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Foreword

This volume presents contributions of the workshop designed and organized
by Giulia Ajmone Marsan (France), Marcello Delitala (Italy), Andrea Picco
(Germany), the winners of the Kepler Prize for European Young Scientists
(KEYS), established by the European Academy of Sciences (EURASC) (http://
www.eurasc.org) in 2010/11.

The first edition of the prize was dedicated to the general topic Mathematical
Modelling and Simulations in Life Sciences and the winning project had the title
Complex Living Systems: Managing complexity, reducing perplexity. The general
topic was chosen since there is an urgent demand for experts in this field as well as
in basic research as in applications; projects require interdisciplinary teams
including experts from biology, medicine, biophysics and biochemistry, mathe-
matics, and computational sciences.

The Kepler Prize has the goal of steering the cooperation of highly talented
young scientists in Europe interested in research crossing the borders of disciplines
and states, thus participating in the building of a European Research Area. The
award is granted to an international team of young scientists, selected in an
international competition for a workshop covering multidisciplinary topics, plan-
ned and organized by the team. It consists of financial and organizational support
to run the workshop. Further, the proponents of the winning team are invited to
become Kepler fellows of EURASC for 3 years, and are expected to take part in
scientific activities of EURASC. The selection criteria include excellence of
participants; excellence of the proposal with respect to cross-disciplinarity,
knowledge transfer and dialogue with society; geographical heterogeneity.
Establishing the Kepler Prize EURASC is in line with the Commission of the
European Union, stating

• Young researchers trained in Europe should be confident that their qualifica-
tions will be rewarding for their careers.

• European doctoral programmes and further training should meet stringent
quality standards, fulfil the needs of both academia and business, and be
recognised across Europe.

• Researchers at all levels should be trained in cross-disciplinary work and S&T
administration, including knowledge transfer and dialogue with society.
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(GREEN PAPER, The European Research Area: New Perspectives. SEC(2007)
412, Brussels, 4.4.2007).

It was a proper choice to select Johannes Kepler as a leading figure for a prize
to excellent young scientists who look not only beyond their own discipline, but
who also transgress it. Kepler was an outstanding scholar integrating, in particular,
natural philosophy, mathematics, astronomy, astrology, optics, and theology. His
scientific achievements revolutionized the view of the world. On the occasion of
the three hundredth anniversary of Kepler’s death, Albert Einstein wrote in the
Frankfurter Zeitung (November 9, 1930)*: It seems that the human mind has first
to construct forms independently, before we can find them in things. Kepler’s
marvelous achievement is a particularly fine example of the truth that knowledge
cannot spring from experience alone, but only from the comparison of the
inventions of the intellect with observed fact.

Johannes Kepler is most famous for discovering the laws for the motion of the
planets, discovering a way of bringing order into this chaos (Einstein, in *). Kepler
himself stated in Astronomia Nova (1609): The chief aim of all investigations of
the external world should be to discover the rational order and harmony which has
been imposed on it by God and which He revealed to us in the language of
mathematics.

Understanding the dynamics and structures of processes in life sciences is
posing challenges, where quite similar a way has to be found to resolve the
complexity of data and observations. The prize winning workshop was going by a
very demanding title. Indeed, mastering complexity is a crucial task in most
human activities, in particular in science. Living systems involve a higher degree
of complexity than purely physical-chemical systems. Necessary for reduction of
complexity is a well-defined problem definition, and the formulation of a well-
defined question to be answered. As Kepler stated, mathematics plays an important
role, not just in formulating rational order and harmony, but also in making
processes in nature computable and predictable. Exploring the universe using
advanced instruments and information technology, including mathematical mod-
eling and simulation, leads to answers to crucial questions like ‘‘Is there life in
outer space?’’ Recently, in April 2013, the news that the NASA’s Kepler Tele-
scope discovered three new potentially habitable planets (Kepler-22b, -69c, -62e,
-62f) in distant solar systems is exciting not only scientists.

Zooming in to the scales of atoms and molecules and investigating their section
of the world are providing the information necessary to understand the building
blocks of life and the structures and functions of living systems. Mathematicians
have become aware very quickly that existing mathematical methods may not be
sufficiently adequate for facing the special complexity of biological systems, since
the variety and evolvability of biological systems and their intrinsic multi-physics
and multiscale structures make them extremely more complex than nonbiological
systems. Relevant systems in life sciences are in general coupled networks of
subsystems. Biological structures and functions are results of interactions of
processes on complex networks. Already Aristotle knew: ‘‘The whole is greater
than the sum of its parts.’’ The amount and the quality of data in biology and in
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medicine is increasing due to a rapid improvement in experimental methods and
technologies. Processing the available data and deriving the information and
concepts necessary to understand and control the systems needs modeling, simu-
lation, and expertise in mathematics, mathematical modeling, and computational
sciences, complementing the experimental life sciences. Managing complexity,
nonlinearity, high dimensionality, multiple scales, instability, and uncertainty
arising in particular in biosystems will be a persistent, long-term challenge. Cer-
tainly, advanced computer technology and new algorithms will be important tools
to cope with the challenges. However, they have to be complemented with new
concepts for modeling the systems, and reducing the models to make them
accessible to computation and calibration based on real data. Here multi-core
computer systems are offering new perspectives for an integrated approach,
including the design of adjusted models and algorithms.

One main aim of the workshop was to identify and discuss proper approaches to
overcome some of the arising obstacles and to initiate and support co-operations.
The intensive discussions in special sessions had the objective to provide orien-
tation for the future research, based on summaries of the state of the art.

Teamwork could be achieved also in support and organization of the Kepler
workshop at the institutional level. The Heidelberg Academy of Sciences and
Humanities (HAW) (http://www.haw.uni-heidelberg.de) and the Center for Mod-
elling and Simulation in Biosciences (BIOMS) (http://www.bioms.de) of the
University of Heidelberg share with the European Academy of Sciences the aim to
promote and support excellent young scientists, interested and engaged in inter-
disciplinary research and working in teams. Therefore, the Kepler award offers a
unique chance for cooperation for the profit of science and the young generation.

On the invitation of HAW, the first part of the workshop took place in the
historic building of the Academy, at the foot of the renowned Heidelberg Castle,
whereas on the invitation of BIOMS, the second part was hosted in the modern
BioQuant Building on the campus of Heidelberg University. The Kepler workshop
was integrated in the program of BIOMS, and thus the funding and the local
organization could be provided. We are highly grateful for all contributions to this
cooperation.

The quality of the scientific contributions, the achieved impulses for future
research, and initiated exchange and cooperation are the most rewarding outcomes
of the joint activity. The prize winners deserve high appreciation not only for
organizing an inspiring workshop, but also for designing and putting together this
volume. We hope that the reader will feel some of the exciting atmosphere of the
event.

Milano, April 2013 Vincenzo Capasso
Heidelberg Willi Jäger
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Preface

This book is a followup to the scientific workshop ‘‘Managing Complexity,
Reducing Perplexity’’ which was held in Heidelberg, May 16–20, 2011, as part of
the 2010–11 Kepler Award for European Young Scientists (KEYS), established by
the European Academy of Sciences (EURASC). The recipients of the award were
Marcello Delitala (Italy) for mathematical sciences, Giulia Ajmone Marsan
(France) for social sciences, and Andrea Picco (Germany) for biological sciences.
These researchers were chosen from a group of a dozen young European scientists
with a Ph.D. in Mathematics, Biology, or Medicine.

‘‘Managing Complexity, Reducing Perplexity’’ was devoted to an overview of
the state of the art in the study of complex systems, with particular focus on the
analysis of systems pertaining to living matter. Both senior scientists and young
researchers from diverse and prestigious institutions with a deliberately interdis-
ciplinary cut were invited, in order to compare approaches and problems from
different disciplines. A common aim of the talks was that of analyzing the com-
plexity of living systems by means of new mathematical paradigms that are more
adherent to reality, and which are able to generate both exploratory and predictive
models that are capable of achieving a deeper insight into life science phenomena.

The book collects a selection of scientific contributions from the speakers at the
meeting.

The interest in complex systems has witnessed a remarkable increase in recent
years, due to an increasing awareness that many systems share a common feature,
that is ‘‘complexity,’’ and that they cannot be successfully modeled by traditional
methods used for inert matter systems. According to an opinion that is widely
shared in the scientific community, a Complex System is any system made up of a
large number of heterogeneous interacting entities, whose interactions lead to the
emergence of collective behaviors that are not predictable from the individual
dynamics. Complex systems are often characterized by nonlinear structures at
different representation scales.

When dealing with living systems, it is necessary to face an additional source of
complexity: the interacting entities express an individual strategy that modifies
classical mechanics laws, and, in some cases, generates proliferative and/or
destructive processes. Moreover, the expression of a strategy is heterogeneously
distributed over the system. When dealing with living matter, a seminal paper by
H. L. Hartwell and co-workers should be recalled:
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The living matter shows substantial differences with respect to the behavior of the inert
matter. Although living systems obey the laws of physics and chemistry, the notion of
function or purpose differentiates biology from other natural sciences. Organisms exist to
reproduce, whereas, outside religious beliefs rocks and stars have no purpose…What
really distinguishes biology from physics are survival and reproduction, and the con-
comitant notion of function.1

The interactions between individuals can occur not only through contact, but
may be also distributed in space as well as on networks. Collective emerging
behaviors, determined by the dynamics of interactions, cannot be described only
on the basis of the knowledge of the mechanical dynamics of each element, i.e.,
the dynamics of a few individuals does not automatically lead to the overall
collective dynamics of the whole system.

Thus, complex systems are intrinsically multiscale, and show emerging phe-
nomena at the macroscopic level that express a self-organizing ability, which is the
output of the interactions between entities at the microscopic level. Moreover, the
emergence is bottom-up, from lower representation to a higher scale, with a
feedback loop: the emerging patterns may affect and perturb the lower levels (the
so-called immergence: a top-down phenomenon).

Due to this self-organizing ability, feedbacks, and redundancy, in a fast evo-
lutionary framework, complex systems have in many cases a great capacity to
adapt to changing landscapes, to cope with environmental changes and pressures,
and maintain their structure and stability against the perturbations that occur at
various scales.

An increasing number of applications in technology, economics, and social
sciences resemble such systems, given their high number of composing elements
and the nonlinear connections among them. ‘‘Complexity’’ is one of the main
features of a variety of phenomena, from cell biology to fluctuations in economic
markets, from the development of communication networks and the Web to traffic
flows in highways, to the ecosphere evolution against climate changes, and other
generic environmental issues.

Many systems of the physical world are made up of several interconnected
components, which may be represented, and, at times, measured, according to
different scales of observation. Interactions between different parts of the system
may show emerging collective behavior and structures that require specific
interpretations for each scale of observation, thus highlighting the new features
that arise when passing from one scale to another. Whether you consider the
individual entities or their subsets, the simultaneously occurring processes at
different temporal and spatial scales characterize the system, so that the laws that
govern the behavior of the ‘‘whole’’ are qualitatively different from the laws that
govern the individual components.

The investigation on complexity has the objective of understanding what its
main properties are. How does the system adapt to evolving conditions? How does

1 H. L. Hartwell, J. J. Hopfield, S. Leibner, and A. W. Murray, From molecular to modular cell
biology, Nature, 402, c47–c52.
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it learn efficiently and how it does optimize its behavior? Are there common rules
that govern the behavior of complex systems? The development of a science of
complexity cannot be reduced to a single theoretical or technological innovation,
but implies a novel scientific approach.

Thus, ‘‘managing complexity’’ means identifying the ‘‘complexity’’ features of
a system, modeling its dynamics, highlighting the possible rise of new structures
and emerging patterns, investigating their resilience against perturbations,
searching for any common features that govern the ways in which this collective
behavior occurs. A mathematical approach can provide useful suggestions to help
understand the global behavior of a living system by capturing its essential
features.

Many mathematical models have been proposed to describe various aspects of
complex living systems. There is no universal tool that is more suitable than
others: each has its pros and cons, and each aims at highlighting the particular
behavior of each particular system at a well-defined level of representation.
A research approach should be designed to select the most significant tool to
explain the collective behavior, i.e., the tool that contributes the most information
for both that particular scale and for the transition from one representation scale to
another one.

The description of complex living systems requires challenging mathematical
structures and original theories, as well as progress in theoretical methods, in
numerical algorithms, and in developing experimental strategies.

Moreover, it is necessary to bring together different kinds of scientific knowl-
edge and different background to tackle this challenging goal: an interdisciplinary
approach between scientists from different fields is necessary to define a common
protocol that would be able to exchange information, and to design experiments
and indicators that can provide information that would enable the validation, and
therefore the refinement of already proposed models, to develop qualitative
analysis, numerical simulations, and new hypothesis. This is why suitable inter-
actions between groups of researchers from different areas (mathematics, physics,
biology, sociology, and economics) are necessary to find new paradigms that can
be used to model and investigate a more and more connected, interacting, and
globalized world.

The above-mentioned points were common issues in the workshop and will be
the key points of this book. The focus is on biological systems; the meeting was in
fact devoted to the modeling and simulation in life sciences, focussing on some of
the current topics in biology and medicine and the related mathematical methods:
several biological systems are characterized by interconnected heterogeneous
elements that, together, exhibit some properties, which are often not obvious at
first. These systems are demanding for interdisciplinary approaches that are able to
combine life sciences and mathematics/physics.

The main topics of the workshop were: complexity in life sciences and in
biosystems, regulatory networks, cell motility, multiscale modeling and simulation
of cancer, morphogenesis and the formation of biological structures, evolution and
adaptation.
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These topics have been developed by researchers from various disciplines and
different scientific communities (biologists/mathematicians/physicists), who share
a common interest in life sciences, with the aim of achieving deeper insight into
these biological phenomena and, hopefully, a better understanding, simulation, and
control of them.

A key issue that emerged during the discussions was the necessity of more and
more direct interaction between Mathematicians/Physicist and Biologists. Indeed,
interdisciplinarity was the leading issue of the workshop; the ability to interpret
scientific problems from different points of view is evidently more and more
important, besides the technical knowledge needed to face them.

Apart from the various talks and discussions, some round table conferences
were held that led to some interesting thoughts and outcomes.

The first round table was on specific advice from senior scientists to young ones
pertaining to the successful development of scientific research in biomathematics.
The results can be briefly synthesized in some memorable sentences that emerged
in the discussions:

• Get wet! Mathematicians perform experiments (F. Bussolino, IRCC, Candiolo,
Italy)

• Data Driven Modelling together with Model Driven Experiments (V. Capasso,
University of Milan, Italy)

• Integration. Biologist be your buddy (A. Dell, Imperial College, London)
• Modelling, integrating data and concepts of processes (W. Jäger, University of

Heidelberg, Germany)
• Stay close to the data (V. Quaranta, Vanderbilt University, USA)
• Scientific honesty … Do not put all your eggs in one basket (D. Sherrington,

University of Oxford, UK)

The second round table was on which actions are needed by young researchers
to support their career development and the need of education for the next gen-
eration researchers. Here, it was pointed out that more attention should be paid to
graduate education in which the borders of different sectors of sciences are crossed
(e.g., Ph.D. programs combining biomedical skills with maths-physics ones), in
order to establish a ‘‘common protocol’’ between researchers from different
disciplines.

The third round table was on the perspectives of young scientists, in terms of
career development and the facility of finding suitable positions. Here, the land-
scape is heterogeneous, because scientific communities in some countries are still
stuck in rigid and classic disciplinary sectors (as, for instance, in Italy), while in
other countries (e.g., the UK and the USA) things appear to be different. The
suggestion was to try to be truly interdisciplinary, finding stimuli, and looking for
new experiences ‘‘away from home,’’ if necessary (Go West, young boy!).

However, the evident need for a real and continuous interplay between bio-
logical sciences and maths-physics emerged from all discussions.
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Another issue that emerged from the discussions was the need for a strong
biological approach to reduce the complexity of the system. It is in fact mandatory
to develop mathematical tools for each scale that retains the key features of the
system. Deeper considerations on this issue have been developed in the last
contribution by M. Delitala and T. Hillen.

The book presents 13 contributions dealing with different aspects of complex
biological systems.

The book starts with a contribution that frames the problem of dealing with
complexity in life sciences and the choice of suitable mathematical methods.

The first contribution by T. Hillen and M. A. Lewis on the Mathematical
Ecology of Cancer, highlights other important aspects of dealing with complex
systems: the transversality of methods, cross-disciplinarity, and fertilization. Their
contribution focuses on the important connections between ecology and cancer
modeling, which bring together mathematical oncology and mathematical ecology
to initiate cross-fertilization between these fields.

Focusing in more detail on some of the features of complexity, the multiscale
nature of these biological systems has been shown in the following three contri-
butions on cancer modeling; the onset and evolution of a tumor is a good example
of complex multiscale problem as it is a process that normally spreads over many
years and involves a large variety of phenomena that occur at different biological
scales.

The chapter by P. Macansantos and V. Quaranta on heterogeneity and growth
variability in cell populations focuses on recent advances, both theoretical and
experimental, in quantification and modeling of the clonal variability of prolifer-
ation rates within cell populations, highlighting work carried out in cancer-related
systems.

The contribution by P. Gerlee and S. Nelander is focused on the impact of
phenotypic switching in a model of glioblastoma invasion. Simulations of the
stochastic model and simulations, obtained by deriving a continuum description of
the system, show interesting results on the wave speed of the solutions and suggest
a possible way of treating glioblastomas by altering the balance between prolif-
erative and migratory behavior.

The contribution by D. Trucu and M. A. J. Chaplain on Multiscale Analysis and
Modelling for Cancer Growth and Development, presents a novel framework that
enables a rigorous analysis of processes that occur at three (or more) independent
scales (e.g., intracellular, cellular, tissue). Then, a new model is proposed that
focuses on the macroscopic dynamics of the distributions of cancer cells and of the
surrounding extracellular matrix and its connection with the microscale dynamics
of the matrix degrading enzymes, produced at individual cancer cell level.

The need for new mathematical frameworks and tools to deal with some fea-
tures of the biological phenomena is also evident in the contribution by J. Calvo,
J. Soler and M. Verbeni who propose a nonlinear flux-limited model for the
transport of morphogens. They introduce flux-limited diffusion as a new tool to
obtain mathematical descriptions of biological systems whose fate is controlled by
morphogenic proteins.
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The biological aspects of multiscale phenomena and the influence of lower
scales at macroscopic level is evident in the contribution by A. Dell and F. Sastre
on glycosylation: a phenomenon shared by all domains of life. Biological com-
plexity is not linearly related to the number of genes among species: it is well
known that the total number of genes in humans is not very different from
organisms such as fruit flies and simple plants. The authors point out their attention
on a specific phenomenon, the Glycosylation, that occurs after genes have been
translated into proteins, and that results in the greatest diversity of the products of
gene expression.

The emergence of collective behavior from interactions at a lower lever
(including learning, adaptation, and evolutionary dynamics) has been dealt with in
detail in the following two contributions.

The chapter by E. Agliari, A. Barra, S. Franz and T. Pentado-Sabetta proposes
some thoughts on ontogenesis in B-cell immune networks. It focuses on the
antigen-independent maturation of B-cells and, via statistical mechanics tools,
studies the emergence of self/non-self-discrimination by mature B lymphocytes
and highlights the role of B–B interactions and the learning process at ontogenesis,
that develop a stable memory in the network.

In the chapter by M. Delitala and T. Lorenzi, on the mathematical modeling of
cancer under target therapeutic actions, the authors focus on emerging behavior in
cancer dynamics. Due to the interaction between cells and therapeutical agents, it
is shown how competition for resources and therapeutical pressure can lead to the
selection of fitting phenotypes and evolutionary behavior, such as drug resistance.

The emergence of patterns and the formation of biological structures is also
well represented in the following three contributions.

The contribution by H. Freistühler, J. Fuhrmann and A. Stevens focuses on
travelling waves emerging in a diffusive moving filament system. They have
derived a model that describes populations of right and left moving filaments with
intrinsic velocity, diffusion, and mutual alignment. Analytical investigations and
numerical simulations show how interesting patterns are composed of several
wave profiles that emerge and the role of different parameters.

The chapter by M. Neuss-Radu on a mathematical model for the migration of
hematopoietic stem cells proposes a model, together with a qualitative and com-
putational analysis. The results are compared with experimental results, and
possible factors and mechanisms are suggested that can play an important role in
emerging behavior to obtain a quantitative description.

The contribution by Jude D. Kong, Sreedhar S. Kumar and Pasquale Palumbo
deals with Delay Differential Equation (DDE) models exploited in the specific
framework of the glucose-insulin regulatory system, highlighting how those types
of models are particularly suited to simulate the pancreatic insulin delivery rate.

The final contributions are related to the different perspectives of management
complexity problems in different research fields, and to the different tools that may
be employed in the task.

‘‘Physics and Complexity’’ by D. Sherrington attempts to illustrate how sta-
tistical physics has driven the recognition of complex macroscopic behavior as a
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consequence of the combination of competition and inhomogeneity, and offers
new insights and methodologies of wide application that can influence many fields
of science.

The last short contribution by M. Delitala and T. Hillen develops some rea-
sonings on the language of Systems Biology and on the need for a multiscale
approach to retain some complexity features of the system.

In conclusion, this book has the aim on one hand of offering mathematical tools
to deal with the modeling of complex biological systems, and on the other of
dealing with a variety of research perspectives. The mathematical methods
reported in this book can in fact be developed to study various problems related to
the dynamical behavior of complex systems in different fields, from biology to
other life sciences. Therefore, applied mathematicians, physicists, and biologists
may find interesting hints in this book: to help them in modeling, in developing
several analytic problems, in designing new biological experiment, and in
exploring new and sometimes unusual perspectives.

This book has been possible thanks to the success of the workshop. Thus, we
wish to thank all those who contributed directly or indirectly to the successful
organization of the Workshop: the President of the European Academy of Sciences
for the initiative of the Award, Vincenzo Capasso, and Willi Jäger for his con-
tinuous support, the Direction of BIOMS for the generous financial support, and
the local committee of the University of Heidelberg (Willi Jäger, Maria Neuss-
Radu, Anna Marciniak-Czochra, and Ina Scheid) for their essential support
together with the local Academy of Sciences and Humanities who offered this
great opportunity to young researchers and all the speakers and participants.
Financial support was also provided by the FIRB project—RBID08PP3J, coordi-
nated by M. Delitala.

Special thanks are due to Prof. T. Hillen, who, in addition to the presentation
and the continuous contribution to the activities of the meeting, also collaborated
with the concluding contribution of this book.

All information regarding the workshop can be found at the conference website:
http://www.eurasc.org/kepler2010.

Turin, November 2012 Marcello Delitala
Paris Giulia Ajmone Marsan
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Mathematical Ecology of Cancer

Thomas Hillen and Mark A. Lewis

“The idea of viewing cancer from an ecological perspective has
many implications, but fundamentally it means that we cannot
just consider cancer as a collection of mutated cells but as part
of a complex balance of many interacting cellular and
microenvironmental elements”. (quoted from the website of the
Anderson Lab, Moffit Cancer Centre, Tampa Bay, USA.)

Abstract It is an emerging understanding that cancer does not describe one disease,
or one type of aggressive cell, but, rather, a complicated interaction of many abnormal
features and many different cell types, which is situated in a heterogeneous habitat
of normal tissue. Hence, as proposed by Gatenby, and Merlo et al., cancer should be
seen as an ecosystem; issues such as invasion, competition, predator-prey interaction,
mutation, selection, evolution and extinction play an important role in determining
outcomes. It is not surprising that many methods from mathematical ecology can
be adapted to the modeling of cancer. This paper is a statement about the important
connections between ecology and cancer modelling. We present a brief overview
about relevant similarities and then focus on three aspects; treatment and control,
mutations and evolution, and invasion and metastasis. The goal is to spark curiosity
and to bring together mathematical oncology and mathematical ecology to initiate
cross fertilization between these fields. We believe that, in the long run, ecological
methods and models will enable us to move ahead in the design of treatment to fight
this devastating disease.
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1 Introduction

The traditional understanding of cancer is based on the view that, through mutations,
a very aggressive cell type is created, which grows unlimitedly, is able to evade treat-
ment and, at later stages, invades into other parts of the body (metastasis). All cells
of the tumor are considered as basically identical clones. In recent years, however,
the picture has changed greatly. It is now well accepted that cancer does not describe
one type of aggressive cells, or even one disease, but rather a complicated interaction
of many abnormal features (Merlo et al. [46], Hanahan and Weinberg [23, 24] and
Gatenby et al. [18, 19]).

A tumor is a result of accumulation of mutations (sometimes 600–1000 muta-
tions), and the tumor mass consists of a heterogeneous mix of cells of different
phenotypes. It is these accumulation of mutations which make cancer so dangerous.
One mutation might only change a metabolic pathway, but this alone will not suffice
for a malignant tumor. As outlined in [24], a full grown invasive tumor can express
cancer stem cells, which have infinite replicative potential, progenitor cells of dif-
ferent abilities, mesenchymal cells which result from an endothelial-mesenchymal
transition (EMT) and are able to aggressively invade new tissue, recruited endothelial
cells, which begin to form a vascular network to supply nutrients, recruited fibrob-
lasts, which support the physical integrity of the tumor, and immune cells, which can
be both, tumor-antagonizing and tumor-promoting. All of this resides in a hetero-
geneous environment of healthy tissue. If such a cancer is challenged by a specific
treatment, then only a specific strain of tumor cells will respond to it, and the treat-
ment will select for those cell types that are more resistant to treatment. Hence an
immediate consequence of this new understanding is that a single specific treatment
is likely to lead to resistance, since only a sub-population is targeted by the treatment.
To have any hope of treatment success, a combination therapy should be applied, as
is done nowadays in most clinical applications.

Hanahan and Weinberg published a list of six hallmarks of cancer in 2000 [23],
which has been very highly cited. Just recently [24], in March 2011, they revised their
hallmarks and adding two enabling characteristics and two emerging hallmarks. The
ten hallmarks, including those of the “next generation” are:

1. sustained proliferative signalling;
2. avoidance of growth suppressors;
3. resistance of cell death;
4. replicative immortality;
5. induction of angiogenesis;
6. invasion and metastasis;
7. genome instability and mutation;
8. deregulation of cellular energetics;
9. tumor promoting inflammation;

10. avoidance of immune destruction.

Hanahan and Weinberg suggest that, to understand tumors, we must look deeper
into the microscale processes governing these traits:
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…tumors are more than insular masses of proliferating cancer cells. Instead they are complex
tissues composed of multiple distinct cell types that participate in heterotypic interactions
with one another. . . . tumors can no longer be understood simply by enumerating the traits
of the cancer cells but instead must encompass the contributions of the “tumor microenvi-
ronment” to tumorigenesis. (page 646 of [24])

This is where dynamical mathematical models play a key role. If hypotheses about
the processes at the microscale can be formulated quantitatively, then the dynamics
of these processes can form the inputs to a mathematical model, whose analysis then
makes predictions about emergent outcomes. The mathematical model thus builds
a bridge connecting microscale process dynamics to predicted traits or hallmarks
of cancer tumours. A test of the model, and its underlying hypotheses, comes from
comparing model predictions for the emerging traits or hallmarks for cancer tumors
to actual observations.

2 Connecting Ecology to Cancer Modelling

As described above, the process of connecting microscale dynamics to emergent traits
is a central endeavour of field of mathematical oncology (see, for example, [1, 30]).
However, a similar rubric has also been developed in another subfield of mathematical
biology, namely mathematical ecology. Here ecological processes on a small scale
are connected to emergent ecosystem properties [42]. The structure of modelling
dynamics shares many similarities with the complex interactions between cell types
and the environment found in mathematical oncology, although the processes act on
organismal rather than cellular scales. However, the area of mathematical ecology
was developed earlier than mathematical oncology and so, in some respects, has
matured further as a field. The goal of this paper is to draw the connections between
mathematical oncology and ecology at the process level, with a view to inspire
curiosity and identify areas where technology transfer is possible, from one sub-
field to the other.

