia

)
. (11.3.19)

Thus, the unique candidate to be the component on-shell action, invariant with
respect to spontaneously broken S supersymmetry reads

S = σ

∫
dt +

∫
dtEF [Dt qDt q̄] (11.3.20)

with an arbitrary, for the time being, function F and a constant parameter σ.
• Finally, considering the bosonic limit of the action (11.3.20) and comparing it with
the known bosonic action (11.3.17) one may find the function F :

∫
dt
⎧
σ + F ⎤q̇ ˙̄q⎦⎨ =

∫
dt

(
1 −

√
1 − 4q̇ ˙̄q

)
♣

F =
(
1 − σ −

√
1 − 4q̇ ˙̄q

)
. (11.3.21)

Therefore, the most general component action possessing the proper bosonic limit
(11.3.17) and invariant under spontaneously broken supersymmetry has the form

S = σ

∫
dt + (1 − σ)

∫
dt E −

∫
dt E

√
1 − 4Dt qDt q̄. (11.3.22)
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In principle, the invariance of the action (11.3.22) under broken supersymmetry is
evident. Nevertheless, it should be explicitly checked.

From (11.3.4) we obtain the total variations of our components and the time
coordinate t :

ϕSt = i
(
λiaρ̄ia + λ̄iaρia

)
, ϕSρia = λia, ϕSρ̄

ia = λ̄ia, ϕSq = 0, ϕSq̄ = 0.

(11.3.23)
Therefore, the transformations of the components in the fixed point read

ϕ√
Sq = ϕSq − ϕSt q̇, ϕ√

Sρia = ϕSρia − ϕSt ρ̇ia . (11.3.24)

Then, it immediately follows from (11.3.24) and definitions (11.3.19) that

ϕ√
S (EF [Dt qDt q̄]) = −iνt

⎩(
λiaρ̄ia + λ̄iaρia

)
EF [Dt qDt q̄]

⎣
. (11.3.25)

Thus, the two last terms in the action (11.3.22) are invariant, while the invariance of
the first term is evident.

The final step is to check the invariance of the action (11.3.22) under unbroken
supersymmetry which is realized on the components as follows:

ϕ√
Qq = −2ψiaρia + i

(
ψiaρiaγ̄ + ψ̄iaρ̄iaγ

)
νt q

ϕ√
Qρia = ψ̄iaγ + i

(
ψ jbρ jbγ̄ + ψ̄ jbρ̄ jbγ

)
νtρia . (11.3.26)

Here, γ is the first component of the superfield λ defined in (11.3.15)

γ = 2iDt q

1 + ∗
1 − 4Dt qDt q̄

. (11.3.27)

From (11.3.26) and the definitions (11.3.19) one may easily find the transformation
properties of the main ingredients

ϕ√
QE = iνt

⎩(
ψ jbρ jbγ̄ + ψ̄ jbρ̄ jbγ

)
E
⎣

− 2i
(
ψ jbρ̇ jbγ̄ + ψ̄ jb ˙̄ρ jbγ

)
,

ϕ√
QDt q = i

(
ψ jbρ jbγ̄ + ψ̄ jbρ̄ jbγ

)
νt (Dt q) − 2ψ jbDtρ jb

+ 2i
(
ψ jbDtρ jbγ̄ + ψ̄ jbDt ρ̄ jbγ

)
Dt q. (11.3.28)

Now, one may calculate the variation of the integrand in the action (11.3.20)
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ϕ√
Q (E F) = 2νt

[
E ψ jbρ jbDt q̄ − ψ̄ jbρ̄ jbDt q

1 + ∗
1 − 4Dt qDt q̄

F
]

+ ψ jbρ̇ jbDt q̄ − ψ̄ jb ˙̄ρ jbDt q

1 + ∗
1 − 4Dt qDt q̄⎩

−4F − 2F ♦ (1 +√1 − 4Dt qDt q̄ − 4Dt qDt q̄
)⎣

.

(11.3.29)

Substituting the function F (11.3.21) and its derivative over its argument Dt qDt q̄ ,
we find that the second term in the variation (11.3.29) cancels out, provided σ = 2.
Keeping in mind that the first term in the action (11.3.22) is trivially invariant under
unbroken supersymmetry, we conclude that the unique component action invariant
under both unbroken and broken N = 8 supersymmetries reads

S = 2
∫

dt −
∫

dt E
(
1 +√1 − 4Dt qDt q̄

)
. (11.3.30)

We end this section with two comments.
Firstly, one should note that the construction of the component action, we considered
in the previous section, has two interesting peculiarities:

• It is based on the coset realization of the N = 16 superalgebra (11.3.1)
• In the component action (11.3.30) the summation over indices {i, a} of two SU (2)
groups affected only physical fermions {ρia, ρ̄ia}.

It is quite clear, that in such a situation one may consider two subalgebras of N = 16
superalgebra:

• N = 8 supersymmetry, by choosing the corresponding supercharges as

Q̃i ⊂ Qi1, Q̃i ⊂ Qi1, S̃i ⊂ Si2, S̃i ⊂ Si2, (11.3.31)

• N = 4 supersymmetry with the supercharges

Q̂ ⊂ Q11, Q̂ ⊂ Q11, Ŝ ⊂ S22, Ŝ ⊂ S22. (11.3.32)

It is evident that the corresponding component actions will be given by the same
expression (11.3.30), in which the “new” einbeins and covariant derivatives read

N = 8 case :
{
νt = ẼD̃t , Ẽ = 1 − i

(
ρi2

˙̄ρi2 + ρ̄i2ρ̇i2

)
, Ẽ−1 = 1 + i

(
ρi2D̃t ρ̄

i2 + ρ̄i2D̃tρi2

)
,

(11.3.33)

N = 4 case :
{
νt = ÊD̂t , Ê = 1 − i

(
ρ22

˙̄ρ22 + ρ̄22ρ̇22

)
, Ê−1 = 1 + i

(
ρ22D̂t ρ̄

22 + ρ̄22D̂tρ22

)
.

(11.3.34)
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Thus, we see that the action (11.3.30) has a universal character, describing the series
of theories with the following patterns of global supersymmetry breaking N = 16 →
N = 8, N = 8 → N = 4 and N = 4 → N = 2.

Secondly, it is almost evident, that the universality of the action (11.3.30) can be
used to extend our construction to the cases of N = 4 ·2k supersymmetries by adding
the needed numbers of SU (2) indices to the superscharges as

Q → Qσ1...σk , Q → Qσ1...σk
, S → Sσ1...σk , S → Sσ1...σk , (11.3.35)

obeying the N = 4 · 2k Poincaré superalgebra

{
Qσ1...σk , Q∂1...∂k

} = 2ϕσ1
∂1

. . . ϕσk
∂k

P,
{

Sσ1...σk , S∂1...∂k

} = 2ϕσ1
∂1

. . . ϕσk
∂k

P,
{

Qσ1...σk , S∂1...∂k
}

= 2iψσ1∂1 . . . ψσk∂k Z ,

{
Qσ1...σk

, S∂1...∂k

} = −2iψσ1∂1 . . . ψσk∂k Z . (11.3.36)

Once again, the component action describing superparticles in D = 3 space with
N = 4 · 2k Poincaré supersymmetry partially broken down to the N = 2 · 2k one
will be given by the same expression (11.3.30) with the following substitutions

ρ → ρσ1...σk , ρ̄ → ρ̄σ1...σk , E = 1 − i
(
ρσ1...σk

˙̄ρσ1...σk + ρ̄σ1...σk ρ̇σ1...σk

)
.

(11.3.37)

11.4 Superparticle in D = 5

In this section we will apply our approach to N = 16 superparticle in D = 5.
The corresponding superfield equations of motion for this system, which possesses 8
manifest and 8 spontaneously broken supersymmetries, have been constructedwithin
the coset approach in [14], while the action is still unknown.

To describe the superparticle in D = 5 with 16 supersymmetries one has to start
with the following superalgebra

{Qi
σ, Q j

∂} = ψi jΩσ∂ P, {Qi
σ, Sb∂} = ϕ∂

σ Zib, {Saσ, Sb∂} = −ψabΩσ∂ P,

(i, a = 1, 2; σ,∂ = 1, 2, 3, 4) (11.4.1)

where the invariant Spin(5) symplectic metric Ωσ∂ , allowing to raise and lower the
spinor indices, obeys the conditions3

3 We use the following convention: ψσ∂γδψσ∂γδ = 24, ψσ∂γδψσ∂μφ = 2(ϕγ
μ ϕδ

φ − ϕγ
φ ϕδ

μ).
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Ωσ∂ = −Ω∂σ, Ωσ∂ = −1

2
ψσ∂γδΩγδ, Ωσ∂ = −1

2
ψσ∂γδΩγδ, Ωσ∂Ω∂κ = ϕκ

σ.

(11.4.2)

From the one-dimensional perspective this algebra is N = 16 super Poincaré alge-
bra with four central charges Zia . If we are going to treat S supersymmetry to be
spontaneously broken, then we have to consider the following element of the coset4:

g = et P eασ
i Qi

σ eqia Z ia
eψaσSaσ

. (11.4.3)

Here (t, ασ
i ) are the coordinates of N = 8, d = 1 superspace while qia = qia(t, ασ

i ),

ψaσ = ψaσ(t, ασ
i ), are the Goldstone superfields.

Similarly to the case considered in the previous section, one may find the trans-
formation properties of the coordinates and superfields, by acting from the left on the
coset element (11.4.3) by different elements of the group with constant parameters.
So, for the unbroken supersymmetry [g0 = exp (ψσ

i Qi
σ)] one gets

ϕQt = −1

2
ψσ

i αi∂Ωσ∂, ϕQασ
i = ψσ

i , (11.4.4)

while for the broken supersymmetry [g0 = exp (λaσSaσ)] the corresponding trans-
formations read

ϕSt = −1

2
λa
σψa∂Ωσ∂, ϕSψaσ = λaσ, ϕSqia = −λaσασ

i . (11.4.5)

The last needed ingredient is the Cartan forms, defined in a standard way as

g−1dg = εP P + (εQ)σi Qi
σ + (εZ )ia Z ia + (εS)aσ Saσ, (11.4.6)

with

εP = dt − 1

2
dασ

i αi∂Ωσ∂ + 1

2
dψaσψa

∂Ωσ∂, (εZ )ia = dqia − dασ
i ψaσ,

(εQ)σi = dασ
i , (εS)aσ = dψaσ. (11.4.7)

Using the covariant differentials {εP , (εQ)σi } one may construct the covariant deriv-
atives ♥t and ♥ i

σ

νt = E ♥t , E = 1 + 1

2
Ω∂κψa

∂νtψaκ, E−1 = 1 − 1

2
Ω∂κψa

∂♥tψaκ,

(11.4.8)

♥ i
σ = Di

σ + 1

2
Ω∂κψa

∂ Di
σψaκ♥t = Di

σ + 1

2
Ω∂κψa

∂♥ i
σψaκνt , (11.4.9)

4 Here, we strictly follow the notations adopted in [14] which are slightly different with those we
used in the previous sections.
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where

