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Abstract. In this paper, a recently proposed global heuristic search optimization 
technique, namely, Modified Firefly Algorithm (MFFA) is considered for the 
design of the 8th order infinite impulse response (IIR) low pass (LP) digital 
filter. This modified version of FFA is considered to achieve quality output 
response by means of properly tuned control parameters over conventional 
Firefly Algorithm (FFA). Newly defined randomization parameter and 
modification in updating formula in MFFA makes it a perfect search tool in 
multidimensional search space. With this approach better exploration and 
exploitation are achieved, which have resulted in faster convergence to near 
global optimal solution. The performance of the proposed MFFA based 
approach is compared to the performances of some well accepted evolutionary 
algorithms such as particle swarm optimization (PSO) and real coded genetic 
algorithm (RGA). From the simulation study it is established that the proposed 
optimization technique MFFA outperforms RGA and PSO, not only in the 
accuracy of the designed filter but also in the convergence speed and the 
solution quality, i.e., the stop band attenuation, transition width, pass band and 
stop band ripples. 

1 Introduction 

In the signal processing system, filtering holds a significant position which is 
involved with manipulation by modifying, reshaping or transforming the spectrum of 
signal. Fundamentally, a filter operates on frequency domain to permit certain band of 
frequencies to pass through and attenuates others. The frequency at which such 
phenomenon happens is a design dependent parameter called cut-off frequency. This 
sort of frequency discrimination is of prime importance due to mixing of information 
carrying signal with noise. There are different sources of noise either created by 
nature or man-made effects. According to its frequency domain characteristics and 
source of generation, signals are mostly contaminated with thermal noise, shot noise, 
avalanche noise, flicker noise etc.  

Most of the filters can be implemented with discrete components like resistor, 
capacitor, inductor and operational amplifiers when the input signal is continuous 
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function of time and hence these are called analog filters. On the other hand a digital 
filter performs mathematical operations on a sampled, discrete time signal to reduce 
or enhance the desired features of the applied signal. Analog filters are replaced by 
digital filers due to their wide range of applications and superior performance. The 
advantages of digital filters over analog filters are small physical size, high accuracy, 
reliability and immune to component tolerance sensitivity [1]. 

Digital filters are of two types: finite impulse response (FIR) and infinite impulse 
response (IIR) filter. The order of the IIR filter is lower than that of the FIR filter for 
the same design specifications such as cut-off frequencies, pass band and stop band 
ripples and stop band attenuation. Hence, lesser number of delay elements and 
multipliers are required for hardware implementation and also lower computational 
time is required for software realization for IIR filter design [2].  

Minimization of an objective function (typically the mean square error between 
desired response and estimated filter output) is often performed by gradient based 
iterative search algorithms. However, when the error surface (objective function) is 
multimodal and/or non-smooth, gradient-based optimization methods often cannot 
succeed in converging to the global minimum.  

So, meta-heuristic evolutionary methods have been employed in the design of 
digital filters to design with better parameter control and to better approximate the 
ideal filter. Evolutionary optimization methods that require no gradient and can 
achieve a near global optimal solution offer considerable advantages in solving these 
multi-modal objective functions in digital filter design problem. 

Different heuristic search techniques are reported in the literature. These are GA 
[3-4], Seeker optimization Algorithm (SOA) [5], orthogonal genetic algorithm (OGA) 
[6], hybrid Taguchi GA (TGA) [7], Tabu search [8], Simulated Annealing (SA) [9], 
Bee Colony Algorithm (BCA) [10], Differential Evolution (DE) [11], Cat swarm 
Optimization [12], Artificial Immune Algorithm [13], particle swarm optimization 
(PSO) [14-16], Gravitational search algorithm (GSA) [17-18], Opposition based BAT 
algorithm (OBA) [19], Firefly algorithm (FFA) [20-25] etc. 

