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Preface

This LNCS volume contains the papers presented at the 4th International
Conference on Swarm, Evolutionary and Memetic Computing (SEMCCO 2013)
held during December 19–21, 2013, at SRM University, Chennai, India. SEM-
CCO is regarded as one of the prestigious international conference series that
aims at bringing together researchers from academia and industry to report and
review the latest progresses in the cutting-edge research on swarm, evolutionary,
memetic and other computing techniques such as neural and fuzzy computing,
to explore new application areas, to design new nature-inspired algorithms for
solving hard problems, and finally to create awareness about these domains to
a wider audience of practitioners.

SEMCCO 2013 received 350 paper submissions from 20 countries across the
globe. After a rigorous peer-review process involving 1,100 reviews, 126 full-
length articles were accepted for oral presentation at the conference. This cor-
responds to an acceptance rate of 36% and is intended to maintain the high
standards of the conference proceedings. The papers included in this LNCS vol-
ume cover a wide range of topics in swarm, evolutionary, memetic, fuzzy, and
neural computing algorithms and their real-world applications in problems from
diverse domains of science and engineering.

The conference featured distinguished keynote speakers: Prof. Marios M.
Polycarpou, President, IEEE Computational Intelligence Society and Director,
KIOS Research Center for Intelligent Systems and Networks Department of Elec-
trical and Computer Engineering, University of Cyprus; Prof. Ferrante Neri, Pro-
fessor of Computational Intelligence Optimization, De Montfort University, UK;
Dr. M. Fatih Tasgetiren, Associate Professor of Industrial Engineering, Yasar
University, Turkey; Dr. Dipti Srinivasan, Associate Professor, Department of
Electrical and Computer Engineering, National University of Singapore. The
other prominent speakers were Dr. P.N. Suganthan, NTU, Singapore; Dr. Adel
Nasiri, Department of Electrical Engineering and Computer Science, University
of Wisconsin-Milwaukee, USA; Dr. Ravipudi Venkata Rao, NIT, Surat, India;
and Dr. Swagatam Das, ISI, Kolkata, India.

We take this opportunity to thank the authors of the submitted papers for
their hard work, adherence to the deadlines, and patience with the review pro-
cess. The quality of a referred volume depends mainly on the expertise and ded-
ication of the reviewers. We are indebted to the Program Committee/Technical
Committee members, who produced excellent reviews in short time frames.

We would also like to thank our sponsors for providing all the logistical sup-
port and financial assistance. First, we are indebted to SRM University Man-
agement and Administration for supporting our cause and encouraging us to
organize the conference at SRM University, Chennai, India. In particular, we
would like to express our heartfelt thanks for providing us with the necessary
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financial support and infrastructural assistance to hold the conference. Our sin-
cere thanks to Thiru T.R. Pachamuthu, Chancellor, Shri P. Sathyanarayanan,
President, Dr. M. Ponnavaikko, Vice-Chancellor, Dr. N. Sethuraman, Registrar,
and Dr. C. Muthamizhchelvan, Director (E&T) of SRM University, for their en-
couragement and continuous support. We thank Prof. Carlos A. Coello Coello,
Prof. Nikhil R. Pal, and Prof. Rajkumar Roy for providing valuable guidelines
and inspiration to overcome various difficulties in the process of organizing this
conference.

We would also like to thank the participants of this conference. Finally, we
would like to thank all the volunteers who made great efforts in meeting the
deadlines and arranging every detail to make sure that the conference could run
smoothly. We hope the readers of these proceedings find the papers inspiring
and enjoyable.

December 2013 Bijaya Ketan Panigrahi
Swagatam Das
P.N. Suganthan

S.S. Dash
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A Populated Iterated Greedy Algorithm with Inver-Over 
Operator for Traveling Salesman Problem  

M. Fatih Tasgetiren1, Ozge Buyukdagli1, Damla Kızılay1, and Korhan Karabulut2 
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Abstract. In this study, we propose a populated iterated greedy algorithm with 
an Inver-Over operator to solve the traveling salesman problem. The iterated 
greedy (IG) algorithm is mainly based on the central procedures of destruction 
and construction. The basic idea behind it is to remove some solution compo-
nents from a current solution and reconstruct them in the partial solution to ob-
tain the complete solution again. In this paper, we apply this idea in a populated 
manner (IGP) to the traveling salesman problem (TSP). Since the destruction 
and construction procedure is computationally expensive, we also propose an 
iteration jumping to an Inver-Over operator during the search process. We ap-
plied the proposed algorithm to the well-known 14 TSP instances from 
TSPLIB. The computational results show that the proposed algorithm is very 
competitive to the recent best performing algorithms from the literature.  

Keywords: traveling salesman problem, iterated greedy algorithm, inver-over 
operator, memetic algorithm, genetic algorithm, meta-heuristics. 

1 Introduction 

Symmetric traveling salesman problem (TSP) is well-known and widely studied com-
binational optimization problem which bases on the idea of finding the shortest tour 
between  cities that has to be visited once by the salesman. Euclidean TSP is a sub-
set of TSP in which distances are on Euclidean plane. Mathematically speaking, the 
distance of any two vertices = ( , ) and = ,  is given by , = +                                          (1) 

If a distance matrix ,  contains a distance from city  to city , then the tour length 
is given by = ∑ , + 1 + , 1                (2) 

TSP is stated as an NP-hard optimization problem by Arora [4]. In order to solve 
NP-hard combinational optimization problems, many heuristic or meta-heuristic algo-
rithms have proposed: Simulated Annealing [8], [23], Tabu Search [14], Genetic  
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Algorithms [1], [19], [28], Variable Neighborhood Search [33], Iterated Local Search 
[3], Neural Networks [11], [26], Ant Colony Optimization [12], [52], Particle Swarm 
Optimization [10], [47], Harmony Search [16], Differential Evolution [36], Honey 
Bees Mating Optimization [30], Memetic Algorithm [11], [31]. 

TSP algorithms are classified as exact and approximate. Finding the optimal solu-
tion in a limited number of steps can be guaranteed by the exact ones such as cutting 
plane or facet finding algorithm [39] that has solved the large instances. Performance 
of the TSP can be evaluated by solution time and error value, and these exact algo-
rithms are stated to have higher time complexity [21]. In recent years, for approximate 
algorithms, solutions have several percentage low error value, they are produced 
quickly and provide good solutions, but do not guarantee the optimal solution. In 
order to find approximate solutions some heuristic methods were arisen [12], [22], 
[32], [45-46], [48]. In the approximate algorithms, some of them have a small devia-
tion from the optimal solution and if this can be accepted, it may be appropriate to use 
the approximate algorithm [2], [21]. The approximate algorithms for TSP can be ex-
amined in two different classes such as tour construction methods [5], [9], [42] and 
tour improvement methods [3], [17], [27]. According to tour construction method, 
new city is added at each step of a tour that is built but for the tour improvement me-
thod, an initial solution is generated and then this initial one is tried to be improved by 
applying the various exchanges. Several meta-heuristic algorithms are included in the 
tour improvement methods [8], [14], [19], [23], [31]. Very recently, a genetic algo-
rithm with a Greedy Sub Tour Mutation (GSTM) is presented in [1] whereas a me-
metic algorithm with the improved Inver–Over operator is presented in [38]. In this 
paper, we present a populated iterated greedy (IGP) algorithm with Inver-Over opera-
tor (IGP_IO) to solve the traveling salesman problem (TSP). To the best of our know-
ledge, this is the first reported application of iterated greedy algorithm to the TSP in 
the literature. 

The rest of the paper is organized as follows. In Section 2, iterated greedy algo-
rithm with Inver-Over operator is given in detail. The computational results are given 
in Section 3. Finally, conclusions are given in Section 4. 

2 Iterated Greedy Algorithm With Inver-Over Operator 

As mentioned before, the basic idea behind the IG algorithm is to remove some solu-
tion components from a current solution and reconstruct them in the partial solution to 
obtain the complete solution again. In this paper, we apply this idea in a populated 
manner (IGP) to the traveling salesman problem (TSP). Since the destruction and 
construction procedure is computationally expensive even though we employ a speed-
up procedure for insertion, we also propose an iteration jumping to an Inver-Over 
operator during the search process in order to take advantage of both algorithms. Fol-
lowing subsections describe the IG algorithm and the IO operator briefly, and then we 
describe the IG with the IO operator in detail. 
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2.1 Iterated Greedy Algorithm 

The IG algorithm is presented in Ruiz and Stützle [43], which has successful applica-
tions in discrete/combinatorial optimization problems such as in [7], [13], [15], [18], 
[24-25], [29], [35], [37], [41], [44], [49], [51], [53]. The IG algorithm is fascinating in 
terms of its conceptual simplicity, which makes it easily tunable and extendible to any 
combinatorial optimization problem. In an IG algorithm, there are two central proce-
dures consisting of the destruction and the construction phases. The algorithm starts 
from some initial solution and then iterates through a main loop where a partial can-
didate solution is first obtained by removing a number of solution components from a 
complete candidate solution. This is called the destruction phase. Next a complete 
solution is reconstructed with a constructive insertion heuristic by inserting each node 
in the partial candidate solution. Before continuing with the next loop, an acceptance 
criterion is then used to decide whether or not the re-constructed solution will replace 
the incumbent one. This is called construction phase. These simple steps are iterated 
until some predetermined termination criterion such as a maximum number of itera-
tions or a computation time limit is met. An outline of the IG algorithm is given in 
Figure 1.  
  ()       π = ()       =         ( )  = ( , ) 

           ( ) < ( )   
                        =  
                         ( ) < ( )   
                              =                 

 

Fig. 1. Iterated Greedy Algorithm 

Regarding the destruction and construction procedure denoted as ( , ),  nodes are randomly taken from the solution  without 
repetition in the destruction step. We use the tournament selection with size 2 to select 
each node in such a way that two edges are chosen and distances of these two edges 
are computed. Then the worst one with the first node is removed from the solution. In 
the construction phase, the second phase of the NEH insertion heuristic [34] is used to 
complete the solution. To do so, the first node is inserted into all possible + 1 
positions in the destructed solution  generating + 1  partial solutions. 
Among these + 1 partial solutions, the best partial solution with the minimum 
tour length is chosen and kept for the next iteration. Then the second node is consi-
dered and so on until a final solution is obtained.  
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These insertions are computationally very expensive especially for larger instances. 
However, insertion cost can be evaluated by a nearest-neighbor criterion as follows: If 
a node  is to be inserted in an edge ( , ), the insertion cost can be achieved by = + . It significantly accelerates the insertions necessary for the con-
struction phase of the IG algorithm. 

2.2 Inver-Over Operator 

Inver over (IO) operator is a state-of-the-art algorithm for the TSP and proposed by 
Tao and Michalewicz [49]. This operator is based on inversion moves and aims to 
further improve the solution quality while using the information obtained from the 
current population. This makes the algorithm very adaptive and efficient. Figure 2 
provides a detailed description of the algorithm. The algorithm starts with a randomly 
selected city from the individual and then the second city, that the inversion will be 
applied until, is selected in two different ways. With probability , algorithm random-
ly selects the second city for inversion from the current individual. If ( ) <  , then 
another individual is randomly selected from the population and a part of the pattern 
(at least 2 cities) of that individual is used as a reference to obtain better solutions. In 
this work, we employ a tournament selection (TS) with size 2 to determine another 
individual from the population instead of choosing randomly. 
  ( )    ( )    

     ( = 1  )  
          =  
                 
           ( )  
                ( ( ) < )   
                             
                 
                              2 
                                     
              
              (             )  
                     
              
                                
                  =  
          
         ( ) < ( )    
             =  
         
    

 

Fig. 2. Inver-Over Operator 
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2.3 Iterated Greedy Algorithm with Inver-Over Operator 

In the proposed populated iterated greedy algorithm with Inver-Over operator 
(IGP_IO), the main idea is to jump into another operator at each iteration of a genera-
tion with a jumping probability . If a uniform random number (0,1) is less than 

, then the IGP_IO algorithm jump into the IO operator, otherwise, IG is applied to 
the individual on hand. By doing so, the search process of the IG algorithm is 
enriched and computational time is reduced. 

The IGP_IO algorithm starts with an initial population. The permutation represen-
tation is used. We employ the Nearest Neighbor (NN) heuristic proposed in [42]. 
Figure 3 shows the construction of the initial population. 

  ( )  = 1    =   = 1    
 1 =  
 1 =  
  = 2    
       = _  
       = 1    
             ( = )  
             1 <  
                     = 1  
                     =  
             
         
       =  
       =  
  
    

  , = 1,2, . . ,   , = 1,2, . . ,   
 

Fig. 3. Initial Population with NN Heuristic 

In the ( ) procedure, NN heuristic generates  solutions. We sort them 
according to their fitness values. Then we only take  solutions for the initial popu-
lation. This procedure provides a good initial population with sufficient diversity.  

Then, for each individual in the population, we apply either the IG algorithm or the 
IO operator depending on the jumping probability . There are two critical parame-
ters of the IGP_IO algorithm. These are the jumping probability  and the destruc-
tion size . After some experiments, the destruction size is taken as < 0.25  . 
Regarding the jumping probability . We tried the following values as =0.0,0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,1.0 . Then we decided to take the jumping 
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probability as  = 0.8 as the details will be given in Section 3. In addition, the pop-
ulation size is fixed at = 30. A detailed computational procedure of the IGP_IO 
algorithm is given in Figure 4. 

  ( ) = ( , , . . , ) = ( ), ( ), . . , ( )  =  
 

  = 1    
       (0,1) <   

                 = ( ) 
            

             = ( , )              
       ( ) < ( )  =   ( ) < ( )  =  

 
 

       ( )      
 

Fig. 4. Populated Iterated Greedy Algorithm with Inver-Over Operator 

3 Computational Results 

The proposed IGP_IO algorithm is coded in C++ and run on an Intel (R) Core (TM) 
i5 CPU with 2.67 GHz PC with 4 GB memory. We test the performance of the pro-
posed algorithm 14 instances from the TSPLIB [40].  As mentioned before, the popu-
lation size is fixed at = 30. The destruction size and the jumping probability are 
taken as = 0.25  , = 0.8 ,respectively. Initial population is established by the 
Nearest Neighbor (NN) heuristic proposed in [42]. Each instance is run for R=10 
independent replications with 2500 generations.  In order to compare the results, an 
average relative percentage deviation is calculated for each R=10 runs by using the 
following equation: ∆ = ∑ ( ) /                                     (3) 

where H  is the objective function value that is obtained in i   run of each  
algorithm, Best is the optimal objective function value and  is the number of runs. 
We fixed the destruction size at = 0.25  since larger than = 0.25  was 



 A Populated Iterated Greedy Algorithm with Inver-Over Operator for TSP 7 

 

computationally very expensive. However, we analyzed the impact of the jumping 
probability in the ranges of = 0.0,0.1, . . ,1.0 . The overall averages with ten repli-
cations of 14 benchmark problems are given in Table 1. Based on the results in Table 
1, we choose the jumping probability as = 0.8. 

Table 1. Overall averages of 14 benchmarks with jumping probabilities 

 ∆  ∆  ∆  ∆   
0.0 1.52 1.19 1.90 0.24 11.85 
0.1 1.04 0.71 1.42 0.24 12.53 
0.2 0.86 0.54 1.16 0.21 11.65 
0.3 0.74 0.47 1.02 0.18 10.10 
0.4 0.68 0.39 1.00 0.20 9.90 
0.5 0.67 0.45 0.97 0.18 7.44 
0.6 0.65 0.36 0.88 0.17 5.68 
0.7 0.63 0.41 0.85 0.15 4.26 
0.8 0.66 0.35 0.95 0.20 3.61 
0.9 0.78 0.53 1.03 0.16 2.59 
1.0 6.81 5.83 7.58 0.54 1.75 

 
In order to test the performance of the proposed IGP_IO algorithm, we first com-

pare the IGP with and without IO operator. The computational results of pure IGP and 
IGP_IO algorithms are given in Table 2. As can be seen in Table 2, embedding the IO 
operator into the IGP algorithm improved the solution quality since all statistics are 
further improved. In other words,  ∆ , ∆ , ∆ , ∆  and  values are further 
improved from 1.52, 1.19, 1.99, 022 and 11.85 to 0.66, 0.35, 0.95, 020 and 3.61.  

Table 2. Average relative percentage deviations of the algorithms 

  _
 ∆  ∆  ∆ ∆ ∆  ∆ ∆ ∆   
berlin52 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.16 
kroA100 0.01 0.00 0.05 0.02 1.58 0.00 0.00 0.00 0.00 0.47 
pr144 0.39 0.39 0.39 0.00 0.13 0.35 0.00 0.39 0.12 0.43 
ch150 2.55 2.33 2.91 0.16 2.43 0.30 0.25 0.32 0.04 0.87 
kroB150 1.06 0.76 1.38 0.20 5.92 0.84 0.58 1.12 0.15 2.09 
pr152 0.44 0.18 0.77 0.27 5.28 0.51 0.00 0.63 0.18 1.03 
rat195 3.24 2.80 3.53 0.27 4.54 1.48 1.08 1.98 0.32 2.83 
d198 1.48 0.74 2.02 0.46 10.60 0.65 0.43 1.06 0.22 3.50 
kroA200 2.33 1.94 3.33 0.45 8.98 0.52 0.34 0.75 0.14 3.77 
ts225 2.46 2.46 2.46 0.00 2.76 0.20 0.00 0.63 0.28 3.14 
pr226 0.13 0.00 0.53 0.21 12.75 0.33 0.00 0.72 0.26 3.53 
pr299 2.82 2.04 3.41 0.50 22.84 1.04 0.28 1.82 0.56 6.21 
lin318 2.16 1.45 2.65 0.39 29.18 1.60 0.94 2.02 0.29 7.12 
pcb442 2.24 1.55 3.15 0.45 58.70 1.42 0.98 1.81 0.26 15.33 

 1.52 1.19 1.90 0.24 11.85 0.66 0.35 0.95 0.20 3.61 
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We provide the interval plot of all algorithms in Figure 5. From Figure 5, it can be 
seen that IGP_IO and IGP algorithms were statistically not equivalent because their 
confidence intervals does not coincide.  
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Fig. 5. Interval plots of algorithms compared. 

To further test the performance of the IGP_IO algorithm, we compare it to the very 
recent two algorithms from the literature. These are the memetic algorithm based on 
the improved Inver–over operator denoted as MA_IO [38] and a genetic algorithm 
with Greedy Sub Tour Mutation (GSTM) [1]. Note that excellent results are provided 
in [38] with Lin–Kernighan (LK) local search. However, we only compare to MA_IO 
without LK local search in [38] since we do not use any local search algorithm. The 
computational results are given in Table 3. As can be seen in Table 3, IGP_IO opera-
tor was superior to GTSM algorithm since  ∆  and ∆  values were decreased 
from 1.57 and 0.66 to 0.66 and 0.35. IGP_IO algorithm was also computationally less 
expensive than the GTSM algorithm. When compared to the MA_IO algorithm, 
IGP_IO algorithm performed very similar to the MA_IO algorithm since the overall ∆  values were the same. However, the IGP_IO algorithm was slightly better than 
the MA_IO algorithm on the overall ∆  values. However, the differences were not 
statistically significant. In other words, the IGP_IO algorithm was as good as the 
MA_IO algorithm. In terms of CPU times, MA_IO algorithm was much faster than 
the proposed IGP_IO algorithm.  
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Table 3. Average relative percentage deviation of the algorithms 

 _   _  
 ∆  ∆   ∆  ∆   ∆  ∆   
berlin52 0.00 0.00 0.49 0.00 0.00 0.84 0.00 0.00 0.16 
kroA100 0.00 0.00 0.62 1.18 0.00 6.99 0.00 0.00 0.47 
pr144 0.14 0.06 0.69 1.08 0.00 13.60 0.35 0.00 0.43 
ch150 0.36 0.00 0.86 0.64 0.46 11.24 0.30 0.25 0.87 
kroB150 0.65 0.04 0.78 1.76 0.96 11.68 0.84 0.58 2.09 
pr152 0.13 0.00 0.71 1.62 0.77 7.94 0.51 0.00 1.03 
rat195 0.66 0.43 0.85 1.84 0.60 15.05 1.48 1.08 2.83 
d198 0.68 0.34 0.94 1.22 0.39 12.10 0.65 0.43 3.50 
kroA200 0.58 0.41 0.90 1.54 0.87 13.29 0.52 0.34 3.77 
ts225 0.49 0.00 0.98 0.50 0.25 11.56 0.20 0.00 3.14 
pr226 0.43 0.13 0.92 1.53 0.72 13.84 0.33 0.00 3.53 
pr299 2.34 0.67 1.19 2.92 1.23 17.42 1.04 0.28 6.21 
lin318 2.31 1.36 1.27 3.31 0.98 14.64 1.60 0.94 7.12 
pcb442 2.11 1.45 1.67 2.78 2.05 19.13 1.42 0.98 15.33 
Average 0.78 0.35 0.92 1.57 0.66 12.09 0.66 0.35 3.61 
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Fig. 6. Interval plots of algorithms compared 

We provide the interval plot of all algorithms in Figure 6. From Figure 6, it can 
be seen that IGP_IO algorithm was statistically better than GTSM algorithm because 
their confidence intervals does not coincide. However, it was equivalent to MA_IO 
algorithm since their confidence intervals coincide. 
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4 Conclusion 

In this study, we propose an IGP_IO algorithm to solve the traveling salesman prob-
lem. To the best of our knowledge, this is the first reported application of iterated 
greedy algorithm to the TSP in the literature. Since the destruction and construction 
procedure is computationally expensive, we also propose an iteration jumping to an 
Inver-Over operator during the search process. The proposed algorithm was applied to 
the well-known 14 TSP instances from TSPLIB. The computational results show that 
the proposed algorithm was better than the GTSP algorithm and was very competitive 
to the MA_IO algorithm.  For a future work, the IGP_IO algorithm will be applied to 
larger instances.  
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Abstract. High-fidelity computer simulations are used widely in several scien-
tific and engineering domains to study, analyze and optimize process responses 
and reduce the time, cost and risk associated with conducting a physical expe-
riment. However, many such simulations are computationally expensive and 
impractical for optimization. Meta-models have been successfully used to give 
quick approximation of the process responses in simulations and facilitate the 
analysis and optimization of designs. 

Despite the abundance of literature in meta-modeling for continuous va-
riables, there have been very few studies in the domain where the design spaces 
are discrete or mixed or with dependencies between discrete and real variables. 
These problems are widespread in engineering, science, economics and several 
other fields. Through this work, we wish to address the lack of a technique to 
handle such problems from front to end i.e. selecting design samples, meta-
modeling and subsequent optimization. 

This paper presents novel methods for choosing design samples, meta-
modeling of design spaces having binary and real variables using padding in 
Kriging technique and single-objective constrained optimization of the  
meta-model using a new genetic algorithm VDGA. These scalable generic me-
thodologies have the potential for solving optimization problems that are very 
expensive or impractical due to the extremely high computational cost and time 
associated with the simulations. We also present the results of these techniques 
on several test problems. 

Keywords: Meta-modeling, optimization, mixed-variable design space, discrete 
design space, evolutionary algorithms. 

1 Introduction 

Since the advent of computers, several engineering problems have been studied using 
computer simulations instead of the real-life experiments. A major reason is the re-
duction in the time, costs and risk involved in the experiment, e.g. a car crash study. 
In cases where the simulations themselves are quite costly and time-taking, meta-
models are used to predict the output of the simulations using a few design samples.  
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While much work in the field of meta-modeling and subsequent optimization has 
been done for real-variables, not many researchers have studied the problems with 
discrete-variable design space or mixed-variable design space (containing both real 
and discrete variables). Another issue is the scalability of the proposed methods con-
sidering that full-factorial design samples are not possible in many cases. 

Several meta-modeling techniques have been proposed for real design variable 
space and have become popular over the last two decades -- multivariate adaptive 
regression splines (MARS) [8], radial basis functions (RBF) [11][7], Kriging [1], 
response surface methodology [2] and artificial neural networks (ANN) [3] to name a 
few. Each of them has their own features, pros and cons. The answer to the question 
that which of these techniques is better than the others is not an easy one. It depends 
upon the type of problem that one is dealing with. Simpson et al. [14] have compared 
Kriging with polynomial regression for multidisciplinary design optimization of aero 
spike nozzle. Yang et al. [15] compared enhanced MARS, Artificial Neural Networks, 
Stepwise Regression and Moving Least Square for safety functions in automotive 
crash analysis. A comprehensive comparison of MARS, RBF, polynomial regression 
and Kriging was done by Jin et al. [13] on multiple test problems with varying scale 
and non-linearity. 

A notable point is that the above mentioned studies have been performed for real-
variable design space and not much research has been done for problems in the dis-
crete design space or mixed-variables design space, leave alone problems having 
varying dimensions. The study by Meckesheimer et al. [16] on a desk lamp perfor-
mance model and Davis et al. [7] on process synthesis have addressed this domain of 
problems but both have used underlying methods which are not easily scalable. 
Meckesheimer et al. have used state-selecting meta-modeling approach which needs 
sufficient design points and can produce large errors near discontinuities in case of 
misclassification. Davis et al. have a used a branch and bound framework which is 
known to be not-scalable. A recent study (Rykerek et al., 2012) considered a variable-
dimensional problem and used various representation-recombination to point out use-
ful combinations, but no meta-modeling was performed.  

We wish to propose a scalable meta-modeling technique in this study to handle bi-
nary and real variable design spaces and optimize the meta-model using a genetic 
algorithm. 

2 Portfolio Optimization Problem 

An automobile company presented us with an optimization problem with the aim to 
optimize a vehicle portfolio which consisted of several nameplates and their trims in 
terms of the fuel economy, acceleration and selling price of the vehicles while satisfy-
ing the environmental regulation (PAFE) such that corporate objectives of contribu-
tion margin (CM) is maximized. Since we have the choice of not producing a certain 
nameplate if it is not economically viable, the variable set of this problem essentially 
consists of a set binary variables indicating the presence or absence of nameplates and 
dependent real variables indicating the fuel economy, acceleration and price of trims. 
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The expected shares of the nameplates in the market are evaluated by a simulation in 
AMIS (AMI Software) which is quite costly and time-taking and we would like to 
replace it via a meta-model. 

The portfolio consisted of 3 nameplates with 2, 4 and 4 trims respectively. We can 
set the fuel economy, acceleration and price of the vehicles in the portfolio. The total 
number of variables for this problem was 16 (real) + 3 (binary). The objective of the 
problem was to maximize the contribution margin (CM) subject to satisfying a Portfo-
lio Average Fuel Economy (PAFE) target which acted as the constraint. Also, there 
are some lower and upper bounds for the variables. For this problem, real variables 
are all dependent upon one or the other value of the binary variables which act as 
presence of nameplates in the portfolio. 

2.1 Varying Dimension Problem 

The term ‘varying dimension problem’ is used to define a mixed variable problem. In 
this type of problem, several of the real variables of the problem are not independent 
but directly depend upon the value of certain discrete variables (or decision or pres-
ence variables). We have considered these discrete variables as binary (or Boolean) 
variables. For example, in this problem, the binary variables indicate the presence or 
absence of a particular trim. Furthermore, there are some real variables corresponding 
to each of the binary variable (i.e. trim), viz. acceleration, fuel economy etc. asso-
ciated with the trim. 

If a certain trim is absent, all the real variables corresponding to that trim would not 
have any effect in the analysis of that particular nameplate and would hence be inconse-
quential. So, when a trim is absent, the dimension of the design space is reduced by the 
number of real variables that are attached to that trim. Therefore, different solution in 
the search space has different sizes (number of variables), thereby making the search 
space of varying dimension. It is not at all clear how gradients in such problems can be 
defined, as dimension of the search space is a variable itself. Thus, classical optimiza-
tion methods may not be appropriate for handling such problems.  

Dasgupta and McGregor [6] had proposed the idea of a structured Genetic  
Algorithm (sGA) for multi-layered structure of the GA chromosome which acts as 
long-term distributed memory within the population. This idea is a bit similar to the 
varying dimension problem mentioned above, as there are dependencies between 
variables in sGA too. But sGA was capable of dealing with binary strings only and 
did not have mixed variables as in our case. The sGA was also not explored to incor-
porate meta-models. Varying dimension problems are found in several fields and  
domains and to the best of our knowledge, such as in dealing with truss-structure 
optimization, composite laminate design problems etc. No well-formulated optimiza-
tion technique is suggested to handle them using a meta-modeling techniuque. 

3 Meta-modeling 

We have suggested the use of padding in the Kriging procedure for meta-modeling the 
objectives and constraints that consist of real and binary variables. We define Kriging 
and padding procedure briefly before moving on to the optimization algorithm. 
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3.1 Kriging 

The Kriging technique was first proposed and named after Daniel G. Krige for geo-
statistics [6]. Several people have forwarded his work. Sacks et al [10] applied Krig-
ing to deterministic computer experiments called Design and Analysis of Computer 
Experiments (DACE), which is precisely the type of Kriging used by us in this work.  
Kriging has a general assumption that y(x) = ŷ + ε.  Here ε denotes the residuals that 
are identically distributed normal random variables but they are a function of x itself. 
Thus, in a Kriging meta-model, the process response is modeled as ŷ (x) = f (x) + 
Z(x), where f (x) is a regression model and Z(x) is stochastic process. We have used 
the DACE toolbox for Kriging which is available online for free [7]. Kriging is a 
quite well-known meta-modeling technique which can give quite accurate approxima-
tions with a few sampling points. 

3.2 Padding 

Kriging theory exists only for real and continuous variables. The discrete portions of 
our problem cannot be handled directly by Kringing procedure. For transferring the 
information conveyed by the discrete variables, we propose a padding technique 
which pre-processes data before building a meta-model on it. In very simple terms, 
the real variables, corresponding to the absent (i.e. zero) binary variables are padded 
to a value which is foreign to the design space of interest. Then, the discrete variables 
are dropped for subsequent meta-modeling. It is also important to normalize all the 
real variables before doing this so that we can define the same padding value for each 
dimension. A standard score is found for normalizing the data according to z = (x − 
µ)/σ where x is the variable to be normalized, µ is the mean of population and σ is the 
standard deviation of the population. After normalization process, the data ranges 
roughly between -1 to +1. So a value of -2 or smaller can serve as a good (foreign) 
padding value. We have done some parametric study on the padding value as well 
which is available in [12]. The findings were that values close to the lower negative 
limit of the normalized data (-2, as per above normalization) set work well.  

 
Fig. 1. The spatial segregation created by padding 
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The overall effect of this can be seen in an example displayed in figure 1. There are 
23 = 8 cases for 3 discrete variables. The [1 1 1] cases are mapped on the regular 3D 
space. The [1 1 0], [1 0 1] and [0 1 1] cases are mapped onto planes since the real 
variable corresponding to the 0 is padded to a fixed value. The cases [1 0 0], [0 1 0] 
and [0 0 1] are mapped onto lines and [0 0 0] case is just one point. Hence, all the 
cases are segregated effectively in the hyper-space and they do not interfere with each 
other.  However, when we are not using the full-factorial design some of these planes 
or lines may be devoid of points. But we can still obtain some information from the 
nearby regions for a point of interest in such a region. Although it may not be very 
accurate, this allows us to build a meta-model that will give at least some information 
about such regions too. Also, this technique leads to a substantial reduction in the 
design space by removing all the discrete variables which reduces the size of the ma-
trices inside Kriging and saves time, computational cost and error due to near-
singularity of the same matrices. 

4 Optimization of the Meta-model 

Genetic Algorithms (GAs) are generic optimization algorithms and as already stated, 
they have been applied successfully in several fields. For the mixed-variable prob-
lems, GAs are ideal optimization technique. A major reason for this is that GAs do 
not use gradient information directly and gradients are not easily defined in discrete 
design spaces. Also, they can handle the discrete and real variables in their population 
members easily. We propose Varying Dimension Genetic Algorithm (VDGA) for 
handling the varying dimension problems. We have used tournament selection opera-
tor [9] with tournament of size or two for selection and the parameter-less approach 
for handling constraints [4]. For crossover and mutation, we have proposed the Vary-
ing Dimension Crossover and Mutation Operator (VDCM), which we shall discuss 
next. Also the SBX crossover [5] and adaptive polynomial mutation operator [4] have 
been used inside VDCM.  

Before giving the details of VDCM, let us define a matrix which we call corres-
pondence matrix or “corresmatrix”. This is used by the VDCM operator for crossover 
and mutation operations. Simply put, the “cor-
resmatrix” is a matrix with rows for each binary 
variable and columns for each real variable. In 
each column, exactly one or none of elements is 
1 and the rest are zeros. The binary variable row 
for which the element is 1 for a real variable 
column is the corresponding discrete variable 
for that particular real variable.  For example if 
b1 is the corresponding discrete variable for the 
real variable r1 and b2 of r2 and so on, then the 
“corresmatrix” would look like one shown on right for a four-variable problem. A col-
umn with all zero elements means that the particular real variable in independent of all 
discrete variables. We now describe the proposed crossover and mutation operator. 

 r1 r2 r3 r4 

 
b1 

 
1 

 
0 

 
0 

 
0 

 
b2 

 
0 

 
1 

 
0 

 
0 

 
b3 

 
0 

 
0 

 
1 

 
0 

 
b4 

 
0 

 
0 

 
0 

 
1 
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4.1 VDCM (Varying Dimension Crossover and Mutation Operator) Operator 

We now describe the VDCM operators used in this study. 

1. Receive the “corresmatrix” and a mating pool of N members with nb binary (dis-
crete) variables and nr real variables from the VDGA. 

2. Choose two parents p1 and p2 from the mating pool. 
3. Generate a random number between 0 and 1.  If it is less than pm (probability of 

mutation), set the “mutationflag” = 1 else set it as zero. 
4. Generate a random number between 0 and 1.  If it is less than pm (probability of 

crossover), 

(a) Perform a single-point crossover on the discrete set of variables of the two par-
ents and copy the resultant discrete sets in the two children c1 and c2. Also copy 
the corresponding real variables for the non-exchanged part of the discrete set 
directly into the children. For the exchanged part of the discrete set, exchange 
the real variables also. Copy any independent real variables directly into the 
children. 

(b) Now for each discrete variable bi, search the “corresmatrix” to find its depen-
dent real variables. Then, for each such real variable ri, 

(i) if the values of the corresponding bi is 1 in both c1 and c2, perform a SBX 
crossover with the values copied in the children and replace them with the 
results. If “mutationflag” = 1, also do polynomial mutation individually 
on that real variable ri in each child, else leave as it is. 

(ii) if the values of the corresponding bi is 1 in one child and 0 in the other, 
then if “mutationflag” = 1, perform a polynomial mutation on ri in the 
child with corresponding bi =1, else leave as it is. 

(iii) if the values of the corresponding bi is 0 in both children, then leave the 
copied values as they are. 

(c) For any independent real variables, do an SBX crossover. If “mutationflag” = 1, 
also do polynomial mutation individually on that real variable in each child 
else, leave as it is 

else, 

(d) Copy p1 and p2 into children c1 and c2. 
(e) If  “mutationflag” = 1, then 

(i) For each discrete variable bi that is non-zero in c1, search the “corresmatrix” to 
find its dependent real variables and then, for each such real variable ri, do 
polynomial mutation. 

(ii) Repeat the above for c2 too. 
(iii) For any independent real variables in c1 and c2, do polynomial mutation; 

else, continue. 
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5. Generate a random number between 0 and 1.  If it is less than pmb  (probability 
of binary mutation), with a chance of 50% flip the binary variables of child c1. 

6. Generate another random number between 0 and 1. If it is less than pmb, with a 
chance of 50% flip the binary variables of child c2. 

7. Go to Step 2 for choosing another set of two parents from the remaining members 
in the mating pool and continue until all parents are used. 

8. Return the newly created N children to VDGA. 

The probabilities of mutation pm and binary mutation pmb are set adaptively at 
each generation according to: = + 1    (1)    and    = 0.3 + 1    (2) 

4.2 Varying Dimension Genetic Algorithm (VDGA) 

The proposed VDGA is presented here: 

1. Initialization 

(a) Set t = 0. Initialize the GA population Pt with N members that have nb binary 
(discrete) variables and nr real variables. The binary variables are made 0 or 1 
with 50% probability and the real variables are initialized randomly between 
the defined lower and upper bounds. 

(b) Rank the population using the objective function and the penalty according to 
Deb’s parameter-less approach. Note the best population member xt. 

(c) Increment t by one. 

2. For every generation t, perform the following steps: 

(a) Perform one generation of the GA using objective function as the fitness meas-
ure to be minimized, 

(i) Choose Є elites (the best members) from the population and copy them to 
the offspring population Qt 

(ii) From the remaining members of Pt, select a mating pool Mt using binary 
tournament selection. 

(iii) Use the VDCM operator on Mt to create a new offspring population Rt 
(iv) Merge Qt and Rt to form the population for the next generation Pt+1 

(b) Choose the best population member xt of Pt+1. 
(c) Increment counter t by one. 

3. Termination check: If absolute difference between the objective function values 
of xt < ε, for τ generations, report the result of the last generation as the final result. 
Otherwise, increment counter t by one and go to Step 2. 
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5 Application on the Portfolio Optimization Problem 

We present the results obtained for the optimization problem by the proposed algo-
rithm in this section. Figures 2 and 3 compare the result obtained from the simulator 
and meta-model for the CM and PAFE, respectively.  

 

 
Fig. 2. Comparison of results obtained from the simulator and meta-model for CM 

 
Fig. 3. Comparison of results obtained from the simulator and meta-model for PAFE 
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Table 1 presents the numerical values for the same, along with the difference be-
tween the two results. 

Table 1. The numerical values for both PAFE and CM obtained from the meta-model and 
simulator 

Tar-
get 

PAFE 

CM  
(Meta-
model) 

CM  
(Simu-
lator) 

 CM 
Error 
(%) 

PAFE 
(Meta-
model) 

PAFE 
(Simu-
lator) 

  
PAFE 
Error 
(%) 

25 4574.077 4566.22 0.17 25.0214 25.0000 0.09 
31 4362.448 4292.87 1.62 31.0116 31.0000 0.04 
37 3962.028 3853.12 2.83 37.0151 37.0000 0.04 
39 3774.945 3687.72 2.37 39.0167 39.0100 0.02 
41 3632.855 3491.52 4.05 41.0012 41.0600 -0.14 

41.5 2316.653 2273.46 1.90 41.5001 41.5000 0.00 
42 893.4042 886.69 0.76 42.0000 42.0100 -0.02 

 

The above results portray that the average error in case of CM is 1.84%, while in 
case of the PAFE it is -0.01%. As the error is small, we are able to mimic the simula-
tor results with good accuracy. Therefore, the proposed methodology performs well 
for the given problem. The greatest advantage is achieved in terms of reduction in the 
time required to obtain the results. The simulator takes nearly 10 hours to obtain the 
results, while the meta-model is obtained in less than an hour. 

6 Progressive Meta-modeling 

With a large number of variables involved, meta-model building with a good accuracy 
on the entire search space may require a huge number of points and the process can 
then become computationally expensive and time consuming. Next, we used the idea 
of progressive modeling to overcome the aforementioned problems associated with 
the large-sized problem. We first select a small number of sample points, train a meta-
model and then try to find regions with good objective function values. Then, we add 
more points from those regions to improve the accuracy of the meta-model. This also 
helps the optimization algorithm since if the actual simulation values of the points in 
that region are not as required, then the optimization algorithm will move away from 
those regions and search for better areas.  The progressive meta-modeling technique is 
able to solve a large-sized problem. This particular problem consisted of 20 name-
plates, and had 28 (real) + 20 (binary) variables.  The results obtained are shown in 
Figure 4.  
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Abstract. In this study, a general variable neighborhood search (GVNS) is pre-
sented to solve no-idle permutation flowshop scheduling problem (NIPFS), 
where idle times are not allowed on machines. GVNS is a metaheuristic, where 
inner loop operates a variable neighborhood descend (VND) algorithm whereas 
the outer loop carries out some perturbations on the current solution. We em-
ploy a simple insert and swap moves in the outer loop whereas iterated greedy 
(IG) and iterated local search (ILS) algorithms are employed in the VND as 
neighborhood structures. The results of the GVNS algorithm are compared to 
those generated by the variable iterated greedy algorithm with differential evo-
lution (vIG_DE). The performance of the proposed algorithm is tested on the 
Ruben Ruiz’ benchmark suite that is presented in http://soa.iti.es/rruiz. Compu-
tational results showed that the GVNS algorithm further improved 85 out of 
250 best solutions found so far in the literature. 

Keywords: no-idle permutation flowshop scheduling problem, general variable 
neighborhood search, heuristic optimization, metaheuristics. 

1 Introduction 

A flowshop is a commonly used production system in manufacturing industries. Gen-
erally, in manufacturing environments, the jobs should go through different processes 
till the end items are obtained. If the route of each job is different, then this environ-
ment is referred as job shop. The production environment with all jobs have the same 
route is called flowshop. Scheduling of a flowshop has an essential role in competi-
tive environments; therefore this problem has been one of the most attractive subjects 
for researchers.  

In a flowshop, there is more than one machine and each job must be processed on 
each of the machines. Each job has the same ordering of machines for its process 
sequence. Each job can be processed on one machine at a time, and each machine can 
process only one job at a time. For the permutation flowshop, the processing  
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sequences of the jobs are the same on each machine. In other words, jobs have a per-
mutation and therefore, once a permutation is fixed for all jobs on the first machine, 
this permutation is maintained for all other machines. If one job is at the  position 
on machine 1, then this job will be at the  position on all the machines. 

In order to measure the performance of scheduling in a flowshop, there are several 
criteria such as, makespan or due-date based performance measures. Makespan crite-
rion, without any doubt, the most widely used performance measure in the literature.  

In this study, a variant of permutation flowshop scheduling problem (PFSP), where 
no-idle times are allowed on machines, is considered with the makespan criterion, too. 
The no-idle constraint has an important role in scheduling environment, where expen-
sive machinery is employed. Idling machines in such environments is not cost-
effective. Another situation that production environment desires to have no-idle times 
in schedule, is when high setup time or costs exist so that shutting down the machines 
after initial setup is not wanted. In no-idle permutation flowshop scheduling (NIPFS) 
problem, each machine must process each job without any interruption from the be-
ginning of the first job to the completion of the last job. In order to meet this con-
straint, delays may occur in the processing of the first job on any machine.  F /prmu, no idle/C  is a well-known notation of the m-machine NIPFS 
problem where the makespan is minimized. In [2], it was shown that F /prmu, noidle/C  is an NP-hard problem. Although it has a great importance in both theory 
and practical applications, it has not attracted much attention in the literature by the 
researchers. In [1], an exact algorithm to solve F /prmu, no idle/C  optimally is 
presented. The first time, the problem is studied with the makespan criterion in [13]. 
In [14], several heuristic approaches were examined for the general m-machine no-idle 
PFSP with the makespan criterion.  

Recently, heuristic approaches have attracted increasing attention by many re-
searchers. A heuristic, based on the traveling salesman problem (TSP), for the the F /prmu, no idle/C  was represented in [3]. In [6], it was presented an adapta-
tion of the NEH heuristic [9] for the NIPFS problem and also studied the interactions 
between the no-idle and no-wait flowshops. In [11], an IG algorithm for the NIPFS 
problem with the makespan criterion was presented and examined the performance 
against the existing algorithms. In [12], it was presented a discrete artificial bee colony 
algorithm to solve the no-idle permutation flowshop scheduling problem with the total 
tardiness criterion whereas in [15], a variable iterated greedy algorithm was proposed, 
where the standard DE algorithm was modified and applied in such a way that the 
probability to apply IG algorithm to the specific individual in the target population 
and the destruction size of IG were optimized with a standard DE algorithm. In [7], a 
GVNS algorithm was proposed with very good results for the single machine scheduling 
problem to minimize the total weighted tardiness with the sequence dependent setup 
times. Therefore, inspiring from [7], in this study, a GVNS algorithm is proposed to 
solve the NIPFS problem with makespan criterion and compared the results with the 
algorithm that is proposed in [15].  

The rest of the paper is organized as follows. In Section 2, NIPFS problem is de-
fined. Details of GVNS algorithm are given in Section 3. Computational results are 
given in in Section 4. Finally, conclusions are given in Section 5. 
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2 No-Idle Permutation Flowshop Scheduling Problem 

No-idle permutation flowshop scheduling is required when the production environ-
ment desires to have no-idle times in production schedule because of the high costs or 
setup complexity of the system. In order to avoid the troubles in the production  
environment, the schedule must be done carefully while considering the all systems 
behavior.  

There are n (j = 1,2, . . , n)  jobs to be processed successively on m (k =1,2, . . , m) machines with the same sequence on each machine. Associated with each 
job j and machine k, there is a processing time p(j, k). 
The assumptions for this problem are can be outlined as follows: 

• Each machine can perform at most one job at any given time; 
• Each job can be processed on at most one machine at any given time; 
• Processing sequences of jobs are same on each machine; 
• There cannot be idle times between the start of processing the first job to the com-

pletion of processing the last job on any machine. 

We follow the formulation for the NIPFS problem with makespan criterion in [10]. 
This formulation consists of forward and backward pass calculation. The complexities 
of the both formulations are the same. For this study, the forward pass calculation is 
selected to be used.  

2.1 Forward Pass Calculation 

Let the partial sequence of π,  πE = π , π , . . , π  represent the sequence of jobs 
from the first job to the  j  job of sequence π where 1 < < . The minimum 
difference, between the completion of processing the last job of  πE on machines k  
and k + 1  is denoted as F( πE, k, k + 1)  and restricted by no-idle constraint. F( πE, k, k + 1) can be computed as: F( πE, k, k + 1) = p(π , k + 1) k = 1,2, . . , m 1 (1) F  πE, k, k + 1 = max F  πE , k, k + 1 p π , k , 0 + p π , k + 1   
 j = 2,3, . . , n     and    k = 1,2, . . , m 1 (2) 

In formulation (1), difference between the completions of processing the last job of  πE which only includes one job, on machines k  and k + 1 is given. Since there is 
only one job, F( πE, k, k + 1) can be calculated by considering processing time of 
that job on corresponding, (k + 1)  machine. In formulation (2), calculation of F  πE, k, k + 1  for j > 1 is represented. It can be calculated by not only considering 
processing time of jth job on machine k, also adding the positive difference between 
the previous job’s completion of processing on machines k  and k + 1. 

The completion time of last job, π  on last machine m can be calculated as sum-
mation of F( πE, k, k + 1)  value for all machines and the processing times of all  
previously processed jobs including  π  itself; 
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C(π , m) = C (πE)  = ∑ F( πE, k, k + 1) + ∑ p π , 1            (3) 

Then, for any job j, completion time on last machine m can be computed by subtract-
ing the processing time of the next job, π  from the completion time of  π on 
machine m;        C π , m = C π , m p π , m                    j = n 1, n 2, . . ,1 (4) 

Makespan can also be defined as the maximum completion time of jobs on the last 
machine by using the no-idle constraint of this problem; C (πE) = max (C(π , m), C(π , m), . . , C(π , m))              (5) 

3 General Variable Neighborhood Search Algorithm  

Variable neighborhood search (VNS) is a common approach proposed by [8] to en-
hance the solution quality by systematic changes of neighborhoods. The basic steps of 
VNS algorithm can be summarized as follows: 

Initially, a set of neighborhood structures,  is selected where = 1,2, . . , . 
Having a multi neighborhood structure makes VNS an effective algorithm since most 
local search heuristics employ only one structure, = 1. Then the initial solution 
is generated either randomly or using heuristics, such as NEH heuristic [9]. First a 
shaking phase then local searches are applied to the solution. The stopping criteria can 
be selected as maximum CPU time allowed or maximum number of iterations. Shak-
ing step of VNS algorithm provides randomness in search. If this step is eliminated 
from algorithm, variable neighborhood descent (VND) algorithm which is shown in 
Figure 1 is obtained. 
  ( ) = 2 = 1  = ( )  ( ) < ( ) =  = 1    = + 1 ( ≤ )    

Fig. 1. Variable Neighborhood Descent 

An extended VNS algorithm called general variable neighborhood search (GVNS) 
that is proposed in [5]. It can be obtained by replacing the local search step of VNS with 
VND algorithm. In this study, a different version of the GVNS algorithm with insert and 
swap operations in outer loop and in the inner loop (VND), IG algorithm and iterated 
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local search (ILS) algorithm [4] is employed to solve the NIPFS problem. The pseudo 
code of the GVNS algorithm we employed in this study is given in Figure 2.   =  =  = 2 = 1 

 
               = ( ) 
               = ( ) 
                 ( ) < ( ) 
                     =  
                     = 1 
                 

 = + 1 ( ≤ )   
 

Fig. 2. General Variable Neighborhood Search  

GVNS algorithm starts with an initial solution that is generated by the NEH heuris-
tic. Then, the shaking phase of GVNS in the outer loop is composed of two different 
operations; the  and  operations applies only one insert and one swap 
move, respectively, to shake the permutation, ( ) = ( ) , ( ) =( ) operations. For the inner loop in VND, the neighborhood structures are 
taken as two powerful local search algorithms such as iterated greedy and iterated 
local search. In other words, the neighborhood structures for VND are taken as  ( ) = ( )  and ( ) = ( )  algorithms, the pseudo codes of the algo-
rithms are given in Figure 3 and Figure 4, respectively. For the details of the ILS al-
gorithm, we refer to [4].  

 ( ) = ( ) =  
 

 = ( ) 
  ( ) < ( ) 
  =  
  =  
  
  =  ( = )   

 

Fig. 3.  neighborhood structure (IG) 
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  ( ) = ( ) =  
 

 = ( ) 
  ( ) < ( ) 
  =  
  =  
  
  =  ( = )   

 

Fig. 4.  neighborhood structure (ILS) 

In the VND loop, the IG algorithm takes the solution from the GVNS loop and ap-
plies a destruction and construction procedure.  A local search is also applied. On the 
other hand, the ILS algorithm takes the solution from the IG algorithm if it fails and 
perturbs the solution by some insert moves randomly taken between 1 and 5. Then it 
applies the same local search. 

In the GVNS algorithm, the key procedures are the NEH heuristic, destruction and 
construction procedure and the local search. NEH heuristic is proposed by [9] and has 
been recognized as the highest performing method for the permutation flowshop 
scheduling problem. For the details of the NEH heuristic, we refer to [15]. 

Destruction and Construction Procedure consists of two main steps; destruction 
step and construction step. In the destruction step, pre-determined parameter d many 
jobs are randomly chosen and removed from the current solution. Therefore, two 
partial solutions obtained; one consists of the removed jobs, in the order which they 
removed denoted as πR, the other one is the remaining part of the initial solution with 
size n d and denoted as πD. In the construction phase, basically all jobs in πR is 
inserted into each position in πD one by one, and finally the best permutation with 
the minimum makespan is selected.  