Di
σ = ν

νασ
i

+ 1

2
αi∂Ωσ∂νt ,

{
Di

σ, D j
∂

}
= ψi j Ωσ∂ νt . (11.4.10)

These covariant derivatives satisfy the following (anti)commutation relations:

{
♥ i

σ,♥ j
∂

}
= ψi j Ωσ∂ ♥t + Ωγδ ♥ i

σψb
γ ♥ j

∂ψbδ ♥t ,
⎩
♥t ,♥ i

σ

⎣
= Ω∂κ ♥tψ

b
∂ ♥ i

σψbκ♥t . (11.4.11)

Now, in a full analogy with the previously considered case, we impose the fol-
lowing invariant condition on the dα-projections of Cartan form (εZ )ia (11.4.7):

(εZ )ia |α = 0 ♣
{♥( j

σ qi)
a = 0, (a)

♥ i
σ qia − 2ψaσ = 0. (b)

(11.4.12)

The condition (11.4.12b) identifies the fermionic superfield ψaσ with the spinor
derivatives of the superfield qia , just reducing the independent superfields to bosonic
qia ones (this is again the InverseHiggsPhenomenon [17]). The conditions (11.4.12a)
are more restrictive—they nullify all auxiliary components in the superfield qia .
Indeed, it immediately follows from (11.4.12) that

3

2
♥ j

∂ψaσ =
{
♥ j

∂ ,♥ i
σ

}
qia − 1

2

{
♥ j

σ,♥ i
∂

}
qia . (11.4.13)

Using anti-commutators (11.4.11), one may solve this equation as follows:

♥ j
∂ ψaσ + 1

2
λ

j
aΩσ∂ = 0, (11.4.14)

where the superfield λia is defined as (λ2 = λiaλia)

♥t qia − 1

2

λia

1 + λ2

8

= 0. (11.4.15)

Thus, we have the on-shell situation. In [14] the corresponding bosonic equation of
motion has been found to be

d

dt


 q̇ia√

1 − 2q̇ jbq̇ jb


 = 0, (11.4.16)

where qia = qia |α=0 are the first components of the superfield qia . The equation of
motion (11.4.14) corresponds to the static-gauge form of Nambu-Goto action for the
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massive particle in D = 5 space–time

Sbos ∼
∫

dt

(
1 −

√
1 − 2q̇ia q̇ia

)
. (11.4.17)

To construct the on-shell component action we will follow the same procedure
which was described above in full details. So, we will omit unessential details con-
centrating only on the new features.

If we are interested in the invariance with respect to broken S supersymmetry,
then we may consider the reduced coset element

g|α=0 = et P eqia Zia
eρaσSaσ

. (11.4.18)

Here, qia and ρaσ are the first components of the superfields qia and ψaσ. Similarly
to the discussion in Sect. 11.3, the Goldstone fermionsρaσ may enter the component
action only through the einbein E and the covariant derivatives Dt qia , defined now
as

νt = E Dt , E = 1 + 1

2
Ω∂κρa

∂νtρaκ, E−1 = 1 − 1

2
Ω∂κρa

∂Dtρaκ, (11.4.19)

Keeping in the mind the known bosonic limit of the action (11.4.17), we come to the
unique candidate of the component on-shell action

S = σ

∫
dt + (1 − σ)

∫
dt E −

∫
dt E

√
1 − 2Dt qiaDt qia . (11.4.20)

This action is perfectly invariant with respect to broken S supersymmetry, realized
on the physical components and their derivatives as

ϕ√
Sqia = 1

2
λb
σρb∂Ωσ∂νt qia, ϕ√

S(Dt qia) = 1

2
λb
σρb∂Ωσ∂νt (Dt qia),

ϕ√
Sρaσ = λaσ + 1

2
λb
∂ρbγΩ∂γνtρaσ. (11.4.21)

From (11.4.21) one may find the transformation properties of the einbein E

ϕ√
SE = 1

2
λa
σνt

(
EΩσ∂ρa∂

)
. (11.4.22)

Now, combining (11.4.21) and (11.4.22), we will get

ϕ√
S

(
EF
⎩
Dt q jbDt q jb

⎣)
= 1

2
λa
σνt

(
Ωσ∂ρa∂ E F

⎩
Dt q jbDt q jb

⎣)
, (11.4.23)
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and, therefore, the second and the third terms in the action (11.4.20) are separately
invariant with respect to S supersymmetry. The first term in (11.4.20) is trivially
invariant with respect to both, broken and unbroken supersymmetries.

The last step is to impose invariance with respect to unbroken Q supersymmetry.
Under the transformations of unbroken supersymmetry taken in the fixed point the
variation of any superfield reads

ϕ√
Q F = −ψσ

i Qi
σ F.

From this one may find the variations of the components qia and ρaσ and their
covariant derivatives:

ϕ√
Qqia = −ψσ

i ρaσ + 1

4
ψσ

j γ
jbρbσνt qia,

ϕ√
Q(Dt qia) = −ψσ

i Dtρaσ + 1

4
ψσ

j
γia

1 + 1
8 γ2

γ jbDtρbσ + 1

4
ψσ

j γ
jbρbσνt (Dt qia),

ϕ√
Qρaσ = 1

2
ψ
∂
j Ωσ∂γ

j
a + 1

4
ψ
∂
j γ

jbρb∂νtρaσ. (11.4.24)

The variation of the einbein E can be also computed and it reads

ϕ√
QE = 1

4
ψ
∂
j νt

(
Eγ jbρb∂

)
− 1

2
ψ
∂
j γ

jbνtρb∂ . (11.4.25)

It is a matter of lengthy, but straightforward calculations to check that the action
(11.4.20) is invariant under unbroken supersymmetry (11.4.24), (11.4.25) if σ = 2.

Thus, the component action, invariant under both unbroken and broken N = 8
supersymmetries, reads

S =
∫

dt

[
2 − E

(
1 +

√
1 − 2Dt qiaDt qia

)]
. (11.4.26)

11.5 Supermembrane in D = 4

Asan instructive application of our approachweconsider in this section as an example
two models, namely, the supermembrane in D = 4 and the supersymmetric space-
filling D2-brane. We will mainly follow the paper [12].
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11.5.1 Supermembrane in D = 4: Kinematical Constraints,
Equations of Motion and the Component Action

The nonlinear realization of the breaking N = 1, D = 4 → N = 1, d = 3 has
been constructed in [12]. There, the N = 1, D = 4 super Poincaré group has been
realized in its coset over the d = 3 Lorentz group SO(1, 2)

g = exab Pab eαa Qa eq Z eψa Sa e�ab Kab . (11.5.1)

Here, xab, αa are N = 1, d = 3 superspace coordinates, while the remaining coset
parameters are Goldstone superfields, ψa = ψa(x, α), q = q(x, α), �ab =
�ab(x, α). To reduce the number of independent superfields one has to impose the
constraints5

ΩZ = 0 ♣
{

♥abq + 4
1+2λ2 λab = 0, (a)

♥aq − ψa = 0. (b)
(11.5.2)

Equation (11.5.2) allow us to express λab(x, α) and ψa(x, α) through covariant
derivatives of q(x, α). Thus, the bosonic superfield q(x, α) is the only essential
Goldstone superfield we need for this case of the partial breaking of the global
supersymmetry. The constraints (11.5.2) are covariant under all symmetries and
they do not imply any dynamics and leave q(x, α) off-shell.

The last step we can make within the coset approach is to write the covariant
superfield equations of motion. It was shown in [12] that this can be achieved by
imposing the following constraint on the Cartan form:

ΩS| = 0 ♣
{♥aψa = 0, (a)

♥(aψb) = −2λab. (b)
(11.5.3)

where | denotes the ordinary dα-projection of the form ΩS .
Equation (11.5.3) imply the proper dynamical equation of motion

♥a♥aq = 0. (11.5.4)

This equation is also covariant with respect to all symmetries, and its bosonic limit
for q(x) = q(x, α)|α=0 reads

νab


 νabq√

1 − 1
2νq · νq


 = 0, (11.5.5)

5 We collect the exact expressions for the covariant derivatives ♥ab,♥a and their properties, con-
structed in [12], in Appendix A.
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which corresponds to the “static gauge” form of the D = 4 membrane Nambu-Goto
action

S =
∫

d3x

⎛
1 −

⎝
1 − 1

2
νabqνabq

⎞
. (11.5.6)

Thus, the (11.5.3) indeed describe the supermembrane in D = 4.
Until now we just repeated the standard coset approach steps from the paper [12]

in the application to the N = 1, D = 4 supermembrane.Aswas alreadymentioned in
Sect. 11.2, the nonlinear realization approach fails to construct the superfield action.
That is why, to construct the superfield action one has to involve some additional
arguments/scheme as it has been done, for example, in [12].

Funny enough, if we instead will be interested in the component action, then it
can be constructed almost immediately within the nonlinear realization approach.
One may check that all important features of the on-shell [i.e. with (11.5.3) taken
into account] component action we summarized in Sect. 11.2, are present in the case
at hands. Indeed,

• All physical components, i.e. q|α=0 and ψa |α=0, are among the “coordinates” of
our coset (11.5.1) as the α = 0 parts of the corresponding superfields,

• Under spontaneously broken supersymmetry the superspace coordinates αa do not
transform at all (A.5). Therefore, the corresponding transformation properties of
the fermionic componentsψa |α=0 are the same as in the Volkov-Akulov model [5],
where all supersymmetries are supposed to be spontaneously broken,

• Finally, the α = 0 component of our essentialGoldstone superfield q(x, α) does not
transform under spontaneously broken supersymmetry and, therefore, it behaves
like a “matter” field within the Volkov-Akulov scheme.

As the immediate consequences of these features we conclude that

• The fermionic componentsψa |α=0 may enter the component action either through
det E (A.14) (to compensate the transformation of volume d3x under (A.5) or
through the covariant derivatives Dab (A.12), only,

• The “matter” field q = q|α=0 may enter the action only through covariant deriva-
tives Dabq.

Thus, the unique candidate to be the component on-shell action, invariant with
respect to spontaneously broken supersymmetry S reads

S = σ

∫
d3x + ∂

∫
d3x det EF(Dabq Dabq), (11.5.7)

with an arbitrary, for the time being, function F . All other interactions between the
bosonic component q and the fermions of spontaneously broken supersymmetry ρa

are forbidden!
Note, that the first, trivial term in (11.5.7) is independently invariant under broken

(and unbroken!) supersymmetries, because, in virtue of (A.5)
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ϕS

∫
d3x ∼

∫
d3x νab

(
βaρb

)
and, therefore ϕS

∫
d3x = 0. (11.5.8)

As we already said in Sect. 11.2, this term in the action (11.5.7) ensures the validity
of the limit Sq=0,ρ=0 = 0.