The approach detailed in this paper takes advantage of the power of the stochastic 
global optimization technique called modified Firefly algorithm (MFFA). Although 
the algorithm is adequate for applications in any kind of parameterized filters, the 
authors have chosen to focus on real-coefficient IIR filters. The basic Firefly 
algorithm is very efficient. It is suitable for parallel implementation because different 
fireflies can work almost independently. But it is observed from the simulation results 
that the solutions are still changing as the optima are approaching. To improve the 
solution quality, randomness is reduced so that the algorithm could converge to the 
optimum more quickly [26]. Apart from normal FFA the modifications considered in 
MFFA are as follows. In FFA, randomization parameter is a random number but in 
MFFA it is a gradually decreasing function of iteration cycle and in position updating 
formula, position of the group best firefly is taken into consideration for  
the calculation of new position of any firefly. With these modifications the  
solution obtained is much close to the global optimal solution with less number of 
iteration cycles. 
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2 Low Pass IIR Filter Design 

This section presents the design strategy of IIR filter based on MFFA. The input- 
output relation is governed by the following difference equation [2]:  
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where x(p) and y(p) are the filter’s input and output, respectively, and n(≥m) is the 

filter’s order. The transfer function of IIR filter with the assumption 10 =a  is 

expressed as in (2).   
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Let 
Ω= jez . Then the frequency response of the IIR filter becomes  
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where Ω=2π(f/fs) is the digital frequency, f is the analog frequency, and fs is the 
sampling frequency. The commonly used approach to IIR filter design is to represent 
the problem as an optimization problem with the mean square error (MSE) as the 
error fitness function, J(ω) expressed as in (5) [4].   
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where Ns is the number of samples used for the computation of the error fitness 
function; d(p) and y(p) are the filter’s desired and actual responses. The difference 
e(p)=d(p)-y(p) is the filter’s error signal. The design goal is to minimize the value of 
error fitness function J(ω) with proper adjustment of coefficient vector ω represented 
as: ω=[a0a1…an b0b1…bm]T. In this paper, an improved error fitness function given in 
(6) is adopted in order to achieve higher stop band attenuation and to have more 
control on the transition width. Using (6), it is found that the proposed filter design 
approach results in considerable improvement in stop band attenuation over other 
optimization techniques.  
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For the first term of (6), ∈ω pass band including a portion of the transition band 
and for the second term of (6); ∈ω stop band including the rest portion of the 
transition band. The portions of the transition band chosen depend on pass band edge 
and stop band edge frequencies. 

The error fitness function given in (6) represents the generalized fitness function to 
be minimized using the evolutionary algorithms RGA, conventional PSO and the 
proposed MFFA, individually. Each algorithm tries to minimize this error fitness J1 
and thus optimizes the filter performance. Unlike other error fitness functions as given 
in [4], J1involves summation of all absolute errors for the whole frequency band, and 
hence, minimization of J1 yields much higher stop band attenuation and lesser pass 
band ripples. 

3 Evolutionary Techniques Employed  

3.1 Firefly Algorithm (FFA) 

Evolutionary techniques RGA and PSO are used to make a comparative study of the 
results obtained with the proposed optimization technique MFFA and the detailed 
discussions regarding RGA and PSO are available in [27-28]. 

3.1.a    Behaviour of Fireflies 
The flashing light of fireflies which is produced by a bioluminescence process 
constitutes a signaling system among them for attracting mating partners or potential 
preys. It is interesting to know that there are about two thousand species of fireflies 
around the world. Each has its own pattern of flashing. As we know, the light 
intensity at a particular distance r from the light source obeys the inverse square law. 
That is to say, the light intensity I decreases as the distance r increases in terms 

of
2

1

r
Iα . Furthermore, the air absorbs light. These two combined factors make most 

fireflies visual to a limit distance. 
FFA, developed by Yang [29], is inspired by the flash pattern and characteristics of 

fireflies. The basic rules for FFA are: 