The ultimate goal of cancer research is to understand and control cancer growth
and to heal the patient. As seen in Hanahan and Weinberg’s classification scheme,
the process of tumor development, growth and spread is very complex. In addition,
inclusion of different treatment modalities, such as surgery, radiation or chemother-
apy, makes the whole issue even more complex. Mathematical modelling has helped
scientists to navigate through the complicated interactions and to identify basic mech-
anisms of tumor growth and control. Specifically, models for angiogenesis, for anti-
angiogenesis, for non-vascular tumor growth and for optimization of chemotherapy
or radiation therapy have been used to improve treatment outcomes. Furthermore,
mathematical models link the genetic make-up of a cancer to the dynamics of cancer
in tissue. It is, however, a long way from a mathematical result to a clinical contribu-
tion, and we, as modellers, need to work very hard to convince the medical sciences
about the usefullness of mathematical modelling. The ecological community has
understood the relevance of modelling already.
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Understanding the distribution and abundance of organisms over space and time is
the goal of ecology. Mathematical ecology uses quantitative methods to connect the
distribution and abundance of organisms to processes such as behavior, competition,
food webs, predation, evolution, genetics and environmental fluctuations. Over the
past decades, the mathematical modelling of ecosystems has produced some sophis-
ticated theories. For example, there is a vast literature on invasion of foreign species
[28], on persistence or permanence of species under stress [3], on bio-control [13] and
optimal control [41], on genetics, mutations and selection [34], on competition [60]
and predator-prey interactions [27] and many forms of structured population models
[7]. Some of these methods have been adapted to the situation of cancer modelling,
and we believe that the research on cancer modelling can even further benefit from
these methods. Specifically, we see close resemblances between ecology and cancer
biology in relation to

(a) Mutations and Selection: Genetic instability allows a tumor to adapt to a chang-
ing environment, to avoid destruction from the immune system and to evade
treatments. In ecology, mutation and selection are the driving principles behind
evolution of ecosystems and species.

(b) Competition: Cancer cells compete with healthy cells for nutrients. In ecology,
many species compete for resources.

(c) Predator-Prey dynamics: The immune system can be seen as a predator on the
cancer cells. However, the “predator” is not only killing the cancer cells, but
might as well promote tumor growth (see [24]).

(d) Food Chains: Food chains in ecosystems resemble biochemical pathways and
cell metabolism.

(e) Extinction: While species extinction is to be avoided in many ecological species,
cancer extinction is desired for cancer treatment.

(f) Age Structure: Species proliferation naturally depends on the age of the indi-
viduals. Similarly, cells are constrained by a cell cycle and they need to transfer
through the cell cycle phases (G0, G1, S, G2, M) before mitosis.

(g) Periodic Forcing: Ecosystems underlay day-to-day cycles and seasonal cycles.
An important cycle in humans is the circadian rhythm, which has an influence
on all cells of the body.

(h) Cell Movement: Cancer cells move through a complex heterogeneous tissue
network. Similarly animals move through heterogeneous environments. Much
work has been done on both, tracking cells (via tagging and microscopy) and
tracking animals (via radiocollars and measurement through global positions
systems (GPS)).

(i) Invasions: Invasions of metastasis is the last step of tumor progression. It is
usually responsible for the death of the patient. Invasions of foreign species into
native ecosystems is one of the major challenges of modern ecology.

(j) Fragmentation and patchy spread: Cancer tumours often appear to be frag-
mented or patchy. Similarly, population densities are notoriously patchy. Reasons
for such patchy distributions, ranging from nonlinear pattern formation to sto-
chastic effects, to environmental heterogeneity, can equally well be applied to
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cancer tissues or ecological populations. Furthermore, in ecosystems, the spatial
organization of species is an important feature, which enables coexistence of
otherwise exclusive species.

(k) Path generation: many animal species lay down a network of paths to popular
foraging locations. Here we see an analogy to vasculature formation during
angiogenesis.

(l) Control: Cancer control through treatment resembles ecological control mecha-
nisms such as hunting and harvesting. Also biological control, through parasites,
is a possible strategy, which is currently discussed in the context of cancer (e.g.
bacterial cancer therapies [15]).

We summarize the relations between cancer and ecology and the type of modelling in
the following Table 1. In Fig. 1 we attempt a visual representation of the similarities
between these areas.

The resemblance is indeed more than striking, and we can use these relations to
our advantage. We should not be shy, but cross borders to benefit from the insights of
mathematical ecology. In fact, Merlo et al. [46] write in their abstract on page 924:

The tools of evolutionary biology and ecology are providing new insights into neoplastic
progression and the clinical control of cancer

The above list, however, is too wide to be covered in a single short paper. Hence
here we will focus on areas that we believe the connections stand out most clearly:
control, evolutionary theories and cell movement and invasion models.

3 Investigating the Connections

3.1 Tumor Control and Treatment

The common therapies against cancer include surgical removal of cancerous tissue,
radiation treatment, chemotherapy and hormone therapy. Quite often a combina-
tion of these modalities is used (see e.g. [2]). The modelling of the expected treat-
ment success by radiation treatment is an excemplary showcase of cross fertilization
between ecology and cancer modelling. The quantity of interest is the tumor control
probability (TCP). In its simplest form it is given by the linear quadratic model [63]

TCP = e−S(D), S(D) = N0e−αD−βD2
,

where N0 denotes the initial number of tumor cells, S(D) denotes the surviving cell
number of a treatment with dose D, and α and β are the radiosensitivity parameters,
which depend on the type of tissue and the type of cancer. The TCP describes the prob-
ability that a tumor is eradicated by a given treatment. Mathematically, the TCP is the
same object as the extinction probability, which describes the probability that a cer-
tain species of interest (for example an endangered species [48]) goes extinct. Kendal
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Fig. 1 Schematic representation of the relations between the cancer hallmarks, ecological
processes, and mathematical modelling. The blue numbers 1–10 refer to the hallmarks as described
by Hanahan and Weinberg [24] and the green letters a–k refer to the ecological processes as listed
above. The red hexagons relate to biological or ecological processes that have been analyzed through
mathematical modelling. The arrows indicate what kind of information from experiments or obser-
vation is used to inform the corresponding models. There are many more feedback loops, from
modelling to biology, which we needed to omit due to readability

[37] developed a birth-death framework for the extinction probability, which since
has been developed as a more accurate TCP model than the above linear quadratic
model. The mathematical framework comes directly from ecological applications,
but the interpretations, and some of the details are specific to cancer modelling. This
direction of research has blossomed in beautiful theories on brith-death processes
and branching processes, which are able to include cell cycle dynamics and differ-
ential radiosensitivities depending on the cell cycle state (see [22, 25, 26, 31, 43,
61, 66]). In a recent PhD thesis, Gong [21] included cancer stem cells into the TCP
models and she confirmed that it is critical to control the stem cells for treatment to
be successful. First studies have shown that the above TCP models are powerful tools
in the prediction and planning of radiation treatments ([22, 61]), however, further
studies of their qualitative properties and further data analysis is needed.

Ecologists have long assessed the probability of local extirpation of a species of
interest using the method of population viability analysis (PVA). This mathematically
depicts the birth and death process via a stochastic process with drift, as described by
a partial differential equation. Here hitting probabilities and times to extinction can
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be calculated based on classical diffusion theory [57]. More recently this approach
has been modified to address the problem of preventing establishment of a species,
rather than preventing extinction of a species. Here the goal is to determining how to
prevent introduced exotic species establishing as an invader, with the goal of making
them go extinct [9]. This approach shares much with that of controlling cancer.

In a spatial context, ecological modellers have investigated the problem of optimal
spatial control of an invader, determining the size and duration of treatment needed to
spatially control the spread of an invader as it moves across a landscape [12, 54]. This
approach has parallels with the issue of optimal radiation treatment for controlling
the spread of a cancer tumour. The optimization of chemotherapy has been the focus
of many research groups around the world, for example: Swierniak (Poland); Agur
(Israel); Ledzewicz, Schaettler (USA); d’Onofrio, (Italy). A common theme is the
occurrence of resistance. We expect that the above mentioned evolutionary theories,
can help to better understand the process of tumor resistance.

As outlined above, the understanding of cancer as an ecological system imme-
diately suggests the application of combination therapies including chemotherapy,
hormone therapy and radiation. Mathematical optimization of combination therapies
has not been carried out in detail but it will be a focus for future studies [2].

3.2 Evolution

The important role of mutations and genetic information in carcinogenesis and tumor
development is well established. Hanahan and Weinberg [24] include genetic instabil-
ity as one of the enabling hallmarks, and much of modern cancer research is focussed
on gene expressions. However, knowing the genes will not suffice to understand and
control cancer. As Gatenby wrote in Nature Reviews 2011 [20] on p. 237:

A full understanding of cancer biology and therapy through a cataloguing of the cancer
genome is unlikely unless it is integrated into an evolutionary and ecological context.

The mathematical modelling of evolution in cancer is in full swing and many meth-
ods from ecological modelling are already implemented into cancer modelling. Nagy
[49] wrote a review highlighting recent success in the modelling of cancer evolution;
Merlo et al. [46] explain cancer as an evolutionary process, and Gatenby [18–20]
highlight the interaction between evolution, selection and the tumor microenviron-
ment. Enderling et al. [10] used the genetic makeup of tumor cells to successfully
model re-occurence of breast tumors. An emerging focus of interest is the role played
by cancer stem cells [8, 11, 32].

The mathematical modelling of evolution, selection, mutation, and gene expres-
sions has a long history in ecology [34]. Sophisticated theories include models for
adaptive dynamics [6], concepts of evolutionary stable strategies [44], game theoretic
approaches [5], and analysis of phylogenetic trees and speciations. Many of these are
currently discussed in the context of cancer, in particular to understand development
of drug resistance during treatment [35, 38].
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The evolutionary theories are strongly connected with all of the other cancer
hallmarks. Spatial structure leads to selection pressures on the tumor; spatial niches
might arise, where metastasis can form. Related to treatment, each treatment agent
forms a selection pressure on the tumor and often resistant tumors develop as a result
of treatment.

An important difference between ecology and cancer arises related to the relevant
time scales. A generation in a developing tumor can be as short as one cell division
cycle. i.e. 1/2 day. Hence selection, adaptation and genetic drifts will show up very
quickly. Also, a tumor does not have a long ancestry, which goes back for thousands
of generations. Finally, the outcome of a tumor in general, is death and destruction.
Hence concepts of survival and fitness need to be understood in the correct context.

3.3 Models for Cell Movement and Invasions

The invasion of cancer into healthy tissue is one of the hallmarks of cancer, as
described by Hanahan and Weinberg [24]. It is often the last step of a malignant tumor
and leads to metastasis and to eventual death of the patient. Recent mathematical
modelling has focused on various aspects of tumor invasion. Models are of the form
of advection-reaction-diffusion equations and transport equations [55] on the one
hand and individual based models (cellular automata [29], Potts model etc., [56]) on
the other. The choice of model is largely guided by the available data.

For example, in the lab of Friedl and Wolf [16, 17] in Nijmegen in The
Netherlands, individual moving cancer metastasis are visualized by confocal
microscopy. Parameters such as mean velocities, mean turning rates and turning
angle distributions can be measured. Suitable models on this microscopic scale are
individual based models [56], transport equations [30], or stochastic processes [51].
The situation is similar in ecology, where individual movement can be measured
through GPS tracking, for example, and also entire populations are observed (e.g.
via remote sensing). In ecology a whole range of models is used, from individual
based models to population models employing the Fokker Plank equations. Here
the challenge arises to combine these approaches and to carefully investigate the
transition between scales.

On the other hand, macroscopic data are available that measure the extent of a
tumor as a whole. For example MRI imaging of glioma, which show tumor regions
and the corresponding edema. For these types of data, we use macroscopic mod-
els such as advection-reaction-diffusion models [53]. This process is similar to the
biological invasion of an introduced pest species. Here ecologists have a history of
characterizing the invasion process by a spreading speed that summarizes the rate at
which the population spatially colonizes into the new environment. The approach of
using a spreading speed was first pioneered by R. A. Fisher [14] for the spread of an
advantageous gene into a new environment, and was later applied in an ecological
context by Skellam [59] and many others. It has been modified to include the effects
of ecological interactions, such as competition, predator-prey and parasite [58]. More
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recently authors have shown how long-distance dispersal can dramatically increase
spreading speeds [40] and have also assessed the sensitivity of the spreading speed
to life history and dispersal parameters [50]. We believe that the metastasis stage in
cancer is very similar to the biological invader population with long-distance disper-
sal, and that the assessment of sensitivity of spreading speeds to local physiological
conditions may give new insights into the control of cancer spread.

Related to glioma growth, in recent studies [36, 39, 53, 62], it has been shown that
reaction-diffusion models can be used to describe glioma growth in the heterogeneous
environment of the brain. The brain is made out of white and grey matter. While the
grey matter is mostly homogeneous, the white matter is a fibrous structure. Tumor
cells are known to use these fibrous structures to invade new areas. In this context we
encounter anisotropic diffusion equations describing different mobility in different
directions of the tissue. These models have not yet been analysed in depth and first
results show the ability to create unexpected spatial patterns (see e.g. [33, 52]).
Interestingly, non-isotropic diffusion models are used to model wolf movement in
habitats with seismic lines [33, 45], and again, cross fertilization is imminent.

An important difference between tumors and species arises in relation to the sur-
rounding tissue. A tumor lives in a tissue that consists of healthy cells, blood vessels
and structural components of the extracellular matrix (ECM). Hence a growing tumor
will exert stress onto the tissue and be exposed to stress from the tissue. The inclu-
sion of these physical properties is challenging and first attempts have been made by
Loewengrub et al. [64, 65], Preziosi et al. [47] for tumor growth and by Chaplain
and Anderson et al. for angiogenesis [4]. These models take the form of continuum
mechanics equations and a whole new skill set is needed to study these models.
A careful physics based modelling of tumors in tissue, including the appropriate
mechanics, is a necessity and a challenge for modern cancer research.

4 Conclusion

Understanding the dynamics of cancer is a major challenge for clinicians. The move
towards process-oriented cancer models raises many mathematical and modelling
challenges. Indeed, it is often the case that even small changes in model formulation
can render a model difficult if not impossible to analyse. Under these circumstances
it is natural to draw broadly on the collective knowledge of the research community,
embracing results from research problems on similar processes that have arisen in
different contexts. Here mathematical ecology has a lot to offer, and the potential
impact of moving in this direction of research is imminent.

The goal of this paper is to promote the cross disciplinary exchange of ideas and
encourage the reader to assess how methods from one area can be made available to
another area. We have made a first step in identifying common mathematical theories
and problems and also to identify important differences between ecology and cancer.
However, there are many more connections that can be made. Most importantly, we
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hope that this work will provide a new approach to harness the powerful mathematical
tools used in ecology to further advance the treatment planning of cancer.
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Abstract Clonal heterogeneity in cell populations with respect to properties such
as growth rate, motility, metabolism or signaling, has been observed for some time.
Unraveling the dynamics and the mechanisms giving rise to such variability has been
the goal of recent work, largely aided by quantitative/ mathematical tools. Quantita-
tive evaluation of cell-to-cell variability (heterogeneity) poses technical challenges
that only recently are being overcome. Clearly, a mathematical theory of cellular
heterogeneity could have fundamental implications. For instance, a theory of cell
population growth variability, coupled with experimental measurements, may in the
long term be crucial for an in-depth understanding of physiological processes such as
stem cell expansion, embryonic development, tissue regeneration, or of pathological
ones (e.g., cancer, fibrosis, tissue degeneration). We focus on recent advances, both
theoretical and experimental, in quantification and modeling of the clonal variability
of proliferation rates within cell populations. Our aim is to highlight a few stimu-
lating examples from this fledgling and exciting field, in order to frame the issue
and point to challenges and opportunities that lie ahead. Furthermore, we emphasize
work carried out in cancer-related systems.
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1 Heterogeneity and Growth Variability

Clonal heterogeneity in cell populations with respect to properties such as growth
(Fig. 1), motility (Fig. 2), metabolism or signalling (Fig. 3), has been observed for
some time (see, e.g., Altschuler [1], Quaranta [12] and references therein). However,
quantitative evaluation of this cell-to-cell variability (heterogeneity) poses techni-
cal challenges that only recently are being overcome [1, 12]. Furthermore, mathe-
matical foundations for interpreting these quantitative experimental observations of
heterogeneity are in need of development. Far from being exclusively academic, a
mathematical theory of cellular heterogeneity could have fundamental implications,
similar to a theory on population biology or ecology [8]. For instance, a theory of
cell population growth variability, coupled to experimental measurements, may in the
long term be crucial for an in-depth understanding of physiological processes such as
stem cell expansion, embryonic development, tissue regeneration, or of pathological
ones (e.g., cancer, fibrosis, tissue degeneration).

Here, we focus on recent advances, both theoretical and experimental, in
quantification and modeling of the clonal variability of proliferation rates within cell
populations. Our aim is to highlight a few stimulating examples from this fledgling
and exciting field, in order to frame the issue and point to challenges and opportunities
that lie ahead. Furthermore, we emphasize work carried out in cancer-related sys-
tems. As our aim is not an exhaustive review, we apologize in advance for inevitable
omissions.

Variability of growth rates, among other indicators of heterogeneity in growth
kinetics of individual tumours, has long been detected, but precision in quantification
may have been made possible only in the past few years by methods developed by,
among others, Quaranta and his group (see [12, 19]). For instance, a team from
Verona, Italy, quantified growth variability of tumour cell clones from a human
leukaemia cell line, by cloning Molt3 cells, and measuring the growth of 201 clonal
populations by microplate spectrophotometry. Growth rate of each clonal population
was estimated by fitting data with the logistic equation for population growth [18].
Their results indicated that growth rates vary between clones. Six clones with growth
rates above or below the mean growth rate of the parent population were further
cloned, and the growth rates of their offspring were measured. Researchers noted
that distribution of subclone growth rates did not significantly differ from that of the
parent population, supporting the conjecture that growth variability has an epigenetic
origin [18]. Such variability in growth rates may be amenable to further quantitative
analysis of population dynamics with analytic tools developed in Tyson et al. [19].

In the paper “Characterizing heterogeneous cellular responses to perturbations”
[14], Slack et al. approached the challenge of heterogeneity with a mathematically-
appealing assumption that cell populations may be described as mixtures of a limited
number of phenotypically distinct subpopulations. Methods for characterizing spa-
tial heterogeneity observed within cell populations are developed, starting from the
extraction of phenotypic measurements of the activation and colocalization patterns
of cellular readouts from large numbers of cells in diverse conditions. Phenotypic
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Fig. 1 Cell-to-cell variability of intermitotic times within human cultured cell lines. Note that the
heterogeneity of intermitotic times within seemingly homogeneous isogenic cell lines (populations)
is quite broad, and distributed in non-Gaussian fashion. Intermitotic time encompasses hours from
the end of one cell division to the start of the successive one. Single cells were tracked by automated
confocal microscopy collecting images at regular intervals by automated microscopy as described
[19]. Intermitotic times were calculated as described [19] and fitted to an exponentially modi-
fied Gaussian (EMG) distribution http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_
distribution. Human cultured cell lines are as follows: A375, melanoma; PC9, non-small cell lung
carcinoma; MCF10A, immortalized non-tumorigenic breast epithelium; CA1D, H-Ras transformed
MCF10A. n = number of cells tracked; μ,σ and κ are parameters for the EMG distribution; ks
p-value was calculated by the Kolmogorov-Smirnoff statistic test.

http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
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Fig. 2 Cell-to-cell speed variation within mammary gland human cell lines. Spontaneous, non-
directed motility was tracked in over 1,500 individual cells from one immortalized (MCF10A) and
two transformed MCF10A-derived (AT1 and CA1d) breast epithelial cell lines. Cell-to-cell variabil-
ity of motility was evaluated with respect to speed under two culture conditions, full-supplement or
serum/EGF-depleted media, respectively. a Box-and-whisker plot of individual cell speed (color-
coded by individual experiment). b Population histogram of frequency (the number of cells) and
the normal (Gaussian) fit for each set of data (based around the average). Shapiro-Wilks W tests
confirmed that distributions are non-normal and positively skewed (more cells are likely to move
at lower speeds) with long tails (at higher speeds).
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Fig. 3 Single cell variability in metabolic and signaling activity. a Single-cell measurements of
glucose uptake using 2- deoxy- 2- [(7- nitro- 2, 1, 3- benzoxadiazol- 4- yl)amino]- D- glucose
(2-NBDG). Fluorescent representative images of CA1d (right, higher magnification) after 10 min
incubation with 300μM of 2-NBDG as described in [7]. The variability in subcellular distribution
of the probe was apparent in CA1d cells (right panel). b Staining patters of BT-474 lapatinib
resistant cell line reveals variability (heterogeneity). BT-475LR cell lines were plated overnight and
treated with 1 μM lapatinib for 1 h at 37 C. Cells were fixed and stained with fluorescent probes
(DNA/pAKT(pS473)/Ac-Histone3) and imaged with a Zeiss confocal microscope (LSM 510).

stereotypes are identified within the total population, and probabilities assigned to
cells belonging to subpopulations modeled on these stereotypes. Each population
or condition may then be characterized by a probability vector—its subpopulation
profile—estimating the number of cells in each subpopulation. Responses of hetero-
geneous cellular populations to perturbations (e.g., anti-cancer drugs) are summa-
rized as probabilistic redistributions of these mixtures. In the study by Slack et al.,
this computational method was applied to heterogeneous responses of cancer cells
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to a panel of drugs. The finding is that cells treated with drugs of similar mechanism
exhibited the same pattern of heterogeneity redistribution.

In subsequent work from this group, Singh et al. [13] employed the same compu-
tational framework to investigate whether patterns of basal signaling heterogeneity
in untreated cell populations could distinguish cellular populations with different
drug sensitivities. As in the earlier study, cellular heterogeneity in populations was
modeled as a mixture of stereotyped signaling states. Interestingly, the researchers
found that patterns of heterogeneity could be used to separate the most sensitive and
most resistant populations to the drug paclitaxel within a set of H460 lung cancer
clones and within the NCI-60 panel of cancer cell lines, but not for a set of less
heterogeneous immortalized noncancer HBEC (human bronchial epithelial cell)
clones. Stockholm et al. [17] used both computer simulation and experimental
analysis to address the issue of the origin of phenotypic differentiation in clonal
populations. Two models—referred to as the “extrinsic” and “intrinsic” models—
explaining the generation of diverse cell types in a homogeneous population, were
tested using simple multi-agent computer modeling. The approach takes each cell
as an autonomous “agent”, and following defined rules governing the action of indi-
vidual agents, the behavior of the system emerges as an outcome of the agents’
collective action.

As the term suggests, the “extrinsic” model attributes the occurrence of a pheno-
typic switch to extrinsic factors. Identical cells may become different because they
encounter different local environments that induce alternative adaptive responses.
Changing its phenotype, the cell contributes to changes in the local environment,
inducing responses in surrounding cells, and ultimately influencing the dynamics of
the cell population. The second model assumes that the phenotype switch is intrinsic
to the cells. Phenotypic changes could occur even in a homogenous environment and
may result from asymmetric segregation of intrinsic fate determinants during cell
division that lead to the change in gene expression patterns, [17].

The Stockholm study cites an experiment where two subpopulations appear spon-
taneously in C2C12 mouse myogenic cells—the main population (MP), and a side
population (SP). The two cell types are phenotypically distinct, and researchers take
off from the lab experiment to perform agent-based modeling computer simulation
on two cell types subject to two sets of hypotheses (the extrinsic and intrinsic models).
The models are built on a limited number of simplified assumptions about how indi-
vidual cells migrate, interact with each other, divide and die. The agent-based model
assumes that each cell divides at each iteration step but survival of daughter cells
depends on local cell density. In the intrinsic model, the phenotypic switch occurs
under the assumption of cell autonomy, with the environment playing no ostensible
role in the switching; rather, switching from one cell type to the other occurs at
fixed probabilities. In the extrinsic model, local cell density determines phenotypic
switching, hence local density is surrogate for the complex of factors affecting cell
survival, such as gradient of nutrients, oxygen, secreted factors, etc, and cell types
represent two forms of adaptation to high and low density environments. The extrin-
sic and intrinsic hypotheses were implemented by varying the parameters (assuming
cell migration velocities within experimentally guided limits of values). Simulations
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for the intrinsic model result in the two cell types being distributed randomly both
during growth and equilibrium, suggesting that the randomness of cell type spatial
distribution is characteristic of the intrinsic model. On the other hand, the spatial dis-
tribution of cells resulting from simulations of the extrinsic model is different from
that in the intrinsic model, with cluster formation as an observed feature. Moreover,
this feature is robust in the range of parameter values considered.

Both intrinsic and extrinsic models generate in the simulations heterogeneous cell
populations with a stable proportion of the two cell types. Experimental verification
of model predictions, using the C2C12 myogenic cell line, indicated that neither
one of the models can fully account for the spatial distribution of the cell types
at equilibrium, as some clustering of the rare SP cell was observed in low density
regions, while distribution in high density regions was generally uniform. A hybrid
model combining both intrinsic and extrinsic hypotheses was in better agreement
with the clustering behavior of the rare SP cells. In the end, it is not solely the
local environment, nor, on the other hand, merely a cell-autonomous propensity for
differentiation that activates the phenotype switch. Rather, it may be a combination
of the two.

A similar “agent” model framework is utilized in mathematical models of can-
cer invasion, with emphasis on tumor microenvironment, compared in [11]. In
that review, three independent computational models for cancer progression are
discussed, all pointing to an essential role of the tumor microenvironment (mE)
“in eliciting invasive patterns of tumor growth and enabling dominance of aggres-
sive cell phenotypes.” Both the evolutionary hybrid cellular automata (EHCA) and
the Hybrid Discrete Continuum (HDC) models treat cells as points on a lattice. In the
case of the EHCA, the grid itself represents the mE, and the only variable on the grid,
apart from cells, is the concentration of oxygen, with a partial differential equation
controlling the oxygen dynamics in space and time. In the HDC model, the mE con-
sists of a two-dimensional lattice of extracellular matrix upon which oxygen diffuses
and is produced/consumed, and matrix degrading proteases are produced/used. The
HDC model has the mE variables controlled by reaction-diffusion equations with
tumor cells occupying discrete lattice points. Notably, a key feature of the HDC
model is that the tumor cell population is heterogeneous, each cell phenotype being
defined from a pool of 100 pre-defined phenotypes within a biologically relevant
range of cell-specific traits. Mutation is incorporated into the model by assigning to
cells a small probability of changing some traits at cell division. If a change occurs,
the cell is randomly assigned a new phenotype from the pool of about 100. Taken
together with a third model—the Immersed Boundary method (IBCell)—the models
describe the process of cancer invasion on multiple scales: The EHCA at the molec-
ular (gene expression) scale, the IBCell at the cell scale, the HDC at the tissue scale.
Though not highlighted, heterogeneity is an issue addressed in the models, with
the microenvironment driving cancer progression in a major way, and on multiple
scales. From representative simulations of the models (see [11] for details), analysis
of the effect of mE variables on tumor growth point to “competitive adaptation to
mE conditions as a determining factor for invasion: both invasive tumor morphol-
ogy (“fingering”) and evolution of dominant aggressive clonal phenotypes appear
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to occur by a process of progressive cell adaptation to mE’s that support sustained
competition between distinct cancer cell phenotypes.”

In their 2011 paper [6] on models of heterogeneous cell populations, Hasenauer
et al. discuss a framework for modeling genetic and epigenetic differences among
cells. With the approach to intracellular biochemical reaction networks modeled by
systems of differential equations (which may characterize metabolic networks and
signal transduction pathways), heterogeneity in populations is accounted for by dif-
ferences in parameter values and initial conditions. Using population snapshot data,
a Bayesian approach is used to infer parameter density of the model describing single
cell dynamics. Using maximum likelihood methods, single cell measurement data is
processed for parameter density estimation; the proposed framework includes a noise
model, as well as methods for determining uncertainty of the parameter density. For
computational tractability, the population model is converted into a density-based
model, where the variables are not states of single cells but density of the output (see
[6] for details). Towards verifying efficacy of the proposed modeling framework, the
model of TNF (tumor necrosis factor) signaling pathway was studied under a hypo-
thetical experimental set-up with artificial data involving a cell population responding
to the TNF stimulus. The model, introduced in [3], is based on known inhibitory and
activating interactions among key signaling proteins of the TNF pathway. Cellular
response to the TNF stimulus has been observed to be highly heterogeneous within
a clonal population. Heterogeneity at the cell level is modeled by differences in
two parameter values, one quantifying the inhibitory effect of NF-êB via the C3a
inhibitor XIAP onto the C3 activity, and the other the activation of I-kB via NF-kB.
The authors conclude that the method yields good estimation results.