The action (11.5.7) is the most general component action invariant with respect
to broken supersymmetry. But in the present case we explicitly know its bosonic
limit—it should be just theNambu-Goto action (11.5.6). Someadditional information
about its structure comes from the linearized form of the action, which, according
with its invariance with respect to unbroken supersymmetry, has to be

Slin ∼ ρaνabρ
b − 1

4
νabqνabq. (11.5.9)

Combining all these ingredients, which completely fix the parameters σ and ∂ in
(11.5.7), we can write the component action of N = 1, D = 4 supermembrane as

S =
∫

d3x

[
2 − det E

⎛
1 +

⎝
1 − 1

2
DabqDabq

⎞]
. (11.5.10)

The explicit expression for det E has the form

det E = 1 + 1

2
ρaDabρ

b − 1

16
ρdρd DabρcDabρc =

= 1 + 1

2
ρaνabρ

b + 1

8
ρdρd

(
νabρbνacρ

c + 1

2
νabρcνabρc

)
.

(11.5.11)

Let us stress, that such a simple form of the component action is achieved only
in the rather specific basis, where the bosonic q and fermionic fields ρa are the
Goldstone fields of the nonlinear realization. Surely, this choice is not unique and
in different bases the explicit form of action could drastically change. The most
illustrative example is given by the action in [28], where the on-shell component
action for the supermembrane has been constructed for the first time.

The detailed proof that the action (11.5.10) is invariantwith respect to both, broken
and unbroken supersymmetries, can be found in Appendix B.

11.5.2 Supersymmetric Space-Filling D2-Brane

Due to the duality between scalar field and gauge field strength in d = 3, the action
for D2-brane can be easily constructed within the coset approach. The idea of the
construction is similar to the purely bosonic case. The crucial step is to treat the first,
bosonic component of λab as an independent component [i.e. to ignore the (a) part
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of (11.5.2)]. Now, the generalized variant of the action (11.5.10) reads

S =
∫

d3x

[
2 − det E − det E

(
1 + 2

γab(Dabq + 2γab)

1 − 2γ2

)]
. (11.5.12)

All these summands have a description in terms of α = 0 parts of the Cartan forms
(A.9). The first term is just a volume form constructed from ordinary differentials
dxab. The second terms is a volume form constructed from semi-covariant differen-
tials dx̂ab

d x̂ab = dxab + 1

4
ρadρb + 1

4
ρbdρa.

Finally, the last term in (11.5.12) is a volume form constructed from the α = 0
component of the form Ωab

P (A.9)

dx̃ab = dx̂ab + 2

1 − 2γ2γab (Dcdq + 2γcd) dx̂cd.

Since the action (11.5.12) depends only on γab and not on its derivatives, the
γ-equation of motion

Dabq = − 4γab

1 + 2γ2 (11.5.13)

can be used to eliminateγab in favor ofDabq. Clearly, the (11.5.13) is just the (a) part
of the constraints (11.5.2), we ignored while introducing the action (11.5.12). Plug-
ging γab expressed through Dabq back into (11.5.12) gives us the action (11.5.10).

Alternatively, the equation of motion for q

νab

[
det E γcd

⎧E−1
⎨

cd
ab

1 − 2γ2

]
= 0 (11.5.14)

has the form of the d = 3 Bianchi identity for the field strength Fab

Fab ⊂ det E γcd
⎧E−1

⎨
cd

ab

1 − 2γ2 ♣ νab Fab = 0. (11.5.15)

Substituting this into the action (11.5.12) and integrating by parts, one may bring it
to the supersymmetric D2-brane action

S =
∫

d3x
⎩
2 − det E

(
1 +

√
1 + 8F̃2

)⎣
, (11.5.16)

where

F̃ab ⊂ Eab
cd Fcd

det E = γab

1 − 2γ2. (11.5.17)
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Therefore,

S = 2
∫

d3x

[
1 − det E 1

1 − 2γ2

]
. (11.5.18)

Clearly, in the bosonic limit F̃ab = Fab and thus, the bosonic part of the (11.5.16) is
the standard Born-Infeld action for D2-brane, as it should be.

11.6 Supermembrane in D = 5

In this section we construct the on-shell component action for N = 1, D = 5
supermembrane and its dual versions, corresponding to a vector and a double vector
supermultiplets. We demonstrate that the proper choice of the components and using
the covariant (with respect to broken supersymmetry) derivatives drastically simplify
the action: it can be represented as the sum of four terms each having an explicit
geometric meaning.

11.6.1 Supermembrane

In the present case we are dealing with spontaneous breaking of N = 1, D = 5
Poincaré supersymmetry down to N = 2, d = 3 one. From the d = 3 standpoint
the N = 1, D = 5 supersymmetry algebra is a central-charges extended N = 4
Poincaré superalgebra with the following basic anticommutation relations:

{
Qa, Qb

} = 2Pab,
{

Sa, Sb
} = 2Pab, {Qa, Sb} = 2εab Z ,

{
Qa, Sb

} = 2εab Z .

(11.6.1)

The d = 3 translations generator Pab and the central charge generators Z , Z form
D = 5 translation generators. We will also split the generators of D = 5 Lorentz
algebra so(1, 4) into d = 3 Lorentz algebra generators Mab, the generators Kab and
K ab belonging to the coset SO(1, 4)/SO(1, 2) × U (1) and U (1) generator J . The
full set of (anti)commutation relations can be found in the Appendix C.

Keeping d = 3 Lorentz and, commuting with it, U (1) subgroups of D = 5
Lorentz group SO(1, 4) linearly realized, we will choose the coset element as

g = eixab Pab eαa Qa+ᾱa Qa ei(q Z+q̄ Z)eψa Sa+ψ̄
a

Sa ei(�ab Kab+�̄
ab

K ab). (11.6.2)

Here,
{

xab, αa, ᾱa
}
are N = 2, d = 3 superspace coordinates, while the remain-

ing coset parameters are N = 2 Goldstone superfields. The whole N = 1, D = 5
Poincaré supergroup can be realized in this coset by the left acting on (11.6.2) of
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the different elements of the supergroup. We summarize in Appendix C the resulting
transformation properties of the coordinates and superfields with respect to unbroken
(C.6), broken (C.7) supersymmetries and automorphism (C.8), as well as a pure tech-
nical calculation of Cartan forms, semi-covariant derivatives and their superalgebra
(C.11), (C.14), (C.18).

Similarly to the previously considered cases, to reduce the number of independent
superfields one has to impose the constraints

ΩZ = 0 ♣
{

♥abq = −2i (1+l·l̄)lab−l2 l̄ab

(1+l·l̄)2−l2 l̄2
,

♥aq = −2i ψa, ♥aq = 0,

ΩZ = 0 ♣
⎠


♥ab q̄ = 2i (1+l·l̄)l̄ab−l̄
2
lab

(1+l·l̄)2−l2 l̄
2 ,

♥a q̄ = −2i ψ̄a, ♥a q̄ = 0.
(11.6.3)

Here, in order to simplify the expressions, we have passed to the some variant of the
stereographic parametrization of the coset SO(1, 4)/SO(1, 2) × U (1)

lab =
⎛
tanh

∗
Y∗

Y

⎞cd

ab

�cd , l̄ab =
⎛
tanh

∗
Y∗

Y

⎞cd

ab

�cd . (11.6.4)

The Equation (11.6.3) allow us to express superfields �ab,�ab and ψa, ψ̄
a
through

covariant derivatives of q(x, α, ᾱ) and q̄(x, α, ᾱ). Thus, the bosonic superfields
q(x, α, ᾱ),
q̄(x, α, ᾱ) are the only essential Goldstone superfields needed for this case of the
partial breaking of the global supersymmetry. The constraints (11.6.3) are covari-
ant under all symmetries, they do not imply any dynamics and leave q(x, α, ᾱ) and
q̄(x, α, ᾱ) off-shell.

Within the coset approach we may also write the covariant superfield equations of
motion. This can be achieved by imposing the proper constraint on the Cartan forms
for broken supersymmetry. In the present case these constraints read

ΩS| = 0 ♣ (a) ♥aψb = 0, (b) ♥̄bψ
a = −i �c

b

⎛
tan 2

√
T√

T

⎞a

c

⊂ −i λa
b

ΩS
∣∣ = 0 ♣ (a) ♥̄aψ̄b = 0, (b) ♥bψ̄

a = i �c
b

⎛
tan 2

∗
T∗

T

⎞a

c

⊂ i λ̄
a,

b

(11.6.5)

where | means the dα-projection of the forms.
Let us make a few comments concerning the constraints given above:

• The easiest way to check that the (11.6.3), (11.6.5) put the theory on-shell is to
consider these equations in the linearized form
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νabq = −2i �ab (a), Daq = −2i ψa (b), Daq = 0 (c), (11.6.6)

Daψb = 0 (a), Dbψ
a = −2i �a

b (b). (11.6.7)

Acting on (11.6.6b) by Db and using the (11.6.6c) and the algebra of spinor
derivatives (C.15) we immediately conclude that (11.6.7b) follows from (11.6.6).
In addition, the (11.6.7a) means that the auxiliary component of the superfield q
is zero and, therefore, our system is on-shell

Daψb = 0 ♣ D2q = 0 ♣ νab Dbq = 0 ♣ �q = 0. (11.6.8)

• It turns out that the variables {λb
a, λ̄

b
a} defined in (11.6.5), are more suitable than

the {lab, l̄ab} (11.6.4) one. Using the algebra of covariant derivatives (C.18) it is
easy to find the following relations from (11.6.3) and (11.6.5):

♥abq = −i
λab − 1

2λ
2λ̄ab

1 − 1
4λ

2λ̄
2 , ♥ab q̄ = i

λ̄ab − 1
2 λ̄

2
λab

1 − 1
4λ

2λ̄
2 . (11.6.9)

These equations play the same role as those in (11.6.3), relating the superfields
{λab, λ̄ab} (and, therefore, the superfields {�ab,�ab}) with the space–time deriv-
atives of the superfields {q, q̄}.
Now we present two different ways to construct the bosonic action.

The first of them is based on the consideration of the bosonic coset related to (11.6.2)
and on the invariance of constraints (11.6.3), (11.6.5) with respect to all N = 1,
D = 5 Poincaré supergroup. Thus we have

gbos = ei xab Pab ei (q Z+q̄ Z)ei (Θab Kab+Θ
ab

K ab). (11.6.10)

Clearly, the corresponding bosonic Cartan forms can be easily extracted from their
superfields version (C.10). The bosonic version of the constraints (11.6.3) results in
the relations

νabq = −2i
(1 + l · l̄)lab − l2l̄ab

(1 + l · l̄)2 − l2l̄2
, νabq̄ = 2i

(1 + l · l̄)l̄ab − l̄2lab

(1 + l · l̄)2 − l2l̄2
, (11.6.11)

while the bosonic vielbein Bab
cd = Eab

cd |ρ=0

(
Ωbos

P

)
= dxabBab

cd Pcd (11.6.12)

acquires the form

Bcd
ab = ϕ

(c
a ϕ

d)
b − 2

(1 + l · l̄)2 − l2 l̄2

⎩
(1 + l · l̄)

(
l̄cd lab + lcd l̄ab

)
− l̄2 lcdlab − l2 l̄cd l̄ab

⎣
.
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Therefore, the simplest invariant bosonic action reads

Sbos =
∫

d3x det B =
∫

d3x
(1 − l · l̄)2 − l2 l̄2

(1 + l · l̄)2 − l2 l̄2
, (11.6.13)

or in terms of {q, q̄}

Sbos =
∫

d3x
√⎧

1 − νabq νabq̄
⎨2 − ⎧νabq νabq

⎨ ⎧
νcd q̄ νcd q̄

⎨
. (11.6.14)

The latter is the static gauge Nambu-Goto action for membrane in D = 5. One can
also add the following action, trivially invariant under the transformations I SO(1, 4)

S0 =
∫

d3x . (11.6.15)

Another way to derive the bosonic action is to use automorphism transformation
laws. These laws (C.8) in the bosonic limit have the form

ϕxab = 2i
(

āabq − aabq̄
)

, ϕq = −2i (ax), ϕq̄ = 2i (āx). (11.6.16)

The active form of these transformations reads

ϕ√q = −2i (ax) − 2i νabq
(

āabq − aabq̄
)

, ϕ√q̄ = 2i (āx) − 2i νabq̄
(

āabq − aabq̄
)
.