We use the Referenced Insertion Procedure (RIS), where as an initial step, a refe-
renced permutation, πR, is selected which is the best solution found so far in this 
study. Then, the first job of the πR is determined and the position of this job is found 
in the current permutation π. This corresponding job is removed from π and inserted 
into all possible positions of permutation π. Next, second job of the πR is found in 
the permutation π, removed and inserted into the positions of its own permutation. 
And the procedure goes on in this way, until all the jobs in the πR is processed. The 
pseudo code of the RIS algorithm is given below, in Figure 5. 
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 ( , ) = 1 = 1 ( ≤ )   
         = ( )  
        =     ,           
                     
        =             
                       
         ( ) < ( )   
 =  
 = 1 
             
 = + 1 
           
    

 

Fig. 5. Referenced Insertion Procedure 

4 Computational Results 

In this study, a newly modified GVNS algorithm is proposed to solve no-idle permu-
tation flow shop scheduling problem. In order to test the performance of these  
 

Table 1. Average relative percentage deviation of the algorithms for t=30 

Jobs Machines vIG_DE GVNS 

50 10 0.03 0.14 

 20 -0.04 -0.04 

 30 -0.17 -0.12 

 40 -0.41 -0.41 

 50 -0.16 -0.23 

100 10 0.04 0.08 

 20 -0.09 -0.03 

 30 -0.19 -0.30 

 40 -0.65 -0.95 

 50 -0.12 -0.27 

150 10 0.00 0.00 

 20 0.05 0.02 

 30 -0.18 -0.12 

 40 -0.07 -0.25 

 50 -0.85 -0.97 

200 10 0.00 -0.00 

 20 -0.07 -0.05 

 30 -0.31 -0.33 

 40 -0.26 -0.61 

 50 -0.40 -0.53 
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Table 1. (continued) 

Jobs Machines vIG_DE GVNS 

250 10 -0.01 -0.01 

 20 -0.03 -0.01 

 30 -0.14 -0.28 

 40 0.02 -0.14 

 50 -0.60 -1.09 

300 10 0.00 0.00 

 20 0.00 -0.05 

 30 0.02 -0.05 

 40 -0.34 -0.32 

 50 -0.23 -0.54 

350 10 0.00 0.01 

 20 -0.01 0.00 

 30 -0.05 -0.14 

 40 0.08 -0.17 

 50 -0.44 -0.72 

400 10 0.00 -0.00 

 20 0.04 0.00 

 30 0.11 -0.02 

 40 -0.04 -0.16 

 50 -0.25 -0.49 

450 10 0.00 0.01 

 20 0.00 0.04 

 30 -0.03 -0.16 

 40 -0.09 -0.23 

 50 -0.07 -0.53 

500 10 0.00 0.00 

 20 -0.04 -0.04 

 30 0.08 -0.05 

 40 0.10 -0.17 

 50 -0.03 -0.38 

 Avg -0.12 -0.213 

Table 2. The new best known solutions obtained by GVNS algorithm 

Instance  GVNS Instance  GVNS 

50_20_01 5646 250_50_03 26351 

50_20_05 4874 250_50_04 25500 

50_40_04 9495 250_50_05 27332 

50_40_05 8904 300_20_03 20229 

50_50_01 11584 300_30_01 26487 

50_50_02 10857 300_30_03 24363 

50_50_03 10873 300_30_05 22553 

50_50_04 9890 300_40_03 25361 

100_30_03 10549 300_40_04 27466 

100_40_03 12411 300_50_01 31538 

100_40_04 11778 300_50_02 29474 
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Table 2. (continued) 

Instance  GVNS Instance  GVNS 

100_40_05 12902 300_50_03 30701 

100_50_01 15998 350_10_01 19297 

100_50_03 17571 350_30_03 27638 

100_50_04 16626 350_40_01 29072 

100_50_05 14746 350_40_02 29010 

150_20_04 10903 350_40_05 29742 

150_30_01 15482 350_50_02 32882 

150_30_03 14650 350_50_03 34682 

150_40_01 15935 350_50_04 36985 

150_40_02 18075 400_20_04 25105 

150_40_04 14555 400_40_01 37426 

150_40_05 17234 400_40_03 34450 

150_50_01 20298 400_40_05 32730 

150_50_05 19241 400_50_03 37680 

200_30_01 17034 400_50_04 40444 

200_30_05 17970 400_50_05 35499 

200_40_01 19909 450_30_02 32494 

200_40_02 21708 450_30_03 31968 

200_40_04 17420 450_30_04 33691 

200_50_02 23429 450_30_05 33641 

200_50_03 22296 450_40_01 39547 

200_50_04 23929 450_40_05 35681 

250_20_04 17639 450_50_01 37287 

250_30_02 21824 500_30_02 39348 

250_30_04 19744 500_30_04 33896 

250_40_01 22780 500_30_05 38339 

250_40_02 24098 500_40_03 40313 

250_40_03 24337 500_40_05 36203 

250_40_04 24741 500_50_01 46175 

250_40_05 23468 500_50_04 42345 

250_50_01 28548 500_50_05 43000 

250_50_02 24276   

 
algorithms, the benchmark suite presented in http://soa.iti.es/rruiz is used. This 
benchmark is designed for NIPFS problem with makespan criterion specifically, with 
the number of jobs n = 50,100,150,200,250,300,350,400,450,500  and the num-
ber of machines m = 10,20,30,40,50 . There are 50 combinations with different 
sizes and each combination has 5 different instances. Thus, there are 250 instances in 
total. R=5 runs were carried out for each instance for each algorithm. All results are 
compared with the best-known solutions presented in the website of Ruiz García, 
Rubén. In order to compare these results, an average relative percentage deviation is 
calculated for each combination by using the following equation; ∆ = ∑ ( ) /                            (6) 
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where H  is the objective function value that is obtained in i   run of each algorithm, Best  is the best-known solution presented in http://soa.iti.es/rruiz and R  is the  
number of runs. The stopping criterion is selected as a maximum run time of each 
algorithm which is defined as T = n(m/2) t milliseconds where the value of t 
can be taken as, t = 30 or t = 60 depending on the comparison case.  

The proposed algorithm is coded in C++ and run on an Intel Core 2 Quad 2.66 
GHz PC with 3.5 GB memory. For the Destruction and Construction procedure, the 
destruction size is fixed at d = 8. The perturbation strength of the ILS algorithm is 
taken randomly between 1 and 5. The computational results are given in Table 1 and 
compared to vIG_DE algorithm in [15]. In addition, the new best known solutions 
obtained by GVNS algorithm are given in Table 2. 

5 Conclusion 

In this study, we proposed a GVNS algorithm to solve no-idle permutation flowshop 
scheduling problem (NIPFS), where idle times are not allowed on machines. GVNS is 
a metaheuristic, where inner loop operates a variable neighborhood descend (VND) 
algorithm whereas the outer loop carries out some perturbations on the current 
solution. The results of the GVNS algorithm are compared to those generated by the 
variable iterated greedy algorithm with differential evolution (vIG_DE). The 
performance of the proposed algorithm is tested on the Ruben Ruiz’ benchmark suite 
that is presented in http://soa.iti.es/rruiz . Computational results showed that the 
GVNS algorithm further improved 85 out of 250 best solutions found so far in the 
literature. Table 1 and Table 2 show the average relative percentage deviation of the 
algorithms and best so far solutions obtained by GVNS algorithm, respectively. 
Instances are indicated as _ _ , where  is the number of jobs,  is the number of 
machines and  is the instance number. 
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Abstract. A design problem of non-uniform circular antenna arrays for the best 
optimal performance with the help of seeker optimization algorithm is dealt 
with in this paper. This problem is modeled as a simple optimization one. The 
algorithm is used to determine an optimum set of current excitation weights and 
antenna inter-element separations that provide radiation pattern with maximum 
reductions of side lobe level (SLL) and first null beamwidth (FNBW). Circular 
array antennas lying on x-y plane are assumed. The same algorithm is applied 
successively on circular arrays of 8, 10 and 12 elements. Various simulation 
results are presented. Performances of side lobe and FNBW are analyzed. 
Experimental results show considerable reductions of both SLL and FNBW 
with respect to the uniform case and those of some referred literature [3, 4] 
based on GA and PSO, respectively.  

Keywords: Circular antenna arrays, Side lobe level, First null beamwidth, 
Seeker optimization algorithm. 

1 Introduction  

A lot of research works have been carried out in the past few decades on different 
antenna arrays in order to get improved radiation patterns. An Antenna Array is 
formed by assembly of radiating elements in an electrical or geometrical 
configuration. Total field of the Antenna Array is found by vector addition of the 
fields radiated by the individual elements [1]. This is important to reduce interference 
from the side lobes of the antenna. There are several parameters by varying which the 
radiation pattern can be modified [1-2].  A circular array has all its elements placed 
along the perimeter of a circle. A circular array is an array that has a configuration of 
very practical interest. Its applications span over radio detection finding, air and space 
navigation, underground propagation, radar sonar and many other systems. In this 
case, the antenna array design problem consists of finding current excitation weights 
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and antenna inter-element separations that provide a radiation pattern with maximum 
reductions of both SLL and FNBW. The classical optimization methods are not 
suitable for optimal design of complex, nonlinear, multimodal, non-differentiable 
antenna array design problem. So, evolutionary methods have been employed for the 
optimal design of antenna array design problem. Different evolutionary optimization 
techniques are as follows: Genetic Algorithm (GA) is inspired by the Darwin’s 
“Survival of the Fittest” strategy [5-8]; Conventional PSO has mimicked the 
behaviour of bird flocking or fish schooling [9]. Several attempts have been taken 
towards the system identification problem with basic PSO and its modified versions 
[10-12]. The key advantage of PSO is its simplicity in computation and less number 
of steps is required in the algorithm. The major drawbacks of RGA and PSO are 
premature convergence and entrapment to suboptimal solution. In this paper, the 
capability of finding near optimal result in multidimensional search space using GA 
and PSO [3, 4] and the proposed Seeker optimization algorithm (SOA) [13-14] is 
individually investigated thoroughly for the optimal design of non-uniformly 
weighted and spaced circular antenna arrays with reduced SLL and FNBW. So, to 
enhance the performance of optimization algorithms in global search (exploration 
stage) as well as local search (exploitation stage), the authors suggest an alternative 
technique seeker optimization algorithm (SOA) to achieve much reduced SLL and 
FNBW for non-uniformly weighted and spaced circular antenna arrays.   In this paper 
the performances of GA and PSO given in the literature [3, 4] and the proposed SOA 
are analysed to finally demonstrate the effectiveness and superior performance of 
SOA for achieving the global optimal solution in terms of reduced SLL and FNBW. 
SOA [13-14] is essentially a population based heuristic search algorithm. It is based 
on human understanding and searching capability for finding an optimum solution. In 
SOA, optimum solution is regarded as one which is searched out by a seeker 
population. The underlying concept of SOA is very easy to model and relatively 
easier than other optimization techniques prevailing in the literature. The highlighting 
characteristic features of this algorithm are the following: 

(a) The performance of SOA varies a little with its parameters  
(b) Search direction and step length are directly used in this algorithm to update the 

position, 
(c) Proportional selection rule is applied for the calculation of search direction, 

which can improve the population diversity so as to boost the global searching 
ability and decrease the number of control parameters making it simpler to 
implement, and 

(d) Fuzzy reasoning is used to generate the step length because the uncertain 
reasoning of human searching could be the best described by natural linguistic 
variables, and a simple if-else control rule.  

The present work focuses on the performance of the SOA for finding the optimal 
design of non-uniformly weighted and spaced circular antenna arrays.   
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2 Design Equation  

Fig. 1 assumes the geometry of a circular array having a radius ‘a’ and N isotropic 
sources laid on x-y plane and scanning at point P in the far field. The elements in the 
non-uniform circular antenna array are taken to be isotropic sources, so the radiation 
pattern of this array can be described by its array factor. In the x-y plane, the array 
factor for the circular array shown in Fig.1 is given by (1) [1]. 
 
 
 
 
 
  
                                                                                       

 
 
 

 

Fig. 1. Geometry of non-uniform circular array laid on the x-y plane with N isotropic elements 
scanning at a point P in the far field 
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ϕ = Elevation angle; 
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(n+1)th element; 0ϕ is the angle where the global maximum is attained 

in [ , ]ϕ π π= − . In our design problem 0ϕ to chosen to be 0, i.e., 0ϕ is the maximum 

radiation angle. The design goal in the paper is to find the optimum set of values of 

current excitation weights, nI  and inter-element spacing, nd  in order to get optimal 

reduction of both SLL and FNBW in the radiation pattern in the desired directionϕ .  

nI of each element and nd are used to change the antenna radiation pattern.            

After defining the array factor, the next step in the design process is to formulate 

the cost function which is to be minimized. The cost function 1( )f may be written as        

1 1 0 2( , ) / ( , ) ( ( 1))msl n n computed nf W AF I AF I W FNBW FNBW Iϕ ϕ= × + × − =    (6) 

where FNBW  is an abbreviated form of first null beamwidth or in simple terms 
angular width between first nulls on either side of the main beam. Thus, 

computedFNBW and ( 1)nFNBW I =  basically refer to the computed first null 

beamwidths in radian for the non-uniform case and for the uniform case, respectively. 

The second term in (6) is computed only if ( 1)computed nFNBW FNBW I< = and 

corresponding solution set of nI and nd  is retained in the active population (otherwise 

discarded). Further, 1W and 2W  are the weighting factors. mslϕ  is the angle where 

maximum side lobe ( , )msl nAF Iϕ is attained on either side of the main beam. The 

weights 1W  and 2W  are chosen in such a way that optimization of SLL remains more 

dominant than optimization of FNBW  and 1f  never becomes negative. 

Minimization of 1f  means maximum reduction of SLL and lesser computedFNBW as 

compared to ( 1)nFNBW I = . The SOA employed for optimizing 

nI and nd resulting in the minimization of 1f and hence both SLL and FNBW is 

described in the next section. 

3 Seeker Optimization Algorithm 

Seeker Optimization Algorithm (SOA) [13-14] is a population-based heuristic search 
algorithm. It regards the optimization process as an optimal solution obtained by a 
seeker population. Each individual of this population is called a seeker. The total 
population is randomly categorized into three subpopulations. These subpopulations 
search over several different domains of the search space. All the seekers in the same 
subpopulation constitute a neighbourhood. This neighbourhood represents the social 
component for the social sharing of information. 
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3.1 Steps of Seeker Optimization Algorithm  

3.1.1 Calculation of Search Direction, ( )ijd t  

In the SOA, a search direction ( )ijd t and a step length ( )ij tα  are computed 

separately for each ith seeker on each jth variable at each time step t, where 

( ) 0ij tα ≥  and ( ) { 1, 0, 1}ijd t ∈ −  . Here, i represents the population number and j 

represents the optimizing variable number.  
It is the natural tendency of the swarms to reciprocate in a cooperative manner 

while executing their needs and goals. Normally, there are two extreme types of 
cooperative behaviour prevailing in swarm dynamics. One, egotistic, is entirely pro-
self and another, altruistic, is entirely pro-group. Every seeker/swarm, as a single 
sophisticated agent, is uniformly egotistic. He believes that he should go toward his 
historical best position according to his own judgment. This attitude of ith seeker may 

be modelled by an empirical direction vector , ( )i egod t


 as in (7). 

, ,( ) ( ( ) ( ) )i ego ii bestd t sign p t x t= −
  

                                    (7)  

In (7), ( )sign ⋅ is a signum function on each variable of the input vector. On the 

other hand, in altruistic behaviour, seekers want to communicate with each other, 
cooperate explicitly, and adjust their behaviours in response to the other seekers in the 
same neighbourhood region for achieving the desired goal. That means the seekers 
exhibit entirely pro-group behaviour. The population then exhibits a self-organized 
aggregation behaviour of which the positive feedback usually takes the form of 
attraction toward a given signal source. Two optional altruistic directions may be 
modelled as in (8)-(9). 

, 1 ( ) ( ( ) ( ) )i alt ibestd t sign g t x t= −
  

                                  (8) 

, 2 ( ) ( ( ) ( ) )i alt best id t sign l t x t= −
  

                                    (9)  

In (8)-(9), ( )bestg t


represents neighbours’ historical best position, ( )bestl t


means 

neighbours’ current best position. 
Moreover, seekers enjoy the properties of pro-activeness; seekers do not simply act in 
response to their environment; they are able to exhibit goal-directed behaviour. In 
addition, the future behaviour can be predicted and guided by the past behaviour. As a 
result, the seeker may be pro-active to change his search direction and exhibit goal-
directed behaviour according to his past behaviour. Hence, each seeker is associated 
with an empirical direction called as pro-activeness direction as given in (10). 

, 1 2( ) ( ( ) ( ) )i pro i id t sign x t x t= −
  

                                     (10)  

In (10), 1 2, { , 1, 2 }t t t t t∈ − − and it is assumed that 1( )ix t


is better than 2( )ix t


. 

Aforementioned four empirical directions as presented in (7)-(10) direct human being 
to take a rational decision in his search direction.  
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If the jth variable of the ith seeker goes towards the positive direction of the 

coordinate axis, ( )ijd t is taken as +1. If the jth variable of the ith seeker goes towards 

the negative direction of the coordinate axis, ( )ijd t is assumed as -1. The value of 

( )ijd t is assumed as 0 if the ith seeker stays at the current position. Every variable j  

of ( )id t


is selected by applying the following proportional selection rule as stated in 

(11). 
( 0 )

( 0 ) ( 0 ) ( 1 )

( 0 ) ( 1 )

0,

1,

1, 1

j j

ij j j j j

j j j

if r p

d if p r p p

if p p r

+

+

 ≤
= + ≤ ≤ +
 − + < ≤

                       (11) 

In (11), jr is a uniform random number in [0, 1], ( )m
jp ( {0, 1 1}m∈ + − is the 

percent of the numbers of “ m  ” from the set , , 1 , 2 ,{ , , , }ij ego ij alt ij alt ij prod d d d on 

each variable j of all the four empirical directions, i.e. ( )m
jp = (the number of m ) / 4.  

3.1.2  Calculation of Step Length, ( )ij tα  

Different optimization problems often have different ranges of fitness values. To 
design a fuzzy system to be applicable to a wide range of optimization problems, the 
fitness values of all the seekers are turned into the sequence numbers from 1 to S as 
the inputs of fuzzy reasoning. The linear membership function is used in the 
conditional part since the universe of discourse is a given set of numbers, i.e. 
1, 2, ........, S . The expression is presented as in (12).   

  max max min( )
1

i
i

S I

S
μ μ μ μ−= − −

−
                                         (12) 

In (12), iI is the sequence number of ( )ix t


after sorting the fitness values, 

maxμ is the maximum membership degree value which is equal to or a little less than 

1.0. Here, the value of maxμ is taken as 0.95. 

A fuzzy system works on the principle of control rule as “If {the conditional part}, 

then {the action part}. Bell membership function 
2 2/2( ) xx e δμ −= is well utilized in 

the literature to represent the action part. The membership degree values of the input 
variables beyond [ 3 , 3 ]δ δ− + are less than 0.0111 ( ( 3 ) 0.0111)μ δ± = , and 

the elements beyond [ 3 , 3 ]δ δ− + in the universe of discourse can be neglected for a 

linguistic atom. Thus, the minimum value min 0.0111μ =  is set. Moreover, the 

parameter, of the Bell membership function is determined by (13). 
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( )best randabs x xδ ω= × −
  

                                       (13) 

In (13), the absolute value of the input vector as the corresponding output vector is 
represented by the symbol ( )abs ⋅ . The parameter ω  is used to decrease the step 

length with increasing time step so as to gradually improve the search precision. In 
the present experiments, ω is linearly decreased from 0.9 to 0.1 during a run. The 

bestx


 and randx


 are the best seeker and a randomly selected seeker, respectively, 
from the same subpopulation to which the i th seeker belongs. It is to be noted here 

that randx


 is different from bestx


 and δ


 is shared by all the seekers in the same 
subpopulation.  
In order to introduce the randomness in each variable and to improve local search 

capability, the following equation is introduced to convert iμ  into a vector iμ


with 

elements as given by (14).  

 ( ,1)ij iRANDμ μ=                                             (14)  

In (14), ( ,1)iRAND μ returns a uniformly random real number within[ ,1]iμ . 

Equation (15) denotes the action part of the fuzzy reasoning and gives the step length 

( )ijα  for every variable j . 

         ln ( )ij j ijα δ μ= −                                              (15)  

3.1.2.1   Updating of Seekers’ Positions 

In a population of size S , for each seeker i ( )1 i S≤ ≤ , the position update on each 

variable j  is given by (16).   

( 1) ( ) ( ) ( )ij ij ij ijx t x t t d tα+ = + ×                                              (16)  

3.1.3 Subpopulations Learn from Each Other  

Each subpopulation is searching for the optimal solution using its own information.  
It hints that the subpopulation may trap into local optima yielding a premature 
convergence. Subpopulations must learn from each other about the optimum 
information so far they have acquired in their respective domain. Thus, the position  
of the worst seeker of each subpopulation is combined with the best one in each of  
the other subpopulations using the following binomial crossover operator as 
expressed in (17). 

, ,

,
, ,

0.5
n

n

lj best j

k j worst
k j worst else

x if rand
x

x

≤= 


                              (17)  
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In (17), jrand is a uniformly random real number within [0, 1]; ,nk j worstx is denoted 

as the jth variable of the nth worst position in the kth subpopulation; ,lj bestx  is the jth 

variable of the best position in the lth subpopulation. Here, n , k , 

l = 1, 2, ......., 1K − and k l≠ . In order to increase the diversity in the population, 

good information acquired by each subpopulation is shared among the other 
subpopulations. 

4 Experimental Results  

The SOA described in the previous section is implemented to study the behavior of the 
radiation pattern for non-uniform circular antenna arrays. In this case radiation pattern 

of the circular array with main lobe steered to 0 0ϕ =  degrees is considered. This 

section gives simulation results of both reduced SLL and FNBW in the radiation 
patterns. Three non-circular antenna arrays each having 8, 10, 12 elements are 
assumed. The SOA is executed for 400 iterations for each array. The population size 
has been fixed at 120. Table-I shows the best chosen parameters for the SOA.  

Figures 2-4 show comparisons between the radiation patterns for a uniform circular 
antenna array ( / 2d λ= ) and the non-uniform circular antenna array optimized by 

the SOA. In the case of uniform circular array, inter-element spacing d  is the arc 
distance between every pair of adjacent elements arranged in a circle, and 
radius . / (4 )a N λ π= .   

Fig.2 indicates that the uniform circular array has a radiation pattern with -4.17 dB 
SLL for N=8, when excitation weights are of equal unity amplitudes. All side lobes are 
suppressed to a level   -11.08 dB, and FNBW is reduced to 65.16 degrees as a result of 
the optimization by the SOA whereas [3-4] show SLLs of -9.811 dB, -10.799 dB and 
FNBW of 70.27 degrees, respectively, as shown in Table 2. Fig.2 shows the 
comparative radiation patterns as obtained using the results of Table 2 for N=8.  

Fig 3 illustrates the case for N=10. For this value of N, the SOA provides a 
radiation pattern with minimum SLL of -12.83 dB and FNBW of 42.48 degrees  as 
compared to SLLs of -9.811 dB, -12.307 dB and FNBW of 55.85 degrees  obtained, 
respectively, in [3-4], shown in Table II.  

Lastly, Fig 4 illustrates the case for N=12. For this value of N, as shown in Table 2, 
the SOA provides a radiation pattern with -13.77 dB SLL, i.e. the lesser minimum 
SLL, and reduced FNBW of 36 degrees as compared to SLLs of -11.88 dB, -13.670 dB 
and FNBW of 46.26 degrees, respectively, in [3-4].  Table 2 shows the results of 
element distribution and excitation distribution for each case. The same table illustrates 
that as the number of antenna elements N increases, the SLL reduction for non-uniform 
circular antenna array increases. It should be noted that the size of the circular array 
obtained is slightly larger than that obtained in [3-4] because in the present work, inter-

element distance is maintaining the minimum distance ( )/ 2 dλ λ< <   to avoid the 

mutual coupling effect.  
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5 Convergence Profile of SOA 

The minimum 1f values are recorded against number of iteration cycles to get the 

convergence profile of cost function obtained by the SOA for each optimal array 

design. Fig. 5 portrays the convergence profile of minimum 1f  for the circular array 

set having 12 elements. The programming was written in MATLAB language using 
MATLAB 7.5 on dual core (TM) processor, 2.88 GHz with 1 GB RAM. 

Table 1. SOA parameters 

Parameters SOA 
Population Size 120 
Maximum iteration cycles 400 
Δ 0.02 
k1 1.5 
k2 2.0 
k3 2.0 

Table 2.  Example of element distributions and the resulting excitation distribution and inter-
element separations for non-uniform circular antenna arrays obtained by the SOA for different 
numbers of antenna elements 

 
No.  of  

Element
s 

 
SLL 
(dB) 

 

 
SLL (dB) 
in [3], [4] 

 
FNBW 
(deg) 

 
FNBW 
(deg) in 
[3], [4] 

 

].......,,,[ 4321 NIIIII  

].,.........,,,[ 4321 Nddddd      

in s'λ  

 
Aperture 

in )(λ  

 
8 

 
-11.08 

 
-9.811, 
-10.799 

 
65.16 70.27, 

70.27 

0.3802    0.3721    0.9383   
0.8865    0.2687    0.4840 
0.2761        0.9208; 
0.9487    0.8199    0.8582   
0.5675    0.7003    0.8517   
0.5390        0.5075 

 
 

5.7928 

 
10 

 
-12.83 

 
-9.811, 
-12.307 

 
42.48 

 
55.85, 
55.85 

0.4472    0.2924    0.3356   
0.4214    0.5818    0.3783   
0.1824    0.1508    0.3818   
0.5722 ; 
0.6047    0.9782    0.7718   
0.9409    0.6405    0.9776   
0.7347    0.5419    0.7819   
0.9512 

 
 

7.9234 

 
12 

 
-13.77 

 
-11.83, 
-13.670 

 
36.00 

 
46.26, 
46.26 

0.5169   0.4519    0.2006   
0.5273  0.5617  0.8967   
0.6691   0.5912    0.2432   
0.5839       0.6416   
0.8285 ; 
0.8564   0.8305   0.6790   
0.5796   0.8978   0.7911   
0.5337   0.9848   0.7859   
0.8148       0.9462   
0.5772 

 
 

9.2770 
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Fig. 2. Best array pattern found by the SOA for the case of 8-element non-uniform circular 
array 
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Fig. 3. Best array pattern found by the SOA for the 10-element non-uniform circular array 
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Fig. 4. Best array pattern found by the SOA for the 12-element non-uniform circular array 
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Fig. 5. Convergence profiles of SOA for the (a) 10-element and (b) 12-element non-uniform 
circular arrays 

6 Conclusions  

This paper illustrates how to model the optimal design of non-uniform circular 
antenna array for maximum reductions of side lobe level and first null beamwidth by 
a new approach named seeker optimization algorithm. The seeker optimization 
algorithm efficiently computes the parameters of non-uniform circular antenna array 
to generate the near optimal radiation pattern. Experimental results reveal that design 
of non-uniform circular antenna arrays using the same algorithm provides 
considerable reductions of side lobe level and first null beamwidth as compared to the 
uniform case and some published works as well. Also, array patterns obtained by the 
SOA are generally better than those presented in [3] and [4]. 

Future research will be aimed at dealing with other geometries and constraints. 
Many different areas of antenna design and analysis require a feasible and versatile 
procedure, being able to perform array synthesis by suitably tuning antenna 
characteristics and parameters. Seeker optimization algorithm has proved versatile 
and robust for the present work and earlier reported works and thus seems a good 
candidate to face the complex nonlinear problem of array antenna design.   
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Abstract. Transformer design (TD) is a complex multi-variable, non-linear, 
multi-objective and mixed-variable problem. This paper discusses the applica-
tion of Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) for dis-
tribution TD, minimizing three objectives; purchase cost, total life-time cost 
and total loss individually. Two independent variables; voltage per turn and 
type of magnetic material are proposed to append with the usual TD variables, 
aiming at cost effective and energy efficient TD. Three case studies with three 
sets of TD vectors are implemented to demonstrate the superiority of CMA-ES 
and modified design variables (MDV), in terms of cost savings and loss reduc-
tion. Fourth case study depicts the accuracy, faster convergence and consistency 
of CMA-ES. Effectiveness of the proposed methodologies has been examined 
with a sample 400KVA 20/0.4KV transformer design. Simulation results show 
that CMA-ES with MDV provide the best solution on comparison with conven-
tional TD procedure and, Branch and bound algorithm for TD optimization 
problem. 

Keywords: Transformer design, CMA-ES, Magnetic material, Purchase cost, 
Total life-time cost, Volt per turn.  

1 Introduction 

From the outline of research papers in TD, efforts are focused on TD optimization 
problem [1]. TD optimization can be minimization of no-load loss [2], [3], minimiza-
tion of load loss [4], maximization of efficiency [5], maximization of rated power [6], 
minimization of mass [6] or minimization of cost [5], [7]-[12], based on the objective 
functions. 

A deterministic method of geometric programming is applied for the minimizing 
total mass of the transformer [6]. But this method requires mathematical model.  Bac-
terial foraging algorithm (BFA) [5] and simulated annealing technique [7] have been 
adopted for minimizing main material cost (MMC) of transformer. However, when 
the search space grows exponentially, basic BFA would not be suitable and the simu-
lated annealing technique finds difficult in extending itself to the multi-objective case.   
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Hybrid Finite Element Method (FEM) in combination with boundary element me-
thod (BEM), i.e. FEM-BEM [13], and heuristic solution [8] have been implemented 
for the minimization of transformer manufacturing cost (MC). But the disadvantage 
of numerical field analysis is mesh size and, that heuristic method is trial and error 
based. In all the above mentioned TD objectives such as minimization of total mass, 
MMC and MC, losses were not considered.  

Branch and bound algorithm (BBA) tailored to a mixed integer non-linear pro-
gramming, i.e. BBA-MINLP [10] and another widely used numerical field analysis 
technique in combination with BEM [12] have addressed the minimization of TLTC 
of transformer. These papers have overcome the above said limitation, by including 
losses in the objective function calculation. However, the magnetic material (MM) is 
not optimized, whereas fixed as MOH-0.27 [10].  To take into consideration the con-
flicting transformer design objectives, for example: minimizing purchase cost, and 
minimizing TLTC, core material should not be fixed. Only when, the type of magnet-
ic material (TMM) is preferred as a decision variable, material to be used to build the 
core, for the respective design objective can be easily optimized from the variety of 
available core materials, satisfying various other TD constraints.  

Generally, TD calculations require accessing several look-up tables’ data for the 
evaluation of specific core loss at various flux densities, winding gradient, oil gra-
dient, and heat transmission. Such complex analytical calculations interacting with 
graphical data are not handled accurately by the derivative based methods discussed 
above and thus the optimal solution is not guaranteed for the TD optimization prob-
lem solved by the analytical methods.  

Apart from the deterministic methods, genetic algorithm (GA) and neural network 
are also employed for the TD optimization.  GA has been applied for the minimiza-
tion of MC, incorporating TMM as design variable [9], transformer cost plus running 
cost minimization [11]. Neural network technique has been applied for the no load 
loss minimization [2], [3].  A more recent approach to adapting the mutation  
covariance matrix is the CMA-ES proposed by Hansen. Its important property is inva-
riance against the linear transformations in the continuous search space, when  
compared to other evolutionary algorithms. CMA-ES finds a global or near optimal 
minimum without using derivatives of the objective functions. This algorithm outper-
formed its competitors in CEC’05 benchmark optimization problems. Hence in this 
paper CMA-ES is applied for solving this complex TD optimization problem [14]. 

The main contributions of the paper are: (a) application of CMA-ES for TD  
optimization for the first time, assuring accuracy, consistency and convergence; (b) 
incorporation of TMM as one of the design variables for representing 10 different 
materials;   (c) inclusion of variable, voltage per turn in place of low voltage (LV) 
turns; (d) optimization of three different objectives such as minimization of purchase 
cost, minimization of TLTC, and minimization of total loss, individually suggesting 
the designer a set of optimal transformers instead of single solution, so that he can 
choose which of them best fits the requirement of the customer and application under 
consideration; (e) comparison of simulation results with recent report [10] and con-
ventional transformer design procedure (CTDP) [15], which is multiple design  
method or heuristic technique.  
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This paper is organized as follows: Section 2 describes the design of distribution 
transformer, section 3 presents CMA-ES algorithm, section 4 explains the CMA-ES 
based TD optimization, section 5 includes computational results and section 6 con-
cludes the paper. 

2 Design of Distribution Transformer 

2.1 Preliminary 

• Performance variables:  These parameters list include transformer rating i.e. name 
plate details, design requirements on guaranteed no-load loss ( ), guaranteed 
load loss ( ), guaranteed short circuit impedance ( ), minimum full load effi-
ciency, maximum temperature rise, voltage regulation, tolerances for no-load loss 
and load loss constraints (  , ), etc.   

• Core variables: The core data include mainly the core stacking factor, mass densi-
ty, magnetization curve, and values of specific core loss for different maximum 
magnetic flux densities at 50Hz frequency for 10 different magnetic materials such 
as M3-0.27, M4-0.27, MOH-0.23, MOH-0.27, 23ZDKH90, 27ZDKH95, 23ZH90, 
23ZH95, 23ZDMH85, 27ZDMH. Specific core loss data has been taken from Nip-
pon steel catalogue [16]. 

• Conductor variables: This list include the resistivity of copper at the maximum 
specified temperature, type of internal and external winding, typical practical val-
ues for insulation of conductor, distance and insulation between windings and core, 
mass density of conductor, distance between two adjacent cores, maximum am-
bient and winding temperature, High Voltage (HV) taps, etc. Copper sheet is used 
for LV conductor and copper wire is used for HV conductor. 

• Cost variables: This includes unit price of main materials in euro per kilogram such 
as ith MM ( , , .. )  i.e.  ( ,  , ,  , … , , ) , conductor ( ), sheet 
steel ( ), mineral oil ( ), insulating paper ( ), duct strips ( ), and cor-
rugated panel ( ). 

2.2 Mathematical Model  

Mathematically, TD optimization problem can be stated in the form as:  

Find   = , , … . ,  which 
Minimize    ( ),           for = 1, 2, … ,                       
Subject to   ( ) ≤ , for = 1, 2, … ,            
      ≥ 0,         for = 1, 2, … ,                           

            ,  ≤   ≤ , ,   for = 1, 2, … ,          (1)  

where , pth objective function and ,  jth  inequality constraint are functions of ‘n’ 
decision variables ; , are constants; and, ,  and ,  are lower and upper 
limit on , respectively.  
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Minimum Purchase Cost Design-Objective Function .  This objective minimizes 
the total cost of transformer main materials ( ) including core, LV conductor, HV 
conductor, insulating paper, duct strips, oil, corrugated panel, and sheet steel using 
[10], [15]: Min,  =  = ,  . , +  . +  . +  . + . +  . +  .   +  .         (2) 

where , , , ..  ,   ,  ,  ,   , , , and   are total main 
materials cost of transformer in Euro, weight of the ith MM, LV conductor, HV con-
ductor, insulating paper, duct strips, oil, corrugated panel, and sheet steel in kg re-
spectively. 

Minimum TLTC Design-Objective Function  .  The cost optimal design of trans-
former has to minimize the sum of transformer cost and running cost. In this objec-
tive, transformer’s selling price and losses are considered as transformer price. So 
material saving and energy saving are the two important aspects in minimization of 
TLTC. This objective minimizes TLTC of transformer ( ), using [10], [15] :  

 Min, = = (  )( ) +  .  + .    (3) 

where, , , , , , ,   and   are total life time cost of transfor-
mer in euro, no-load loss cost rate in euro per watts, load loss cost rate in euro per 
watts, remaining materials cost in euro, labor cost in euro, sales margin, designed no-
load loss in watts and designed load loss in watts respectively. 

Minimum Total Loss Design-Objective Function  . It minimizes the total loss of 
the transformer ( ) using [8]:  Min,  = =  +             (4) 

Design Vector- . Design variables are collectively called as design vector. Mod-
ified Design Variables (MDV) are described in the following three sets of design 
vectors ( ,.. ) to realize the TD case study, detailed in section 5. = , , … .                                    (5) = , , … .                                   (6) = , , … .                                            (7) 

where  (integer variable) is LV turns;  (integer variable) is width of the core leg 
in mm;  (integer variable) is height of the core window in mm;  (discrete varia-
ble) is maximum magnetic flux density in Tesla;  (discrete variable) is current den-
sity in LV winding in A/mm2;   (discrete variable) is current density in HV winding 
in A/mm2;   (discrete variable) is voltage per turn in volts;  (integer variable) is 
TMM. 

Constraints of Performance Indices. Transformer performance must meet certain 
standards and rules, specified in IEC 60076-1, include, 
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• No-load loss constraint:   ≤    (1 + )                   (8) 
• Load loss constraint:        ≤    (1 + )               (9) 
• Total loss constraint:      ( + ) ≤ (   +   )(1 + )            (10) 
• Impedance voltage constraint:      (1 ) ≤    ≤  (1 + )           (11) 

where,    is the designed short circuit impedance. 

Constraints of Manufacturing Process Indices. These constraints are based on the 
transformer manufacturer specifications. 

• Ratio of width of the core leg to the height of the core window should be less than 
or equal to unity;      ≤                               (12) 

• 2-multiplied core leg thickness ( ) must be between a minimum of half core leg 
width and a maximum of 90% core leg  width;      0.5 ≤ 2 ≤ 0.9          (13) 

Constraints of Material Performance 

• Heat transfer constraint: Total heat produced by total loss of transformer must be 
smaller than the total heat dissipated by convection and radiation (Hdiss) through 
cooling arrangement;     +   ≤                 (14) 

• Magnetic flux density constraint: , ≤ ≤ ,              (15) 

3 CMA-ES Algorithm 

A standard CMA-ES with weighted intermediate recombination, step size adaptation, 
and a combination of rank - µ update and rank-one update is considered in this paper 
[14].   The various processes involved in the algorithm are discussed below in steps. 

Step 0: Initialization   
Set parameters , μ, μ , ,  μ , , , ,  to their default values detailed be-

low. Set evolution path ( ) = 0, ( ) = 0 and covariance matrix ( ) = I. Choose 
step size ( ) and distribution mean  (  ). Initialize generation count, g = 0. 

Step 1: Sampling population 

Set of search points ( ), … , 
( ) are generated by sampling the distribution, 

using the mean value  (  ),  covariance matrix (  ) and step size ( ( )). The basic 
equation for sampling the search points, for generation number g = 0,1,2... is given as,  

                        ( ) = (  ), (  ) (  ) ,    for = 1, … ,                       (16) 

where  ( )   is the kth offspring from generation g + 1;  is the population size.  

Step 2: Selection and recombination 
The ( ) sampled points are ranked in order of ascending fitness and (µ) best are se-
lected. The new mean ( (  )) of all current population vectors is a weighted  
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average of (µ) selected vectors from the samples ( ), … 
( )with weight para-

meter, ( ) and is updated using:    (  ) =  ∑ :( )               (17) 

Step 3: Covariance matrix Adaptation 
Rank-µ update of C is estimated as            ( ) = (1 ) ( ) +   ∑ :( ) ( )( )   :( ) ( )( )     (18) 

Evolution path ( )  is computed as                ( ) = (1 ) ( ) + (2 ) ( ) ( )( )      (19) 

The rank-one update of covariance matrix is given by                                     

  ( ) =  (1 ) ( ) + ( ) ( )            (20) 

The final CMA update formula for the covariance matrix ( ( )) combines (18) and 
(20), with μ ≥ 1, weighting between rank-μ and rank-one update:    

( ) = (1 ) ( ) + μ ( ) ( )
+ 1 1μ :( ) ( )( ) :( ) ( )( )  (21) 

where ( ) =  ( )( ( )) ( ( )) ;   = 1/( ∑ ) is the variance effective 

selection mass; =  ( ) learning ratio determines the cumulation step for the evo-

lution path; ( ) is an orthogonal basis of eigenvectors;  ( ), diagonal elements are 
the square roots of the eigen values of ( ); μ  is parameter for weighting between 
rank-one and rank-μ update and =  ( ) + 1 1, ( )( )  is the learning rate of cova-

riance matrix update ( ).   
Step 4: Step-Size control 
Conjugate evolution path is ( ) = (1 ) ( ) + ( (2 ) ) ( ) ( ) ( ) ( ) ( )( )         (22) 

The step size ( ( )) is adapted with conjugate evolution path ( ( )) as ( ) =( ) || ( )|||| ( , )|| 1       (23) 

where I is Identity matrix; (0, ) is normal distribution with zero mean and unity 
covariance matrix. || (0, )|| is expectation of the Euclidean norm of a (0, ) 

distributed random vector.  ( ) = 0 initially; = ( ) is backward time horizon of 

evolution path; =  (1, ( ) + ) is a damping parameter for the step size.  
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4 CMA-ES Based TD Optimization 

The step by step CMA-ES implementation for TD optimization is given below. CMA-
ES minimize objective functions  to , subject to the constraints (8) to (15). Set the 
objective function from equations (2)-(4), design vector  from equations (5)-(7), 
TD variables of section 2.1, lower and upper bounds for  and constraints.  

• Step 1: Input ( ),  ( ). Set CMA-ES parameters , μ, μ , ,  μ , , , ,  

etc. Initialize ( ) = 0, ( ) = 0. 
• Step 2: Choose step size ( ) as 0.25 ,  ,  and maximum number of 

generations (gmax). 
• Step 3: Initialize generation count, g = 0. 
• Step 4: If termination criterion: g = gmax is met, go to step 11. Else go to Step 5. 
• Step 5: Generate ( ) candidate solutions by sampling gaussian multi-variate distri-

bution with covariance matrix and standard deviation from (16). 
• Step 6: Determine the fitness function, ( ) , using penalty parameter-less con-

straint handling, where in-feasible solutions are compared based on their constraint 
violation: 

      ( ) =    ( ),                   = 1,2. .4,  + ∑ ( ) ,                                 (24) 

where ( ) is the fitness function, ( ) is the objective function value of the 
worst feasible solution in the current population. The fitness of the in-feasible solu-
tions not only depends on the overall constraint violation, but also on the fitness of 
the worst feasible solution. However, the fitness of a feasible solution is always 
fixed and is equal to its objective function value ( ( )). If there is no feasible so-
lution in the current population, ( )  is zero. 

• Step 7 : The ( ) sampled points are ranked in order of ascending fitness. Select (µ) 
best search points. Update the mean value ( (  )) using (17) and search points. 

• Step 8 : Update the covariance matrix ( ( )) by (19) and (21). 
• Step 9 : Update global step size ( ( )), using (22), and (23). 
• Step 10 : Increment generation count, g ; Go to step 4. 
• Step 11 : Stop the optimization process. 

5 Computational Results 

To demonstrate the effectiveness of the proposed MDV, a design example of 
400KVA, 50Hz, 20/0.4 KV, 3 phase, shell type, wound core transformer with vector 
group, Dyn11 has been considered. The upper and lower bounds of the design va-
riables, AA, BB, unit price of transformer materials, , , , ,  are derived 
from [10]. As reference transformer, the transformer with loss category AB’ accord-
ing to CENELEC is selected, which means that  = 750W,   = 4600W, and 
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 = 4%. Coding for TD optimization is developed using MATLAB 7.4 on Intel 
core, i3 processor Laptop, operating at 3.2 GHZ, with 3 GB RAM. Suitable modifica-
tions are incorporated for handling TD constraints in the coding of CMA-ES [17]. 
The population size and max number of function evaluations are fixed at 100 and 
10,000 respectively.  

5.1 Case Study 1 

This case study proves the superiority of CMA-ES in TD optimization. CMA-ES 
minimize objective functions , and , subject to the constraints (8) to (15), by find-
ing optimum values for the design vector,  [10] of equation(5) and results of  out-
put variables ( ) like ,  , ,  ,  are given in Table 1. It compares 
the solution of CMA-ES with BBA-MINLP [10] and   CTDP [15]. In Table 1, three 
techniques converged to three different solutions for both the objectives. In particular, 
the CMA-ES converges to the best result. CMA-ES has given cost savings of about 
8.801% and 15.84%, for  and, 3.306% and 2.298%, for  , when compared with 
BBA-MINLP method and CTDP. 

5.2 Case Study 2  

The CMA-ES optimizes the design vector , minimizing the objective functions 
to , subject to the constraints (8) to (15), and simulation results are tabulated in 

Table 2. This case study discusses the effectiveness of the addition of proposed TD 
variable  voltage per turn in place of  LV turns in the existing design vector 

taken from [10]. Variable  is varied at discrete levels in the interval [0 15] with 
step 0.01. In this case, an additional constraint is included that variable  must be an 
integer. The MM used for building the core is fixed as MOH-0.27 like case study 1 
[10]. Objective values optimized with  are found lesser than the results of the case 
before adding , for all the objectives. Optimization results of CMA-ES with  for 
all the objective functions have yielded performance improvement of 1.21%, 0.823%, 
and 2.24%, respectively on comparison with the results of .  

5.3 Case Study 3 

In this case study, CMA-ES optimizes the design vector , for the objective func-
tions  to , subject to the constraints from (8) to (15), and the results are depicted 
in Table 2. In the TD problem, soundness of the TD variable  , TMM is analyzed by 
adding it with the design vector . Here, MM used is not common for all the objec-
tive functions, whereas TMM is also optimized, during the run. By optimizing this 
way, no-load losses and cost due to no load losses for different MM can be evaluated 
during the design phase, and the appropriate core material, out of 10 materials can be 
optimized for each design objective considered. Variable  is defined as an integer, 
such that it varies from 0 to 10 for representing the 10 magnetic materials. In this  
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case, an additional constraint is included that variable  LV turns must be an integer. 
From Table 2, it is explicit that the optimization results of   by CMA-ES are supe-
rior to the solutions of   for the objective functions ,and . The design 
ble   can impart appreciable change in the objective values, only when the core loss 
calculation is used during the fitness function evaluation. Since   design does not 
rely on losses computation, TMM optimized in this case study 3 (material no: 4) is 
same as that of the MM fixed in case study 2, i.e. MOH – 0.27. On comparison with 
CMA-ES , and CMA-ES  respectively, CMA-ES  has given cost savings 
of about 1.89%, 2.73%, for  , and loss reduction of about 5.17%, 7.53% for  , 
From the simulation results, it is evident that CMA-ES with proposed MDV is able to 
find the optimal solution for TD optimization problem, irrespective of the objective 
function.  

5.4 Case Study 4 

Due to the stochastic nature of CMA-ES, 25 independent runs are performed to prove 
the consistency in obtaining the optimal solutions and their statistical results such as 
mean variance and standard deviation (SD) are reported in this case study for all the 
three objective functions  to , using . The performance of CMA-ES is shown 
with respect to solution accuracy, and mean computation time (MCT) to reach the 
optimum in Table 3. For all the objective functions employed, the numerical results of 
CMA-ES given in Table 3 are found more satisfactory, in terms of performance, con-
sistency, faster convergence for the TD optimization problem.  Convergence plot for 
objective function   with   is shown in Fig.1. 

Table 1. Optimization Results of CMA-ES with  

 
 

/  

  

CTDP 
[15] 

BBA  
MINL
P [10] 

CMA-
ES 

CTDP 
[15] 

BBA-
MINLP 

[10] 

CMA- 
ES 

  17 18 18 17 20 17 

    220 239 212 220 231 242 

    245 248 241 245 299 242 

   1.7 1.8 1.8 1.7 1.6 1.6 
  3.0 3.0 3.6 3.0 3.0 3.0 

   3.0 3.0 3.6 3.0 3.0 3.0 

 4475 4203 3863 4475 4428 4617 

 4148 4288 5012 4148 4613 4265 

 818 859 856 818 719 685 

  27199 27500 28790  27199 27467 26588 
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Table 2. Optimization Results of CMA-ES with    and  

  
/  

   

with 
  

with    
  

 with   
 

with  
 

with   
 

with  
 

with  
 

with   
 

 with 
  

 18 kNA kNA 17 kNA kNA 16 kNA kNA 

      212 224 224 242 245 245 232 220 219 

      241 227 227 242 245 245 232 220 219 

     1.8 1.8 1.8 1.6 1.6 1.7 1.6 1.6 1.75     3.6 3.6 3.6 3.0 3.0 3.0 3.0 3.0 3.0 

  3.6 3.6 3.6 3.0 3.0 3.0 3.0 3.0 3.0 

     kNA 13.22 13.22 kNA 13.20 13.20 kNA 14.90 14.91 

 kNA kNA 4 kNA kNA 5 kNA kNA 9     3863 3817 3817 4617 4543 4629 4754 4837 5680       5012 4886 4886 4265 4297 4215 4092 3958 3827    856 854 854 685 662 613 737 765 664 

  28790 28394 28394 26588 26371 25882 26786 26794 26844 

  5868 5740 5740 4950 4959 4828  4829 4723 4491 
kNA -  Not applicable 

Table 3. Performance of CMA-ES for TD Optimization Problem 

Objective 
function 

Best 
value 

Worst 
value 

Mean 
variance 

SD 
MCT 
(sec) 

 3817 3826 3819.8 3.82 96 

 25882 25882 25882 0 86 

 4491 4491 4491 0 98 

 

Fig. 1. Convergence plot for  with  
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6 Conclusion 

In this paper, CMA-ES is employed for the optimum design of three phase distribu-
tion transformer. The work proposed aiming at contributing a TD that minimize the 
objective(s) such as purchase cost, total life-time cost, and total loss of the transfor-
mer using proposed MDV, taking into account the constraints imposed by the interna-
tional standards, transformer specifications and customer needs. The validity of the 
CMA-ES for solving TD optimization problem is illustrated by its application to a 
400KVA distribution transformer design and comparison of its simulation results with 
CTDP and BBA-MINLP method in case study 1. Case studies 2 -3 have clearly inves-
tigated the significance of MDV for all the TD objective functions and have proven 
that MDV is efficient for the TD optimization problem. The proposed MDV are not 
only capable of producing optimum design, but can also render considerable cost 
savings, and loss reduction. Case study 4 has undoubtedly demonstrated the effective-
ness of CMA-ES with respect to its global searching, solution precision, consistency 
in obtaining solutions, and faster convergence. On comparison with BBA-MINLP 
method [10] and CDTP [15], CMA-ES  has given cost savings of about 10.11%, 
and 17.24% for ,  and, 6.12% and 5.088% for   respectively. 

Acknowledgements. The authors would like to acknowledge the efforts of Marina A. 
Tsili, and Eleftherios I. Amoiralis for their valuable assistance in supplying the trans-
former design specifications. 
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Abstract. Disassemble scheduling in remanufacturing is an important issue in 
the current industrial scenario. Allocation of operators for this purpose forms a 
special class of manpower scheduling problem with an added layer of 
restrictions. In this paper we propose a set of heuristics that make use of the 
concept of load information utilization. Several modifications have been 
incorporated on the basic framework and thorough comparison has been made 
between the same to devise an efficient way to tackle remanufacturing 
scheduling problems. The developed method has been put to test on a series of 
test functions of varying range of difficulty. The results prove the efficiency of 
these heuristics to solve this scheduling problem. 

1 Introduction 

One of the basic processes involved in industrial applications, remanufacturing [1] 
mainly deals with disassembling a complex machine into smaller and simpler 
subparts. The method helps in identifying root problems which when addressed can 
help in formation of a new reassembled machine. 

From an environmental point of view remanufacturing is considered as the ultimate 
form of recycling and now-a-days it is an interesting topic for researchers [2]. Even 
remanufacturing is practically used in several countries across the globe for 
remanufacturing of several products like aerospace, air-conditioning units, bakery 
equipments, computer and telecommunication equipment, defence equipments,    
robots, vending machines, motor vehicles and many more.  This environmental edge 
of remanufacturing process [3] has inspired us to deal with this problem. 

For any remanufacturing problem, operators are needed to carry out the 
disassembling. Hence for an efficient allocation of resources an organized scheduling 
algorithm is of the utmost importance. Manpower scheduling [4-6] is a particular 
class of such problems when the task at hand is to basically assign a set of human 
workers with imposed constraints. A broader method would be the classical Job shop 
scheduling problem [7] when more generalized machines are employed capable of 
performing at higher efficiencies compared to human labor.  
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Standard scheduling techniques have been overshadowed by the use of heuristics 
and meta-heuristics which aim to devise cost effective and efficient means to solve 
the issue. The latter consist primarily of algorithms like ABC [8], DE [9], GA [10] to 
employ a population based stochastic process seeking out the best possible 
combination for an optimal scheduling. Heuristics [11] on the other hand are general 
dedicated methods that are based on experience and learning.   

In this paper our primary aim is to utilize the concept of man power scheduling for 
disassembly in remanufacturing using heuristics. No such works that we are aware of 
are in the literature. Hence we have made use of a load information retention 
technique besides priority assignment. The process of disassembly is depicted through 
tree architecture. Thus, the problem at hand is to assign operators at each node from 
an available set of operators with specific processing times for working on that node. 
The algorithm keeps a track on the load of each operator and accordingly completes 
the assignment process in decreasing levels of priority.   

The paper is organized as follows. Section 2 deals with discussion of the problem 
structure and objective. In section 3, details of the priority dependant heuristic is put 
forward. As basic skeleton, a primitive simple greedy heuristic with no load retention 
in adapted. The advantages of adding the load retention scheme is then discussed and 
five variations of the same are put up. In section 4, all the frameworks discussed have 
been put to test in some generated test cases. The experimental background is 
mentioned in the same section as well as the obtained results with discussions and 
figures. The conclusion is finally drawn in Section 5. 

2 Problem Model and Objective 

The process of disassembly as mentioned in Section 1 is shown using tree 
architecture. The root node is the main machine which is to be disassembled into 
subparts. At each level of disassembly a certain set of operators are employed from an 
available pool and each operator has a value of processing time to operate on that 
particular level.  

Fig 1 shows a standard tree and the corresponding tree information table. As is 
evident in the figure node 1 or the root node is demarcated as NA since it has no 
parent. Thus Parent number 1 beside node number 2 shows that node number 1 is 
parent to node 2.  

 

 
 

Fig. 1. Sample Tree and corresponding Tree Information Table 

Node No Parent 
1 NA 
2 1 
3 1 
4 2 

5 2 
6 3 
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We now proceed to show a sample benchmark tree information table in Table 1 
that has been utilized as a test case. The problem shown is a 4-operator 
remanufacturing scheduling problem and has been marked as Instance 1 (Simple) in 
the subsequent discussions. The presence of ‘-’ indicates that the corresponding 
operator is not available for operation in the particular shift.  

Table 1. Sample Test Case- Instance 1(Simple) 

Node Parent Operator 1 Operator 2 Operator 3 Operator 4 
1 N.A. - - - - 
2 1 - - 15 10 
3 1 5 - 10 - 
4 2 6 9 - 8 
5 2 - - 7 10 
6 2 - 5 6 - 
7 3 - 8 - 7 
8 3 11 - 8 10 

Our objective here is to derive a schedule so that makespan [12] or the maximum 
time for the completion of the entire process is minimized. A schedule which is gives 
the least makespan of all the possible schedules is said to be an optimal schedule. 
Hence we attempt to allocate in such a way that the schedule obtained is as close to 
being an optimal schedule as possible. 

3 Priority Dependant Heuristic 

The remanufacturing model bears significant resemblance to a tree. In discussions 
henceforth we shall be frequently to a disassembled part to be a child of its former 
state whom we refer to as the parent. The level of disassembling or in other words the 
stage up to which the original machine has been disassembled is referred to as the 
depth. With these annotations in mind, we shall proceed to the assumptions and 
discussions of the priority dependant heuristic for operator assignment. 