In the abovementioned framework, the assumption was that network structure was
identical in all cells and spatial effects and stochasticity of the biochemical reactions
are negligible. Moreover, the mechanisms for cell-to-cell interactions typically char-
acterized by differential equations, are reasonably well-understood and formulated,
from actual experiment.

In an effort to uncover sources of cell-to-cell variation, Colman-Lerner et al.
[4] looked into cell-to-cell variability of a prototypical eukaryotic cell fate decision
system, the mating pheromone response pathway in yeast. Cell-to-cell variation was
quantified by the output in the cell-fate decision system—the pheromone response
pathway in the yeast Saccharomyces cerevisiae. The fate decision to switch from
the normal vegetative growth to mating events including gene transcription, cell
cycle arrest, etc. is induced by the alpha-factor, a pheromone secreted by cells of the
mating type. Pheromone-induced expression of fluorescent protein reporter genes
was used as a readout. To dis-aggregate differences due to the operation of the
signal transduction pathway from cell-to-cell differences in gene expression from the
reporters, yeast strains containing genes for the yellow and cyan fluorescent protein
were generated. The analytical framework used considered the alpha-factor response
pathway and the reporter gene expression mechanism to measure its activity as a
single system, with two connected subsystems—pathway and expression. In each of
the two subsystems, two sources of variation are considered—stochastic fluctuations
and cell-to-cell differences in “capacity”, depending on number, localization and
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activity of proteins that transmit the signal (pathway capacity) or express genes into
proteins (expression capacity). About half of the observed variation was attributed to
pre-existing differences in cell cycle position at the time of pathway induction, while
another large component of the variation in system output is due to differences in cell
capacity to express proteins from genes. Very little variation is due to noise in gene
expression. Although the study did not specifically refer to molecular mechanisms
underlying cell-to-cell variation, it does provide a basis for further investigation into
these mechanisms, including, as mentioned elsewhere, network architecture.

Heterogeneous cell populations have been the subject of mathematical model-
ing since about the 1960s, with the cell population balance (CPB) approach by
Frederickson and a few others (see [16] for references). The models use partial
integro-differential equations for the dynamics of the distribution of the physio-
logical state of cells and ordinary integro- differential equations to describe sub-
strate availability. For CPB models, heterogeneity arises from physiological func-
tions leading to different growth and division rates of the cells, as well as for
unequal partitioning effects. When the physiological state vector (whose components
include intracellular content, morphometric characteristics like size) has two or more
components, the approach leads to multidimensional models that are highly unwieldy
computationally. Stamatakis notes that CPB models cannot account for the inherent
stochasticity of chemical reactions occurring in cellular control volumes or stochas-
tic DNA-duplication. To account for this stochasticity, refinements were considered
by Gillespie and others (see [16] for references) using the chemical master equation.
A relatively recent approach, referred to as the Langevin approach, uses stochastic
differential equations in modeling stochasticity in intracellular reactions. In recent
work Stamakis and Zygourakis (2010) [16] propose a mathematical framework to
account for all the various sources of cell population heterogeneity, namely growth
rate variability, stochasticity in DNA duplication and cell division, and stochastic
reaction occurrences for the genetic network, through the cell population master
equation (CPME) that governs the temporal dynamics of the probability of finding
the cell population at a specific state, together with a Monte Carlo algorithm that
enables simulation of exact stochastic paths of this master equation. Employing the
population balance framework, each cell is described by a state vector containing
information about its chemical content and morphometric characteristics such as
length, etc (Stamatakis uses volume only). The state of the overall population is
given by a vector w, which reflects the number v of individual cells and the state
of each vector. The master equation is derived as a probability balance describing
the evolution of a probability distribution for the cell population, using submodels
of probability inflows and probability outflows accounting for chemical reactions,
DNA duplication, cell growth (here using exponential growth), a propensity function
(for cells to divide).

In an earlier study, Mantzaris [9] also looked into models of cell population
heterogeneity, incorporating into a prior deterministic single-cell model, two extra
parameters (one, a rate of operator fluctuations) to quantify two main sources of
stochasticity at the single cell level for the reaction network, namely small num-
ber of molecules and slow operator fluctuations. Starting from a deterministic cell
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population balance model (DCPB), Mantzaris used stochastic differential equations
to refine the CPB model (to account for extrinsic and intrinsic sources of popula-
tion heterogeneity—respectively, the unequal partitioning between daughter cells of
intracellular components on division, and random fluctuations in reaction rates reg-
ulated by a small number of regulatory molecules) through the Stochastic Variable
Number Monte Carlo method/model. Simulations on a genetic network with posi-
tive feedback revealed differences arising from different sources of stochasticity on
regions of the parameter space where the system is bistable.

Although much of the modeling of heterogeneity has not specifically investi-
gated implications on cancer treatment, a 2012 study (see [10]) looks into cell-cycle
heterogeneity and its effects on solid tumor response to chemotherapy. In their paper,
Powathil et al. raise the difficulty of treating cancer with chemotherapeutic drugs due
to the development of cell-cycle mediated drug resistance. Elsewhere (see references
in [10]) it has been suggested that this may be due to the presence of functionally
heterogeneous cells and can be addressed to some extent by using combinations of
chemotherapy drugs that target different phases of the cell-cycle kinetics. Hence, it is
important to study and analyze the underlying heterogeneity within a cell and within
a solid tumour due to the presence of the unfavourable microenvironment and the
cellcycle position. A hybrid multi-scale cellular automaton model is used to simu-
late the spatio-temporal dynamics at the cell level, incorporating feedbacks between
these cell level dynamics and molecular variations of intercellular signalling and
macroscopic behaviour of tissue oxygen dynamics. Each cell has its own cell-cycle
dynamics and this is incorporated into the CA model for cellular proliferation using
a set of ordinary differential equations, from an early model by Tyson and Novak
[20]. Chemical processes within the cell are quantified using concentration of key
chemical components, considered as functions of time, and a 6-variable system of
differential equations describe the processes of production, destruction and interac-
tions. These kinetic relations are then used to explain transitions between two steady
states—the G1 and the S-G2-M state, assumed to be controlled by cell mass. With
cells located spatially in the dynamic microenvironment, depending on variations
in oxygen concentration and with drug distribution dynamics in the growing tumor
also affecting the state of individual cells, partial differential equations (for oxygen,
a reaction diffusion equation) model changes in oxygen and drug concentration. In
simulating the model, parameters were chosen based on earlier work (mainly from
Tyson and Novak); notably, to account for the “natural” variability between cell
growth rates, and to have a non-synchronous cell population, a multiple of the value
from a probability density function with uniform distribution between -1 and 1 is
added to an identified value for growth rate, effectively incorporating cell cycle het-
erogeneity. Computational simulations were run first on cell-cycle and oxygen tumor
growth, assuming zero drug concentration, and subsequently on tumours treated with
cell-cycle specific drugs. The results revealed that cytotoxic effect of combination
therapy depends on timing of drug delivery, time-delay between doses of chemother-
apeutic drugs, and cell-cycle heterogeneity. Not surprisingly, drug effectiveness also
depends on distribution of tumor cell mass as it affects the tumor microenvironment
and drug distribution. The current direction towards patient specific optimal treat-
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ment strategies seems to be supported by the model simulations. It is worth noting
that non-synchronous cell population can be parameterized from experimental data
[5] due to recent automated microscopy advances, making it possible to validate
models such as the one described by Powathil et al. [10].

In a recent review by Bendall and Nolan [2], the authors assert that “stem cell
hierarchies, transcription start sites, cell signaling pathways (and more) all function
against a backdrop that assumes that carefully orchestrated single-cell stochastics, in
concert with mass action, is what determines outcome.” Since all kinds of heterogene-
ity may drive treatment decisions, it is crucial to develop better technologies to study
heterogeneity in single-cells. Notably, the statement is made that recent research indi-
cate that the biology of single cells “is rarely deterministic.” Snijder and Pelkmans
[15] take the view instead that “a large part of phenotypic cell-to-cell variability is
the result of deterministic regulatory processes.” Although not necessarily in conflict,
these seemingly opposing views point to the necessity to further investigate various
and diverse aspects and mechanisms driving phenotypic heterogeneity in cells and
cell populations. As Snijder points out, population context has been shown to con-
tribute in major ways to cellular behavior, including sporulation, genetic competence
and motility, giving rise to adaptation in gene transcription, protein translation,
cellular growth, rate of proliferation, sensitivity to apoptosis, metabolic activity, cell
shape and/or cell polarization. These adaptations cause cells themselves to alter pop-
ulation context, eventually determining single-cell distribution of phenotype prop-
erties in a population. Such complex feedback/ regulatory mechanisms may involve
many entities and interactions, in the absence of a full understanding of which, a
stochastic distribution may somewhat account for the variability [21].

2 Conclusions

What emerges from the models so far developed is that apparently “stochas-
tic/variable behavior” in single cells and populations can be reasonably quantified, if
not fully understood. In many of the above-mentioned mathematical models for pop-
ulation heterogeneity, the key to characterization of population behavior is a fairly
holistic understanding of the key “players” (cells), their environment, and reactions
and feedback mechanisms among components. Integration of these theoretical and
quantitative tools will be paramount for distinguishing between relevant and noisy
heterogeneity [1]. While this field of investigation is still in its infancy, it is not dif-
ficult to imagine the impact it will have on our understanding of cellular response to
perturbations, including drugs.
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A Stochastic Model of Glioblastoma Invasion:
The Impact of Phenotypic Switching

Philip Gerlee and Sven Nelander

Abstract In this chapter we present a stochastic model of glioblastoma (brain
cancer) growth and invasion, which incorporates the notion of phenotypic switching
between migratory and proliferative cell states. The model is characterised by the
rates at which cells switch to proliferation (qp) and migration (qm), and simulation
results show that for a fixed qp, the tumour growth rate is maximised for intermediate
qm . We also complement the simulations by deriving a continuum description of the
system, in the form of two coupled reaction-diffusion PDEs, and subsequent phase
space analysis shows that the wave speed of the solutions closely matches that of the
stochastic model. The model thus reveals a possible way of treating glioblastomas
by altering the balance between proliferative and migratory behaviour.

Keywords Brain tumour · Cell-based model · Travelling wave analysis

1 Introduction

Tumour growth is dependent on numerous intra-cellular and extra-cellular processes,
such as an elevated rate of proliferation, evasion of apoptosis and angiogenesis [5].
Out of these, proliferation has traditionally been singled out as the most important,
and has generally been the target of anti-cancer therapies. However, recently there
has been a growing interest in the impact of cancer cell motility, since it underlies
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the invasive nature of tumour growth. This process is especially relevant in the case
of glioblastoma, which generally exhibit diffuse morphologies stemming from the
high motility of individual glioma cells. Recent experimental work suggests that
migration and proliferation in glioma cells are mutually exclusive phenotypes [2],
where the cells move in a saltatory fashion interspersed by periods of stationary
behaviour during which cell division occurs. In this chapter we explore the theoret-
ical implications of this observations using a stochastic individual-based model. In
particular we are interested in how the rates of phenotypic switching (microscopic
parameters) influence the growth rate of the tumour (a macroscopic property).

Before proceeding to the model description let us briefly mention that glioblas-
toma has a long history of mathematical modelling dating back to the seminal work of
Murray et al. (see for example [8], Chap. 11 for an in-depth review), who employed a
continuous reaction-diffusion approach. Recently stochastic and individual-based
models have gained in popularity and several such models have been proposed
[1, 3, 6, 7].

2 Stochastic Model

The cells are assumed to occupy a d-dimensional lattice with lattice spacing αx (we
will consider d = 1, 2), containing N d lattice sites, where N is the linear size of the
lattice and each lattice site either is empty or holds a single glioma cell. This means
that we disregard the effects of the surrounding brain tissue, such as the different
properties of grey versus white matter [9], and the presence of capillaries which
might influence the behaviour of the cancer cells. For the sake of simplicity we
do not consider any interactions between the cancer cells (adhesion or repulsion),
although this could easily be included.

The behaviour of each cell is modelled as a time continuous Markov process,
where each transition or action occurs with a certain rate. Each cell is assumed to be
in either of two states: proliferating or migrating, and switching between the states
occurs at rates qp (into the P-state) and qm (into the M-state). A proliferating cell is
stationary, passes through the cell cycle, and thus divides at a rate β. The daughter
cell is placed with uniform probability in one of the empty 2d neighbouring lattice
sites (using a von Neumann neighbourhood). If the cell has no empty neighbours
cell division fails. A migrating cell performs a size exclusion random walk, where
each jump occurs with rate v. Size exclusion means that the cell can only move into
lattice sites which were previously empty.

Lastly, cells are assumed to die, of natural causes, at a rate μ independent of the
cell state, after which they are removed from the lattice and leave an empty lattice
site behind. The stochastic process is depicted schematically in Fig. 1, and the model
parameters are summarised in Table 1.
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Fig. 1 Schematic describing the continuous time Markov process each cell in the model follows.
A living cell can be in either of two states, proliferating (P) or migrating (M), and transitions between
the states with rates qp and qm respectively. A P-cell divides at rate β while an M-cell moves with
rate v. Both cell types die with a constant rate μ

Table 1 Summary of model parameters. All rates are given in units of cell cycle−1

Meaning Name Value

Rate of switching to P-state qp 0–30
Rate of switching to M-state qm 0–30
Proliferation rate β 1
Motility rate v 5
Death rate μ 10−3

Lattice spacing αx 20μm

3 Simulation Results

A typical simulation outcome is displayed in Fig. 2a, which shows the spatial distrib-
ution of tumour cells after T = 50 cell cycles have passed. The initial condition was
a single cell in the proliferative state at the centre of the lattice, and the phenotypic
switching rates were set to (qp, qm) = (20, 10). This plot gives us a general idea of
the dynamics of the model; the tumour grows with a radial symmetry, and exhibits
a solid core, while the tumour margin is diffuse and somewhat rugged. However, in
order to get a wider picture of the influence of the phenotypic switching rates on
tumour mass, we measured the number of cancer cells at T = 50 in the parameter
range 0 < qp,m < 30. The result of this parameter sweep is displayed in Fig. 2b
and shows a strong influence of the two parameters. For qp = 0 all cells are in the
migratory state and hence the tumour does not grow at all, while the other extreme
qm = 0 gives rise to compact tumours driven purely by cell division. These results
are intuitive, but what is more interesting is that tumour cells with intermediate
switching rates are the ones that give rise to the largest tumours. Although migratory
behaviour does not directly contribute to an increase in the number of cancer cells
it has the secondary effect of freeing up space which accelerates growth compared
to the tumours dominated purely by proliferation (qm = 0). The results suggest that
for each qp > 0 there is a qm �= 0 which gives rise to a maximal tumour mass.
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Fig. 2 Growth dynamics of the model. a Shows the result of a single simulation of the model
for (qp, qm) = (10, 20) while b Shows the average tumour mass as a function of the phenotypic
switching rates

4 Continuum Approximation

The counter-intuitive results of the previous section spurred us to investigate the
dynamics of the model from an analytical perspective. We will here give a brief outline
of an attempt employing a continuum approximation which gives an estimate of the
tumour interface velocity as function of the model parameters. For a full account of
the derivation we refer the reader to [4].

By considering the processes which affect the cells on the lattice (proliferation,
movement, phenotypic switching and death), and by assuming independence of the
lattice sites we can derive master equations for the occupation probabilities of P- and
M-cells. By taking the appropriate continuum limit we arrive at the following system
of coupled PDEs which describe the density of P- and M-cells respectively:

∂p

∂t
= β

2
(1 − p − m)

∂2 p

∂x2 + βp(1 − p − m) − (qm + μ)p + qpm (1)

∂m

∂t
= v

2
((1 − p)

∂2m

∂x2 + m
∂2 p

∂x2 ) − (qp + μ)m + qm p. (2)

Despite its seeming complexity this system bears resemblance to the Fisher equation
[8], and similarly exhibits travelling wave solutions. It is the propagation speed
c of these solutions, that correspond to the rate of invasion, which we are hoping to
determine. With the travelling wave ansatz (z = x − ct) the above system is turned
into the following system of autonomous ODEs:
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(a) (b)

Fig. 3 Comparison of the wave speed obtained from the phase space analysis (solid line) and the
one observed in simulation of the stochastic model (dashed line). In a the switch rate to proliferation
is fixed at qp = 15, while in b we have fixed qm = 15

P ∞ = Q
M ∞ = N

Q∞ = 2
β(1−P−M)

((qm + μ)P − qp M − cQ − βP(1 − P − M))

N ∞ = 2
v(1−P)

((qp + μ)M − vM
β(1−P−M)

((qm + μ)P

−qp M − cQ − βP(1 − P − M)) − cN − qm P)

with boundary conditions

P(−∞) = pν M(−∞) = mν Q(−∞) = 0 N (−∞) = 0
P(∞) = 0 M(∞) = 0 Q(∞) = 0 N (∞) = 0

(3)

where (pν, mν) corresponds to the stable invaded state of Eq. (1)–(2) and (0, 0) is
the unstable healthy state. As in the case of the Fisher equation we find the speed of
propagation as the smallest c for which the heteroclinic orbit connecting the unstable
and stable state remains non-negative for all times [8]. In our case this boils down
to a four-dimensional eigenvalue problem involving the Jacobian of the system (3),
which unfortunately does not have a closed form solution. However by fixing the
model parameters a numerical solution can easily be found.

Figure 3 shows a comparison between the wave speed obtained from the phase
space analysis and the one obtained from simulating the stochastic model. It is clear
that the analytical wave speed agrees well with the one observed in simulation, and
also that least agreement occurs for small qm when the contribution of diffusive
behaviour to growth is small.

Naturally the other parameters of the model also influence the rate of invasion. By
fixing the phenotypic switching rates at (qp, qm) = (10, 10) and by varying the other
parameters (β, v, and μ) independently the curves in Fig. 4 were obtained. From these
it can be seen that for small proliferation rates we have c ∼ √

β, and for all motility
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Fig. 4 The wave speed of the propagating tumour margin as a function of a β, b v and c μ. The
dashed line in the inset of c has slope 1/2 and shows that c ∼ (μc − μ)1/2

rates in the range we see that c ∼ √
v. The death rate has a negative impact on the

wave speed, and interestingly it seems as if the system goes through a second-order
phase-transition, since above some critical μc the wave speed is equal to zero, and that
it approaches this point with a diverging derivative dc/dμ. Upon closer inspection
we observed that c ∼ (μc − μ)ψ , with the critical exponent ψ = 0.5049 ± 0.0004
being independent of the other parameters, while μc is parameter specific.

5 Discussion

From our simulations and analysis it is obvious that if glioma cells are engaged in
phenotypic between migratory and proliferative behaviour, then the rates at which this
occurs has a strong impact on tumour growth rate. In particular we have shown that for
each qp > 0 there exists a qm �= 0 which maximises the tumour interface velocity.
A simple explanation of the influence the switching rates have on tumour growth
velocity, is that they change the geometry and structure of the tumour interface,
which in turn alters its growth velocity. A one-dimensional growth process in which
the tumour expands in a narrow channel will suffice for the illustration.
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If qm = 0, then the tumour expands only through proliferation of the cells at
the interface (since interior cells cannot divide), and the interface thus moves with
velocity β. If qm �= 0 then cells at the interface spend some time in the motile state
and, with non-zero probability, move away from the tumour mass, freeing up space
and thus allowing previously blocked cells to proliferate. This process increases the
interface velocity, but it is also clear that for large qm the velocity is lowered, since
if qm ⇒ qp few cells are in the proliferative state and can thus take advantage of
the space created by migrating cells. From this perspective it is clear that the tumour
interface velocity will depend on qm in a non-monotone way, and in fact the phase
space analysis shows that for each qp �= 0 the velocity c = c(qm) attains a maximum,
which occurs at qmax

m ≈ 0.5qp .
Despite its apparent theoretical nature the model could, if properly parametrised,

give indications as to the efficacy of certain therapies. It could serve as a tool map-
ping perturbations at the cellular level caused by a drug to the impact those changes
have on tumour growth rate. If a drug for example influences the rates of pheno-
typic switching, then it could potentially both increase and decrease tumour growth
rate, depending on where in parameter space the unperturbed cells are located. It
is believed that many drugs have precisely this dual impact on both proliferation
and migration, and estimating the tissue-level of these perturbations effect will be
difficult, if not impossible without the use of mathematical models such as this one.
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A Hybrid Model for E. coli Chemotaxis:
From Signaling Pathway to Pattern Formation

Franziska Matthäus

Abstract In this article a hybrid model for the chemotactic motion of E. coli is
presented that captures a description of the internal signaling pathway as well as
the interaction of the bacteria with the surrounding ligand. The hybrid nature of the
model arises from the fact that discrete agents interact with and through an external
chemoattractant that is described as a continuous variable. Motion of the bacteria is
not restricted to the numerical grid on which the chemoattractant concentration is
defined. Local production and uptake of ligand allow a study of the effects of internal
signaling processes on pattern formation processes or on the fitness of populations
in competition for a common nutrient source. This model provides a tool to connect
individual-based models to continuous (PDE) descriptions for bacterial chemotaxis.

Keywords Chemotaxis · Signaling pathway · Pattern formation · Multi-scale
mathematical model

1 Introduction

In this chapter we present a hybrid model for E. coli motion. The model is given
as a cellular automaton, providing a description of internal signaling processes of
E. coli, coupled with a continuous description (PDE) for the dynamics of external
chemical substances. The model allows to simulate movements of individual cells as
well as large-scale population behavior. It provides a tool to study bacterial pattern
formation processes or competition of different species under the influence of internal
signaling processes.
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The choice of E. coli bacteria as a model organism is straight forward. Its chemo-
taxis signaling pathway is very simple and well understood, and several mathematical
models have been developed to describe the pathway [1, 2, 10]. The chemotaxis sig-
naling pathway of E. coli connects a membrane receptor to the flagella. The flagella
can either rotate clockwise or counter-clockwise. Counter-clockwise rotation thereby
causes a (more or less) straight swim, while clockwise rotation leads to a so-called
tumble, where a new direction is chosen without translational movement. The recep-
tor switches between two states, active and inactive. This switching is random, but
influenced by the external ligand concentration. If the receptor is active, it phospho-
rylates an enzyme CheA, which in turn phosphorylates CheY. Phosphorylated CheY
then binds to the flagellar motor and induces tumbling. A feedback loop involv-
ing a further enzyme, CheB, introduces memory. CheB is activated by CheAp and,
together with its antagonist, CheR, is involved in receptor methylation. Methylation
also influences the receptor’s probability to be in the active state, and counteracts
the effects of the ligand. Through this process the bacteria are able to adapt to con-
stant ligand concentrations, and to compare present ligand concentration to past
values. This “chemical memory” is needed for chemotaxis, if the ligand concentra-
tion during a run of the bacterium increases, the the tumble probability decreases, and
vice versa.

There exist several agent-based models describing E. coli motion subject to inter-
nal signaling processes. AgentCell [8] relies on a stochastic simulation of the enzy-
matic interactions (StochSim [11]) and is therefore computationally expensive for
larger bacterial populations. The model of Bray [3, 4] describes the signaling path-
way in terms of about 90 differential equations, and accounts also for processes like
receptor assembly. Also this model is not suitable for simulating large populations.
Vladimirov et al. [17] and Curk et al. [6] developed coarse-grained models captur-
ing the essential behavior of the signaling pathway without details on the enzymatic
reactions. These models, on the other hand, are very suitable for large-scale popu-
lation studies, but do not allow to study the specific influence of signaling pathway
processes on the macroscopic behavior. None of these models accounts for an inter-
action of the bacteria with the ligand.

Here, we will extend a model previously developed to study the motion of E. coli
bacteria in various chemical landscapes [12]. The model was used to investigate the
influence of noise in the signaling pathway on the random search behavior [13] and
the chemotactic precision. The signaling pathway is thereby described as a small
system of differential equations, comprising an equation for the m-times methylated
receptor, and the enzymes CheAp, CheBp, and CheYp. Two algebraic equations
describe the probability of the receptor to be in the active state, and the tumbling
probability depending on the concentration of CheYp. In the following sections we
will describe the model and the extension that describes interaction with the ligand
(production, uptake). First simulations with the extended model show a chemotactic
pattern formation process for a small number of bacteria.
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2 Methods

2.1 ODE System Describing the Signaling Pathway

The internal signaling pathway of the bacteria is described as a system of ordinary
differential equations, adapted from [10]. We denote the m-times methylated receptor
by Tm , and the concentration of phosphorylated form of CheA, CheB and CheY by
Ap, Bp and Yp, respectively.

dTm

dt
= kR R

Tm−1

K R + T T
+ kB Bp

T A
m+1

K B + TA
− kR R

Tm

K R + T T
(1a)

−kB Bp
T A

m

K B + TA
(1b)

d Ap

dt
= kA(AT − Ap)TA − kY Ap(Y

T − Yp) − k∼
B Ap(BT − Bp) (1c)

dYp

dt
= kY Ap(Y

T − Yp) − kZ Yp Z − αZ Yp (1d)

d Bp

dt
= k∼

B Ap(BT − Bp) − αB Bp (1e)

The model is extended by two algebraic equations: pm(L) describes the probability
of the m-times methylated receptor to be active under a given ligand concentration L:

pm(L) = Vm

(
1 − L Hm

L Hm + K Hm
m

)
. (2)

The last equation connects the concentration of CheYp to the tumbling probability β :

β = Yp
Hc

Yp
Hc + K Hc

c

. (3)

For the values of the parameters see [12]. The tumbling probability depends on
the internal concentration levels of all enzymes involved in the chemotaxis signaling
pathway, and on the external ligand concentration. Bacterial trajectories are generated
from the output variable (β ) in the following way. While swimming, the bacteria pre-
serve the direction. During a tumble, a new direction is chosen randomly, following a
∂-distribution with shape parameter 4, scale parameter 18.32 and location −4.6 [8].

2.2 Ligand Dynamics

To model the interaction of the bacteria with the ligand, we take a square domain
ν = [x0, xmax ] × [y0, ymax ] with zero-flux or periodic boundary conditions. For
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numerical treatment, the domain is discretized, and the ligand concentration Li, j is
given at the grid points only. Ligand diffuses with diffusion coefficient DL , and is
degraded with rate rL . Ligand may also be produced locally in space, specified by
a function Lprod(x, y). Production of ligand by the bacteria is given by the function
Lbact(p), where p denotes a set of parameters, for instance related to the internal
enzyme concentration. Uptake of the ligand by the bacteria is given by the rate rbact:

rbact = ku · L

L + K
, (4)

with the constants ku and K . The dependence Eq. (4) ensures that uptake of ligand
is proportional to the ligand concentration, but no larger than a maximum value ku .

2.3 Hybrid Model for the Interaction of the Bacteria
with the Ligand

Since the run length and turning angles of the bacteria are random, their movement is
not restricted to the numerical grid on which the ligand concentration is defined. In our
model, the bacteria interact with the four nearest grid points. If the distance between
two grid points is chosen to be one unit, the four surrounding grid points of a bacterium
located at (x, y) are given by {(int(x),int(y)), (int(x),int(y)+1), (int(x)+1,int(y)),
(int(x)+1,int(y)+1)}.