(11.6.17)

Due to translations, U (1)-rotations and d = 3 Lorentz invariance, the action may
depend only on the following scalar combination of partial derivatives of bosons
{q, q̄}

β = νabq νabq̄, λ = νabq νabq, λ̄ = νabq̄ νabq̄, (11.6.18)

which in accordance with (11.6.17) transforms as

ϕ√β = 2i (āνq) − 2i (aνq̄) − 2i (āabq − aabq̄)νabβ − 2i (āνq)β

+ 2i(aνq̄)β − 2i (āνq̄)λ + 2i (aνq)λ̄,

ϕ√(λλ̄) = 4i(āνq̄)λ − 4i (aνq)λ̄ − 2i (āklq − akl q̄)νkl(λλ̄)

− 4i (āνq)λλ̄ + 4i (aνq̄)λλ̄

+ 4i (aνq)βλ̄ − 4i (āνq̄)βλ. (11.6.19)

Therefore, the variation of the arbitrary function F(β, λλ̄) reads
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ϕ√F = 2i [(aνq)λ̄ − (āνq̄)λ]
⎧Fβ + 2(β − 1)F(λλ̄)

⎨

+ 2i [(āνq) − (aνq̄)]
⎧F + (1 − β)Fβ − 2λλ̄F(λλ̄)

⎨

− 2i νab

⎩(
qāab − q̄aab

)
F
⎣
. (11.6.20)

Thus, to achieve the invariance of the action one has impose the following restrictions
on the function F :

Fβ + 2(β − 1)F(λλ̄) = 0, F + Fβ(1 − β) − 2(λλ̄)F(λλ̄) = 0, (11.6.21)

with the evident solution
F =

√
(1 − β)2 − λλ̄. (11.6.22)

Therefore, the invariant action has the form

S =
∫

d3x
√

(1 − νabqνabq̄)2 − (νabqνabq)(νkl q̄νkl q̄),

and thus, it coincides with that previously constructed in (11.6.14), as it should be.
Let us now construct the full component action for supermembrane which will be

invariant under both broken and unbroken supersymmetries. We begin our analysis
with the broken supersymmetry S.

The superspace coordinates {α, ᾱ} of the coset (11.6.2) do not transform under S
supersymmetry. Therefore, each component of superfields transforms independently
under the broken supersymmetry. Thus, from (C.7) one finds

ϕxab = i
(
ψ(aρ̄b) + ψ̄(aρb)

)
, ϕq = 0, ϕq̄ = 0, ϕρa = ψa, ϕρ̄a = ψ̄a .

(11.6.23)
Then, one may easily check that the α = 0 projections of the covariant differential
∞xab (C.10)

∞̂xab ⊂ ∞xab|α=0 = dxab − i
(
ρ(adρ̄b) + ρ̄(adρb)

)
⊂ Eab

cd dxcd , (11.6.24)

as well as the covariant derivatives constructed from them

Dab =
(
E−1
)cd

ab
νcd (11.6.25)

are also invariant under broken supersymmetry. From all this it immediately follows
that the action possessing the proper bosonic limit (11.6.14) and invariant under
broken supersymmetry reads

S1 =
∫

d3x det E
√

(1 − Dab qDabq̄)2 − (Dab qDabq)(Dcd q̄ Dcd q̄). (11.6.26)
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The action (11.6.26) reproduces the kinetic terms for the bosonic and fermionic
components

S1 =
∫

d3x
⎩
−i
(
ρaνabρ̄

b + ρ̄aνabρ
b
)

− νabqνabq̄ + · · ·
⎣
, (11.6.27)

but the coefficient between them is strictly fixed. This could be not enough tomaintain
unbroken supersymmetry. So, one has to add to (11.6.26) the purely fermionic action

S2 =
∫

d3x det E, (11.6.28)

which is trivially invariant under broken supersymmetry. Finally, in order to have a
proper limit

Sq→0,ρ→0 = 0,

one has to involve into the game the trivial action S0 that reads as

S0 =
∫

d3x . (11.6.29)

Thus, the Ansatz for the supersymmetric action acquires the form

S = (1 + σ) S0 − S1 − σS2

= (1 + σ)

∫
d3x −

∫
d3x det E

(
σ +

√
(1 − DabqDabq̄)2 − (DabqDabq)(Dcd q̄Dcd q̄)

)
, (11.6.30)

where the constant σ has to be defined.
In the previously considered cases in the above sections, the Ansatz, similar to

(11.6.30), was completely enough to maintain the second, unbroken supersymmetry.
A careful analysis shows that in the present case there is an additional Wess-Zumino
term which has to be taken into account

SW Z = i
∫

d3x det E ⎧ρmDabρ̄m − ρ̄mDabρm
⎨Dac q Dc

b q̄. (11.6.31)

The variation of SW Z under S supersymmetry reads (note, that only the variations
of ρ, ρ̄ without derivatives play a role)

ϕSW Z = i
∫

d3x det E ⎧ψmDabρ̄m − ψ̄mDabρm
⎨Dacq Dc

bq̄. (11.6.32)
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The simplest way to check that ϕSW Z = 0 is to pass to the d = 3 vector notations. 6

Then we have

ϕSW Z ∼
∫

d3x det E εI J K ⎧ψmDI ρ̄m − ψ̄mDI ρm
⎨DJ q DK q̄

∼
∫

d3x det E det E−1εI J K ⎧ψmνI ρ̄m − ψ̄mνI ρm
⎨
νJ q νK q̄

∼
∫

d3x νI

⎩
εI J K ⎧ψmρ̄m − ψ̄mρm

⎨
νJ q νK q̄

⎣
= 0. (11.6.33)

Thus, the action SW Z (11.6.31) is invariant under S supersymmetry and our Ansatz
for the membrane action is extended to be

S = (1 + σ) S0 − S1 − σS2 + ∂SW Z . (11.6.34)

Thus, after imposing broken supersymmetry, the component action (11.6.34) is fixed
up to two constants σ and ∂. No other terms or structures are admissible!

Now we are going to demonstrate how the unbroken supersymmetry fixes these
constants. In order tomaintain the unbroken supersymmetry, one has to find the trans-
formation properties of all objects presented in (11.6.34). Using the transformations
of the superspace coordinates (C.6) one gets for the ε-part of the transformations

ϕρa = −εb ⎧Dbψa
⎨∣∣

α=0 = εbρm γ̄n
bνmnρa,

ϕDabρc = −εd ⎧Dd♥abψc
⎨∣∣

α=0 = 2εdDabρ
m γ̄n

dDmnρb + εdρm γ̄n
dνmnDabρc,

ϕDabq = −εd (Dd♥abq)|α=0 = 2εdDabρ
m γ̄n

dDmnq + 2i εdDabρd

+ εdρm γ̄n
dνmnDabq, (11.6.35)

and, as the consequence,

ϕ det E = νmn

⎩
εdρm γ̄d

n det E
⎣

− 2εd γ̄d
nDmnρn det E . (11.6.36)

In order to fix the parameter σ one may consider just the kinetic terms in the action
(11.6.34)

Skin =
∫

d3x
⎩
−i (σ + 1)

(
ρaνabρ̄

b + ρ̄aνabρ
b
)

+ νabq νabq̄
⎣
, (11.6.37)

which has to be invariant under the linearized form of the transformations (11.6.35)
[see also (11.6.6), (11.6.7)]

ϕρ̄a = −i εbγ̄ba ≤ −εbνbaq̄, ϕνabq = 2i εdνabρd . (11.6.38)

6 Our conventions to pass to/from vector indices are summarized in Appendix C, (C.20).
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Varying the integrand in (11.6.37) and integrating by parts, we get

ϕSkin =
∫

d3x
⎩
2i (σ + 1)εcρaνabνc

bq̄ − 2i εdρd�q̄
⎣

=
∫

d3x
⎩
i (σ + 1)εdρd�q̄ − 2i εdρd�q̄

⎣
. (11.6.39)

Therefore, we have to fix the constant σ as

σ = 1. (11.6.40)

The fixing of the last parameter ∂ is more involved. Using the transformation prop-
erties (11.6.35) one may find

ϕF = 2
⎧
εcγ̄n

cDabρ
mDnmq + i εcDabρc

⎨ νF
νDabq

+ 2εcγ̄n
cDabρ

mDmnq̄
νF

νDabq̄
+ εcγ̄n

cρmνmnF , (11.6.41)

where

F ⊂
√

(1 − Dabq Dabq̄)2 − (Dabq Dabq)(Dcd q̄ Dcd q̄). (11.6.42)

In order to avoid the appearance of the square roots, it proved to be more convenient
to use the equalities

νF
νDabq

= −i
γ̄ab + 1

2 γ̄
2γab

1 − 1
4γ

2γ̄2
,

νF
νDabq̄

= i
γab + 1

2γ
2γ̄ab

1 − 1
4γ

2γ̄2
. (11.6.43)

Performing a straightforward calculation one gets

ϕ [− det E (1 + F)] = 2i εc det E
(
Dabρc Dabq̄ − 2Damρm Da

c q̄
)

− 2εc det E γ̄cmDabρ
m Dadq Db

d q̄. (11.6.44)

Similarly, one may find the variation of the integrand of the action SW Z (up to the
surface terms disappearing after integration over d3x)

ϕLW Z = −2∂εc det E
⎩(

ρkDabρ̄k − ρ̄kDabρk

)
Dadρc Db

d q̄ − γ̄cmDabρm Dadq Db
d q̄
⎣
.