The assumptions used for the heuristics designed are as follows:  

1. Level with lower amount of disassembled parts is considered for allocation 
prior to a level with higher amount of disassembled parts. In other words 
priority of assignment decreases as the depth of the tree increases. We refer to 
this as a LDHP (Lower Depth Higher Priority) assignment. 

2. Children or in other words, disassembled parts of Jobs which are assigned the 
least time in a certain level are considered first for assignment in the next 
level. The job whose children are being considered remains unaffected by its 
own parentage. To put in simple words, process flow of all the heuristics is 
unidirectional along increasing depth. 

3.1 Simple Greedy LDHP Heuristic without Load Information 

The simple Greedy Lower Depth Higher Priority (LDHP) algorithm is a primitive 
attempt to solve remanufacturing scheduling problem. This does not involve any prior 
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load information of the operators and hence this is not an adaptive algorithm. The 
greedy based selection of operators is utilized when assignment within a same level of 
priority is under question. In such a scenario, only that job is taken up which permits 
allocation of operator with the least possible operating time. Hence it is termed as a 
greedy selection. The entire process flow of the heuristic is outlined in the Fig 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Process flow for the Simple Heuristic: (Greedy LDHP algorithm) 

3.2 Modified Load Information Based LDHP Heuristic with Five Variations 

Load Information Retention involves using an adaptive process to determine the 
existing load on a particular operator. The existing load is added to the offered load in 
each level of assignment to get a complete picture of the existing scenario, which we 
refer to here as the Complete Information Schedule (CIS).  Real world problems often 
deal with similar situations when scheduling constraints often demand exclusion of an 
operator which is already on a certain amount of load. The total time of processing 
can be taken as a suitable measure of the load and hence this concept is used.  

The algorithmic variations from the simple heuristic discussed in Section 3.1 are 
highlighted in Step 3 of Fig 3. The method of assigning operators in a same priority 
situation is done using one of five methods discussed subsequently in Fig 4, Fig 5,  
Fig 6, Fig 7 and Fig 8. The methods or variations deal with choosing between same  
 

Step 1: Go to the first level of disassembling.  
Step 2: Prioritize this level and process all the children of this level first 
Step 3: All the children are of the same priority since they are all derived from 

same parent node. Within this priority level, go for greedy selection.  
• For each child find minimum processing time possible among all 
operators capable of operating on that child.  
• Order the obtained set or minima. 
• Assign the child with least minimum the highest priority for 
assignment and that with the highest the last priority. If there are 
multiple similar minima, priority is assigned randomly between them. 
• Choose operators in order of decreasing priority. 
• In a priority level always choose the operator with minimum 
processing time. 

Step 4: Update the finishing time of operation of each child in the level.  
Step 5: On completion, rank the finishing time of operation in increasing order. 
Step 6: Go to next level. The children of the job with the least rank (lowest 

finishing time) as obtained in Step 5 is given highest priority in this level and the 
priority decreases with increasing rank. Between two similar lower finishing times 
choice is made randomly. 

Step 7: The higher priority set of children are considered first 
Step 8: Repeat Steps 3-5 until all the priority levels within this depth are 

covered 
Step 9: Proceed similarly for all the depths 
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priorities and the modes of selecting constitute the basis of the variations. These 
modes are random, greedy, size, greedy and size, and finally a random pick between 
the above mentioned four modes. 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 
Fig. 3. Process flow for the Load Information based LDHP heuristic 

 
 
 
 

Fig. 4. Method 1: (R-SP) [Random based Priority assignment in Same Priority level] 

 
 
 
 
 
 

Fig. 5. Method 2: (G-SP) [Greedy based Priority assignment in Same Priority level] 

Step 1: Go to the first level of disassembling. Set Initial load of all the 
operators to 0.  

Step 2: Prioritize this level and process all the children of this level first 
Step 3: All the children are of the same priority since they are all derived from 

same parent node.  
• Add the existing load to the corresponding processing times of 
operators within this set of children and obtain a Complete Information 
schedule (CIS) 

• Consult Methods 1, 2, 3, 4, 5 (Fig 4 – Fig 8) to assign priority based on 
this CIS. 

• Choose operators in order of decreasing priority. 
Step 4: Update the finishing time of operation of each child in the level.  
Step 5: Update the existing load by adding the finishing time of each operator 

to their corresponding entries in the list of load. 
Step 5: On completion, rank the finishing time of operation in increasing order. 
Step 6: Go to next level. The children of the job with the least rank (lowest 

finishing time) as obtained in Step 5 is given highest priority in this level and the 
priority decreases with increasing rank. Between two similar lower finishing times 
choice is made randomly. 

Step 7: The higher priority set of children are considered first 
Step 8: Repeat Steps 3-5 until all the priority levels within this depth are 

covered 
Step 9: Proceed similarly for all the depth.

Step 1: From the CIS, find a random order of the children in the priority level 
Step 2: Assign the first member of this order the highest priority and the 

last member the least priority.  

Step 1: From the CIS, rank the summed processing times (processing time 
+ existing load) in increasing order of minima of the children. For multiple 
children with same minimum choose randomly. 

Step 2: Assign the first member of this rank the highest priority and the 
last member the least priority.  
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Fig. 6. Method 3: (S-SP) [Size based Priority assignment in Same Priority level] 

 
 
 
 
 
 
 

Fig. 7. Method 4:  (GS-SP) [Greedy and Size based Priority assignment in Same Priority level] 

 

Fig. 8. Method 5: (RCS-SP) [Random chosen scheme based Priority assignment in Same 
Priority level] 

4 Experimental Settings, Results and Discussions 

The developed heuristics have been put to test through a series of 10 instances with 
wide range of difficulty. Four are relatively easy scheduling problems where number 
of operators is limited to a maximum of 6 and depth of disassembling is at most 4. 
Four cases require assignment of medium level of difficulty where depth of tree is at 
most 7 and number of operators involved is at most 10.  The remaining two cases 
pose a difficult assignment challenge with involvement of 15 operators and a depth 
level of 10. The simple instance 1 has been shown in Table 1 in Section 2. In each of 
the cases, the makespan is noted besides the computational run time. Our objective is 
to minimize the makespan. 

Table 2 and Table 3 show the results of the simple Greedy LDHP heuristic along 
with the Load information based LDHP algorithm with all the five methods of 
assignment within a same priority level. In addition two additional hybrid algorithms 
are devised.  

In “Hybrid Pop based complete heuristic” a population pool of 5 is chosen and 
each is tested with Load information based assignment with one of the five methods, 
one after the other. The five different methods work together and the best results are 
reported. However in “Hybrid Pop based R-G-GS algorithm” only 3 membered 
populations with R-SP, G-SP and GS-SP modes of selection are used in each of the 
populations. Again the best results are obtained.  

Step 1: From the CIS, rank the size list of operators available of operation 
in increasing order. For multiple children with same size choose randomly. 

Step 2: Assign the first member of this rank the highest priority and the 
last member the least priority.  

Step 1: From the CIS, list the summed processing times (processing time + 
existing load) of the children and add the size of the corresponding list of 
operators available. Rank this combined minimum and size parameter in 
increasing order. For multiple children with same sum choose randomly. 

Step 2: Assign the first member of this rank the highest priority and the last 
member the least priority.  

Choose any of the R-SP, G-SP, S-SP, GS-SP (Methods 1-4) in random manner 
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A total of 10 runs have been taken for each instance and each algorithm. The best 
results have been adopted in each case. All the codes have been run on Intel Core™ i3 
machine with 2.26 GHz processor and 3GB memory on MATLAB 2012 platform.  

Table 2.  Results obtained under Instances 1-4 

HEURISTIC  
Instance 1 
(Simple) 

Instance 2  
(Simple) 

Instance 3 
(Simple) 

Instance 4 
(Simple) 

Simple Greedy 
LDHP Heuristic 

Makespan 20 45 45 41 
Run timee(sec) 5.96e-02 6.31e-02 7.50e-02 8.01e-02 

Load Info based 
Assignment (R-SP) 

Makespan 20 35 36 41 
Run time(sec) 6.20e-02 5.25e-02 5.09e-02 9.37e-02 

Load Info based 
Assignment (G-SP) 

Makespan 20 39 29 41 
Run time(sec) 6.01e-02 6.00e-02 6.03e-02 6.87e-02 

Load Info based 
Assignment (S-SP) 

Makespan 20 39 29 41 
Run time(sec) 4.99e-02 5.88e-02 5.50e-02 6.34e-02 

Load Info based 
Assignment (GS-SP) 

Makespan 20 39 29 41 
Run time(sec) 5.24e-02 6.32e-02 5.41e-02 6.88e-02 

Load Info based 
Assignment (RCS-SP) 

Makespan 20 39 33 41 
Run time(sec) 1.18e-01 9.09e-02 5.99e-02 6.97e-02 

Hybrid Pop based  
Complete heuristic  

Makespan 20 35 29 41 
Run time(sec) 8.87e-01 7.98e-01 7.86e-01 6.63e-01 

Hybrid Pop based   
R-G-GS heuristic 

Makespan 20 35 29 41 
Run time(sec) 4.12e-01 3.99e-01 3.32e-01 2.19e-01 

Table 3.  Results obtained under Instances 5-10 

HEURISTIC  
Instance 5 
(Medium) 

Instance 6 
(Medium) 

Instance 7 
(Medium) 

Instance 8 
(Medium) 

Instance 9 
(Hard) 

Instance 10 
(Hard) 

Simple Greedy 
LDHP Heuristic 

Makespan 135 110 116 114 198 189 
Run time(sec) 9.33e-02 1.23e-01 1.11e-01 1.11e-01 1.77e-01 1.89e-01 

Load Info based 
Assignment (R-SP)

Makespan 101 83 85 83 128 157 
Run time(sec) 1.17e-01 1.23e-01 8.27e-02 9.66e-02 1.58e-01 1.97e—01 

Load Info based 
Assignment (G-SP)

Makespan 100 86 86 87 125 157 
Run time(sec) 9.93e-02 1.07e-01 9.72e-02 9.28e-02 1.67e-01 1.75e-01 

Load Info based 
Assignment (S-SP) 

Makespan 104 77 91 89 126 158 
Run time(sec) 3.09e-01 1.26e-01 9.88e-02 9.11e-02 1.69e-01 1.75e-01 

Load Info based 
Assignment (GS-SP)

Makespan 101 77 82 82 129 161 
Run time(sec) 1.10e-01 1.09e-01 1.03e-01 6.89e-02 2.10e-01 1.50e-01 

Load Info based 

Assignment (RCS-SP)
Makespan 105 81 87 86 126 160 

Run time(sec) 1.12e-01 1.10e-01 1.26e-01 1.09e-01 1.71e-01 1.93e-01 
Hybrid Pop based  
Complete heuristic 

Makespan 100 77 82 82 125 157 
Run time(sec) 1.12e+00 9.88e-01 7.97e-01 8.55e-01 1.03e+00 1.63e+00 

Hybrid Pop based   
R-G-GS heuristic 

Makespan 100 77 82 82 125 157 
Run time(sec) 5.41e-01 4.13e-01 3.32e-01 3.11e-01 6.98e-01 7.01e-01 

 
The above results show that the simple greedy heuristic is basically a primitive 

model which fails to address the necessities of a minimal makespan. A marked 
improvements in the results is obtained when we include the load information  
retention mechanism. Altough all the five variations of this Load information based 
heuristic are remarkably superior to their primitive skeleteon – the greedy simple 
heuristic, it is however seen that on comparison between themselves slight differences 
arise. In some instances (Instance 2)  R-SP mode works the best while on others G-SP 
(Instance 9) or in some cases (Instance 7) GS-SP outperforms the other heuristcis. 
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Hence hybrid algorithms were devised. The hybrid pop based complete heuristic 
manages to achieve minimum makespan on all the cases albeit at the cost of a much 
increased computational time as compared to the others. The hybrid pop based R-G-
GS heuristic is finally seen to be an optimal algorithm since it gives the nimum 
makespan with a much lesser computational time as compared to the other hybrid 
algorithm. The Gnatt Chart [13, 14] is depicted below in Fig 9 for the best solution 
obtained in case of Simple Instance 1. The horizontal axis shows time units elapsed 
while vertical axis shows node number on which operation takes place. 

 

Fig. 9. Gnatt chart corresponding to solution of Table 1 

5 Conclusions 

Before concluding our discussion we quickly recapitulate the major aspects of the 
heuristic proposed in our paper 

First and foremost, the load information scheme is shown to be a fast performing 
and highly dependent method of obtaining scheduling solutions. The heuristic is 
derived from a grass root level and it has been shown that incorporation of load 
information retention scheme improves its performance to a great extent. The 
modifications or variations involved in the heuristic are all comparable in terms of 
performance although certain variations work well in some instances. Hybrid 
variations thus devised were seen to be highly efficient although compromises were 
made with the algorithmic run time. Summing it all up, such a proposed heuristic 
assures a solution that boasts of qualities of reliability robustness and effectiveness.  

Hence the load information based priority dependant heuristic is found to be a 
dependable method to solve manpower scheduling based remanufacturing problems. 
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Abstract. The onset of various real-time multimedia applications in whirlwind 
networks prompt the necessity of QoS based multicast routing.  A multicast 
communication creates a distribution tree structure, on which a multicast source 
sends a single copy of data to a group of receivers. QoS multicast routing is a 
non-linear combinatorial optimization problem which has been proved to be 
NP-complete, in which we try to find a multicast tree with minimized cost that 
satisfies multiple constraints. In this paper, we propose a tree based Chemical 
Reaction Optimization (CRO) Algorithm to solve QoS multicast routing 
problem. CRO mimics trees as molecules in a chemical reaction, and performs 
collision between molecules and based on potential energy, we select optimal 
result. Reckoning results for various random generated networks show that the 
proposed algorithm outperforms other existing heuristics. 

1 Introduction 

Multicasting is the ability of communication network to accept a single message from 
an application and to deliver copies of the message to multiple recipients at different 
locations [1]. One of the challenges is to minimize the amount of network resources 
employed by multicasting. Now-a-days many multicast applications exist such as 
news feeds, file distribution, interactive games and video conferencing. Multimedia 
applications place new requirements on network as compared to traditional data 
application They require relatively high bandwidth on a continuous basis for long 
periods of time and also they involve multipoint communication. Thus these are 
expected to make heavy use of multicasting, and tend to be interactive. Therefore, it is 
an important research problem to setup multicast routing quickly and with high QoS. 
The QoS requirements can be classified into link constraints (e.g. bandwidth), path 
constraints (e.g. end to end delay, loss rate) and tree constraints (delay jitter). The 
optimization problem with two or more constraints is known as NP-Complete [2]. 

Previous researchers have focused on developing heuristic and meta-heuristic 
algorithms such as PSO [3] [4] [6], GA [17], ACO [8] [16], QPSO [20], Memetic [12-
13] etc. These algorithms take polynomial time and produce near optimal results for 
solving the multicast routing problem. These heuristics can be classified into tree 
based and path based. In path based heuristics [7] [18], the k-shortest path for each 
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destination is computed and then the paths to all the destinations are combined to 
generate the multicast tree. A hybrid PSO with GA operator [7] is used for multicast 
routing problem. In [7], a set of k-shortest paths are generated as particles and a two 
point crossover is done on any two randomly chosen particles. It usually happens that 
this crossover generates a duplicate particle and reduce the searching ability. It again 
requires an extra effort in removing the duplicate particle and generate a new particle. 
Sun et al. [18] described an algorithm based on the quantum-behaved PSO (QPSO), 
for QoS multicast routing. The proposed method converts the QoS multicast routing 
problem into an integer-programming problem and then solves the problem by QPSO. 

In tree based heuristics [6] [8] [17], the tree is directly generated by heuristic 
algorithms, which reduces the effort of generating k-shortest paths and combining 
them. A tree based PSO has been proposed in [6] for optimizing the multicast tree 
directly. However, the performance depends on the number of particles generated. 
Another drawback of the algorithm is merging the multicast trees, eliminating 
directed circles and nested directed circles are very complex. A tree growth based 
ACO algorithm has been proposed in [8] to generate a multicast tree in the way of 
tree growth and optimizing ant colony parameters through the most efficient 
combination of various parameters. The general weakness of ant colony algorithm is 
that it converges slowly at the initial step and takes more time to converge which is 
due to improper selection of initial feasible parameter. The overhead also increases 
due to merging and pruning of trees. A Tree Based Swarm Intelligent Algorithm 
(TBSIA) is proposed in [17] for solving QoS multicast routing problem. The TBSIA 
presents two collective and co-ordination process for the mobile agents. One is based 
on the ACO [8] algorithm for guiding the agents' movements by pheromones in the 
shared environment locally and the PSO algorithm [6] for obtaining the global 
maximum of the attribute values through the random interaction between the agents. 

In this paper, we develop a Tree Based Chemical Reaction Optimization algorithm 
(TBCROA) for solving the QoS multicast routing problem. The TBCROA generated 
a number of multicast trees. Each tree represents a molecule and then the inter-
molecular ineffective collision and on-wall ineffective collision to generate new 
molecules.  The algorithm terminates finally generating the best molecule. 

The rest of the paper is organized as follows. The problem description and 
formulation is given in section 2. The basic concept of Chemical Reaction 
Optimization (CRO) and TBCROA is presented in section 3. The section 4 gives the 
performance evaluation of the proposed algorithm with respect to the other existing 
algorithms. Finally, the concluding remarks are presented in Section 5. 

2 Problem Statements and Formulation 

The problem of multicast routing in communication network is equivalent to finding a 
multicast tree T in graph G such that T spans the source and all members of in the 
multicast group M. A network is represented as an undirected graph G (V, E), where V 
is the set of vertices i.e. nodes and E is the set of edges i.e. communication link 
between the nodes. Each link (u, v) ∈ E in G has four weights bw(u, v), delay (u, v), 
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cost(u, v) and loss_rate(u, v) which represent available bandwidth, the delay, the cost 
and the loss probability. Let s ∈ V be the source node and M ⊆  V-{s} is the set of 
multicast destinations. 

The cost of a multicast tree is the sum of the costs of all the links in the multicast 
tree. A good multicast tree tries to minimize this cost. The total cost of the tree T(s, 
M) can be given by  ( , ) = ( , )( , ) ( , )                               (1) 

                                                                    
The end to end delay from the source node to the destination node is the sum of the 

individual link delays along the route. A good multicast tree tries to minimize the end 
to end delay for every source-destination pair in the multicast group. The total delay 
of the path PT(s, m) where m∈ M can be defined as     ( , ) = ( , )( , ) ( , )                                  (2) 

The total delay of the tree T(s, M) is defined as maximum of the delay on the paths 
from source to each destination. ( , ) = ∈ ( ( , )                                     (3)  

The bottleneck bandwidth of the path PT(s, m) is defined as minimum available 
bandwidth at any link along the path. ( ( , ) = min ( , )|( , ) ∈ ( , )                           (4) 

The total loss probability of the path can be defined as ( , ) = 1 1 _ ( , )                      (5)( , )∈ ( , )  

The delay jitter is defined as the average difference of the delay on the paths from 
source to destination node. ( , ) = ∑ ( (∈ ( , ) ( ))                       (6) 

Where delayavg is the average delay calculated from source to all destinations.                                     
The multi-constrained least cost multicast problem is defined as: 
Minimize C(T(s,M)), subject to : 
                                     

D (PT(s, m)) ≤ ∂ end-to-end delay requirement 
                                     L (PT(s, m)) ≤ £ loss probability                                        (7) 
                                    B (PT(s, m)) ≥ ε minimum bandwidth 
                                    DJ (T(s, M)) ≤ ϑ jitter delay constraint 

A good multicast tree is scalable in two respects i.e. constructing a multicast tree 
for a large multicast group should require reasonable amounts of time and resources. 
The second is that the routers in the communication network should be able to 
simultaneously support a large number of multicast trees. 
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3 A Tree Based CRO for QoS Multicast Routing Problem 

In this paper, we propose a tree based CRO algorithm (TBCROA) for QoS multicast 
routing problem.  The TBCROA generates a number of multicast trees by a heuristic 
algorithm. Each tree is considered as a molecule and fitness of the multicast tree is 
considered as the potential energy of the molecule. Then we use Inter-Molecular 
ineffective collision to generate new molecules. The less stable molecules are 
removed after each iteration. This process continues for a fixed number of iterations 
to come up with the most stable molecule.  The basic concept of CRO, representation 
of molecule, calculation of potential energy of molecule and operation of the 
TBCROA is presented in the following subsections. 

3.1 Chemical Reaction Optimization (CRO)  

The CRO [9-11] [14] is a recently established meta-heuristic for optimization, 
inspired by the nature of chemical reactions. In a chemical reaction, the initial species/ 
reactants/ molecules in the unstable states undergo a sequence of collisions and 
become the final products in stable states. It enjoys the advantages of both Simulated 
Annealing (SA) and Genetic Algorithm (GA). The basic unit in CRO is a molecule 
which is considered as a single possible solution in the population. Each molecule has 
potential energy (PE) and the kinetic energy (KE) which refers to the fitness value 
that characterize the molecule. A chemical change of a molecule is triggered by a 
collision which may be uni-molecular collision (molecule hits on some external 
substances) or inter-molecular collision (molecule collides with other molecules). The 
corresponding reaction change is termed as Elementary Reaction which can be of four 
kinds: on-wall ineffective collision, decomposition, inter-molecular ineffective 
collision, and synthesis. In On-wall ineffective collision, a molecule hits the wall and 
then bounces back which results subtle change in the molecule. If w is original 
molecule then w′ is the resultant molecule after On-wall ineffective collision. In 
Decomposition, a molecule hits the wall and then decomposes into two or more 
molecules. If w is original molecule then w1 and w2 are resultant molecules. In Inter-
molecular ineffective collision, more than one molecule collide with each other and 
then bounces back which results in two molecules with subtle change. If w1 and w2 are 
existing molecules then w1′ and w2′ are resultant molecules. In Synthesis, more than 
one molecule collides with each other and combines with each other to form one. If 
w1 and w2 are existing molecules then w′ is the resultant molecule. Synthesis is 
vigorous. 

3.2 Representation of the Molecule 

We use heuristic approach to construct a set of multicast trees randomly. Each 
multicast tree T (VT, ET) represents a molecule. Where VT is set of nodes and ET is the 
set of edges in T. The multicast tree T (VT, ET) is constructed by initializing by VT={s} 
and E = φ. The delay up to node s(dsf(s)), cost up to node s(csf(s)) and loss up to  
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node s(lsf(s)) are set 0, 0 and 0 respectively. The step by step procedure for the 
construction of multicast tree is as follows: 

Step 1: The source s is considered as the current node. 
Step 2: For each unvisited neighboring node ‘v’ of current node the delay, 

bandwidth and loss rate constraints are checked i.e.  
                                   B (curr_node, v) > ε 
                                   dsf (curr_node) + D (curr_node, v) < ∂                            (8) 
                                  1-(1-lsf (curr_node))(1-L(curr_node, v)) < £. 
 
Step 3: The neighboring nodes that satisfy these conditions are stored in an array 

along with their predecessors and the cost up to those nodes csf are taken as their 
priorities. 

Step 4: The node j with lowest csf value is taken as the current node and the csf (j), 
dsf (j), lsf (j) are calculated based on the equations between predecessor node to the 
considered neighboring node. 

Step 5: If the considered current node is our multicast destination, then the csf (j), 
dsf (j), lsf (j) are initialized to zero and from current node to neighboring node update 
the cost is updated. 

Step 6: Then the step 1 to step 5 are repeated for the updated current node until VT 
contain all nodes of the multicast group. 

Step 7: After tree is constructed we check whether tree satisfies the delay jitter 
constraint i.e. DJ (T (s, M)) ≤ ϑ. This is considered as the best tree and the fitness 
value of the tree is calculated. 

Step 8: After the first tree is generated, 10% of the total number of edges of the tree 
is deleted from the network randomly and from the resulting network graph we will 
generate next tree using step 1 to step 8. 

3.3 Potential Energy of the Molecule 

 The fitness of the multicast tree is considered as the potential energy of the molecule. 
The potential energy i.e. fitness function for this algorithm is defined as follows:                           

PE(T(s,M))=cost(T(s,M))+η1min{∂-delay(T(s,M)),0}+ 
η2min{ϑ-jitter(T(s,M)),0}+η3min{£-loss(T(s,M)),0}     (9) 

where, 1 2 3, ,η η η are punishment coefficients that decide punishment range. If 

b≥0 min (b,0) = b; else min(b,0) = 0. 

3.4 Operation of the TBCROA 

 The step by step operation of the TBCROA is presented below. 

Step 1: A set of multicast trees are randomly generated by using the procedure 
presented in section 3.2. Then two trees are selected randomly from this set of trees. 
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Step 2: The TBCROA collides these two trees using inter- molecular ineffective 
collision i.e. the edges are swapped between selected nodes and calculate the fitness 
of newly generated tree. 

Step 3: All the multicast trees generated are sorted with respect to their fitness and 
the less fit trees are destructed.  

This process is repeated for a predefined number of iterations or the stopping 
criteria is met. If the fitness of the global best molecule is not changed after three 
iterations then that is considered as the best multicast tree. 

Pseudo code TREE_BASED_CRO 

1. Begin 
2. Generate the set of multicast trees by using procedure described 

in Section 3.2   
3. For  
4.   each tree calculate potential energy 
5.   PE(T(s,M))=cost(T(s,M))+η1min{∂-delay(T(s,M)),0}+ 

η2min{ϑ-jitter(T(s,M)),0}+η3min{£-loss(T(s,M)),0} 
6. End For 
7. While stopping criteria not satisfied do 
8.    For i=1 to no of molecules 
9.         Randomly select two molecules w1 and w2 
10.         [w1’,w2’]=Intermole_in_col(w1 , w2) 
11. Generate all the molecules and sort them with respect to 

their fitness.  
12. End For 
13. Remove the redundant and less fit molecules  
14. End while 
15.  The optimal molecule will be stored in best_mole. 

 

Pseudo code inter_ineff_coll (M1, M2) 

1. Input:  Molecules M1, M2 with their central energy. 
2. Obtain an atom from M1, M2. Swap all the bonds on that atom 

between both molecules. 
3. Calculate PEw1 and PEw2 
4. Return w1, w2. 

4 Performance Evaluation 

We have implemented our proposed algorithm in Visual C++. The experiments are 
performed on an Intel Core i3 @ 2.27 G.Hz. and 2 GB RAM based platform running 
Windows 7.0. 

The positions of the nodes are fixed randomly in a rectangle of size 4000 km x 
2400 km. The Euclidean metric is then used to determine the distance between each 
pair of nodes. The network topology used in our simulation was generated randomly 
using Waxman’s topology [16]. Edges are introduced between the pairs of nodes u, v 
with a probability that depends on the distance between them. The edge probability is 
given by )/),(exp(),( LvulvuP αβ −= , where l(u,v) is the Euler distance 

from node u to v and L is the maximum distance between any two points in the 
network. The delay, loss rate, band width and cost of the links are set randomly from 
1 to 30, 0.0001 to 0.01, 2 to 10 Mbps and 1 to 100 respectively. 
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The source node is selected randomly and destination nodes are picked up 
uniformly from the set of nodes chosen in the network topology. The delay bound, the 
delay jitter bound and the loss bound are set 120ms, 60ms and 0.05 respectively. The 
bandwidth requested by a multicast application is generated randomly. We also 
implement PSOTREE [6] and TGBACA [8] and TBSIA [17] algorithms in the same 
environment to study and compare the performance of our proposed algorithm with 
the existing algorithms. We generate 30 multicast trees randomly to study the 
performance of our algorithm in comparison to the existing algorithms. The 
simulation is run for 100 times for each case and the average of the multicast tree cost 
is taken as the output.  

 
Fig. 1. Multicast tree cost vs. group size (No of nodes=100) 

 
Fig. 2. Multicast tree cost vs. Network size with 10% nodes as destinations 
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Fig. 3. Multicast tree cost vs. Network size with 25% nodes as destinations 

The multicast tree cost verses multicast group size for a network of 100 nodes is 
shown in Fig. 1.  The Fig. 2 shows the multicast tree cost verses the network size with 
10 percent of the nodes as the group size. The multicast trees generated by 
PSOTREE, TGBACA, TBSIA and our proposed algorithm satisfy the delay, delay 
jitter, loss rate and bandwidth constraints. However, the figures clearly illustrate that 
the cost of the multicast tree generated by our proposed algorithm is less than the 
multicast trees generated by PSOTREE and TGBACA and TBSIA. The PSOTREE 
algorithm constructs the multicast tree by combining the multicast trees and removing 
directed cycles. This algorithm removes the links that are in any of the trees, but not 
in both and have minimum fitness. However, this approach may not generate a better 
tree, because the links deleted from the cycle may be better than the links not in the 
directed cycles. The TGBACA algorithm follows a pheromone updating strategy to 
construct the best multicast tree. The algorithm updates pheromones on the links used 
by the global best tree and the best tree generated after each generation. Though this 
strategy fasts the convergence process, but the solution may fall into local 
optimization. The TBSIA combines two multicast tree patterns by bringing the better 
attributes of one pattern to another pattern. It generates a new tree pattern after each 
iteration, which is better than both the patterns. Since the whole path of one tree is 
replaced by another path from another multicast tree, some better links may be 
excluded from the tree. This may fail to generate an optimal tree in some cases. 

The TBCRO algorithm randomly collides two multicast trees which always try to 
choose the optimal links into the multicast tree. Therefore TBCROA generates the 
optimal multicast tree in most of the cases. 
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Fig. 4. Multicast tree Delay vs. Network size with 20% nodes as destinations 

 
Fig. 5. Multicast tree Delay Jitter vs. Network size with 20% nodes as destinations 

The Fig. 4 and Fig. 5 show the multicast tree delay and delay jitter versus number 
of network nodes with 20 % nodes as destinations respectively. It is observed that the 
proposed algorithm along with PSOTREE [6] and TGBACA [8] and TBSIA [17] 
satisfy the delay and the delay jitter constraints. The multicast tree generated by our 
algorithm experiences a delay and delay jitter comparable with PSOTREE [6] and 
TGBACA [8] and TBSIA [17]. However, the multicast tree generated by our 
algorithm performs significantly better in terms of multicast tree cost. 

5 Conclusion 

This paper presents a tree based chemical reaction optimization algorithm for QoS 
multicast routing problem. The proposed algorithm generates an economic multicast 
tree that satisfies delay, delay jitter, bandwidth and loss rate constraints. Our algorithm 
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constructs the multicast tree by randomly colliding multicast trees. Since the collision  
is done at random points, the TBCRO algorithm selects better link during random 
collision in comparison to the existing algorithms. Therefore, our algorithm performs 
better than the existing algorithms. 
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Abstract. This paper proposes a novel hybrid method for the planning of reac-
tive power problem (RPP).  The objective of this paper is to determine the op-
timum investment required to satisfy suitable reactive power constraints for an 
acceptable performance level of a power system. Due to the discrete nature of 
reactive compensation devices, the given objective function leads to a nonlinear 
problem with combined (distinct and constant) variables. It is solved by a hybr-
id procedure, aiming to develop the best search features of an iterative algo-
rithm. The performance of the proposed procedure is shown by presenting the 
numerical results obtained from its application to the IEEE 30-bus test network. 
The results obtained are compared with evolutionary programming (EP) and 
Broyden method to determine the efficacy of the proposed method. 

1 Introduction 

Variable load may have severe effects on the performance of a power system due to 
inadequate reactive power support and active power transmission capability. Reactive 
power plays an important role in supporting the real power transfer by maintaining 
voltage stability and system reliability. Using of compensation devices is the efficient 
method for reactive power dispatch to keep the voltage level within the acceptable le-
vels throughout the system reducing overall real power loss. A planning of reactive 
power (RPP) is required to determine the optimal placement of compensating devices 
minimizing the cost associated with it. These costs can be of one fixed and one varia-
ble type. The fixed part is due to the difference between the installation cost with and 
without a reactive device. On the other hand, the variable cost is mainly due to the ac-
tive losses in the generator caused by the reactive power. Ideally, the operation should 
minimize the cost due to the losses in the network and in the generation units, while 
keeping the system safe. This makes the reactive power problem a non-linear optimi-
zation problem with several constraints. 

Several methods have applied to the reactive power planning problems over the 
years.  Sachdeva et.al proposed nonlinear programming method for optimal reactive 
power planning in 1988 [1]. In this context successive quadratic programming is also 
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presented by Quintana et.al [2]. Through the use of mixed integer programming [3] 
and decomposition method [4] reactive power was optimized to reduce the network 
losses. In the year of 1997 DaCosta applied primal-dual method for optimal reactive 
power optimization [5]. Although these classical methods have proved their flourish-
ing results; they experienced with a limited capability to solve non-linear and non-
convex power system problems. Since the RPP problems have a lot of constraints 
both equality and inequality variables, the meta-heuristic methods are preferred as the 
solution to these problems give more satisfied results. 

In the recent years, several meta-heuristic algorithms have been applied for solving 
modern power system problems in order to overcome some of the drawbacks of con-
ventional techniques. In the era of 90’s Genetic Algorithm (GA) [6], Evolutionary 
Programming (EP) [7] proved their effectiveness in reactive power optimization prob-
lems. Reactive power operational and investment-planning problem is solved by Lee 
et al. [8] by a Simple Genetic Algorithm (SGA) combined with the successive linear 
programming method. Liu et.al presented Simulated Annealing and Tabu Search 
based hybrid method to solve the RPP problem as discussed [9]. Several other algo-
rithm presented in recent years for reactive power planning with various objective 
functions like Particle Swarm Optimization [10],[11],  Differential Evolution (DE) 
[12] etc. Recently Bacteria Foraging Optimization (BFO) [13] and Ant Colony Opti-
mization (ACO) [14] successfully solved RPP problem. A very new method namely 
Self–Evolving Brain–Storming Inclusive Teaching–Learning–Based Algorithm is 
used by KR Krishnanand et.al [15] to reduce fuel cost by reactive power optimization. 
Also in current year Carlos Henggeler Antunes et.al proposes Greedy Randomized 
Adaptive Search Procedure (GRASP) for reactive power planning [16].  

This paper is concerned with application of Cultural Algorithm (CA) for optimal 
reactive power dispatch with the cost of reactive power sources consisting of installa-
tion and operating costs. Cultural Algorithm (CA) was proposed by Reynolds as a 
model of social evolution [17], [18]. Having two different evolutionary spaces the 
cultural algorithm leads to a global optimization technique. Cultural Algorithms have 
been successfully implemented to various global constrained optimization problems 
of power system field such as substation planning [19], hydrothermal scheduling [20], 
Economic load dispatch [21], CEED problem [22] etc.  

In this study, a new approach based on Cultural Algorithm (CA) [23] for solving 
RPP in order to minimize objective function including cost of active and reactive 
powers produced by generators is presented. The mentioned method is studied on 30-
bus IEEE standard network and the results are compared to other meta-heuristic ap-
proaches [24] to check whether these results are reasonable and feasible. 

2 Problem Formulation 

Among one of the most important issues of power system, system loss is considered 
one of the main subject. Through reactive power compensation these system losses 
can be minimized to optimize the steady performance of a power system in terms of 
one or more objective functions satisfying several constraints. Being a complex  
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problem, RPP requires the simultaneous minimization of two objective functions 
which can be described as follows. 

2.1 Minimization of Operation Cost 

The first objective deals with the minimization of operation cost by reducing real 
power loss and improving the voltage profile. So the objective function represents the 
total cost of energy loss as, 
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=                                             (1) 

where h  is the per unit energy cost, lN  is the load level duration and 
llossP ,
 is the 

real power loss of the network during the period of load level . The 
llossP ,
  can be ex-

pressed for the duration ld   in the following equation as, 
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where, Gk is the line conductance of the kth line and  Vi  and Vj are the voltage 
magnitude of ith bus and jth bus respectively. Again θi and θj are the phase angles of 
ith bus and jth bus respectively. 

2.2 Minimization of Allocation Cost 

The other objective is to minimize the allocation cost by optimizing the additional 
reactive power sources. So the second objective function represents the cost of VAR 
source installation which comprises two components namely fixed installation cost 
and purchase cost. It can be expressed as,   
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Where ie   is the pre-specified fixed VAR source installation cost at bus i, ciC   is the 

per unit VAR source purchase cost at bus i and iQC  is the VAR source installation 

at bus i.  NC  is the number of VAR source installed buses. 
So, the desired objective model can be formulated as, 

                                    CC WIfcMinimize +=                                        (4) 

Subject to equal constraint, 
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and inequality constraints as follows;  
 
i. Generator constraints 
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All Generators voltages and reactive power outputs must be restricted within their 
permissible lower and upper limits as follows: 

                       NGiVVV
iii GGG ,......2,1,maxmin =≤≤                           (6) 

                      NGiQQQ
iii GGG ......2,1,maxmin =≤≤                          (7) 

where NG is the number of generators. 
ii. Load voltage constraints 
Load voltages should follow the restriction below, 

                    NPQiVVV
iii lll ,......2,1,maxmin =≤≤                                  (8) 

iii. Reactive power generation constraints of capacitor banks 
Capacitor bank generation must be within the permissible values as, 

                     NCiQCQCQC iii ......2,1,maxmin =≤≤                          (9) 

iv. Transformer tap setting constraints 
Transformer On-load tap changers are bounded as per the settings like, 

                      NTiTTT iii .....2,1,maxmin =≤≤                      (10) 

The equality constraints are satisfied by running the load flow program and the  
control variables are self controlled by the optimization algorithm. The security  
constraints like load bus voltages and line flow limit have to be derived as dependent 
variables. Normally, those candidate solutions which result in violation of upper or 
lower limits of the above stated dependent variables have to be penalized to discard 
the infeasible solutions. So, these state variables are satisfied by adding a penalty 
terms in the objective function. Embedding of the penalty function, the objective  
function (4) may be modified to, 
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3 Cultural Algorithm (CA) 

In 1994 Reynolds first proposed Cultural Algorithm (CA) as a social evolutionary 
process [18]. This high level searching technique is applied nowadays in many opti-
mization problems [19], [20], [21], [22]. The basics behind CA can be understood 
from elsewhere [18]. 

Population space of CA is the space where the information about individuals is 
stored and influences the belief space where the culture knowledge as a set of promis-
ing variable ranges are formed and maintained during the evolution of the population. 
After evolution of population space with a performance function the acceptance func-
tion will determine which individuals are kept aside for Belief space. Experiences of 
those elite individuals will update the knowledge of the Belief space via update func-
tion. This updated knowledge is used to influence the evolution of the population. 

A pseudo- code description of cultural algorithm is described as follows, 

                        Begin 
   t = 0 
   Initialize Pt 
   Initialize Bt 
   Repeat 
    Evaluate Pt 
    Update (Bt, accept (Pt)) 
    Generate (Pt, influence (Bt))  
     t = t + 1 
    Select Pt from Pt-1 
    Until (Termination condition achieved) 
                         End 
                          End 

4 Hybrid Cultural Algorithm 

After the application of the basic cultural operators, a problem-specific operator is ap-
plied to produce the new generation. In this improved hybrid cultural algorithm, cros-
sover is the main evolutionary operator for the exploitation of information [23]. This 
approach is capable of locating the global optimal solution promptly. The basic idea 
of using CA with evolutionary programming with crossover is to influence the muta-
tion operator so that the current knowledge stored in the search space can be properly 
exploited. Crossover is a mixing operator that combines genetic material from se-
lected parents to improve the search process. Cultural Algorithm belongs to the class 
of evolutionary algorithms which offers a unique strategy for optimization which is 
described as follows. 

4.1 Crossover 

The crossover operator is mainly responsible for the global search. The operator basi-
cally combines substructures of two parents to produce new structures. In this work 
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single point crossovers is employed in which one crossover site is chosen and 
offspring are created by swapping the information between the chosen crossover sites. 
This operator acts like a refined crossover operator which searches for improved per-
formance, exploits new areas of the search space far away from the current solution, 
and retains the diversity of the population. 
    The value of crossover constant (CR) must be made in the range of [0, 1]. A  
crossover constant of one leads the trial vector composed with entire mutant vector 
parameters. However, a crossover constant near zero gives more probability of having 
parameters from the target vector in the trial vector which can be stated as  

                                     =jix ,"     
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    Where rand is a uniformly distributed random number having the value within [0, 

1] generated anew for each value of j. jix ,"   is the parent vector, jix ,'   the mutant 

vector and jix ,  the trial vector. 

5 Simulation Results 

Proposed algorithm has been applied to solve the reactive power planning problem. 
Here, IEEE 30 bus network is considered to verify its viability and effectiveness. This 
network consists of 30 buses and 41 branches from which we select 13 control va-
riables for our reactive power planning problem [24]. These control variables are as 
follows; 5 numbers generator buses, 4 numbers on-load tap changing transformer 
coefficients. Again 4 numbers of buses have compensating shunt devices used also as 
control variable. The algorithm has been written in house in MATLAB and run on a 
2.4GHz, 1GB RAM PC. The solution obtained by the proposed method has been 
compared with evolutionary programming (EP) and Broyden’s method [24] etc. 

In this paper one year’s energy loss cost is used to assess the opportunity of instal-
ling the VAR sources. The initial value of real power generation is 2.89388p.u and the 
load during the period is 2.834p.u. The base value of transmission line loss is 0.05988 
p.u. Table 1 gives the parameter values for simulation which are selected by trial and 
error method.  

Table 1. Simulation parameters used for proposed algorithm 

Parameters IEEE 30-bus 
Population size 20 
Maximum number of generation 100 
Crossover rate 0.2 

 
     The details about the maximum and minimum limits of the control variables are 
taken from elsewhere [24]. The optimal values of the control variables and power loss 
obtained from the proposed algorithm are presented in the Tables 2. The insertion of 
crossover operator helps to accelerate the optimization giving better convergence. It is 
seen from the Tables that, after iterating 100 generations the Improved CA is more 
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capable to reduce the cost involved in reactive power planning as compared to CA. 
The transmission loss is obtained as 0.0145 p.u. by proposed method. Whereas by CA 
transmission loss was found to be reduced to 0.0189 p.u. from the base value of 
0.05988 p.u. 
 

Table 2. Simulation Result for IEEE 30-bus System for different approaches 

Variable Results
CA Hybrid  CA 

Generator  Voltages 

V1 1.0500 1.0500 
V2 1.0478 1.0438 

 
V5 1.0272 1.0343 

 
V8 1.0234 1.0497 

 
V11 1.0966 1.0348 

 
V13 0.9993 1.0387 

 

Transformer Taps 

TC6-9 1.0128 1.0140 
 

TC6-10 0.9663 0.9853 
 

TC4-12 1.0067 1.0328 
 

TC28-27 0.9520 0.9578 
 

Shunt  
Compensation 

QC6      4.5426 
 

26.1758 
 

QC17     11.7769 
 

3.9712 
 

QC18    20.4522 
 

14.8851 
 

QC27     8.5749 3.3877 
 

Power Loss 
Ploss      0.0189 0.0145 

 

 
Based on the system losses, the power saving methodology can be derived by which 

expenses are also minimized. The real power savings, annual cost savings and the total 
costs are calculated by using the simulation results as follows for both the approaches, 
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2) With Improved CA 
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Table 3. Comparison of the Simulation Result with other Algorithm 

Method $)(save
CW  CF  

EP [24] 538,740 2,608,500 

Broyden [24] 132,451 4,013,280 

CA 

Hybrid CA 

2,153,908 

2,385,172 

2,359,200 

2,218,600 

                  

 
Table 3 compares the results obtained by between different algorithms. It is seen 

that the method of hybrid Cultural Algorithm shows the efficacy of the proposed algo-
rithm. The comparison shows that the improved cultural algorithm is capable of pro-
ducing lower cost over the other methods which is the objective of the RPP problem. 
The feasible solution for the total cost involved in reactive power planning in each 
generation is plotted in the Fig.1 which shows the effectiveness of the proposed me-
thod over the simple cultural algorithm as the search process of the proposed method 
converges rapidly towards the optimal solution. The bus voltages are depicted in Fig.2 
which shows that the values of bus voltages obtained by hybrid cultural algorithm lie  
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Fig. 1. Convergence characteristic for optimal cost 
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Fig. 2. Bus voltage profile of the test system 

in maximum and minimum range smoothly. Whereas, in base value and the values 
obtained from simple cultural algorithm shows sharpness in bus voltages. Thus we 
can say that the voltage profile achieved from Hybrid CA is more stable than the base 
value as well as than the other method. Hence the optimum solution technique 
achieved from the proposed algorithm gives better operation for the problem in hand. 

6 Conclusions 

This paper has proposed a different approach of cultural algorithm for the reactive 
power planning problem in power systems. The simulation results have shown that 
the proposed method is better than other methods in terms of the convergence charac-
teristics and accuracy. Not only is there active power loss minimization, the reactive 
power cost and the quality of voltage transferred to the customers are also optimized 
in this method. From this limited comparative study, it can be concluded that the ap-
plied algorithm can be effectively used to solve smooth as well as non-smooth con-
strained RPP problems. In future, efforts will be made to incorporate more realistic 
constraints to the problem structure and the practical large sized problems would be 
attempted by the proposed methodology. 
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Abstract. Regularized-LDA (R-LDA) is a LDA-based method used for finding 
the nonzero eigenvalues and the corresponding eigenvectors. This paper 
presents a RLDA-based classification of face images which uses bacteria forag-
ing optimization (BFO) algorithm for selecting the optimal discriminating fea-
tures. The optimal features are then used by probabilistic reasoning model for 
classification of unknown face images. The ORL and the UMIST databases are 
used for experiment to demonstrate the performance of our proposed method. It 
is observed that our proposed method outperforms the existing method. 

Keywords: Face Classification, Face Recognition, Linear Discriminant Analy-
sis (LDA), Regularized-LDA (R-LDA), Bacteria Foraging Optimization (BFO), 
Probabilistic Reasoning Model (PRM). 

1 Introduction 

Face classification is the task of identifying the class of a person from various classes, 
where a class contains the images of same person. Face classification can be carried out 
by projecting the face images into a low dimensional feature space. Then an unknown 
face image is classified by comparing its position in the feature space. Face classifica-
tion can be effectively applied in the field of face recognition (FR), person identification 
and surveillance task. There are number of algorithms and methods available in the 
literature to carry out the task of face recognition and classification.  They are broadly 
divided into two types: Appearance-based methods and Feature-based methods. Among 
the various types of approaches available in the literature, the most successful one is the 
appearance-based method [1-2], which processes the image as two-dimensional holistic 
pattern. In this type of subspace analysis, an unknown face image is projected into a 
lower dimensional space called feature space. Then the unknown face image is classi-
fied by comparing its position in the feature space of known face images. 

Principal Component Analysis (PCA) [1] and Linear Discriminant Analysis (LDA) 
[2-3] has been the two popular techniques of the appearance-based method employed 
in face classification and recognition [1], [2]. 
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PCA has been effectively used in the Eigenface method for face classification as 
proposed by Turk et al. The method uses PCA for linearly projecting the high dimen-
sional face images into a low dimensional feature space. The basic principle of PCA 
is to find the eigenvectors (principal components) of the high dimensional face im-
ages so as to obtain maximum variance direction in the original image space corres-
ponding to the basis vector [1-2].  

Linear Discriminant Analysis is a class specific method used for feature extraction 
and dimension reduction and has been proven to give better recognition rates than 
PCA [2]. The basic idea of LDA is to maximize the ratio of between class scatter 
matrix to the within class scatter matrix so that between class scatter is maximized 
and the within class scatter matrix is minimized, and thereby maximizing the discri-
minatory features between classes of samples. But the basic LDA suffers from the 
singularity problem which arises when all the scatter matrices are singular [2-5]. To 
avoid the problem of singularity, Belhumer et al. [2] proposed a method called Fisher-
Linear Discriminant analysis (F-LDA) which uses principal component analysis 
(PCA) [1] as a pre-processing step in the LDA [2]. The F-LDA is also not sensitive to 
variation in lighting condition and facial expression and the method give a lesser error 
rate as compare to Eigenface method.    

Another problem which generally persists in LDA-based methods is called the 
Small Sample Size (SSS) [3-7]. As proposed by Raudys et al. this problem arises in 
LDA-based methods while doing high dimensional pattern recognition task like FR, 
where the number of training samples for each subject is smaller than the dimensio-
nality of the samples [6]. To overcome such kind of problem, various types of LDA-
based methods are used like PCA followed by LDA [2], Direct-LDA (DLDA) [4], 
Regularized-LDA (R-LDA) [5, 7].  

Belhumeur et al. [2] uses F-LDA method, where PCA as a pre-processing step in 
LDA to reduce the dimension and thereby removing the null space (zero or small 
eigenvalue) of within class scatter matrix. But sometimes the discarded null space 
may also contain significant information. Thus D-LDA method is presented by Chen 
et al. in 2000 and Yu et al. in 2001 which processes the image directly on the high 
dimensional space. But the D-LDA method suffers from the problem of high variance 
while computing the null space of within class scatter matrix as presented in the paper 
of Lu et al [5]. As proposed by Lu et al. this problem of high variance can be elimi-
nated by introducing a new variant of LDA-based method called R-LDA. The R-LDA 
includes a regularization parameter ( )h which is used to stabilize the high variance 

with a trade-off with the bias. At the same time regularization parameter can also be 
used to stabilize the smaller eigenvalues. The R-LDA method has been well used in 
FR task [5]. Dora et al. has presented an improved method called R-LDA using PRM 
[8] which can also be used in FR task, and the results shows an improved recognition 
rate as compared to the R-LDA method. The method uses R-LDA for feature extrac-
tion and then PRM is used for the classification of unknown test image.   

In all the above methods, the basic principle is to obtain the first 20 or 30 eigenvec-
tors corresponding to the largest eigenvalues which contains significant information 
as presented in the paper of Panda et al. However, the eigenvectors having smaller 
eigenvalues may also contain some significant information. And there is no such  
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criterion given for the selection of significant eigenvectors. So for the selection of 
optimal eigenvectors optimization algorithms like Genetic algorithm (GA) [9-10] and 
Bacteria Foraging Optimization algorithm (BFO) [12-13] can be used as proposed by 
Zheng et al. and Panda et al. Evolutionary pursuit is a method which uses GA for 
selection of optimal principal components from PCA and then uses the optimal com-
ponents for FR [9]. GA-Fisher is another example of such approach. Here GA is used 
for the selection of optimal principal components from PCA and then the optimal 
components are used to project the image to a lower dimensional subspace, thereby 
eliminating the singularity problem and then the projected images are used in Fisher-
faces method for FR [10]. 

BFO algorithm [12-13] has also been successfully used to find the optimal vectors 
from PCA using the same fitness function as used in GA-Fisher method. Then after 
the selection of optimal principal components, a whitening method followed by LDA 
is used for FR. This method of FR is called as EBFS-Fisher and it is demonstrated 
that it outperforms the GA-Fisher method [11]. The above two methods, GA-Fisher 
and EBFS-Fisher are well applied to FR task. But previously, no work has been re-
ported in the literature which applies BFO directly into the LDA-based method for 
face classification. This has motivated us to use BFO in R-LDA for classification of 
face images. In this method, instead of taking the first eigenvectors corresponding to 
the largest eigenvalues, we have used the BFO in the R-LDA space to find the p  
optimal vectors from ( 1)m K£ - eigenvectors. The method uses a new proposed fit-
ness function to find the optimal vectors and the results reveal that the optimal vectors 
give better classification rate as compared to the simple R-LDA method. This work 
may add a new dimension to this area of research. 

In this paper, we propose a face classification method which uses BFO-RLDA for 
classification of face images using probabilistic reasoning model (PRM). The basic 
assumption made here is that the trained database contains at least five images of 
same subject to be classified. The BFO-RLDA is used for projecting the images to a 
low dimensional feature space. The RLDA is used for calculating the discriminating 
eigenvectors from the high dimensional image data in such a way that both the singu-
larity and the SSS problems are eliminated. BFO which follows the RLDA is used for 
the selection of optimal eigenvectors. A new fitness function is defined here for BFO 
to select the optimal eigenvectors. At last the PRM method is used for the classifica-
tion of unknown face images. To show the effectiveness of the proposed method, the 
ORL and the UMIST face databases are used. The evaluation results also show that 
with less number of features we are able to get better classification rates. 

The paper is organized as follows: Section 1 contains the introduction and litera-
ture survey on various methods used in face classification and recognition. Section 2 
contains a brief explanation about R-LDA method. Section 3 contains our proposed 
BFO-RLDA method. The results and discussions are presented in Section 4.  
Conclusion is presented in Section 5.  
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2 Regularized-LDA (R-LDA) Method 

Let 1 2[ , , , ]NX x x x=  be a set of N number of training face images. Each image ix  

is of size n = wh × 1 , which is obtained by lexicographic ordering of the pixels in the 

image. Here, ,w h  represent size of an image. In the training data set, each image ix  

belongs to one of K classes. Let iC be the number of images in class i and the mean 

of thi class is given by ( )
1

1
iC

i i ij
j

M C X
=

=  . Now the between-class scatter matrix is 

given by: 

 , ,
1
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t t

B B i B i B B
i

S ϕ ϕ ϕ ϕ
=

= =    (1) 

And the within-class scatter matrix is given by: 

 ( ) ( )
1 1

1 iCK
t

W ij i ij i
i j

S X M X M
N = =

= − −   (2) 

Where, ,1 ,2 ,[ , , ... ]B B B B Kϕ ϕ ϕ ϕ= , ( ) ( )1/2

,B i i iC T M Mϕ = − , M is the total mean of 

the training images and t represents the transpose operator. The R-LDA method 
projects the images having high dimension (n) to a subspace having lower dimension 
m by usingG , where 1 2[ , , , ]mG= G G G represents the set of basis vectors such that

m N<< . The set of basis vectors is used to reduce the high dimension of images and 
to project the images to a low dimensional feature space. In the R-LDA method, the 
basis vectors are calculated by taking eigenvectors having largest eigenvalues [5, 7]. 
But sometimes the eigenvectors having smaller eigenvalue also contains significant 
information. So an optimal search method like GA and BFO can be used to select the 
significant eigenvectors [10-11]. Here BFO algorithm is used for the selection of op-
timal p number of eigenvectors from R-LDA method in the high dimensional space 
and thus an optimal set of basis vectors are obtained such that p m<< . By this tech-

nique, more discrimination is achieved in the feature space. 