2.4 Interaction Weights

The strength of the interaction between the bacterium and a grid point depends on
the distance. The smaller the distance the larger the interaction. With dx and dy as
shown in Fig. 1, we measure the distance to a grid point by the maximum norm,
which is natural in grid-environments. The unnormed interaction weights between
the bacterium and the four grid points are given as w̃i, j = 1 − ||di, j ||∞, which turns
out to be

w̃i, j = min(1 − dx, 1 − dy) w̃i+1, j = min(dx, 1 − dy)

w̃i, j+1 = min(1 − dx, dy) w̃i+1, j+1 = min(dx, dy).
(5)

The sum of the unnormed interaction weights still depends on dx and dy. The
final interaction weights will be normed and given by wi, j = w̃i, j/

∑
w̃. With this

definition the four weights add up to 1 for any pair dx and dy.
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Fig. 1 Distance of the bac-
terium to the surrounding grid
points

3 Results

We tested the described setting by modeling the chemotactic motion of a small
number of in silico bacteria to self-produced ligand. We chose a small quadratic
domain of length X = 125µm. The diffusion coefficient of the ligand was set
to DL = 0.015µm2/s, and its degradation rate to rL = 0.001µM/s. Bacteria
produced ligand locally with rate Lbact(p) = const = 1µM/s. These parameters
deviate from the physiological parameters, but are chosen such that a small number
of bacteria are able to produce detectable gradients. Physiological parameters would
be DL ≈ 1 × 10−4 mm2/s and a smaller production rate, which, however, would
require a much larger number of cells and a significantly larger domain to generate
concentration profiles that allow for pattern formation processes.

3.1 Computational Cost

The computational cost of the simulations arises on one hand from the numeric
solution of Eqs. (1a–3) for every bacterium. On the other hand, also the operations
on the ligand (especially diffusion) adds to the cost. For a scaling of the computation
time with the domain size X , number of bacteria N and the simulated time interval
T see Fig. 2. Simulations of 1,000 bacteria for 20 min (natural generation time) and
a milimeter-scale domain size would still be feasible with the present setting.

3.2 Formation of Transient Patterns

With the given parameters the bacteria produce detectable gradients. The simulated
bacteria often turn and retrace their own path. They also produce local ligand accu-
mulations by moving in a very confined area for a certain time. In most of the simu-
lations, the bacteria accumulate in a small area and thus produce a local maximum in
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Fig. 2 Computational cost for simulations of the motion of N bacteria during a time interval of
length T (in [min]) in a domain of size X = 250µm (left) and for an increasing domain size for
1 and 10 bacteria respectively and a simulated time of T = 2 min (right)

Fig. 3 Snapshots of bacterial motion Snapshots of 10 moving bacteria, producing chemoattractant.
The sequence on the left shows the emergence of a local accumulation in the top left corner. The
figure on the right another aggregation involving 9 out of 10 bacteria

the ligand concentration to which they respond chemotactically, as shown in Fig. 3.
These accumulations are, however, transient. The transient nature probably arises
from a combination of adaptation to the absolute ligand concentration and stochastic
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effects caused by the small number of bacteria. Whether the accumulation pattern
can be stabilized (for larger domain and population sizes, and different parameters
of ligand diffusion, production and degradation) will be the topic of further studies.

4 Discussion and Outlook

The presented model framework allows simulation of E. coli motion and chemo-
taxis for large populations under consideration of detailed aspects of the chemotaxis
signaling pathway. The framework can therefore be seen as a tool to connect models
of the signaling pathway and agent-based approaches of (like the models of Emonet
et al. [8] and Zonia and Bray [18]) to models considering pattern formation processes
on the population density scale (i.e. models described by Hillen and Painter [9],
Polezhaev et al. [15] or Tyson et al. [16]). While the influence of signaling pathway
processes on motion behavior has been well studied for single individuals, there
are only very few studies on pattern formation on the population that include signal
processes [7, 14]. Most approaches include signal processing only in a very phenom-
enological way. In fact, E. coli is the only organism where the enzymatic reactions
comprising the chemotaxis signaling pathway are understood to this detail.

The presented framework allows the study of pattern formation processes of
mutants, or of individuals affected by noise in the signaling pathway. Also compe-
tition of different populations for a common nutrient source can be simulated when
including ligand uptake. Already in first test simulations, transient aggregations can
be produced, which are have been observed experimentally and in simulations for
E. coli bacteria swimming in liquid medium (see for instance [5, 16]). Extensions
and modifications of the model might also enable the reproduction of more common
patterns in semi-solid medium.
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Biosciences (BIOMS), University of Heidelberg.
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Multiscale Analysis and Modelling
for Cancer Growth and Development

Dumitru Trucu and Mark A. J. Chaplain

Abstract In this chapter we present a novel framework that enables a rigorous
analysis of processes occurring on three (or more) independent scales (e.g. intracel-
lular, cellular, tissue). We give details of the establishment of this new multiscale
concept and discuss a number of important fundamental properties that follow. This
framework also offers a new platform for the analysis of a new type of multiscale
model for cancer invasion that we propose. This new model focuses on the macro-
scopic dynamics of the distributions of cancer cells and of the surrounding extracel-
lular matrix and its connection with the microscale dynamics of the matrix degrading
enzymes, produced at the level of the individual cancer cells.

Keywords Multiscale modelling · Cancer invasion · Computational simulations

1 Introduction

Cancer growth is a complex process that develops over several spatial and tempo-
ral scales, ranging from genes to molecular, cellular, and tissue levels. The spatial
multiscale character plays a crucial part in the overall tumour development and is
present from the very early stages when avascular solid tumours are formed. Char-
acterised by a diffusion-limited growth, these avascular solid tumours have a final
size of about 2 mm in diameter (109 cells) consisting of an inner necrotic core, a
middle quiescent region, and an outer proliferating rim. During the invasive phase
of their growth, tumour cells produce matrix degrading enzymes (MDEs), such as
the matrix metalloproteinases (MMPs) [9], which are secreted into the extracellular
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matrix (ECM) via a dynamic process of growth of receptors bound to the cancer
cell membrane. As a consequence, this ability of cancer cells to break out of tissue
compartments and spread locally, gives solid tumours a defining deadly characteristic
and is a crucial step in the process of metastasis [25]. However, it is important to
observe the genuinely spatial multiscale perspective of the overall cancer invasion.
In the micro-scale stage of the invasion process, the ECM degradation is caused by
the evolving spatial distributions of secreted MDEs and occurs at a molecular/cell
level. Once the matrix is degraded, the cancer invades the tissue at a macroscopic
level.

Understanding the many processes involved in cancer cell invasion of tissue
is therefore of great importance for gaining a deeper insight into cancer growth
and development, and the design of future anti-cancer strategies. Over the last two
decades, there has been a great effort in characterising the cancer invasion process via
mathematical modelling, see for example [4, 5, 7, 11–13, 17, 20, 24]. Along these
concerted modelling and analytical approaches, the multiscale character of cancer
invasion has already been recognised as being an essential part in the overall invasion
process and debated in various regards, see [6, 8, 14, 18–20].

Developments have also been taking place within the multiscale area, both from an
analytical and a numerical stand point, see [1, 2, 10, 15, 21–23]. These pave the way
for a deeper understanding and more rigorous formulation of the processes occurring
on three (or more) distinct scales: namely the intracellular scale (inside the cell), the
intercellular scale (between cells), and the tissue scale. Generally speaking, one may
refer to these scales as the microscale, the mesoscale and the macroscale. Therefore,
we will naturally have two scaling factors α > 0 and β > 0 that realise the transition
between the macro- and meso-scale and meso- and micro-scale, respectively. As
explored in great analytical detail in [22], the multiscale character of cancer invasion
as well as various other multiscale questions arising in material science or soft-matter
physics has generated interest in the establishment of a multiscale framework that
is able to deal with more than three scales, when the scaling factors α and β are
not functions of the same reference parameter, say ∂ > 0. From a mathematical
stand point, it is usual that this kind of activity on three-scales can be described
asymptotically by a family of partial differential or integral operators Lα,β , whose
coefficients are dependent on the microscale β and mesoscale α, which, for a given
domainν, under the presence of appropriate initial and boundary conditions, captures
the underlying complex process in terms of a corresponding family of solutions uα,β

that is obtained for the induced systems of equations:

Lα,β = f. (1)

Thus, the solutions uα,β of Eq. (1) inherently depend on the micro-, meso- and
macro-scales. Depending on the particularities of each process and the heteroge-
neous medium under investigation, one may consider whether to adopt a macroscale
approximation of the process via a homogenization approaches (if this is possible and
appropriate) or to perform another type of asymptotic analysis. In the next section
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we will describe the new notion of three-scale convergence that offers a platform for
introducing a new multiscale topology in which such three-scale processes could be
assessed.

2 The Concept of Three-Scale Convergence

While a certain notion of multiscale convergence has previously been introduced
by Allaire and Briane in Ref. [3], obtained in essence by iterating the two-scale
convergence defined by [16], we will focus our attention on defining and exploring
a new concept of three-scale convergence where the scaling factors α and β are
independent in the sense that they are not functions of a common reference para-
meter ∂. In order to introduce this multiscale concept, let us first proceed with a
few notations. Let us consider ν a bounded region in R

N and let Y := [0, 1]N

be the unit cube. Let us denote by C
∼
# (Y ) the set of infinitely differentiable func-

tions on R
N obtained as a Y—periodical extension of C

∼
(Y ). Further, H1

# (Y ) will
denote the completion of C

∼
# (Y ) for the norm of H1(Y ). Also, let us consider the

space D(ν;C∼
# (Y ;C∼

# (Y ))) that consists of all test functions ψ(x, y, z) having the
properties that, for any fixed x , the function ψ(x, ·, ·) belongs to C

∼
# (Y ;C∼

# (Y )).
Finally, if we fix an arbitrary y, the function ψ(x, y, ·) belongs to C

∼
# (Y ). For any

two sets of indices �,� ∞ R that accumulate to zero, under the previous notations,
the properties of the three-scale convergence concept, introduced and explained in
full details in [22], are reviewed here in brief as follows:

Definition 1 A sequence of functions {uα,β }α≈�,β≈� ∞ L
2
(ν) is said to be three-

scale convergent to a function u0 ≈ L
2
(ν×Y ×Y ) if, for any ψ ≈ D(ν;C∼

# (Y ;C∼
#

(Y ))), denoting

lim
�,�

⎛
ν

uα,β (x)ψ(x,
x

α
,

x

αβ
)dx := lim

�

⎡
⎣lim

�

⎛
ν

uα,β (x)ψ(x,
x

α
,

x

αβ
)dx

⎤
⎦ , (2)

the following relation holds true:

lim
�,�

⎛
ν

uα,β (x)ψ(x,
x

α
,

x

αβ
)dx =

⎛⎛⎛
ν×Y×Y

u0(x, y, z)ψ(x, y, z)dxdydz. (3)

The well-posedness of the new concept of three-scale convergence is justified as
follows.

Theorem 1 From any arbitrary √ · √
L2

(ν)
-bounded sequence {uα,β }α≈�,β≈� ∞ L

2

(ν) we can extract a subsequence that is three-scale convergent to a limit u0 ≈
L

2
(ν × Y × Y ).
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Further, the boundedness properties of a three scale convergence sequence is explored
by the following result.

Theorem 2 Let {uα,β }α≈�,β≈� ∞ L
2
(ν) be a three-scale convergent sequence to a

function u0 ≈ L
2
(ν × Y × Y ). Then there exists a constant M > 0 as well as two

particular indices α0 ≈ � and β0 ≈ � such that, for (α, β ) ≈ � × � with α ≤ α0
and β ≤ β0, we have

√ uα,β √
L2

(ν)
≤ M. (4)

The following theorem gives a compactness characterisation for a product of
sequences that are three-scale convergent. This is similar to the notion of “strong
convergence” encountered in two-scale convergence, see Ref. [2].

Theorem 3 Let {uα,β }α≈�,β≈� ∞ L
2
(ν) be a sequence that is three-scale convergent

to a function u0 ≈ L
2
(ν × Y × Y ), which satisfies the following property:

lim
�,�

√ uα,β √
L2

(ν)
= √ u0 √

L2
(ν×Y×Y )

. (5)

Then, for any sequence {vα,β }α≈�,β≈� that three-scale converges to v0 ≈ L
2
(ν ×

Y × Y ), we have

uα,β vα,β χ

⎛⎛
Y×Y

u0(x, y, z)v0(x, y, z)dydz in D ⇒(ν). (6)

Finally, the convergence of the gradients is obtained via the following theorem.

Theorem 4 Let {uα,β }α≈�,β≈� ∞ H1(ν) be a bounded sequence with respect to
√ · √

H1(ν)
. Then, there exist three functions

u0 ≈ H1(ν),

u1 ≈ L
2
(ν, H1

# (Y )),

u2 ≈ L
2
(ν × Y, H1

# (Y )),

(7)

and a subsequence {uα,β }
α≈�̃,β≈�̃

∞ {uα,β }α≈�,β≈� such that we have:

1. {uα,β }
α≈�̃,β≈�̃

is three-scaleconvergent tou0;
2. {∇uα,β }

α≈�̃,β≈�̃
is three-scaleconvergent to ∇u0 + ∇yu1 + ∇zu2.

(8)
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3 A Three-Scale Process Arising in a Multiscale Moving
Boundary Model for Cancer Invasion

In the cancer invasion context, let us assume a simplified picture in which we are
concerned only with the dynamics of the ECM and cancer cells that are located
within a maximal reference spatial cube Y ∞ R

N (N = 2, 3), which is cen-
tred at the origin 0. Given ∂, where 0 < ∂ < 1, we will consider an ∂—
resolution of Y , i.e. a uniform decomposition of Y using spatially translated ∂Y
cubes. Let t0 be an arbitrarily chosen time. In the cancer affected region ν(t0), the
macro-dynamics of c

ν(t0 )
(x, t) and v

ν(t0 )
(x, t) occurring over the time interval

[t0 , t0 +
t] are governed by the following coupled macro-process. Firstly, the equa-
tion governing the cancer cell population consists of a diffusion term as well as a
term modelling the directed haptotactic movement to the ECM, along with a term
describing cancer cell proliferation, i.e.

πc
ν(t0 )

πt
= D
c

ν(t0 )
− η∇ · (c

ν(t0 )
∇v

ν(t0 )
) + g(c

ν(t0 )
, v

ν(t0 )
). (9)

The equation governing the ECM concentration consists of a degradation term in the
presence of the cancer cells along with a general remodelling term, i.e.

dv
ν(t0 )

dt
= −α(t)c

ν(t0 )
v

ν(t0 )
+ ζ(c

ν(t0 )
, v

ν(t0 )
), (10)

where α(t) is a homogeneous time-dependent degradation factor.
The macro-process described by Eqs. (9–10) have the following initial conditions:

c
ν(t0 )

(x, t0) =: c0
ν(t0 )

(x), x ≈ ν(t0),

v
ν(t0 )

(x, t0) =: v0
ν(t0 )

(x), x ≈ ν(t0),
(11)

as well as certain moving boundary conditions that are imposed by the microscopic
dynamics arising within a ∂−bundle P∂ of ∂−size cubes ∂Y that cover πν(t0),
namely πν(t0) ∞ ⋃

∂Y≈P∂

∂Y .

In brief, these ∂—cubes are chosen so that, on one hand, one face is captured inside
ν(t0), which we denote by �int

∂Y
. On the other hand, the faces that are perpendicular

on �int
∂Y

are all intersecting πν(t0) while the face that is parallel to �int
∂Y

is remaining
completely outside of the only connected component of ∂Y ∩ν(t0) that is containing
�int

∂Y
. On each of these micro-domains ∂Y , an MDE micro-dynamics takes place.

Since the MDEs are secreted locally by the cancer cells from within ν(t0), for any τ ≈
[0,
t], the local mean-value of the cancer cells spatial distribution c

ν(t0 )
(·, t0 + τ)

can be considered to describe the source for the degrading enzymes within ∂Y ∩ν(t0 ).
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Therefore, on each micro-domain ∂Y ≈ P∂, we obtain a space-wise compact support
source f

∂Y : ∂Y × [0,
t] → R+ such that, for any τ ≈ [0,
t], f
∂Y (·, τ ) has the

following properties:

1. f
∂Y (y, τ )= 1

α(B(y,2∂)∩ν(t0 ))

∫
B(y,2∂)∩ν(t0 )

c
ν(t0 )

(x, t0 + τ)dx, y ≈ ∂Y ∩ ν(t0),

2. f
∂Y (y, τ )=0, y ≈ ∂Y \ (

ν(t0) + {z ≈ Y | √ z √2< γ }), (12)

where α(·) is the standard Lebesgue measure on R
N , B(y, 2∂) := {x ≈ Y | √y − x

√∼ ≤ 2∂}, and γ is a constant parameter chosen such that γ << ∂
3 . Hence,

denoting by m(y, t) the MDE distribution on ∂Y , during the time period [0,
t],
on any ∂Y ≈ P∂, the rate of change of the matrix degrading enzyme molecular
distribution per unit time is modelled as the effect of a diffusion process under the
presence of the source term f

∂Y (y, τ ), i.e.

πm

πτ
= 
m + f

∂Y (y, τ ), y ≈ ∂Y, τ ≈ [0,
t], (13)

with zero initial conditions and zero Neumann boundary conditions.
Denoting by x∗

∂Y
the first point of the intersection between the median of �int

∂Y
and πν(t0), of great interest is the possible displacement of x∗

∂Y
to a new spatial

location x̃∗
∂Y

as a result of the micro-process that is taking place on ∂Y . This displace-

ment occurs when a certain transitional probability q(x∗
∂Y

) := 1∫
∂Y

m(y,
t)dy

∫
∂Y\ν(t0 )

m(y,
t)dy exceeds a certain spatially associated threshold ω
∂Y ≈ (0, 1) that is

induced by the local characteristics of the tissue confined within ∂Y .
If the threshold ω

∂Y is exceeded, a third spatial scale is used to described the
pattern in the MDEs distribution m(y,
t) that ultimately determines the displace-
ment direction as well as its magnitude. This third scale is obtained via the regularity
property of the Lebesgue measure, and it is given by the maximal resolution size of
the uniform dyadic decomposition {D j } j≈J that can be accepted for ∂Y such that
the non-overlapping region ∂Y \ ν(t0) is approximated with accuracy δ << ∂ by
the union of the sub-family of dyadic cubes

{Di }i≈I
δ

:= {D ≈ {D j } j≈J |D ∞ ∂Y \ ν(t0)}. (14)

If we denote this scale by β , it is immediate to remark that for two different micro-
domains ∂Y s the associated β—scales will be different, and as a consequence in this
three-scale process, the ∂—scale and β—scale remain independent.

This β—scale is used to define the direction of potential movement and the mag-
nitude of potential displacement, but for conciseness purposes, in this presentation
we do not enter in the details of how these displacement characteristics are derived,
and, for full explanations, we refer the reader to [23].
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Fig. 1 Plots showing the computed distributions of cancer cells and ECM, and the contours of the
invasive boundary of the invading tumour after both 15 and the 30 macro-micro invasion stages

Therefore, a new boundary πν(t0 +
t) will be obtained as a smooth interpolation
of the set consisting of the new spatial positions obtained for those x∗

∂Y
that were

moved and of the existing spatial positions of the rest of the x∗
∂Y

that were not moved.
Further, the macroscopic dynamics on the new domain ν(t0 + 
t) will continue to
be defined by the same governing Eqs. (9–11), but having the new initial conditions
determined by the solution at the final time of the previous invasion macro-step that
is smoothly extended on the difference region ν(t0 + 
t) \ ν(t0) via a convolution
process with a fast-decaying compact support kernel. For full details of this new
multiscale moving boundary model as well as the new multiscale numerical scheme
it gave rise to and computational invasion results that were obtained, we refer the
reader to [23].
In order to explore this multiscale model computationally, we developed a novel
multiscale numerical technique. Briefly, this numerical approach combines a finite
difference approximation of the macro-dynamics with a finite element scheme used
for the boundary micro-dynamics. The computational simulation results in Fig. 1
show the spatio-temporal evolution of cancer cells and ECM alongside the invasive
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tumour boundary and reveals a pronounced lobular and fingered-type progression
typical of cancer invasion patterns.

4 Concluding Remarks

While the process of cancer growth and development presents us with a vast
range of multiscale sub-processes, with various independent scales, the new con-
cept of three-scale convergence is paving the way for the establishment of an ana-
lytical framework that will be appropriate for rigorous investigation. A concrete
example of such a three-scale process arises within cancer invasion, where a certain
built-in stochasticity that appears at the lower scales determines the cancer cell inva-
sion pathways in the surrounding ECM. The proposed multiscale modelling approach
is able to reveal a pronounced heterogeneous progression of cancer invasion (lobular
and fingered protrusions into the ECM). The computational simulation of this model
has led to the development of a novel type of multiscale “front-checking” numerical
scheme, whose robustness and consistency properties will be investigated within the
three-scale framework.

Acknowledgments MAJC and DT gratefully acknowledge the support of the European Research
Council through the ERC AdG Grant 227619 From Mutations to Metastases: Multiscale Mathe-
matical Modelling of Cancer Growth and Spread.
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A Non-linear Flux-Limited Model
for the Transport of Morphogens

J. Calvo, J. Soler and M. Verbeni

Abstract Morphogenic proteins play a key role in developmental biology. We
introduce flux-limited diffusion as a new tool to obtain mathematical descriptions of
biological systems whose fate is controlled by this class of proteins.

Keywords Sonic Hedgehog (Shh) pathway · Morphogen propagation · Reaction-
diffusion equations · Finite propagation speed · Flux-limited diffusion equations ·
Flux-saturated diffusion equations

1 Introduction

Morphogenic proteins are main protagonists in crucial aspects of developmental
biology. Their importance comes from the fact that they mediate intercellular com-
munication acting as signaling molecules. They are also related to tumorigenesis
[29]. These proteins are usually issuing from localized sources in the extracellular
medium, originating a concentration gradient. Target cells will respond to the instruc-
tive signals according to both their concentration and duration [15, 29]. The outcome
is a change in gene transcription, which plays a pivotal role in generating cellular
diversity and patterning. Cells need time to process the protein signals and to give a
genetic response. Modelling these phenomena constitutes then a complex problem
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in which different spatial and temporal scales are involved. Besides, the biological
mechanisms of transport, reception and gradient formation of morphogenic signals
are recently argued to be realized through cell extensions (nanotubes, filopodia or
cytonemes) [4, 19, 28]. This opens a new perspective on the subject that revises the
basis of the previous models of morphogenesis based on Brownian motion and then
on linear diffusion principles.

In this work we focus on the mechanisms that regulate the whole chemical cascade
in which morphogenic proteins are involved, with special emphasis on the associated
space transport mechanisms. Here we will concentrate on the mathematical descrip-
tion of the Sonic Hedgehog (Shh hereafter) morphogenic function, whose task is to
promote the expression of the Gli genetic code. The Shh/Gli code is involved in the
development of the embryo, a biological system that has been thoroughly studied
[15, 16, 20, 29, 30, 33].

The model case which has been most dealt with in the literature is that of a chick
or mice embryo, in which measurements can be afforded [5, 15, 16, 20, 29]. More
precisely, this morphogenic protein induces the dorsoventral patterning of the spinal
cord in the neural tube, which is the precursor of the central nervous system. It must
be pointed out that there is a privileged way of propagation in the neural tube, see
[15, 16, 20, 29, 30, 33] (the so called dorsoventral axis, DV hereafter) and in such
a way a convenient simplifying assumption is to regard the system as being one-
dimensional along the DV axis. Another point which is worth mentioning is that
there is an almost similar biological system, the so-called wing imaginal disc in
Drosophila. Here the Hh morphogenic protein plays an analogous role to that of Shh
in vertebrates and the Gli target gene for Shh has its counterpart in the Ci—cubitus
interruptus—gene for Hh in drosophila [5, 8]. Being easier to perform measurements
in this setting, this provides a powerful and handy workbench in order to try to
describe in a more complete way the development of the neural tube.

2 Mathematical Models

2.1 Linear Diffusion Models

Morphogen propagation has been studied from the mathematical point of view since
long ago, starting with the work of Alan Turing [32], which has been successively
improved by a series of authors in different contexts, see the recent review [23].

The most accepted models up to date assume that the spreading of the mor-
phogen is described with linear diffusion mechanisms, based on microscopic Brown-
ian motion. Then, the standard models use reaction-diffusion equations. On one hand,
linear diffusion equations are used to describe morphogen propagation and the for-
mation of concentration gradients (Shh in our case). On the other hand, the law of
mass action is used to describe the rates of change of the protein concentrations
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involved in the transduction of the Shh signal (GliA among others for the case we
are interested in) and gene activations.

As the culmination of several decades of work we find the mathematical model by
Saha and Schaffer [30]. Its main purpose is to understand how morphogen gradients
are formed and interpreted from a dynamical point of view. This model studies DV
patterning in the chick embryo spinal cord, beginning when Shh is first secreted by
the floor plate (see for example [16]). It focuses not on the whole neural tube, but
only on the ventral-most binary cell fate (V3 interneurons). The model consists of a
reaction-diffusion equation for the spreading of the Shh morphogen

α[Shh]
αt

= DShhβ[Shh] + koff [PtcShhmem] − kon[Shh][Ptcmem] (1)

(square brackets denote concentations) plus a set of ordinary differential equations
for the concentrations of the most relevant proteins involved in the transduction
process: PtcShhmem, PtcShhcyt, Ptcmem, Ptccyt, Gli1Act, Gli3Act and Gli3Rep. All
the equations are posed on a finite spatial interval and (1) is complemented with
Neumann boundary conditions at the left end and zero Dirichlet boundary conditions
at the right end.

The main drawback that we find in this model is the unphysical spreading of the
morphogen to all the neural tube soon after secretion, entailed by the presence of
the Laplacian operator [33]. One of the mechanisms considered to deal with this
situation is to take into account an (static) artificial activation threshold (for the Shh
concentration), below which no chemical reactions take place, see Fig. 2c and [30].
This amounts to cut off a posteriori the numerical profiles obtained as solutions to
(1), thus introducing artificial fronts (Fig. 2c). This is a very delicate issue, as several
recent experimental findings point out. Namely, the concentration of Shh received by
the cells and the time of exposure are factors of similar relevance [15, 16]. To sum up,
without a threshold mechanism the chemical signal arrives too fast to distant areas,
thus triggering the chemical cascade too soon. But with a threshold mechanism the
chemical signal will never be able to activate distant cells (contrary to the long-range
signaling effect that has been observed [30]), having as a result that large sections of
the neural tube will never be exposed to the action of the morphogen. Apart form this,
it has been also shown that Shh does not travel through the medium as it stands, but
as a part of bigger aggregates or vesicles [8, 34, 35]. As the size of these aggregates
is comparable to that of the medium through which they are moving, being also this
medium quite inhomogeneous, the usual scale assumptions for a description in terms
of Brownian motion are not fulfilled at all. Then we commit ourselves to give an
alternative transport mechanism to the linear diffusion that is able to reproduce the
recent experimental results, see Fig. 2b and [33].

We identify as the source of most of the problems the recourse to linear diffusion
mechanisms, which is not realistic in this context. The basic issues would be then to
remove the infinite speed of propagation, to allow for front propagation instead and
also to account properly for the temporal and spatial scales involved in the process.
Our proposal is to substitute the linear diffusion mechanisms and to use flux limitation
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instead. Then we have to deal with a non-linear flux-limited reaction-diffusion system
[33], as we explain below. The first aim consist in obtaining a graded temporal
distribution of the signal and, as a consequence, to recover the time necessary to
activate or inhibit the different genes involved in the signal transduction. This is not
allowed when the velocity of propagation is infinite, as the natural inhibitor-activator
process requires some time to develop [25].

2.2 A Non-linear Flux-Limited Model

The problem of infinite speed of propagation for linear diffusion equations dates
back to Fourier’s theory of heat conduction [18], which he based on a linear relation
between the heat flux and the gradient ∇u(t, x) of the temperature function. The
subsequent macroscopic equation, αt u = k∂x u, predicts an infinite speed of prop-
agation for the heat. Flux-limitation mechanisms propose to modify Fourier’s law
to obtain a saturating heat flow when temperature gradients become unbounded. A
variety of macroscopic equations [2, 24, 26] are then produced, among which the
following is a remarkable example:

αu

αt
= νdiv

⎛
⎡ |u|m∇x u⎣

u2 + ν2

c2 |∇x u|2

⎤
⎦ + F(u) . (2)

In the case m = 1, this equation with F(u) = 0 was first introduced by Rosenau in
[27] and later derived by means of optimal mass transportation in [7]. It can also be
recovered performing macroscopic limits of kinetic models [6]. Here the constant c
is the maximum speed of propagation allowed in the medium (analogous to the sound
speed in hyperbolic settings; in fact the behavior of this equation is more hyperbolic
than parabolic), a fact which is analytically justified in [3]. Furthermore ν stands for
a kinematic viscosity and reduces to a diffusion coefficient in the limit c → ∞, in
which the usual heat equation is recovered [11]. The mathematical properties of this
equation and related models have been analyzed in a series of papers (see [12] and
references therein). For the case m > 1 (a porous-media flux-limited equation) we
refer to [2, 13, 14].