(11.6.45)

Now, it is a matter of quite lengthly, but again straightforward calculations, to check
that the sum of variations (11.6.44) and (11.6.45) is a surface term if
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∂ = 1. (11.6.46)

Thus, we conclude that the action of the supermembrane in D = 5, which is invariant
with respect to both unbroken and broken supersymmetries, has the form

S = 2
∫

d3x −
∫

d3x det E
(
1 +

√
(1 − Dabq Dabq̄)2 − (Dabq Dabq)(Dcd q̄ Dcd q̄)

)

+ i
∫

d3x det E ⎧ρmDabρ̄m − ρ̄mDabρm
⎨Dacq Dc

bq̄. (11.6.47)

11.6.2 Dualization of the Scalars: Vector and Double
Vector Supermultiplets

Due to the duality between scalar field, entering the action with the space–time
derivatives only, and gauge field strength in d = 3, the actions for the vector (one
scalar dualized) and the double vector (both scalars dualized) supermultiplets can be
easily obtained within the coset approach. Before performing such dualizations, let
us rewrite the action (11.6.47) in the vector notations. If we introduce the quantity

Gab = 1∗
2

⎧
ρmDabρ̄m − ρ̄mDabρm

⎨
, (11.6.48)

then only vector indices show up in the action. Passing to the vector notation, we get

S = 2
∫

d3x −
∫

d3x det E
(
1 +

√
(1 − DI qDI q̄)2 − (DI qDI q)(DJ q̄DJ q̄)

)

+ i
∫

d3x det EεI J KGIDJ q DK q̄, (11.6.49)

where

DI =
(
E−1
)

I

J νJ , EI
J = ϕ J

I − 1∗
2

(
δ J
)

ab

(
ρaνI ρ̄

b + ρ̄aνI ρ
b
)
. (11.6.50)

11.6.2.1 Vector Supermultiplet

The vector N = 2, d = 3 supermultiplet includes one scalar and one gauge fields
among the physical bosonic components. Thus, we have to dualize one of the scalar
components in the action (11.6.49). To perform dualization, one has to pass to a pair
of real bosons {u, v}
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q = 1

2
(u + iv), q̄ = 1

2
(u − iv). (11.6.51)

In terms of the newly defined scalars, the action (11.6.49) reads

S = 2
∫

d3x −
∫

d3x det E
[
1 +

√(
1 − 1

2
DI uDI u

)(
1 − 1

2
DJ vDJ v

)
− 1

4
(DI uDI v)2

]

+ 1

2

∫
d3x det E εI J KGIDJ u DK v. (11.6.52)

The equation of motion for the bosonic field v has the form

νI

(
det E

(
E−1
)I

J
VJ

)
= 0, VI = ṼI + 1

2
εI J K G JDK u, (11.6.53)

where

ṼI =
⎧
1 − 1

2Du · Du
⎨DI v + 1

2 Du · Dv DI u

2
√⎧

1 − 1
2Du · Du

⎨ ⎧
1 − 1

2Dv · Dv
⎨− 1

4 (Du · Dv)2
. (11.6.54)

Then, one may find that

DI v = 2ṼI − Ṽ · Du DI u√
1 − 1

2Du · Du + 2Ṽ · Ṽ − ⎧Ṽ · Du
⎨2 . (11.6.55)

Performing the Rauth transformation over the bosonic field v, we finally get

S̃ = 2
∫

d3x −
∫

d3x det E
⎛
1 +

⎝
1 − 1

2
Du · Du + 2Ṽ · Ṽ − ⎧Ṽ · Du

⎨2
⎞

.

(11.6.56)

This is the action for the N = 2, d = 3 vector supermultiplet which possesses an
additional, spontaneously broken N = 2 supersymmetry.

One should stress that the real field strength is defined in (11.6.53), but the action
has a much simpler structure written in terms of ṼI .

11.6.2.2 Double Vector Supermultiplet

In order to obtain a double vector supermultiplet, one may dualize both scalars in
the action (11.6.49). As the first step, one has to find the equations of motion for the
scalar fields
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νI

(
det E

(
E−1
)I

J
V J
)

= 0, νI

(
det E

(
E−1
)I

J
V

J
)

= 0, (11.6.57)

where

VI = ṼI − i εI J K G JDk q̄, ṼI = (1 − Dq · Dq̄)DI q̄ + (Dq̄ · Dq̄)DI q√
(1 − Dq · Dq̄)2 − (Dq · Dq)(Dq̄ · Dq̄)

.

(11.6.58)

After a standard machinery with the Rauth transformations we finally get the action

Ŝ = 2
∫

d3x −
∫

d3x det E
[
1 +

⎝(
1 + Ṽ · Ṽ

)2 − Ṽ 2 Ṽ 2 − i εI J K G I ṼJ Ṽ K

]
.

(11.6.59)

The bosonic sector of this action coincides with that constructed in [29]. Again, the
simplest form of the action is achieved with the help of ṼI variables which are related
with field strengths as in (11.6.57), (11.6.58).

11.7 Conclusion

In this paper, using a remarkable connection between the partial breaking of global
supersymmetry, the coset approach, which realized the specific pattern of super-
symmetry breaking, and the Nambu-Goto actions for the extended object, we have
reviewed the construction of the on-shell component actions for the superparticle in
D = 3 realizing N = 4 · 2k → N = 2 · 2k pattern of supersymmetry breaking, for
the superparticle in D = 5 with the N = 16 supersymmetry broken down to N = 8
one, for the N = 1, D = 5 supermembrane and its dual cousins, and for the N = 1
supermembrane in D = 4. Of course, such actions can be obtained by dimensional
reduction from the higher dimension actions or even from the known superspace
actions. Nevertheless, if we pay more attention to the spontaneously broken super-
symmetry and, thus, use the corresponding covariant derivatives, together with the
proper choice of the components, the resulting action can be drastically simplified.
So, the implications of our results are threefold:

• We demonstrated that the coset approach can be used far beyond the construction
of the superfield equations ofmotion, if we are interested in the component actions,

• We showed that there is a rather specific choice of the superfields and their
components which drastically simplifies the component action,

• We argued that the broken supersymmetry fixed the on-shell component action
up to some constants, while the role of the unbroken supersymmetry is just to fix
these constants.
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The application of our approach is not limited to the cases of P-branes only. Different
types ofD-branes could be also considered in a similarmanner. However, oncewe are
dealing with the field strengths, which never show up as the coordinates of the coset
space, the proper choice of the components becomes very important. In particular,
the Born-Infeld-Nambu-Goto action (11.6.52), we constructed by the dualization of
one scalar field, has a nice, compact form in terms of the “covariant” field strength
ṼI which is related with the “genuine” field strength, obeying the Bianchi identity,
in a rather complicated way (11.6.53). The same is also true for the Born-Infeld type
action (11.6.59). In order to clarify the nature of these variables, one has to consider
the corresponding patterns of the supersymmetry breaking [with one, or without
central charges in the N = 4, d = 3 Poincaré superalgebra (A.16)] independently.
In this respect, the detailed analysis of N = 2 → N = 1 supersymmetry breaking in
d = 4 seems to bemuchmore interesting, being a preliminary step to the construction
of N = 4 Born-Infeld action [16, 18, 20] and/or to the action describing partial
breaking of N = 1, D = 10 supersymmetrywith the hypermultiplet as theGoldstone
superfield.

In this paper we also showed that the on-shell component actions for superparticle
have the universal form

S = σ

∫
dt + (1 − σ)

∫
dt E −

∫
dt E

√
1 − ∂Dt qDt q.

With our approach, we explicitly constructed such actions for the superparticles in
D = 3 realizing N = 4 ·2k → N = 2 ·2k pattern of supersymmetry breaking, and in
D = 5with the N = 16 supersymmetry brokendown to N = 8one. Itwas shown that
the corresponding component on-shell actions are invariant under both unbroken and
broken supersymmetry. In the considered models only the equality of both unbroken
and broken supersymmetries was essential, and their number did not play any role,
we expect that all superparticle models with one half partial breaking of global
supersymmetry can be constructed similarly, confirming, thereby, its universality.

One possible application of this method is the construction of models with partial
breaking of global supersymmetry in caseswhen d > 2,where the superspace actions
are known (see e.g. [7–10]). We assume that these actions derived with our method
will have a more simple and understandable form.

It would be quite instructive to understand which new features will appear when
wewill replace the trivial, flat target space by, for example, theAdS one [30]. It seems
that the strategy will be the same, and we are planning to report the corresponding
results elsewhere.
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Appendix A: Superalgebra, Coset Space, Transformations
and Cartan Forms

In this appendix we collected some formulas from the paper [12] where the nonlinear
realization of N = 1, D = 4 Poincaré group in its coset over d = 3 Lorentz group
SO(1, 2) was constructed.

In d = 3 notation the N = 1, D = 4 Poincaré superalgebra contains the following
set of generators:

N = 2, d = 3 SUSY ≡ {Qa, Pab, Sa, Z , Mab, Kab} , (A.1)

a, b = 1, 2 being the d = 3 SL(2, R) spinor indices.7 Here, Pab and Z are
D = 4 translation generators, Qa and Sa are the generators of super-translations,
the generators Mab form d = 3 Lorentz algebra so(1, 2), while the generators Kab

belong to the coset SO(1, 3)/SO(1, 2). The basic anticommutation relations read

{Qa, Qb} = Pab, {Qa, Sb} = εab Z , {Sa, Sb} = Pab. (A.2)

The coset element was defined in [12] as

g = exab Pab eαa Qa eq Z eψa Sa e�ab Kab . (A.3)

Here, xab, αa are N = 1, d = 3 superspace coordinates, while the remaining coset
parameters are Goldstone superfields, q = q(x, α), ψa ⊂ ψa(x, α), �ab =
�ab(x, α).

The transformation properties of the coordinates and superfields with respect to
all symmetries can be found by acting from the left on the coset element (A.3) by the
different elements of N = 1, D = 4 supergroup. They have the following explicit
form:

• Translations and Unbroken supersymmetry [g0 = exp (aab Pab + λa Qa)]

ϕxab = aab − 1

4
λaαb − 1

4
λbαa, ϕαa = λa . (A.4)

• Broken supersymmetry [g0 = exp (βa Sa)]

ϕxab = −1

4
βaψb − 1

4
βbψa, ϕq = βaαa, ϕψa = βa . (A.5)

• K transformations [g0 = exp (rab Kab)]

7 The indices are raised and lowered as follows: V a = εabVb, Vb = εbcV c, εabε
bc = ϕc

a .
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ϕxab = −2qrab − 1

2
αcrcaψb − 1

2
αcrcbψa + 1

2
αarbcψc + 1

2
αbracψc,

ϕαa = −2rabψb, ϕq = −4rabxab, ϕψa = 2rabαb,

ϕλab = rab − 4λacrcdλdb. (A.6)

• Broken Z -translations [g0 = exp(cZ)]

ϕq = c. (A.7)

• The d = 3 Lorentz group SO(1, 2) ∼ SL(2, R) acts as rotations of the spinor
indices.

In (A.6) the coordinates of the stereographic parametrization of the coset
SO(1, 3)/SO(1, 2) have been defined as

λab =
tanh

(∗
2�2

)
∗
2�2

�ab, tanh 2
(√

2�2
)

⊂ 2λ2, �2 ⊂ �ab�
ab, λ2 ⊂ λabλ

ab.

(A.8)

The most important objects in the coset are the Cartan forms

g−1dg = ΩQ + ΩP + ΩZ + ΩS + ΩK + ΩM .