3 Proposed BFO-RLDA Method 

In the proposed BFO-RLDA method, we calculate the between class matrix ( )BS and 

the within class scatter matrix ( )WS from the training data set of N images by using 

(1) and (2). The eigenvectors of ( )BS is calculated in an indirect way from t
B Bj j ma-

trix, having a size of K K´ . Consider 1 2[ , , , ]mV n n n=  , where the columns of V
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represent the first m most significant eigenvectors of t
B Bj j having non-zero eigenva-

lues with 1m K£ - . Now the m most significant eigenvectors and eigenvalues of BS

are given as BVjE = and T
B BΔ =E S E . Let 1

B
-H=ED and 1 2,[P ,P ,P ]mR=  , where

R contains the m eigenvectors of t
WSH H . From the m eigenvectors, the first p eigen-

vectors are selected having largest eigenvalues for calculation of basis vectors( )G . 

But, sometimes the eigenvectors having smaller eigenvalues also contain significant 
information. Here, we have used BFO algorithm for selecting the p most optimal or 
effective eigenvectors. The BFO algorithm uses a swarm of bacteria in the search 
space to find the optimum global solution. A m dimension bacterium is used here to 
represent the contribution of each eigenvector. A new fitness function for BFO is also 
proposed here to select the p most optimal eigenvectors from m eigenvectors. Let x be 

a face image and tx x=G be the face image in the low-dimension space. The total 

mean of all the images is given by tM M=G and t
i iM M=G  represents the mean 

of each class. Let 

 ( ) ( )
1

K
t

b i i

i

F M M M M
=

= - -å   (3) 

and  

 ( ) ( )t

w i i
i j

F x M x M= - -åå   (4) 

Now the fitness function ( )J θ  used in BFO algorithm is given by: 

 b

w

F
F

F
=   (5) 

and 
1

J
F

=   (6) 

Finally the optimal eigenvectors are selected as: 

 { }arg maxopt
p

G = G   (7) 

Where optG  represent the optimal set of eigenvectors for which the fitness function is

( )J θ maximized. The following steps are used in the algorithm for feature extraction: 
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1. At first, 1 2[ , , , ]mV n n n=  , the first m most significant eigenvectors of t
B Bj j having 

non-zero eigenvalues are calculated where 1m K£ - . Then the eigenvectors and 

eigenvalues of BS are calculated as: BVjE = and T
B BΔ =E S E .  

2. Then 1 2,[P ,P ,P ]mR=  , the eigenvectors of t
WSH H  having eigenvalues ( )mD are 

calculated. Where, 1
B
-H=ED and WS  is calculated from (2).  

3. The BFO algorithm is used to select p most optimal eigenvectors from R . Let

1 2,[P ,P ,P ]pR=  be the selected optimal eigenvectors from BFO algorithm hav-

ing eigenvalues( )pD  such that p m . 

4. Now using the obtained p optimal eigenvectors, the significant basis vectors of R-

LDA are calculated as: ( ) 1/2

p ph
-

Y =HR I+D , where I represents the identity 

matrix and h represents the regularization parameter. In this paper value of h taken 

is 10-3. Then the optimal most significant discriminating features ( )Y of the face 

images ( )X are calculated using Y , as tY X= Y . 

 

 

Fig. 1. Example of training images of two subjects from ORL database. Here five images of 
same subject are called a class.  

 

 

Fig. 2. Example of training images of two subjects from UMIST database. Here eight images of 
each subject are called a class. 

After the calculation of optimal features ( )Y of the face images from the BFO-RLDA 

method, the PRM method which is a measure of class separability is used to classify 
the unknown face images. The PRM method is defined as a bayes linear classifier  
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under the assumption that the within class covariance matrices are identical and di-
agonal [7, 14-15]. Here MAP (Maximum A Posteriori) classification rule is used 
which uses PRM for classification. The MAP classification rule classifies the image 
feature vector( )Y into class kC as follows: 
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where, the component 2
ir is estimated in one-dimensional feature subspace as: 
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where, ( )k
jiy is the thi element of the sample ( )K

jY of face image that belongs to class kC

and kim is the thi element of km (mean of each class in feature space). K is the number 

of classes and kC is the number of images in each class. 

4 Results and Discussions 

To demonstrate the effectiveness of the proposed method two face databases: the 
ORL and the UMIST databases are taken. The ORL face database consists of 400 
sample face images of 40 subjects with each subject having 10 images and the 
UMIST face database consists of 1012 sample face images of 20 subjects. Two train-
ing datasets are made by randomly taking 5 images of each subject from ORL and 8 
images of each subject from UMIST database. Examples of some training images are 
shown in fig. 1 and fig. 2. At first, each images in the two databases are normalized to
70 90× , resulting in a dimension of n = 6300. The parameter setting for the BFO-
RLDA algorithm is given as: 8S =  , 5cN =  , 4SN =  , 4reN =  , 2edN =  ,

0.01attractd =  , 0.2attractw =  , 0.01repellenth =  , 10repellentw =  , ( ) 0.066C i =  . 

Fig. 3 and Fig. 4 show the discriminatory power of BFO-RLDA and RLDA using 
PRM (RLDA-PRM) methods. Here, 25 images of 5 different subjects from ORL da-
tabase are plotted in Fig. 3 by taking two significant features from both the methods 
in the feature space. Similarly, Fig. 4 shows the plot of 40 images of 5 different sub-
jects from UMIST database. Five different symbols  are used in the plot to 

represent the images of 5 subjects and a group of each symbol denotes one class. 
Fig. 3 and Fig. 4 reveal that the face images of different subjects are well separated 

and improved clustering is achieved by our proposed method. 
 

 

( ), , , ,+ • ∗ ∇
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Fig. 3. Classification result with ORL database. (a) Using RLDA-PRM. (b) Using BFO-RLDA 
method. 

 

 

Fig. 4. Classification results with UMIST database. (a) Using RLDA-PRM method. (b) Using 
BFO-RLDA method. 

Table 1 shows the classification rates obtained from the RLDA-PRM and BFO-
RLDA methods. From the table it is observed that the recognition rates are increased 
by the BFO-RLDA method using less number of features. 
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Table 1. Classification Rates Using ORL and UMIST databases 

Name of 
Database 

No. of   
features 

Methods 
RLDA-PRM BFO-RLDA 

ORL 8 90.5% 93% 
16 96% 97% 
20 97% 98.5% 

    
UMIST 4 93.78% 94.14% 

6 95.78% 96.13% 
10 97.89% 98.12% 

Table 2. Classification of face images in ORL and UMIST databases 

Test Image 
  

Actual Class 11 14 26 2 7 

Class from 
BFO-RLDA 

11 14 10 2 12 

Table 2 shows the classification of test images obtain from the ORL and UMIST da-
tabases using BFO-RLDA method. When an unknown test face image is given as input 
to the BFO-RLDA method than the method give a class number as output into which 
the test image belongs. By using this method many of the test face images are properly 
classified to their actual class and for some few test images misclassification occurs. 

5 Conclusion 

In this paper we proposed a BFO-RLDA method for face classification. The method 
uses BFO directly in the RLDA method for selecting the optimal eigenvectors. Then 
these optimal set of eigenvectors are used to project the images to feature space and 
then used in PRM for classification. Here two face databases ORL and UMIST are 
used to demonstrate the efficiency of the propose method. And from the results it is 
observed that BFO-RLDA outperforms RLDA-PRM using less number of features. 
The algorithm will be validated by taking less number of images for training, using 
FERET database. The idea can also be extended for face recognition. 
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Abstract. In this paper, a recently proposed global heuristic search optimization 
technique, namely, Modified Firefly Algorithm (MFFA) is considered for the 
design of the 8th order infinite impulse response (IIR) low pass (LP) digital 
filter. This modified version of FFA is considered to achieve quality output 
response by means of properly tuned control parameters over conventional 
Firefly Algorithm (FFA). Newly defined randomization parameter and 
modification in updating formula in MFFA makes it a perfect search tool in 
multidimensional search space. With this approach better exploration and 
exploitation are achieved, which have resulted in faster convergence to near 
global optimal solution. The performance of the proposed MFFA based 
approach is compared to the performances of some well accepted evolutionary 
algorithms such as particle swarm optimization (PSO) and real coded genetic 
algorithm (RGA). From the simulation study it is established that the proposed 
optimization technique MFFA outperforms RGA and PSO, not only in the 
accuracy of the designed filter but also in the convergence speed and the 
solution quality, i.e., the stop band attenuation, transition width, pass band and 
stop band ripples. 

1 Introduction 

In the signal processing system, filtering holds a significant position which is 
involved with manipulation by modifying, reshaping or transforming the spectrum of 
signal. Fundamentally, a filter operates on frequency domain to permit certain band of 
frequencies to pass through and attenuates others. The frequency at which such 
phenomenon happens is a design dependent parameter called cut-off frequency. This 
sort of frequency discrimination is of prime importance due to mixing of information 
carrying signal with noise. There are different sources of noise either created by 
nature or man-made effects. According to its frequency domain characteristics and 
source of generation, signals are mostly contaminated with thermal noise, shot noise, 
avalanche noise, flicker noise etc.  

Most of the filters can be implemented with discrete components like resistor, 
capacitor, inductor and operational amplifiers when the input signal is continuous 
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function of time and hence these are called analog filters. On the other hand a digital 
filter performs mathematical operations on a sampled, discrete time signal to reduce 
or enhance the desired features of the applied signal. Analog filters are replaced by 
digital filers due to their wide range of applications and superior performance. The 
advantages of digital filters over analog filters are small physical size, high accuracy, 
reliability and immune to component tolerance sensitivity [1]. 

Digital filters are of two types: finite impulse response (FIR) and infinite impulse 
response (IIR) filter. The order of the IIR filter is lower than that of the FIR filter for 
the same design specifications such as cut-off frequencies, pass band and stop band 
ripples and stop band attenuation. Hence, lesser number of delay elements and 
multipliers are required for hardware implementation and also lower computational 
time is required for software realization for IIR filter design [2].  

Minimization of an objective function (typically the mean square error between 
desired response and estimated filter output) is often performed by gradient based 
iterative search algorithms. However, when the error surface (objective function) is 
multimodal and/or non-smooth, gradient-based optimization methods often cannot 
succeed in converging to the global minimum.  

So, meta-heuristic evolutionary methods have been employed in the design of 
digital filters to design with better parameter control and to better approximate the 
ideal filter. Evolutionary optimization methods that require no gradient and can 
achieve a near global optimal solution offer considerable advantages in solving these 
multi-modal objective functions in digital filter design problem. 

Different heuristic search techniques are reported in the literature. These are GA 
[3-4], Seeker optimization Algorithm (SOA) [5], orthogonal genetic algorithm (OGA) 
[6], hybrid Taguchi GA (TGA) [7], Tabu search [8], Simulated Annealing (SA) [9], 
Bee Colony Algorithm (BCA) [10], Differential Evolution (DE) [11], Cat swarm 
Optimization [12], Artificial Immune Algorithm [13], particle swarm optimization 
(PSO) [14-16], Gravitational search algorithm (GSA) [17-18], Opposition based BAT 
algorithm (OBA) [19], Firefly algorithm (FFA) [20-25] etc. 

The approach detailed in this paper takes advantage of the power of the stochastic 
global optimization technique called modified Firefly algorithm (MFFA). Although 
the algorithm is adequate for applications in any kind of parameterized filters, the 
authors have chosen to focus on real-coefficient IIR filters. The basic Firefly 
algorithm is very efficient. It is suitable for parallel implementation because different 
fireflies can work almost independently. But it is observed from the simulation results 
that the solutions are still changing as the optima are approaching. To improve the 
solution quality, randomness is reduced so that the algorithm could converge to the 
optimum more quickly [26]. Apart from normal FFA the modifications considered in 
MFFA are as follows. In FFA, randomization parameter is a random number but in 
MFFA it is a gradually decreasing function of iteration cycle and in position updating 
formula, position of the group best firefly is taken into consideration for  
the calculation of new position of any firefly. With these modifications the  
solution obtained is much close to the global optimal solution with less number of 
iteration cycles. 
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2 Low Pass IIR Filter Design 

This section presents the design strategy of IIR filter based on MFFA. The input- 
output relation is governed by the following difference equation [2]:  
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where x(p) and y(p) are the filter’s input and output, respectively, and n(≥m) is the 

filter’s order. The transfer function of IIR filter with the assumption 10 =a  is 

expressed as in (2).   
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Let 
Ω= jez . Then the frequency response of the IIR filter becomes  
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where Ω=2π(f/fs) is the digital frequency, f is the analog frequency, and fs is the 
sampling frequency. The commonly used approach to IIR filter design is to represent 
the problem as an optimization problem with the mean square error (MSE) as the 
error fitness function, J(ω) expressed as in (5) [4].   

                                     ]))()([(
1

)( 2pypd
N

J
s

−=ω                                                 (5) 

where Ns is the number of samples used for the computation of the error fitness 
function; d(p) and y(p) are the filter’s desired and actual responses. The difference 
e(p)=d(p)-y(p) is the filter’s error signal. The design goal is to minimize the value of 
error fitness function J(ω) with proper adjustment of coefficient vector ω represented 
as: ω=[a0a1…an b0b1…bm]T. In this paper, an improved error fitness function given in 
(6) is adopted in order to achieve higher stop band attenuation and to have more 
control on the transition width. Using (6), it is found that the proposed filter design 
approach results in considerable improvement in stop band attenuation over other 
optimization techniques.  
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For the first term of (6), ∈ω pass band including a portion of the transition band 
and for the second term of (6); ∈ω stop band including the rest portion of the 
transition band. The portions of the transition band chosen depend on pass band edge 
and stop band edge frequencies. 

The error fitness function given in (6) represents the generalized fitness function to 
be minimized using the evolutionary algorithms RGA, conventional PSO and the 
proposed MFFA, individually. Each algorithm tries to minimize this error fitness J1 
and thus optimizes the filter performance. Unlike other error fitness functions as given 
in [4], J1involves summation of all absolute errors for the whole frequency band, and 
hence, minimization of J1 yields much higher stop band attenuation and lesser pass 
band ripples. 

3 Evolutionary Techniques Employed  

3.1 Firefly Algorithm (FFA) 

Evolutionary techniques RGA and PSO are used to make a comparative study of the 
results obtained with the proposed optimization technique MFFA and the detailed 
discussions regarding RGA and PSO are available in [27-28]. 

3.1.a    Behaviour of Fireflies 
The flashing light of fireflies which is produced by a bioluminescence process 
constitutes a signaling system among them for attracting mating partners or potential 
preys. It is interesting to know that there are about two thousand species of fireflies 
around the world. Each has its own pattern of flashing. As we know, the light 
intensity at a particular distance r from the light source obeys the inverse square law. 
That is to say, the light intensity I decreases as the distance r increases in terms 

of
2

1

r
Iα . Furthermore, the air absorbs light. These two combined factors make most 

fireflies visual to a limit distance. 
FFA, developed by Yang [29], is inspired by the flash pattern and characteristics of 

fireflies. The basic rules for FFA are: 

i. All fireflies are unisex so that one firefly will be attracted to other fireflies 
regardless of their sex; 

ii. Attractiveness is proportional to their brightness, thus for any two flashing 
fireflies, the less bright one will move towards the brighter one, and the 
brightness decreases as their distance increases. If there is no brighter one than a 
particular firefly, it will move randomly; 

iii. In this work, the brightness of a firefly is affected or determined by the 
landscape of the cost function. For a minimization problem, the brightness can 
simply be inversely proportional to the value of the cost function. The cost 
function is the error fitness function J1 in this work. 
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3.1.b    Light Intensity and Attractiveness 
The variation of light intensity and formulation of the attractiveness are two important 
issues in the firefly algorithm. The attractiveness β is proportional; it should be seen 
in the eyes of the beholder or judged by the other fireflies. Thus it will vary with the 
distance rij between firefly i and firefly j. In addition, light intensity decreases with the 
distance from its source, and light is also absorbed in the media, so the attractiveness 
will also vary with the degree of absorption. The combined effect of both inverse 
square law and absorption can be approximated as the following Gaussian form as 
(7). Hence, the attractiveness function β(r) can be any monotonically decreasing 
function such as the following generalized form:  

                                0( ) ( 1)
mrr e mγβ β −= ≥                                             (7) 

 

where r is the distance between two fireflies, β0 is the attractiveness at r=0, and γ is a 
fixed light absorption coefficient which can be used as a typical initial value. In 

theory, [0 , ]γ ∈ ∞ but in practice γ is determined by the characteristic length of the 
system to be optimized. In most applications it typically varies from 0.1 to 1. 
Characteristic distance Γ is the distance over which the attractiveness changes 
significantly. For a given length scale, the parameter γ can be chosen according to:  
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The distance between any two fireflies i and j at xi and xj, respectively, is the 
Euclidean distance as follows:  
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      where xi,k is the kth component of the ith firefly ( xi ). The movement of a ith 
firefly that is attracted to another more attractive (brighter) jth firefly j, is determined 
by the following equation which shows the relation between the new position of the 
ith firefly (x'i) and its old position (xi): 

 

                            
2'
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where the second term is due to the attraction. The third term is randomization, 

with [0,1]α ∈  being the randomization parameter, and iε
a vector of numbers drawn 

from a Gaussian distribution or uniform distribution. 
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3.1.c    Modified Firefly Algorithm (MFFA) 
The basic Firefly algorithm is very efficient. It is suitable for parallel implementation 
because different fireflies can work almost independently. To improve the solution 
quality, randomness is reduced so that the algorithm could converge to the optimum 

solution more quickly. Hence, the randomization parameterα  decreases gradually as 
the optima are approaching.  

                                   0( ) teα α α α −
∞ ∞= + −                                               (11) 

where max[0, ]t t∈
is the pseudo time for simulation and tmax is the maximum 

number of generations. 0α
is the initial randomization parameter while is the final 

value. In addition, an extra term 
( )i i bestx gλε −

is added to the updating formula 
[26]. In the simple version of the FFA, the current global best gbest is only used to 
decode the final best solutions. The modified updating formula for firefly position is 
shown in (12).  
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3.1.d   Steps of Implementation of MFFA to the Design of Low Pass IIR Filters 
Steps of MFFA are as follows: 

Step 1:  Generate initial firefly vectors xi = (xi1,...,xiD) (D = 1,...,18; i=1,…,25). 

Set the maximum allowed number of iterations to 500; 0β =   0.6; γ = 0.2; and α = 

0.01; the population size=25; These values were determined as the best values in a 
series of thirty preliminary trials. 

Step 2:   Computation of J1 values of the total population.  
Step 3: Computation of the initial population based best solution (gbest) vector 

corresponding to the historical population best and least J1 value. 
Step 4: Update firefly positions:  
 (a) Compute square root (rsqrt) of Euclidian distance between the first 
           particle vector and the second particle vector as per (9);  

 (b) Compute β with the help of 0β as per (7) and update α  as per (11);  

 (c) If J1 of second particle is < J1 of first particle, then, update the first  

          particle as per (12) with 0β+  (case of attraction), otherwise with 0β− , 

          (case of repulsion);  
         (d) Update firefly position as per (12). 
Step 5: Repeat Step 2 till maximum iteration cycles. 
 
The values of the parameters used for RGA, PSO and MFFA techniques are given 

in Table I. 
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4 Simulation Results and Discussions 

4.1 Analysis of Magnitude Response of Low Pass IIR Filters 

In this paper digital IIR filters are implemented by MATLAB programs and the best 
simulation results are reported among thirty independent program runs. 

Table 1. Control Parameters of RGA, PSO and MFFA 

Parameters RGA P
SO 

MFFA 

Population size 
120 

2
5 

25 

Iteration Cycle 
500 

5
00 

600 

Crossover rate 1 -    - 
Crossover Two Point Crossover -            - 

Mutation rate 0.01 -     - 
Mutation Gaussian Mutation -     - 
Selection Roulette -    - 

Selection Probability 1/3 -    - 
C1 -     2.05 - 
C2 -     2.05 - 
min
iv  - 0.01 - 
max
iv  - 1.0 - 

α , λ , 0β  - - 0.01, 0.2, 0.6 

 
In this simulation study, equal numbers of numerator and denominator coefficients 

are considered for 8th order IIR filter. Hence, 18 coefficients are optimized using each 
algorithm under consideration , independently and their performances are presented 
for making a comparative study among the algorithms. The parameters of the low 
pass filter to be designed are: the sampling frequency fs = 1Hz; Sampling number is 
taken as 128; Pass band ripple (δp) = 0.001, Stop band ripple (δs) = 0.0001, pass band 
normalized edge frequency (ωp) = 0.45, stop band normalized edge frequency (ωs) = 
0.50. The control parameters’ values of RGA, PSO and MFFA used in this work are 
given in Table 1. Each algorithm is run for thirty times to get its best solutions. The 
best results are reported in this paper. 

Figure 1 shows the gain plot in dB for the designed low pass 8th order IIR filter. 
Figure 2 shows the normalized gain plot of the 8th order low pass IIR filter. The best 
optimized denominator coefficients ak and numerator coefficients bk for the designed 
filter have been calculated using RGA, PSO and MFFA and are given in Table 2. 
Table 2 also shows that the maximum stop band attenuations achieved for the 
designed IIR filters using RGA, PSO and MFFA are 27.5145 dB, 30.3635 dB, 
37.5474 dB, respectively. Pole-zero plots can be obtained with the filter coefficients 
reported in Table 2 and in Figure 3, the pole-zero plot obtained for the proposed 
optimization technique MFFA is only reported. From Figure 3, it is evident that the 
filter designed using the MFFA is stable as the poles are located within the unit circle. 
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Table 2. Optimized Coefficients and Performance Comparison of Different Algorithms 

Algorithms Numerator 

Coefficient 

(bk) 

Den. Coeff. 

(ak) 

Max.  stop   

Band 

Attenuation  

(dB)  

RGA 

0.0415 0.1234  

0.2676 0.3806  

0.4206 0.3484  

0.2164 0.0925  

0.0233 

0.9994 -1.1555  

2.7421-2.3022  

2.4552 -1.4037 

0.7776 -0.2480 

 0.0524 

27.5145 

PSO 

0.0413 0.1241   

0.2668 0.3791   

0.4202 0.3478 

0.2165 0.0936   

0.0235 

1.0001  -1.1546   

2.7413 -2.3016  

 2.4547  -1.4044 

0.7781  -0.2483   

0.0519 

30.3635 

MFFA 

0.0303 0.0784    

0.1688 0.2386    

0.2710 0.2328    

0.1589 0.0730    

0.0256 

1.0002   -1.6893    

3.3759   -3.4280    

3.2821   -2.0259    

1.0293   -0.3239    

0.0598 

37.5474 

Table 3. Qualitatively Analyzed Data for the 8th Order IIR LP Filter 

Algo- 
rithm 

Maximum  
Pass band  

ripple  
(normalized) 

Stop band ripple (normalized) Transi

tion  

Width 

Maximum 
(×10-2) 

Minimum 
(×10-4) 

Mean 
(×10-2) 

R

GA 
0.0095 4.2100 

15.71

30 

2.18

36 

0.029

7 

PS

O 
0.0021 3.0300 

6.281

1 

1.54

64 

0.033

8 

M

FFA 
0.0024 1.2400 

3.956

3 

0.63

98 

0.031

9 

 
The locations of the zeros, as shown in Figure 3, are positioned outside the unit circle, 
which implicitly states the system as a non-minimum phase system. Qualitatively 
analyzed data obtained from Figures 1-2 are reported in Table 3 for all concerned 
optimization techniques. From Figures 1-2, it is evident that the proposed MFFA 
based IIR filter design approach produces the highest stop band attenuation and the 
smallest stop band ripple compared to other optimization techniques. It is also to be 
noted from Table 3 that the filter designed by the MFFA technique yields quite small 
transition width, which implies the moderately fast change over from pass band to 
stop band. The aforementioned statements can be verified from the results presented 
in Table 3. For both the stop band and pass band regions, the filter designed by the 
MFFA method results in the improved response than the others. 
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4.2 Comparative Effectiveness and Convergence Profiles of RGA, PSO and 
MFFA 

In order to compare the algorithms in terms of the error fitness values, Figures 4-5 
show the plots of error fitness values against the number of iteration cycles when 
RGA, PSO and MFFA are employed, respectively, for the design of 8th order IIR low 
pass filter. From the aforementioned figures, it is seen that the MFFA technique takes 
562 iteration cycles to attain the error value of 1.925; whereas, 361 and 359 iteration 
cycles are required to achieve error values of 2.85 and 4.054 for PSO and RGA 
techniques, respectively.  With a view to the above fact, it may finally be inferred that 
the performance of the MFFA technique is better as compared to RGA and PSO in 
terms of the lowest error fitness value in designing the optimal IIR filter. All 
optimization programs were run in MATLAB 7.5 version on core (TM) 2 duo 
processor, 3.00 GHz with 2 GB RAM. 
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Fig. 1. Gain Plot in dB for the 8th order low pass IIR Filter 
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Fig. 2. Normalized gain plot for the 8th order low pass IIR Filter 
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Fig. 3. Pole-Zero plot for the 8th order low pass IIR filter using the MFFA 
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Fig. 4. Convergence profiles for RGA and PSO for the 8th order low pass IIR filter 
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Fig. 5. Convergence profile for the MFFA for the 8th order low pass IIR filter 
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5 Conclusions 

In this paper a recently proposed heuristic search algorithm MFFA is used for the 
design of IIR LP filter. The modifications adopted in random parameter and position 
updating process implemented in the MFFA result in better exploration and 
exploitation of the search space along with the convergence to near-optimal solution. 
A comparative study between the proposed technique and other well accepted 
algorithms RGA and PSO affirms that the proposed MFFA based design technique 
not only provides the highest stop band attenuation but also the quality output in 
terms of ripples and transition width, which are much better than others. Also the 
proposed technique attains the lowest value of error fitness function within minimum 
number of iteration cycles and hence the MFFA is adequate enough for handling other 
related filter design problems.  
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Abstract.  In recent years, metaheuristic algorithms are widely employed to 
provide optimal solutions for engineering optimization problems. In this work, 
a recent metaheuristic Firefly Algorithm (FA) is adopted to find optimal 
solution for a class of global benchmark problems and a PID controller design 
problem.  Until now, few research works have been commenced with FA. The 
updated position in a firefly algorithm mainly depends on parameters such as 
attraction between fireflies due to luminance and randomization operator. In 
this paper, FA is analyzed with various randomization search strategies such as 
Lévy Flight (LF) and Brownian Distribution (BD). The proposed method is also 
compared with the other randomization operator existing in the literature.  The 
performance assessment between LF and BD based FA are carried using 
prevailing parameters such as search time and accuracy in optimal parameters. 
The result evident that BD based FA provides better optimization accuracy, 
whereas LF based FA provides faster convergence. 

Keywords: Firefly Algorithm, Lévy Flight, Brownian Distribution, Global 
benchmark problem, Performance measure. 

1 Introduction 

In the literature, there exist a number of traditional unconstrained optimization 
methods such as steepest decent method, Newton’s method and Quasi- Newton’s 
method to find solutions for a class of linear and nonlinear problems [1]. Traditional 
methods sometime fail to provide appropriate solutions for complex nonlinear and 
non-differential problems. Hence, a number of nature inspired stochastic algorithms 
are proposed by scientists to reduce the complexity of optimization problems. 
Particularly in 21st century, the scientists proposed a considerable number of heuristic 
and metaheuristic algorithms such as Bacterial foraging optimization (BFO) [2], 
Artificial bee colony optimization [3], Glowworm swarm optimization [4], Bat 
algorithm [5], Firefly algorithm [6], and Cuckoo search [7] to find optimal solutions 
for more complex and difficult real life optimization problems. 

All the metaheuristic algorithms employ firm tradeoff in randomization and local 
search operation to provide better solution. The selection of a particular algorithm for 
an optimization problem mainly depends on the following constraints;                      
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(i) Dimensions of search space, (ii) exploration time, (iii) convergence rate, (iv) 
optimization accuracy and (v) efficiency. Further, number of initial parameters of the 
algorithm also plays a major role in selecting an algorithm for optimization.  

In this work, the FA, initially proposed by Yang is adopted [7]. This algorithm is 
developed by mimicking the social performance of fireflies. Gandomi et. al reported 
that, the classical FA is conceptually similar to the well known BFO algorithm [8]. In 
FA, the attraction between two fireflies depends on the distance and the cost function 
(luminance). From the recent literature, it is observed that, the firefly algorithm is 
adopted by most of the researchers to find optimal solution for variety of engineering 
problems [13, 15-20].  

2 Firefly Algorithm 

Firefly algorithm is a nature inspired metaheuristic algorithm, developed with the 
inspiration of flashing illumination patterns generated by invertebrates such as 
glowworm and firefly. They generate chemically produced light from their lower 
abdomen. This bioluminescence with varied flashing patterns generated by 
glowworm/firefly is used to establish communication between two neighboring 
insects, to search for prey and also to find mates. 
The classical FA is developed by considering the following conditions [6 - 12] 

(i) All fireflies are unisex and a firefly gets attracted with other nearest one. 
(ii) The attractiveness between two fireflies is proportional to the luminance. 

In a region, if all fireflies have lesser luminance, they move randomly in a 
dimensional search space ‘D’ until firefly with brighter luminance is 
found. 

(iii) The brightness of a firefly is somehow related with the analytical form of 
the cost function assigned to guide the search process. 

a) For a maximization problem, luminance of a firefly is considered to be 
proportional to the value of cost function, (i.e., luminance = cost function).  
 

b) For a minimization problem, luminance of a firefly is inversely 
proportional to the value of the cost function, (i.e., luminance = 1/cost 
function). 

The overall performance (exploration time, speed of convergence, efficiency and 
optimization accuracy) of the FA depends on the cost function. In the presented work, 
for a controller design problem, cost function is chosen as a minimization problem. 
During the search, without loss of generality, the optimization problem minimizes a 
scalar function ‘J’ of some decision variable vector ‘D’ in a universe ‘U’. The cost 
function is framed by assuming, at least there exist one set of optimal parameters in 
‘U’ which satisfies all the constraints. The minimization problem of constrains can be 
mathematically expressed as [1];  

                                              
 

J(D)min
U   D ∈           

(1) 
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2.1 Firefly Algorithm Fundamentals 

The chief parameters which decide the efficiency of the FA are the variations of light 
intensity and attractiveness between neighboring fireflies. These two parameters will 
be affected with increase in the distance between fireflies [6-12]. 

Variation in luminance of a firefly can be analytically expressed with the following 
Gaussian form: 

    

2
eII(r) d γ

0
−=

          
(2)

 where I is the light intensity, 0I  is the original light intensity, and γ is the light 

absorption coefficient.  
The attractiveness of firefly towards the luminance can be analytically represented as: 

    

2
eββ d γ

0
−=

             
(3) 

where β is attractiveness coefficient, and 0β  is the attractiveness at r = 0. 

The above equation describes a characteristic distance γΓ /1= over which the 

attractiveness changes significantly from β0 to β0e
-1.  The attractiveness function β(d) 

can be any monotonically decreasing functions such as the following generalized form; 

    
1)(m        ,

m
eββ(d) d γ

0 ≥= −

         
(4)

 For a fixed γ, the characteristic length becomes; 

            
∞→→= − m,1m/1γΓ

             
(5)

 Conversely, for a given length scale Г, the parameter γ can be used as a typical initial 
value (that is γ = 1/Г m). 

       
 

The Cartesian distance between two fireflies i and j at xi and xj, in the n 
dimensional search space can be mathematically expresses as; 

2
k,ik,j

n

1k2
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i

t
j
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ij

d −=−=
=
Σ

                      
(6) 

In FA, the light intensity at a particular distance d from the light source t
iX  obeys the 

inverse square law. The light intensity of a firefly I, as the distance d increases in 

terms of 2d/1I ∝ . The movement of the attracted firefly i towards a brighter firefly j 
can be determined by the following position update equation;  

Ψ+−+=
−+ )XX(eβXX t

i
t
j

d γ
0

t
i

t
i

2
ij1                       (7) 

where, 1t
iX +  = updated position of firefly, t

iX  = initial position of firefly,  
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2
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eβ t
i

t
j

d γ

0 −
−

 = attraction between fireflies, and Ψ = randomization 

parameter. 
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2.2 Randomization Parameters  

The updated position of the ith firefly depends on the values such as initial position of 
the firefly, attractiveness of firefly towards the luminance, and the randomization 
parameter (Eqn.7). The convergence speed and optimization accuracy of the firefly 
mainly depends on the randomization parameter. In the literature, there exist a 
number of randomization parameters as depicted in Table 1. 

Table 1. Various randomization parameters for firefly algorithm 

S. No Randomization Parameter Values Literature 

1. α εi 
α = randomization operator 
εi = random variable drawn from a 
Gaussian distribution 

[7, 8, 10] 

2. α. ε. Q rand () 
α = randomization operator 
Q rand () =  random generated 
quaternion vector 

[14] 

3. α. Ni (0, 1) 
α = randomization operator 
Ni = random number drawn from a 
Gaussian distribution 

[14] 

4. α (2*rand – 1) α = randomization operator 
rand = random number (0,1) 

[15] 

5. α (rand – ½) α = randomization operator 
rand = random number (0,1) 

[16] 

6. 
 
α. sign(rand – ½)       Lévy 

α = randomization operator 
sign = random sign or direction 
rand = random number (0,1) 

[8, 9] 

2.3 Working Principle 

The working principle of a traditional firefly algorithm is demonstrated in this section 
using a three dimensional optimization problem. The total number of fireflies is 
assigned as ten. When the algorithm is initialized, all the fireflies are randomly 
distributed in the search universe as depicted in Fig 1(a). In this optimization problem, 
it is assumed that, the search space has two local best values and a global best value 
as shown in Fig 1(b).  During the initial search, some firefly move towards the Local 
Best (LB) values and some reaches the Global Best (GB) value as illustrated in Fig 1 
(c). From Fig 1 (c), it is observed that, firefly1 is at LB1; firefly3 is at GB and firefly2 
lies between LB1 and GB. The light intensity produced by firefly3 is brighter than the 
light intensity by firefly1. At this condition, firefly2 moves towards LB1 or GB based 
on the Cartesian distance‘d’ (Eqn.7). In this problem, the distance between firefly1 
and firefly2 (d1) is less compared to d2, hence firefly2 moves towards LB1 than GB.  
Similarly, the Cartesian distance between firefly4 and firefly5 (d4) is shorter than d3, 
and firefly4 is likely attracted towards LB2 than GB.  

When the search iteration increases, the firefly at the GB is retained. The attraction 
signal between the fireflies at the local best value is exponentially decreased with 
increase in search iteration and it will moves towards the GB. Finally a considerable 
amount of fireflies are gathered at the global best value as shown in Fig 1(d) at the 
end of optimization search. 
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(a) Initialization 

 

(b) Possible solutions 
 

 
(c) Preliminary convergence 

 
(d) Final convergence 

Fig. 1. Various stages in traditional firefly algorithm 

3 Lévy Flight and Brownian Distribution 

In recently developed nature inspired methods such as firefly and cuckoo algorithm, 
optimization search process is guided by Lévy Flight (LF) strategy [7].  

 

Fig. 2. Relation between LF and BD 

The work by Rajasekhar et. al also reported that, Lévy guided algorithm performs 
well compared to the conventional methods [21]. LF is a random walk with a 
sequence of arbitrary steps and is conceptually similar to the path traced by 
a molecule as it travels in a liquid or a gas, and the search path of a foraging animal 
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[21]. In LF, the flight span and the length between two successive changes in 
direction are drawn from a probability distribution. Like LF, Brownian Distribution 
(BD) is also in the family of random walks. Fig 2 shows the relationship between LF 
and BD. Based on the temporal exponent (α) and spatial exponent (β) values; LF and 
BD can be realized from the random walks [22, 23]. A detailed explanation of LF and 
BD is provided in the book by Yang [7]. Lévy flight is superdiffusive markovian 
process, whose step length is drawn from the Lévy distribution in terms of a simple 
power-law formula;  

         
β−−1

s~)s(L  where 0 < β ≤ 2.            (8) 

 
The Brownian walk is a subdiffusive non-markovian process, which obeys a Gaussian 
distribution with zero mean and time-dependent variance. The ratio of the exponents 
α / β provides the relationship between sub and super diffusion. When β < 2α the 
undecided continuous random walk is successfully superdiffusive, and for β > 2α 
effectively subdiffusive. For β = 2α, the search process exhibits the same scaling as 
ordinary Brownian motion [23].  
 

 
(a) Levy walk 

 
(b) Brownian walk  

Fig. 3. Search patterns of random walk strategies 

Fig 3 depicts the search patterns of firefly algorithm with LF and BD in a two 
dimensional search space. Fig 3 (a) shows that, Lévy flight guided FA is very 
efficient in exploring unknown search space with minimal number of iterations, 
because of its large step size. Fig 3 (b) describes that, the BD guided FA explores the 
search space with smaller step size and provides the best possible solution.  
 
In this work, the following formulae are considered;  
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where A is the random variable,  β is the spatial exponent, α is the temporal exponent, 
and )( βΓ is a Gamma function. Eqn. 9 represents the Lévy flight and Eqn. 10 
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represents Brownian distribution. Both these equations are formed as discussed in 
[23].  The random variable presented in Eqn. 11 is chosen based on the article by 
Gandomi et. al [8].  

4 Results and Discussions 

This section presents an evaluation between the traditional FA, Lévy Flight guided 
FA (LFFA), and Brownian Distribution based FA (BDFA). The proposed and existing 
FA is initially tested on well known benchmark functions such as Sphere, 
Rosenbrock, Rastrigin, Griewank and Ackley [3, 21, 24-27]. Later, these algorithms 
are considered to find the optimal solution for a three dimensional PID controller 
design problem.  
 
Example 1: Benchmark Functions 
 
This section presents the evaluation of the FA on some well known benchmark 
functions. Sphere and Rosenbrock are unimodal functions and other functions such as 
Rastrigin, Griewank, and Ackley are multimodel functions [24-27]. Before initiating 
the optimization process, it is necessary to assign the values for algorithm parameters 
based on the guidelines provided by Yang et. al [10].  For the global optimization 
problem, following values are assigned: number of fireflies (n) = 50, β0 = 1, γ = 5, α0 
= 0.5 (gradually reduced to 0.01 in steps of 0.001 as iterations proceed), and the total 
number of run is chosen as 25,000.  The position update equations considered in this 
study is given below;  
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Eqn. 12 represents the traditional FA, Eqn. 13 and 14 represent LFFA and BDFA 
respectively. 

Table 2 provides an appraisal between various firefly algorithms using the fitness 
value and error of the optimized value. Ten independent runs are performed with the 
FA and LFFA, and five independent runs are executed with BDFA (because of its 
slower convergence). Fig 4 shows the amount of error in optimal parameters by FA, 
LFFA, and BDFA. For Sphere, Rastrigin, and Ackley functions, error by BDFA is 
small. For Rosenbrock and Griewank functions LFFA provides reduced error 
compared to FA and BDFA. From this analysis, the observation is, the search time 
taken by the LFFA is very small compared to classical FA and BDFA. The 
exploration time taken by the BDFA is very large because of its smaller step size.  
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Table 2. Performance assessment of FF, LFFF, and BDFF on benchmark problems 

Function 
Fitness Value Error 

FA LFFA BDFA FA LFFA BDFA 

Sphere 4.036e-009 2.822e-010 3.386e-011 5.005e-010 8.332e-010 9.473e-012 

Rosenbrock 1.174e+09 1.856e+06 1.003e+01 1.853e+08 3.921e+05 6.014e+01 

Rastrigin 7.003e+01 5.734e--08 3.615e--05 0.992e+00 2.573e+00 0.082e+00 

Griewank 6.053e-002 1.646e-010 4.713e-002 4.737e-002 3.582e-010 1.024e-001 

Ackley 7.277e+002 6.056e+001 6.937e+001 1.946e-03 0.835e-01 7.662e-04 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4. Graphical representation of error 

 
Example 2: PID Controller Design for Unstable Bioreactor 
 
An unstable bioreactor model discussed by Rajinikanth and Latha is considered [28, 
29]. The problem is to design an optimal PID controller, which regulates the feed 
concentration inorder to maintain the product concentration based on the reference 
input.  The unstable first order and second order model of the process is provided in 
Eqn. 15. 
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For this problem, the firefly algorithm is assigned with the following values: number 
of fireflies (n) = 10, β0 = 1, γ = 5, α0 = 0.5 (gradually reduced to 0.1 in steps of 0.01 as 
iterations proceed), and the total number of run is chosen as 500. The position update 
equations (Eqn. 12 - 14) are considered to test the performance of FA, LFFA, and 
BDFA.  A weighted sum of multiple objective functions is considered in this work as 
presented in Eqn. 16. 
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(16) 

where, ISE = Error to be minimized, Mp = peak overshoot, and w1 = w2 = 1 = 
weighting function.  
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The sign of numerator value of the process is negative; hence, the following search 
boundary is assigned for controller parameters: Kp : min -50% to max 0%; Ki : min -15% 
to max 0%; and Kd : min -40% to max 0% . The firefly algorithm continuously adjusts the 
controller parameters until the objective function J is minimised to Jmin. In this search it is 
assumed that, the light intensity of the firefly is inversely proportional to the objective 
function. Five independent runs are executed with the algorithms and the best value 
among the search is presented in Table 3.  Fig 5 shows the traces made by a single firefly 
on a bounded three dimensional search space for LFFA and BDFA. Fig 6 shows the 
search path of all the assigned fireflies in Lévy flight assisted FA. From this result, it is 
observed that, when iteration increases, all the fireflies move towards the optimal value.  

Table 3. Optimal value and its performance measure 

Method Kp Ki Kd 
Avg. Iteration 

(5 trials) 
ISE Mp 

FA -0.7105 -0.1588 -0.4026 151 1.153 0.392 

LFFA -0.8032 -0.1471 -0.3713 94 1.344 0.340 

BDFA -0.8248 -0.2116 -0.4205 316 0.6494 0.361 

 

 
(a) LFFA (b) BDFA 

Fig. 5. Traces made by a single firefly in 3D search space 

Fig. 6. Optimal PID value attained with 
LFFA (traces of 10 fireflies) 

 
 

Fig. 7. Reference tracking performance 
of bioreactor 
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Fig 7 depicts the reference tracking performance. From this figure and Table 3, the 
observation is that, the existing FA requires smaller search time and faster 
convergence compared to the proposed BDFA.  The LFFA provides superior 
performance in search time and convergence rate. The overshoot is also smaller 
compared to FA and BDFA. Even though the convergence rate and search time is 
large, the BDFA offers enhanced optimization accuracy in rise time, ISE, and settling 
time compared to FA and LFFA. 

5 Conclusion  

In this paper, an analysis on firefly algorithm is presented with random walk search 
strategies such as Lévy Flight (LF) and Brownian Distribution (BD). The proposed 
method is also appraised with the well known randomization parameters existing in 
the literature. In order to test the performance of the LF and BD search methods, 
unconstrained global optimization problems and three dimensional controller design 
problem are considered. The performance of LF and BD based FA are quantified 
using the parameters such as search time and accuracy in optimal parameters. The 
result of the PID controller design problem evident that, the Brownian search assisted 
firefly algorithm provides better accuracy in controller parameters, whereas Lévy 
search based firefly algorithm provides improved search time compared to the 
existing randomization parameter.  
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Abstract . Economic load dispatch (ELD) is an important operational problem 
of the power system, aiming to reduce the Power loss. The firefly algorithm 
(FA), a heuristic numeric optimization algorithm inspired by the behavior of 
fireflies, appears to be a robust and reliable technique. This paper presents a self 
adaptive FA for the solution of the ELD problem. The proposed algorithm (PA) 
is applied to the standard IEEE  30 bus test system and the result are presented 
to demonstrate its effectiveness.  

Keywords: economic load dispatch, firefly algorithm. 

Nomenclature 

iii cba     Fuel cost coefficients   

ii ed      Coefficients of  valve point effects of   

 the   generator 
ELD      Economic load dispatch 
FA      Firefly algorithm 

CF        Net fuel cost 

iI
       Light intensity of the i -th firefly 

maxIter  Maximum number of iterations for convergence check. 

nd       Number of decision variables 

nf       Number of fireflies in the populations 

ng       Number of generators 

 
* Corresponding author. 
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PA      Proposed algorithm 
),( δVp  Real power at bus as a function of voltage magnitude  and voltage 

angle 
),( δVq  Reactive  power at bus  as a function of voltage magnitude  and 

voltage angle 

GiP and GiQ  Real and Reactive power generation  at i -th bus respectively 

 DiP and DiQ  Real and Reactive power demand at i -th bus respectively 

DP                      Total load demand     

LP                      Total Transmission losses  
min

GiP and max
GiP    lower and upper limits of GiP  

min
GiQ and max

GiQ   lower and upper limits of GiQ  

ijr  Cartesian distance between the i -th and j -th firefly 

SAFA     Self adaptive FA 
t         iteration counter  

ix        i -th firefly  

ji,β   Attractiveness  between  the  i -th and j -th firefly 

oβ and γ  Maximum attractiveness and light intensity absorption coefficient 

respectively 

1 Introduction    

Present day power systems have the problem of deciding how best to meet the 
varying power demand that has a daily , weekly and yearly cycle in order to maintain 
a high degree of economy and reliability. Among the options that are available for an 
engineer in choosing how to operate the system, economic load dispatch (ELD) is the 
most significant.ELD is a computational process whereby the total required 
generation is distributed among the generating units in operation also calculate total 
line losses subject to load and operational constraints. The objective of proposed 
algorithm to reduce power losses while satisfying various constraints [1]. 

Over the years numerous methods with various degrees of near-optimality, 
efficiency, ability to handle difficult constraints and heuristics, are suggested in the 
literature for solving the dispatch problems. These problems are traditionally solved 
using mathematical programming techniques such as lambda iteration method, 
gradient method, linear programming, dynamic programming method and so on.  
Many of these methods suffer from natural complexity and converge slowly. 
However, the classical lambda-iteration method has been in use for a long time. The 
additional constraints such as line flow limits cannot be included in the lambda 
iteration approach and the convergence of the iterations is dependent on the initial 
choice of lambda. In large power systems, this method has oscillatory problems that 
increase the computation time [1,2]. 
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Apart from the above methods, there is another class of numerical techniques 
called evolutionary search algorithms such as simulated annealing, genetic 
algorithms, evolutionary programming, ant colony, artificial bee colony and particle 
swarm optimization have been applied in solving ELD [3-8]. Having in common 
processes of natural evolution, these algorithms share many similarities; each 
maintains a population of solutions that are evolved through random alterations and 
selection. The differences between these procedures lie in the representation 
techniques they utilize to encode candidates, the type of alterations they use to create 
new solutions, and the mechanism they employ for selecting the new parents. The 
algorithms have yielded satisfactory results across a great variety of power system 
problems. The main difficulty is their sensitivity to the choice of the parameters, such 
as temperature in SA, the crossover and mutation probabilities in GA and the inertia 
weight, acceleration coefficients and velocity limits in PSO.   

Recently, firefly algorithm (FA)  has been suggested for solving optimization 
problems [9-13]. It is inspired by the light attenuation over the distance and fireflies’ 
mutual attraction rather than the phenomenon of the fireflies’ light flashing. In this 
approach, each problem solution is represented by a firefly, which tries to move to a 
greater light source, than its own.  It has been applied to a variety of ELD problems 
[14-18] and found to yield satisfactory results.  However, the choice of FA parameters 
is important in obtaining good convergence and global optimal solution.  

A self adaptive FA  (SAFA) for obtaining the global best solution has been 
suggested in this paper. The proposed algorithm (PA) has been tested on the IEEE  30 
bus test systems to illustrate the performance. 

2 Problem Formulation                   

The ELD problem is formulated as an optimization problem of minimizing the fuel 
cost while satisfying several equality and inequality constraints. Usually the network 
loss is calculated using constant B-loss coefficients, which may lead to sub-optimal 
solution due to approximations in the computations of these coefficients. More 
accurate solution can be obtained, if network loss is calculated from load flow. In this 
paper, Newton-Raphson load flow technique [18] is used to calculate the loss. The 
constrained optimization problem involving load flow is formulated as follows: 

        Minimize    
=

−+++=
ng
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iGiGiiiiGi

2
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Real and Reactive power generation limits 

                       
maxmin

GiGiGi PPP ≤≤   :  ,ng32,1,ι =                                        (3)                                            

                       
maxmin

GiGiGi QQQ ≤≤   :  ,ng32,1,ι =                                      (4)                                            

Load flow equations 

0VpPP DiGi =−− ),( δ                                                   (5) 

                                                                                             

0VqQQ DiGi =−− ),( δ                                                 (6) 

3 Self Adaptive Firefly Algorithm 

The FA is a Meta heuristic, nature-inspired, optimization algorithm which is based 
on the social flashing behavior of fireflies, or lighting bugs, in the summer sky in 
the tropical temperature regions. It was developed by Dr. Xin-She Yang at 
Cambridge University in 2007, and it is based on the swarm behavior such as fish, 
insects, or bird schooling in nature. It is similar to other optimization algorithms 
employing swarm intelligence such as PSO and ABC. But FA is found to have 
superior performance in many cases [9-13]. FA initially produces a swarm of 
fireflies located randomly in the search space. The initial distribution is usually 
produced from a uniform random distribution. The position of each firefly in the 
search space represents a potential solution of the optimization problem. The 
dimension of the search space is equal to the number of optimizing parameters in 
the given problem. The fitness function takes the position of a firefly as input and 
produces a single numerical output value denoting how good the potential solution 
is. A fitness value is assigned to each firefly. The FA uses a phenomenon known is 
bioluminescent communication to model the movement of the fireflies through the 
search space. The brightness of each firefly depends on the fitness value of that 
firefly. Each firefly is attracted by the brightness of other fire-flies and tries to move 
towards them. The velocity or the pull a firefly towards another firefly depends on 
the attractiveness. The attractiveness depends on the relative distance between the 
fireflies. It can be a function of the brightness of the fireflies as well. A brighter 
firefly far away may not be as attractive as a less bright firefly that is closer. In each 
iterative step, FA computes the brightness and the relative attractiveness of each 
firefly. Depending on these values, the positions of the fireflies are updated. After a 
sufficient amount of iterations, all fireflies converge to the best possible position on 
the search space. The number of fireflies in the swarm is known as the population  
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size, nf . The selection of population size depends on the specific optimization 

problem. However, typically a population size of 20 to 40 is used for PSO and FA 

for most applications [9-13]. Each i -th firefly is denoted by a vector ix  as  

[ ]nd
i

2
i

1
ii xxxx ,, =                                      (7) 

The search space is limited by the following inequality 

                            )()( maxxxminx kkk ≤≤  :  nd21k ,,, =                                (8) 

Initially, the positions of the fireflies are generated from a uniform distribution 
using the following equation 

                ( ) randminxmaxxminxx kkkk
i ×−+= )()()(                              (9) 

Here, rand  is a random number between 0 and 1, taken from a uniform 
distribution. Eq. (9) generates random values from a uniform distribution within the 
prescribed range defined by Eq. (8). The initial distribution does not significantly 
affect the performance of the algorithm. Each time the algorithm is executed, the 
optimization process starts with a different set of initial points. However, in each case, 
the algorithm searches for the optimum solution. In case of multiple possible sets of 
solutions, the algorithm may converge on different solutions each time. But each of 
those solutions will be valid as they all will satisfy the requirements. 

The light intensity of the i -th firefly, iI  is given by 

                                                        
)( ii xFitnessI =                                                 (10) 

The attractiveness between the i -th and j -th firefly, ji,β  is given by 

                                                
( )2

jioji r ,, exp γββ −=                                          (11)                                               

Where jir ,  is Cartesian distance between i -th and j -th firefly 

                                   

( )
=

−=−=
nd

1k

2k
j

k
ijiji xxxxr ,                                     (12) 

oβ is a constant taken to be 1. γ  is another constant whose value is related to the 

dynamic range of the solution space. The position of firefly is updated in each 
iterative step. If the light intensity of j -th firefly is larger than the intensity of the  
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i -th firefly, then the i -th firefly moves towards the j -th firefly and its motion at t -

th iteration is denoted by the following equation: 

                        
( ) ( )50rand1tx1tx1txtx ijjiii .)()()()( , −+−−−+−= αβ

            
(13) 

 
α  is a constant whose value depends on the dynamic range of the solution space. 