We wonder next if we can tackle the qualitative behavior that we have in mind
using this family of non-linear mechanisms. To test such an issue, these tools
were incorporated into a widely known model, the one-dimensional FKPP reaction-
diffusion model describing traveling waves [17, 22], which consists of Eq. (2) with
F(u) = k0u (1 − u), where k0 is a constant related to the intrinsic growth rate of the
biological particles.

It is found that, while classical traveling waves still do exist at high speeds, these
degenerate to singular traveling fronts as the wave speed lowers to the value of the
constant c [10]. These singular traveling waves consist in a discontinuous entropy
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t t

v v

Fig. 1 Different traveling waves: classical shape (left) and singular front (right)

solution with infinite tangent on the discontinuity front, see Fig. 1. Therefore, we
learn that with these flux-limitation mechanisms we have a finite constant speed for
the propagation of the biological information (whatever it may be) and the activation
of related responses. Coming back to the description of morphogen propagation
in the neural tube, the previous background encourages us to change the linear
reaction-diffusion equation (1) describing transport of morphogens in the neural
tube, introducing a flux limitation mechanism instead of the Laplace operator [33].
The following flux-limited spreading (FLS) equation results:

α[Shh]
αt

= ν αx

⎛
⎡ [Shh]αx[Shh]⎣

[Shh]2 + ν2

c2 (αx[Shh])2

⎤
⎦ + kof f [Ptc1Shhmem]

− kon[Shh][Ptc1mem].

Following this line of reasoning, the chemical reactions taking place inside the
cells will be described by a set of ordinary differential equations different from those
of [30], not only because the chemical signal does not arrive instantaneously to the
surface receptors and this alters the internal dynamics in a significant way, but also
because the synthesis and transport to cell membrane of Ptc1cyt molecules can take
some time. This feature seems to have been overlooked in the previous models and
it entails a delay for the system of differential equations (which is represented by
the parameter ψ below). The set of differential equations describing biochemical
reactions inside the cells reads now as follows:

α[Ptc1Shhmem]
αt

= −(koff + kCin)[Ptc1Shhmem] + kon[Shh][Ptc1mem]
+ kCout [Ptc1Shhcyt],

α[Ptc1Shhcyt]
αt

= kCin[Ptc1Shhmem] − kCout[Ptc1Shhcyt] − kCdeg[Ptc1Shhcyt],
α[Ptc1mem]

αt
= koff [Ptc1Shhmem] − kon[Shh][Ptc1mem] + kPint[Ptc1cyt],

α[Ptc1cyt]
αt

= kPPtr
{[Gli1Act](t − ψ), [Gli3Act](t), [Gli3Rep](t)}�Ptc
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(a) (b) (c)

Fig. 2 Evolution of Shh and Gli1Act versus distance from the floor plate at various times using
our nonlinear flux-limited diffusion model in (a), (b). c represents the evolution of Shh when linear
diffusion [30] is used, where a thershold and artificial fronts have been added. Note that in this
case the fronts are moving backwards, while fronts moving forward appear in a natural way in our
Gli-FLS system (b)

− kPint[Ptc1cyt],
α[Gli1Act]

αt
= kGPtr

{[Gli1Act](t − ψ), [Gli3Act](t), [Gli3Rep](t)}�Ptc

− kdeg[Gli1Act],
α[Gli3Rep]

αt
= [Gli3Act] kg3r

1 + RPtc
− kdeg[Gli3Rep],

α

αt
[Gli3Act] = γg3

1 + RPtc
− [Gli3Act] kg3r

1 + RPtc
− kdeg[Gli3Act],

being

�Ptc = [Ptc10]
[Ptc10] + [Ptc1mem] , RPtc = [Ptc1Shhmem]

[Ptc1mem] ,

where [Ptc10] is the initial value of [Ptc1mem]. See [33] for the precise values of the
parameters. From now on, we will refer to the coupling of the FLS equation with the
ODEs system as the Gli-FLS model.

The mixed Dirichlet-Neumann problem (the well-possedness as well as the the
asymptotic behavior of the solutions with zero weak Dirichlet boundary conditions
at the right end [9]) for the FLS equation without reaction terms has been analyzed
in [1, 9]. Interestingly enough, it is demonstrated that the incoming chemical signal
travels exactly at constant speed c, which is precisely the behavior that we wanted
to describe with a mathematical model, and which cannot be attained using a model
like that in [30]. The value of c can be measured experimentally in different systems
[33]. The analysis of the complete Gli-FLS model is by now work in progress.
We can nevertheless ascertain the behavior of our model by means of numerical
simulations (see Fig. 2).
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Fig. 3 Evolution of two different initial data by Eq. (2) with F = 0. The first plot corresponds to
m = 4, with

√
1 − x2χ|x |<1 as initial condition. For the second plot m = 2 and the initial condition

is given by exp(1/(x2 − 1))χ|x |<1. In both cases ν = 1 and c = 1. Area is preserved during
evolution; the supports of the solutions start to grow when a vertical contact angle is reached

3 Comments and Discussion

We detail here the outstanding features of our proposed model. Using our equa-
tions we find that the unphysical diffusion of the Shh morphogen is eliminated. This
entails the preservation of dynamical structures: the chemical signal is propagated as
a traveling front, and now there are different biological responses at different times,
instead of being activated instantaneously as it was the case with the linear diffusion
model [30]. Our numerical simulations show a quite satisfactory agreement with
experimental results [15, 33]. Cells can now be described as playing an active role
in morphogen propagation and gradient formation. Besides, some suitable modifi-
cations and improvements which our model calls for are: the inclusion of Wnt, the
possibility of describing also the relation with p53 [31], and the description of the
BMP morphogenic family [21] (which is competing with the Shh in the development
of the neural tube). We also keep in mind possible applications to cancer therapy. The
first step would correspond to include the effect of the cyclopamine in our model.
Another work in progress we can mention is the applicability of the porous-media
flux-limited equation [2, 13] to this problem (see Fig. 3). As a final remark, our
different approach could represent an important departure from the dominant inter-
pretation of morphogenetic action modeling and understanding. While attractive for
its apparent simplicity, linear diffusion cannot be the cornerstone to explain morpho-
genetic action. It may mimic biological patterns—which is not even the case for the
situation that interests us here—, but it cannot account for how these are realized.
Flux-limited diffusion may represent spatial constrains to morphogen movement
through interaction with binding patterns or spreading through restricted channels.
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Glycosylation: A Phenomenon Shared
by All Domains of Life

Anne Dell and Federico Sastre

Abstract This chapter provides insights into why proteins are glycosylated and
how their glycosylation can be characterized by mass spectrometry. The covalent
attachment of carbohydrates to proteins during their biosynthesis is a phenomenon
shared by all domains of life. Indeed the majority of proteins in living systems
are glycosylated. Their carbohydrates play critical roles in a myriad of biological
processes especially those involving recognition. They do this via engagement with
carbohydrate binding proteins called lectins. For example mammalian sperm-egg
engagement in the first step of fertilization involves carbohydrate-lectin recognition,
and the human egg is coated with a carbohydrate sequence called sialyl Lewisx which
also plays important recognition roles in the immune system.

Keywords Biological recognition ·Carbohydrates ·Glycoproteins ·Lectins ·Mass
spectrometry · Sialyl Lewisx

1 An Overview

The genome sequencing projects of the past two decades have yielded many surprises,
the most startling of which is unquestionably the revelation that the total number of
genes in humans is not very different from many model organisms such as worms,
fruit flies and simple plants. This discovery has cast a spotlight on the correlate
that biological complexity is not linearly related to the number of genes among
species. Why might this be the case? A variety of explanations can be offered, arising
from different fields of biological research. For example, molecular biologists might
suggest transcriptional regulation or epigenetic modifications as key factors. Others
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Fig. 1 Structure and symbolic representations of common carbohydrates. Glucose is central to
carbohydrate biosynthesis because it is made de novo from carbon dioxide and water during pho-
tosynthesis

would cite alternative splicing. We, too, believe that these phenomena contribute to
biological complexity. Nevertheless we would argue that the greatest amplification of
genomic information occurs after genes have been translated into proteins when the
latter become modified by a myriad of functionalities. Moreover, one type of post-
translational modification, namely glycosylation, results in the greatest diversity of
the products of gene expression in all forms of life [1].

Today it has been well-established that protein N- and O-glycosylation (the cova-
lent attachment of carbohydrate sequences to the side-chains of asparagine and serine
or threonine, respectively) is a phenomenon shared by all domains of life. In addition,
protein glycosylation has been demonstrated to be an essential requirement, rather
than just an intriguing decoration. For example, correct glycosylation ensures that
the plethora of proteins which eukaryotic cells use to transmit, receive and respond
to chemical, electrical and mechanical signals, are expressed in functionally active
forms in the right places. The information such glycoproteins mediate is essential for
cells to pass through the different stages of development that occur in an organism
[1, 2].

Carbohydrates have enough structural diversity to play a pivotal role as informa-
tional molecules on cell surfaces Fig. 1.

Importantly, they are in “the right place” to act as such. All eukaryotic cells are
coated with a carbohydrate layer, referred to as the glycocalyx. It consists of glycopro-
teins and glycolipids embedded in the cell membrane, together with proteoglycans,
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another class of carbohydrate biopolymer, which may be loosely associated with
the eukaryotic cell surface. Prokaryotes also express glycoproteins on their surfaces.
Among the prokaryotic glycoproteins, the best understood are S-layers, pilins and
flagellins, plus a selection of cell surface and secreted proteins which are known
to be involved in adhesion and/or biofilm formation [3, 4]. Significantly, complex
carbohydrates are often highly branched and each residue can be linked to another
in any of several positions on each sugar ring. This allows the formation of a large
number of oligosaccharide structures from a relatively small repertoire of building
blocks. Indeed even greater diversity is often conferred by the addition of functional
groups such as sulfates, phosphates, acetyl and methyl groups.

How do carbohydrates on cell surfaces fulfil their “information” roles? This is
most often achieved by engagement with partner molecules on other cells thereby
triggering adhesive and/or signalling events. These carbohydrate binding partners
are called lectins [5]. Thanks largely to the Consortium for Functional Glycomics
(CFG) (which was funded by the US National Institutes of Health to provide tools
and resources to the international research community to understand the role of
carbohydrate-protein interactions), scientists from all disciplines can readily access
information pertaining to how surface carbohydrates and complementary lectins on
opposing cell surfaces mediate cell-to-cell recognition. Thus the CFG website [2]
provides a rich source of information and data which facilitates the engagement
of researchers, unfamiliar with carbohydrates, with experts working in the field of
glycobiology. Figure 2 illustrates several of the best understood biological interac-
tions where carbohydrate-lectin recognition plays a central role. The meaning of the
symbols used in the figure is explained in Fig. 2.

The tools of modern mass spectrometry have been crucial for unravelling the
carbohydrate mediated processes exemplified in Fig. 2 [6–10]. Mass spectrometry is
an enormously powerful tool for high sensitivity sequencing of complex carbohy-
drates. Its versatility permits the analysis of all families of glycopolymers. Moreover,
complex mixtures of glycoproteins are not a problem for mass spectrometric analysis.
Indeed, glycomic methodologies are capable of defining the carbohydrate sequences
constituting the glycocalyx of tissues or cells without the need for time consuming
purifications [11]. Glycomics research of the past decade, much of it supported by the
CFG, has yielded substantial quantities of public data which are facilitating world-
wide research addressing the roles of carbohydrates and lectins in complex systems
[2, 12].

We hope that those reading this article are now stimulated to learn more about
glycosylation and biological complexity. If this is the case, the CFG website is an
excellent place to start your journey [2]. To whet your appetite we end our article
with an introduction to an evolving story in glycobiology which has as its central
character a famous carbohydrate moiety called sialyl Lewisx (Fig. 2).

First identified in rat brain glycoproteins in the 1970s, this carbohydrate was
revealed, by the emerging glycomic strategies of the mid 1980s, to be present on
human white blood cells and enriched in cancer cells. A few years later the Selectins
were discovered. These constitute a lectin family that recognise sialyl Lewisx as their
primary ligand. The Selectins play pivotal roles in lymphocyte trafficking and recruit-
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Cell surface glycoprotein

High mannose N-glycan with 7 mannosyl
residues.

Lewisx O-glycan

Sialyl Lewisx O-glycan (6)

Sialylated O-glycan

FimH adhesin of type 1 pili assem-
bled into a fibrillar tip structure of
Uropathogenic E. Coli binds a high
mannose N-glycan (7)

Haemagglutinin receptor of Influenza
virus recognizes specifically a sialyl
residue in a sialylated glycan (8)

E-selectin recognizes specifically a Sialyl
Lewisx motif. (9)

Dendritic Cell-Specific Intercellular ad-
hesion molecule DC-SIGN recognizes
specifically a Lewisx motif. (10)

Symbols used in Fig. 2

Fig. 2 Glycan–lectin recognition is key to cell-to-cell communication
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ment of neutrophils to sites of inflammation. Their discovery energised the field of
glycobiology and spawned numerous biotech companies intent on developing new
anti-inflammatories and anti-cancer agents. The high hopes for glyco-therapeutics
that prevailed in the early 1990s continue to this day, but are now tempered by realism
i.e. it takes a very long time to understand the processes mediated by carbohydrate
recognition and even longer to develop effective therapies based on intercepting these
processes.

Very recently sialyl Lewisx has re-appeared in the headlines of both scientific
and lay articles. This is because of exciting discoveries concerning human repro-
duction [13]. Ultra-high sensitivity mass spectrometric analyses have now provided
the first molecular insights into the recognition processes occurring at the very start
of human life, when a single sperm first engages with the surface of a human egg.
This research has shown that multiple sialyl Lewisx sequences are attached to the
proteins constituting the jelly-like coat of the human egg, which is called the zona
pellucida. Remarkably the density of sialyl Lewisx moieties on the human egg is
orders of magnitude higher than on white blood cells, consistent with it playing a
pivotal role in sperm recognition [13]. Interestingly human sperm do not express any
of the known Selectins. Hence the race is now on to find the putative “Selectin-like”
molecule on sperm that binds to the sialyl Lewisx sequence on the human egg.
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Some Thoughts on the Ontogenesis
in B-Cell Immune Networks

Elena Agliari, Adriano Barra, Silvio Franz and Thiago Pentado-Sabetta

Abstract In this paper we focus on the antigen-independent maturation of B-cells
and, via statistical mechanics tools, we study the emergence of self/non-self discrim-
ination by mature B lymphocytes. We consider only B lymphocytes: despite this is
an oversimplification, it may help to highlight the role of B-B interactions otherwise
shadowed by other mechanisms due to helper T-cell signalling. Within a framework
for B-cell interactions recently introduced, we impose that, during ontogenesis, those
lymphocytes, which strongly react with a previously stored set of antigens assumed
as “self”, are killed. Hence, via numerical simulations we find that the resulting
system of mature lymphocytes, i.e. those which have survived, shows anergy with
respect to self-antigens, even in its mature life, that it to say, the learning process at
ontogenesis develops a stable memory in the network. Moreover, when self-antigen
are not assumed as purely random objects, which is a too strong simplification, but
rather they are extracted from a biased probability distribution, mature lymphocytes
displaying a higher weighted connectivity are also more affine with the set of self-
antigens, ultimately conferring strong numerical evidence to the first postulate of
autopoietic theories (e.g. Varela and Counthino approaches), according to which the
most connected nodes in the idiotypic network are those self-directed.
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Keywords Disordered statistical mechanics · Lymphocyte networks · Self/non-self
discrimination

1 Introduction

Immunology is probably one of the fields of science which is experiencing the
greatest amount of discoveries in these decades: As the number of experimental
works increases, the need for minimal models able to offer a general framework
where to properly locate experimental findings is a must for modelers interested in
this field.

The purpose of the immune system is to detect and neutralize molecules, or cells
(generically called antigens) potentially dangerous for the body, without damaging
healthy cells [1]. The humoral response performed by B lymphocytes consists in
analyzing the antigen, then the clone/s with the best matching antibody undergoes
clonal expansion and releases specific immunoglobulins, which, in turn, are able
to bind and neutralize pathogens. In order to achieve this goal, the immune system
needs an enormous number of different clones, each having a particular receptor
for antigens. As these receptors are generated at the genetic level randomly via
somatic mutation, the body may produce lymphocytes attacking not only dangerous
invaders (e.g. viruses), but also internal agents. The latter are referred to as self-
reactive lymphocytes, which, if not carefully checked, may induce autoimmunity, an
obviously unwanted feature.

In order to avoid auto-immunity, at least two mechanisms are thought to work:
B-cells are generated, and maturate, in the bone marrow, where they are exposed
to the so-called “negative selection rule”.1 More precisely, these lymphocytes are
made to interact with an available repertoire of self-antigens, namely molecules/cells
belonging to the host body, and those who are found to respond to them (so potential
autoimmune B-cells) are induced to apoptosis, in such a way that only B-cells unable
to attach to the available self survive2 and share the freedom of exploring the body
thereafter [1].

In fact, it is widely accepted that the bone marrow produces daily ∼107 B cells,
but only ∼106 are allowed to circulate in the body, the remaining 90 % undergo
apoptosis since targeted as self-reactive [21]: as shown for instance by Nemazee and
Burki [15], this depletion of the potential defense is due to the negative selection

1 We only stress here that there exist strong differences between B-cell maturation in the bone
marrow and T-cell maturation in the thymus [7, 12, 13]. Unlike TCR (T cell receptor), that evolved
to recognize characteristic patterns of pathogens, BCR (B cell receptor) is primarily diversified in
random fashion and has not evolved to recognize a particular structure. Therefore each B cell can
not discriminate self versus non self alone [9].
2 Strictly speaking, negative selection requires that newborn lymphocytes also display a non-null
binding strength with at least a self-antigen, probably to avoid antibodies completely cut off from
the host [10].



Some Thoughts on the Ontogenesis in B-Cell Immune Networks 73

(clonal deletion) of immature B-cells expressing self-reactive antibodies or too low
reactive ones.

As only a fraction of self-antigens are present into the bone marrow, self-reactive
lymphocytes not expressing specific receptors (BCR) against the available self are
allowed to circulate freely by this first security procedure. Hence, another mecha-
nism must act at peripherals levels (i.e. in the lymphonodes, spleen and liver). Indeed,
Goodnow was able to show experimentally [8] that these self-reactive lymphocytes
actually exist in the body but, instead of undergoing apoptosis, they experience anergy
in their responses, namely, under a proper stimulus, they do not respond. The main
strand for explaining anergy and the consequent ability for self/non-self discrimina-
tion is via helper double signalling [9], nonetheless other mechanisms are expected
to cooperate. Among these, collective features due to interactions among mature
B cells may play a role and shall be investigated here trough statistical mechanics
simulations.

The plan of the paper is as follows: in Sect. 2 we describe how the idiotypic network
is generated and its main features; in Sect. 3 we develop the first approach to ontogen-
esis modeling, where we arbitrarily label as “self” a given amount of randomly gener-
ated antigens and check the subsequent growth of the network made of lymphocytes
unable to attack these self-antigens. In Sect. 4 we develop an alternative approach,
where we remove the (biological unreasonable) hypothesis that self-proteins are ran-
dom objects and we deal with “correlated” self-antigens; impressively we find that
in the correlated case the final repertoire not only correctly avoids to attach self,
but also displays the peculiar topological structure suggested by Varela and cowork-
ers, namely that nodes with high weighted connectivity are all self-directed. Finally,
Sect. 5 contains discussions and comments on our results.

2 The Minimal Model

In this work we rely on the model introduced and developed in [2, 3], which achieves
a description of the B-cell network able to recover as “emergent properties” basic
facts such as low-dose tolerance, bell-shape response, memory features and self/non-
self discrimination. However, within that framework the ability of the system to
discriminate between self and non-self was recovered only at a cooperative level, in
agreement with Varela and Coutinho [11, 18, 20]: clones which poorly interact with
others are thought of as non-self-directed since they can easy respond to external
fields (roughly speaking are more approximable as single particles), while clones
which interact strongly and with a large number of other clones are thought of as
self-directed since they experience a deep quiescent signal from nearest neighbors,
which keeps them in a state of anergy. Here we want to move over and show that such
mechanism regulation stems from and works synergically with negative selection.

Before proceeding, we briefly summarize the main features characterizing the
interactions between B lymphocytes, ultimately leading to an idiotypic network; for
more details we refer to [2, 3].
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The system is made up of an ensemble of N different clones, each composed of
M identical lymphocytes; a given lymphocyte i , is then described by the dichotomic
variable σα

i = ±1, with α = 1, ..., M , and i = 1, ..., N , such that the value −1
denotes an anergic/absent state (low level of antibodies secretion) while the value
+1 a firing state (high level of antibodies secretion). The antibodies secreted by
a lymphocyte carry the very same idiotipicity expressed by the receptors of the
secreting B cell. A generic antibody is represented by a binary string of length L ,
encoding the expression of L epitopes.3 In order to check immune responses we
need to introduce the N order parameters mi as local magnetizations:

mi (t) = 1

M

M∑
α=1

σα
i (t). (1)

From the magnetizations mi ∞ [−1, 1], we can define the concentrations of the
firing lymphocytes belonging to the i th family as ci (t) ≈ exp[τ(mi (t) + 1)/2],
where τ = log M , (see e.g. [4, 19]). Further, we introduce the Hamiltonian H which
encodes the interactions among lymphocytes as well as the interactions between
lymphocytes and the external antigens:

H = H1 + H2 = −N−1
N ,N∑
i< j

Ji j mi m j − c
N∑
i

hk
i mi , (2)

where Ji j represents the coupling between clones i and j , while hk
i represent the

coupling between the clone i and a given antigen k (still represented by means of a
binary string of length L) presented to the system and whose concentration is tuned
by c.

The interaction matrix J and, similarly, the couplings h, are built up as follows
[2, 3]. Given two strings ξi and ξ j , representing the idiotipicity of two clones, their
μ-th entries are said to be complementary, iff ξ

μ
i √= ξ

μ
j so that the overall number

of complementary entries ci j ∞ [0, L] can be written as ci j = ∑L
μ=1[ξμ

i (1 − ξ
μ
j ) +

ξ
μ
j (1 − ξ

μ
i )]. Following biological arguments the affinity between two antibodies

is expected to depend on how much complementary their structures are, hence, we
introduce the functional

fα,L(ξi , ξ j ) ≈ [αci j − (L − ci j )], (3)

where α ∞ R+ quantifies the difference in the intensities of attractive and repulsive
contributes. Notice that fα,L(ξi , ξ j ) ∞ [−L , αL] provides a measure of how “affine”
ξi and ξ j are. When the repulsive contribute prevails, the two antibodies do not
match each other and the coupling among the corresponding lymphocytes Ji j (α, L)

3 The string length is assumed to be the same for any antibody following the fact that the molecular
weight for any immunoglobulin is accurately close to 15 × 104 [5].
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is set equal to zero, conversely, we take Ji j (α, L) = exp[ fα,L(ξi , ξ j )]/≤ J̃ ⇒α,L , being
≤ J̃ ⇒α,L the proper normalizing factor so to keep unitary the average coupling.

As mentioned above, the generic antigen presented to the system can be modeled as
well by means of a binary string ξk and the rules determining the interaction strength
between the i-th clone and the antigen are the same as for interaction between two
antibodies, hence leading to the coupling hk

i .
We finally recall that, from a statistical mechanics perspective, the Hamiltonian,

calculated for a given configuration of magnetizations {mi }i=1,...,N , represents the
“energy” pertaining to that configuration and, according to thermodynamic prescrip-
tions, the system spontaneously tries to rearrange in order to minimize it. Since
the coupling matrix is symmetric, it is possible to construct a dynamics satisfying
the detailed balance and relaxing to Maxwell-Boltzmann distribution [19]. In the
following this is realized using a standard Glauber single spin-flip dynamics.

We also stress that, as simulations with a realistic amount of clones are prohibitive
in terms of CPU time, we worked at smaller repertoire sizes and tested the robustness
of results trough finite-size-scaling analysis (see Fig. 1).

3 Random Ontogenesis

As we mentioned, during ontogenesis, those B-cells interacting strongly with self-
antigens undergo negative selection and are deleted. Here we mimic this process by
implementing the following learning rule: At the beginning, and once for all, NS

vectors are randomly drawn from a uniform distribution and stored as “self”. Then,
we extract sequentially and randomly (again from a uniform distribution) new strings
representing newborn lymphocytes and those which are able to bind strongly to at
least one self-antigen from the set NS are killed, otherwise they are retained to build
up the mature repertoire. The process is iterated until the size N for the repertoire is
reached.

The resulting system is therefore characterized by the parameters N , NS, L , α,
where the interaction ratio α is kept fixed and equal to α = 0.7 following biolog-
ical evidences [2] and we also fix the scaling between N and L as L = γ log N ,
according to bio-physical arguments [2]; here we choose γ = 3. As for NS , we take
it equal to a fraction of N . This allows to fulfill the relatively small survival proba-
bility for newborn B cells [21] and still retains a set of self-antigens vanishing with
respect to the whole set of possible antigens, i.e. NS/2L < exp(−L(log 2 − 1/γ )).
Of course, when NS = 0 the original model [2, 3] is recovered. Finally, the binding
between a newborn B and a self-antigen is considered to be strong if the number of
complementarities between the related strings is larger than 3L/4.

Once the repertoire has been created, external antigens are presented to it and
responses are checked. First, we test its ability in self/non-self discrimination by
presenting to the system a field composed only by self-antigens and measuring the
resulting magnetization. Indeed, we find that anergy to self is completely fulfilled
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Fig. 1 Left Distribution of the activated clones for an immune network at rest built up by N = 628
clones versus the amount of self-antigens used to generate the repertoire with antibodies made
of by strings of L = 11 epitopes. Right Finite size scaling of the system. Averaged response of
the network created trough a repertoire with L = 8, ..., 14 epitopes (keeping the fractions of the
present clones and self-antigens constant) against one (randomly chosen) antigen of the repertoire
itself. Coherently with the request that only a finite fraction of clones remains active increasing the
network size, the fit is obtained trough O(N−1) power (the fit with N x gives x ∼ −1.12)

Fig. 2 Left Fraction of the activated clones as a function of the antigens presented to the system: The
system is made up of by 3352 clones and 50 self-antigens. Right Averaged weighted connectivity
for different repertoires generated increasing the size of the experienced self NS at ontogenesis. For
the latter various degree of correlation a have been tested as explained by the legend. Here we fixed
N = 2Ns and γ = 3

(not shown in plots), for each experienced field made of by 1, .., NS self-antigens.
Conversely, when antigens presented do not belong to self, the fraction of the activated
clones grows as the number of antigens presented increases, as reported in Fig. 2
(left), eventually falling into a chronic activation state. This behavior can be easily
understood from the perspective of spin glasses, due to the analogy between the
system under study and a diluted random field model in the presence of a magnetic
field: at low temperature, it undergoes a first order phase transition for a critical value
of the external field [6, 14].

Furthermore, by enlarging the set of self-antigens NS (at fixed repertoire size N ),
the matching between a generic self-antigen and the mature repertoire gets sharper
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Fig. 3 Left The figure envisages the correlation between the weighted degree w of a node and its
(maximum) affinity fa with the strings stored as self. Notice that larger values of w correspond to
larger values of fa . Such correlation has been measured in terms of Spearman correlation coefficient
rs which has been represented in the inset as a function of a and N . The black star ∇ corresponds to
N = 5000 and a = 0.45, which are the parameters used for the main plot. Right Fraction of activated
clones as a function of a and for different sizes of the repertoire, as explained by the legend. The
response of the system is measured in the case a self-antigen (dotted lines) and a external, non-self
antigen (continuous line) is presented

so that only a small amount of highly affine clones is able to respond (see Fig. 1,
right).