i. All fireflies are unisex so that one firefly will be attracted to other fireflies 
regardless of their sex; 

ii. Attractiveness is proportional to their brightness, thus for any two flashing 
fireflies, the less bright one will move towards the brighter one, and the 
brightness decreases as their distance increases. If there is no brighter one than a 
particular firefly, it will move randomly; 

iii. In this work, the brightness of a firefly is affected or determined by the 
landscape of the cost function. For a minimization problem, the brightness can 
simply be inversely proportional to the value of the cost function. The cost 
function is the error fitness function J1 in this work. 
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3.1.b    Light Intensity and Attractiveness 
The variation of light intensity and formulation of the attractiveness are two important 
issues in the firefly algorithm. The attractiveness β is proportional; it should be seen 
in the eyes of the beholder or judged by the other fireflies. Thus it will vary with the 
distance rij between firefly i and firefly j. In addition, light intensity decreases with the 
distance from its source, and light is also absorbed in the media, so the attractiveness 
will also vary with the degree of absorption. The combined effect of both inverse 
square law and absorption can be approximated as the following Gaussian form as 
(7). Hence, the attractiveness function β(r) can be any monotonically decreasing 
function such as the following generalized form:  

                                0( ) ( 1)
mrr e mγβ β −= ≥                                             (7) 

 

where r is the distance between two fireflies, β0 is the attractiveness at r=0, and γ is a 
fixed light absorption coefficient which can be used as a typical initial value. In 

theory, [0 , ]γ ∈ ∞ but in practice γ is determined by the characteristic length of the 
system to be optimized. In most applications it typically varies from 0.1 to 1. 
Characteristic distance Γ is the distance over which the attractiveness changes 
significantly. For a given length scale, the parameter γ can be chosen according to:  

                                               1
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The distance between any two fireflies i and j at xi and xj, respectively, is the 
Euclidean distance as follows:  
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      where xi,k is the kth component of the ith firefly ( xi ). The movement of a ith 
firefly that is attracted to another more attractive (brighter) jth firefly j, is determined 
by the following equation which shows the relation between the new position of the 
ith firefly (x'i) and its old position (xi): 

 

                            
2'

0 ( )r
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where the second term is due to the attraction. The third term is randomization, 

with [0,1]α ∈  being the randomization parameter, and iε
a vector of numbers drawn 

from a Gaussian distribution or uniform distribution. 
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3.1.c    Modified Firefly Algorithm (MFFA) 
The basic Firefly algorithm is very efficient. It is suitable for parallel implementation 
because different fireflies can work almost independently. To improve the solution 
quality, randomness is reduced so that the algorithm could converge to the optimum 

solution more quickly. Hence, the randomization parameterα  decreases gradually as 
the optima are approaching.  

                                   0( ) teα α α α −
∞ ∞= + −                                               (11) 

where max[0, ]t t∈
is the pseudo time for simulation and tmax is the maximum 

number of generations. 0α
is the initial randomization parameter while is the final 

value. In addition, an extra term 
( )i i bestx gλε −

is added to the updating formula 
[26]. In the simple version of the FFA, the current global best gbest is only used to 
decode the final best solutions. The modified updating formula for firefly position is 
shown in (12).  

               
2'

0 ( ) ( )r
i i j i i i i bestx x e x x x gγβ αε λε−= + − + + −                          (12) 

3.1.d   Steps of Implementation of MFFA to the Design of Low Pass IIR Filters 
Steps of MFFA are as follows: 

Step 1:  Generate initial firefly vectors xi = (xi1,...,xiD) (D = 1,...,18; i=1,…,25). 

Set the maximum allowed number of iterations to 500; 0β =   0.6; γ = 0.2; and α = 

0.01; the population size=25; These values were determined as the best values in a 
series of thirty preliminary trials. 