At each iterative step, the intensity and the attractiveness of each firefly is calculated. 
The intensity of each firefly is compared with all other fireflies and the positions of 
the fireflies are updated using (12). After a sufficient number of iterations, all the 
fireflies converge to the same position in the search space and the global optimum is 
achieved.In the above narrated FA, each firefly of the swarm explores the problem 
space taking into account the results obtained by others, still applying its own 
randomized moves as well. The influence of other solutions is controlled by the value 
of attractiveness of Eq. (11), which can be adjusted by modifying two parameters oβ
and γ . The first parameter describes attractiveness at 0r ji =,  i.e. when two fireflies 

are found at the same point of solution space. In general ],[ 10o ∈β  should be used 

and two limiting cases can be defined: The algorithm performs cooperative local 
search with the brightest firefly strongly determining other fireflies positions, 
especially in its neighborhood, when oβ  = 1 and only non-cooperative distributed 

random search with oβ = 0. On the other hand, the value of γ  determines the variation 

of attractiveness with increasing distance from communicated firefly.  Setting  γ  as 0 

corresponds to no variation or constant attractiveness and conversely putting γ  as ∞  

results in attractiveness being close to zero which again is equivalent to the complete 
random search. In general γ  in the range of [0,10] can be chosen for better 

performance. Indeed, the choice of these parameters affects the final solution and the 
convergence of the algorithm. 

The self-adaptive control of these two parameters during the search process 
effectively leads the algorithm to land at the global best solution with minimum 
computational effort. Each firefly with nd  decision variables in the FA will be 
defined to encompass nd +2  FA variables in a self-adaptive method, where the last 
two variables represent oβ and γ .  A firefly can be represented as 

                 
[ ]iio

nd
i

2
i

1
ii xxxx γβ ,,,, ,=                                      (14) 

Each firefly possessing the solution vector, io,β and iγ  undergo the whole search 

process of the FA, thereby resulting in better off-springs during the search with lower 
computational effort. Eq. (11) is accordingly modified as 

( )2
jiiioji r ,,, exp γββ −=                                           (15) 



128 B. Suresh Babu and A. Shunmugalatha 

 

The self adaptive scheme attempts to prevent sub-optimal solution and enhance the 
convergence of the algorithm. 

4 Proposed Algorithm 

The proposed SAFA based solution process involves representation of problem 
variables oβ and γ ; and formation of a light intensity function.  

4.1 Representation of Decision Variables 

The decision variables in the PA are real power generation at generator buses except 
slack bus, oβ and γ . Each firefly in the PA is defined to denote these decision 

variables in vector form as  

],,,[ , γβoGng2G PPx =                                               (16) 

4.2 Intensity Function 

The SAFA searches for optimal solution by maximizing an intensity function, 
denoted by iI , which is formulated from the objective function, Eq. (1).  

                                               C
i F1

1
IMax

+
=                                                       (17)                                             

It is to be noted that the real power generation, which includes network loss, at slack 
bus is obtained from the load flow. 

4.3 Stopping Criterion 

The process of generating new swarm can be terminated either after a fixed number of 
iterations or if there is no further significant improvement in the global best solution.  

4.4 Solution Process 

An initial swarm of fireflies is obtained by generating random values within their 
respective limits to every individual in the swarm through Eq. (3). The intensity is 
calculated by considering the values of each firefly and the movements of fireflies are 
performed for all the fireflies with a view of maximizing the intensity. The iterative 
process is continued till convergence. The pseudo code of the PA is as follows.  
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Read the Power System Data 

Choose the number of fireflies in the population, nf  and   
maxIter  for convergence check. 

Generate  the initial population of fireflies 

Set  the iteration counter  0t =  
while  (termination requirements are not met) do  

for  nf1i :=  

Alter the system data and  oβ γ  according to i -
th firefly values   
Run load flow and obtain slack bus power 

Evaluate CF  and  iI  using  Eqs. 1 and 17 

respectively 

for nf1j :=  

Alter the system data according to j -th 
firefly values 
Run load flow and obtain slack bus power 

Evaluate CF  and  jI  using  Eqs. 1 and 17 

respectively 

if ji II >  

     Compute ijr using Eq. (12) 

     Evaluate  ijβ using Eq. (15) 

Move j -th firefly towards i -th firefly through 
Eq. (13) 

end-(if) 

end-( j ) 

end-( i ) 
Rank the fireflies 
end-(while) 

5 Simulation            

The PA is tested on IEEE 30 bus test system, whose data have been taken from Ref. 
[19]. The fuel cost coefficients, lower and upper limits for real power generations for 
IEEE 30 bus test system are given in Table 8.1 of the appendix. Programs are 
developed in Matlab 7.5 and executed on a 2.3 GHz Pentium-IV personal computer.  
Newton Raphson technique [18] is used to carry out the load flow during the 
optimization process. The parameters chosen for the PA are given in Table 1. 
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Table 1. FA parameters 

Parameter Value 

nf  30 

maxIter  300 

 

Table 2. Results of IEEE 30 bus test system 

Control 
Variables (p.u) 

Before 
Optimization PA 

1GP  138.53900 51.787450 

2GP  57.56000 80.00000 

5GP  24.56000 50.00000 

8GP  35.00000 35.00000 

11GP  17.93000 30.00000 

13GP  16.91000 40.00000 

oβ  --- 0.210124 

γ  --- 0.539176 
Load 

Demand(MW) 
283.40000 283.40000 

Loss(MW) 7.09900 3.38740 
 

 

The optimal solution obtained by the PA for IEEE 30 bus test system are given 
along with the initial solution before optimization in Tables 5.2 respectively. It is very 
clear from these tables that the proposed algorithm is able to total line loss is 
decreased. The resulting loss after optimization IEEE 30 bus test system is decreased.  

6 Summary 

Indeed the FA is a powerful novel population based method for solving complex 
optimization problems. The convergence and searching capability can be improved 
with a view to prevent sub-optimal solution through self-adaptive control of FA 
parameters. In this paper, SAFA solution technique for ELD problem is developed 
and tested on IEEE 30 bus test system. The algorithm uses NR load flow technique 
for computing the slack bus power that includes network loss and is able to offer the 
global best solution at lower computational burden.  
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Appendix 

Table 3. Generator Data for IEEE 30 bus test system 

Bus No a  b  c  d  e  min
GiP  max

GiP  

1 0.00375 2.00 0 0 0 50 200 
2 0.01750 1.75 0 0 0 20 80 
5 0.06250 1.00 0 0 0 15 50 
8 0.00834 3.25 0 0 0 10 35 

11 0.02500 3.00 0 0 0 10 30 
13 0.02500 3.00 0 0 0 12 40 

                                                                                                   

References  

1. Wood, A.J., Woolenberg, B.: Power generation, operation and control. John Willey and 
Sons, New York (1996) 

2. Chowdhury, B.H., Rahman, S.: A review of recent advances in economic dispatch. IEEE 
Trans. on Power Systems 5(4), 1248–1259 (1990) 

3. Panigrahi, C.K., Chattopadhyah, P.K., Chakrabarti, R.N., Basu, N.: Simulated annealing 
technique for dynamic economic dispatch. Electric Power Components and Systems 34(5), 
577–586 (2006) 

4. Adhinarayanan, T., Sydulu, M.: Diretional search genetic algorithm applications to 
economic dispatch of thermal units. International Journal for Computational Methods in 
Engineering Science and Mechanics 9(4), 211–216 (2008) 

5. He, D.-K., Wang, F.-l., Mao, Z.-Z.: Hybrid genetic algorithm for economic dispatch with 
value-point effect. Electric Power Systems Research 78, 626–633 (2008) 

6. Park, J.B., Lee, K.S., Shin, J.R., Lee, K.Y.: A particle swarm optimization for economic 
dispatch with nonsmooth cost function. IEEE Trans. Power Syst. 20(1), 34–42 (2005) 

7. Subbaraj, P., Rengaraj, R., Salivahanan, S., Senthilkumar, T.R.: Parallel particle swarm 
optimisation with modified stochastic acceleration factors for solving large scale economic 
dispatch problem. Electrical Power and Energy Systems 32(9), 1014–1023 (2010) 

8. Pereira-Neto, A., Unsihuay, C., Saavedra, O.R.: Efficient evolutionary strategy 
optimization procedure to solve the nonconvex economic dispatch problem with generator 
constraints. IEEE Proc. Gener. Transm. Distrib. 152(5), 653–660 (2005) 

9. Yang, X.S.: Nature-Inspired Meta-Heuristic Algorithms. Luniver Press, Beckington (2008) 
10. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, 

T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009) 
11. Yang, X.-S.: Firefly algorithm,stochastic test function and design optimisation. 

International Journal of Bio-inspired Computation 2(2), 78–84 (2010) 
12. Yang, X.-S.: Review of metaheuristics and generalized evolutionary walk algorithm. 

International Journal of Bio-inspired Computation 3(2), 77–84 (2011) 
13. Yang, X.-S.: Multiobjective firefly algorithm for continuous optimization. Engineering 

with Computers 18(2), 175–184 (2013) 
14. Swarnkar, K.K.: Economic load dispatch problem with reduce power loss using firefly 

algorithm. Journal of Advanced Computer Science and Technology 1(2), 42–56 (2012) 



132 B. Suresh Babu and A. Shunmugalatha 

 

15. Vinod Kumar, K., Lakshmi Phani, G.: Combined economic emission dispatch-pareto 
optimal front approach. International Journal of Computer Applications 30(12), 16–21 
(2011) 

16. Sulaiman, M.H., Mustafa, M.W., Zakaria, Z.N., Aliman, O., Abdul Rahim, S.R.: Firefly 
Algorithm Technique for Solving Economic Dispatch Problem. In: 2012 IEEE 
International Power Engineering and Optimization Conference (PEOCO 2012), Melaka, 
Malaysia, June 6-7 (2012) 

17. Chandrasekaran, K., Simon, S.P.: Tuned Fuzzy Adapted Firefly Lambda Algorithm for 
Solving Unit Commitment Problem. J. Electrical Systems 8(2), 132–150 (2012) 

18. Tinney, W.F., Hart, C.E.: Power flow solution by Newton’s method. IEEE Trans. PAS-86, 
1449–1460 (1967) 

19. TestSystems Archive, http://www.ee.washington.edu/research/pstca/  
(accessed December 2012) 



 

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 133–145, 2013. 
© Springer International Publishing Switzerland 2013  

A Soft-Computing Based Approach to Economic  
and Environmental Analysis of an Autonomous  

Power Delivery System Utilizing Hybrid  
Solar – Diesel – Electrochemical Generation 

Trina Som and Niladri Chakraborty 

Department of Power Engineering, Jadavpur University, 
Salt Lake City, Kolkata 700098 

trinasom@gmail.com, chakraborty_niladri@hotmail.com 

Abstract. Concerns toward the continued availability of reliable grid-based 
power and global warming and depleting oil reserves have made a decentralized 
power delivery model seeking energy from renewable energy resources an in-
evitability. Photovoltaic power generating modules (PV), diesel generators 
(DG), battery energy storage systems (BESS) are emerging generation/storage 
technologies. The present work depicts the economic analysis and environmen-
tal impacts of a decentralized or distributed power delivery system integrated 
with hybrid distributed energy resources (DERs). The model for decentralized 
power delivery system has been developed employing a modified form of the 
differential evolution algorithm implemented within MATLAB® Simulink con-
sidering load demand scenario for a locality in India. Optimal power generation 
has been made using different sets of distributed energy resources, pertaining to 
cost estimation and respective environmental impact. The results show a cost 
effective power delivering network for hybrid DG-BESS, but PV-BESS is more 
beneficial from the environmental perspective.   

Keywords: hybrid-Distributed Energy Resources, Modified Differential Evolution. 

1 Introduction 

The need for energy-efficient electric power sources in remote locations is a driving 
force for research in hybrid energy systems. Power utilities in many countries round 
the world are diverting their attention toward more effective and renewable electric 
power sources [1,2]. Reasons for this interest include the possibilities of taxes or other 
penalties for emissions of greenhouse gases as well as other pollutants with finite 
supply of fossil fuels. The use of renewable energy sources in remote locations could 
help reduce the operating cost through the reduction in fuel consumption, increase 
system efficiency, and reduce noise and emissions. 

DERs share small to medium-sized markets which are expected to increase in the 
future leading to a much more decentralized power delivery system as depicted in 
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literature [3,4]. A number of studies [5-8] related to the design and operations of 
DERs are available in the literature. Microgrid operations of DERs have also been 
discussed in the literature [9-13]. Optimization methods based on soft computing has 
been applied to economic load dispatch and load scheduling problems are available in 
the literature [14-16].  Application of few modified soft computing algorithm has also 
been made by Mallipedi. et.al. in dealing with complex constraining problems[17, 
18].Though the technical issues of microgrid have been dealt with by several re-
searchers [19-21] and economic issues [24-27] related to microgrids are also ad-
dressed by some studies, but economic evaluation of a decentralized power delivery 
system with different combinations of DERs and consumer load data specific to the 
Indian scenario have not been studied. Even if the applications of soft computing 
techniques in microgrid integrated DERs systems have been found in literature [27-
28], but economic evaluations of different types of autonomous decentralized power 
delivery system, with varying combinations of load and generation through soft-
computing based optimization techniques are sparse in literature. Again economic 
evaluation in consideration of environmental affect of a decentralized power delivery 
system with different combinations of DERs have hardly been studied through soft-
computing based optimization technique in the literature. Due to a huge gap of short-
age between power supply and demand, an Indian load demand scenario has been 
considered for modeling an autonomous power delivery framework integrated with 
DERs and consumers.  

The economic part of the model calculates the fuel consumed per kilowatt-hours 
for DG and battery energy storage system along with the total initial cost for different 
DERs, and constructional cost for power delivery network.  

The environmental part of the model calculates the CO2, particulate matter (PM), 
and the NOx emitted to the atmosphere [1]. Simulations based on an actual system in 
the remote locality of India were performed for three cases which consist of different 
combinations of DERs. 

2 Physical Problem: 

Economic estimation for distributed power system has been analyzed by optimal 
power generation from different sets of DERs. The power optimization is based on 
the logic of meeting the required load demands in apportion to the electrical produc-
tion between the PV [29], DG [30] and battery energy storage system. The power 
delivery systems refer to three specific test cases as follows 

Case I: Autonomous power delivery system consist of hybrid photovoltaic power 
generating modules (PV) - diesel generators (DG) - battery energy storage system 
(BESS) as DERs. 

Case II: Autonomous power delivery system consists of hybrid diesel generators 
(DG) - battery energy storage system (BESS) as DERs. 

Case III: Autonomous power delivery system consisting of hybrid photovoltaic 
power generating modules (PV) - diesel generators (DG) as DERs. 
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The model for simulation in case I, as shown in figure.1, contain all 3 power gene-
rating resources, namely photovoltaic module, diesel generator and battery bank. It 
generally consists of a Diesel-cycle (based on compression ignition system) recipro-
cating engine prime mover coupled to an electric generator. The diesel engine oper-
ates at a relatively high compression ratio and relatively low speed. Diesel generation 
sets are proven to be cost effective, extremely reliable and widely used technology. 
They are manufactured in a wide range of sizes, from about 1 kilowatt (kW) upto 
about 10 MW. Diesel generators for our experiment purposes have been taken for 
such a capacity that it fulfills the remaining load requirement, and has been used as a 
last power generating option in consideration to environmental aspect.  

The stimulant model for case III, as shown in figure 3, consists of hybrid PV-DG 
power generating resources. The optimal power operation is performed by the same 
logic as used for case I and case II. Here the load power required is first compared 
with the power supplied by PV, and next the less power generated in comparison with 
the required demand are then delivered by DG. 

2.1 Problem Formulation 

The economic analysis part of the simulation model involves calculation of the cost of 
PV with diesel set along with battery system. The equations (1) (2) and (3) represents 
the total cost function for case I, case II, and case III respectively as shown below; 
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The power generated from solar energy (Pso) depends on certain geographical and 

environmental factors which is expressed [29] as 
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where, Df is the derating factor, RCPVis the rated capacity of the solar array, Gs and 

Ss are global solar radiation incident on the surface of solar array and standard solar 
radiation for the rated capacity.  

Knowing the efficiency from the manufacturer’s specifications for the efficiency of 
the electric generator, and the load on the generator, the power input (Pinput) to the 
generator [1] can be calculated as    

L inputP P η= ×
                                                  (5) 
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where PL is the load on the diesel generator. Again the Pinput is based on fuel consump-
tion, i.e. the amount of fuel required by the diesel engine to supply the load. The fuel 
consumption can be mathematically interpreted by manufacturer’s data sheet as [1] 

( ) 0.7 0.5 inputFc gallon P× = ×
                                        (6) 

where is the input power to the generator given in kilowatts; 7.1 is the factor that con-
verts pounds (lbs) to gallons, depending on the type of fuel that is used. For different 
types of generators, the fuel consumption can be obtained from the manufacturer’s 
data sheet. η = 0.5. 

The total output from a battery can be obtained as total voltage supplied in terms of 
number of battery cells (n) and the voltage per cell [1] as follows: 

 
_ _battery volt n volt per cell= × −                                (7) 

where volt per cell is obtained from the different electro-chemical reactions. 
The environmental analysis is performed on the basis of emission of NOx, PM, 

Co2. The amount of emission is obtained from total kilowatt-hours per gallon supplied 
by the diesel generator. The amount of carbon, NOx, PM emitted per kWh is calcu-
lated from the equations shown below as (8) and (9). 

/ /Gen CkWh gallon kWh F=
                                                (8) 

cos /Total Cost t gallon=                                                (9) 
where kWh is the total kilowatt-hours supplied by the diesel generator, and FC is the 
total fuel consumed (in gallons). The amounts of carbon emitted per kWhr have been 
calculated by dividing the total amount of carbon emitted by total electricity generat-
ed by the sources. As per recent records [32] the carbon credit is valued at 10€/ton as 

of april 2013. The conversation factor results in Rs 700/ton. The CO2 emission is 1 kg 
per kWhr [33] of power generation, where the kWhr generated per gallon of fuel is 
calculated as the product of the density of diesel, i.e. 0.832kg/liter and its calorific 
value, i.e. 137213.44 kJ. However these costs are subjected to many constraints that 
need to be considered for economic cost analysis.  

2.2 Constraining Function: 

The main constraining factor considered for the problem, defines the exact balance of 
power demand and power generations from DERs and BESS. Equations (10), (11), 
and (12) represent the main functional constraints for case I, case II and case III re-
spectively. 
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Equations (13), (14), and (15) present the side constraining functions. The sides 

constraints describe the power generated from DERs are within its installed capacity. 
The power generations are always positive. 

PSO< ICSO                                                                                     (13) 
PDG< ICDG                                                                                    (14) 
Pbt< ICbt                                                                                        (15) 

ICSO , ICDG, ICbt > 0                                                (16) 
With the objective function and constraining functions known apriori, a modifica-

tion over conventional DE has been made and applied for economic analysis of these 
systems. 

3 Control Technique 

The numerical method used for the present problem of power optimization is based on 
the heuristic or soft computing logic. These techniques are most suited for real-world 
applications that are characterized by imprecise, uncertain data and incomplete do-
main knowledge. With varying load demand having different consumers and different 
seasons these type of problems sometimes become too complex to model mathemati-
cally. Therefore, soft computing methods have been employed to provide better eco-
nomic solutions through optimal power operation. The proposed algorithm is made by 
modification over conventional differential algorithm. The conventional differential 
algorithm (DE) has been described as; 

3.1 Differential Evolution 

The differential evolution algorithm (DE) is technically simple and highly efficient 
technique for constrained parameter optimization problems. The population of solu-
tion vectors is successively updated through probabilistic search method [34] which 
involves the following steps, where at first, a population size of x encoded elements is 
chosen randomly as initial solution vector for individual variables of the concerned 
problem. Next, three mutually distinct string of initial solutions are randomly drawn 
from population vector. Mutation is performed over the solution corresponding to the 
randomly drawn string of solutions on the basis of mutation probability factor. Fur-
ther, the crossover operation is performed [35] between individual elements of mu-
tated variables depending upon the cross over probability check. Finally the selections 
for better solution elements are made by calculating the fitness value, through the 
evaluation of the objective function for both the initial and mutated solutions. The 
iteration procedure is continued until the termination condition, i.e. difference be-
tween the best fitness values of consecutive iterations to become negligible in magni-
tude is reached.  
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3.2 Modified Differential Evolution (MDE) 

In the present problem, an attempt of using a modified DE (MDE) has been made for 
achieving an improved result. The modification involves each solution generating 
more than one offspring using different mutation operators by combining information 
of the best solution in the population and thereby increasing the probability of gene-
rating better offspring. A consideration of improved variants of DE [35] which utiliz-
es the concept of neighborhood of each population member, balances the exploration 
and exploitation abilities of DE without imposing serious additional burden in terms 
of function evaluations. An increase in the probability of generating better offspring 
has been made by sampling the feasible region in a better way and reaching the global 
optimum solution. The mutation operation in MDE includes two mutant operands:  

( ) ( )i,j r3,j α best,j r2,j β best,j r1,j= x +F x -x + F x -xv
                                     (17)  

where, Fα and Fβ indicatethe influence of the best and parent solution respectively 
in search direction of off-spring. xbestis the best individual, while xi is the ith individual. 

In house code has been developed using Matlab programming language. The opti-
mization method was implemented through Matlab Embedded block in the simulation 
model for all the three cases. The Matlab embedded function block is the control unit 
of the simulation models developed for three case studies. The flow diagram of MDE 
has been shown below in Figure 1. 

4 System Modeling and Results   

The simulation models have been developed on the basis of the three cases mentioned 
above.The model for case I has been shown in figure 2. For case I, initially the load 
power required is compared with the power supplied by the pv module. If the generat-
ed power is more than the required power then the excess power is used for the charg-
ing of battery bank, while if the power generated by the pv module is not enough to 
feed the load entirely then the pv module supplies as much power within its installed 
capacity and the remaining demand is supplied by DG or BESS. This is again opti-
mally generated by comparing the power delivering capacities of diesel generator and 
BESS, i.e. if the battery energy storage system is not able to supply the required load 
then it provides upto its installed capacity and finally the remaining load requirement 
is met by the diesel generator. 

The stimulant model for case II, as shown in figure.3, consists of hybrid DG-BESS 
power generating resources. The optimal power operation is performed by the same 
logic as used for case I. Here the load power required is compared with the power 
supplied by DG. If the generated power is less than the required demand then the 
remaining power is delivered by BESS, or it will charge the BESS. 

 
 
 



 Soft-Computing Based Approach to Economic and Environmental Analysis 139 

 

 

 

Fig. 1. Flow chart of MDE 

Figure.4 represents the stimulant model for case III. This consists of hybrid PV-DG 
as distributed energy resources. The optimal power operation is performed by the 
same logic as used for case I and case II. Here the load power required is compared 
with the power supplied by PV during day time. If the generated power is less than 
the required demand then the remaining power is delivered by BESS, or if the power 
generated is more than demand the excess power is fed to BESS for charging, which 
further helps in delivery power during peak and night time. 
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Fig. 2. Simulation Model for case I consisting of hybrid PV-DG-BESS 

 

Fig. 3. Simulation Model for case II consisting of hybrid DG-BESS 

 

Fig. 4. Simulation Model for case III consisting of hybrid PV-BESS 

The input parameters considered for the simulation are load demand data for a real-
time Indian scenario, initial costs for different DERs and annual solar irradiance for 
India [36]. These input parameters are shown in table 1 [37, 38, 39]. A typical  
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representative of the load demand for a small Indian locality is considered which is 
obtained by averaging the load data over a year [9]. 

Table 1. Initial Costs for DERs 

DERs Ratings Initial Cost  
( Rs.) 

Running 
Cost  

DG (Rs) 

Running 
Cost  

BESS (Rs) 
PV, DG and 

BESS 
PV=80 KW 
DG=50 KW 
BESS=100 KW

13432500 54 /gallon  6/kWhr 

PV and DG PV=80 KW 
DG=120 KW 

13640000 54 /gallon 6/kWhr 

DG and 
BESS 

DG=100KW      
BESS=120 KW 

787000 54 /gallon 6/kWhr 

 
The simulated results for case I showing the CO2emission has been presented in 

figure 5.  

 

 

Fig. 5. Emission of CO2 for case I with respect to simulation time 

Similarly, the results for case II and case III in terms of fuel consumption and NOX 
emitted have been portrayed in figure 6 and figure 7 respectively. 

 

 

Fig. 6. Fuel consumption for case II with respect to simulation time 
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Fig. 7. Emission of NOX for case III with respect to simulation time  

The comparative results between case I, case II and case III has been presented in 
Table 2 as shown below. 

Table 2. Relative Economic and Environmental studies of case I, case II and case III 

DERs 
outputs 

 

PV-DG-
BESS 

DG-BESS PV-DG 

Fuel Consumption 
(Gallons) 

101.2842 352.5071 140.5393 

Total Fuel cost (Rs) 14969.77 52136.1525 20785.903 
Total Annual 

Cost(Rs) 
13452575.8 13673582.69 792852.15 

NOX Emitted 
(Pounds) 

12.2167 42.5476 16.9630 

CO2 Emitted (Pounds) 1221.663 4254.7607 1696.3093 

PM Emitted (Grams) 24.165 84.1610 33.905 

 
Though the number of DERs installed are more than that of case II, still the total 

costs computed by MDE for case II have been found to be more than that of case I. It 
is mainly due to the running cost, which occurs more in case II for installing more DG 
capacity for the same power requirement. The fuel cost obtained is case II have been 
found to be more than that of case I, which is mainly due to the result of optimal pow-
er generation from PV as DERs having zero running cost, and thereby with BESS 
having less fuel consumption. Moreover, though running costs of BESS is less than 
that of DG, but as the DG set supplies power with PV which is time dependent and 
can be only used during day time, so the fuel cost for case III is found to be have 
more fuel cost than that of cost I. Again having the same number of DERs a reduction 
in fuel cost occurs in case III from that of case II which can be analyzed through op-
timal power generations of DG with PV in case III.   

5 Conclusion 

The present work concludes that a decentralized power delivery system using differ-
ent hybrid - non-conventional energy resources are very encouraging and effective  
for future power supply in an Indian scenario. The comparative studies for different 
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power delivery models utilizing different sets of hybrid DERs depict different costs 
and environmental impacts. It has been observed that though case III provides a cost 
effective power delivery system, but from environment perspective, it has been ob-
tained as an inferior system in comparison with case I. The power optimization using 
all the three types of DERs focuses on both economic and environmental aspects. 
Hence, the simulation models give us various power delivery options leading to more 
economical, eco-friendly and reliable future power. Moreover future studies can be 
carried out considering several constraining functions such as power interruption 
constraints and  distribution losses. With more variations in load demand application 
of more enhanced optimization technique [17,18] can be made with better optimized 
results relating to both enviornmental as well as economic issues in distributed power 
system. Hybrid generation technologies involving sources such as micro-hydro and 
small-scale wind  power, which are considered  more autonomous and more sustaina-
ble than diesel generators [40], and which are especially suitable for rural electrifica-
tion in developing countries can be investigated using  soft computing techniques. 
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Abstract. This paper explains an improved Differential Evolution algorithm 
based on adaptation of crossover rate and scaling factor using diversity control. 
Local search is applied to aid convergence process. The mutation strategies in-
volved are modified using random localized method of vector selection to en-
hance performance. The proposed methodology is applied to SaDE. The  
proposed Diversity Controlled Parameter adapted Differential Evolution with 
Local Search (DCPaDE-LS) harmonically coordinates a balance between global 
and local search, thus ensuring a diversity dynamic which guarantees fast and 
efficient improvements in the search until detection of a solution with high per-
formance. The performance of the proposed DCPaDE-LS is compared on a set 
of 26 bound-constrained benchmark functions for 10 and 30 dimensions with 
respect to average function evaluations (NFE) and success rate (SR) in 30 inde-
pendent trials. Results show that, proposed method gives better SR for high-
dimensional multimodal functions and saving in NFE for most functions.  

Keywords: Differential evolution, diversity control, parameter adaptation, 
fuzzy system, local search. 

1 Introduction 

In Differential Evolution (DE) [1] there exist many trial vector generation strategies 
and three crucial control parameters i.e., population size, scaling factor ( ), and cros-
sover rate ( ), which significantly influence the optimization performance. Adapta-
tion of the control parameters of DE has been an active research area. A complete 
survey of the various adaptation methods and future research trends in DE are  
given by [2]. Liu and Lampinen [3] use fuzzy logic controller to adapt  and  in 
their fuzzy adaptive differential evolution (FADE). In [4] a uniform distribution be-
tween 0.5 and 1.5 for  adaptation with a mean value of 1 is employed. In [5] a self-
adaptive parameter control similar to ES is implemented in jDE. SaDE [6] uses its 
previous learning experience to adaptively select mutation strategy as well as the 
associated control parameter values, which are often problem dependent.  in SaDE 
is normally distributed in a range with mean with respect to the   strategy 
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and standard deviation 0.1.  is then updated by previous learning experience 
after an initial LP generations.  in SaDE is approximated by a normal distribution 
with mean value 0.5 and standard deviation 0.3. 

In addition, the evolutionary process also depends on the population diversity. 
Specifically, higher dimensional, multimodal problems tend to suffer from loss of 
diversity during the earlier generations itself, leading to premature convergence. Con-
trolling diversity help to maintain the explore-exploit cycle as proved in [7]. A para-
meter adaptation for DE (ADE) based on the idea of controlling the diversity using 
multi-population approach is reported in [8]. Mallipeddi and Suganthan [9] proposed 
the EPSDE algorithm, in which a pool of distinct mutation and crossover strategies 
coexists along with a pool of values for each control parameter throughout the evolu-
tion process and competes to produce offspring. A new mutation strategy named the 
greedy DE/current-to-best/1 mutation scheme and a fitness induced parent selection 
scheme is proposed for the binomial crossover of DE [10].  

The diversity control methods available in literature mainly tend to avoid diversity 
loss or aid to improve the diversity level of an algorithm. Whereas, maintaining a 
balance between the conflicting goals of exploration and exploitation becomes a ne-
cessity for the identification of the global optimum. A diversity based crossover rate 
adaptation method using fuzzy systems is given in [11]. The methodology also in-
cludes a local search for a balanced explore-exploit cycle. This paper presents an 
improved DE which maintains a balance between explore-exploit cycles through di-
versity control and local search. This methodology is applied to SaDE [6]. The muta-
tion strategies of SaDE have also been modified to improve the convergence speed by 
using a random localized method of vector selection [12]. 

2 Proposed Methodology 

The DE algorithm optimizes a problem by generating a population of candidate solu-
tions randomly and then applying mutation, crossover and selection operators to gen-
erate a new set of candidate solutions. In the original DE algorithm, there are only 
three control parameters, but the influence they have on the optimization problem is 
large. In addition, the selection of the mutation strategy also becomes a control para-
meter because of its effect on optimization. These control parameters maintain a  
desired diversity for the evolution to progress. In the proposed method a diversity 
control technique based on  and  adaptation is performed through a feedback loop 
using fuzzy systems (FS). In the proposed work, two FS’s are used one each for the 
adaptation of  and . A local search is also included to aid exploitation process. 
The block diagram of control parameter adaptation is given in Fig. 1. The two fuzzy 
systems modify the mean of the corresponding normal distribution (   ) to 
bring about the required changes in the control parameters. The diversity of the popu-
lation is given as feedback for setting the values of the control parameters for the next 
generation. At the end of each generation, the diversity of the current population is 
calculated and the difference from the reference diversity ( ) is calculated. This 
difference is given as the feedback control to the FS.  The FS outputs the modified 
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Fig. 1. Control parameter adaptation of SaDE using FS  and  . This is then used to generate the crossover rate and scaling factor for 
the next generation of evolutionary operators. Using this methodology the Diversity 
Controlled Parameter adapted Differential Evolution with Local search (DCPaDE-LS) 
algorithm is proposed. 

2.1 Diversity Measure 

In the proposed methodology, diversity of the population is calculated using the ‘dis-
tance-to-average-point’ [7] measure defined as,  

 ( ) =  | |∗ ∗  ∑ ∑         (1) 

where| | is the length of the diagonal in the search space   , given by ∑( )  with each search variable  in a finite range <  <  , 
 is the population of size  and  is the dimension of the problem,  is the  

value of the  individual and  is the  value of the average point . The 
‘distance-to-average-point’ measure considers the population size, dimensionality of 
the problem and the search range of each variable. Hence, this method is more 
suitable for a wide range of problems with varying characteristics. 

2.2 Fuzzy System (FS) 

Fuzzy system is the process of formulating a mapping, from a given input to an output 
using fuzzy logic. It is a method that interprets the values in the input vector and 
based on some set of rules, assigns values to the output vector. The mapping then 
provides a basis from which decisions can be made. The input and output variables 
are defined as fuzzy sets. A fuzzy set is a set without a crisp, clearly defined boun-
dary. It can contain elements with only a partial degree of membership. The degree an 
object belongs to a fuzzy set is denoted by a membership value between 0 and 1. A 
membership function associated with a given fuzzy set maps an input value to its 
appropriate membership value. It is a curve that defines how each point in the input 
space is mapped to a membership value. Fuzzy logic has been successfully applied in 
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diverse fields such as automatic control, data classification, decision analysis, expert 
systems, and computer vision. Mamdani's fuzzy system [13] is the most commonly 
used fuzzy methodology. Fuzzy logic process comprises of five parts: fuzzification of 
the input variables, application of the fuzzy operator (AND or OR) in the antecedent, 
implication from the antecedent to the consequent, aggregation of the consequents 
across the rules, and defuzzification. 

Fuzzy System for Crossover Rate.  
The  adaptation in the proposed methodology involves two components as given 
in Equation (2).  

 = , + ,  (2) 

where ,  is obtained from SaDE which considers the median of all the success-
ful  values in the past  generations and ,  component is based on diversity. 
In order to establish a stable diversity control, the FS is employed as it has been suc-
cessfully applied in diverse decision making and control applications. The FS will 
adapt the  value automatically without any user intervention depending upon the 
characteristics of the problem. In the proposed work, a single input, single output 
Mamdani’s fuzzy logic system is used. The input to the FS is the diversity error ∆  
defined as the difference between a reference diversity ( ) and diversity  given 
in Equation (3). 

 ∆ =      (3) 

The output of the FS is the change in mean of the normal distribution for crossover 
rate (∆ ) for  strategy. The  for the  generation is as given in  
Equation (4). 

 =  +  ∆  (4) 

Both the input and output of the FS are defined as fuzzy variables. They are divided 
into five sub functions namely, Large Negative (LN), Negative (N), Zero (Z), Positive 
(P) and Large Positive (LP) each defined by triangular membership functions. The 
centroid method is used for defuzzification. The rule set for the FS is given in Table 
1. The rule set is framed on the basis that when ∆ is positive (P), it implies that the 
reference diversity ( ) is greater than diversity , so in order to increase the 
diversity, the  value has to be increased. Hence, for every positive value of ∆  the output of FS ∆  should also be positive. Similarly, when the ∆  
value is Large Negative (LN), it implies that the diversity  is very large. Thus, to 
decrease the diversity, the  value should also be decreased, that is the ∆  value should be Large Negative (LN). As there is overlapping among the 
membership functions defined for ∆ ,  at any point of time more than one rule be-
ing fired and correspondingly defuzzification gives an overall better ∆  value. 
Thus, there is a change in  value which maintains a better diversity. This is 
achieved for all the three mutation strategies with crossover. 
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Table 1. Rule set for crossover rate Fuzzy System ∆  LN N Z P LP ∆  LN N Z P LP 

Fuzzy System for Scaling Factor.  
The next important parameter namely, the scaling factor  controls the amplification 
of the difference vectors. As the value of the difference vector decreases, the perturba-
tion also decreases i.e. as the population gets closer to the optimum the step length is 
automatically decreased. During the early stages of evolution when a more diversified 
search is required a larger value of  is optimal, but during the later stages as the 
search gets more intensified a smaller value of  is beneficial. The mutation operator 
is applied to each target vector and it depends on the location of the target vector in 
the search space. The mutation operator depends on the positioning of the individuals 
and directly affects diversity. Hence, both these parameters are given as input to the 
FS. A two input, single output Mamdani’s FS is used for the adaptation of .  
The inputs to the FS are ∆  given in Equation (3) and the absolute difference in  
the objective values between the best individual and the  individual given in  
Equation (5). 

                                          ∆ =  ( )  ( )  (5) 

where (. ) is the objective function. The output of the FS is the change in the mean 
of the normal distribution ∆  of   for all the individuals in the population. The 
mean of the normal distribution of  for the  individual is given in Equation (6). 

 =  +  ∆   (6) 

In this way, for the individuals away from the best, larger values of  is generated, 
which aid searching different regions of the search space. At the same time, for indi-
viduals closer to the current best, smaller values of  is generated, which aid in fine 
tuning the search in order to identify the global optimum. The ∆  input is formed 
similar to the FS for  adaptation. The ∆  input is divided into Z, P and LP within 
[0 1], as it is an absolute value. The ∆  output of the FS is defined by LN, N, Z, P 
and LP. All the linguistic variables are represented by triangular membership func-
tions. The centroid method is used for defuzzification.  

The rule set for the FS is given in Table 2. The rule set is framed on the basis that 
when the ∆  input is LP and ∆   is also LP, it implies that the reference diversity ( ) is greater than diversity   and the individual is far away from the best indi-
vidual of the current population. Hence, in order to explore wider regions of the 
search space and to enhance the diversity the output of the FS i.e. the mean of the 
normal distribution for scaling factor  should also be increased with an output 
value of LP. Similarly, when the ∆  input is N and ∆   is also Z, it implies that 
the reference diversity is lesser than the diversity of the population and the individual 
is in the close proximity of the best individual in the current population. Hence, in 
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order to search finer regions of the search space and improve exploitation the diversi-
ty must be decreased. Thus the mean of the normal distribution for scaling factor  
should be marginally decreased with an output value of N. The complete rule set with 
15 rules is framed on this ideology. 

Table 2. Rule set for scaling factor FS  ∆  ∆ LN N Z P LP 

LP LN N Z P LP 
P LP N Z N LN 
Z LN N LN N Z 

2.3 Local Search 

Parameter adaptation based on the diversity tends to maintain a desired diversity lev-
el. This diversity control will distract the population from convergence as the evolu-
tion progresses. During later evolutionary stages, diversity must be compromised to 
aid in convergence for the exploitation of useful information in the population. Thus, 
for exploitation to occur the diversity must be decreased. Local search is a well 
known method for exploitation [14]. Local search tries to identify a better solution in 
the proximity of a chosen individual. The search takes place locally within the 
bounded proximity of the chosen individual rather than in a large diverse region. The 
locally improved individual will be placed in the population to compete with others in 
the next generation. This reduces the number of evaluations required to identify the 
global optimum. Otherwise, the population will be diverse for more number of gener-
ations and convergence could take a long time or the population could be too diverse 
so as not to converge at all. In order to maintain a balance between explore and ex-
ploit cycle, a local search method becomes a necessity. 

In the proposed methodology, local search is implemented once every  genera-
tion with a predefined  number of function evaluations at the best individual. 
Local search at the best individual has a higher probability of escaping from a local 
optimum, hence this method is adapted. When an individual better than the current 
best solution is identified, a random individual is replaced with the locally better solu-
tion. This local search with elitism will guide the population to the global optimum, 
thereby improving exploitation. Local search is done only for every  generation 
to avoid computational overhead. The local search evaluations must be controlled to 
avoid over exploitation, which could also lead to premature convergence. Thus a con-
trolled local search methodology with predefined number of local evaluations is  
implemented. 

3 Experiment Setup and Result Analysis 

In order to demonstrate the effects of parameter adaptation based on diversity control 
and local search the following algorithm are considered for comparison. 
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1. SaDE [6] 
2. SaDE with Local Search (SaDE-LS) 
3. Diversity Controlled SaDE with Local Search (DCSaDE-LS) [11] 
4. Diversity Controlled Parameter adapted DE with Local Search 

(DCPaDE-LS) 

In order to demonstrate the effects of the proposed methodology, the DCPaDE-LS 
algorithm is compared with SaDE, SaDE with local search (SaDE-LS) and Diversity 
controlled SaDE with local search (DCSaDE-LS) [11]. The algorithms are imple-
mented using MATLAB 7.9 using Intel Core 2 CPU, operating at 1.86 GHz with 2GB 
RAM. The test suite of 26 unconstrained functions as reported in [6] is used for test-
ing the performance. In order to have a fair comparison of results, same number of 
function evaluations and population size as in [6] are employed. The  and  are 
generated in the range (0, 1) and (0.4, 0.8) respectively. The ,  and  
values are set using trial and error method to avoid additional overhead. An extensive 
study was performed in order to determine the effects of the various control parame-
ters. The  and  does not have distinct impact on the convergence characte-
ristics of the problems, whereas, they affect the speed of convergence (NFE). Thus, a 
nominal value is set for the parameters. and  are set at 0.15 and 30 genera-
tions respectively.  is set at 300 for 10D and 30D.  is set at (10 ∗ ) 
for  f15 – f26 as the function dimension varies.  

To verify the consistency of the algorithms, they are compared with respect to suc-
cess rate (SR) and average number of function evaluations (NFE) in 30 trials. Where, 
SR is defined as the ratio between successful trials to the total number of trials.  
A successful trial is one which results in a function value no worse than the  
predefined optimal value, checked to the order of 1e-5 for all the test functions                           ( ( ∗) +  1 5,  ∗     ) with a number of function 
evaluations within the predefined maximum value. The function evaluations used 
during the local search are also included in the overall NFE. 

3.1 10D Results 

The SR/NFE and % change in NFE for 10D is given in Table 3. In those functions 
with 100% SR the NFE is reported. A negative % change indicates increase in NFE as 
compared to SaDE. The table shows that there is no much difference in SR between 
the algorithms in all the functions except f3, f8 and f14. SaDE-LS algorithm includes 
only the local search methodology without incorporating the diversity controlled pa-
rameter adaptation. The SaDE-LS is able to produce 96.6% and 13.3% SR for f3 and f8 
respectively which is marginally lower than SaDE performance. However, DCPaDE-
LS is able to produce only 0% SR for f8. In all other functions, DCPaDE-LS does not 
report any deterioration in SR. All the algorithms report an improved SR for f14 com-
pared to SaDE. The DCPaDE-LS achieves lower NFE than SaDE for all the functions 
except f7. It reports least NFE in 6 functions, whereas SaDE-LS algorithm reports  
the least NFE in 4 functions. The NFE of DCPaDE-LS is better than DCSaDE-LS  
in 9 functions. The DCPaDE-LS gives a minimum of 20% and a maximum of 88% 
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decrease in NFE in those functions with better performance. This clearly shows that 
the introduction of adaptation of  and  parameters along with diversity control is 
able to distinctly reduce the NFEs. But SaDE-LS outperform DCPaDE-LS in terms of 
NFE on five functions f5, f6, f7, f9 and f11. This proves that having a local search aids in 
the convergence of the population, but it can also lead to premature convergence if 
not properly governed by a diversity control measure. 

Table 3. Comparison of SR/NFE for 10D functions 

10
# 

SaDE SaDE-LS DCSaDE-LS DCPaDE-LS 
NFE NFE % change NFE % change NFE % change 

f1 8375 1586 81.06 1593 80.78 1579 81.15 
f2 14867 2001 86.54 1702 88.55 1691 88.63 
f3 42446 96.6% NA 11862 72.05 11361 73.23 
f4 15754 18280 -16.03 28346 -79.93 12295 21.96 
f5 12123 7198 40.62 9678 20.17 8196 32.39 
f6 12244 7134 41.73 11371 7.13 8286 32.33 
f7 35393 40499 -14.43 48328 -36.55 65952 -86.34 
f8 20% 13.3% NA 20% NA 0% NA 
f9 23799 17383 26.96 18712 21.37 18842 20.83 
f10 0% 0% NA 0% NA 0% NA 
f11 26945 19637 27.12 23002 14.63 20279 24.74 
f12 16663 9287 44.27 8974 46.14 6852 58.88 
f13 9740 2229 77.11 5721 41.26 1897 80.52 
f14 80% 86.6% NA 93.3% NA 93.3% NA 
NA - Not Applicable (Problems with less than 100% SR) 

3.2 30D Results 

The SR and NFE for 30D f1 – f14, for the algorithms in comparison is given in Table 4. 
DCPaDE-LS shows improvement in terms of SR in f3, f4, f7 and f8 functions compared 
to SaDE. The SR of SaDE-LS has reduced for f5, f6, f7, f8, f9, f11 and f12. This is due to 
rapid loss of diversity which results in premature convergence. This proves that 
though local search is able to reduce the NFE is few 10D functions, for higher dimen-
sional functions the SaDE-LS fails due to loss of diversity. The SR of DCPaDE-LS is 
better than DCSaDE-LS in f4, f7 and f8 functions. The diversity characteristics over 
generations of the algorithms for 30D f7 is given in Fig. 2. It can be seen that for about 
300 generations the diversity of DCPaDE-LS is better than other algorithms. This 
improved diversity aids the algorithm to escape local optimum. The diversity con-
trolled parameter adaptation provides the necessary variation in  and  values. 
Due to the improved diversity, the convergence of the DCPaDE-LS takes more num-
ber of generations for few complex functions. This can be seen in the convergence 
characteristics for 30D f7 in Fig. 3(a). It is given in semilog scale at the Y- axis for 
more clarity. It can be observed that the SaDE-LS and SaDE converge around 820 
and 880 generations, whereas the DCPaDE-LS convergences around 1090 generation. 
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Though it requires more number of generations, the DCPaDE-LS identifies the op-
timal solution in all the 30 trials. In few other functions DCPaDE-LS shows savings 
in NFE. 

Table 4. Comparison of SR/NFE for 30D functions 

30 SaDE SaDE-LS DCSaDE-LS DCPaDE-LS 
# NFE NFE % change NFE % change NFE % change 
f1 20184 1784 91.16 1803 91.07 1768 91.24 
f2 118743 16175 86.38 99155 16.50 16621 86.0 
f3 90% 90% NA 101882 NA 76395 NA 
f4 0% 0% NA 3.3% NA 30% NA 
f5 26953 93.3% NA 21887 18.79 17757 34.12 
f6 33014 86.6% NA 24650 25.33 17617 46.64 
f7 80% 90% NA 93.3% NA 30479 NA 
f8 40% 26.6% NA 53.3% NA 43937 NA 
f9 58723 60% NA 75007 -27.73 76078 -29.55 
f10 0% 0% NA 0% NA 0% NA 
f11 77920 66.6% NA 94886 -21.77 91454 -17.37 
f12 44283 93.3% NA 34022 23.17 31536 28.78 
f13 19031 6574 66.46 14501 23.80 5567 70.75 
f14 0% 0% NA 0% NA 0% NA 

 NA – Not Applicable (Functions with less than 100% SR) 
 
 

 

Fig. 2. Diversity characteristics of all the algorithms for 30D f7 
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(a) 

 
(b) 

Fig. 3. Convergence characteristic of all the algorithms for 30D (a) f7 and (b) f6 

The convergence characteristics of the algorithms for f6 are given in Fig. 3(b). It is 
clear from the figure that DCPaDE-LS converges much faster around 250 generation. 
Except for f9 and f11 DCPaDE-LS requires only less NFE compared to that of SaDE. 
The SaDE-LS reports the least NFE in f2. Compared to DCSaDE-LS, the DCPaDE-
LS reports lower NFE in all the functions except f9. The percentage decrease in NFE 
achieved by DCPaDE-LS is in the range of 28% to 91% for those functions with bet-
ter performance. Results clearly show that with the addition of parameter adaptation 
method based on diversity control and a local search method improves convergence 
and efficiency for multimodal problems. 

The algorithms are also tested on functions with variable dimensions f15 – f26. The 
SR/NFE and % change in NFE with respect to SaDE is given in Table 5.  

Table 5. Comparison of NFE for functions f15 – f26 

# 
SaDE SaDE-LS DCSaDE-LS DCPaDE-LS 
NFE NFE % change NFE % change NFE % change 

f15  25137 22617 10.02 24320 3.25 21061 16.21 
f16  88934 119572 -34.45 206280 -131.94 74860 15.82 
f17  18742 19464 -3.85 20498 -9.37 30017 -60.16 
f18 19390 15144 21.90 15639 19.35 20417 -5.30 
f19 6426 6226 3.11 7346 -14.32 3859 39.95 
f20 2076 1522 26.69 1523 26.64 1494 28.03 
f21 2614 1565 40.13 1567 40.05 1515 42.04 
f22 802 850 -5.98 786 1.99 687 14.34 
f23 3080 2431 21.07 3028 1.69 2280 25.97 
f24 4947 3434 30.58 3926 20.64 2857 42.24 
f25 4173 3121 25.21 3834 8.12 2601 37.67 
f26 4267 3008 29.51 2657 37.73 2439 42.84 

 
Except for f17 and f18, DCPaDE-LS is able to provide 100% SR with less NFE. The 

SaDE-LS reports the least NFE in f18. The NFE reported by DCPaDE-LS is better 
than DCSaDE-LS in all the functions except f17 and f18. The NFE decrease is in the 
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range of 14% to 42% for DCPaDE-LS. The proposed DCPaDE-LS algorithm har-
monically coordinates a balance between global and local search. This ensures a di-
versity dynamic which guarantees fast and efficient improvements in the search until 
detection of a solution with high performance. 

4 Conclusions 

The proposed algorithm presents an improved diversity control based parameter adap-
tation method using fuzzy logic. This methodology has been applied to SaDE algo-
rithm to adapt  and . Diversity control is realized with the help of two separate 
FS, one each for  and . It also includes a local search at regular intervals to aid in 
convergence and named as Diversity Controlled Parameter adaptation in DE with 
Local Search (DCPaDE-LS). The simulation results show that there is no much dif-
ference in performance in terms of SR for 10D functions among the algorithms, but 
the DCPaDE-LS algorithm gives savings in terms of NFE for most of the functions.    
DCPaDE-LS algorithm shows improvement in terms of SR as well as NFE for 30D 
functions. In f15-f26, DCPaDE-LS gives improvement in terms of NFE is almost all the 
functions. This proves the efficiency of the algorithm on higher dimensional multi-
modal functions due to diversity control and local search in tandem. The efficiency of 
the proposed algorithm is attributed to the balanced explore and exploit cycles. Since 
the parameters are adapted using FS, rule based manual tuning of parameters is not 
required. This further enhances the applicability of the algorithm. The diversity based 
parameter adaptation using FS with local search methodology can be easily incorpo-
rated to any evolutionary algorithm to improve its performance.  
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Abstract. Data clustering is one of the fundamental tools in data min-
ing and requires the grouping of a dataset into a specified number of
nonempty and disjoint subsets. Beside the usual partitional and hierar-
chical methods, evolutionary algorithms are employed for clustering as
well. They are able to find good quality partitions of the dataset and
successfully solve some of the shortcomings that the k-means, being one
of the most popular partitional algorithms, exhibits. This paper pro-
poses a differential evolution algorithm that includes macromutations as
an additional exploration mechanism. The application probability and
the intensity of the macromutations are dynamically adjusted during
runtime. The proposed algorithm was compared to four variants of dif-
ferential evolution and one particle swarm optimization algorithm. The
experimental analysis conducted on a number of real datasets showed
that the proposed algorithm is stable and manages to find high quality
solutions.

Keywords: Data clustering, Davies-Bouldin index, differential evolu-
tion, macromutations, representative points.

1 Introduction

Cluster analysis or clustering [1], [2] represents the unsupervised classification
of data and it is one of the fundamental methods in data mining. Clustering
requires the division of a given dataset into a specified number of nonempty and
disjoint subsets such that data/patterns belonging to the same subset are similar
according to a measure and that data belonging to different subsets is dissimilar
according to the same measure. The application area of clustering includes the
analysis of gene expression data, image segmentation, vector quantization etc.

According to [2], clustering methods can be grouped into two classes; hierar-
chical and partitional. This paper focuses on (hard) partitional clustering, while
an overview of hierarchical methods can be found e.g. in [3]. Partitional methods
iteratively try to improve an initial partition by switching data between clusters.

One of the most significant and widely used parititional clustering methods
is the k-means [4] algorithm. Although, it has some drawbacks, like sensitivity
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to initial conditions and it easily gets stuck in local optima. To solve the afore-
mentioned shortcomings evolutionary algorithms (EAs) or swarm intelligence
algorithms may be used as they are able to efficiently and effectively explore the
search space. A comprehensive overview of different EAs for data clustering can
be found in [5].