4 Correlated Ontogenesis

Despite a certain degree of stochasticity seems to be present even in biological
systems [1], self-proteins are not completely random objects [16, 17]. In order to
account for this feature we now generate the repertoire of self-antigens according to a
probability distribution able to induce a correlation between epitopes of self-antigens.
Seeking for simplicity we adopt the following

Psel f (ξ
μ
i = +1) = (1 + a)/2, Psel f (ξ

μ
i = 0) = (1 − a)/2,

where a is a parameter tuning the degree of correlation: when a = 0 we recover the
unbiased situation described in the previous section, while increasing (decreasing)
a ∩ +1 (a ∩ −1) we move towards stronger correlation.

Figure 3 shows that the correlation between the weighted degree of a node and its
affinity with self is numerically confirmed, and turns out to be larger for intermediate
values of a. As a result, the system is expected to respond more strongly to non-self
antigens, consistently with an healthy behavior (see Fig. 3, right and Fig. 4, left).
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Fig. 4 Left the main plot shows the local immune response, in terms of clonal magnetization m,
versus the resulting field h due to the presentation of an antigen, either self (continuous line) and
non-self (dotted line). The clone considered for the measure of the system response is the one with
larger affinity with the string presented. Here we fixed N = 5000 and γ = 3. Moreover, several
degrees of correlation a for the stored self are considered, as shown by the legend. For any of
them there exists a value h∇, which typically works as upper bound for fields generated by self
agents and as lower bound for fields generated by non-self agents. Interestingly, at h∇ the resulting
magnetizations exhibit a gap mnon−self (h∇)−mself (h∇), which is shown in the inset as a function of
a and N . Right Examples of the resulting idiotypic network with a = 0.25, N = 200 and NS = N
(right) and NS = 2N (left)

5 Discussion

In this paper we investigated the effects of negative selection occurring during the
ontogenesis of B-cells. First we showed the ability of the system to develop memory
of the self experienced at ontogenesis, in such a way that cells self-directed behave
anergetically even in the mature repertoire. We also get a numerical confirmation
of Varela’s suggestions [18, 20], according to which nodes with high (weighted)
connectivity can be looked at as “self-directed”. Therefore, ontogenesis acts as a
learning process that, from one side, teaches to each single lymphocyte not to attack
the proteins seen during maturation, and on the other side induces a correlation among
idiotipicity yielding a possible regulatory role for the mature B-cell network. In this
way, Varela’s assumption is moved from a postulate to a physical consequence of a
correlated learning process.

In this process a fundamental requisite is that self-proteins are not purely random
object, but they share a certain degree of correlation. Here we introduce this bias
in the simplest way just to show the idea; more biological patterns can possibly be
implemented.

Future development should include T-helper interactions as well as an exploration
of the relation between the amount of stored self-antigens in ontogenesis and the
stability of the mature response against the number of encountered pathogens.

This research belongs to the strategy of exploration funded by the MIUR trough
the FIRB project RBFR08EKEV which is acknowledged.
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Mathematical Modeling of Cancer Cells
Evolution Under Targeted Chemotherapies

Marcello Delitala and Tommaso Lorenzi

Abstract This chapter focuses on selection and resistance to drugs in an
integro-differential model describing the dynamics of a cancer cell population
exposed to targeted chemotherapies. Mutations, proliferation and competition for
resources are assumed to occur under the cytotoxic action of targeted therapeutic
agents. The results obtained support the idea that cancer progression selects for
highly proliferative clones. Moreover, it is highlighted how targeted chemotherapies
might act as an additional selective pressure leading to the selection for the fittest,
and thus eventually most resistant, cancer clones.
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1 Introduction

Solid tumors can be seen as heterogeneous aggregates composed of cells carrying
different mutations, which compete for space and resources (e.g. oxygen and glucose)
and try to evade the predation exerted by the immune system and by therapeutic agents
[9].

The fitness of neoplastic clones (i.e. their ability to survive and reproduce) is
shaped by different selective pressures, which can vary from one organ to another
[7]. This implies that, depending on the environmental context, the same mutation
can be advantageous/deleterious/neutral (i.e. it can increase/decrease/not affect the
cellular fitness).

Tumor evolution usually privileges the selection of cells endowed by mutations
with high proliferative abilities. Even more, the exposure to chemotherapeutic drugs
may reinforce the selection for the fittest, and thus eventually most resistant, cancer
clones. As a result, as time goes by, a rapid evolution toward highly malignant
genotypic-phenotypic profiles can occur within tumor aggregates, which is likely
to be the main reason why targeted chemotherapeutic treatments may fail in curing
cancer.

An integro-differential model for the dynamics of cancer cells is proposed here,
which aims at highlighting those phenomena that play a key role in tumorigenesis,
focusing on the aspects related to tumor progression, intra-tumor heterogeneity and
response to targeted cytotoxic therapies. Such model can be viewed as a simplified
version of that developed in [2] and relies on the mathematical structures proposed
in [1, 10]. In more detail, the contents of this chapter are organized as follows:

Section 2 is devoted to outline the essential features of the biological phenomena
under consideration and to present the mathematical model.

Section 3 is meant to summarize the emerging phenomena highlighted by the
model. The results of numerical simulations are reported and related biological inter-
pretations are provided.

2 The Model

In this chapter, we focus on a sample of cancer cells characterized by heteroge-
neous genotypic-phenotypic profiles (i.e. different expression levels of the genes
involved in cancer progression and the related observable traits), exposed to Tar-
geted Chemotherapeutic Agents (TCAs, in the sequel).

Moving toward a mathematical formalization, we look at the sample as a popula-
tion structured by a continuous variable u ∈ U := [0, 1], standing for the genotypic-
phenotypic profile of the cells. Since we are interested, at this stage, in evolutionary
aspects, phenomena involving geometrical and mechanical variables are not under
consideration. The cell population is characterized by the function
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f = f (t, u) : [0, T ] × U → R
+,

where the time variable t is normalized with respect to the average life-cycle duration
of cancer cells and parameter T models the end time of observations. At any fixed time
t , the quantity f (t, u) du stands for the number of cells whose genotypic-phenotypic
profile belongs to the volume element du centered at u, normalized with respect to
the total number of cells inside the system at time t = 0.

Macroscopic gross variables can be computed through integration. In particular,
the total density of the population at time t is defined as:

n(t) :=
⎛

U
f (t, u)du. (1)

Cancer cells are exposed to the action of TCAs, considered as an additional
population structured by a continuous variable v ∈ V := U , which is related to the
genotypic-phenotypic profile of the cells that can be mainly recognized and attacked
by the curing agents. This additional population is characterized by the function

g = g(t, v) : [0, T ] × V → R
+;

considerations analogous to the ones drawn about function f hold for function g, as
well.

The biological phenomena of interest are modeled according to the assumptions
and the strategies below summarized. Mathematical details are close to the ones that
we have previously introduced in [2]. In fact, compared to the model developed there,
the one presented here can be seen, at least to a certain extent, as an essential and
simplified version, which is nevertheless able to catch some interesting emerging
behaviors.

2.1 Cell Mutations and Renewal

Net of cell renewal, mutations lead parent cells to generate daughter cells charac-
terized by different genotypic-phenotypic profiles. Since mutations usually lead to
small variations, we make use of a small parameter ε, measuring the average size of
such changes, and a parameter α, modeling the average probability for genotypic-
phenotypic modifications, to define a mutation kernel M (u, u∗; ε) as follows:

M (u, u∗; ε) :=
⎡⎣
⎤

αδ(u − (u∗ ± ε)) + (1 − 2α)δ(u − u∗), if ε < u < 1 − ε

αδ(u − (u∗ − ε)) + (1 − α)δ(u − u∗), if 0 ≤ u ≤ ε

αδ(u − (u∗ + ε)) + (1 − α)δ(u − u∗), if 1 − ε ≤ u ≤ 1,

where δ is the Dirac’s delta distribution. It is worth noting that kernel M has the
structure of a probability density.
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2.2 Cell Proliferation

In order to mimic the effects of cancer growth, we introduce a positive function
κ(u), which models the rate of cell proliferation net of apoptosis and it is assumed
to be sufficiently smooth as well as to have a maximum value κC . Cells proliferate
at different rates depending on the shape of function κ and the clones expressing the
most proliferating genotypic-phenotypic profiles duplicate at rate κC . It should be
noted that we are modeling mutations separately from proliferation. In fact, these
phenomena usually occur on different time scales and distinct parameters are required
to model the related frequencies.

2.3 Competition for Resources Between Cancer Cells

Cellular proliferation is hampered by the competition for resources. Therefore, we
assume that interactions can lead cancer cells to die at a rate defined by a positive
smooth function μ(u), whose maximum value is identified by parameter μC . Cells
die, due to lack of resources, at different rates depending on the shape of function μ.
The clones dying at rate μC are characterized by those genotypic-phenotypic profiles
endowing them with the weakest competitive abilities.

2.4 Competition Between Cancer Cells and Targeted
Chemotherapeutic Agents

Targeted chemotherapies are able to selectively kill cancer cells characterized by
specific genotypic-phenotypic profiles. The average effectiveness of TCAs is mod-
eled by a parameter μT , while a parameter θT is introduced as an average measure
of the cancer-therapy interaction selectivity.

To sum up, a 6 parameters model is defined, where all the parameters are positive
real numbers characterized by a well defined biological meaning:

∂

∂t
f (t, u) =

⎛
U
M (u, u∗; ε) f (t, u∗)du∗ − f (t, u)⎦ ︷︷ ︸

mutations and renewal

+ κ(u) f (t, u)⎦ ︷︷ ︸
cell proliferation

− μ(u) f (t, u)n(t)⎦ ︷︷ ︸
cell-cell competition

− μT f (t, u)

⎛
V

e−θT (v∗−u)2
g(t, v∗)dv∗

⎦ ︷︷ ︸
destruction due to TCAs

, (2)

which describes the net inlet of cells through the volume element du centered at u
at time t .
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With reference to TCAs, a detailed balance equation is not introduced to describe
the dynamics of g(t, v), which is supposed to be a given smooth function of its
argument.

3 Computational Results and Critical Analysis

This section summarizes numerical results obtained by solving two distinct initial
value problems linked to Eq. (2). Focusing on emerging behaviors, computational
analysis are addressed to study how the dynamics of f (t, u) is affected by the values
of some critical parameters, which are selected case by case with explorative aims.
In particular, simulations are meant to:

• enlighten the role played by the biological phenomena under consideration
within dynamics of cancer cells, with particular reference to progression and
heterogeneity aspects;

• reproduce the emergence of resistance to anti-cancer therapies and highlight the
controversial role that targeted chemotherapies can play in cancer development.

With this aim, given the expressions of the parameter functions, we numerically
solve the mathematical problems defined by endowing Eq. (2) with two different
definitions of functions g, corresponding to the case where TCAs are not inoculated
in the system or to the case where they are administered starting from time t = T/2,
as well as with a given initial condition f (t = 0, u), which mimics a sample where
cells mainly express the genotypic-phenotypic profiles corresponding to u = 0.15
and u = 0.85, at the beginning of observations. Standard fixed point arguments can
be used to prove that the Cauchy Problems here considered are well-posed in the
sense of Hadamard (i.e. the solution exists, it is unique and depends continuously on
the initial data).

The following considerations and assumptions hold along all simulations:

• We let genotypic-phenotypic changes to be small; thus, we set ε = 0.001.
• We arbitrarily define the proliferation rate κ(u) in such a way that the most prolif-

erating cells are characterized by four among the possible genotypic-phenotypic
profiles, i.e.

κ(u) = κC ⇐⇒ u ∈ {0.05, 0.25, 0.75, 0.95}.

• Since the most proliferating cancer cells need more resources to survive than the
others, we assume these cell to be prone to fail in the competition for resources.
For this reason, we let function μ to be proportional to function κ , i.e.

μ(u) = βκ(u), 0 < β < 1.
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• Function g is defined in such a way that inoculated TCAs are mainly able to act
against those cancer cells that express the genotypic-phenotypic profiles corre-
sponding to u = 0.25 and u = 0.75.

• Parameters α, μT and θT are set equal to suitable non-zero values selected with
exploratory aim and we fix T = 100.

3.1 Effects of Mutations and Proliferation in Absence
of Therapeutic Agents

We focus on the role played by mutation and proliferation phenomena in cancer
dynamics, considering the additional definition for g(t, v) that mimics a scenario
where TCAs are not inoculated. The results summarized by the left panel of Fig. 1
illustrate how, when ε is small, f (t, u) concentrates, across time, around the points
where κ(u) attains its maximum, i.e. u = 0.05, u = 0.25, u = 0.75 and u = 0.95.

Since intra-tumor heterogeneity is due to the presence, within the same tumor
aggregate, of cells expressing several genotypic-phenotypic profiles, these results
support the idea that a strong reduction in heterogeneity occurs, if mutations cause
small changes in the genotypic-phenotypic profiles. In fact, only cells endowed with
strong proliferative abilities can survive inside the sample, while weakly proliferative
mutants die out. Thus, we are led to the same conclusions drawn in [7]: cancer
progression selects for highly proliferative clones.

From an evolutionary perspective, the left panel of Fig. 1 also highlights how
branching patterns may arise in cancer dynamics, at least in those cases where, at the
beginning of observations, tumor cells mainly express some genotypic-phenotypic
profiles that are different from the most proliferating ones.

3.2 Controversial Role of Targeted Chemotherapeutic Agents

The following computational analysis are meant to deepen the role that TCAs can
play in cancer evolution. In particular, we make a comparison between the numerical
solutions obtained with the two expressions of g(t, v) that mimic the scenarios with
and without therapies.

Figure 2 shows how, if TCAs are inoculated in the system, the picks of f (t, u)

centered in u = 0.25 and u = 0.75 vanish over the time interval (T/2, T ], since,
in the case at hand, g(t, v) is assumed to be mainly concentrated in these points.
Moreover, the same figure highlights how f (T, 0.05) and f (T, 0.95) are greater in
the case with TCAs (solid lines) rather than in the case without therapeutic agents
(dashed lines).

The results summarized by Fig. 2 support the idea that, in those cases where
environmental conditions select for strong proliferative abilities and several sub-
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Fig. 1 Dynamics of f (t, u) in a small mutation regime (i.e. ε → 0). Left panel in absence of
therapeutic agents. Function f (t, u) concentrates, across time, around the points where κ(u) (i.e.
the proliferation rate of cells) attains its maximum. This result supports the idea that, in the limit
of small mutations, only cells endowed with strong proliferative abilities can survive inside the
sample. Right panel in presence of targeted chemotherapeutic agents delivered at t = 25. Function
f (t, u) concentrates around the points where κ(u) attains its maximum (i.e. u = 0.05, u = 0.25,
u = 0.75 and u = 0.95) over the time interval [0, 50], since we are letting ε → 0. However, due
to the fact that g(t, v) is mainly concentrated around point v = 0.25 and v = 0.75, the picks of
f (t, u) centered in u = 0.25 and u = 0.75 vanish over the time interval (50, 100]

populations of highly proliferative clones are found inside the system, if TCAs cause
the extinction of some sub-populations, the clonal expansion of cells in the other
ones is intensified.

These simulations should be interpreted as a virtual version of some classic early
experiments in evolutionary biology, which have been devoted to test whether the
exposure of a sample population to a selective force causes new mutations to occur
or selects for pre-existing mutants. The obtained results support the second case and
reinforce the considerations drawn in [3, 6–8], suggesting that TCAs may introduce
an additional selective pressure that reinforces the selection for the fittest clones. This
is a well known outcome of many pharmacotherapies that, unless they full eradicate
the mutated cells, generally fail in cancer treatment.
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Fig. 2 Comparison between the trend of f (t = 100, u) with no therapies (solid lines) and with
therapies (dashed lines), in a small mutation regime (i.e. ε → 0). Targeted chemotherapeutic
agents can select for the fittest genotypic-phenotypic profiles. In fact, if environmental conditions
favor the selection of strong proliferative abilities in such a way that multiple sub-populations of
highly proliferative clones are found inside the system (dashed lines), the inoculation of targeted
chemotherapies can cause the extinction of one or more sub-populations so that the clonal expansion
of cells in the other sub-populations is intensified (solid lines)

3.3 Critical Analysis

In this chapter we have proposed a simple mathematical model for the dynamics
of cancer cells exposed to targeted chemotherapeutic treatments, with the aim of
enlightening the causes for some emerging phenomena observed in tumor progres-
sion.

At first, we have analyzed the role that proliferation and mutations play in carcino-
genesis, under a regime of small genotypic-phenotypic changes. Then, still assuming
mutations to be small, we have examined the effects of targeted chemotherapeutic
agents.

The obtained results suggest that cancer progression selects for strong proliferative
cells, while targeted chemotherapies might act as an additional selective pressure,
leading to the selection for the fittest, and thus eventually most resistant, cancer
clones.

The same conclusions are obtained by other authors [4, 11] and support the devel-
opment of the so-called adaptive therapies, which are principally aimed at a stabi-
lization of tumor cells, instead of an unlikely full eradication [5].
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Traveling Waves Emerging in a Diffusive
Moving Filament System

Heinrich Freistühler, Jan Fuhrmann and Angela Stevens

Abstract Starting from a minimal model for the actin cytoskeleton of motile cells
we derive a spatially one dimensional model describing populations of right and
left moving filaments with intrinsic velocity, diffusion and mutual alignment. For
this model we derive traveling wave solutions whose speed and shape depend on
the model parameters and the type of alignment. We discuss possible wave profiles
obtained from analytical investigations as well as waves emerging in numerical sim-
ulations. In particular, we will explicitly comment on the observed wave speeds and
how they are related to the model parameters. Moreover, some particularly interest-
ing patterns being composed of several wave profiles are discussed in some detail.
Finally, we shall try to draw some conclusions for the full cytoskeleton model our
system had emerged from.

Keywords Cytoskeleton · Nonlinear waves · Reaction diffusion advection
equations

1 Motivation and Derivation of the Model

Understanding the mechanisms of actin driven cell motility is of great importance
for a variety of biological processes such as wound healing, metastasis of cancer,
immune response, and many others. In [3], a minimal, spatially one dimensional
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model for the actin cytoskeleton of a potentially motile cell at rest was proposed in
order to understand the polarization of the cytoskeleton upon some external stimulus
which might drive the resting cell into directed motion.

We deduced a system consisting of four hyperbolic conservation equations for the
densities of barbed (B) and pointed (P) ends of right (subscript r ) and left (subscript l)
actin filaments, respectively,

∂t Br (t, x) + ∂x (vB(t, x, a) Br (t, x)) = 0, (1)

∂t Bl(t, x) − ∂x (vB(t, x, a) Bl(t, x)) = 0, (2)

∂t Pr (t, x) + ∂x (vP (t, x, a) Pr (t, x)) = 0, (3)

∂t Pl(t, x) − ∂x (vP (t, x, a) Pl(t, x)) = 0, (4)

and a parabolic reaction diffusion equation for the actin monomer concentration

∂t a(t, x) − D ∂xx a(t, x) = R(t, x, a, Br , Pr , Bl , Pl). (5)

Each of the hyperbolic equations is coupled to the parabolic equation by the
dependence of the flux velocities vB and vP on the monomer density a. The reaction
diffusion equation in turn receives input from the conservation laws via the reaction
term describing the binding or release of monomers at polymerizing or depolymer-
izing filament ends.

Since in vivo, the cytoskeleton is permanently remodeled and filament tips are
subject to thermal fluctuations we now want to investigate the behavior of the hyper-
bolic part upon additional effects like diffusion and mutual alignment of filaments
while the monomer concentration is fixed to some specific value. Only upon includ-
ing these effects we can step beyond the very initial steps of cell polarization and ask
for aligned structures like stress fibers or lamellipodia.

To this end, let us assume constant parameters in the above model and a fixed
monomer density ā such that

vB(t, x, ā) = vP (t, x, ā) ∼ v̄. (6)

Moreover, we assume the filaments to be very short so that as an approximation we
can identify barbed and pointed ends of either orientation, right and left.

We end up with two densities, ur and ul , of filaments moving to the left or right,
respectively, at velocity v̄ which shall be put to one for simplicity. Their movement
is now governed by the particularly simple system

∂t ur + ∂x ur = ε∂xx ur (7)

∂t ul − ∂x ul = ε∂xx ul (8)

where we also allowed for the diffusion of filaments at a diffusion coefficient ε.
This can be interpreted as fluctuations of the rather small filaments in the crowded
environment inside a cell full of proteins and other obstacles. As ε takes small values,
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this parabolic system can be understood as a slightly but singularly perturbed version
of its hyperbolic limit which is obtained for ε = 0 and corresponds to the original
hyperbolic part.

Introducing the total density u = ur + ul and the polarization w = ur − ul and
allowing in addition for mutual alignment of the particles we can rewrite this into

∂t u + ∂x w = ε∂xx u (9)

∂t w + ∂x u = ε∂xx w + f (u, w). (10)

Here, the alignment term f describes the ability of particles moving in one direction
to reverse those with opposite direction of motion by mutual alignment.

Two families of alignment terms are considered which we will refer to as sub-
linear and superlinear type. For a given total density, say u = 1 for simplicity, the
prototypical examples take the forms

f (1, w) = αw
(
1 − w2

)
(sublinear) (11)

and

f (1, w) = αw
(
1 + ν w2 − (ν + 1)w4

)
(superlinear). (12)

2 Traveling Waves

In this section, we are going to deduce the existence of traveling wave solutions to
the system (9), (10) and discuss some of their properties. In physical terms, these
wave patterns correspond to fronts of filaments moving at constant velocity as they
are observed in lamellae of moving cells (cf. [6]). Particular emphasis will be put on
the possible wave velocities.

2.1 Traveling Waves for Two Reduced Problems

Before investigating the full problem we focus on a simple auxiliary problem. Let
us consider the hyperbolic equations

∂t u + ∂x w = 0 (13)

∂t w + ∂x u = f (u, w) (14)

which result from (9) and (10) upon formally sending ε to zero.
We are looking for solutions of the type u(t, x) = U (x−ct) and w(t, x) =

W (x−ct) with the wave profiles U and W and the constant wave velocity c. The
corresponding system of ordinary differential equations reads
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Fig. 1 Possible heteroclinic orbits for system (15), (16) in the W –U phase space. Yellow lines
denote the equilibria of the system, colored arrows represent possible orbits corresponding to
different velocities c

−cU ∞ + W ∞ = 0 (15)

−cW ∞ + U ∞ = f (U, W ). (16)

As possible equilibria we identify the zeroes of f which are

1. the non-polarized state W = 0 with constant total density U > 0 with equally
many right and left moving filaments corresponding to a non-polarized cell,

2. and the totally aligned states W = ±U corresponding to all filaments moving in
the same direction.

We only obtain wave profiles connecting any of the totally aligned state to the non-
polarized state or vice versa. The corresponding wave velocities c are only restricted
by the conditions c ≈= 0 and c ≈= ±1. Possible examples of such profiles appearing
as heteroclinic orbits in phase space are depicted in Fig. 1.

Passing from the hyperbolic problem (13), (14) to the full problem (9), (10) we
briefly consider the intermediate problem (13), (10) with a diffusion term only in
the equation for the polarization w. The system of traveling wave equations for this
problem reads

−cU ∞ + W ∞ = 0 (17)

−cW ∞ + U ∞ = εW ∞∞ + f (U, W ). (18)

This can be reduced to a single second order equation for W which in turn can be
written as a first order system consisting of two equations. We are thus dealing with
an effectively two dimensional phase space and can again find heteroclinic orbits
between the equilibria which translate into traveling waves for the corresponding
system of partial differential equations.
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Fig. 2 Precise dependence of the critical velocities c√ (upper branch) and c√ (lower branch) on
the value a := Fwε

Using a sublinear alignment term f , we find two critical wave velocities c√ > 1
and c√ < 1, determined by the parameters, which define the boundary between the
existence and non existence of monotone traveling wave profiles connecting one of
the fully polarized states W = ±U with the symmetric state (W = 0, U = Ū ),
similar to the minimal wave velocity for the Fisher-KPP equation (cf. [5]).

More precisely, there are monotone waves between a totally aligned and the
symmetric state exactly for velocities c satisfying

0 < |c| ≤ c√ or |c| ⇒ c√. (19)

Denoting by
Fw := ∂w f (Ū , 0)

the partial derivative of the alignment term with respect to the polarization, evaluated
at the non-polarized equilibrium W = 0, we find the critical velocities to behave like

c√ ∇ 1 + √
Fwε and c√ ∇ 1 − √

Fwε (20)

for small values of the product Fwε (Fig. 2).
We note that for the superlinear versions of the alignment term we also find such

critical velocities, say ĉ and č. However, for given parameters α and ε these satisfy
ĉ > c√ and č < c√. Moreover, the corresponding conditions to (19) are in that case
sufficient but not necessary anymore for the existence of monotone waves meaning
that these monotone waves might potentially exist also with speeds closer to one.
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2.2 Traveling Waves for the Full Problem

Returning to the question for traveling wave solutions to the full problem (9), (10) we
reduce the system of ordinary differential equations being satisfied by the traveling
wave profiles to the first order system

U ∞ = Z , ε Z ∞ = −c Z + V (21)

W ∞ = V, ε V ∞ = Z − c V − f (U, W ) (22)

with Z and V having been introduced as momentum variables.
For c ≈= ±1, system (15), (16) is the reduced system of this full problem in the

normally hyperbolic limit ε ∩ 0. According to the singular perturbation theory
developed by N. Fenichel in [2] and refined by P. Szmolyan in [4], we can thus assert
the existence of heteroclinic orbits connecting the totally aligned equilibria with the
non-polarized state or vice versa at least for sufficiently small diffusion coefficients
ε where the meaning of being sufficiently small depends on the wave speed c.

The full dynamical system cannot be reduced to an effectively two dimensional
problem. We therefore cannot exclude the possibility of further heteroclinic orbits
connecting both totally aligned states with one another while passing through the
symmetric state W = 0 at momenta Z and V being non zero. In the simulations
described in the following section we will indeed find this type of wave profiles.

3 Traveling Waves Found by Simulations

In this section, we will first discuss which types of traveling wave profiles can be
found in the simulations and which wave speeds actually do occur.

3.1 Typical Wave Patterns

The easiest wave pattern consists of a single traveling front connecting two equilibria.
Given the model parameters and having chosen a wave velocity we can deduce the
wave pattern by integrating the system of ordinary differential equations and plugging
the result into the simulations as initial condition.

In doing so we observe that the system does not stick to the initial data but selects
a wave profile with a distinct velocity which only depends on the model parameters.

In particular, it was not possible to find any parameter setting and initial conditions
leading to oscillating wave profiles. As is well known for Fisher-KPP like equations
(cf. [5]), these non-monotone fronts seem to be unstable.

In analogy to the patterns obtained by gluing together different wave profiles we
observe two types of solutions which typically emerge as long time behavior. Both
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Fig. 3 Typical initial conditions (left) and the traveling wave profiles emerging from them (right).
Top Pattern with a single hump and one wave profile moving to each direction, bottom pattern with
two traveling wave profiles per direction. In the emerging patterns, in the zoom boxes, the traveling
wave profiles of the right moving waves are shown in detail. Note that the pictures of the initial data
show only a small region in the center of the domain

of them are characterized by a complete depletion of filaments in the center of the
domain and by symmetric equilibria to the far left and to the far right.

Which of these profiles emerges depends on the type of initial conditions. One of
these solutions consists of one hump traveling in either direction whereas the second
type has two humps per direction—one being totally left aligned, the other one totally
right aligned. The two typical initial conditions and the emerging wave patterns are
shown in Fig. 3.

Very similar patterns with only one hump moving in only one direction can be
observed if the initial data are chosen to by asymmetric.

Let us finally note that the steepness of either traveling wave profile increases with
its velocity. Moreover, the profiles are significantly steeper if the alignment term is
superlinear as compared to the sublinear version.

3.2 Observed Wave Velocities Depending on the Parameters

The first thing to note is that we were not able to find a combination of parameters and
initial data leading to a stable wave profile of velocity |c| < 1. In fact, the observed
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traveling waves with the non-polarized equilibrium (W = 0, U1 > 0) as one of their
asymptotic states have velocities whose absolute value is at least c√. The absolute
values of the velocities of the wave profiles connecting two totally aligned states lie
between 1 and c√.

Concerning the dependence of the velocities on the parameters α and ε we observe
the following properties which are in good agreement with the predictions we made
for the auxiliary problem (13), (10).