In what follows we will need only the forms ΩQ,ΩP ,ΩZ and ΩS which were
constructed in [12]

ΩZ = 1 + 2λ2

1 − 2λ2

[
d q̂ + 4

1 + 2λ2λabd x̂ab
]

Z ,

ΩP ⊂ Ωab
P Pab =

[
dx̂ab + 2

1 − 2λ2λab
(

d q̂ + 2λcdd x̂cd
)]

Pab,

ΩQ ⊂ Ωa
Q Qa = 1√

1 − 2λ2

⎩
dαa + 2λabdψb

⎣
Qa,

ΩS ⊂ Ωa
S Sa = 1√

1 − 2λ2

⎩
dψa − 2λabdαb

⎣
Sa . (A.9)

dx̂ab ⊂ dxab + 1

4
αadαb + 1

4
αbdαa + 1

4
ψadψb + 1

4
ψbdψa,

d q̂ ⊂ dq + ψadαa . (A.10)

Note, that all Cartan forms, except for ΩM , transform homogeneously under all
symmetries.

Having at hands theCartan forms, onemay construct the “semi-covariant” (covari-
ant with respect to d = 3 Lorentz, unbroken and broken supersymmetries only) as
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dx̂ab♥ab + dαa♥a = dxab ν

νxab
+ dαa ν

ναa
. (A.11)

Explicitly, they read [12]

♥ab = (E−1)cd
ab νcd , ♥a = Da + 1

2
ψb Daψc ♥bc = Da + 1

2
ψb♥aψc νbc, (A.12)

where

Da = ν

ναa
+ 1

2
αbνab, {Da, Db} = νab, (A.13)

Ecd
ab = 1

2
(ϕc

aϕd
b + ϕd

a ϕc
b) + 1

4
(ψcνabψ

d + ψdνabψ
c), (A.14)

(E−1)cd
ab = 1

2
(ϕc

aϕd
b + ϕd

a ϕc
b) − 1

4
(ψc♥abψ

d + ψd♥abψ
c). (A.15)

These derivatives obey the following algebra:

[♥ab,♥cd ] = −♥abψ
m♥cdψn♥mn, [♥ab,♥c] = ♥abψ

m♥cψ
n♥mn,

{♥a,♥b} = ♥ab + ♥aψm♥bψ
n♥mn . (A.16)

Appendix B

In this Appendix we will prove the invariance of the supermembrane action (11.5.10)
under broken and unbroken supersymmetries. The proof for the broken supersym-
metry is the easiest one and we will start with this invariance.

Broken Supersymmetry

Under spontaneously broken Sa supersymmetry our coordinates and the physical
components transform as in (A.5)

ϕxab = −1

4
βaρb − 1

4
βbρa, ϕq = 0, ϕρa = βa . (B.1)

One may immediately check that the α = 0 part of the covariant differential dx̂ab,
defined in (A.10)

dx̂ab = dxab + 1

4
ρadρb + 1

4
ρbdρa (B.2)
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is invariant under the transformations (B.1). Therefore, the covariant derivatives
Dab = ♥ab|α=0 (A.12) are also invariant under broken supersymmetry transforma-
tions. Now, for the active form of the transformations [ϕ√η = η♦(x) − η(x)] we
have

ϕ√
SDabq = 1

2
βcρdνcdDabq ♣ ϕ√

SF(Dq · Dq) = 1

2
βaρbνabF ,

ϕ√
Sρa = βa + 1

2
βcρdνcdρa, ϕ√

SDabρc = 1

2
βdρeνdeDabρc, (B.3)

and, therefore,

ϕ√
S det E = 1

2
βaDabρ

b − 1

8
βdρdDabρcDabρc + 1

2
βcρdνcd det E . (B.4)

Thus, the integrand in the action (11.5.7) transforms as follows:

ϕ√
S

(
det EF

)
=
(
1

2
βaDabρ

b − 1

8
βdρdDabρcDabρc

)
F + 1

2
βcρdνcd

(
det EF

)

=
(
1

2
βaDabρ

b − 1

8
βdρdDabρcDabρc − 1

2
βcνcdρd det E

)
F .

(B.5)

It is a matter of direct calculations to check that the expression in the parentheses in
(B.5) is zero. Thus, the action (11.5.7), as well as the action (11.5.10), are indeed
invariant under spontaneously broken supersymmetry.

Unbroken Supersymmetry

It is funny, but in contrast with the superfield approach in which unbroken supersym-
metry is manifest, to prove the invariance of the component action (11.5.10) under
unbroken supersymmetry is a rather complicated task.

Under unbroken Qa supersymmetry the covariant derivatives ♥ab,♥a (A.12) are
invariant by construction. Therefore, the objects ♥abρc,♥abq are the superfields
with the standard transformation properties

ϕ√
Qρa = −λb(Dbψa)|α=0 = 2λb

(
γb

a − 1

2
ρmγb

nνmnρa
)

, (B.6)

ϕ√
QDabρc = −λd (Dd♥abψc)|α=0

= −λd ⎧2Dabρmγd
nDmnρc − 2Dabγdc + ρmγd

nνmnDabρc
⎨
, (B.7)

ϕ√
QDabq = −λc(Dc♥ab q)|α=0
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= −λc

⎛
1 − 2γ2

1 + 2γ2
Dabρc + ρmγc

nνmnDab q

⎞
. (B.8)

Therefore,

ϕ√
Q det E = λcγc

aDabρ
b − λcDabγ

b
cρ

a + λcγn
cρ

aDabρ
mDmnρb

− 1

4
λbγa

bρaDmnρkDmnρk − 1

8
ρ2λdγd

bDbcρ
cDmnρkDmnρk

+ 1

4
ρ2λdDabγdcDabρc − λcγc

nρmνmn det E, (B.9)

and

ϕ√
QF = −2

1 − 2γ2

1 + 2γ2 λcDabρcDab q F ♦ − λcγc
nρmνmnF . (B.10)

The F ♦ in (B.10) denotes the derivative F over its argument (i.e. over Dq · Dq in
our case).

Combining these expressions we will get the following variation of the integrand
of our action (11.5.10):

ϕ√
QL = ϕ√

Q

(
det E F

)
= ϕ√

Q det E F + det E ϕ√
QF . (B.11)

In (B.11) the last terms from ϕ√
Q det E (B.9) and ϕ√

QF (B.10) combine together to
produce

−λaγa
bρcνbc

(
det EF

)
.

Therefore, after integration by parts in this term we will get

ϕ√
QL =

(
λcγc

aDabρ
b − λcDabγ

b
cρ

a + λcγc
nρaDabρ

mDmnρb − 1

4
λbγb

aρaDmnρkDmnρk

− 1

8
ρ2λdγd

bDbcρ
cDmnρkDmnρk + 1

4
ρ2λdDabγdcDabρc

)
F (B.12)

− 2
1 − 2γ2

1 + 2γ2 λcDabρcDabqF ♦ det E + λcνmnγc
nρmF det E + λcγc

nνmnρmF det E .

Now, one may check that terms with the derivatives of γab in (B.12) just canceled.
The next step is to substitute into (B.12) the explicit expressions for γab (11.5.2)

and for F (11.5.10)

γab = − 1
2Dab q

1 +
√
1 − 1

2Dq · Dq
, F = 1 +

⎝
1 − 1

2
Dq · Dq. (B.13)
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If we note that

γab = − 1
2Dabq

F and
1 − 2γ2

1 + 2γ2 = − 1

4 F ♦ , (B.14)

it will be not so strange that after substitution of (B.13) into (B.12), the variation
ϕ√

QL will not contain any square roots. So, it will read

ϕ√
QL = − 1

2
λcDc

aqDabρ
b − 1

2
λcDc

nqρaDabρ
mDmnρb + 1

8
λbDb

aqρaDcdρeDcdρe

+ 1

16
ρ2λaDa

bqDbcρ
cDdeρ f Ddeρ f + 1

2
λcDabρcDabq det E

− 1

2
λaDa

bq νbcρ
c det E . (B.15)

Substituting now the expression for νbcρ
c det E from (B.5) and slightly rearranging

the terms, we obtain

ϕQL = − λcDc
aqDab ρb − 1

4
λaDa

bq ρbDcdρdDceρ
e + 1

16
ρ2λaDa

bqDbcρ
cDdeρ f Ddeρ f

+ 1

2
λcDabρcDabq det E . (B.16)

Finally, combining the terms in the first line together, wewill get the following simple
form of the variation of the integrand

ϕ√
QL = −λc

(
Dc

aqDabρ
b − 1

2
Dab qDabρc

)
det E . (B.17)

Unfortunately, further simplifications are not possible. The simplest way to be sure
that ϕ√

QL (B.17) gives zero after integration over d3x is to find the “equation of
motion” for q which follows from the “Lagrangian” (B.17)

ϕ

ϕq

∫
d3x ϕQL = 0. (B.18)

Clearly, the expression (B.18) has to be identically equal to zero if our action is invari-
ant under unbroken supersymmetry. After quite lengthly and tedious, but straight-
forward calculations, one may show that this is indeed so.

Thus, our action (11.5.10) is invariant with respect to both broken and unbroken
supersymmetries.
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Appendix C

In this Appendix we collected some formulas describing the nonlinear realization of
N = 1, D = 5 Poincaré group in its coset over d = 3 Lorentz group SO(1, 2).

In d = 3 notation the N = 1, d = 5 Poincaré superalgebra contains the following
set of generators:

N = 4, d = 3 SUSY ≡ {
Pab, Qa, Qa, Sa, Sa, Z , Z , Mab, Kab, K ab, J

}
,

(C.1)

a, b = 1, 2 being the d = 3 SL(2, R) spinor indices.8 Here, Pab Z and Z
are D = 5 translation generators, Qa, Qa and Sa, Sa are the generators of super-
translations, the generators Mab form d = 3 Lorentz algebra so(1, 2), the generators
Kab and K ab belong to the coset SO(1, 4)/SO(1, 2) × U (1), while J span u(1).
The basic (anti)commutation relations read

[Mab, Mcd ] = εad Mbc + εac Mbd + εbc Mad + εbd Mac ⊂ (M)ab,cd ,

[Mab, Pcd ] = (P)ab,cd , [Mab, Kcd ] = (K )ab,cd ,
⎤
Mab, K cd

⎦ = ⎧K ⎨ab,cd ,

⎤
Kab, K cd

⎦ = 1

2
(M)ab,cd + 2 (εacεbd + εbcεad) J,

[Kab, Pcd ] = − (εacεbd + εbcεad) Z ,
⎤
K ab, Pcd

⎦ = (εacεbd + εbcεad) Z ,⎤
Kab, Z

⎦ = −2Pab,
⎤
K ab, Z

⎦ = 2Pab,

[Mab, Qc] = εac Qb + εbc Qa,
⎤
Mab, Qc

⎦ = ⎧Q⎨ab,c ,

[Mab, Sc] = (S)ab,c ,
⎤
Mab, Sc

⎦ = ⎧S⎨ab,c ,
⎤
K ab, Qc

⎦ = − ⎧S⎨ab,c ,
⎤
Kab, Qc

⎦ = (S)ab,c ,
⎤
K ab, Sc

⎦ = ⎧Q⎨ab,c ,
⎤
Kab, Sc

⎦ = − (Q)ab,c ,

[J, Qa] = −1

2
Qa,

⎤
J, Qa

⎦ = 1

2
Qa, [J, Sa] = −1

2
Sa,

⎤
J, Sa

⎦ = 1

2
Sa,

[J, Kab] = −Kab,
⎤
J, K ab

⎦ = K ab, [J, Z ] = −Z ,
⎤
J, Z

⎦ = Z ,{
Qa, Qb

} = 2Pab,
{

Sa, Sb
} = 2Pab, {Qa, Sb} = 2εab Z ,{

Qa, Sb
} = 2εab Z . (C.2)