Step 2:   Computation of J1 values of the total population.  
Step 3: Computation of the initial population based best solution (gbest) vector 

corresponding to the historical population best and least J1 value. 
Step 4: Update firefly positions:  
 (a) Compute square root (rsqrt) of Euclidian distance between the first 
           particle vector and the second particle vector as per (9);  

 (b) Compute β with the help of 0β as per (7) and update α  as per (11);  

 (c) If J1 of second particle is < J1 of first particle, then, update the first  

          particle as per (12) with 0β+  (case of attraction), otherwise with 0β− , 

          (case of repulsion);  
         (d) Update firefly position as per (12). 
Step 5: Repeat Step 2 till maximum iteration cycles. 
 
The values of the parameters used for RGA, PSO and MFFA techniques are given 

in Table I. 
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4 Simulation Results and Discussions 

4.1 Analysis of Magnitude Response of Low Pass IIR Filters 

In this paper digital IIR filters are implemented by MATLAB programs and the best 
simulation results are reported among thirty independent program runs. 

Table 1. Control Parameters of RGA, PSO and MFFA 

Parameters RGA P
SO 

MFFA 

Population size 
120 

2
5 

25 

Iteration Cycle 
500 

5
00 

600 

Crossover rate 1 -    - 
Crossover Two Point Crossover -            - 

Mutation rate 0.01 -     - 
Mutation Gaussian Mutation -     - 
Selection Roulette -    - 

Selection Probability 1/3 -    - 
C1 -     2.05 - 
C2 -     2.05 - 
min
iv  - 0.01 - 
max
iv  - 1.0 - 

α , λ , 0β  - - 0.01, 0.2, 0.6 

 
In this simulation study, equal numbers of numerator and denominator coefficients 

are considered for 8th order IIR filter. Hence, 18 coefficients are optimized using each 
algorithm under consideration , independently and their performances are presented 
for making a comparative study among the algorithms. The parameters of the low 
pass filter to be designed are: the sampling frequency fs = 1Hz; Sampling number is 
taken as 128; Pass band ripple (δp) = 0.001, Stop band ripple (δs) = 0.0001, pass band 
normalized edge frequency (ωp) = 0.45, stop band normalized edge frequency (ωs) = 
0.50. The control parameters’ values of RGA, PSO and MFFA used in this work are 
given in Table 1. Each algorithm is run for thirty times to get its best solutions. The 
best results are reported in this paper. 

Figure 1 shows the gain plot in dB for the designed low pass 8th order IIR filter. 
Figure 2 shows the normalized gain plot of the 8th order low pass IIR filter. The best 
optimized denominator coefficients ak and numerator coefficients bk for the designed 
filter have been calculated using RGA, PSO and MFFA and are given in Table 2. 
Table 2 also shows that the maximum stop band attenuations achieved for the 
designed IIR filters using RGA, PSO and MFFA are 27.5145 dB, 30.3635 dB, 
37.5474 dB, respectively. Pole-zero plots can be obtained with the filter coefficients 
reported in Table 2 and in Figure 3, the pole-zero plot obtained for the proposed 
optimization technique MFFA is only reported. From Figure 3, it is evident that the 
filter designed using the MFFA is stable as the poles are located within the unit circle. 
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Table 2. Optimized Coefficients and Performance Comparison of Different Algorithms 

Algorithms Numerator 

Coefficient 

(bk) 

Den. Coeff. 

(ak) 

Max.  stop   

Band 

Attenuation  

(dB)  

RGA 

0.0415 0.1234  

0.2676 0.3806  

0.4206 0.3484  

0.2164 0.0925  

0.0233 

0.9994 -1.1555  

2.7421-2.3022  

2.4552 -1.4037 

0.7776 -0.2480 

 0.0524 

27.5145 

PSO 

0.0413 0.1241   

0.2668 0.3791   

0.4202 0.3478 

0.2165 0.0936   

0.0235 

1.0001  -1.1546   

2.7413 -2.3016  

 2.4547  -1.4044 

0.7781  -0.2483   

0.0519 

30.3635 

MFFA 

0.0303 0.0784    

0.1688 0.2386    

0.2710 0.2328    

0.1589 0.0730    

0.0256 

1.0002   -1.6893    

3.3759   -3.4280    

3.2821   -2.0259    

1.0293   -0.3239    

0.0598 

37.5474 

Table 3. Qualitatively Analyzed Data for the 8th Order IIR LP Filter 

Algo- 
rithm 

Maximum  
Pass band  

ripple  
(normalized) 