1. For any alignment term f and for all observed wave profiles, the wave speed only
depends on the product αε rather than on both parameters individually.

2. For each type of f , we indeed find the absolute velocity |c| to behave like 1+→
αε

at small values of the product αε for waves connecting a totally aligned state and
the non-polarized state.

3. For given parameters, the superlinear alignment term leads to wave profiles which
are steeper and faster than those according to sublinear alignment.

4 Conclusion

In order to understand the effect of diffusion and mutual alignment of actin filaments
in a minimal model for the cytoskeleton we deduced a basic system of two parabolic
equations describing the motion of aligning filaments in one space dimension. For
this system, we found different types of traveling wave solutions, depending on the
type of alignment and the model parameters α (alignment strength) and ε (diffusivity
of the filaments).

In particular, we found solutions to the system that are composed of different
traveling waves and in some cases of additional diffusion profiles. These solutions
emerge from minor perturbations of the completely symmetric steady state describing
a non-polarized cell at rest which indicates that a small bias in the data can lead to
large fronts of filaments as in a cell during directed motion.

Moreover, we found that the velocities of the emerging wave profiles depended
on the system parameters and the alignment type in a predictable way.

Recalling the motivation of our model it seems promising to allow for diffusion
and alignment of filaments in our cytoskeleton model. We might then expect the
formation of fronts of total polarization of the cytoskeleton which can be interpreted
as the precursor of lamellipodial structures and actin waves as described in [6]. This
is a major challenge for the future as it requires to keep track of the connection
between the barbed and pointed end of each filament which should only be possible
by incorporating the filament length as an additional variable as it has been done in
[1], for instance.
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Homing to the Niche: A Mathematical Model
Describing the Chemotactic Migration
of Hematopoietic Stem Cells

Maria Neuss-Radu

Abstract It has been shown that hematopoietic stem cells migrate in vitro and in
vivo following the gradient of a chemotactic factor produced by stroma cells. In this
contribution, a quantitative model for this process is presented. The model consists of
chemotaxis equations coupled with an ordinary differential equation on the boundary
of the domain and subjected to nonlinear boundary conditions. The existence and
uniqueness of a local solution is proved and the model is simulated numerically. It
turns out that for adequate parameter ranges, the qualitative behavior of the stem
cells observed in the experiment is in good agreement with the numerical results.
Our investigations represent a first step in the process of elucidating the mechanism
underlying the homing of hematopoietic stem cells quantitatively.

Keywords Hematopoietic stem cells · Homing · Chemotaxis equations · Nonlinear
boundary conditions

1 Introduction

Stem cells are cells with the dual ability to self-renew and to differentiate into multiple
cell types. This means that, during the life span of an organism, somatic stem cells
give rise to non-self-renewing functionally mature cells, e.g. liver cells, muscle cells,
nerve cells, while maintaining a pool of primitive stem cells. Hematopoietic stem
cells (HSCs) are the origin of all myeloid/erythroid and lymphoid cell lineages. The
natural microenvironment for the HSCs is the stem cell niche in the bone marrow
consisting of, among others, stroma cells.
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Fig. 1 HSCs (white arrows) were initially seeded on the lower half of the Terasaki well (a). They
migrated within 2 h toward the stroma cells (black arrows) and established cell-cell contact with
the stroma cells (b, c). From [14]

HSCs are characterized by a rapid migratory activity and their ability to “home”
to their niche in the bone marrow. These properties are very important in the therapy
of leukemia, which consists mainly of two steps. The first step is a chemotherapy and
whole body irradiation to irradicate the patients hematopoietic system. The second
step is the transplantation of HSCs obtained from the mobilized peripheral blood of
a donor. After transplantation, HSCs find their way of their own accord into the stem
cell niche in the bone marrow. Upon homing, the HSCs have to multiply rapidly to
regenerate the blood system.

It is a crucial aim of research, to reduce the time necessary for regeneration,
a period in which the patient is missing an effective immune system. To achieve
this goal, the underlying mechanism of the homing process of the HSCs has to
be understood and mathematical models able to quantify this process have to be
formulated.

In [1] it was shown that HSCs migrate in vitro and in vivo towards a gradient of
the chemotactic factor SDF-1 ( stromal cell-derived factor-1) produced by stroma
cells. In [14] the experimental assay from Fig. 1 is used to investigate the migration
of the stem cells toward the stroma cells .

In this contribution, we describe the migration process observed in [14] quantita-
tively using a chemotaxis model adapted to our situation. The results presented here
are based mainly on the paper [7]. The mathematical model consists of a nonlinear
system of two coupled reaction-diffusion equations describing the evolution in time
and space of the concentration of stem cells and of the chemoattractant inside the
domain, together with an ordinary differential equation (ODE) defined on the part
of the boundary coated with stroma cells. This ODE describes the evolution of the
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stem cells which are attached to the stroma cells. The attachment and detachment
of the stem cells at the boundary as well as the production of the chemoattractant
by stroma cells are modeled by nonlinear boundary conditions involving the normal
fluxes of the stem cells and of the chemoattractant, as well as the concentration of
the attached stem cells.

The chemotaxis equations in the classical setting, i.e. with homogeneous Neumann
or Dirichlet boundary conditions, have been studied in a large number of papers, a
summary of which can be found e.g. in [5]. The solutions may exhibit singulari-
ties in finite or infinite time, see e.g. [6, 11]. These singularities model aggregation
processes which lead to the formation of α-functions in the cell concentration. How-
ever, in a special case, i.e. for properly chosen sensitivity functions, linear degradation
and suitable production of the chemoattractant, in [13] the existence of global weak
solutions was proven.

In our paper, similar sensitivity functions as in [13] are used. However, the nonlin-
ear consumption term for the chemoattractant and the nonlinear boundary condition
which is new in connection with the chemotaxis equations, require new ideas in
the study of the solutions. Here, the existence and uniqueness of a local solution is
proven.

The mathematical model formulated in this paper gives a contribution to the
quantitative modeling of the homing and engraftment of hematopoietic stem cells.
To our knowledge, it is the first model describing the stroma controlled chemotactic
migration of HSCs. The simulations in Sect. 4 show that for adequate parameter
ranges, the solutions reproduce the qualitative behavior observed in the experiment.
Thus, after identifying the relevant parameter of the model using experimental data,
we will be able to determine quantitatively the influence which single parameters or
combinations of parameters have on the behavior of the HSCs, and thus to provide
possibilities to shorten the time needed for homing.

2 Mathematical Model

Based on information from the experiment in [14] we set up the following math-
ematical model describing the chemotactic movement of HSCs, see also [12]. We
consider a domain β ∼ R

2 of class C1 representing the Terasaki well, see Fig. 2.
The boundary of the domain consists of two parts, ∂β = ν1 ∞ν2, with ν1 ≈ν2 = √
and ν2 being a closed subset. The boundary portion ν1 represents the part of the
boundary where the stroma cells are cultivated. We denote by ψ the outer unit normal
to the bounday ∂β. The unknowns of our model are the concentration of the stem
cells in the domain β denoted by s(t, x), the concentration of the chemoattractant
(SDF-1) denoted by a(t, x), and the concentration of the stem cells bound to stroma
cells at the boundary part ν1, denoted by b(t, x).

The evolution of the concentrations s(t, x), a(t, x) is described by the following
chemotaxis system
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Fig. 2 The domain β with
outer normal vector ψ. Stroma
cells are cultivated on the
boundary portion ν1. No cells
or chemoattractant can leave
the domain via ν2

∂t s = ≤ · (ε≤s − s≤χ(a)), in (0, T ) × β (1)

∂t a = Da⇒a − χ as, in (0, T ) × β (2)

together with the boundary conditions

− (ε∂ψs − sχ ∇(a)∂ψa) =
{

c1s − c2b, on (0, T ) × ν1
0, on (0, T ) × ν2

(3)

Da∂ψa =
{

β(t, b)c(x), on (0, T ) × ν1
0, on (0, T ) × ν2.

(4)

The evolution of the concentration b(t, x) is described by the ODE

∂t b = c1s − c2b, on (0, T ) × ν1 (5)

and b = 0 on (0, T ) × ν2. We also impose the initial conditions

s(0) = s0, a(0) = a0 in β, and b(0) = b0 on ν1. (6)

In our model, Eq. (1) describes the random migration of the HSCs, with random
motility coeffecient ε, as well as the directional migration in response to the spatial
gradient of the chemoattractant. Equation (2) describes the diffusion of the chemoat-
tractant and its consumption due to binding to the receptors expressed on the stem cell
membranes. The boundary condition (3) describes the attachment and detachment
of stem cells at the part of the boundary coated with stroma cells.

The ODE (5) describes the evolution of the bound stem cells due to the attachment
and detachment of stem cells at the boundary ν1.
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3 Existence and Uniqueness of a Weak Solution

The main result of this section is the existence and uniqueness of a weak solution of
the initial boundary value problem (1)–(6). The precise meaning of the concept of
weak solution, can be found in [7].

Theorem 1 Let the data of our model satisfy the assumptions given in [7], Section
2.1. Then, there exists T > 0 and a unique weak solution (s, a, b) of the sys-
tem (1)–(6). This solution is positive and has the additional regularity proper-
ties a ∩ L2(0, T ; H2(β)) ≈ C([0, T ]; H1(β)) ≈ L→(0, T ; L→(β)) and b ∩
C([0, T ]; L2(∂β)).

The proof of Theorem 1 consists of several steps. First, we cut off the concentration
s of stem cells in the nonlinear terms. Using a fixed point argument, we prove the
existence of a solution for the resulting system and afterwards, we show uniqueness
and positivity of this solution. Finally, we prove that the concentration of stem cells
in the cut-off system is bounded, so that this solution is the solution of our original
system as well. For a detailed proof, see [7], Theorem 1.

4 Numerical Results

In this section, we present numerical simulations for our model (1)–(6). The tool
kit Gascoigne, see www.gascoigne.de, is used. The simulation is realized on the
rectangle (0, 1, 5) × (0, 1) with a grid with 129 × 65 nodes.

The stroma cells are concentrated on the right boundary (x1 = 1, 5) where they
are mainly distributed in three clusters. A precise description of the distribution of
stroma cells and of the function β(t, b) in the production rate of the chemoattractant is
given in [7]. For the simulation, we consider a linear sensitivity function χ(a) = 10a.
We choose as initial conditions a0 = 0, b0 = 0 and

s0(x1, x2) =
{

(1 + cos (5π(x1 − 0, 4))) sin(πx2) for 0, 2 ∗ x1 ∗ 0, 6
0 otherwise,

See also Fig. 3. The Figs. 4, 5, and 6 describe the time evolution of the solution
components s and b.

5 Discussion

In this contribution, we give a quantitative model for the movement of HSCs in
chemotactic gradients, based on the experimental results from [14], in a close col-
laboration with the stem cell research group of Prof. Ho (Medical Clinic, University

www.gascoigne.de
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Fig. 3 Initial concentration of the stem cells s0
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Fig. 4 The free and bound stem cells s and b at time t = 10
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Fig. 5 The free and bound stem cells s and b at time t = 45

of Heidelberg). This is a first step in the process of elucidating the mechanism under-
lying the homing of HSCs quantitatively. Methods enabling us to control the homing
process, the motility and motion of stem cells are highly valuable for medical rea-
sons. In the therapy of some forms of leukemia the ability of HSCs to home into
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Fig. 6 The free and bound stem cells s and b at time t = 100
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Fig. 7 Variation in time of the position of the maximum of the HSCs’ concentration. The x1-
coordinate is plotted. Due to the symmetry of the problem the x2-coordinate is constant, equal to
0.5. The jump in the position of the maximum, seen after 438 time steps, is due to the accumulation
of stem cells at the boundary x1 = 1, 5 and the formation of the absolute maximum at the boundary

their niche in the bone marrow is of utmost importance for the regeneration of the
blood system. It is a crucial aim to reduce the time necessary for regeneration, and
thus the risk for the patient and the costs for the health system.

So far, the mechanisms and specific molecules involved in the homing process
are still not fully understood. However, there is evidence that human CD34+/38−
stem cells are attracted by stromal cell-derived factor-1 (SDF1), a chemoattractant
produced by bone marrow stromal cells, see [1, 14].

The mathematical modelling may help to order the achieved experimental results
and to pose structured questions to the experimentalists. It played already a substantial
role in designing experiments by suggesting and selecting possible factors and mech-
anisms, which are important for a quantitative description. E.g. for our model, the
random motility coefficient and the chemotactic sensitivity are two important para-
meters. Whereas the random motility coefficient can be measured directly, e.g. by
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measuring migration in a uniform concentration of the chemoattractant, the chemo-
tactic sensitivity is difficult to measure directly. With the help of our model, we can
determine numerically if the chemotactic sensitivity and the migration velocity of
the HSCs are correlated. In case of a strong correlation, an experiment for measuring
the migration velocity has to be designed. For the example considered in Sect. 4, the
migration velocity can be measured by the slope of the position of the maximum of
HSCs’ concentration with respect to time, see Fig. 7.

Experimental research, taking into account results of our modelling and simula-
tions, are just going to provide the data needed for the calibration. After calibration
the model can be used for computer experiments. Furthermore, we remark that the
model derived here is representing a larger class of systems modelling spread in
space and time controlled by processes on the boundary.
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Abstract Delay differential equations are widely adopted in life sciences: including
delays explicitly in mathematical models allows to simulate the systems under inves-
tigation more accurately, without the use of auxiliary fictitious compartments. This
work deals with Delay Differential Equation (DDE) models exploited in the specific
framework of the glucose-insulin regulatory system, and a brief review of the DDE
models available in the literature is presented. Furthermore, recent results on the
closed loop control of plasma glycemia, based on DDE models of the individual
glucose-insulin system are summarized. Indeed, DDE models revealed to be partic-
ularly suited to simulate the pancreatic insulin delivery rate, thereby allowing to treat
in a unified fashion both Type 1, where no endogenous insulin release is available,
and Type 2 diabetic patients, where the exogenous insulin administration adds up to
the endogenous insulin production.
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1 Introduction

Diabetes Mellitus comprises a group of metabolic diseases characterized by
hyperglycemia. The chronic hyperglycemia of diabetes is associated with long-
term damage, dysfunction, and failure of different organs, especially eyes, kidneys,
nerves, heart, and blood vessels. Patients with diabetes have an increased incidence
of atherosclerotic cardiovascular, peripheral vascular, and cerebrovascular diseases.
Diabetes a very high incidence: the number of diabetic patients is expected to double
by the year 2030, compared to 2000 data [1]. Hence, diabetes management has a
heavy impact on many national public health budgets.

In a healthy person, the blood glucose is maintained between 3.9 and 6.9 mmol/L
by means of a complex control system which ensures a balance between glucose
entering the bloodstream after liver gluconeogenesis and intestinal absorption fol-
lowing meals, and glucose uptake from the peripheral tissues. This balance is reg-
ulated mainly by the insulin, a hormone produced by the β-cells of the pancreas
when properly stimulated by the level of plasma glycemia: indeed, insulin enhances
the glucose uptake in the muscles and the adipose tissues as well as it promotes the
stocking of circulating glucose in excess to the liver.

A pathological increase in blood glucose concentration (hyperglycemia) results
from defects in insulin secretion, insulin action, or both. In case of an absolute defi-
ciency of insulin secretion, caused by an autoimmune destruction of the pancreatic β

cells, Type 1 diabetes occurs: these patients require exogenous insulin administration
for survival. On the other hand, in case of hyperglycemia caused by a combination of
resistance to insulin action and inadequate compensatory insulin secretory response,
Type 2 diabetes occurs: these patients have therefore insulin resistance and usually
also a relative (rather than absolute) insulin deficiency, in the face of increased levels
of circulating glucose.

The basic therapeutic procedure for diabetes is the exogenous administration of
insulin. This compensation could be accomplished by means of a variety of schemes,
depending on the a priori knowledge of the patient’s glucose-insulin homeostasis
and on the technology available for actuating the designed control law. In most
widespread cases, glucose control strategies are mainly actuated by subcutaneous
administration of insulin, with the dose adjusted by the patients themselves, on the
basis of capillary plasma glucose concentration measurements. On the other hand, a
real-time closed-loop control scheme would require an algorithm that provides the
proper dose of the hormone independently of any action on the patient, and is robust
with respect to the many sources of perturbation of the glucose-insulin system like
meal ingestion, physical exercise or trivially, malfunctioning of the artificial pancreas
devices. To this aim, the use of a mathematical model of the patient’s glucose-
insulin system would allow to exploit individual optimal strategies to synthesize the
exogenous insulin administration. Clearly, the more accurate the model, the more
efficient will the control law be.

The modeling of the glucose-insulin system is an appealing and challenging topic
in biomathematics and many different models have been presented in the last decades



DDE Models of the Glucose-Insulin System: A Useful Tool for the Artificial Pancreas 111

(see e.g. [2, 3] and references therein). Section 2 provides a brief review on Delay
Differential Equation (DDE) models of the glucose-insulin system, and aims to moti-
vate the reason because so many DDE models appeared in the literature along the
past decade; Sect. 3 presents recent results on DDE-model-based control laws for the
artificial pancreas, focusing on the state of the art, main results obtained and future
developments.

2 DDE Models of the Glucose-Insulin System

Most of the available glucose-insulin models are strongly related to the experimental
framework they want to replicate and can be roughly split into two main branches:
the ones concerning short period experiments like, e.g., the IntraVenous/Oral Glu-
cose Tolerance Test (IVGTT/OGTT), that last no more than 5/6 h, and the others
related to long period experiments, mainly concerning the glucose/insulin ultradian
oscillations, that usually last 24 h.

2.1 Short Period DDE Models

As far as short period experiments are concerned, models have been proposed mainly
with the purpose of estimating the individual insulin sensitivity of tissues in order
to predict a possible diabetes progression. In this framework, the mostly used model
in physiological research of the glucose metabolism is the Minimal Model [4, 5],
proposed for the interpretation of the IVGTT. It consists of three coupled ordinary
differential equations, one for the insulin and two for the glucose dynamics, modeling
the apparent delay of insulin action on the insulin-dependent glucose uptake by
means of an auxiliary remote compartment. The Minimal Model played a crucial
role in modeling the glucose-insulin system, mainly because it provided the insulin
sensitivity as a combination of the model parameter, thus coming out as a by-product
of the model identification procedure. However, some criticisms have been raised
in the last decade, mainly related to the mathematical coherence of the model (the
coupled equations do not ensure bounded solutions, nor a steady-state equilibrium)
and to the lack of apparent validity besides the IVGTT experimental framework.

First DDE models of the glucose-insulin system have been actually proposed to
overcome these drawbacks. In [6] the Authors deleted the remote compartment in
the glucose dynamics and introduced a distributed delay for the glucose-dependent
Insulin Delivery Rate (IDR). Besides being mathematically coherent and more ver-
satile to different sets of experiments apart from the IVGTT, such a DDE model has
also been validated on real data and, moreover, it provides the insulin sensitivity by
the estimate of a single parameter. Thereafter, there has been a widespread develop-
ment of DDE models, which revealed to be particularly suitable to replicate the IDR.
For instance families of DDE models have been proposed, where general delays are
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introduced both in the insulin action on tissue glucose uptake and in the glucose
action on pancreatic insulin secretion, [7, 8].

Despite the development of different DDE models of the glucose-insulin system,
they have not been adopted in a model-based framework for the artificial pancreas,
since [9]. This is because most of the efforts in this research area have been mainly
devoted to Type 1 diabetic patients, in whom the absence of a pancreatic IDR moti-
vates urgent research efforts in closed-loop exogenous insulin infusion therapies, and
weaken the necessity of preferring DDE models instead of ODE ones. On the other
hand, the ability of time-delay systems to better model the endogenous IDR makes
it so that DDE-model-based approaches could reveal to be very effective for treating
the much more prevalent category of Type 2 diabetic patients.

Below are reported the equations of a DDE model recently exploited for theoretical
research in artificial pancreas [10]

dG(t)

dt
= −Kxgi G(t)I (t) + Tgh

VG
,

dI(t)

dt
= −Kxi I (t) + TiGmax

VI
f (G(t − τg)), f (G) = ( G

G∗ )γ

1 + ( G
G∗ )γ

. (1)

where G(t), [mM] and I (t), [pM], denote plasma glycemia and insulinemia. Kxgi,
[min−1 pM−1], is the rate of glucose uptake by insulin-dependent tissues per pM of
plasma insulin concentration; Tgh , [min−1 (mmol/kgBW)], is the net balance between
hepatic glucose output and insulin-independent zero-order glucose tissue uptake;
VG and VI , [L/kgBW], are the apparent glucose and insulin distribution volume;
Kxi , [min−1], is the apparent first-order disappearance rate constant for insulin;
TiGmax , [min−1(pmol/kgBW)], is the maximal rate of second-phase insulin release;
τg , [min], is the apparent delay with which the pancreas varies secondary insulin
release in response to varying plasma glucose concentrations; γ is the progressivity
with which the pancreas reacts to circulating glucose concentrations and G∗, [mM],
is the glycemia at which the insulin release is half its maximal rate.

Mathematical coherence has been proven in [8], where the model has been shown
to provide positive and bounded solutions, and is endowed with a unique asymp-
totically stable equilibrium point (for basal glycemia and insulinemia). Sufficient
conditions are also given for global stability, that has been investigated in further
papers [11, 12].

2.2 Long Period DDE Models

Long-term models of the glucose-insulin system are mainly motivated to reproduce
the phenomenon of sustained, apparently regular, long period oscillations of glycemia
and insulinemia, known as ultradian oscillations. A pioneering work in such a frame-
work has been the paper of Sturis et al. in 1991 [13], a sixth order nonlinear ODE
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model according to which the Authors proposed a plausible mechanism for the
genesis of the oscillations, suggesting they could originate from the glucose-insulin
reciprocal interaction without postulating an intra-pancreatic pacemaker for their
existence. In fact, the model presents two delays, both realized by means of addi-
tional fictitious compartments: one delay is associated to the suppression of glucose
production by insulin (two-compartment model for the insulin kinetics), while the
other is related to the effect of insulin on glucose production (four compartment
model for the glucose kinetics). The model of Sturis et. al. has been the starting point
for many further DDE models, aiming to replicate the occurrence of long period
oscillations as coming from a Hopf bifurcation point (see, e.g. [14–18]). It has to
be stressed that though the model of Sturis et. al. and its DDE versions have been
used, especially in recent years, to study the effect of pulsatile insulin profiles in
(pre)-diabetic patients [19–23], to the best of the authors’ knowledge, they have not
yet been adopted to synthesize a model-based control law for insulin therapy.

3 DDE Model Based Control

First results on DDE-model-based control of the glucose-insulin system can be found
in [9, 24], where the DDE model described in (1) was considered for a possible intra-
venous (iv) administration of the insulin therapy. To this aim the insulin equation in
(1) is endowed with an additive control input u(t). Compared to the usual subcuta-
neous insulin injection, the use of iv insulin administration, delivered by automatic,
variable speed pumps provides a wider range of possible strategies and ensures a rapid
delivery with negligible delays. As a matter of fact, control algorithms based on iv
insulin administration are directly applicable so far only to problems of glycemia
stabilization in critically ill subjects, such as in surgical intensive care units after
major procedures.

In [9, 24] the input-output linearization with delay cancelation is achieved, by
means of suitable inner and outer feedback control laws, with guaranteed internal
stability. In particular, a reliable, causal state feedback which allows to reduce a high
basal plasma glucose concentration to a lower level, according to a smooth reference
glucose trajectory Gref(t), is designed with:

u(t) = S(G(t), I (t), G(t − τg)) − v(t)

Kxgi G(t)
(2)

where

S(G(t), I (t), G(t − τg)) = −Kxgi I (t)

⎛
−Kxgi I (t)G(t) + Tgh

VG

⎡
(3)

−Kxgi G(t)

⎛
−Kxgi I (t) + TiGmax

VI
f (G(t − τg))

⎡
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and v(t) = G̈re f (t) + Re(t), with R ∈ R
1×2 a matrix such that

H =
⎣

0 1
0 0

⎤
+

⎣
0
1

⎤
R (4)

has prescribed eigenvalues with negative real part and e(t) = Z(t) − Zref(t), with

Z(t) =
⎣

z1(t)
z2(t)

⎤
=

⎦
G(t)

−Kxgi G(t)I (t) + Tgh
VG

]
, Zref(t) =

⎣
Gref(t)
Ġref(t)

⎤
(5)

The glucose reference signal to be tracked, Gref(t), is supposed to be bounded, twice
continuously differentiable, with bounded first and second derivatives. Such a closed-
loop control law ensures input-to-state stability of the closed loop error system with
respect to disturbances occurring in the insulin dynamics, such as insulin actuator
malfunctions.

The main drawback concerns the necessity to exploit both glucose and insulin
measurement at the present and at a delayed time: insulin measurements are slower
and more cumbersome to obtain, more expensive, and also less accurate than glucose
measurements. A need exists, therefore, to design a control law avoiding real-time
insulin measurements. To this aim, in order to close the loop by means of only glucose
measurements, a state observer for the DDE system (1) has been proposed in [25, 26].
By suitably exploiting the state observer theory for nonlinear time delay systems (see
[27]), the observer equations for the estimates of glycemia and insulinemia , Ĝ(t),
and Î (t) respectively, are given by

⎦
dĜ(t)

dt
dÎ (t)

dt

]
=


 −Kxgi Ĝ(t) Î (t) + Tgh

VG
−Kxi Î (t) + TiGmax

VI
f
(
Ĝ(t − τg)

) + u(t)


 + Q−1(Ĝ(t), Î (t))W (G(t) − Ĝ(t)),

(6)

where Q−1 ∈ R
2×2 is the inverse matrix of the Jacobian of the observability map

(see [28]), here given, for

⎣
x1
x2

⎤
∈ R

2, by

⎦
x1

−Kxgi x1x2 + Tgh
VG

]
. The gain matrix

W ∈ R
2×1 is chosen in order to assign suitable eigenvalues to matrix Ĥ , defined by

means of the Brunowski pair (Ab, Cb) as

Ĥ = Ab − WCb, where Ab =
⎣

0 1
0 0

⎤
, Cb = [

1 0
]
. (7)

In order to close the loop from the observed state, the control law (2)–(5) suitably
exploits the estimates Ĝ and Î as follows

u(t) = S(Ĝ(t), Î (t), Ĝ(t − τg)) − v(t)

Kxgi Ĝ(t)
, t ≥ 0 (8)
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with v(t) = G̈ref(t) + Rê(t), ê(t) = Ẑ(t) − Zref(t), and

Ẑ(t) =
⎣

ẑ1(t)
ẑ2(t)

⎤
=

⎦
Ĝ(t)

−Kxgi Ĝ(t) Î (t) + Tgh
VG

]
(9)

Such a control law has been proven to ensure the local convergence of the tracking
error to zero. Simulations that validated the theoretical results were also performed in
a virtual environment, showing that the results are robust with respect to a wide range
of parameter uncertainties or device malfunction. Additionally, the control law has
been further evaluated by closing the loop on a virtual patient, whose model equations
are different from the ones used to synthesize the control law [29]. That means: a
minimal model of the glucose-insulin system to design the insulin therapy, and a
different, more detailed, comprehensive model to test in silico the control scheme.
Such a chosen maximal model for the virtual patient, [30], has been recently accepted
by the Food and Drug Administration (FDA) as a substitute to animal trials for the
preclinical testing of control strategies in artificial pancreas.

Further developments on such a research line involve subcutaneous insulin admin-
istration, instead of intravenous infusions, that are usually provided under the direct
supervision of a physician. To this aim, in [31–33], the model Eq. (1) are coupled to
simple linear model of the insulin absorption from the subcutaneous depot, already
exploited with the aim of glucose control in [34]:

dG

dt
= −Kxgi G(t)I (t) + Tgh

VG
,

dI

dt
= −Kxi I (t) + TiGmax

VI
f
(
G(t − τg)

) + S2(t)

VI tmax,I
,

dS2

dt
= 1

tmax,I
S1(t) − 1

tmax,I
S2(t),

dS1

dt
= − 1

tmax,I
S1(t) + u(t), (10)

with tmax,I , [min], the time-to-maximum insulin absorption. The same ideas based
on the input/output feedback linearization are applied in this framework with, how-
ever, much more complicated formulas to synthesize the control law: preliminary
results can be found in [32] where the control law is synthesized by assuming a
complete knowledge of the state of the system (i.e. glucose and insulin real-time
measurements), and local convergence to zero of the tracking error G(t) − Gref(t)
is proven. In [33] the same convergence results are obtained by means of a state
observer for the intravenous and subcutaneous insulin values, and the convergence
to zero of the tracking error is proven in [31].
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Physics and Complexity: An Introduction

David Sherrington

Abstract Complex macroscopic behaviour can arise in many-body systems with
only very simple elements as a consequence of the combination of competition and
inhomogeneity. This paper attempts to illustrate how statistical physics has driven
this recognition, has contributed new insights and methodologies of wide application,
influencing many fields of science, and has been stimulated in return.