Laszlo and Mukherjee [6] presented a genetic algorithm (GA) for data cluster-
ing the utilizes a region-based crossover operator. They use the GA to find good
initial centroids for the k-means algorithm. The chromosomes in their GA encode
the centroids of clusters, and during crossover a pair of chromosomes exchange a
number of centroids that occupy the same region of space. According to the con-
ducted experimental analysis, the region-based crossover is superior to a random
exchange of centroids. A differential evolution (DE) algorithm incorporating the
k-means algorithm was proposed by Kwedlo [7]. He used the k-means algorithm
for generating the initial population and local search as well. The vectors of the
population encoded the centroids of the clusters. Also, Kwedlo applies a reorder-
ing procedure to the vectors in an attempt to remove the redundancy inherent to
the centroid encoding. Hatamlou et al. [8] presented a method that combines the
gravitational search algorithm and k-means. Generation of the initial population
was enhanced with k-means; one individual was created with k-means, additional
three from the dataset itself, and the rest randomly. According to Hatamlou et
al., this should decrease the number of necessary iterations and enable the ex-
ploration of the promising parts of the search space. Chuang et al. [9] presented
a data clustering algorithm based on a particle swarm optimization (PSO) al-
gorithm that uses the Gauss chaotic map. The random factors that influence
the cognitive and social component of the velocity update were substituted with
sequences generated by the Gauss chaotic map. According to Chuang et al., this
should lead to a balance between exploration and exploitation in the search.
Zou et al. [10] proposed a cooperative artificial bee colony (CABC) algorithm
for data clustering. In the CABC algorithm all the bees (employed as well as on-
looker) participate in generating a so-called super best solution. Every solution
component (a centroid) of the super best solution is considered to be replaced by
the corresponding solution component of each bee. The replacement takes place
only if it yields a better solution. This way good components of the solutions
found by the bees are preserved. The aforementioned approaches all adopted
the centroid encoding for candidate solutions. A slightly different encoding was
utilized by Paterlini and Krink [11]. For the representation of candidate solu-
tions they utilized representative points that, generally, are not centroids, and a
partition of the dataset was obtained, as in the case of centroids, by assigning
data to the cluster associated with the nearest representative point. Paterlini
and Krink conducted a comparison between DE, PSO, GA and random search
for data clustering. The experimental analysis showed the superiority of the DE
compared to the other algorithms employed by them.

This paper proposes a DE algorithm for data clustering. The algorithm in-
corporates macromutations as an additional genetic operator. Its purpose is to
enable a more extensive exploration of the search space, especially when further
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exploration with the common mutation and crossover is difficult because of the
high similarity of the vectors in the population. The application probability and
intensity of the macromutations are dynamically adjusted during runtime.

The remainder of the paper is organized as follows. Section 2 describes the
problem of data clustering. Section 3 briefly describes the DE algorithm and its
application to data clustering. The proposed algorithm is described in Sect. 4.
The conducted experimental analysis is shown in Sect. 5.

2 Data Clustering

Clustering requires the division of a given dataset A = {a1, . . . ,an} ⊂ R
p where

n ≥ 2 into 1 ≤ k ≤ n disjoint subsets (clusters) c1, . . . , ck such that (1) holds.

k⋃
i=1

ci = A, ci ∩ cj = ∅, ∀i �= j, |ci| ≥ 1, i = 1, . . . , k (1)

The division of a dataset A into k subsets, c1, . . . , ck, such that (1) holds can
be denoted C = {c1, . . . , ck} and represents a partition of A. The number of
clusters k may be application dependent and known a priori, but some times
this is not the case and k must be determined in some way. In this paper, the
number of clusters is assumed to be known a priori.

Since the number of all possible partitions of A is extremely large (Stirling’s
number of second kind) a criterion must be defined to evaluate the different
partitions. In the literature a large number of cluster validity criteria (indices)
exist for evaluating possible partitions of a set. A comprehensive overview and
comparison of different criteria may be found e.g. in [12]. One of the best known
(relative) criteria is the Davies-Bouldin index [13] DB as given by Eq. (2).

DB =
1

k

k∑
i=1

Di . (2)

In (2) Di = maxj �=i Dij where Dij = (si + sj)/hij , and si i.e. sj and hij are
calculated as per (3) and (4), respectively.

si =
1

|ci|
∑
aj∈ci

d(aj , zi) . (3)

hij = d(zi, zj) . (4)

Equation (3) represents the dispersion of cluster ci, and Eq. (4) the distance
between cluster centroids zi and zj , where zl = 1/|cl|

∑
aj∈cl

aj for l = 1, . . . , k.

In both (3) and (4) d(·, ·) represents a metric, usually the Euclidean distance
which is also used in this paper.

Smaller values of the Davies-Bouldin index indicate better partitions com-
posed of compact and separated clusters.
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3 Differential Evolution

Differential evolution [14] is a simple, yet effective optimization and search
method for global optimization problems. It maintains a population of vectors
that represent candidate solutions to the problem at hand. Like other common
EAs is utilizes crossover, mutation and selection to drive the search process.

The population of DE is composed of real-valued vectors vi = (v1i , . . . , v
D
i ) ∈

R
D for i = 1, . . . , NP . The initial population is usually generated randomly. A

new population of so-called trial vectors is generated in each generation through
mutation and crossover. Mutation creates for every vector vi (target vector) as
per (5) a corresponding mutant/donor which is used for crossover as per (6).

ui = vr1 + F · (vr2 − vr3) . (5)

tji =

{
uj
i , if U [0, 1) ≤ CR or j = rj

vj
i , else

, for j = 1, . . . , D . (6)

In (5) ui is the mutant/donor, vr1, vr2, and vr3 are randomly chosen vectors
from the population satisfying the condition i �= r1 �= r2 �= r3; F ∈ [0,∞) is the
scale factor and it controls the mutation step size. In (6) ti is the trial vector
obtained by crossing over vectors vi and ui, while U [0, 1) is an uniform random
number in the range [0, 1), CR ∈ [0, 1) is the crossover rate and rj is a randomly
chosen number from the set {1, . . . , D}.

Once the trial vector population is created selection takes place and a given
trial vector replaces a corresponding target vector if it is equal or better than it.

The described algorithm represents the classical/canonical DE and is usu-
ally denoted DE/rand/1/bin [14]. Beside the classical DE, a popular DE strat-
egy/variant is the DE/best/1/bin [15] where always the best vector in the current
population is selected as the so-called base vector (vr1 in Eq. (5)). A compre-
hensive overview of different DE strategies as well as their application areas can
be found in [15].

3.1 Differential Evolution for Data Clustering

As has already been mentioned, DE has been successfully applied for data clus-
tering [7], [11]. The first step in designing an EA is the decision on a representa-
tion of candidate solutions. For data clustering, a common choice is the centroid
encoding [6,7,8,9,10] where each individual represents a required number of clus-
ter centroids, and a partition of a dataset is obtained by assigning data to the
cluster associated with the nearest centroid. A different representation was used
in [11] which is also adopted in this paper. Namely, instead of centroids, rep-
resentative points are encoded, and a partition is obtained in the same way as
for the centroid encoding. Generally the representative points may be any point
in R

p, but are usually constrained with the dataset itself – [xmin,xmax], where
xmin and xmax are vectors composed of the minimal and maximal values for
each feature in the dataset.
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For the aforementioned representation (also true for the centroid encoding)
the DE vectors are real-valued and of dimensionality D = k × p, where k is the
number of clusters, while p represents the dimensionality (number of features) of
the data (Fig. 1). Thus, there is no need to modify the mutation and crossover
operators. Also, the problem of data clustering reduces to a global optimization
problem. For evaluating the solutions the Davies-Bouldin index is used in this
paper as given by Eq. (2), while according to (1) infeasible solution are those
where one or more clusters are empty. Infeasible solution can be handled by
a penalty function. Based on the aforementioned, in this paper, solutions are
evaluated as per Eq. (7).

r11 r12 r13 r21 r22 r23 r31 r32 r33

r1 r2 r3

Fig. 1. Representative points encoding of candidate solution – 3 clusters and 3 features

f(C) =
{
DB , if (1) is satisfied
g(C)2 · 105 , else

. (7)

According to (7), solutions i.e. the partitions they represent are evaluated with
the Davies-Bouldin index if there are no empty clusters, else they are penalized;
where g(C) is the number of empty clusters. This way infeasible solutions are
well separated from feasible ones.

4 Proposed Algorithm

When the population vectors become very similar or equal the exploration of the
search space with mutation and crossover becomes very slow/difficult or impossi-
ble. This only leads to a waste of computational time since the discovery of better
solutions is very unlikely. Thus, this paper paper proposes the incorporation of
macromutations [16] (also referred to as the headless chicken operator) into the
classical DE as an additional exploration mechanism. Macromutation represents
the crossover of a given population vector vi with a randomly generated one
(Eq. (8)). The crossover is controlled with the crossover rate pc. The proposed
algorithm, hereinafter referred to as DEMM, is based on DE/rand/1/bin and
incorporates macromutations. A high-level outline of DEMM is given in Alg. 1.

mj
i =

{U [xj mod p
min ,xj mod p

max ] , if U [0, 1) < pc or j = rj
vj
i , else

, j = 1, . . . , D . (8)

In (8) mi is the D-dimensional vector obtained through macromutation. The
crossover rate pc is dynamically adjusted with the number of executed iterations
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t as per Eq. (9). Also, in (8) p is the data dimensionality, while rj is, as in (6), a
randomly chosen number from the set {1, . . . , D}. The purpose of rj is to ensure
that at least one random parameter is introduced during the macromutation.

pc(t+ 1) = pc(t)/
tmax

√
pmax
c /pmin

c . (9)

The macromutations in DEMM are applied instead of the usual mutation and
crossover. More precisely, the macromutations are applied with a set probability
pMM which is also dynamically adjusted with the number of executed iterations
t as per Eq. (10).

pMM (t+ 1) = pMM (t) + (pmax
MM − pmin

MM )/tmax . (10)

In both (9) and (10) tmax represents the set (maximum) number of iterations
to be executed. According to (9), the crossover rate (intensity) of the macro-
mutations is exponentially decreased with the values of pmax

c and pmin
c being

0.5, and 0.005, respectively. The higher crossover rate in the beginning should
enable a more extensive exploration of the search space. The smaller crossover
rate later on should enable a better exploitation of promising parts. According
to (10), the application probability of the macromutations is linearly increased
from with the values of pmin

MM and pmax
MM being 0.05 and 0.9, respectively. In the

early stage of the search the application probability is relatively small since the
population is expected to be diverse. One can expect that the population diver-
sity decreases with the number of executed iterations. This is why the application
probability of the macromutations is increased, having an ever greater part in
the exploration of the search space.

Algorithm 1. DEMM in pseudo-code

1: Initialization and parameter setting
2: for t := 1 → tmax do
3: for i := 1 → NP do %Create trial vector population
4: if U [0, 1) < pMM then
5: create macromutated vector mi (Eq. (8))
6: wi := mi

7: else
8: create mutant/donor vector ui (Eq. (5))
9: cross over vi and ui to create trial vector ti (Eq. (6))
10: wi := ti
11: end if
12: end for
13: for i := 1 → NP do %Select new generation
14: if f(wi) ≤ f(vi) then
15: vi := wi

16: end if
17: end for
18: update the values of pc (Eq. (9)) and pMM (Eq. (10))
19: end for
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Table 1. Datasets, used

Dataset #instances #features #classes

Glass identification 214 9 6
Iris plants 150 4 3
Yeast 1484 8 10
Vowel 871 3 6
Ecoli 336 7 8
Heart disease 303 13 5
Image segmentation 2310 19 7
Statlog (Vehicle Silhouettes) 846 18 4
Cardiotocography 2126 21 10

Table 2. Parameter values, used

Algorithm Parameter values

DEMM CR = 0.9, F = 0.5
DE/rand/1/bin CR = 0.95, F = 0.5
DE/best/1/bin CR = 0.95, F = 0.9
DE-RW CR = 0.9, F = 0.5
IDE CR = 1 → 0.5, F = 0.5 · (1 + U [0, 1))
PSO ρ1 = 2, ρ2 = 2, ω = 1 → 0.7

5 Experimental Analysis

In order to determine the advantages and shortcomings of the proposed algo-
rithm an experimental analysis was conducted on a number of real datasets. The
used datasets are described in Table 1. All used datasets were taken from the
UCI Machine Learning Repository [17] except the Vowel1 [18] dataset.

5.1 Experiment Setup

The proposed algorithm was compared to four variants of DE and one PSO
algorithm. More precisely, it was compared to DE/rand/1/bin, DE/best/1/bin,
DE with Random Walk [19] (DE-RW), a DE algorithm with crossover rate and
scale factor adjustment as proposed in [20] (IDE), and a PSO algorithm as used
in [11] (without the initialization of velocity vectors). The used parameters,
obtained in a preliminary analysis, for each algorithm are shown in Table 2.
The population size and number of iterations were 50 and 2000, respectively.
Meaning, the number of function evaluations was the same for each algorithm.
The initial population was generated in the same way for all algorithms; for
each representative point a distinct randomly chosen data from the dataset was
selected.

1 http://www.isical.ac.in/~sushmita/patterns/vowel.dat

http://www.isical.ac.in/~sushmita/patterns/vowel.dat
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5.2 Results and Discussion

The obtained experimental results are shown in Table 3. They are based on
30 independent runs for each algorithm on each dataset. The table shows the
average quality of the found solutions (favg), their standard deviation (σ), the
quality of the best (fbst) and worst (fwst) found solution, and their difference
(fwst − fbst) as well as the median of the solutions.

According to Table 3, DEMM achieved on average higher quality solutions
compared to the other used algorithms. Only on the Ecoli dataset did the DE-
RW perform insignificantly better than DEMM. On the Heart dataset both
DEMM and PSO found on average solutions of the same quality, but the stan-
dard deviation and the difference between the worst and best solution the PSO
algorithm found are significantly bigger. Considering the three highest dimen-
sional datasets used, it can be assumed that DEMM copes better with higher
dimensional data compared to the other employed algorithms. All used algo-
rithms performed almost equally well on the Iris dataset which is not surpris-
ing since it was the simplest dataset used (4 features and 3 classes). However,
DE/best/1/bin and PSO, unlike the other employed algorithms, did not find the
same solution in every run.

Based on the small standard deviation, difference of the worst and best so-
lution as well as the median of the found solutions, it can be concluded that
DEMM is very stable. Therefore, it is reasonable to expect that it will find
solutions close (in terms of quality) to the average with a high probability.

Figure 2 shows the quality of the best solution found by each of the algorithms
throughout the iterations for the five largest (in terms of the number of instances)
datasets used. The figure is based on the average of the same 30 independent
runs mentioned earlier. As may be noticed from Fig. 2, both DEMM and DE-RW
exhibit similar behavior regarding convergence, but DEMM manages to explore
the search space better in the later phases of the search.

By comparing DEMM and DE/rand/1/bin it is possible to comprehend the
impact of incorporating the macromutations into the classical DE. The improved
performance in terms of solution quality and stability can be mainly attributed
to the fact that the macromutations provide a means to explore the search
space even when the population converged. Since the macromutations introduce
new random vector parameters very large steps within the search space can
be made, something which is usually not possible with the common mutation
and crossover operators. This can be especially useful in the early phase of the
search as a large space can be explored. Also, the macromutations help prevent
the algorithm from getting stuck in a local optimum since new vector parameters
are introduced independent of the current state of the population.

From the obtained experimental results it can be noted that DE/best/1/bin
and PSO performed the worst on average both in terms of solution quality and
stability. DE/best/1/bin converges much faster compared to DE/rand/1/bin due
to how the base vector is selected, and this is likely the reason why it performed
relatively poor (Fig. 2 provides some evidence for that). However, DE/best/1/bin
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Table 3. Experimental results

Dataset Algorithm favg σ fbst fwst fwst − fbst median

Glass

DEMM 0.261 0.002 0.261 0.271 0.010 0.261
DE/rand/1/ 0.266 0.006 0.261 0.277 0.017 0.263
DE/best/1/ 0.283 0.035 0.261 0.420 0.160 0.275
DE-RW 0.262 0.003 0.261 0.275 0.015 0.263
IDE 0.269 0.006 0.261 0.275 0.015 0.271
PSO 0.278 0.036 0.261 0.403 0.143 0.263

Iris

DEMM 0.377 0.000 0.377 0.377 0.000 0.377
DE/rand/1/ 0.377 0.000 0.377 0.377 0.000 0.377
DE/best/1/ 0.381 0.006 0.377 0.392 0.015 0.377
DE-RW 0.377 0.000 0.377 0.377 0.000 0.377
IDE 0.377 0.000 0.377 0.377 0.000 0.377
PSO 0.378 0.004 0.377 0.392 0.015 0.377

Yeast

DEMM 0.313 0.008 0.301 0.337 0.036 0.313
DE/rand/1/ 0.354 0.037 0.313 0.446 0.133 0.344
DE/best/1/ 0.381 0.058 0.333 0.632 0.299 0.361
DE-RW 0.328 0.019 0.306 0.400 0.093 0.325
IDE 0.387 0.034 0.343 0.491 0.148 0.378
PSO 0.399 0.060 0.341 0.515 0.174 0.369

Vowel

DEMM 0.506 0.017 0.476 0.553 0.077 0.503
DE/rand/1/ 0.546 0.049 0.476 0.647 0.171 0.548
DE/best/1/ 0.546 0.050 0.487 0.668 0.181 0.525
DE-RW 0.510 0.020 0.479 0.569 0.090 0.506
IDE 0.507 0.029 0.476 0.587 0.111 0.500
PSO 0.581 0.049 0.492 0.671 0.179 0.577

Ecoli

DEMM 0.556 0.004 0.550 0.567 0.018 0.555
DE/rand/1/ 0.572 0.014 0.549 0.609 0.061 0.568
DE/best/1/ 0.587 0.016 0.561 0.623 0.062 0.585
DE-RW 0.555 0.006 0.549 0.570 0.021 0.553
IDE 0.577 0.020 0.554 0.658 0.104 0.575
PSO 0.584 0.022 0.553 0.645 0.092 0.575

Heart

DEMM 0.343 0.020 0.271 0.349 0.078 0.348
DE/rand/1/ 0.349 0.016 0.271 0.378 0.107 0.349
DE/best/1/ 0.346 0.043 0.271 0.511 0.240 0.348
DE-RW 0.349 0.003 0.347 0.363 0.016 0.349
IDE 0.346 0.015 0.271 0.363 0.092 0.349
PSO 0.343 0.077 0.271 0.514 0.243 0.348

Image seg.

DEMM 0.135 0.001 0.135 0.139 0.004 0.135
DE/rand/1/ 0.529 0.167 0.135 0.781 0.646 0.535
DE/best/1/ 0.561 0.138 0.281 0.769 0.489 0.561
DE-RW 0.137 0.004 0.135 0.143 0.008 0.135
IDE 0.239 0.144 0.135 0.509 0.374 0.143
PSO 0.602 0.091 0.360 0.723 0.363 0.624

Statlog

DEMM 0.282 0.003 0.281 0.292 0.011 0.281
DE/rand/1/ 0.339 0.010 0.321 0.345 0.023 0.345
DE/best/1/ 0.339 0.011 0.321 0.363 0.042 0.345
DE-RW 0.310 0.020 0.281 0.345 0.064 0.321
IDE 0.334 0.011 0.321 0.345 0.023 0.334
PSO 0.340 0.019 0.281 0.385 0.104 0.345

Cardio.

DEMM 0.502 0.042 0.446 0.576 0.131 0.490
DE/rand/1/ 0.549 0.048 0.372 0.666 0.293 0.552
DE/best/1/ 0.562 0.056 0.423 0.655 0.232 0.567
DE-RW 0.529 0.042 0.451 0.653 0.202 0.531
IDE 0.628 0.041 0.569 0.731 0.161 0.618
PSO 0.600 0.061 0.526 0.815 0.288 0.574

did perform slightly better than the PSO algorithm. The obtained experimental
results supports the conclusion reached in [11], on how DE is superior to PSO,
at least for data clustering.

Finally, although it is assumed in this paper that the number of clusters is
known a priori, the proposed algorithm (DEMM) could be extended in a similar
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Fig. 2. The quality of the best solution throughout the iterations for datasets (a)
Yeast, (b) Vowel, (c) Image segmentation, (d) Statlog (Vehicle Silhouettes), and (e)
Cardiotocography.

fashion as proposed in [20], in order to provide an automatic (during runtime)
determination of the number of clusters inherent to a given dataset. Also, the
algorithm could be extended in a way similar to the one presented in [21], as
to enable the automatic determination of the proper number of clusters and to
perform fuzzy clustering.
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6 Conclusion

This paper presented a DE algorithm for clustering. The algorithm incorporates
macromutations as an additional mechanism for the exploration of the search
space. They are applied with a set probability instead of the usual mutation
and crossover. The application probability and macromutation intensity are dy-
namically adjusted during runtime. This way a more extensive exploration of the
search space is enabled in the early phase, and a better exploitation of promising
parts in the later phases. The experimental analysis conducted on a number of
real datasets showed that the proposed algorithm manages to find high quality
solutions and that it is very stable. Future work could include the extension of
the algorithm to enable an automatic determination of the proper number of
clusters. Also, since in this paper the problem of data clustering was treated as
a global optimization problem, the proposed algorithm can be easily applied to
other such problems.
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Abstract. Depending on the complexity of the optimization problem, the per-
formance of differential evolution (DE) algorithm is quite sensitive to the 
choice of mutation and crossover strategies and their associated control parame-
ters. To obtain optimal performance, while avoiding time consuming parameter 
tuning, different adaptive and self-adaptive techniques that can update the strat-
egies and/or the parameters during the evolution have been proposed. Adaptive 
differential evolution with optional archive (JADE) is one of the popular adap-
tive algorithms that perform well on most of the optimization problems. Moti-
vated by the performance of the JADE algorithm, this paper presents an  
improved adaptive differential evolution algorithm with external archive 
(iJADE). Unlike the optional archive in JADE, iJADE algorithm employs an 
external archive which is updated every generation by tournament selection to 
incorporate the parents which cannot progress to the next generation. In addi-
tion, iJADE uses an ensemble of two crossover strategies, binomial and expo-
nential, instead of a single crossover strategy as in JADE. The performance of 
the algorithm is evaluated on a set of 16 bound-constrained problems designed 
for Conference on Evolutionary Computation (CEC) 2005 and is compared 
with JADE algorithm.  

Keywords: Differential Evolution, Global optimization, Parameter adaptation, 
External archive. 

1 Introduction 

Differential evolution (DE) [1], a population based stochastic search technique, has 
been successfully applied in diverse areas such as mechanical engineering [2], com-
munication [3], optics [4], pattern recognition [5], signal processing [6] and power 
systems [7]. However, it has been demonstrated, experimentally [8, 9] and theoretical-
ly [10], that the performance of DE is sensitive to the mutation strategy, crossover 
strategy and control parameters such as population size (NP), crossover rate (CR) and 
scale factor (F). The best combination of strategies and their associated control para-
meters can be different for different optimization problems. In addition, for the same 
optimization problem the best combination can vary depending on the available com-
putational resources and accuracy requirements [11]. Therefore, to successfully solve 
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a specific optimization problem, it is necessary to perform trial-and-error search for 
the most appropriate combination of strategies and their associated parameter values. 
However, the trial-and-error search process is time-consuming and incurs high com-
putational costs. Therefore, to overcome the time consuming trial-and-error procedure 
different adaptation schemes [12-16] have been proposed in the literature. In addition, 
motivated by the observation that the population of DE may evolve through different 
regions in the search space, within which different strategies with different parameter 
settings may be more effective than others, the authors in [11] proposed a DE algo-
rithm based on the idea of ensemble strategies and parameters.  

Among the different adaptive DE variants, adaptive differential evolution with op-
tional external archive (JADE) is good in terms of convergence speed and robustness 
on a variety of optimization problems [17]. In this paper, we propose an improved 
JADE algorithm (iJADE) which employs an ensemble of different crossover strate-
gies and a compulsory archive that is updated using tournament selection. 

The reminder of this paper is organized as follows: Section 2 presents a literature 
survey on different adaptive DE variants. Section 3 presents the proposed iJADE 
algorithm. Section 4 presents the experimental results and discussions while Section 5 
concludes the paper. 

2 Literature Review 

Differential Evolution (DE) is a real-coded global optimization algorithm over conti-
nuous spaces [18]. As complexity of the optimization problem increases the perfor-
mance of DE algorithm becomes more sensitive to the strategy and the associated 
parameter values [8]. Therefore, inappropriate choice of mutation and crossover strat-
egies and their associated parameters may lead to premature convergence, stagnation 
or wastage of computational resources [8, 15, 19-21]. In literature, various empirical 
guidelines were suggested for choosing the appropriate strategies and control parame-
ter settings depending on the characteristics of the optimization problems [8, 18, 22-
24]. However, depending on the complexity of the optimization problem, choosing an 
appropriate mutation strategy and control parameters is not straight forward due to the 
complex interaction of control parameters with the DE’s performance [12]. In addi-
tion, the manual setting and/or tuning of DE strategies and parameters based on the 
guidelines result in various conflicting conclusions, which lack sufficient justifica-
tions. Therefore, to avoid the tuning of parameters by trial-and-error procedure, vari-
ous adaptive techniques have been proposed [15, 19, 25-27].  

In [26], an adaptive DE algorithm that adapts the control parameters F and CR 
based on fuzzy logic controllers referred to as FADE was proposed.  In FADE, the 
inputs to the fuzzy controller are the relative function values of individuals in the 
successive generations. In [15], DE parameter adaptation based on controlling the 
population diversity and multi-population approach (ADE)  was proposed, which 
was later extended to form an adaptive Pareto DE algorithm for multi-objective opti-
mization [27]. In [25], the authors propose a DE algorithm for multi-objective optimi-
zation problems, where the crossover rate parameter is self-adapted or simultaneously 
evolved with other parameters by encoding into each individual. Unlike the crossover 
rate, the scale factor F was generated using a Gaussian distribution N(0,1) for each 
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individual. In [14], Qin et al. proposed a self-adaptive DE algorithm (SaDE) in which 
the mutation strategies and the respective control parameter are self-adapted based on 
their previous experiences of generating promising solutions. In SaDE, the scale fac-
tor (F) was randomly generated with a mean and standard deviation of 0.5 and 0.3, 
respectively. In [13], a self-adaptation scheme (SDE) in which CR is generated ran-
domly for each individual using a normal distribution N(0.5,0.15), while scale factor 
F is adapted analogous to the adaptation of crossover rate CR in [25] was introduced.  
In [12], the authors proposed a self-adaptation scheme (JDE) in which control para-
meters F and CR are encoded into the individuals and  are adjusted by introducing 
two new parameters τ1 and τ2. Initially, the parameters F and CR of each individual 
were assigned to 0.5 and 0.9 respectively and are adjusted (during every generation of 
the evolution by generating a uniform random number rand in the range of [0, 1]. If 
rand < τ1, the parameter F was reinitialized to a new random value in the range [0.1, 
1.0]. Otherwise, it was kept unchanged. Similarly, if, rand < τ2 then parameter CR 
was reinitialized in the range [0, 1]. Otherwise, it is kept unchanged.  

3 Improved Adaptive Differential Evolution with External 
Archive 

3.1 Adaptive DE Algorithm with Optional Archive (JADE) 

Adaptive differential evolution algorithm with optional archive (JADE) [17] imple-
ments a mutation strategy “DE/current-to-pbest” as a generalization to the classic 
“DE/current-to-best” strategy. Unlike the classic mutation strategy which uses the 
current best individual, “DE/current-to-pbest” utilizes the information present in p 
fitter individuals of the current population. The use of multiple solutions helps in 
balancing the greediness of the mutation and the diversity of the population. Parent 
individual solutions of the current generation which fail to make to the next genera-
tion of the evolution process during the selection process are stored in the optional 
archive. In other words, the set of recently explored inferior solutions stored in the 
archive provide the historical information regarding the progress direction of the 
search. In JADE, the control parameters (F and CR) are updated in an adaptive man-
ner in order to alleviate the trial and error search. Hence, it is not necessary that the 
users have a prior knowledge of the relationship between the parameter settings and 
the characteristics of optimization problems. In JADE, the optional archive and the 
parameter updating diversify the population to provide robustness and improve the 
convergence performance of the algorithm. 

In JADE, using the DE/current-to-pbest with archive, a mutation vector corres-
ponding to the individual Xi in generation G is generated as: 

                )XX()XX(XV ,2,1,,,, GrGriGi
p

GbestiGiGi FF −+−+=                  (1) 

where Xr1,G and Xp
best,G are selected from the current population (P), while 

Gr ,2X is 

randomly chosen from the union of current population (P) and the archive (A). As 
mentioned earlier, the recently explored inferior solutions in archive (A) in addition to 
the current population provide the additional information regarding the promising 
progress direction and are also capable of improving the diversity of the population.  
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In JADE, the archive is initially empty and after every generation the parent solu-
tions that fail in the selection process are added to the archive. When the size of the 
archive exceeds a certain threshold (NParch), some of the solutions are randomly re-
moved from the archive to maintain the archive size constant at NParch.  

At each generation, the scale factor Fi and crossover probability CRi of each  
individual Xi is independently generated as  

                                  )1.0,(randc FiiF μ=                             (2) 

                                 )1.0,(randn CRiiCR μ=                            (3) 

As shown in eqns. (2) and (3), the parameters F and CR corresponding to each individu-
al are sampled using Cauchy and Normal distributions, respectively. Then mean values 
μF and μCR are initialized to 0.5 and are updated at the end of each generation as 

                            )(mean .).1( FLFF Scc +−= μμ                      (4) 

                           )(mean .).1( CRACRCR Scc +−= μμ                     (5) 

where c is a positive constant between 0 and 1.  The terms meanA(.) and meanL(.) 
denote the arithmetic mean and Lehmer mean [17], respectively. SF and SCR denote 
the sets of mutation factors and crossover probabilities, respectively that produced 
successful trial vectors in the previous generation. 

3.2 Improved Adaptive DE Algorithm with External Archive (iJADE) 

JADE algorithm employs a mutation strategy that balances the greediness and robust-
ness. However, the performance of DE algorithm also depends on the crossover  
strategy used. According to the literature [28], binomial and exponential crossover 
strategies that are commonly employed have their own advantages and disadvantages 
in solving the optimization problems with different characteristics. Binomial crossov-
er is good at handling un-linked or un-rotated problems, while exponential crossover 
is good at handling linked or rotated problems. JADE algorithm uses the binomial 
crossover. According to the authors in [11], the combination or ensemble of the two 
crossover strategies of DE can be better than using a single strategy.  

In JADE, the optional archive provides information regarding the progressive search 
direction and improves the robustness by increasing the diversity of the population. In 
JADE, the authors use a simple strategy to update the existing archive. The inferior 
solutions of the current generation are added to the archive and if the archive exceeds a 
predefined size the members of the archive are removed randomly. Since the external 
archive provides information regarding the search direction, maintaining the fitter indi-
viduals in the archive would be better as they provide more useful information com-
pared to the less fit individuals. Therefore, removing the archive members in a random 
manner may not be a better way since some the useful information may be lost due to 
the removal of fitter solutions. Hence, a better updating of the archive that can preserve 
the fitter individuals can improve the performance of the algorithm. 

The proposed iJADE algorithm is a modification of the JADE algorithm, which 
employs an ensemble of the crossover strategies and updates the archive by using 
tournament selection. The two modifications are described below and the outline of 
iJADE is shown in Table 1.  
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Table 1. Improved Adaptive Differential Evolution with External Archive (iJADE) 

1. Randomly initialize a population { }GNPGiG ,, X,...,XP =  with { } NPixx D
GiGiGi ,...,1 , ,...,X ,

1
,, ==  

uniformly distributed in the range [Xmin, Xmax], where { } ,...,X min
1
minmin

Dxx=  and 

{ }. ,...,X max
1
maxmax

Dxx=  Set φμμμ ==== AFFbioCRbio   ,5.0 ,5.0 ,5.0 exp
. 

2. With equal probability, individuals of current population P are assigned to one of Pbio and Pexp de-

pending on the crossover strategy to be used to generate the trial vector 

3. WHILE stopping criterion is not satisfied 

    SFbio = ϕ; SFexp = ϕ; SCRbio = ϕ; 

    FOR  i = 1: NP 

       Generate CRi and Fi using eqns. (2) and (3)  

       Generate the mutant vector (Vi,G) using the equation (1) 

           IF 
bioi P∈X    

              Generate the trial vector (Ui,G) using Binomial Crossover [28] 

           ELSE IF expX Pi ∈  

              Generate the trial vector (Ui,G) using Exponential Crossover [28] 

            END IF 
                     

                           IF f(Ui,G)  ≤ f(Xi,G) 

                                   Xi,G+1 = Ui,G, AX Gi →,
 

                                      IF 
bioi P∈X  

                                            
bioibioi SFFSCRCR →→ ,  

                                     ELSE 

                                           
expSFFi →  

                                    END IF 
                           ELSE  
                                   Xi,G+1 = Xi,G 

                           END IF 
      END FOR 

     Update archive A so that  
archNP≤A  

     Update 
Fμ and 

CRμ using eqns. (4) and (5) 

            G = G + 1 

      END WHILE 

3.2.1   Ensemble of Crossover Strategies 
In iJADE, the members of the initial population (P) are divided in to two groups Pbio 
and Pexp. Members belonging to Pbio generate trial vectors from the mutant vector 
using binomial crossover while the members belonging to Pexp generate trial vectors 
using exponential crossover. The generation and updating of the scale factor F for the 
individuals of  Pbio and Pexp done separately using eqns. (2) and (4). The crossover 
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probability corresponding to the binomial crossover is done using the eqns. (3) and 
(5). However, in iJADE the crossover probability of the exponential crossover is fixed 
to be constant at 0.9 and is not adapted unlike the crossover probability of the binomi-
al crossover [11]. 

 
3.2.2   Updating the External Archive  
Unlike in JADE, after combining the inferior solutions of the current generation with 
solutions in the archive, if the archive size exceeds the predefined size (NParch) then 
the members of the archive participate in a tournament selection. The members of the 
archive with maximum number of wins are retained while the individuals with least 
number of the wins are discarded. The selection of the archive individuals based on 
the tournament selection helps in retaining the fitter individuals among the solutions 
that are unable to make into the population. The fitter individuals in the archive pro-
vide better information regarding the search direction compared to the randomly  
selected individuals. 

4 Experimental Results 

To evaluate the performance of the algorithms the 16 bound-constrained test problems 
of CEC 2005 are used. The maximum numbers of function evaluations used are 
 

Table 2. Results for 10D benchmark problems of CEC 2005 

Fcn 

10D 

JADE w/o Archive JADE w Archive iJADE 

Mean Std Mean Std Mean Std 

f1 0 0 0 0 0 0 

f2 0 0 0 0 0 0 

f3 1.11E-25 4.03E-26 4.18E-26 9.50E-27 1.24E-26 2.03E-26 

f4 0 0 0 0 0 0 

f5 2.42E-13 6.28E-13 5.46E-13 8.79E-13 4.24E-13 7.82E-13 

f6 8.13E-01 1.67E+00 1.92E+00 2.09E+00 0 0 

f7 7.51E-03 6.61E-03 1.10E-02 1.11E-02 7.63E-03 6.61E-03 

f8 2.03E+01 1.54E-01 2.03E+01 3.34E-02 2.00E+01 1.54E-01 

f9 0 0 0 0 0 0 

f10 4.39E+00 1.09E+00 4.39E+00 1.49E+00 3.39E+00 1.42E+00 

f11 4.41E+00 1.03E+00 4.87E+00 5.91E-01 1.40E+00 1.47E+00 

f12 8.89E+01 2.89E+02 9.26E+00 1.09E+01 6.37E+00 7.81E+00 

f13 2.48E-01 5.43E-02 2.77E-01 4.15E-02 2.51E-01 6.41E-02 

f14 2.74E+00 3.01E-01 2.79E+00 3.74E-01 2.44E+00 4.81E-01 

f15 8.51E+01 1.49E+02 1.37E+02 1.77E+02 5.88E+01 1.24E+02 

f16 9.77E+01 4.41E+00 9.50E+01 4.08E+00 9.13E+01 4.37E+00 
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Table 3. Results for 30D benchmark problems of CEC 2005 

Fcn 

30D 

JADE w/o Archive JADE w Archive iJADE 

Mean Std Mean Std Mean Std 

f1 0 0 0 0 0 0 

f2 8.59E-28 4.19E-28 4.05E-28 2.19E-28 3.15E-28 4.32E-28 

f3 7.96E+03 3.88E+03 5.28E+03 4.09E+03 3.94E+03 2.36E+03 

f4 2.45E-02 8.40E-02 6.21E-08 9.64E-08 8.72E-23 4.62E-22 

f5 7.53E+02 3.68E+02 5.15E+02 6.47E+02 4.54E+02 1.81E+02 

f6 1.03E+01 2.72E+01 2.79E+01 7.55E+00 6.62E-01 1.51E+00 

f7 1.56E-02 1.53E-02 6.91E-03 6.12E-03 7.45E-03 3.56E-03 

f8 2.08E+01 2.46E-01 2.09E+01 5.50E-02 2.08E+01 2.25E-01 

f9 0 0 0 0 0 0 

f10 2.73E+01 5.70E+00 2.43E+01 6.23E+00 2.45E+01 7.37E+00 

f11 2.68E+01 2.03E+00 2.64E+01 1.93E+00 2.28E+01 3.53E+00 

f12 4.92E+03 3.97E+03 4.45E+03 4.53E+03 2.71E+03 3.77E+03 

f13 1.67E+00 3.05E-02 1.14E+00 1.27E-01 1.07E+00 1.82E-01 

f14 1.24E+01 3.27E-01 1.24E+01 2.15E-01 1.23E+01 2.57E-01 

f15 3.20E+02 1.17E+02 3.50E+02 1.08E+02 2.70E+02 1.05E+02 

f16 1.45E+01 1.55E+01 6.22E+01 2.06E+01 5.48E+01 2.81E+01 

 

100000 and 300000 for 10D and 30D problems respectively. The parameters are set 
as: NP = 50 and NParch = 1.5 x NP. The remaining parameters are maintained the 
same as in the original JADE algorithm. The experimental results for 10D and 30D 
benchmark problems are presented in Tables 2 and 3, respectively. In Tables 2 and 3, 
for a particular problem, the results are highlighted or mentioned to be significant if 
the performance of the algorithm is statistically significant. The statistical significance 
is decided by performing a statistical t-test with a significance level of 0.05.  

On 10D problems, comparing the performance of JADE with and without archive 
shows that JADE with archive shows significant improvement on problems f12 and f16 
while JADE without archive performs well on f6, f7 and f15. Comparing the perfor-
mance of JADE with and without archive, on 30D problems, show that JADE with 
archive shows significant improvement on problems f4, f7,  f10,  f12 and f16 while 
JADE without archive performs well on f6, and f15.  Therefore, as observed in [17], 
JADE with archive shows better improvements on high dimensional problems than on 
low dimensional problems. On some of the low dimensional problems the perfor-
mance of JADE without archive is better than the JADE with archive. 

In Tables 2 and 3, to compare the performance of iJADE and JADE algorithms the 
results of the algorithm with significant performance are highlighted. From the hig-
hlighted results it can be observed that iJADE is shows better or similar performance 
over all the benchmark problems and is never worse. On 10D problems, it can be 
observed that iJADE shows significant improvement on problems f10, f11, f12, f14, f15 
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and f16. On 30D problems, iJADE shows superior performance on f3, f4, f5, f6,  f11, f12, 
f14,  f15 and  f16. Unlike the JADE with archive, the iJADE algorithm is never worse 
than the JADE without archive. The improved performance can be attributed to the 
new updating scheme of the archive. The superior performance of iJADE on 30D 
versions of f3 and f4 can be attributed to the ensemble of crossover strategies. 

5 Conclusions 

Adaptive differential evolution with optional archive (JADE) is one of the most popu-
lar adaptive DE variants. In this paper, we proposed an improved version of JADE 
referred to as iJADE. Unlike JADE, iJADE updates the archive using a tournament 
selection which helps to preserve the fitter individuals in the archive. The fitter indi-
viduals in the archive provide more useful information regarding the search direction. 
In addition, iJADE employs an ensemble of binomial and exponential crossover strat-
egies unlike the single binomial crossover in JADE. On a given set of benchmark 
problems, the ensemble of crossover strategies provides robustness compared to a 
single crossover strategy. The performance of iJADE is evaluated on set of 16 
benchmark problems and is favorably compared with the JADE algorithm with  
optional archive. 
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Abstract. Fuzzy c-means is currently the most widely used pixel clustering 
technique in the field of automatic image segmentation. However performance 
of fuzzy c-means largely relies upon the selection of initial cluster centers. For 
improper choice of initial cluster centers, FCM sometimes gets stuck at local 
optima. In this work a modified Fitness-Based Adaptive Differential Evolution 
algorithm is presented for clustering the pixels of an image. The control 
parameters, which are crucial for convergence of Differential Evolution, are 
chosen adaptively based on fitness statistics of population. For performance 
measurements, the Berkley Segmentation Dataset and Benchmarks (BSD 300) 
is used. The outcomes of the proposed algorithm are compared with the famous 
fuzzy c-means algorithm both qualitatively and quantitatively.  

Keywords: Differential Evolution (DE), Berkley Segmentation Dataset and 
Benchmarks (BSD 300), Adaptive, Unsupervised, Fuzzy clustering, image 
segmentation, L*a*b* color space. 

1 Introduction 

IMAGE segmentation can be viewed as the process of dividing an image into disjoint 
homogeneous regions which contain similar objects of interest or part of them. 
Among the several image segmentation techniques, image pixel clustering is perhaps 
the most popular one. Clustering can be defined as the optimal partitioning of a given 
set of N data points into K subgroups, such that data points belonging to the same 
group are as similar to each other as possible whereas data points from two different 
groups share the maximum difference [1].  

                                                           
* Corresponding author. 
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Image clustering techniques can be broadly categorized into two classes: 
supervised and unsupervised. Automatic clustering or partitioning of unlabeled 
feature vectors obtained from an image is however the most challenging one. The 
resultant regions obtained from clustering can then be labeled by hand or by some 
automated process. Over the years many clustering algorithms have been applied to 
solve the multi-class segmentation problem (e.g., k-means [2], fuzzy c-means (FCM) 
[3], ISODATA [4] and Snob [5]). The FCM [6] seems to be the most popular 
candidate in the field of clustering algorithms. 

The biggest challenge associated with FCM is the initialization of cluster centers. It 
often gets struck in local optima instead of global optima if it gets started with poor 
initialization. Several solutions have been proposed in the literature to overcome this 
problem, amongst them the ones that incorporate the usage of metaheuristics seem to 
be the most promising ones. These algorithms formulate the clustering method of 
FCM as a global optimization problem. Researchers suggested several global 
optimization techniques like, Tabu search [7], Simulated Annealing [7, 9], Genetic 
Algorithm [10, 11] to improve the performance of fuzzy clustering.  Differential 
Evolution, probably the most powerful global optimizer of recent time [12, 13] is 
applied after fuzzy clustering to obtain the global optima so that it leads to more 
accurate image segmentation. The performance of DE dependent majorly on its 
control parameter scale factor F and cross over rate Cr. Several researchers tried 
different modification of DEs and used them in pixel clustering problems [14, 15].  
In this paper we illustrate a competent technique for image segmentation using  
DEs by varying F, Cr in accordance with fitness value of the population, proposed by 
Patra et. al. [16].  

The results are computed over 300 color images of The Berkley segmentation 
Dataset and Benchmarks (BSD 300). Also we have used L*a*b* color space instead 
of RGB color space. The results are compared with FCM both qualitatively and 
quantitatively. 

The rest of the paper is composed as following.  The basic concept Fuzzy 
clustering problem is described in Section 2.  A brief introduction of Differential 
Evolution (DE) is given in Section 3. In Section 4 detailed discussion is given on 
Fitness-based Adaptive Differential Evolution (FBADE).  The experimental results 
and comparative performances are presented in Section 4.  Lastly the paper is 
concluded in Section 5. 

2 Classical Fuzzy C-Means Algorithm  

In the classical FCM algorithm the objective cluster center is obtained by minimizing 
a within cluster sum function Jm, which can be defined by [3]  

                                         = ( )                                                   (1) 

 
Where,  denotes number of cluster center for  data points ,   denotes fuzzy 
membership of   point in the   cluster, m is the degree of fuzziness,  .  
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denotes the distance between    cluster center  and    d-dimensional dataset  
. At start of the FCM, the cluster  centers are needed to be initialized randomly 

and then in each iteration, the fuzzy membership of each data point is calculated to 
determine their belongingness to   cluster center can be determined using 

 

=  ∑                                                           (2) 

 
The value of  is greater than 1.The  cluster centers can determined by following 
equation     =  ∑ ( )  N∑ ( )                                                              (3) 

                                               
The algorithm terminates if the cluster centers are not updated further. Finally, each 
data point is assigned to the cluster to which it has maximum membership. However 
FCM algorithm sometimes gets stuck at some suboptimal solution due to improper 
initialization. DE is used to overcome this problem. 

3 Differential Evolution (DE) 

DE, a population-based global optimization algorithm, was proposed by Storn in 
1997. The  individual (parameter vector) of the population at generation (time)  
is a -dimensional vector containing a set of  optimization parameters:      ( ) = , ( ), , ( ), … … , , ( )  (4) 

                

In each generation to change the population members   ( ) (say), a donor vector  ( ) is created. It is the method of creating this donor vector that distinguishes the 
various DE schemes. In one of the earliest variants of DE, now called DE/rand/1 
scheme, to create  ( ) for each member, three other parameter vectors (say the 

1,  and -th vectors such that , ,  ∈  1,  and  ) are chosen at 
random from the current population. The donor vector    ( )  is then obtained 
multiplying a scalar number F with the difference of any two of the three. The process 
for the  component of the  vector may be expressed as,  , ( ) = , ( ) + . , ( ) , ( )  (5) 
A ‘binomial’ crossover operation takes place to increase the potential diversity of the 
population. The binomial crossover is performed on each of the  variables 
whenever a randomly picked number between 0 and 1 is within the  value. In this 
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case the number of parameters inherited from the mutant has a (nearly) binomial 
distribution. Thus for each target vector   ( ), a trial vector  ( )is created in the 
following fashion: , ( ) =  , ( )         (0,1) ≤ = ( )    =   , ( )       (0,1) > ( ) (6) 

                          

For j = 1, 2, ….., D and  (0,1) ∈ 0,1  is the jth evaluation of a uniform random 
number generator.  ( ) ∈ 1, 2, … … ,  is a randomly chosen index to ensures that  ( ) gets at least one component from   ( ). Finally ‘selection’ is performed in 
order to determine which one between the target vector and trial vector will survive in 
the next generation i.e. at time  =   +  1. If the trial vector yields a better value of 
the fitness function, it replaces its target vector in the next generation; otherwise the 
parent is retained in the population: 

   ( + 1) =  ( ) ( ) ≤ ( )             =  ( ) ( ) > ( )  (7) 
where (. ) is the function to be minimized. 

  

4 Fitness-Based Adaptive Differential Evolution (FBADE) 

In this paper we illustrate a competent technique for image segmentation using DEs. 
The two DE parameters viz., scale factor , and crossover rate , are known to 
critically affect the behavior and performance of the optimization process. These 
generalized guidelines are inadequate as the choice of the optimal , and , becomes 
specific to the problem under consideration. In these situations the user has to set a 
number of behavioural parameters that influence the performance of this process, see 
for example Storn et al. [12], Liu and Lampinen [17], and Zaharie [18]. 

There has been a trend in recent years to try and make the DE parameters 
automatically adapt to new problems during optimization, hence alleviating the need 
for the practitioner to select the parameters by hand, see for example Price et al. [19], 
Liu and Lampinen [20], Qin et al. [21-22], Brest et al. [23], Mallipeddi et al. [24], 
Islam et al. [25]. 

We have chosen to use adaptive values of , and  for improving the 
convergence capacity of the DE. The adaptation process used here is dependent on the 
fitness statistics of the population. With such an approach we aim to solve the problem 
of choosing the optimal values , and  for the DE. This version, called fitness-
based adaptive differential evolution (FBADE), was proposed for data clustering [16]. 
The main idea behind this adaptation mechanism is that the search-agents (DE-
vectors) placed near to the optimum have small mutation step-size and during 
crossover, it passes more genetic information to its offspring for better exploitation.  
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The proposers of DE suggested that control parameters should be adjusted as ∈ 0.5, 1 , and ∈ 0.8, 1  [26]. We are going to use an adaptation process based 
on the fitness of the population pool which was originally proposed for the control of 
parameters of GA [27]. The DE/rand/1/bin scheme was used with each vector being 
extended with its own  and  values. In this process control parameters were 
adjusted in every generation for each individual according to the scheme shown  
in Eqn. (8) 

, =          , ≤, ,, , , >  

, =                                  , ≤  , ,, , , >  

   (8) 
Where ,  and ,  are the maximum fitness values in the ( + 1)  and  
generations respectively. , is the fitness of the  individual of generation, is 
the average fitness of the generation  . , and , are the values of  scale 
factor and crossover rate of the individual in the generation  . The values of , ,  and  are chosen to be in the range [0, 1]. 

5 Experimental Results 

The simulations are performed with MATLAB R2012a in Intel® Core™ i3 3.2 GHz 
processor based workstation. For testing and analysis, 300 color images are used from 
the Berkeley Segmentation Dataset and Benchmark (BSDS 300) [28]. For statistical 
comparison purposes four of the performance evaluation metrics developed by the 
Berkeley image segmentation database, are used. The matrices are: Probabilistic Rand 
Index (PRI), Variation of Information (VoI), Global Consistency Error (GCE) and 
Boundary Displacement Error (BDE). Higher value of PRI indicates better 
segmentation, whereas for the rest of the metrics, lower values point out the same 
[28]. The RGB images of BSD300 are converted to ∗ ∗ ∗ color space (CIE 1976) 
and ∗  component is used for clustering as it is closed to human perception of 
lightness. The components of ∗ ∗ ∗  color space along with original RGB color 
image is shown in Fig. 1.  For better understanding, the outcome images are 
displayed in average color image. No of clusters are maintained as  =  5. The 
detailed experimental setup of FBADE is given in Table 1. Here the dimension  
equals . 
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(a) (b) 

  

(c) (d) 

Fig. 1. (a) Original color Image, (b)–(d) Three components of (a) in L*a*b* color space 

Table 1. Experimental setup for the FBADE algorithm 

Parameter Value 

 10*  ,  [0.5, 1] ,  [0.5, 1] 
No. of Iterations  200 
No. of Runs 20 

Table 2. Average values of performance evaluation metrics computed on 300 images of 
BSD300 dataset 

Method PRI VoI GCE BDE 

FCM 0.6632 3.3827 0.4794 10.0347 

FBADE 0.6551 3.2367 0.4472 9.9841 

 

Table.2. shows average values of the PRI, VoI, GCE and BDE computed on all the 
300 images of BSD300 dataset. The best in the class results are marked in bold. 
FBADE outperforms FCM in three out of the four benchmarks (VoI, GCE and BDE) 
and even PRI results are pretty close to each others. Hence establishes the supremacy 
of the proposed algorithm. The distribution of performance measures using FCM and 
FBADE are displayed in Fig. 2. and Fig. 3. respectively. Few of the segmented 
images from the BSD300 dataset are displayed in Fig. 4. 



 Fuzzy Clustering of Image Pixels with a Fitness-Based Adaptive DE 185 

 

 

 

 

Fig. 2. Distribution of the performance measures over the 300 images of 
the Berkeley database using FCM 

 

 

 

 

 

Fig. 3. Distribution of the performance measures over the 300 images of the 
Berkeley database using FBADE 
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(a) (b) (c) 

Fig. 2. Results of some example images of BSD 300 dataset (a) original color image, 
 (b) segmented images using FCM and  (c) segmented images using FBADE 
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6 Conclusion 

In this paper we have proposed a pixel clustering scheme based on FBADE. Results 
are computed using well known The Berkley dataset and benchmarks and compared 
with most popular and widely used clustering technique FCM. In the FBADE 
approach the adaptation of the control parameters of DE are not predefined, rather 
they are they are determined adaptively for each solution of the population and the 
adaptation is based on the fitness statistics of the population. Thus the FBADE 
prevents the algorithm to get stuck in local minima. The usage of FBADE in this pixel 
clustering application clearly shows improvements of results when compared with 
FCM.  

In this paper we have considered four performance metrics used for evaluating the 
quality of the segmentation of BSD300 dataset. However several other validation 
techniques like Normalized PRI (NPRI), F-measures can be used to test the 
segmentation results. One could associate a cluster validity index along with fuzzy 
clustering to form a multi-objective fitness function. In such cases multi-objective DE 
can be employed to achieve better clustering.  
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Abstract. Determination of optimal placement and sizing of Distributed 
Generations (DGs) is one of the important tasks in power system operation. 
Several conventional as well as heuristics techniques like particle swarm 
optimization, differential evolution etc. have been applied to solve the problem. 
But one of the major drawback of these techniques are the improper selection of 
user defined parameters for optimal solution. Improper selection of the 
parameters may even lead to premature convergence. A new modified 
differential evolution technique based algorithm is proposed in this paper for 
the solution of optimal sizing and location of distributed generation to avoid 
premature convergence. The proposed algorithm is applied on IEEE 14 and 30 
bus systems to verify its effectiveness. The results obtained by the proposed 
method are compared with other methods. It is found that the results obtained 
by the proposed algorithm are superior in terms of cost and losses.  

Keywords: Distributed Generation, Sizing and placement, Voltage Profile, 
Modified Differential Evolution. 