Note, that the generators obey the following conjugation rules:

(Pab)
† = Pab, (Kab)

† = K ab, (Mab)
† = −Mab, J † = J, Z† = Z ,

(Qa)† = Qa, (Sa)† = Sa . (C.3)

8 The indices are raised and lowered as follows: V a = εabVb, Vb = εbcV c, εabε
bc = ϕc

a .
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We define the coset element as follows

g = eixab Pab eαa Qa+ᾱa Qa ei(q Z+q̄ Z)eψa Sa+ψ̄
a

Sa ei(�ab Kab+�
ab

K ab). (C.4)

Here,
{

xab, αa, ᾱa
}
are N = 2, d = 3 superspace coordinates, while the remaining

coset parameters are Goldstone superfields, q = q(x, α, ᾱ), q̄ = q̄(x, α, ᾱ), ψa =
ψa(x, α, ᾱ), ψ̄

a = ψ̄
a
(x, α, ᾱ), �ab = �ab(x, α, ᾱ), �

ab = �
ab

(x, α, ᾱ). These
N = 2 superfields obey the following conjugation rules:

(
xab
)† = xab,

⎧
αa⎨† = ᾱa, q† = q̄,

⎧
ψa⎨† = ψ̄

a
,
(
�ab
)† = �

ab
. (C.5)

The transformation properties of the coordinates and superfields with respect to all
symmetries can be found by acting from the left on the coset element g (C.4) by
the different elements of N = 1, D = 5 Poincaré supergroup. In what follows,
we will need only the explicit form only for the broken (S, S), unbroken (Q, Q)

supersymmetries, and (K , K ) automorphism transformations which read

• Unbroken (Q) supersymmetry [g0 = exp (εa Qa + ε̄a Qa)]

ϕxab = i
(
ε(a ᾱb) + ε̄(aαa)

)
, ϕαa = εa , ϕᾱa = ε̄a . (C.6)

• Broken (S) supersymmetry [g0 = exp
⎧
ψa Sa + ψ̄a Sa

⎨
]

ϕxab = i
(
ψ(aψ̄

b) + ψ̄(aψb)
)

, ϕq = 2i ψaαa, ϕq̄ = 2i ψ̄a ᾱa, ϕψa = ψa, ϕψ̄
a = ψ̄a .

(C.7)
• Automorphism (K , K ) transformations [g0 = exp i

⎧
aab Kab + āab K ab

⎨
]

ϕxab = −2i
(

aabq − āab q̄
)

− 2αcψcāab + 2ᾱcψ̄caab,

ϕαa = −2i aabψ̄b, ϕᾱa = 2i āabψb,

ϕq = −2i aabxab − 2aab ⎧αa ᾱb − ψaψ̄b
⎨
, ϕψa = 2i aabᾱb,

ϕq̄ = 2i āabxab − 2āab ⎧αa ᾱb − ψaψ̄b
⎨
, ϕψ̄

a = −2i āabαb. (C.8)

As the next step of the coset formalism, one can construct the Cartan forms

g−1dg = ΩP + ΩQ + ΩQ + ΩZ + ΩZ + ΩS + ΩS + · · · . (C.9)

In what follows we will need only the forms
{
ΩP ,ΩQ,ΩQ̄,ΩZ ,ΩZ̄ ,ΩS,ΩS̄

}

which explicitly read
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ΩP =
⎠

(
cosh 2

∗
Y
)cd

ab
∞xab − i

(
�

ab∞q − �ab∞q̄
)⎛ sinh 2∗Y∗

Y

⎞cd

ab

⎫⎬
⎭ Pcd ,

ΩQ =
{

dαb
(
cos 2

√
T
) c

b
− i dψ̄

b
� a

b

⎛
sin 2

√
T√

T

⎞ c

a

}
Qc,

ΩZ =
⎠
∞q +

(
�

ab∞q − �ab∞q̄
)⎛cosh 2∗Y − 1

Y

⎞cd

ab

�cd

+ i dxab

⎛
sinh 2

∗
Y∗

Y

⎞cd

ab

�cd

⎫⎬
⎭ Z ,

ΩS =
{

dψb
(
cos 2

√
T
) c

b
+ i d ᾱb � a

b

⎛
sin 2

√
T√

T

⎞ c

a

}
Sc, (C.10)

∞xab = dxab − i
(
α(ad ᾱb) + ᾱ(adαb) + ψ(adψ̄

b + ψ̄
(a

dψb
)

,

∞q = dq − 2i ψadαa, ∞q̄ = d q̄ − 2i ψ̄ad ᾱa . (C.11)

Here, we defined matrix-valued functions Yab
cd , T a

b and T
b
a as

Yab
cd = �ab�

cd + �ab�
cd , T a

b = �a
c�

b
c , T

b
a = �

c
a�b

c . (C.12)

Note, that all these Cartan forms transform homogeneously under all symmetries.
Having at hands theCartan forms, onemay construct the “semi-covariant” (covari-

ant with respect to d = 3 Lorentz, unbroken and broken supersymmetries only) as

∞xab♥ab + dαa♥a + d ᾱa♥̄a = dxab ν

νxab
+ dαa ν

ναa
+ d ᾱa ν

νᾱa
. (C.13)

Explicitly, they read

♥ab = (E−1)cd
abνcd ,

♥a = Da − i
(
ψb Daψ̄

c + ψ̄
b

Daψc
)

♥bc = Da − i
(
ψb♥aψ̄

c + ψ̄
b♥aψc

)
νbc,

(C.14)

where

Da = ν

ναa − i ᾱb νab, Da = ν

νᾱa
− i αb νab,

{
Da, Db

} = −2i νab, (C.15)

Eab
cd = ϕ

(c
a ϕ

d)
b − i

(
ψ(cνabψ̄

d) + ψ̄
(c

νabψd)
)

, (C.16)
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(E−1)ab
cd = ϕ

(c
a ϕ

d)
b + i

(
ψ(c♥abψ̄

d) + ψ̄
(c♥abψd)

)
. (C.17)

The derivatives obey the following algebra:

{♥a,♥b} = −2i
(
♥aψc♥bψ̄

d + ♥aψ̄
c♥bψ

d
)

♥cd ,

{♥a,♥b
} = −2i ♥ab − 2i

(
♥aψc♥bψ̄

d + ♥aψ̄
c♥bψ

d
)

♥cd ,

[♥ab,♥c] = −2i
(
♥abψ

d♥cψ̄
f + ♥abψ̄

d♥cψ
f
)

♥d f ,

[♥ab,♥cd ] = 2i
(
♥abψ

m♥cdψ̄
n − ♥cdψm♥abψ̄

n
)

♥mn . (C.18)

The d = 3 volume form is defined as

d3x ⊂ εI J K dx I ⊗ dx J ⊗ dx K ♣ dx I ⊗ dx J ⊗ dx K = 1

6
εI J K d3x . (C.19)

Transition from the spinor notations to the vector one is set as follows

V I ⊂ i∗
2

(
δ I
)b

a
V a

b ♣ V b
a = − i∗

2
V I
(
δ I
)b

a
, V abVab = V I V I .

(C.20)
Here we are using the standard set of δ I matrices

δ I δ J = i εI J K δK + ϕ I JI,
(
δ I
)b

a

(
δ I
)d

c
= 2ϕd

a ϕb
c − ϕa

bϕd
c , (C.21)

were εI J K obeys relations

εI J K εI M N = ϕ J
MϕK

N − ϕ J
N ϕK

M , εI J K εI J N = 2ϕK
N , εI J K εI J K = 6. (C.22)

References

1. S.R. Coleman, J. Wess, B. Zumino, Structure of phenomenological lagrangians. I. Phys. Rev.
177, 2239 (1969)

2. C.G. Callan Jr, S.R. Coleman, J.Wess, B. Zumino, Structure of phenomenological lagrangians.
II. Phys. Rev. 177, 2247 (1969)

3. D.V. Volkov, Phenomenological lagrangians. Sov. J. Part. Nucl. 4, 3 (1973)
4. V.I. Ogievetsky, Nonlinear realizations of internal and space-time symmetries. in Proceedings

of the Xth Winter School of Theoretical Physics in Karpacz, vol. 1, p. 117, 1974
5. D.V. Volkov, V.P. Akulov, Possible universal neutrino interaction. JETP Lett. 16, 438 (1972)
6. D.V. Volkov, V.P. Akulov, Is the neutrino a Goldstone particle? Phys. Lett. B46, 109 (1973)
7. J. Bagger, A. Galperin, Matter couplings in partially broken extended supersymmetry. Phys.

Lett. B336, 25–31 (1994). arXiv:hep-th/9406217
8. J. Bagger, A. Galperin, New Goldstone multiplet for partially broken supersymmetry. Phys.