Keywords Complex systems · Spin glasses ·Hard optimization ·Neural networks ·
Econophysics · Conceptual transfers through mathematics

1 Introduction

Many body systems of even very simple microscopic constituents with very simple
interaction rules can show novel emergence in their macroscopic behaviour. When
the interactions (and any constraints) are also mutually incompatible (frustrated) and
there is macroscopically relevant quenched disorder, then the emergent macroscopic
behaviour can be complex (in ways to be discussed) and not simply anticipatable.
Recent years have seen major advances in understanding such behaviour, in recogniz-
ing conceptual ubiquities across many apparently different systems and in forging,
transferring and applying new methodologies. Statistical physics has played a major
part in driving and developing the subject and in providing new methods to study
and quantify it. This paper is intended to provide a brief broadbrush introduction.

A key part of these developments has been the combination of minimalist
modelling, development of new concepts and techniques, and fruitful transfers of
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the knowledge between different systems. Here we shall concentrate on a simple
paradigmic model, demonstrate its ubiquitousness among several often very different
systems, problems and contexts, and introduce some of the useful concepts that have
arisen.

2 The Dean’s Problem and Spin Glasses

The genesis for the explosion of interest and activity in complexity within the physics
community was in an attempt to understand a group of magnetic alloys known as
spin glasses1 [12]. But here we shall start with a problem that requires no physics to
appreciate, the Dean’s problem [8].

A College Dean is faced with the task of distributing N students between two
dormitories as amicably as possible but given that some pairs of students prefer to be
in the same dorm while other pairs want to be separated. If any odd number of stu-
dents have an odd number of antagonistic pairwise preferences then their preferences
cannot all be satisfied simultaneously. This is an example of frustration. The Dean’s
Problem can be modelled as a mathematical optimization problem by defining a cost
function H that is to be minimiized:

H = −
∑
(i j)

Ji jσiσ j ;σ = ±1 (1)

where the i, j label students, σ = ±1 indicates dorm A/B and the {Ji j = J ji }
denote the sign and magnitude of the inter-student pair preferences (+ = prefer).
We shall further concentrate on the situation where the {Ji j } are chosen randomly
and independently from a single (intensive) distribution P(J ) of zero mean2, the
random Dean’s Problem. The number of combinations of possible choices grows
exponentially in N (as 2N ). There is also, in general, no simple local iterative mode
of solution. Hence, in general, when N becomes large the Dean’s problem becomes
very hard, in the language of computer science NP-complete [6].

In fact, the cost function of the random Dean’s Problem was already introduced
in 1975 as a potentially soluble model for a spin glass; there it is known as the
Sherrington-Kirkpatrick (SK) model [14]. In this model H is the Hamiltonian (or
energy function), the i, j label spins, the σ their orientation (up/down) and the {J }
are the exchange interactions between pairs of spins.

In the latter case one was naturally interested in the effects of temperature and
of phase transitions as it is varied. In the standard procedure of Gibbsian statistical
mechanics, in thermal equilibrium the probability of a microstate {σ} is given by

1 Spin glasses were originally observed as magnetic alloys with unusual non-periodic spin ordering.
They were also later recognized as having many other fascinating glassy properties.
2 This restriction is not essential but represents the potentially hardest case.
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P({σ}) = Z−1 exp[−H{Ji j }({σ})/T ] (2)

where Z is the partition function

Z =
∑
{σ}

exp[−H{Ji j }({σ})/T ]; (3)

the subscript {Ji j } has been added to H to make explicit that it is for the particular
instance of the (random) choice of {Ji j }. Again in the spirit of statistical physics one
may usefully consider typical physical properties over realizations of the quenched
disorder, obtainable by averaging them over those choices.3

Solving the SK model has been a great challenge and has led to new and subtle
mathematical techniques and theoretical conceptualizations, backed by new com-
puter simulational methodologies and experimentation, the detailed discussion of
which is beyond the scope of this brief report. However a brief sketch will be given
of some of the conceptual deductions.

Let us start pictorially. A cartoon of the situation is that of a hierarchically rugged
landscape to describe the energy/cost as a function of position in the space of micro-
scopic coordinates and such that for any local perturbations of the microscopic state
that allow only downhill moves the system rapidly gets stuck and it is impossible to
iterate to the true minimum or even a state close to it. Adding temperature allows
also uphill moves with a probability related to exp[−δH/T ] where δH is the energy
change. But still for T < Tg the system has this glassy hindrance to equilibration,
a non-ergodicity that shows up, for example, in differences in response functions
measured with different historical protocols.

Theoretical studies of the SK model have given this picture substance, clari-
fication and quantification, partly by introduction of new concepts beyond those
of conventional statistical physics, especially through the work of Giorgio Parisi
[12, 13].

Let us assume that, at any temperature of interest, our system has possibly several
essentially separate macrostates, which we label by indices {S}. A useful measure
of similarity of two macrostates S, S∼ is given by their ‘overlap’, defined as

qSS∼ = N−1
∑

i

∞σi ≈S∞σi ≈S∼ . (4)

where ∞σi ≈S measures the thermal average of σi in macrostate S.
The distribution of overlaps is given by

P{Ji j }(q) =
∑
S,S∼

WSW ∼
Sδ(q − qSS∼), (5)

where WS is the probability of finding the system in macrostate S.

3 This is in contrast with traditional computer science which has been more concerned with worst
instances.
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In general, the macrostates can depend on the specific choice of the {Ji j } but for the
SK model the average of P{Ji j }(q) can be calculated, as also other more complicated
distributions of the qSS∼ , such as the correlation of pairwise overlap distributions for
3 macrostates S, S∼, S∼∼.

For a simple (non-complex) system there is only one thermodynamically relevant
macrostate and hence P(q) has a single delta function peak; at q = 0 for a paramagnet
(in the absence of an external field) and at q = m2 for a ferromagnet, where m is
the magnetization per spin. In contrast, in a complex system P(q) has structure
indicating many relevant macrostates.4 This is the case for the SK model beneath
a critical temperature and for sufficient frustration, as measured by the ratio of the
standard deviation of P(J ) compared with its mean. Furthemore, other measures of
the q-distribution indicate a hierarchical structure, ultrametricity and a phylogenic-
tree structure for relating overlaps of macrostates, chaotic evolution with variations
of global parameters, and also non-self-averaging of appropriate measures.

These observations and others give substance to and quantify the rugged landscape
picture with macrostate barriers impenetrable on timescales becoming infinite with
N . For finite-ranged spin glasses this picture must be relaxed to have only finite
barriers, but still with a non-trivial phase transition to a glassy state.

The macroscopic dynamics in the spin glass phase also shows novel and interesting
glassy behaviour,5 never equilibrating and having significant deviations from the
usual fluctuation-dissipation relationship.6

A brief introduction to the methodolgies to arrive at these conclusions is deferred
to a later section.

3 Transfers and Extensions

The knowledge gained from such spin glass studies has been applied to increasing
understanding of several other physically different systems and problems, via math-
ematical and conceptual transfers and extensions. Conversely these other systems
have presented interesting new challenges for statistical physics. In this section we
shall illustrate this briefly via discussion of some of these transfers and stimulating
extensions.

In static/thermodynamic extensions there exist several different analogues of the
quenched and annealed microscopic variables, {J } and {σ} above, and of the intensive
controls, such as T . Naturally, in dynamics of systems with quenched disorder the

4 The overline indicates an average over the quenched disorder.
5 There are several possible microscopic dynamics that leads to the same equilibrium/Gibbsian
measure, but all such employing local dynamics lead to glassiness.
6 Instead one finds a modified fluctuation-dissipation relation with the temperature normalized by
the instantaneous auto-correlation.
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annealed variables (such as the {σ} above) become dynamical, but also one can
consider cases in which the previously quenched parameters are also dynamical but
with slower fundamental microscopic timescales.7

3.1 Optimization and satisfiability

Already in Sect. 2, one example of Eq. (1) as an optimization problem was given
(the Dean’s Problem). Another classic hard computer science optimization problem
is that of equipartitioning a random graph so as to minimise the cross-links. In this
case the cost function to minimise can be again be written as in Eq. (1), now with the
{i} labelling vertices of the graph, the {Ji j } equal to 1 on edges/graph-links between
vertices and zero where there is no link between i and j , the {σi = ±} indicating
whether vertices i are in the first or second partition and with the frustrating constraint∑

i σi = 0 imposing equipartitioning. Without the global constraint this is a random
ferromagnet, but with it the system is in the same complexity class as a spin glass.

Another classic hard optimization problem that extends Eq. (1) in an apparently
simple way but in fact leads to new consequence is that of random K -satisfiability
(K -SAT) [11]. Here the object is to investigate the simultaneous satisfiability of many,
M , randomly chosen clauses, each made up of K possible microscopic conditions
involving a large number, N , of binary variables. Labelling the variables {σi } = {±1}
and writing xi to indicate σi = 1 and xi to indicate σi = −1, a K -clause has the
form

(yi1 or yi2 or . . .yiK ); i = 1, . . . M (6)

where the yi j are xi j or xi j . In Random K-Sat the {i j } are chosen randomly from the
N possibilities and the choice of yi j = xi j or xi j is also random, in both cases then
quenched. In this case one finds, for the thermodynamically relevant typical system,
that there are two transitions as the ratio α = M/N is increased in the limit N √ ≤;
for α > αc1 it is not possible to satify all the clauses simultaneously (UNSAT), for
α < αc1 the problem is satisfiable in principle (SAT), but for αc2 < α < αc1 it is
very difficult to satisfy (in the sense that all simple local variational algorithms stick);
this region is known as HARD-SAT. These distinctions are attributable to regions of
fundamentally different fractionation of the space of satisfiability, different levels of
complexity.

7 Sometimes one speaks of fast and slow microscopic variables but it should be emphasised that
these refer to the underlying microscopic time-scales. Glassiness leads to much slower macroscopic
timescales.
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3.2 K-Spin Glass

In fact, again there was a stimulating precursor of this K -SAT discovery in a “what-if”
extension of the SK model [3, 4] in which the 2-spin interactions of Eq. (1) are
replaced by K-spin interactions:

HK = −
∑

(i1,i2...iK )

Ji1,i2...iK σi1σi2 ....σiK (7)

in which the Ji1,i2...iK are again chosen randomly and independently from an intensive
distribution of zero mean. In this case, two different phase transitions are observed
as a function of temperature, a lower thermodynamic transition and a dynamical
transition that is at a slightly higher temperature, both to complex spin glass phases.
The thermodynamic transition represents what is achievable in principle in a situ-
ation in which all microstates can be accessed; the dynamical transition represents
the situation where the system gets stuck and cannot explore all the possibilities,
analogues of HARDSAT-UNSAT and SAT-HARDSAT.

The K -spin glass is also complex with a non-trivial overlap distribution function
P(q) but now the state first reached as the transitions are crossed has a different
structure from that found for the 2-spin case. Now

P(q) = (1 − x)δ(q − qmin) + xδ(q − qmax); (8)

in contrast with the SK case where there is continuous weight below the maximum
qmax . The two delta functions demonstrate that there is still the complexity of many
equivalent but different macrostates, but now with equal mutual orthogonalities (as
compared with the 2-spin SK case where there is a continuous range of overlaps of
the macrostates). This situation turns out to be quite common in many extensions
beyond SK.

3.3 Statics, Dynamics and Temperature

At this point it is perhaps useful to say a few more words about the differences
between statics/thermodynamics and dynamics in statistical physics, and about types
of micro-dynamics and analogues of temperature.

In a physical system one often wishes to study thermodynamic equilibrium,
assuming all microstates are attainable if one waits long enough. In optimization
problems one typically has two types of problem; the first determining what is attain-
able in principle, the second considering how to attain it. The former is the analogue
of thermodynamic equilibrium, the latter of dynamics.
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In a physical system the true microscopic dynamics is given by nature. However,
in optimization studies the investigator has the opportunity to determine the micro-
dynamics through the computer algorithms he or she chooses to employ .

Temperature enters the statistical mechanics of a physical problem in the standard
Boltzmann-Gibbs ensemble fashion, or as a measure of the stochastic noise in the
dynamics. We have already noted that it can also enter an optimization problem in a
very similar fashion if there is inbuilt uncertainty in the quantity to be optimized. But
stochastic noise can also usefully be introduced into the artificial computer algorith-
mic dynamics used to try to find that optimum. This is the basis of the optimization
technique of simulated annealing where noise of variance TA is deliberately intro-
duced to enable the probabalistic scaling of barriers, and then gradually reduced to
zero [10].

3.4 Neural Networks

The brain is made up of a very large number of neurons, firing at different rates and
extents, interconnected by an even much larger number of synapses, both excitory
and inhibitory. In a simple model due to Hopfield [7] one can consider a cartoon
describable again by a control function of the form of Eq. (1). In this model the neu-
rons {i} are idealised by binary McCullouch-Pitts variables {σi = ±1}, the synapses
by {Ji j }, positive for excitatory and negative for inhibitory, with stochastic neural
microdynamics of effective temperature Tneural emulating the width of the sigmoidal
response of a neuron’s output to the combined input from all its afferent synapses,
weighted by the corresponding activity of the afferent neurons.

The synapses are distributed over both signs, yielding frustration, and apparently
random at first sight. However actually they are coded to enable attractor basins
related to memorized patterns of the neural microstates {ξμ

i }; μ = 1, . . . , p = αN .
The similarity of a neural microstate to a pattern μ is given by an overlap

mμ = N−1
∑

i

∞σi ≈Sξ
μ
i . (9)

Retrieval of memory μ is the attractor process in which a system started with a small
mμ iterates towards a large value of mμ.

In Hopfield’s original model he took the {Ji j } to be given by the Hebb-inspired
form

Ji j = p−1
∑
μ

ξ
μ
i ξ

μ
j (10)

with randomly quenched {ξi }.8 For α less than a Tneural -dependent critical value
αc(Tneural) patterns can be retrieved. Beyond it only quasi-random spin glass minima

8 i.e. uncorrelated patterns.
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unrelated to the memorised patterns remain ( and still only for Tneural not too large).
However, other {Ji j } permit a slightly larger capacity (as also can occur for correlated
patterns).

Again the landscape cartoon is illustratively useful. It can be envisaged as one for
H{Ji j } as a function of the neural microstates (of all the neurons), with the dynamics
one of motion in that landscape, searching for minima using local deviation attempts.
The memory basins are large minima. Clearly one would like to have many different
retrievable memories. Hence frustration is necessary. But equally, too much frustra-
tion would lead to a spin-glass like state with minima unrelated to learned memories.

This cartoon also leads immediately to the recognition that learning involves
modifying the landscape so as to place the attractor minima around the states to be
retrieved. This extension can be modelled minimally via a system of coupled dynam-
ics of neurons whose state dynamics is fast (attempting retrieval or generalization)
and synapses that also vary dynamically but on a much slower timescale and in
response to external perturbations (yielding learning).

3.5 Minority Game

More examples of many-body systems with complex macrobehaviour are to be found
in social systems, in which the microscopic units are people (or groups of people
or institutions), sometimes co-operating, often competing. Here explicit discussion
will be restricted to one simple model, the Minority Game [1], devised to emulate
some features of a stockmarket. N ‘agents’ play a game in which at each time-
step each agent makes one of two choices with the objective to make the choice
which is in the minority.9 They have no direct knowledge of one another but (in the
original version) make their choices based on the commonly-available knowledge
of the historical actual minority choices, using their own individual stategies and
experience to make their own decisions. In the spirit of minimalism we consider
all agents (i) to have the same ‘memories’, of the minority choices for the last m
time-steps, (ii) to each have two strategies given by randomly chosen and quenched
Boolean operators that, acting on the m-string of binary entries representing the
minority choices for the last m steps, output a binary instruction on the choice to
make, (iii) using a personal ‘point-score’ to keep tally of how their strategies would
have performed if used, increasing the score each time they would have chosen the
actual minority, and (iv) using their strategy with the larger point-score. Frustration
is represented in the minority requirement, while quenched disorder arises in the
random choice of individual strategies.

Simulational studies of the ‘volatility’, the standard deviation of the actual minor-
ity choice, shows (i) a deviation from individually random choices, indicating corre-
lation through the common information, (ii) a cusp-minimum at a critical value αc of

9 The philosophy is that one gets the best price by selling when most want to buy or buying when
most want to sell.
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the ratio of the information dimension to the number of agents α = D/N = 2m/N ,
suggesting a phase transition at αc, (iii) ergodicity for α > αc but non-ergodic
dependence on the point-score initialization for α < αc, indicating that the tran-
sition represents the onset of complexity. This is reminiscent of the cusp and the
ergodic-nonergodic transition observed in the susceptibilities of spin glass systems
as the temperature is reduced through the spin glass transition.

Furthermore, this behaviour is essentially unaltered if the ‘true’ history is replaced
by a fictitious ‘random’ history at each step, with all agents being given the same false
history, indicating that it principally represents a carrier for an effective interaction
between the agents. Indeed, generalising to a D-dimensional random history informa-
tion space, considering this as a vector-space and the strategies as quenched D-vectors
of components {Rs,μ

i }; s = 1, 2, μ = 1, . . . , D in that space, and averaging over
the stochastically random ‘information’, one is led to an effective control function
analagous to those of Eqs. (1) and (10) with p replaced by α, now {ξi = (R1

i −R2
i )/2},

an extra multiplicative minus sign on the right hand side of Eq. (10), and also a
random-field term dependent upon the {ξi } and {ωi = (R1

i + R2
i )/2}. As noted, there

is an ergodic-nonergodic transition at a crtitical α, but now the picture is one of the
{ξi } as repellers rather than the attractors of the Hopfield model.10

The typical behaviour of this system, as for the spin glasses, can be studied
using a dynamical generating functional method [2], averaged over the choice of
quenched strategies, in a manner outlined below. The averaged many-body system
can then be mapped into an effective representative agent ensemble with memory and
coloured noise, with both the noise correlations and the memory kernel determined
self-consistently over the ensemble. Note that this is in contrast to (and corrects)
the common assumption of a single deterministic representative agent. The phase
transition from ergodic to non-ergodic is manifest by a singularity in the two-time
point-sign correlation function

C(t, t ∼) = N−1
∑

i

sgn(pi(t)sgn(pi(t∼) = ∞sgn(p(t)sgn(p(t∼)≈ens (11)

where the first equality refers to the many-body problem and the second its equiva-
lence in the effective agent ensemble.

4 Methodologies

For systems in equilibrium, physical observables are given by lnZ evaluated for the
specific instance of any quenched parameters, or strictly the generalized generating
function lnZ({λ}) where the {λ} are generating fields to be taken to zero after an

10 One can make the model even more minimal by allowing each agent only one strategy {ξi } which
(s)he either follows if its point-score is positive or acts oppositely to if the point-score is negative.
This removes the random-field term and also the cusp in the tabula rasa volatility, but retains the
ergodic-nonergodic transition [5].
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appropriate operation (such as ∂/∂λ) is performed. Hence the average over quenched
disorder is given by lnZ . One would like to perform the average over quenched
disorder explicitly to yield an effective system. However, since Z is a sum over
exponentials of a function of the variables, ln Z is difficult to average directly so
instead one uses the relation

lnZ = Limn√0 n−1(Zn − 1) (12)

and interprets the Zn as corresponding to a system whose variables have extra
‘replica’ labels, α = 1, ...n, for which one can then average the partition func-
tion, an easier operation, at the price of needing to take the eventual limit n √ 0.
The relevant ‘order parameters’ are then correlations between replicas

qαβ = N−1
∑

i

∞σα
i σ

β
i ≈T (13)

where ∞..≈T refers to a thermal average in the effective post-averaging system. This
order parameter is non-zero in the presence of frozen order, but more interestingly
(and subtly) also exhibits the further remarkable feature of spontaneous replica sym-
metry breaking, indicating complexity. After further subtleties beyond the scope of
this short introduction, there emerges an order function q(x); x ⇒ [0.1] from which
the average overlap function is obtained by

P(q) = dx/dq (14)

For dynamics the analogue of the partition function Z is a generating functional,
which may be written symbolically as

Zdyn =
∫ ∏

all variables, all times

δ(microscopic eqns. of motion) exp({λφ}) (15)

where theφ symbolize the microscopic variables and a Jacobian is implicit. Averaging
over the quenched disorder now induces interaction between epochs and integrating
out the microscopic variables results in the effective single agent ensemble formu-
lation, as well as emergent correlation and response functions as the dynamic order
parameter analogues of the static inter-replica overlaps, exhibiting non-analyticity at
a phase transition to non-ergodicity.

5 Conclusion

A brief illustration has been presented of how complex co-operative behaviour arises
in many body systems due to the combination of frustration and disorder in the micro-
scopics of even very simply formulated problems with very few parameters. Such
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systems are not only examples of Anderson’s famous quotation “More is different”
but also demonstrate that frustration and disorder in microscopics can lead to com-
plexity in macroscopics; i.e. many and complexly related differents. Furthermore, this
complexity arises in systems with very simple few-valued microscopic parameters;
complexity is not the same as complication and does not require it.

There has also been demonstrated valuable transfers between systems that appear
very different at first sight, through the media of mathematical modelling, conceptu-
alization and investigatory methodologies, a situation reminiscent of the successful
use of the Rosetta stone in learning an unknown language script by comparison with
another that carries the same message in a different format.

The perspective taken has been of statistical physics, but it must be emphasised
that the stimulation has been both from and to physics, since many of these complex
systems have interesting features in their microscopic underpinning that are richer
than those in the physics of conventional dictionary definition and provide new
challenges to the physicist.

Also of note is how a blue skies attempt to understand some obscure magnetic
alloys through soluble but, for the experimental alloys, unphysical modelling has led
to an explosion of appreciation of new concepts, understanding and application of
ideas and methologies throughout an extremely wide range of the sciences.
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The Language of Systems Biology

Marcello Delitala and Thomas Hillen

Abstract Systems Biology is an interdisciplinary approach to understand biologi-
cal processes that act on different scales. For example biochemical pathways steer
internal cell dynamics, which can lead to cell movement. Cell movement can lead to
cancer invasion and cancer invasion can lead to a disease that affects the whole body.
To understand such a process, a multiscale approach is needed which can bridge
the scales while retaining the complexity of the biological system. This approach is
available in applied mathematics where multiscale methods have a long history. The
language of Systems Biology is mathematics and it is on us to make use of these
exciting mathematical methods to help to understand biological systems.

Keywords System biology ·Multiscale modelling · Interdisciplinarity ·Biological
complexity

The first Kepler workshop in Heidelberg, May 16–20, 2011, has attracted a colorful
mix of presentations from biologists, system biologists and mathematicians. The very
interesting presentations were followed by round table discussions. It was curious
to observe that eventually each discussion would revolve around “systems biology”.
Some people would proudly claim that they are system biologists, while others were
hesitant to be associated with systems biology.

Many mathematicians consider systems biology to be just another name for math-
ematical modelling of biological systems. But there is more to it: systems biology
can be seen with the eyes of a historian. In early education, biologists enjoy a basic

M. Delitala (B)

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy
e-mail: marcello.delitala@polito.it

T. Hillen
Centre for Mathematical Biology, University of Alberta, Edmonton, ABT6G2G1, Canada
e-mail: thillen@ualberta.ca

M. Delitala and G. Ajmone Marsan (eds.), Managing Complexity, Reducing Perplexity, 131
Springer Proceedings in Mathematics & Statistics 67, DOI: 10.1007/978-3-319-03759-2_14,
© Springer International Publishing Switzerland 2014



132 M. Delitala and T. Hillen

curriculum in general biology. However, very quickly, they specialize into all kind of
biological fields, fragmented in several sub-disciplines. They become geneticists, or
molecular biologists, or cell physiologists, or zoologists, or botanists, or ecologists
etc. Each of these groups represents a certain natural scale, from molecules to genes
to organisms to animals to ecosystems. Each area has its own methods and techniques
and, very often, the borders between those areas are strict and interactions are quite
limited.

Several successes have been achieved in each of those fields, largely increasing
the knowledge and the understanding of many biological areas: nevertheless, the
integration and interpretation of data is still not sufficient to understand and catch the
global nature of the system. The complexity of the processes and properties of the
whole cannot be simply understood by diagrams of their mutual interconnections.

Now, the rapid development of genetics in the last 20 years caused a dilemma.
We all know that genes influence everything, the behavior of cells, the phenotype of
individuals and the interactions within an ecosystem. Gene sequencing data become
readily available and we want to benefit from them. How do the genes influence the
cells, the individuals and the populations? These questions leave the area of genetics
and require knowledge and expertise in these other areas of biology. A geneticist is
not a cell physiologist or zoologist. The question is: How to bridge the scales from
genes to cells, individuals and populations?

Thus there is the need for a multiscale modelling able to integrate and cross infor-
mation from different scale layers. Biological systems are hierarchically organized
with feedback and influences up and down the scales (both top down and bottom up).

The need arose for an area of biology that can connect these different areas and
facilitate exchange between their methods. This is what is now called “systems
biology”. A definition, which most system biologists adhere to, is the science that
investigates the interaction of systems that act on various scales. For many biologists
this new understanding must have been like a revelation. The borders disappear and
unthinkable opportunities open up: this created the boom which we experience now.

The large comprehensive data bases, made available from new experimental
techniques and progresses in molecular biology, stimulated new hypothesis and
experiments, demonstrating, after the undoubtable successes, the limit of classi-
cal reductionism. Biologist need to investigate relationships and complex structures
with the need of mathematical techniques.

What did mathematicians do in the meantime? The applied mathematicians are
trained from the very beginning to deal with multiple scales. When they learn about
the diffusion equation, then they learn that the diffusion equation is not only applied
to diffusion of molecules in solution, it is also used to model heat transport, cell
movement, cancer invasion, population dynamics, epidemic spread, and even spread
of genes in a population. They feel never restricted by scales and for instance the areas
of perturbation analysis, multiscale methods, homogenization, mean field approaches
etc. are widely used from applied mathematicians.

Hence, on the one hand, we see biologists who encounter a scientific revolution,
and on the other hand we have mathematicians who say “we told you so—long ago!”.
Of course, now biologists become suspicious as if mathematicians have everything
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figured out—of course, they have not. But indeed, mathematics does have the right
tools available. Multiscale methods are needed to bridge scale and mathematics is
and will be the language of systems biology. In this context, it is evident that much
hope is projected in this new approach of systems biology. It appears as the key to
connect scales and finally to understand whole organisms.

In this direction, investigating the interactions of systems that act on various scales
emerges as a powerful approach of the research in life sciences for a deeper insight
into a complex world. System biology may help biologists to validate their mental
models, exploring new pathways and dynamics: in general, system biology is neces-
sary to achieve a deeper understanding of the biological processes and consequently
a better control and prediction.

To benefit most from this development, we must give up the idea that one person
can do everything, and involve ourselves in close collaboration between Biologists,
Computer Scientists and Mathematicians. Fragmentation of sciences lead biologists
to be trained with little mathematical tools, as well as mathematicians are not trained
in biology. Thus there is the need of an interdisciplinary approach to tackle the com-
plexity of the biological systems by establishing a common protocol and language
between researchers from different areas.

In general, a system-type of approach is needed to deal with complex systems
where the overall behaviour is not explained by its constituent only (the sum is more
than its parts). As already discussed in the Preface of this Volume, an increasing
number of applications shows these “Complexity” features: then the mathematical
methods and tools developed in one specific research field may suggest and inspire
new paths in other disciplines, seemingly far way from each other.

Mathematics is the language of systems biology and communication between
scientists is its soul.
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