1 Introduction 

Structure of electrical power system is undergoing a profound change because of 
several limitations of conventional centralized power plants viz. high transmission 
losses, huge environmental impacts, fuel unavailability etc. New trend of electrical 
power system incorporates Distributed Generation (DG). Different 
organizations/researchers defines the DG in different ways like Electric Power 
Research Institute [EPRI] defines distributed generation as generation from a few 
kilowatts up to 50 MW [1], The International Conference on Large High Voltage 
Electric Systems (CIGRE) defines DG as smaller than 50–100 MW [2], International 
Energy Agency (IEA) defines distributed generation as generating plant serving a 
customer on-site or providing support to a distribution network, connected to the grid 
at distribution-level voltages [3], Ackermann et al [4] suggested different ratings after 
consideration the technical issues related with DG like micro DG: 1 to 5 KW, small 
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DG: 5 KW to 5 MW, medium DG: 5 MW to 50 MW and large DG: 50 to 300 MW. In 
other words, it can be defined as “DG has many small-scale generators which are 
installed on various strategic points throughout the system depending upon the local 
load demand to minimize the electricity losses and maximize the reliability”. The 
technology adopted in DG may be renewable or/and nonrenewable sources of energy 
like wind generators, photo voltaic (PV) cell, mini/micro hydro power plant, gas 
turbines, fuel cell, combined cycle plants etc. depending on the system structure, 
resources availability and system reliability. DG can be used as the stand alone 
system or grid integrated system.  

Optimal sizing and placement of DG is one of the most essential conditions for 
minimizing the losses and cost, maximizing the reliability and improving the voltage 
profile. Several researchers have worked in this area and they have proposed different 
techniques for the same.  

A conventional iterative search technique with Newton-Raphson method has been 
used to find the optimal sizing and placement of DG [5]. The authors found the 
Weighting Factor (WF) first and then this WF was used to calculate the DG location 
and its sizing in two different steps. Optimal sizing and placement of different types 
of DG by conventional power flow method was presented by Abri et al. [6]. The main 
goal was to utilize the DG units to improve the voltage stability margin considering 
the probabilistic nature of both loads and renewable DG generation. Improved particle 
swarm optimization (IPSO) algorithm and Monte Carlo simulation based multi-
objective optimization technique was also applied for determination of optimal 
location and size of DGs [7]. Prenc et al. discussed the optimal allocation of three 
types of distributed generation units with a goal of minimizing cumulative average 
daily active power losses by the use of Genetic Algorithm (GA) [8]. Solar parks, wind 
farms and power stations which are not depend on an intermittent primary energy 
source, are taken into consideration. A modified Teaching-Learning Based 
Optimization (TLBO) algorithm has been used [9] to find the best sites and size to 
connect DG systems in a distribution network. Nayak et al. applied Differential 
Evolution Algorithm (DEA) to find the optimal placement and sizing of DG in the 
IEEE-69 bus radial distribution system [10]. Here the main objective was to minimize 
the total real power loss and improve the voltage profile within the frame work of 
system operation and security constraints. A multi-objective Real Coded Genetic 
Algorithm is also used [11] to find the optimal location and sizing for minimization of 
DG cost and line loss. The work has been done by two methods. The first method 
gave only one compromised solution considering both the objectives whereas  
the second method provided a very close suboptimal solution by considering both the 
objectives simultaneously by creating set of pareto optimal solutions for the 
congestion problem.  

In an attempt to improve the optimum results, this paper presents the application 
of a new Modified Differential Evolution (MDE) optimization technique in the field 
of distributed generation, to find the optimal size and location of generator unit. This 
technique has better control strategy due to random localization of mutation factor 
and selecting the best candidate as compared with random selection in basic 
Differential Evolution (DE). A comparative analysis on the performance of different 
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values of crossover constant (CR) is also studied. This technique is applied on IEEE-
14 bus and IEEE-30 bus test systems for performance study. 

2 Problem Formulation  

The main objective of optimal sizing and placement of distributed generations is to 
minimize the overall system cost as well as loss by the installation of DG unit in the 
network system. For the calculation of optimal DG size, first of all, a load flow 
analysis program is used for calculation of all unknown parameters like voltage 
magnitude |V| and voltage angle δ for PQ Bus or Load Bus; and voltage angle δ and 
reactive power Q for PV Bus or Generator Bus. After calculating the unknown 
parameters, the Line Current Flow  can be easily calculated by using (1). 

 

 

Fig. 1. Network model = + = + ( . ) . (1)  
 
Where,  

i, j = 1, 2, …, No. of Bus, 
 is a phasor current which flows from bus i to j,  &  are the series and shunt current respectively. 

Voltage of ith bus, = | |( +  ) 
And,  &  are the series and shunt admittance between line i and j.  

 
Line Power Flow from ith to jth bus ( ) can be calculated as  
 = . ∗ = ∗ ∗ ∗ + ∗ ∗  . (2) 

Similarly, = ∗ ∗ ∗ + ∗ ∗  . (3) 

 
After that, Total Line Losses (TLL) can be calculated using (4).  
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= ( + ).. .  
(4)

The main objective of this work is to minimize the overall cost of the system by 
means of minimizing the total line loss (TLL). So, the Objective Function (OF), which 
is to be minimized, can be expressed as  =   ( + ∗ ( )). (5) 

= + ∗ ( + ).. .  
(6) 

Where,  = + . + . ( )  . (7) 

 
 is total cost of DG as a function of DG rating ( ), W is weighting factor, ,  and  are the quadratic cost coefficients of DG. Weighting factor (W) is a 

constant for the system, which converts the loss into their respective cost. 
Various soft-computing optimization techniques can be applied for minimization 

of objective function. But among those techniques, modified differential evolution 
(MDE) optimization technique is used in this paper because it is one of the robust 
optimization technique in which very few user dependent parameter is used. It is seen 
that MDE has very good convergence characteristic and also it doesn’t stagnate to 
local minima.  

3 Modified Differential Evolution Technique  

The Modified Differential Evolution (MDE) technique is an advanced version of 
classical Differential Evolution (DE) technique. The classical Differential Evolution 
technique was first introduced by Storn and Price in the year 1995 [12], [13]. In 
MDE, the mutation process has been modified for improving the convergence 
characteristics and decreasing the computational time. This MDE algorithm had been 
first proposed by Kaelo and Ali [14]. It is also a population based iterative 
optimization technique which is stochastic in nature. Similar to Genetic Algorithm 
(GA), MDE algorithm also uses crossover, mutation and selection operators. But, 
Simple GA uses a binary coding for representing problem parameters whereas MDE 
uses real coding of floating point numbers. In MDE, mutation process is applied to 
generate a trial vector, which is then used within the crossover process to produce one 
offspring; hence all the solutions have the same chance of being selected as parents. 
In DE algorithm, there are mainly three control parameters, which are differentiation 
(mutation) constant F, crossover constant CR, and size of population NP; whereas, 
MDE technique don’t use mutation constant F as a control parameter. In MDE, this 
mutation parameter is not user controlled. It is chosen randomly within the range [-1, 
-0.4] ∪ [0.4, 1]. Maximum number of generations or iterations (G) is taken as 
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stopping criteria. The dimension of the problem (D) depends on the problem’s 
unknown variables, which directly affects the difficulty of optimization task and 
computational time to converge the solution. The MDE algorithm works through a 
simple cycle of stages, which are initialization, mutation, crossover and selection. 
Their flow patterns are given below: 

Initialization 
Evaluation 
Repeat 
Mutation 
Crossover 
Evaluation 
Selection 
Increase the generation count 

Until (Generation count doesn’t exceed the maximum 
limit) 

3.1 Initialization  

At the beginning of the solution methodology, first of all, problem independent 
variables are initialized according to their maximum and minimum value. These 
newly generated vectors are called target vectors or parent vectors ( , ) and this can 
be calculated as,  

,   = , + , . , ,  . (8) 

Where,  
i =1, 2,... NP, j = 1, 2,… D. 
k indicates the generation or iteration number. For initialization process, k = 1.  ,  and ,  are the minimum and maximum limit of jth variable. ,   is the random numbers such that , ∈ 0, 1 . 

3.2 Mutation  

In each generation, this process creates donor vectors ( , ) by mutating the target 
vectors. To create a donor vector, three random numbers r1, r2 and r3 are taken such 
that r1 ≠ r2 ≠ r3 ≠ i. With the help of these numbers, in each generation, three random 
parameter vectors , , ,  and ,  are chosen for all dimension (i.e. j = 1, 2,… D), 
from the current population or target vectors.  

In the classical DE, the mutation process is done between three random vectors 
and the base vector is then chosen at random within the three. The new donor vector 
for the jth component of each vector is expressed as,   

,   = ,   + . , ,   . (9) 
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Theoretically, the mutation constant F can be anything between 0 to ∞ [15]; but, 
usually it is taken between the range of 0.4 to 1.0 [16]. The value of k depends on 
iteration number which varies from 1 to maximum number of generation (G). 

Due to this random localization of vectors, it has an exploratory effect but it slows 
down the convergence of DE. So, the first modification to DE is to replace the 
random base vector ( ) in (9) with the tournament best ( ). From the three 
random vectors, the best is used as the base vector and the remaining two are used to 
find the differential vector in (9). So, the region around each  explores for each 
mutated point. This maintains the exploratory feature and at the same time expedites 
the convergence. Also the original DE uses the fixed mutation factor F in mutation 
process but in this modified version of DE, it uses a random F in [-1, -0.4] ∪ [0.4, 1] 
for each mutated point. This also improves the exploration. This version of DE is 
referred to as the differential evolution algorithm with random localization (DERL) 
[14]. Thus the modified mutation process can be expressed as: 

 = + . ( )  . (10) 

Where, ∈ 1, 0.4 ∪ 0.4, 1 , chosen randomly. 

3.3 Crossover  

This operation is done for increasing the diversity of the population. In this process, 
the donor vector exchanges its components with those of the current (parent) member ,  and forms trial or child vectors ,  that will compete with the parent vector , . 
The new trial vector can be expressed as: 

, = , if ( ≤ ), else.  
 

(11) 

Where,  denotes a uniformly distributed random number within the range [0, 1), 
generated a new for each value of i. The crossover constant CR usually taken from 
within the range [0, 1], but for better control of diversity and prevention for stagnation 
of solution to local minima, it varies within the range 0.8 , 0 .9 . 

3.4 Selection  

This process is carried out to determine which one of the trial vector and the target 
vector will survive in the next generation, i.e. at generation k = k + 1. Survival of the 
vector (trial or target) depends on the fittest vector for the objective function, i.e. for 
the next generation, target vector will be replaced by trial vector if and only if the trial 
vector yields a better value of objective function or fitness value. So, for the 
generation of the new target vector, selection process can be expressed as, =    if ≤  else.  

(12) 

Where, f (.) indicates the objective function (OF), which is to be minimized.  
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4 Results and Discussion  

The proposed algorithm is applied on IEEE-14 and 30 bus test systems to verify its 
effectiveness and implemented with MATLAB on a PC of Dual Core, 1.73 GHz 
Processor, 3 GB of RAM. The system data for IEEE-14 bus and 30 bus are taken 
from [17], [18] and [18], [19] respectively. The cost coefficients of DG are taken from 
[20]. For the present MDE optimization technique, population size is taken as 30 and 
the maximum number of iteration is taken as 100. The optimal value for the crossover 
factor obtained as 0.9 and 0.8 for the IEEE-14 and 30 bus systems respectively. These 
values were selected through trial and error methods. The best results obtained by this 
technique are shown in Table 1. It is found from the Table 1 that the optimal DG size 
is 34.12 MW and located at bus number 3 for IEEE 14 bus system. Optimal active 
power loss and cost are found to be 11.54 MW and $ 1989.4 for the same system 
respectively. The optimal DG size for the IEEE-30 bus system is found to be 49.96 
MW and located at bus number 5, whereas the loss and cost are found to be 13.32 
MW and $ 2561.0 respectively. The computation time are found to be 29.32 sec. and 
129.14 sec. for the IEEE-14 and 30 bus respectively.   

Table 1 also compared the results with Conventional Iterative Search technique 
with N-R Load Flow Method and Power World Simulator [5]. It is found that the 
proposed technique can produce superior results in terms of both loss and cost. After 
applying MDE optimization technique, for IEEE 14 bus system, 1.536 % and 1.368 % 
total active power loss is reduced, whereas, for IEEE 30 bus system, the reduction in 
total active power loss is increased to 3.198 % and 2.131 % as compared to Power 
world Simulator and Conventional Iterative Search technique with N-R Load Flow 
Method respectively. In the term of total system cost, the MDE optimization 
technique produces about 0.43 % and 0.28 % superior results for IEEE 14 bus system 
whereas about 1.08 % and 0.21 % superior results for IEEE 30 bus system as 
compared to Power world Simulator and Conventional Iterative Search technique 
with N-R Load Flow Method respectively. 

Table 1. Results obtained by the proposed method and its comparative study 

IEEE Test Systems IEEE-14 Bus IEEE-30 Bus 

DG Size (MW) 34.12 49.96 

Placement of DG (Bus No.) 3 5 

Total Active 
Loss (MW) 

Power World Simulator[5] 11.72 13.76 

Conventional Iterative Search technique with N-R 
Load Flow Method [5] 

11.70 13.61 

MDE 11.54 13.32 

Optimal Cost 
($) 

Power World Simulator[5] 1998.00 2589.00 
Conventional Iterative Search technique with N-R 
Load Flow Method[5] 

1995.00 2566.50 

MDE 1989.4 2561.0 
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Fig. 2. Variation of optimal cost with iteration no. for IEEE 14 bus system 

 

Fig. 3. Variation of optimal cost with iteration no. for IEEE 30 bus system 
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Fig. 2 and Fig. 3 show the convergence characteristic for optimal cost for IEEE-14 
bus and 30 bus respectively. The effects of different values of crossover ratios (CR) 
are also studies for the two systems and the results are shown in Fig. 2 and Fig. 3. 
From both the figures, it can be easily noticed that convergence characteristics for 
optimal cost are very unsatisfactory for lower value of CR and prematurely converges 
to suboptimal values. The values of CR the range 0.8 to 0.9 give very good results. 

 

5 Conclusion  

In this work, a new modified differential evolution based algorithm is proposed for 
the optimal sizing and location of distributed generation systems. The proposed 
algorithm is applied on IEEE14 and 30 bus systems. It is found that proposed 
algorithm can avoid premature convergence and can produce optimal results. The 
results obtained by the proposed techniques are compared with other methods and 
found to produce superior results both in terms of cost and losses. 
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Abstract. Selection of an appropriate supplier is gaining a lot interest among 
researchers working in the field of supply chain management .Often many 
suppliers are available in the market that fulfills some preliminary criteria. 
However the real task is to determine the most suitable set of suppliers (or key 
suppliers) subject to management as well as environmental aspects. In the 
current study, we present an approach to solve the multiple-criteria green 
supplier selection problem (mathematical model formulated with Data 
Envelopment Analysis) with the application of differential evolution. A 
hypothetical case demonstrates the application of the present approach.  

Keywords: Green supplier selection, Supply chain management, Differential 
evolution, Data Envelopment Analysis, Multi criteria decision making, CO2 

Emissions. 

1 Introduction  

Supplier selection is an important part of supply chain management (SCM). 
Traditionally, only the management aspects like lead time, quality and price of the 
supply chain were considered for selecting a potential supplier. However, with the 
growing environmental issues researchers are also paying attention to factors like 
greenhouse effect, carbon-di-oxide (CO2) emission etc. jointly known as Carbon foot 
printing. The resulting problem is called ‘green supplier selection’, where a balance is 
maintained between the management and environment issues.  

The supplier selection practices are extensively studied in the literature with multi-
criteria decision analysis models (MCDM). These models comprise approaches, as 
Data envelopment analysis (DEA), analytic hierarchy process (AHP), or analytic 
network process (ANP) etc [1]. Investigations focus on the environmental aspects of 
the supplier selection and evaluation among them a number of papers attempt to build 
in green criteria into the criteria of supplier selection [2,3] only few examinations 
(e.g. [4]) relate to such situations, when it is not possible to practice sophisticated 
methodology e.g. because the lack of strong mathematical background. 
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Differential evolution (DE) algorithm proposed by Stron and Price in 1995 [5] is a 
population set based evolutionary algorithm that has been applied successfully to a 
wide range of problems [6-10]. In the present study, DE is used for solving the green 
supplier selection problem modeled with the help of DEA. The aim of this paper is to 
contribute to green supplier selection approach. In present approach we introduce the 
green criteria such as reusability and carbon emission in the supplier selection. 

This paper is organized in seven sections. Subsequent to the introduction in Section 
1, the green supplier selection and Problem statement and methodology are briefed in 
Sections 2 and 3. Section 4 describes the Mathematical Formulation of the Problem 
with DEA used in this paper. Section 5 describes the DE algorithm for green supplier 
selection. Finally, a discussion and Conclusion drawn from the present study are 
given in Section 6 and 7. 

2 Green Supplier Selections 

In recent years, an increasing environmental awareness has favored the emergence of 
the new Green Supply Chain paradigm; thus, also in the Supplier selection problem, 
green criteria have been incorporated. The Green Supplier Selection Problem can be 
defined as “a classical Supplier selection problem in which, among the others, also 
environmental criteria are taken into account in order to select and monitor suppliers’ 
performances” [11]. 

In current study we split the environmental criteria as reusability and CO2 
emissions of the product and services. We assume that the environmental criteria are 
the outputs of the examined model. In the current study, a supplier is considered 
efficient if the efficiency score is 1 otherwise it is considered as inefficient. 

3 Problem Statements and Methodology 

This hypothetical case of an Indian automobile part manufacturing company at 
northern part of India is presented here to illustrate the present approach. In the 
present study we have considered a case of selecting best suppliers out of 18 potential 
suppliers. The criteria considered for selection as given below: 

 
1. Management criteria: Lead time, quality and price 
2. Environmental (green) criteria: Reusability and CO2 emission 

The hypothetical data range for Management criteria (Inputs) as well for 
Environmental criteria (Output) are given below; 
Management criteria, 

1. Lead time (Day)   =1-5 days 
2. Quality (%)   = 50%-100% 
3. Price (Rs.)   =100-300 Rs. 
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Environmental criteria, 
1. Reusability (%) (LR = LM-LA)  =30%-70% 
2. CO2 Emissions (g)   =10-30g 

Reusability concept is taken from [12] and for CO2 Emissions, LOCOG Guidelines 
on Carbon Emissions of Products and Services –Version 1 [13] is considered. 

The underlying data is shown in Table 1 with the supplier’s database covering 
management as well as environmental criteria of an item provided in the shipment of 
automobile company. 

Table 1. Supplier’s database 

Criteria 
Management criteria (Inputs) Environmental criteria (Outputs) 

Lead time 
(L) (Day) 

Quality 
(Q) (%) 

Price (P) 
(Rs.) 

Reusability(R) 
(%) 

CO2 Emissions 
(CE) (g) Suppliers 

1 2 80 107 70 30 

2 1 70 161 50 10 

3 3 90 269 60 15 

4 4 65 270 30 12 

5 2 55 260 40 18 

6 5 70 201 50 20 

7 3 85 111 66 14 

8 2 95 300 35 28 

9 1 67 197 60 16 

10 4 72 157 44 28 

11 5 51 170 41 14 

12 3 58 106 49 10 

13 2 72 255 32 25 

14 4 60 117 40 29 

15 5 63 245 22 5 

16 3 90 299 10 9 

17 1 87 101 42 15 

18 2 82 206 70 18 

3.1 Methodology 

To measure and analyze the relative efficiency of 18 suppliers, we follow a four step 
methodology: 

 Design a criteria containing environmental and management aspects. 
 Select a problem 
 Formulate the mathematical model of the problem with the help of DEA.  
 Apply DE on mathematical model. 

By using this methodology, the company can obtain a recommended combination 
of efficient suppliers.  
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4 Mathematical Formulation of the Problem with DEA  

DEA based method is used for determining the efficiency of Decision-Making Unit 
(DMU) on the basis of multiple inputs and outputs [14]. DMU can comprise of 
manufacturing units, departments of big organizations such as universities, schools, 
hospitals, power plants, police stations, tax offices, prisons, a set of firms etc [15]. 
The DMU well-defined in this study with input and output criteria are as follows: 

 
 
 
 

 
 
 
 
 
The performance of DMU is estimated in DEA by the concept of efficiency or 
productivity, which the ratio of weights sum of outputs to the weights sum of inputs 
[16] i.e 
 

Weighted sum of outputs 
Efficiency = ––––––––––––––––––––          (1) 

Weighted sum of inputs 
 
 

The two basic DEA models are the CCR (Charnes, Cooper and Rhodes) model 
[17] and the BCC (Banker, Charnes and Cooper) model [18], these two models 
distinguish on the returns to scale assumed. The former assumes constant returns-to-
scale whereas the latter assumes variable returns-to-scale [14]. In the current study we 
use CCR model which is well-defined further down:  

Assume that there are N DMUs and each unit have I input and O outputs then the 
efficiency of mth unit is obtained by solving the following model which is proposed by 
Charnes et al [17].  
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Where 
Em is the efficiency of the mth DMU, k =1 to O, l =1 to I and n =1 to N. 
Outputk,m is the kth output of the mth DMU and wk is weight of output Outputk,m 
Inputl,m is the lth input of mth DMU and zl is the weight of Inputl,m 
Outputk,n  and Inputl,n are the kt h output and lth  input respectively of the nth DMU 
 

The fractional program shown in Equ-2 can be converted in a linear program which is 
shown in Equ-3 
 

 
To determine the efficiency score of each DMU we run the above program run N 

times. A DMU is considered efficient if the efficiency score is 1 otherwise it is 
considered as inefficient.  

4.1 Mathematical model 

On the basis of the hypothetical data given in Table 1 the DEA model of mth DMU 
will be as follows: 

 

5 DE Algorithm for Green Supplier Selection 

Introduced by Storn and Price in 1995, It is Population-based search technique for 
global optimization. DE algorithm is a kind of evolutionary algorithm, used to 
optimize the functions. In current study we have used DE/rand/1/bin scheme [19] and 
DE algorithm from [20]. 
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5.1 Pseudo Code of SDE Algorithm 

1 Begin 

2 Generate uniformly distribution random population P={X
1,G

, X
2,G

,..., X
NP,G

}. 

 X
i,G

= X
lower

 +(X
upper

 –X
lower

)*rand(0,1), where i =1, 2,..,NP 

3 Evaluate f(X
i,G

) 

4 While (Termination criteria is met ) 

5 { 

6     For i=1:NP 

7            { 

8 Select three random vector Xr1,G, Xr2,G, Xr3,G where i≠r1 ≠r2≠r3 

9                                   Perform mutation operation 

10                                   Perform crossover operation 

11               Evaluate f(U
i,G

) 

12               Select fittest vector from X
i,G

and U
i,G

to the population of next generation  

13             } 

14     Generate new population Q= {X
1,G+1

, X
2,G+1

,..., X
NP,G+1

} 

15  } /* end while loop*/ 

16 END 

5.2 Constraint Handling 

For the constraint problems various methods have been suggested in literature. A 
survey of different methods for constraint handling can be found in [21] and [22]. In 
this paper Pareto-Ranking method is used for handling the constraints [23]. 

5.3 Parameter Setting for Differential Evolution Algorithm 

In this paper we have applied DE to solve the DEA model. The parameter settings for 
DE are given in Table-2. 

Table 2. Parameter setting for DE 

Pop size (NP) 100 

Scale Factor  (F) 0.5 

Crossover rate (Cr) 0.9 

Max iteration 3000 
 

 
The program is implemented is DEV C++ and all the uniform random number is 

generated using the inbuilt function rand ( ) in DEV C++. The fitness value is taken 
as the average fitness value in 30 runs and the program is terminate when reach to 
Max-Iteration. 
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A purchaser (decision maker) can influence a decision (supplier selection) with the 
choice of weight system. For this purpose with the help of program which is 
implemented is DEV C++, we intended to generate all the uniform random number 
(in between 0 to 1) using the inbuilt function rand ( ) in DEV C++, to assist the 
selection of the weights for management as well as environment aspects in a way to 
allow the control the result of the selection process. 

6 Results and Discussions 

The research of efficient multi-criteria green supplier selection problem can obtain a 
recommended combination of efficient suppliers 1, 9 and 14 using DE algorithm 
gives the better solution.  

Table 3. Average efficiency and weighted of 18 suppliers in 30 runs 

Suppliers 
Value of input and output weight 

Efficiency 
Z1 Z2 Z3 W1 W2 

1 0.100129 0.00204427 0.00594674 0.0124772 0.00422648 1 

2 1 0 0 0.0166683 1.08283e-017 0.833417 

3 0 0.0111122 7.18753e-016 0.0124103 4.33556e-01 0.744619 

4 0 0.0153862 0 0.0165195 0.00248747 0.525436 

5 0 0.0181836 0 0.011392 0.0219116 0.850091 

6 0 0.0142871 9.19188e-020 0.0153397 0.00230969 0.81318 

7 0 4.71429e-018 0.00900991 0.0137737 2.58488e-01 0.909066 

8 0.442549 0.00121055 0 0 0.0327347 0.916572 

9 1 0 0 0.00337086 0.0498655 1 

10 0.0794687 0.00947534 3.71282e-009 1.42912e-008 0.0305688 0.855927 

11 0 0.0196098 8.0887e-019 0.0210538 0.0031707 0.907594 

12 0 0.0167855 0.000250394 0.0195676 4.29418e-018 0.958812 

13 0.0944849 0.0112657 0 2.36807e-018 0.0363442 0.908605 

14 0.00692169 0.0121538 0.00207852 0.00215503 0.0315172 1 

15 0 0.0158746 7.68761e-019 0.0177283 1.14697e-017 0.390023 

16 0.0728352 0.00868438 1.75703e-019 0 0.0280174 0.252156 

17 1 0 0 0 0.0625062 0.937594 

18 0 0.0117559 0.000175325 0.0137047 2.01723e-014 0.959331 

Table 4. Suppliers Efficiency 

Suppliers Efficiency Suppliers Efficiency Suppliers Efficiency 
1 1 7 0.909066 13 0.908605 
2 0.833417 8 0.916572 14 1 
3 0.744619 9 1 15 0.390023 
4 0.525436 10 0.855927 16 0.252156 
5 0.850091 11 0.907594 17 0.937594 
6 0.81318 12 0.958812 18 0.959331 
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Fig. 1. Histogram of all suppliers with their efficiency score 

For the current research conducted in 18 suppliers, the results are:  

1. Suppliers 1, 9 and 14, the efficiency score is 1 so these suppliers are assumed 
to be 100% efficient. 

2. Supplier 15 is probably the most inefficient in comparison to all other 
suppliers. 

3. Suppliers 1, 9 and 14 would be the most suitable set of suppliers (or key 
suppliers). 

4. By using this DE, the company can obtain a recommended combination of 
efficient suppliers.   

5. Combination of supplier 1, 9, 14 would be the recommended supplier set 
while the company needing single-item suppliers  

6. The results of the case indicate that the DE algorithm can solve the problem 
effectively. 

7 Conclusions 

Optimal supplier Selection is a challenging task among thousands of potential 
suppliers. The present study shows DE as a tool for selecting the optimal suppliers. In 
this study, we present a comprehensive green supplier selection framework. The first 
step is to construct a criterion set that containing both environmental, management 
aspects, which is suitable for real world applications. We than presents an approach to 
solve the multiple-criteria green supplier selection problem with the application of 
DE, for DEA. By using this approach, a company can obtain a recommended 
combination of efficient suppliers.  

In this study, the goal was the application of DE to the efficient multi-criteria green 
supplier selection in the green SCM. The main motivation of this study was to gain an 
understanding of the mechanics of DE and to determine the accuracy of DE in 
generating the optimum solutions for the DEA based mathematical model, which is 
the underlying optimization problem for the aforementioned purchasing system. 
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Future research may investigate the use of the DE algorithm to solve more difficult 
problem such as multi objective supplier selection with considering environmental 
aspects. 
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Abstract. The day ahead concept of real power market clearing is ap-
plied for generator scheduling in a deregulated environment. The earlier
approach of cost minimization declines the consumer benefit instead con-
siders the reduction of overall generation cost. This brings in limitation
which is compensated by the approach of social welfare maximization
which is to maximize the profit for the supplier and consumer i.e. so-
cietal benefit. During optimization of these objectives, the behavior of
control variables are observed keeping the different technical and operat-
ing constraints of the system. The modeling of loads as voltage dependent
is implemented so as to analyze the effect on load served maximization
and voltage stability enhancement index. The former tries to serve the
maximum loads and the later maintains the flat profile of the voltages
to avoid the voltage collapse on overloading and fault situations. The
obligation by market participants to achieve the best solution is done
by differential evolution algorithm and particle swarm optimization. A
comparison is also made between these two optimization techniques. The
investigation is performed on IEEE 30 bus system.

Keywords: Social welfare maximization, Load served maximization,
Voltage stability enhancement index, Load modeling, Differential evo-
lution algorithm, Particle swarm optimization.

1 Introduction

The deregulation in electricity market has brought in many opportunities for
the researchers to work on many tough areas which allow the market to work
efficiently and to avoid thievery. Initially, the power system operator was only
concerned with the generation cost minimization of the system which has got
no complexity in it and it was easy to schedule the system as the complete
system was owned by single entity, generally government undertakings, which
makes it an inelastic system. This philosophy does not holds good for the age of
industrial revolution where lot of big consumers are also interested in taking part
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and have stake in the market. This brings in the concept of social welfare where
the complete society is considered and each individual (supplier or consumer)
can decide and pay the cost according to its buying or consuming capacity of
electricity. However, it is difficult for now to consider each small individual rather
group of small consumers i.e. distribution substation and big consumers can be
part of the market. This makes the market more elastic and complex.

The above idea is jot down in an exquisite manner in [1] where a strategy
for day ahead real power market clearing (DA-RPMC) is performed using ge-
netic algorithm. All the operational and technical constraints are considered and
results are observed. To attain the equilibrium in electric power exchange with
unit commitment is discussed in [2] to maximize the profit of supplier side. In [3],
all the complex bids are optimized together by considering security constraints
to maximize the day ahead benefits. In [4], the elasticity of demand is discussed
with bid cost minimization and social welfare maximization for the pool market.
In [5], keeping the voltage stability as the prime concern, the maximization of
the social welfare in a multi-objective environment. In [6], the different bids are
optimized for different load scenario which shows the consumers capability who
is not ready to pay the same amount for the per unit consumption.

To reach the best solution, a need of optimization technique which is robust,
flexible, simple and reliable is required. There are many optimization techniques
available in the literature which are quoted by different researchers. In [7], author
have suggested a technique based on the genes which works on binary system.
In [8], a concept on movement of flock of birds to search food is expressed
mathematical which is an efficient technique for optimization. Authors of [9]
have also shown the advantages and wide areas of research possible with this
technique. In [10], an optimization technique based on the concept of using
vector differences for perturbing the vector population which generates the trial
vectors for the comparison.

The paper is organized as follows: in section 2, paper explains the utiliza-
tion of objectives for DA-RPMC. Section 3 accounts for the use of optimization
technique for achieving the best solution. Results are discussed in section 4 and
conclusion of the paper is made in section 5.

2 Day Ahead Real Power Market Clearing (DA-RPMC)

The settlement for each unit (either supplier or consumer) is executed in DA-
RPMC. Each player provide their complex bids in the day ahead market and gets
scheduled for the next day. This avoids the allocation of major chunk of power
at last moment. However, some small variations in schedule can be brought in
the intra-day market which is not the motive of the paper. If the bids provided
by the supplier itself is used for optimization makes the scenario as inelastic and
if suppliers and consumers bids are considered for optimization than it will make
the scenario as elastic. It has been assumed that the unit commitment schedules
are already available and real power market is cleared.
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2.1 Centralized Market with Inelastic Demands

In the inelastic demand scenario, as only suppliers take part in the market clear-
ing, the optimization is performed only for generation cost minimization (CM)
which is mathematically expressed as:

CM =

NG∑
i=1

(
αiPGi + βiP

2
Gi

)
(1)

where, αi and βi are cost coefficients of ith generator and PGi is real power
generation of ith generator.

2.2 Centralized Market with Elastic Demand

In the elastic demand scenario, the generator and loads both take part in the
market clearing. This provokes a situation where an optimization technique has
to manage and maximize the surplus of generator and load such that they both
enjoy the societal benefit. The maximization of this benefit is termed as social
welfare maximization which is mathematically expresses as mentioned in [4,6]:

SWM =maximize
( ND∑
i=1

BDi(PDi)−
NG∑
i=1

CGi(PGi)
)

where BDi(PDi) =

ND∑
i=1

(
γiPDi − δiP

2
Di

)

CGi(PGi) =

NG∑
i=1

(
αiPGi + βiP

2
Gi

)
(2)

where γi and δi are demand coefficients of ith load bus and PGi and PDi is
real power generation of ith generator and real power demand of ith demand.
CGi(PGi) is the generation cost of real power PGi at bus i. BDi(PDi) is the gross
consumer surplus for real power demand PDi at bus i.

2.3 Load Modeling

The preponderate affect of voltage on the loads has made a point to consider it in
the problem. The voltage dependency of loads are observed on many machines
especially induction type which is most widely used in the recent appliances
covering considerable portion of the loads. The effect includes the variation in
torque, speed and prolonged heating which finally reduce its life. These needs to
be modeled mathematically to be expressed in the market as mention in [11]:

PL = Pl0

( V
V0

)np
(3)
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QL = Ql0

( V
V0

)nq
(4)

where, PL and QL are the real and reactive power load, V0, Pl0 and Ql0 are the
nominal voltage magnitude, real and reactive power load respectively. np and
nq are the voltage exponent which dependent on the type and composition of
the load. These equations depicts the real time dynamics of the loads with the
variation in the voltage profile of the load buses.

2.4 Load Served Maximization (LSM)

The LSM is the one of the objectives which is also implemented in the system
whenever the loads are modeled as voltage dependent. A mandatory check is
required to watch for the loads behavior and its divergence from its original
value due to voltage dependency. The optimization of CM and SWM affects the
load served. This makes it necessary to be used as the supplementary function
and prevent the extent of load variation. The mathematical expression is:

LSM =

n∑
i=1

P i
l0

( Vi

V0i

)np
(5)

2.5 Voltage Stability Enhancement Index (VSEI)

An index termed as L-index was established in [12] which is evaluated to un-
derstand the voltage stability margin. It provides the value which suggests the
stretch to violate stability limit. This value is the result of load flow solution. It
varies between 0 (a no load scenario) and 1 (a voltage collapse scenario). Mini-
mization of VSEI maximizes the system capability to push the voltages up. The
mathematical expression is:

Lj =

∣∣∣∣∣1−
ng∑
i=1

Fji
Ei

Ej

∣∣∣∣∣ (6)

L− index = V SEI =
n∑

i=ng+1

L2
j (7)

where, n is number of buses, ng is number of generators in the system. Ei, Ej

are the complex voltages of generator and load buses respectively. The values
of Fji are obtained from the Y-Bus matrix. It will be good to observe VSEI
deflections as other objectives optimizes.

2.6 Equality and Inequality Constraints of DA-RPMC

The equality and inequality constraints for the above problem are as follows:
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Nodal Power Balance Constraints. The power balance includes real and
reactive power balances

PGi − PDi =
∑
j

(ViVjYij cos(θij + δj − δi)) (8)

QGi −QDi = −
∑
j

(ViVjYij sin(θij + δj − δi)) (9)

Generation Capacity Limits. The real power generations are kept constant.
The reactive power generations can vary as

Qmin
Gi ≤ QGi; (P

2
Gi +Q2

Gi)
1/2 ≤ Smax

Gi (10)

Shunts Limits. The shunts have restrictions as follows

Qmin
Ci ≤ QCi ≤ Qmax

Ci (11)

Security Constraints. The security related constraints are as follows

V min
i ≤ Vi ≤ V max

i (12)

Tmin
i ≤ Ti ≤ Tmax

i (13)

where, i and j are the bus numbers, ij represents the line between bus i and j,
PG and PD are the real power generation and demand in Mega-Watts (MW), QG

and QD are the reactive power generation and demand in Mega-VArs (MVAr),
SG is the MVA generated by the generator, V and δ are the voltage magnitude
in per unit and angle in radians, Y and θ are the admittance magnitude in
per unit and angle in radians respectively, T is the transformer tap settings,
superscript min and max represents the minimum and maximum limits of the
quantity respectively.

3 Optimization

The need for the best solution is required in every field of engineering and its
omnipresent. Since the inception of the applications of optimization techniques
has brought in gradual complexities in the problem. The recent world problems
are most complex due to keeping consideration of every equality and inequality
constraints. This is being possible because computational advancement in recent
years. Many optimization techniques have also been developed and has worked
exceptional in large and complex problems. With respect to our problem which is
a continuously varying environment because of voltage dependency of loads. As
researchers have claimed the high performance of differential evolution algorithm
and particle swarm optimization has proved its presence in the applications with
sufficiently steady, agile and precise in nature. With these qualities, adoption and
implementation to our problem was simpler and efficient to achieve the optimal
solution among the complete search space.
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3.1 Differential Evolution (DE)

DE being one of the fast and reliable optimization technique which has, in gen-
eral, better performance than the previous quoted techniques in literature. Gen-
eral process for any evolutionary algorithm is satisfied and followed by DE. The
algorithm is mentioned in [10,13].

Nevertheless, contrary to classical evolutionary algorithm, it explores the
search space by taking differences of the parameter vectors. In its novice state,
DE accelerates the each randomly generated vector with the mismatch between
tertiary randomly generated vector and itself to generate a donor vector, also
termed as target vector, for that randomly generated vector. Then the crossover
operation is performed on the target vector and donor vector which will create a
trial vector. This trial vector has to compete with the parent vector of the same
index, which was initially generated, to perform the selection of the fittest among
all. The winners are now the new parent vectors which is again optimized for the
next generation until the stopping criterion has reached. The idea is expressed in
the flowchart mentioned in Fig. 1 which conveys the concept of adaptive DE by
changing the mutation operators with the increase in the number of iterations.

3.2 Particle Swarm Optimization (PSO)

PSO is another acclaimed optimization technique which has the ability to learn
from individuals past mistakes and follow the best individual of the group. The
algorithm is mentioned in [8,15].

PSO also works on the general procedure of evolutionary algorithms. The ran-
domly generated particles are trained to learn from its past and from the overall
best particle of that set. Each of the particles moves with some velocity towards
the best solution obtained in each iteration. The evaluation of this velocity needs
three components: particles own weighted velocity, a factor of the mismatch be-
tween the particles self best and its present location and a factor of the difference
between the particles social best and its present location. These components are
augmented to push the particles towards the best solution achieved so far. The
new particles are improvised until the stopping criterion has reached.

3.3 Fitness Function

The objective functions changes but the forfeiture of the breached vectors re-
mains the same. The penalty is added for the bus voltages minimum & maximum
limits, reactive power minimum & maximum limits and line limits. The fitness
function can be formulated as

Fitness function =
1

1 + Faug
(14)

Faug = F + λ((V − Vmax)
2 + (V − Vmin)

2 + (Q −Qmin)
2 + (S − Smax)

2)
(15)



Differential Evolution Algorithm and Particle Swarm Optimization 215

Start

Input the DE parameters

Randomly generate the values for 
real power generation, generator bus 

voltages, discrete taps and shunts 
termed as target vector

Set iteration count i = 1

Accelerate each target vector with a 
mismatch* to get donor vector

Perform crossover on the target vector 
and donor vector to get trial vector

Check the superiority 
among the trial vector and 

parent vector

Winner is updated the new parent 
vector

Check for maximum 
iteration

Stop

Update iteration as i=i+1

Fig. 1. Flowchart of differential evolution algorithm. mismatch* is evaluated by differ-
ent mutation operators mentioned in [14]
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where, Faug is the power system augmented operating objective, λ is penalty
multiplier, Vmax and Vmin is maximum and minimum voltage limit on each bus,
Qmax and Qmin is maximum and minimum reactive power limit on each bus
respectively, Smax is the maximum MVA injection limit by the generator.

This fitness function is judiciously implemented for all the objectives dis-
cussed above with a proper sense of minimization and maximization type of
problem. Although, the soft constrained penalty imposed on the objective func-
tion remains the same to restrict the violation of the technical and operational
parameters.

4 Results and Discussion

The optimization of the above objectives are performed on MATLAB. The in-
vestigation is performed on standard IEEE 30 bus system (data given in [16]).
This is a six unit system having 21 loads and 41 branches in which four branches
are having transformer taps. Once the bids (given in appendix) are received by
the system operator from all the suppliers and consumers then system opera-
tor will run a joint optimization program considering all the operational and
technical constraints for DA-RPMC scheduling. The optimality of the solution
is reached by considering five real power generation, six generator voltages, four
transformer taps and nine shunt reactors as the control variables in the system.
The discrete transformer taps ranging from 0.9 pu to 1.1 pu with a step of 0.01
pu and the discrete shunt reactors has been varied between 0 pu to 5 pu with
a step of 1 pu. The exponential load is modeled as np=1 and nq=2. The upper
and lower limit of generator buses are 1.10 pu and 0.95 pu respectively. Similarly,
the upper and lower limit of load buses are 1.05 pu and 0.90 pu respectively.

To observe the effect of voltage dependent loads, DA-RPMC is evaluated
for each objective function individually. To make the analysis more stern, the
examination of voltage collapse is also performed during a period of overload
and faults which is a stressed condition. The overloading effect is addressed by
increasing the loads by 30% to 368.42 MW from its nominal load of 283.4 MW.
The fault is created by violating the line between the buses 27 and 28.

4.1 DA-RPMC Scheduling

The analysis is performed for inelastic and elastic demand scenarios. As ex-
plained earlier, in the case of inelastic demand, the consumers will continue to
absorb power from the connecting bus irrespective of the price variations of per
unit consumption. On the contrary, in the case of elastic demand, the consumers
vary their power consumption according to the change in the per unit price of
consumption. These effects are analyzed and compared on the basis of fitness
function.

Cost Minimization (CM). The single objective values are optimized by DE
and PSO for the inelastic and elastic demand scenario are presented in Table
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1. It is observed from both the conditions that CM reduces the generation cost
by reducing the voltage dependent loads. DE has reduced the generation cost
to 741.6653 $/hr in compared to 753.6438 $/hr of PSO. This increase in cost is
due to not reduction in voltages on which has increased the loads served as well.
This increment in cost has also reduced the societal benefits enjoyed by every
party. The decrease in the social welfare from unstressed condition to stressed
condition is due to the overloading which has increased the generation cost and
reduces the social welfare.

Table 1. CM with DE and PSO under unstressed and stressed condition

Function
DE PSO

Unstressed Stressed Unstressed Stressed

Generation cost ($/hr) 741.6653 993.019 753.6438 1041.9882

Load served (MW) 263.4585 321.473 268.1993 340.8474

VSEI 0.1436 0.3564 0.1343 0.7565

Social welfare ($/hr) 45251.7039 22312.4642 45134.9527 30011.3073

The minimization of VSEI is to check for voltage stability which is adequately
within safety limits of 0.1436 for unstressed condition of DE and 0.1343 from
PSO. However, overloading and violation in the line, in the case of DE, has seen
a sudden increase in its value to 0.3564 which is still within limits whereas, in
the case of PSO, it has seen an acute increment which needs to be taken care of.

Social Welfare Maximization (SWM). The DE and PSO is implemented
to obtain the objective values for the unstressed and stressed condition and pre-
sented in the Table 2. The SWM with DE has attained a value of 51415.6645 $/hr
which is maximum among optimization of all objectives for unstressed condition
whereas, for PSO, social welfare has reached maximum value of 50243.6235 $/hr.
It is visible that the generation cost has increased compared from the case of CM
(Table 1). It is also seen that voltage dependent loads have not reduced much
from its nominal load whereas, in CM case, the loads have reduced to much
more value. This means that the bus voltages are maintained at near 1 pu or
flat profile. Similar observations can also be made in stressed condition where a
mere load reduction is seen from its overloaded value.

An enormous increase has been seen in the minimization of VSEI, with DE,
from 0.1758, of unstressed condition which is near stability, to 0.9613, of stressed
condition which is an alarming situation as it approaches voltage collapse for any
further increase in the loading. Optimization through PSO has also increased the
VSEI similarly due to the efforts of social welfare to provide equal benefits to
suppliers and consumers.

Load Served Maximization (LSM). Table 3 represents the single objective
values of all the functions under unstressed and stressed condition with DE and
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Table 2. SWM with DE and PSO under unstressed and stressed condition

Function
DE PSO

Unstressed Stressed Unstressed Stressed

Generation cost ($/hr) 852.5605 1138.7735 792.6715 1186.0809

Load served (MW) 279.0418 360.8517 274.9044 359.6398

VSEI 0.1758 0.9613 0.1702 0.9385

Social welfare ($/hr) 51415.6645 37874.8499 50243.6235 37412.7107

PSO. The voltage of the buses are pushed towards its upper limits to increase the
loads to its maximum of 299.5021 MW and 293.5914 MW which has increased
the generation cost for unstressed condition with DE and PSO respectively. This
increase in the generation cost has reduced the social welfare for both conditions
which is the least value obtained among other objective optimization which
portrays the benefits enjoyed by one party (either supplier or consumer) over
the loss of other party. The stressed condition shows not much difference while
optimization with DE and PSO which has increased the loads to 379.4563 MW
and 378.8983 MW respectively.

Table 3. LSM with DE and PSO under unstressed and stressed condition

Function
DE PSO

Unstressed Stressed Unstressed Stressed

Generation cost ($/hr) 890.5848 1213.1057 871.7076 1222.5814

Load served (MW) 299.5021 379.4563 293.5914 378.8983

VSEI 0.1982 0.8613 0.1887 0.9598

Social welfare ($/hr) 40798.4972 17610.9794 41407.0871 18135.5982

The VSEI value, a dimensionless quantity, shows the gap between the gen-
erator bus voltages and load bus voltages. This gap has increased from 0.1982
(unstressed condition) to 0.8613 (stressed condition) with DE and from 0.1887
(unstressed condition) to 0.9598 (stressed condition) with PSO which is a steep
ascend and needs to be avoided so as to evade the voltage collapse situation.

Voltage Stability Enhancement Index Minimization (VSEIM). The
objective values obtained with DE and PSO for all the functions and for both
the conditions are presented in Table 4. The minimization of VSEI has obtained
a value of 0.1220 with DE and 0.1262 with PSO which shows an almost flat
profile situation not necessarily 1 pu rather voltages are reduced all around the
system which reduces the generation cost and the load served for unstressed and
stressed condition. Social welfare also provides an inferior values compared to
SWM case (Table 2). A similar trend is seen in the stressed condition where
VSEI has obtained a minimum value of 0.5369 with DE and 0.5786 with PSO
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Table 4. VSEIM with DE and PSO under unstressed and stressed condition

Function
DE PSO

Unstressed Stressed Unstressed Stressed

Generation cost ($/hr) 757.4282 1010.1643 883.9927 1088.9904

Load served (MW) 264.9155 330.7677 274.5731 340.7693

VSEI 0.122 0.5369 0.1262 0.5786

Social welfare ($/hr) 45944.7523 26183.9339 47206.6683 26609.9824

which is in the midway of stability and collapse of voltage. It is understandable
that the generation cost, load served and social welfare obtained is the second
best among other objective optimization.

5 Conclusion

The investigation of DA-RPMC on IEEE 30 bus test system mimics the actual
functioning of centralized market operated by system operator. The scheduling of
generators and assigning the required values for generator bus voltages, discrete
transformer taps and discrete shunts are the control variables in the system. The
system operator, in its joint optimization algorithm, keeps a regular check on
the operating and technical constraints of the system and reject the solution for
any type of violation. The cost minimization and social welfare maximization are
implemented for scheduling. Both the objective shows a peculiar characteristics
which is addressed in this paper. The inelastic demand situation or CM only
tries to reduce the overall generation cost whereas the elastic demand situation
or SWM tries to provide same privilege to both supplier and consumer. The
analysis has enlightened the understanding of SWM which maintains the loads
at near its nominal value by not varying the bus voltages much.

The adoption of load served maximization as one of the objectives has shown
the bus voltages increment to maximize the total loads fed by the system which
increases the generation cost and reduces the social welfare from its optimum
value. Voltage stability enhancement index has played a vital role in the opti-
mization of these objectives by providing the check for voltage stability. The
increase in the gap between generator bus voltages and load bus voltages in-
creases the chance of voltage collapse by increasing the loading of the system.

The two conditions (unstressed and stressed) has showed the worst possibility
of system to disintegrate. The analysis of the system at stressed condition is
performed to observe the maximum overloading capability and to bear fault
situations. It brings the system at emergency state where voltages are at the
verge of collapse if any further overloading or fault takes place.

The optimization of the above objectives to achieve the most optimum solu-
tion is done by DE and PSO. Being among the most robust, simple, efficient,
precise and fast optimization tool available in the literature has convinced to
be implemented in this type of problem. The increased intricacy of the opti-
mized solution which has different real and reactive power demands due to the
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implementation of voltage dependent load models. This has restricted the best
solution obtained to be repeated with some modification. Instead of all these
complications, the solutions obtained by DE are much better than PSO. This
has been only possible due to the exploitative and exploring capabilities of adap-
tive DE to hunt for the complete search space. The results obtained have also
proved the dominance.

A Bid Data

The generation cost coefficients and demand cost coefficients are given in Table
5 and 6 respectively.

Table 5. Generation cost coefficients

Bus α β Bus α β

1 2 0.00375 8 3.25 0.00834

2 1.75 0.0175 11 3 0.025

5 1 0.0625 13 3 0.025

Table 6. Demand cost coefficients

Bus γ δ Bus γ δ

1 0 0 16 591.4281 8.2983

2 928.7555 8.578 17 495.8965 7.4525

3 147.8876 7.0669 18 830.7741 2.2425

4 761.5075 9.3577 19 539.6555 3.7352

5 515.227 1.2934 20 870.7727 9.798

6 0 0 21 369.3071 3.7753

7 524.5606 7.3147 22 0 0

8 122.0792 8.4407 23 154.6799 7.5734

9 0 0 24 716.3914 6.8708

10 394.9041 2.9905 25 445.1295 6.992

11 0 0 26 920.9361 9.9797

12 890.885 8.1691 27 0 0

13 0 0 28 0 0

14 934.6399 9.0153 29 936.2426 7.3685

15 399.4201 4.1416 30 238.2213 9.6713
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Abstract. Unlike static optimization problems, the position, height and width of 
the peaks may vary with time instances in dynamic optimization problems 
(DOPs). Many real world problems are dynamic in nature. Evolutionary 
Algorithms (EAs) have been considered to solve the DOPs in the recent years. 
This article proposes a multi-population based Differential Evolution algorithm 
which uses a local mutation to control the perturbation of individuals and also 
avoid premature convergence.  An exclusion rule is used to maintain the 
diversity in a subpopulation to cover a larger search space. Speciation-based 
memory archive has been used to utilize the previously found optimal 
information in the new change instance. Furthermore the proposed algorithm 
has been compared with four other state-of-the-art EAs over the Moving Peak 
Benchmark (MPB) problem and a benchmarks set named Generalized Dynamic 
Benchmark Generator (GDBG) proposed for the 2009 IEEE Congress on 
Evolutionary Computation (CEC) competition. 

Keywords: Differential Evolution, local mutation, multi-population, dynamic 
optimization problems, speciation. 

1 Introduction 

Differential Evolution (DE) [1] is a very simple and popular algorithm for solving 
global optimization problems. It operates by means of computational steps which are 
similar to the EAs. However, unlike EAs, the members are perturbed by the scaled 
differences of the randomly taken and distinct vectors from the whole population. As 
it does not require any separate probability distribution, it is implicitly adaptive in this 
aspect. The popularity of DE is proliferating due to its simple structure, compactness, 
robustness and the parallel searching mechanism. 

Many real world problems are dynamic in nature. In case of DOPs, optimal 
solutions change with time. Hence we require algorithms that can detect the change in 
environment and should be able to track the optimum continuously [2]. A few 
dynamic real world problems are: price fluctuations, machine breakdown or 
maintenance, financial variations, stochastic arrival of new tasks etc. The main 
drawback of the conventional EAs under dynamic environment is loss of diversity, 
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i.e. premature convergence in a local peak which makes it unable to track the global 
optimum. So, in case of DOPs the main challenge is to maintain the diversity and as 
well as to produce high quality solutions by tracking the moving optima. 

Classical DE faces difficulties when applied to the DOPs. There is a tendency of DE 
individuals to converge prematurely into local optima [3, 4]. Hence, if a change in the 
environment occurs DE lacks the sufficient explorative power to detect the new 
optimum. Sometimes DE stops generating new optimal solution even without being 
trapped in local optima due to the stagnation effect. Even after the arrival of new 
solutions in the population, the algorithm does not progress towards optimal solution 
better than its current best. Researchers have developed several DE variants for 
tackling the difficulty of the dynamic optimization problems. 

In this article the authors have proposed a multi-population based DE where 
mutation is performed using the individuals that belong to a particular subpopulation. 
This local mutation helps to avoid the premature convergence of the population 
individuals and also maintain the fine searching ability. An exclusion rule is also used 
to maintain the diversity in a particular subpopulation thereby covering a wide search 
range in the problem landscape. A test individual is used to detect the change in 
environment. At every generation fitness of this test individual is evaluated. If the 
fitness in a current generation does not match with the previous one, we can say that a 
change in environment occurred. To adapt into the new environment, a speciation 
based memory archive has been used that contains better solutions from the previous 
environment. From now on, our algorithm will be called as MLDES (multipopulation-
based locally mutated differential evolution with speciation archive). 