Rev. D55, 1091 (1997). arXiv:hep-th/9608177

http://arxiv.org/abs/arXiv:hep-th/9406217
http://arxiv.org/abs/arXiv:hep-th/9608177


248 S. Bellucci et al.

9. J. Bagger, A. Galperin, The tensor Goldstone multiplet for partially broken supersymmetry.
Phys. Lett. B412, 296 (1997). arXiv:hep-th/9707061

10. M.Rocek, Partial breaking of global D= 4 supersymmetry, constrained superfields, and 3-brane
actions. Phys. Rev. D59, 106001 (1999). arXiv:hep-th/9811232

11. F. Gonzalez-Rey, I.Y. Park, M. Rocek, On dual 3-brane actions with partially broken N = 2
supersymmetry. Nucl. Phys. B544, 243 (1999). arXiv:hep-th/9811130

12. E. Ivanov, S. Krivonos, N = 1, D = 4 supermembrane in the coset approach. Phys. Lett. B453,
237 (1999). arXiv:hep-th/9901003

13. S. Bellucci, E. Ivanov, S. Krivonos, Superbranes and super born-infeld theories from nonlinear
realizations. Nucl. Phys. Proc. Suppl. 102, 26 (2001). arXiv:hep-th/0103136

14. S. Bellucci, E. Ivanov, S. Krivonos, Partial breaking of N = 1, D = 10 supersymmetry. Phys.
Lett. B460, 348 (1999). arXiv:hep-th/9811244

15. S. Bellucci, E. Ivanov, S. Krivonos, Partial breaking N = 4 to N = 2: hypermultiplet as a
Goldstone superfield. Fortsch. Phys. 48, 19 (2000). arXiv:hep-th/9809190

16. S. Bellucci, E. Ivanov, S. Krivonos, N = 2 and N = 4 supersymmetric Born-Infeld theories from
nonlinear realizations. Phys. Lett. B502, 279 (2001). arXiv:hep-th/0012236

17. E.A. Ivanov, V.I. Ogievetsky, The inverse Higgs phenomenon in nonlinear realizations. Teor.
Mat. Fiz. 25, 164 (1975)

18. S. Bellucci, E. Ivanov, S. Krivonos, Towards the complete N = 2 superfield Born-Infeld action
with partially broken N = 4 supersymmetry. Phys. Rev. D64, 025014 (2001). arXiv:hep-th/
0101195

19. M. Aganagic, C. Popescu, J.H. Schwarz, Gauge-invariant and gauge-fixed D-brane actions.
Nucl. Phys. B495, 99 (1997). arXiv:hep-th/9612080

20. E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi, A. Van Proeyen, Dirac-Born-Infeld-
Volkov-Akulov and deformation of supersymmetry. JHEP 1308, 100 (2013). arXiv:1303.5662
[hep-th]

21. S. Bellucci, S. Krivonos, A. Sutulin, Supersymmetric component actions via coset approach.
Phys. Lett. B726, 497 (2013). arXiv:1306.1115 [hep-th]

22. S. Bellucci, N. Kozyrev, S. Krivonos, A. Sutulin, Partial breaking of global supersymmetry
and super particle actions. J. High Energy Phys. arXiv:1309.3902[hep-th]

23. S. Bellucci, N. Kozyrev, S. Krivonos, A. Yeranyan, Supermembrane in D = 5: component
action. arXiv:1312.0231[hep-th]

24. T.E. Clark, M. Nitta, T. ter Veldhuis, Brane dynamics from nonlinear realizations. Phys. Rev.
D67, 085026 (2003)

25. M. Hanneaux, L. Mezincescu, A δ-model interpretation of Green-Schwarz covariant super-
string action. Phys. Lett. B152, 340 (1985)

26. D. Sorokin, Superbranes and superembeddings. Phys. Rept. 329, 1 (2000). arXiv:hep-th/
9906142

27. S. Bellucci, E. Ivanov, S. Krivonos, O. Lechtenfeld, ABC of N = 8, d = 1 supermultiplets. Nucl.
Phys. B699, 226 (2004). arXiv:hep-th/0406015

28. A. Achúcarro, J. Gauntlett, K. Itoh, P.K. Townsend,World-volume supersymmetry from space-
time supersymmetry of the four-dimensional supermembrane. Nucl. Phys. B314, 129 (1989)

29. E. Ivanov, S. Krivonos, O. Lechtenfeld, Double vector multiplet and partially broken N = 4, D
= 3 supersymmetry. Phys. Lett. B487, 192 (2000). arXiv:hep-th/0006017

30. S. Bellucci, E. Ivanov, S. Krivonos, Goldstone superfield actions in AdS5 backgrounds. Nucl.
Phys. B672, 123 (2003). arXiv:hep-th/0212295

http://arxiv.org/abs/arXiv:hep-th/9707061
http://arxiv.org/abs/arXiv:hep-th/9811232
http://arxiv.org/abs/arXiv:hep-th/9811130
http://arxiv.org/abs/arXiv:hep-th/9901003
http://arxiv.org/abs/arXiv:hep-th/0103136
http://arxiv.org/abs/arXiv:hep-th/9811244
http://arxiv.org/abs/arXiv:hep-th/9809190
http://arxiv.org/abs/arXiv:hep-th/0012236
http://arxiv.org/abs/arXiv:hep-th/0101195
http://arxiv.org/abs/arXiv:hep-th/0101195
http://arxiv.org/abs/arXiv:hep-th/9612080
http://arxiv.org/abs/arXiv:1303.5662
http://arxiv.org/abs/arXiv:1306.1115
http://arxiv.org/abs/arXiv:1309.3902
http://arxiv.org/abs/arXiv:1312.0231
http://arxiv.org/abs/arXiv:hep-th/9906142
http://arxiv.org/abs/arXiv:hep-th/9906142
http://arxiv.org/abs/arXiv:hep-th/0406015
http://arxiv.org/abs/arXiv:hep-th/0006017
http://arxiv.org/abs/arXiv:hep-th/0212295

	Preface
	Contents
	1 Superconformal Symmetry and Higher-Derivative Lagrangians
	1.1 Introduction
	1.2 General Sugra/Susy Theories
	1.3 The Superconformal Method
	1.4 Higher Derivative Sugra Actions and Sugra Loop Results
	1.4.1 Superconformal Methods for the n=2 Example
	1.4.2 Problem and Conjecture for n=4 Supergravity

	1.5 Dirac--Born--Infeld-Volkov--Akulov and Deformation  of Supersymmetry
	1.5.1 The Bottom-Up Approach
	1.5.2 The Top-Down Approach
	1.5.3 D=4, n=4 Gauge Multiplet
	1.5.4 Worldvolume Theory in AdS Background

	1.6 Conclusions
	References

	2 Constitutive Relations, Off Shell Duality Rotations and the Hypergeometric Form  of Born-Infeld Theory
	2.1 Introduction
	2.2 U(1) Duality Rotations in Nonlinear and Higher  Derivatives Electromagnetism 
	2.2.1 Action Functionals from Equations of Motion
	2.2.2 Conditions for U(1) Duality Rotation Symmetry  of the Equations of Motion
	2.2.3 Off Shell Formulation of Duality Symmetry

	2.3 Constitutive Relations without Self-Duality
	2.3.1 The N and M Matrices
	2.3.2 Schrödinger's Variables

	2.4 Schrödinger's Approach to Self-Duality Conditions
	2.5 Nonlinear Theories without Higher Derivatives
	2.5.1 Born-Infeld Nonlinear Theory
	2.5.2 The Hypergeometric Function and its Hidden Identity
	2.5.3 General Nonlinear Theory

	References

	3 Vector Branes
	3.1 Introduction
	3.2 Branes and Wess-Zumino Terms
	3.3 Branes and Weights
	3.4 Vector Branes and Half-Maximal Supergravity
	3.5 Wrapping Rules
	3.6 Conclusions
	References

	4 Pure Spinor Superfields: An Overview
	4.1 Introduction
	4.2 Pure Spinors from Superspace
	4.2.1 SYM
	4.2.2 SG
	4.2.3 Summary

	4.3 Cohomology
	4.3.1 SYM
	4.3.2 Supergravity
	4.3.3 Other Models
	4.3.4 Less than Maximal Supersymmetry

	4.4 Pure Spinor Space and Integration
	4.5 Batalin--Vilkovisky Formalism and Actions
	4.5.1 Field-Antifield Structure
	4.5.2 Interactions from the Master Equation

	4.6 Higher Derivative Terms and Born--Infeld Theory
	4.7 Gauge Fixing
	4.8 Discussion
	References

	5 Loop Amplitude Diagrams in Manifest,  Maximal Supergravity
	5.1 Introduction
	5.2 Maximal Supergravity with Manifest Supersymmetry
	5.2.1 Manifesting Maximal Supersymmetry with Pure Spinors
	5.2.2 The Action in the Pure Spinor Formalism

	5.3 Field Theory Construction of Amplitude Diagrams
	5.3.1 Building Blocks from the Action
	5.3.2 Loop Regularisation
	5.3.3 Amplitude Characteristics

	5.4 Behaviour in the Ultraviolet Limit
	5.5 Outlook
	References

	6 Perturbative Ultraviolet Calculations  in Supergravity
	6.1 Ultraviolet Divergences via the Double Copy
	6.2 Obtaining Color-Dual Numerators
	6.3 Extracting Ultraviolet Divergences
	References

	7 Scalars with Higher Derivatives in Supergravity and Cosmology
	7.1 Introduction
	7.2 Higher-Derivative Chiral Superfield Actions  in macn=1 Supergravity
	7.2.1 Higher-Derivative Chiral Superfields  in Flat Superspace
	7.2.2 Higher-Derivative Kinetic Terms in Supergravity

	7.3 New Potentials from the Equation  for the Auxiliary Field F
	7.3.1 Supergravitational DBI Inflation: Large Higher-Derivative Terms

	7.4 Supersymmetric Galileons
	7.4.1 Galileons and Complex Fields
	7.4.2 Supersymmetric Cubic Galileons
	7.4.3 Hiding from the Ghost

	7.5 Conclusions and Outlook
	References

	8 The Leading Eikonal Operator in String-Brane Scattering at High Energy
	8.1 Introduction
	8.2 The Eikonal Operator I
	8.3 States of the First Massive Level Produced  at High Energy
	8.3.1 Spectrum of the First Excited Level
	8.3.2 Three-Point Amplitudes
	8.3.3 Inelastic Amplitudes

	8.4 The Eikonal Operator II
	8.5 Kinematics
	References

	9 Ghost Condensation in N=1 Supergravity
	9.1 Motivation
	9.2 Scalar Ghost Condensation
	9.3 Review of Globally N=1 Supersymmetric Ghost Condensation
	9.3.1 Higher-Derivative Chiral Superfield Lagrangian
	9.3.2 Globally Supersymmetric Ghost Condensate

	9.4 The Ghost Condensate in N=1 Supergravity
	9.4.1 The N=1 Supergravity Ghost Condensate

	References

	10 Thermodynamic Curvature and Black Holes
	10.1 What is Thermodynamic Curvature R?
	10.2 R for Ordinary Thermodynamics
	10.2.1 R for Fluid and Solid Systems, Basic Models
	10.2.2 R for Fluid and Solid Systems, Lennard-Jones Potential
	10.2.3 R for Discrete Systems

	10.3 R for Black Hole Thermodynamics
	10.3.1 Introduction
	10.3.2 Kerr-Newman Black Hole Thermodynamics
	10.3.3 Laws of Black Hole Thermodynamics
	10.3.4 Black Hole Thermodynamic Curvature R
	10.3.5 Solutions from General Relativity
	10.3.6 Discussion of ``Inconsistencies''

	10.4 Conclusions
	References

	11 Coset Approach to the Partial Breaking  of Global Supersymmetry
	11.1 Introduction
	11.2 Basics of the Method
	11.3 Superparticle in D=3
	11.3.1 Superparticle in D=3: Kinematics
	11.3.2 Superparticle in D=3: Dynamics
	11.3.3 Superparticle in D=3: Component Action

	11.4 Superparticle in D=5
	11.5 Supermembrane in D=4
	11.5.1 Supermembrane in D=4: Kinematical Constraints, Equations of Motion and the Component Action
	11.5.2 Supersymmetric Space-Filling D2-Brane

	11.6 Supermembrane in D=5
	11.6.1 Supermembrane
	11.6.2 Dualization of the Scalars: Vector and Double  Vector Supermultiplets

	11.7 Conclusion
	References