Stop band ripple (normalized) Transi

tion  

Width 

Maximum 
(×10-2) 

Minimum 
(×10-4) 

Mean 
(×10-2) 

R

GA 
0.0095 4.2100 

15.71

30 

2.18

36 

0.029

7 

PS

O 
0.0021 3.0300 

6.281

1 

1.54

64 

0.033

8 

M

FFA 
0.0024 1.2400 

3.956

3 

0.63

98 

0.031

9 

 
The locations of the zeros, as shown in Figure 3, are positioned outside the unit circle, 
which implicitly states the system as a non-minimum phase system. Qualitatively 
analyzed data obtained from Figures 1-2 are reported in Table 3 for all concerned 
optimization techniques. From Figures 1-2, it is evident that the proposed MFFA 
based IIR filter design approach produces the highest stop band attenuation and the 
smallest stop band ripple compared to other optimization techniques. It is also to be 
noted from Table 3 that the filter designed by the MFFA technique yields quite small 
transition width, which implies the moderately fast change over from pass band to 
stop band. The aforementioned statements can be verified from the results presented 
in Table 3. For both the stop band and pass band regions, the filter designed by the 
MFFA method results in the improved response than the others. 
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4.2 Comparative Effectiveness and Convergence Profiles of RGA, PSO and 
MFFA 

In order to compare the algorithms in terms of the error fitness values, Figures 4-5 
show the plots of error fitness values against the number of iteration cycles when 
RGA, PSO and MFFA are employed, respectively, for the design of 8th order IIR low 
pass filter. From the aforementioned figures, it is seen that the MFFA technique takes 
562 iteration cycles to attain the error value of 1.925; whereas, 361 and 359 iteration 
cycles are required to achieve error values of 2.85 and 4.054 for PSO and RGA 
techniques, respectively.  With a view to the above fact, it may finally be inferred that 
the performance of the MFFA technique is better as compared to RGA and PSO in 
terms of the lowest error fitness value in designing the optimal IIR filter. All 
optimization programs were run in MATLAB 7.5 version on core (TM) 2 duo 
processor, 3.00 GHz with 2 GB RAM. 
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Fig. 1. Gain Plot in dB for the 8th order low pass IIR Filter 
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Fig. 2. Normalized gain plot for the 8th order low pass IIR Filter 
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Fig. 3. Pole-Zero plot for the 8th order low pass IIR filter using the MFFA 
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Fig. 4. Convergence profiles for RGA and PSO for the 8th order low pass IIR filter 

0 100 200 300 400 500 600
1

2

3

4

5

6

7

8

9

10

Iteration Cycle

E
rr

o
r 

F
itn

es
s

 

Fig. 5. Convergence profile for the MFFA for the 8th order low pass IIR filter 
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5 Conclusions 

In this paper a recently proposed heuristic search algorithm MFFA is used for the 
design of IIR LP filter. The modifications adopted in random parameter and position 
updating process implemented in the MFFA result in better exploration and 
exploitation of the search space along with the convergence to near-optimal solution. 
A comparative study between the proposed technique and other well accepted 
algorithms RGA and PSO affirms that the proposed MFFA based design technique 
not only provides the highest stop band attenuation but also the quality output in 
terms of ripples and transition width, which are much better than others. Also the 
proposed technique attains the lowest value of error fitness function within minimum 
number of iteration cycles and hence the MFFA is adequate enough for handling other 
related filter design problems.  
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