The rest of the paper is organized as follows: Section 2 contains the basic DE 
framework and overview of related works in EAs applied in DOPs is given. The 
structural components of our proposed algorithm MLDES is briefly described in Section 
3. Experimental setup is discussed in Section 4 and the results obtained on the 
considered benchmarks are provided in Section 5. The working mechanism of our 
proposed algorithm is elucidated in Section 6. The paper is concluded in Section 7. 

2 Scientific background and Related Works 

2.1 Differential Evolution Framework 

The basic DE framework proposed by Storn and Price [1] can be outlined in the 
following steps— 

1) Initialization 
The preliminary step involves the creation of NP members that represent the 

tentative solution to an objective function. As the iteration proceeds, these D-
dimensional vectors (population members) represented by- 

{ } { },1 ,2 ,3 ,, , ,...,   1,2,3,...,
G G G G G

i i i i i DX x x x x i Np= ∇ ∈


 where G {0, 1,.., Gmax} 

are improved upon its existing values.  
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The initial trial solutions can be represented as- 

( ) [ ]0
, min, max, min,   1,i j j j jx x rand x x j D= + × − ∇ ∈                 (1) 

where rand is a random number sampled independently from uniform distribution in 

the range [0,1] and min, jx and max, jx are the lower and upper bound of jth dimension.  

2) Mutant Vector Generation: Mutation 

The mutation operator, inspired from the dynamics of gene-tic materials in living 
organisms, which propels the members towards different regions of search space by 
creation of new individuals from a stochastically selected sample of the population. 
Given below are some mutation techniques used in this paper for integrating with our 
approach: 

1 DE/rand/1—     ( )1 2 3
G G G G
i r r rv x F x x= + × −                       

(2) 

2 DE/best/1—     ( )1 2
G G G G
i best r rv x F x x= + × −                      

(3) 

3 DE/current-to-best/1—     ( )1 2
G G G G G G
i i best i r rv x F x x x x= + × − + −            (4) 

4 DE/current-to-rand/1— ( ) ( )1 2 3
G G G G G G
i i r i r rv x F x x F x x= + × − + × −        (5) 

5 DE/rand/2— ( ) ( )1 2 3 4 5
G G G G G G
i r r r r rv x F x x F x x= + × − + × −                      (6) 

In the above notations, the indices r1, r2, r3, r4 and r5  are mutually exclusive 
members with respect to the base vector. The scaling factor parameter F controls the 
degree of positional modification. Literature proposes that it should be limited to the 
range [0, 2]. Careful tuning of F is a prerequisite for successful optimization of a 
problem and it is advisable to limit its value in the range [0.4, 0.95]. 

3) Crossover: Generation of Offspring Vector 

Recombination of genetic materials ensures diversity in a population. This is 
mapped in DE through crossover operator. Two predominant modes are—binomial 
and exponential  crossover. The binomial crossover is used in our work and in this 
model a uniform number sampled independently in the range (0, 1) and is compared 
against the value of control parameter crossover rate CR. If it is less than CR, new 
genetic material from the mutant individual is inserted in the corresponding component 
of the offspring vector U otherwise the parent gene is included. The method is given 
below. 

, ,

, ,
, ,

  if  or 

  otherwise
j i G

j i G
j i G

v rand Cr j jrand
u

x

≤ == 


                                    (7) 

The crossover rate CR also affects the performance of DE. A high value is preferred 
for functions exhibiting variable link-ages while a low value is ideal for separable 
functions. 
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4) Fitness-proportionate Selection 

The natural process of selection that ensures the fittest members of the population 
survive after biological evolution is simulated by a fitness proportionate selection 
between the new offspring and the parent individual. The less fit individual is replaced 
by the fitter counterpart. The selection process is carried out as (minimization)— 

,, ,
, 1

, ,,

 if   ( ) ( )

 if   ( ) ( )

i Gi G i G
i G

i G i Gi G

U f U f X
X

X f U f X
+

 ≤= 
>

  


                                     (8) 

2.2 EAs for DOPs – A Brief Overview 

In 1966, the first attempt was taken for solving DOPs using EAs [5]. Since late 1980s, 
it started to attract several researchers and results a huge increase in the number of 
publications in this area. Comprehensive surveys on the adaptation and application of 
EAs for tackling DOPs can be found in [2, 7, 8]. A number of articles to solve DOPs 
using Genetic Algorithm (GA) have published by the researchers [8-10]. Besides GAs, 
swarm-intelligent algorithms like particle swarm optimization (PSO) and artificial bee 
colony (ABC) algorithms have also earned a lot of interest in solving DOPs [12-14]. 
Since late 1990s, DE [15-18] has started to get attention from DOP researchers due to 
its parallel searching procedure, and the capability of providing better exploration-
exploitation trade off. Mendes and Mohais proposed DynDE [16]. Angeria and 
Santosh presented Trigonometric Differential Evolution (TDE) [17]. Many researchers 
have also tried to hybridize DE with other state-of-the-art EAs. Lung and Dumitrescu 
proposed CESO [18], where two collaborative populations were used; one evolves 
according to DE and other evolves with a PSO algorithm. 

3 MLDES Algorithm 

In this section the proposed algorithm has been described along with its all salient 
features. 

3.1 Local Mutation 

The population is initialized with a structure of different subpopulations to maintain a 
larger diversity. Now in a particular subpopulation, mutation phase is performed. In 
this paper we have introduced a new mutation scheme to enhance the diversity 
throughout the population and also generate quality solutions.  

The mutant vector is formed by a base vector, a different vector and a unit vector 
formed by the Gaussian random number. Base vector is the current individual here. 
The difference vector is formed by the neighborhood concept. Here we have taken the 
difference between the current individual and best individual in the neighborhood with 
respect to the current individual. In this case the scaling factor is varied adaptively. 
During the generation process of the mutant vector the scale factor is independently 
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generated for each dimension of each differential vector. The unit vector part will be 
formed by the Gaussian random number. Scaling factor for this part will be determined 
by the average difference of the dimension wise gap between the current individual and 
the best individual of the subpopulation where the current individual exists. 

The mutation scheme can be expressed as: 

( ) ˆG G G G
i best imutV X F X X d N= + × − + ×

   
                              (9) 

Here G
iX


is the current individual of Gth generation. 

G
bestX


is the best vector in the 

neighborhood with respect to the current vector. It’s the vector within the 
corresponding subpopulation for which ( ) ( )( )1

G G
k i ikf X f X R−

 
 ( 1, 2,...,k M=  where 

M = Number of individuals in the subpopulation and )k i≠ is maximum. Here Rik is 

the Euclidean distance between 
G
iX


and

G
kX


. In this article we aim at elevating F 

whenever a particle is situated far away from the favourable region where the 
suspected optima lies, i.e. the fitness value of the particle differs much from the best 
solution value. On the other hand we should reduce F whenever the objective function 
value of the particle nears the best solution. These particles are subjected to lesser 
perturbation so that they can finely search the surroundings of some suspected optima. 
The scheme may be outlined as: 

( )
i

i
i f

f
FFFF

Δ+
Δ

⋅−+=
1minmaxmin

     

(10) 

where iF represents the value of the scale factor for the ith target vector and 

)()( bestii XfXff


−=Δ  . Fmin  and Fmax  are the lower and upper bounds of F set 

to 0.2 and 0.9 respectively. As clear from equation (10), Fi depends on the 

factor
i

i

f

f

Δ+
Δ

1
.  The factor 

i

i

f

f

Δ+
Δ

1
 can be modified to ( ) 1

1 1 if
−+ Δ . For a target vector 

if ifΔ is large 1 ifΔ decreases, so the factor ( ) 1
1 1 if

−+ Δ increases, so Fi gets 

enhanced and the particle will be subjected to larger perturbation so that it can jump to 
a favourable region in the landscape. For the best individual 0=Δ if , so Fi will be 

equal to Fmin (0.2) which is evident because the best vector is required to undergo a 
lesser perturbation so that it can perform a fine search within a small neighbourhood of 
the suspected optima. Thus the particles which are distributed away from the current 
fittest individual have large Fi values and keeps on exploring the search space, 
maintaining sufficient diversity. 

In the second part N̂ is the unit vector generated by Gaussian random number with 

zero mean and unity variance. Let a vector N


formed by the Gaussian random 

numbers. Then N̂ N N=
 

where N


is the magnitude of N


. Here the scaling 
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factor, ( ), ,

1

D

best j i j

j

d L X D
=

= −
 

. ,best jL


is the jth dimension of the best vector in the 

corresponding subpopulation. D is the dimensionality of the problem. 
Here, due to the normal random number generated unit vector, every individual will 

be perturbed in a random direction by an amount of scale parameter named d. For 
fusion of the two parts in the mutation process a better exploration exploitation trade 
off has been obtained. 

3.2 Exclusion Principle 

In DOPs, it is very important that the population members are evenly distributed in the 
search space. Otherwise it will lose exploration capability. In order to maintain the 
population diversity we have developed an exclusion principle to maintain the 
population individuals at different basins of attraction. 

The Euclidean distance between the best individuals of all the subpopulations are 
calculated at each generation. If the distance between a pair of subpopulation best 
individuals lies below a certain threshold then the whole subpopulation, which contain 
comparatively worse best individual, is reinitialized. Now the threshold is calculated 
according to the following rule: 

Let the search range is Z and the problem is D dimensional. There are SP numbers 
of subpopulations. Then the threshold will be calculated as: / ( * )threshold Z SP D≤ .  

3.3 Environment Change Detection 

An efficient dynamic optimizer must detect the change of environment effectively. 
Here in this algorithm change detection in environment can be done by a test solution. 
At the very beginning of the algorithm a test solution is placed which does not take 
part in the optimization process. But at every generation the fitness value of the test 
solution is calculated. Whenever there is a change in the fitness value from the 
previous generation, it can be said that a change of environment has taken place and 
the algorithm needs to take necessary actions. 

3.4 Speciation-Based Memory Archive 

In most of the dynamic optimization problems the new environment is similar to the 
old one to a certain extent. So it is very natural that an algorithm will perform better 
after detecting an environment change if good solutions can be preserved in a memory 
archive. When change detection occurs the proposed algorithm does not reinitialize the 
entire population. Some of the population members are conserved for the following 
environment. Hence for storage of the individuals, the whole population is partitioned 
into a number of species. In each species there must be a species seed. Now let us 
consider there is m number of individuals in each of the species with a species seed 
which provide maximum fitness value within a stipulated species. No species radius is 
taken for partition. Rather the nearest neighborhood concept is used. For simplicity we 
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have taken m same as subpopulation number. In each of the species, the species seed 
and half of the individuals taken randomly are left unchanged in the archive for the 
following environment and the rest are reinitialized randomly in the search space. The 
combination of half newly generated member and half species-based individuals from 
previous environment constitutes the new population. The detailed algorithmic 
construction of the speciation-based memory archive can be given by Algorithm 2. 

The pseudo code of the entire algorithm is given in Algorithm 3. 

 

4 Experimental Setup 

For experimentation we have considered two sets of benchmark problems. 

4.1 Moving Peaks Benchmark (MPB) Problem 

Moving Peak Benchmark (MPB) problem proposed by Branke [19]. It is a widely 
known in dynamic optimization problem (DOP).The MPB problem allows us to alter 
the location, height and width of peaks. The default configuration is given in Table 1. 

4.2 Generalised Dynamic Benchmark Generator (GDBG) 

CEC 2009 benchmark problems for dynamic optimization use the generalized dynamic 
benchmark generator (GDBG) proposed in [20] that constructs dynamic environments 
for the location, height and width of the peaks. Instead of the shifting method as in the 
MPB, a rotation method was introduced in it. The GDBG system poses a greater 
challenge due to this rotation method, larger number of local optima and the higher 
dimensionalities. 

4.3 Algorithms Compared 

For comparison of the proposed algorithm we have considered 4 other algorithms  
which are: DynDE [16], dopt-aiNET [21] CPSO [22] and DASA [23]. For each of  
the algorithms taken for comparison, best parametric setup is employed as reported  
in paper. 

Algorithm 2. Speciation-Based Memory Archive: Reinitialization Of Population After 
A Change In Environment 

Input: Population of the previous environment 
1 Sort all the individuals in the population in the ascending order of their fitness 

values. 
2 for i =1: no_of_species 
3 Set the best unprocessed individual as species seed. 
4 Find the nearest m individuals of the species seed and set them as one 

species corresponding to the above mentioned species seed. 
5 Remove the processed members from the current population. 
6 Randomly pick m/2 individuals and reinitialize them within the search space. 
7 df
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4.4 Parametric Setup 

For our algorithm we have used population size Np equal to 100. The crossover 
probability is set to 0.9. Total number of subpopulations is always kept at 10. The 
operating platform used for simulation has the following configurations: 

− Programming Language: MATLAB R2010a. 
− Operating System: Windows 7 Home Premium. 
− Processor: Intel (R) Core™ i5 CPU 760@ 2.80 GHz 
− Installed Memory: 2.0 GB. 
− System Type: 32-bit Operating System. 

For the MPB problem, we have considered 20 environmental changes in a single 
run and 25 such runs were conducted. For GDBG, for every test instance, 60 changes 
were considered in each run and 25 such runs were conducted. The results given in 
this paper are the means and standard deviation values of 25 independent runs. 

Algorithm 3. MLDES Algorithm 

begin 

1 Initialize a population of Np individuals by means of SP subpopulations randomly. Hence number 
of individual reside in a subpopulation is, ( / )n Np SP= . 

2 Evaluate the population members and find the best member as gbest. 

3 Insert a test solution in the search space and calculate its fitness value. 

4 Set threshold as given in III-B. 
5 gen ← 1 

6 while the termination criterion is not satisfied 

7  for k=1:SP 

8   for i=1:n 

9 Generate the mutant vector according to equation (9). 

10 Crossover operation is performed according to (7). 

11 Then fitness proportionate selection is done as given in (8) considering minimization problem. For 

a maximization problem the relational operator will be flipped. 

12   end for 

13  Find the best member in the subpopulation. 

14  end for 

15 Check the best individuals’ pair wise distance of the subpopulations. If any falls below threshold, 

reinitialize the corresponding subpopulation which contains comparatively less fit subpopulation-

best. 

16 Evaluate test solution. 
17    If 

1(  ) (  )t tf test solution f test solution −≠  or   
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5 Experimental Results 

In this section we have provided the comparison results of MLDES with other peer 
algorithms in two set of benchmarks considered. 

5.1 Experimental Study on MPB Problems 

The comparison has been undertaken on various configurations of MPB problems. 
First, the result will be provided for different number of peaks and also with different 
dimensionality. The dimensionality is set at {5,10}D ∈ and the number of peaks is 

set, {1,10,100}p ∈ . The results are given in Table 2. Rest of the parameters is kept 

fixed at default values as mentioned in Table 1. In all the cases our algorithm 
managed first rank. Next, the shift severity will be varied keeping all other parameters 
at default values. Results of different algorithms are given in Table 3. The effect of 
varying change frequency is shown in Table 4. Here the change frequency E is taken 
from {3000, 5000, 10000}. In all the three cases the proposed algorithm has 
outperformed other four algorithms. 

However, an experiment has also been conducted to study the comparative 
performance of different algorithms for different values of correlation coefficient. Other 
parameters of the MPB problem are kept fixed at default values. The means and standard 
deviations of the offline error values for all the algorithms are given in Table 5. As we 
can see that in all the cases, our algorithm has outperformed other four algorithms. 

5.2 5.2 Experimental Study on GDBG System 

GDBG system is more challenging due to the rotation of peaks along with the change 
of the location, height and width of the peaks. There are total 49 change instances. To 
measure the performance of the considered algorithms we have taken the metric: 
offline error and standard deviation. Offline error can be measured by: 

,
1 1

1 M N
last

off m n
m n

e e
M N = =

=
×                                                   (11) 

Table 1. Default settings for the MPB Problem 

Parameter Value 
Number of Peaks 
Change Frequency (E) 
Height severity 
Width severity 
Shift length s 
Number of Dimensions D 
Correlation coefficient λ 
Search Range S 
H 
W 
Initial Height I  

10 
5000 
7.0 
1.0 
1.0 
5 
0 
 [0, 100] 
[30.0, 70.0] 
[1, 12] 
50.0 



 Multipopulation-Based Differential Evolution 231 

 

( ) ( ),1 1
1

M N last
m n offm n

SD e e M N
= =

= − × −                                  (12) 

where M and N are the total number of runs and total number of environment changes 
at each run respectively. 

,
last
m ne is the error at the last generation. 

 

Table 2. OFFLINE ERROR AND STANDARD DEVIATION FOR VARYING VALUES OF D AND P 

D, p DASA DynDE dopt-aiNET CPSO 
MLDE-

S 

5,1 
4.89 

(0.07) 

5.05 

(0.08) 

4.88 

(0.07) 

1.54 

(0.07) 

1.11 

(0.07) 

5,10 
1.70 

(0.06) 

1.76 

(0.06) 

1.75 

(0.05) 

1.80 

(0.06) 

1.35 

(0.07) 

5,100 
1.69 

(0.05) 

2.55 

(0.08) 

1.76 

(0.06) 

1.92 

(0.06) 

1.65 

(0.08) 

10,1 
5.12 

(0.07) 

5.32 

(0.08) 

5.02 

(0.07) 

2.07 

(0.06) 

1.88 

(0.08) 

10,10 
2.31 

(0.07) 

3.19 

(0.09) 

2.35 

(0.06) 

2.39 

(0.06) 

2.01 

(0.09) 

10,100 
2.47 

(0.08) 

3.38 

(0.09) 

2.59 

(0.07) 

2.51 

(0.07) 

2.25 

(0.08) 

Table 3. OFFLINE ERROR AND STANDARD DEVIATION FOR VARYING S 

S DASA DynDE dopt-aiNET CPSO 
MLDE-

S 

0 
0.98 

(0.07) 

1.15 

(0.06) 

1.00 

(0.06) 

0.97 

(0.06) 

0.79 

(0.06) 

1 
1.70 

(0.06) 

1.76 

(0.06) 

1.75 

(0.05) 

1.80 

(0.06) 

1.35 

(0.07) 

2 
2.17 

(0.07) 

2.27 

(0.06) 

2.15 

(0.06) 

2.23 

(0.06) 

1.91 

(0.08) 

3 
2.75 

(0.07) 

2.70 

(0.06) 

2.76 

(0.08) 

2.83 

(0.08) 

2.34 

(0.07) 

4 
2.96 

(0.07) 

3.29 

(0.07) 

2.85 

(0.08) 

3.09 

(0.09) 

2.53 

(0.08) 

5 
3.00 

(0.08) 

4.32 

(0.08) 

2.90 

(0.08) 

3.17 

(0.09) 

2.68 

(0.11) 

6 
3.30 

(0.08) 

4.55 

(0.09) 

3.37 

(0.08) 

3.45 

(0.09) 

3.07 

(0.10) 
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Table 4. Offline ERROR AND STANDARD DEVIATION OF ALGORITHMS FOR VARYING CHANGE 

FREQUENCY (E) 

E DASA DynDE dopt-aiNET CPSO 
MLDE-

S 

3000 
2.42 

(0.13) 

2.39 

(0.17) 

2.40 

(0.13) 

2.37 

(0.13) 

2.09 

(0.10) 

5000 
1.70 

(0.06) 

1.76 

(0.06) 

1.75 

(0.05) 

1.80 

(0.06) 

1.35 

(0.07) 

10000 
0.97 

(0.06) 

1.33 

(0.04) 

0.98 

(0.05) 

0.99 

(0.05) 

0.88 

(0.05) 

 

The mean and standard deviations of offline errors of the 49 instances is given in 
Table 6. Our proposed algorithm has outperformed the other four in almost all the 
cases except at T3 of F1 with number of peaks 10, F4-T4, F5-T4 and F6-T2. In the 
rest 46 cases our algorithm has managed to get first position. 

6  Working Mechanism of MLDES 

In this section the working mechanism MLDES will be investigated on the MPB 
problem. In Fig. 1, offline error is plotted against number of function evaluations. As 
we can see that the curve is decreasing in nature in a specific environment. Whenever 
an environmental change occurs, it jumps to a larger value because a part of the 
population is reinitialized as mentioned in the algorithm description. 

 

 

 
Fig. 2. Variation of population diversity 
w.r.t. function evaluations 

 
Another important prospect of any DOP optimizer is to maintain the population 

diversity. The ‘distance-to-average point’ measurement [21] for the diversity of a 
particular population at instant t can be given as: 

( ) ( )2

1 1

1
( )

Np D

ij j
i j

div P t x x
Np L = =

= −
×                                     (13) 

 
 

Fig. 1. Variation of Offline Error with number  
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Table 5. AVERAGE AND STANDARD DEVIATION OF ERRORS OBTAINED BY ALL THE ALGORITHMS IN 

GDBG BENCHMARK 

Test 
 

Functions 
Algorithm Error T1 T2 T3 T4 T5 T6 T7 

F1 
(Number 

of 
peaks 10) 

DASA 
Average 

(Std) 
0.1854 

(1.2501) 
4.1802

(9.0716) 
6.3706

(10.7128) 
0.4873

(1.9504) 
2.5485

(4.8002) 
2.3442 

(8.6685) 
4.8452 

(8.9662) 

DynDE 
Average 

(Std) 
0.0732 

(2.9567) 
2.5567

(8.4313) 
5.4245

(9.2485) 
0.1263

(0.9426) 
1.5651

(4.6461) 
1.3115 

(6.2511) 
4.1137 

(8.5249) 

dopt-aiNET 
Average 

(Std) 
0.1353 

(1.0061) 
5.8667

(10.2772) 
4.2545

(8.1828) 
5.3563

(8.9414) 
4.4356

(5.5545) 
9.9407 

(15.8214) 
4.2110 

(8.6873) 

CPSO 
Average 

(Std) 
0.0351 

(0.4262) 
2.7185

(6.5230) 
4.1315

(8.9947) 
0.0944

(0.7855) 
1.8698

(4.4910) 
1.1569 

(4.8054) 
4.5401 

(9.1194) 

MLDES 
Average 

(Std) 
0.0006 

(0.0005) 
1.0113

(4.4738) 
12.8764
(5.2314) 

0.0194
(0.0123) 

1.1381
(0.6126) 

1.0069 
(0.4785) 

3.9557 
(4.1185) 

F1 
(Number 

Of 
Peaks 50) 

DASA 
Average 

(Std) 
0.4425 

(1.3911) 
4.8661

(7.0052) 
8.4247

(9.5682) 
0.5853

(1.0901) 
1.1832

(2.1818) 
2.0728 

(5.9719) 
7.8412 

(9.0558) 

DynDE 
Average 

(Std) 
0.3286 

(1.5224) 
4.6547

(6.3453) 
6.4641

(9.3523) 
0.1412

(0.5914) 
1.0162

(2.6489) 
0.9859 

(4.8631) 
6.2513 

(9.0651) 

dopt-aiNET 
Average 

(Std) 
0.3644 

(0.9725) 
4.7485

(6.7580) 
5.2531

(6.6830) 
2.6565

(5.9773) 
2.8641

(4.1579) 
6.8330 

(11.8790) 
4.8172 

(6.4528) 

CPSO 
Average 

(Std) 
0.2624 

(0.9362) 
3.2792

(5.3034) 
6.3198

(7.4420) 
0.1255

(0.3859) 
0.8481

(1.7790) 
1.4821 

(4.3932) 
6.6467 

(7.9411) 

MLDES Average 
(Std) 

0.0375 
(0.0045) 

2.3342
(4.3863) 

4.8374
(6.0813) 

0.0878
(0.1432) 

0.6612
(1.4021) 

0.0594 
(2.8765) 

4.1852 
(6.8432) 

F2 

DASA 
Average 

(Std) 
3.3017 

(8.7885) 
25.6105

(83.2124) 
18.9904

(67.8204) 
1.4512

(3.8311) 
49.6022

(112.4132) 
2.1182 

(5.2912) 
3.8752 

(8.1285) 

DynDE Average 
(Std) 

1.3627 
(5.0315) 

13.0179
(48.2532) 

11.9214
(45.7054) 

0.7842
(2.2248) 

20.7842
(64.5341) 

2.1845 
(3.9643) 

2.4235 
(7.1031) 

dopt-aiNET 
Average 

(Std) 
0.0984 

(0.0291) 
8.1209

(14.3832) 
17.9979

(62.2259) 
1.0652

(2.8269) 
101.384

(134.5180) 
6.5192 

(13.8172) 
3.7385 

(7.9542) 

CPSO 
Average 

(Std) 
1.2475 

(4.1780) 
10.1055

(35.0601) 
10.2725

(33.4527) 
0.5664

(2.1371) 
25.1424

(64.2500) 
1.9871 

(5.2175) 
3.6510 

(6.9274) 

MLDES 
Average 

(Std) 
0.0314 

(0.1745) 
7.3337

(9.4355) 
7.1561

(9.4362) 
0.1418

(1.8754) 
19.7156

(50.5215) 
0.9154 

(3.0713) 
2.1143 

(9.2347) 

F3 

DASA 
Average 

(Std) 
15.7025 

(67.1131) 
824.389

(204.0035) 
688.358

(298.0124) 
435.488

(441.2120) 
697.210

(315.4223) 
626.1120 

(460.6211) 
433.252 

(380.2234) 

DynDE 
Average 

(Std) 
21.2512 

(73.6549) 
792.457

(255.6163) 
635.614

(342.7753) 
341.701

(419.8116) 
749.265

(280.9181) 
519.550 

(438.2467) 
415.324 

(390.3450) 

dopt-aiNET 
Average 

(Std) 
810.830 

(66.1085) 
1078.70

(64.1245) 
1073.41

(64.9950) 
1031.54

(274.7490) 
1023.90

(57.8713) 
1186.94 

(292.2960) 
1061.33 

(110.0980) 

CPSO 
Average 

(Std) 
137.527 

(221.0011)
855.139

(161.0024) 
765.966

(235.8834) 
430.620

(432.2391) 
859.704

(121.5581) 
753.039 

(361.7855) 
653.703 

(334.4892) 

MLDES 
Average 

(Std) 
11.3834 

(39.1034) 
547.153

(234.0025) 
596.344

(304.3887) 
77.667

(112.613) 
533.714

(48.8842) 
328.114 

(244.8822) 
197.445 

(264.7456) 

F4 

DASA 
Average 

(Std) 
5.6001 

(26.5331) 
65.6105 

(160.0281) 
53.6158

(140.0155) 
3.8512

(4.2258) 
118.212

(178.2506) 
2.9812 

(7.5942) 
27.4432 

(90.2513) 

DynDE 
Average 

(Std) 
1.8616 

(5.7531) 
39.5923

(98.6312) 
23.4921

(94.5314) 
0.9691

(3.1723) 
44.6713

(121.7162) 
1.5624 

(6.2149) 
6.5213 

(26.5951) 

dopt-aiNET 
Average 

(Std) 
1.4227 

(4.5459) 
122.440

(201.627) 
98.6688

(196.6950) 
4.2632

(9.7255) 
304.566

(203.2430) 
12.6491 

(55.8367) 
52.9010 

(130.593) 

CPSO 
Average 

(Std) 
2.6771 

(7.0552) 
37.1512

(99.4352) 
36.6711

(97.1805) 
0.7926
(2.775) 

67.1702
(130.3059) 

4.8814 
(15.3965) 

12.7924 
(19.2105) 

MLDES 
Average 

(Std) 
1.3986 

(5.0023) 
10.9394

(32.8612) 
2.0020

(4.1124) 
1.0823

(3.8752) 
55.2980

(94.6889) 
1.5231 

(5.5465) 
10.0413 
(8.9944) 

F5 

DASA 
Average 

(Std) 
0.9551 

(3.4310) 
2.0199

(4.0504) 
0.9494

(3.3135) 
0.3928

(1.6184)
2.3052

(6.3610) 
0.4671 

(1.7346) 
1.1128 

(3.7620) 

DynDE Average 
(Std) 

2.9929 
(6.8831) 

2.9481
(4.7179) 

2.9125
(5.3886) 

1.3796
(2.4199) 

8.4378
(12.1132) 

2.3049 
(3.6182) 

0.5214 
(0.7135) 

dopt-aiNET 
Average 

(Std) 
40.8943 

(221.212) 
34.4531

(119.896) 
34.9420

(115.025) 
120.637

(293.542) 
943.223

(633.318) 
480.305 

(610.801) 
219.461 

(427.817) 

CPSO 
Average 

(Std) 
1.8559 

(5.1812) 
2.8791

(6.7875) 
3.403

(6.4480) 
1.0954

(4.8651) 
7.9869

(13.8170) 
4.0535 

(8.3719) 
6.5278 

(22.8129) 

MLDES 
Average 

(Std) 
0.1784 

(2.5762) 
2.0393

(3.8845) 
0.4887

(2.1525) 
0.7321

(2.3456) 
1.0742

(3.3417) 
0.2145 

(0.9843) 
0.2672 

(0.6142) 

F6 

DASA 
Average 

(Std) 
8.8752 

(13.319) 
37.128

(122.0147) 
26.7341

(98.4018) 
9.7442

(22.0541) 
37.9102

(118.0146) 
13.3481 

(57.4802) 
17.7422 

(36.7159) 

DynDE 
Average 

(Std) 
6.0471 

(11.0458) 
30.2205

(62.2093) 
19.3782

(67.3585) 
8.8731

(26.6683) 
43.3514

(136.9062) 
12.1784 

(25.2617) 
15.3644 

(21.0744) 

dopt-aiNET 
Average 

(Std) 
20.4434 

(79.3230) 
391.195

(395.4350) 
456.443

(405.0380) 
83.9698

(220.1770) 
845.862

(251.208) 
482.201 

(434.421) 
372.470 

(394.6628) 

CPSO Average 
(Std) 

6.7254 
(9.9747) 

31.5738
(63.5115) 

27.1358
(83.9873) 

9.2742
(24.2344) 

71.5704
(160.3211) 

23.6757 
(51.5521) 

32.5842 
(76.9105) 

MLDES 
Average 

(Std) 
4.8973 

(11.6342) 
38.2158

(58.7734) 
14.1145

(32.1304) 
6.1392

(10.9745) 
13.5174

(57.3466) 
6.6756 

(8.0045) 
12.4414 

(20.7219) 
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where Np is the total number of population in a D dimensional space. L is the length 
of longest diagonal in the search space and 

jx is the jth dimensional component of the 

average vector. Variation of diversity with number of function evaluations is given in 
Fig. 2. As diversity diminishes, due to use of exclusion principle, diversity will be 
enhanced which is necessary for performing in dynamic environments. For using this 
speciation based memory archive after environment change detection, good quality 
solutions will be preserved and will be used in the ongoing generations. It enhances 
fine searching ability. In the default settings of MPB, the offline error with using 
speciation-based memory archive is 1.35 whereas without it is 1.94. 

7 Conclusion 

This paper lays down the foundation of a multipopulation model of DE for tackling 
dynamic optimization problems. The main crux of MLDEs is the synergism of local 
mutation strategy with the speciation memory archive. The local mutation scheme 
utilizes the concept of neighborhood and uses normal distribution to generate a vector 
that helps to balance exploration and exploitation in DE. As a diversity check, the 
exclusion principle is used to prevent wastage of FEs concerned with converged 
solutions. The advantage of the speciation based memory is the preservation of 
promising solutions of past environments which may serve as ideal search points in 
the changed environment. The proposed MLDEs technique is a novel approach to 
successfully tackle dynamism. The speciation memory archive can be extended to the 
field of dynamic niching. It can used in conjunction with standalone niching 
algorithms for multiple peak detection in dynamic environments. The authors are 
presently working on it as ongoing research interest. 
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Abstract. It is essential to estimate the Channel and detect symbol in
multiple-input and multiple-output (MIMO)-orthogonal frequency divi-
sion multiplexing (OFDM) systems. Symbol detection by applying the
maximum likelihood (ML) detector gives excellent performance but in
systems with higher number of antennas and greater constellation size,
the computational complexity of this algorithm becomes quite high. In
this paper we apply a recently developed modified Differential Evolu-
tion (DE) algorithm with novel mutation, crossover as well as parameter
adaptation strategies (MDE pBX) for reducing the search space of the
ML detector and the computational complexity of symbol detection in
MIMO-OFDM systems. The performance of MDE pBX have been com-
pared with two classical symbol detectors namely ML and ZF and two
famous evolutionary algorithm namely SaDE and CLPSO.

1 Introduction

Orthogonal frequency division multiplexing (OFDM)[1] is a standard multi-
carrier modulation in high data rate wireless as well as wired communication
systems. OFDM has the potential to increase spectral efficiency. This attribute
has recently attracted much attention to OFDM so that data rate transmis-
sion can be increased considerably in modern communication systems.Recent
communication systems like WLAN, HIPERMAN and 4G wireless cellular sys-
tems [2] have multiple-input, multiple-output (MIMO)technology incorporated
in them. Combining OFDM with such MIMO technology has resulted in a sig-
nificant capacity increase in such systems. For coherent demodulation of the
signal, we need channel estimation and symbol detection at the receiver of these
systems.A number of algorithms, such as the maximum likelihood (ML) and
zero forcing (ZF) algorithms [3,4], have been proposed to detect symbols in
OFDM. The implementation of the ZF algorithm is not complex and it is not
computationally tedious but it fails to perform satisfactorily in fast-fading and
time-varying environments. For these environments we therefore use the ML al-
gorithm which performs excellently in these cases. The primary disadvantage of

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 236–247, 2013.
c© Springer International Publishing Switzerland 2013
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the ML algorithm is its extremely high computational complexity. By computing
the Euclidean distance between the received and actual symbols for all possible
combinations of the transmitted symbols ,an exhaustive search of the candidate
symbol vector on each subcarrier is made. As the number of transmitter and
receiver antennas increase in the constellation, the search space grows exponen-
tially. So the algorithms computational complexity becomes intensive [5]. There
is substantial literature which focuses on the area of reducing the complexity
and obtaining an optimal solution from the ML algorithm, which detects sym-
bols.Sphere decoders are used for ML detection of signals at the receiver end
for multi fading channels. [6] has used orthogonal matrix triangularization (QR
decomposition) with sort and Dijkstras algorithm for decreasing the computa-
tional complexity of these decoders. The multistage likelihood was presented in
[7] to calculate the Euclidean distance of the candidate symbol. In [8], the sphere
detector was proposed to have a polynomial computational reduction, but when
the search space is large, it takes much more computational time. So research
has focussed particularly in reducing the search space and decreasing the com-
putational complexity. So for channel estimation and symbol detection heuristic
approaches such as the genetic algorithm (GA) and particle swarm optimiza-
tion (PSO) are implemented with the ML principle for their ability to reduce
the computational burden by efficiently shrinking the search space.In pulse am-
plitude modulation-based communication systems (PAM) the GA [9] and PSO
[10] strategies were used for channel estimation and data detection. A memetic
differential evolution (DE) algorithm was proposed for minimum bit error rate
detection in multiuser MIMO systems in [13]. DE [11] was also employed by [12]
to reduce the computational complexity of symbol detectors in MIMO-OFDM
system. In this paper, we employ a recently developed variant of DE called
MDE pBX [13], which introduced a new group-based mutation strategy, novel
schemes for the adaptation of control parameters scale factor (F ) and crossover
rate (Cr), and also an exploitative crossover strategy (p-best crossover). The re-
sults of MDE pBX has been compared to ML, ZF, SaDE [14] and CLPSO [15].
The results clearly indicate that MDE pBX can obtain high quality results bet-
ter than ZF, SaDE and CLPSO under various simulation strategies. Moreover,
the results obtained by MDE pBX are very close to the optimal results provided
by ML algorithm, but MDE pBX is computationally much less intensive than
ML especially for larger systems.

2 Theory

2.1 MIMO-OFDM System Model

The simplified block diagram of the MIMO-OFDM system is shown in Figure
1. For this system, we consider the Ntx transmit, Nrx receive antennas, K sub-
carriers, n OFDM symbols. Considering the modulation type a vector of the
information data is mapped onto complex symbols. The transmitted symbol
vector is expressed as:



238 A. Sen, S. Roy, and S. Das

IFFT

IFFT

IFFT

Tx #1

Tx #2

Tx #iM
ap

pi
ngInput 

Bits

FFT

FFT

FFT

Sy
m

bo
l 

D
et

ec
tio

n

D
em

ap
pi

ng

Output 
Bits

Rx #1

Rx #2

Rx #j

S1(n,k)

Si(n,k)

Y1(n,k)

Yj(n,k)

.

.

. .
.
.

.

.

.

.

.

.

Fig. 1. Basic block diagram of MIMO-OFDM System

S[n, k] = [S1(n, k), ...., SNtx(n, k)]
T , k = 0, ...,K − 1, (1)

where Si(n, k) is the symbol that is transmitted at the nth symbol, kth sub-
carrier, and ith antenna, and [.]T is the transpose operation. By applying inverse
fast Fourier transform (IFFT), symbol vectors are turned into the OFDM sym-
bol:

sn[m] =
1√

KNtx

K−1∑
k=0

S[n, k]ej2πm/k, m = 0, .....,K − 1 (2)

Then we add the cyclic prefix (CP) to avoid inter-symbol interference (ISI).
The signal vectors are fed through the ith transmitter antenna. After removing
the CP from the received signal vector at the qth receiver antenna, the fast
Fourier transform (FFT) is taken as:

Y [n, k] =
1√
K

K−1∑
m=0

y[m]e−j2πm/K , n = 0, .....,K − 1 (3)

Next, the received signal vector can be expressed as:

Yq[n, k] =

Ntx∑
i=1

Hi[n, k]Si[n, k] +Wq[n, k] (4)

where Hi[n, k] is the channel impulse response vector and Wq[n, k] is the
additive white Gaussian noise [14].

2.2 Symbol Detection in MIMO-OFDM

The estimations of the data symbols are obtained by maximizing the following
metric:

S∗ = argmaxP (Y |S) (5)

Furthermore,the ML algorithm detects the symbols by minimizing the squared
Euclidian distance to target vector Y over the Ntx dimensional discrete search
set:

S∗ = argmin ||Y −HS||2 (6)
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All possible MNtx combinations of the transmitted symbols must be searched
for the optimal solution of the ML detection which increases the computational
complexity. Hence, we propose heuristic approaches in order to reduce the com-
putational complexity of the symbol detection in the MIMO-OFDM systems.

3 Differential Evolution

DE [11,16] is a simple real-coded evolutionary algorithm. It works through a
simple cycle of stages, which are detailed below.

3.1 Parameter Vector Initialization

DE searches for a global optimum point in a D-dimensional continuous hyper-
space. It begins with a randomly initiated population of NP D dimensional
real-valued parameter vectors. Each vector, also known as chromosome, forms
a candidate solution to the multi-dimensional optimization problem. We shall
denote subsequent generations in DE by G = 0, 1, ......Gmax. Since the param-
eter vectors are likely to be changed over different generations, we may adopt
the following notation for representing the ith vector of the population at the
current generation:

−→
X i,G = [x1,i,G, x2,i,G, .......xD,i,G] (7)

The initial population (at G = 0) should cover the entire search space as
much as possible by uniformly randomizing individuals within the search space

constrained by the prescribed minimum and maximum bounds:
−→
Xmin = [x1,min,

x2,min, ......., xD,min] and
−→
Xmax = [x1,max, x2,max, ......., xD,max]. Hence we may

initialize the jth component of the ith vector as:

xj,i,0 = xj,min + randi,j [0, 1).(xj,max − xj,min) (8)

where rand is a uniformly distributed number lying between 0 and 1 and is
instantiated independently for each component of the ith vector.

3.2 Mutation with Difference Vectors

After initialization, DE creates a donor vector Vin corresponding to each pop-
ulation member or target vector Xi,G in the current generation through mu-
tation. Three most frequently referred mutation strategies implemented in the
public-domain DE codes available online at http://www.icsi.berkeley.edu/storn/
code.html are listed below:

DE/rand/1 :
−→
V i,G =

−→
X ri1,G

+ F · (−→X ri2,G
−−→

X ri3,G
) (9)

DE/best/1 :
−→
V i,G =

−→
X ribest,G

+ F · (−→X ri1,G
−−→

X ri2,G
) (10)
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DE/target−to−best/1 :
−→
V i,G =

−→
X i,G+F ·(−→X ribest,G

−−→
X i,G+

−→
X ri1,G

−−→
X ri2,G

)

(11)
The indices ri1, r

i
2 and ri3 are mutually exclusive integers randomly chosen

from the range [1, NP ], and all are different from the index i. These indices
are randomly generated once for each donor vector. The scaling factor F is a

positive control parameter for scaling the difference vectors.
−→
X ri

best
,G is the best

individual vector with the best fitness in the population at generation G.

3.3 Crossover

To enhance the potential diversity of the population, a crossover operation comes
into play after generating the donor vector through mutation. The donor vector

exchanges its components with the target vector
−→
X i,G under this operation to

form the trial vector
−→
U i,G = [u1,i,G, u2,i,G, .......uD,i,G]. In this article we focus on

the widely used binomial crossover that is performed on each of the D variables
whenever a randomly generated number between 0 and 1 is less than or equal
to the Cr value. The scheme may be outlined as:

uj,i,G =

{
vj,i,G if randi,j [0, 1) ≤ Crorj = jrand

xj,i,G otherwise
(12)

where, as before, randi,j [0, 1) is a uniformly distributed random number, which is
called anew for each jth component of the ith parameter vector. jrandε1, 2, ......D

is a randomly chosen index, which ensures that
−→
U i,G obtains at least one com-

ponent from
−→
V i,G.

3.4 Selection

The next step of the algorithm calls for selection to determine whether the target
or the trial vector survives to the next generation, i.e., atG = G+1. The selection
operation is described as:

−→
X i,G+1 =

{−→
U i,G if f(

−→
U i,G) ≤ f(

−→
X i,G)−→

X i,G if f(
−→
U i,G) > f(

−→
X i,G)

(13)

where f(
−→
X ) is the objective function to be minimized. Therefore, if the new

trial vector gives an equal or lower value of the objective function, it replaces
the corresponding target vector in the next generation; otherwise, the target is
retained in the population.

4 The MDE pBX Algorithm

We describe MDE pBX and discuss the various features of the algorithm such as
the mutation scheme called DE/current-to-gr best/1, a p-best crossover scheme
in this section. We also coin the rules for adapting the control parameters F and
Cr in each iteration.



A Modified Differential Evolution in MIMO-OFDM System 241

4.1 DE/current-to-gr best/1

DE/current-to-best/1 is one of the widely used mutation schemes in DE. The
useful information of the best solution (with highest objective function value
for maximization problems) is incorporated in this algorithm. This results in
fast convergence by guiding the evolutionary search towards a specific point
in the search space.The algorithm may converge to a locally optimal point in
the search space due to its exploitative behavior and lose its global exploration
capabilities. To avoid this predicament, in this paper we propose a less greedy and
more explorative variant of the DE/current-to-best/1 mutation strategy termed
as DE/current-to-gr best/1.This utilizes the best vector of a dynamic group of
q% of the randomly selected population members for each target vector. Now
the population moves towards different points and explores the landscape much
better without getting attracted towards a specific point in the search space.
The new scheme may be formulated as:

−→
V i,G =

−→
X i,G + F · (−→X grbest,G −−→

X i,G +
−→
X ri1,G

−−→
X ri2,G

) (14)

where
−→
X grbest,G is the best solution of q% members randomly selected from the

present population whereas
−→
X ri1,G

and
−→
X ri2,G

are two randomly selected distinct
population vectors. Using the above technique, the target solutions are prevented
from being attracted towards the same best position found so far by the entire
population. This helps in avoiding premature convergence at local optima.

4.2 The p-best Crossover

The crossover operation in MDE pBX is named p-best crossover where for each
donor vector, a vector is randomly chosen from the p top-ranking individuals
(in accordance with their objective function values) in the current population
and then normal binomial crossover is carried out between the donor vector and
the randomly selected pbest vector to produce the trial vector of same index.
Fast convergence is ensured by means of this innovative crossover scheme, where
the information contained in the top ranking individuals of the population is
incorporated into the trial vector. The parameter p is reduction takes place in a
linear fashion in the following way:

p = ceil[Np/2(1− G− 1

Gmax
)] (15)

where Np is the population size, G is the current generation number, Gmax is
the maximum number of generations (G = [1, 2, ...., Gmax]) and ceil(y) is the
‘ceiling function returning the lowest integer greater than its argument y. p is
reduced by a routine which favours exploration at the initial stages of the search
and exploitation during the later stages. This is done by gradually reducing the
elitist portion of the population, with a randomly selected member from where
the component mixing of the donor vector is allowed for generation of the trial
vector.
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4.3 Parameter Adaptation

The parameter adaptation schemes in MDE pBX are guided by the knowledge
of the successful values of F and Cr that were able to generate better offspring
(trial vectors) in the last generation.

Scale Factor Adaptation. At every generation, the scale factor Fi of each indi-
vidual target vector is independently generated as Fi = Cauchy(Fm, 0.1) where
Cauchy(Fm, 0.1) is a random number sampled from a Cauchy distribution with
location parameter Fm and scale parameter 0.1. The value of Fi is regenerated if
Fi ≤ 0 or Fi > 1. Let us denote Fsuccess as the set of the successful scale factors,
so far, of the current generation generating better trial vectors that are likely to
advance to the next generation. Moreover let us say meanA(FG−1) is the simple
arithmetic mean of all scale factors associated with population members in gen-
eration G−1. Location parameter Fm of the Cauchy distribution is initialized to
be 0.5 and then updated at the end of each generation in the following manner:

Fm = wFFm + (1− wF )meanPow(Fsuccess) (16)

The weight factor though in the original MDE pBX paper was varied randomly,
but in our case we have set it as 0.8. meanPow stands for power mean which is
given by:

meanPow(Fsuccess) =
∑

xεFsuccess

(xn/|Fsuccess|)(1/n) (17)

where |Fsuccess| is the cardinality of the set Fsuccess and n is taken as 1.5.

Crossover Probability Adaptation. At every generation the crossover prob-
ability Cri of each individual vector is independently generated as Cri =
Gaussian(Crm, 0.1), where Gaussian(Crm, 0.1) is a random number sampled
from a Gaussian distribution with mean Crm and standard deviation 0.1. Cri
is truncated if it falls outside the interval [0, 1]. Denote Crsuccess as the set of
all successful crossover probabilities Cri s at the current generation. The mean
of the normal distribution Crm is initialized to be 0.6 and then updated at the
end of each generation as:

Crm = wCrCrm + (1− wCr)meanPow(Crsuccess) (18)

with the weight wCr being kept constant at 0.9. The power mean is calculated
as:

meanPow(Crsuccess) =
∑

xεCrsuccess

(xn/|Crsuccess|)(1/n) (19)

where |Crsuccess| is the cardinality of the set Crsuccess and n is taken as 1.5.
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5 Experiments and Results

For our experimentation we have considered three OFDM systems with 2 × 4,
4 × 4 and 8 × 8 transmitter and receiver antennas. We have compared the per-
formance of MDE pBX with two classical symbol detectors namely ML and
ZF and two other renowned heuristic algorithms SaDE and CLPSO. The sim-
ulation parameters of the MIMO-OFDM system are presented in Table 1. The
population size was kept as 25 for all the participating evolutionary algorithms.
The parameter q in the mutation scheme DE/current-to-gr best/1 of MDE pBX
is kept as 1/4th of the population size. The reason for setting such a value for
the group size q is that if q is on par with population size, the probability that the
best of randomly chosen q% vectors is similar to the globally best vector of the
entire population will be high and the proposed mutation scheme DE/current-to-
gr best/1 basically becomes identical to the DE/current-to-best/1 scheme. This
drives most of the vectors towards a specific point in the search space result-
ing in premature convergence. The parameter p in p-best crossover is linearly
decreased with generations. For the contestant heuristic algorithms, we follow
the parameter settings in the original paper of SaDE and CLPSO. The conver-
gence analysis of MDE pBX, SaDE and CLPSO are done in Fig. 2 where the
number of iterations needed by these algorithms for converging to the optimal
solution (obtained by ML) are shown for the three OFDM systems. were found
out by averaging over 25 runs. As the same algorithm converges to the optimal
solution at a different iteration in each simulation so the data presented in Fig.
2 are averaged over 25 runs. It is evident from Fig. 2 that MDE pBX requires
less number of iterations than SaDE and CLPSO for converging to the optimal
solution for all the three cases.

Table 1. MIMO-OFDM simulation parameters

Parameters Values

Number of subcarriers 128
Cyclic prefix size FFT/4=32
Modulation type 8PSK
Channel type Rayleigh fading

The BER performance of the symbol detectors for the 2×4 system are shown
in Fig. 3. The figure depicts that MDE pBX outperforms SaDE, CLPSO and
ZF and is very close to the optimal solution i.e. the BER provided by ML. For
example, at 25 dB SNR the Bit Error Rates for ML, MDE pBX, SaDE, CLPSO
and ZF are 2.15× 10−4 4× 10−4, 6× 10−4, 10−3 and 0.05 respectively.

Fig. 4 and Fig. 5 shows the BER performance of the symbol detectors for 4×4
and 8×8 systems respectively. These two figures show the effect of the increasing
number of receiver and transmitter antennas on the detection performance. For
instance, for the 4×4 system at 15 dB SNR the BERs for ML, MDE pBX, SaDE,
CLPSO and ZF are 5.95× 10−3, 8 × 10( − 3), 9 × 10( − 3), 1.3 × 10( − 2) and
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Fig. 5. The BER versus the SNR of the detectors for 8x8 system

0.16 respectively. Again, for the 8 × 8 system at 15 dB SNR the BERs for ML,
MDE pBX, SaDE, CLPSO and ZF are 6.3×10(−3), 1.2×10(−2), 1.7×10(−2),
2.5× 10( − 2) and 0.13 respectively.

6 Computational Complexity

To show that the heuristic algorithms especially MDE pBX are computationally
advantageous than the classical symbol detectors we have done computational
complexity analysis. The computational complexity of the symbol detectors have
been represented in terms of Nrx (number of receiver antenna), Ntx (number of
transmitter antenna), Np (Population size), Nitr (Number of iterations) and M
(Constellation size). The number of operations required for ZF and ML algo-
rithms are 4N3

tx + 2N2
txNrx and Nrx(Ntx + 1)MNtx respectively. On the other

hand the heuristic algorithms require Np(NtxNrx + μ)Nitr operations, where
μ is the number of population updating parameters. μ depends on the algo-
rithm and is almost same for the heuristic approaches. But, the computational
complexity does not directly depend on μ. It directly depends on the number
of iterations that provide convergence in the algorithms. As for all the three
systems, MDE pBX requires the least number of iterations among the heuris-
tic approaches so it has the lowest computational complexity. Moreover, it can
be also seen from the above analysis that the computational complexity of the
ML algorithm is very high when the number of transmitter antenna, receiver
antenna and the constellation size increases. For this reason, the ML algorithm
is not a practical solution for symbol detection in MIMO-OFDM systems that
have large antenna and constellation sizes. However, the proposed MDE pBX
based detector has significantly less computational complexity than the other
algorithms.
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7 Conclusion

In this article, we utilized a DE variant, MDE pBX, for reducing the search space
of the ML detector and the computational complexity of symbol detection in
MIMO-OFDM systems. We have compared the performance of MDE pBX to two
classical (ML and ZF) and two evolutionary algorithms (SaDE and CLPSO). Our
results show that ML has the best performance followed by MDE pBX, SaDE,
CLPSO and ZF. However, though ML produces best results it is computationally
very inefficient. Moreover, among the evolutionary algorithms MDE pBX takes
least number of iterations to reach the optimal solution i.e. the solution produced
by ML. Thus, we can conclude that MDE pBX can be a very good trade off
between results and computational complexity.
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Abstract. In order to solve non convex and complex optimization prob-
lems, Nature Inspired algorithms are being preferred in present scenario.
Differential Evolution (DE) is relatively popular and simple population
based probabilistic algorithm under the said category to find optimum
value. The scale factor (F) and crossover probability (CR) are the two
parameters which controls the performance of DE in its mutation and
crossover processes by maintaining the balance between exploration and
exploitation in search space. Literature suggests that due to large step
sizes, DE is less capable of exploiting the existing solutions than the ex-
ploration of search space. Therefore unlike the deterministic methods,
DE has inherent drawback of skipping the true optima. This paper in-
corporates the Levy Flight inspired local search strategy with DE named
as Levy Flight DE (LFDE) which exploits the search space identified by
best solution. To see the performance of LFDE, experiments are carried
out on 15 benchmark problems of different complexities and results show
that LFDE is a competitive DE variant and perform better than the ba-
sic DE and its recent variants namely Fitness based DE (FBDE) and
Scale Factor Local Search DE (SFLSDE) in most of the test functions.

Keywords: Optimization, Nature Inspired Algorithms, Memetic Algo-
rithm, Levy Flight based local search.

1 Introduction

Differential Evolution (DE) came in optimization environment in 1995 due to
Storn and Price [19]. Differential Evolution is population based probabilistic and
relatively a simple approach to find an optimum to the optimization problem.
However, DE is an Evolutionary Algorithm (EA), but to some extent it sig-
nificantly differs from EAs, e.g. DE first mutates the solution to generate the
trail vector then it operates crossover operator to generate an offspring, while
in EAs, crossover is applied first and then mutation. Also, in DE, to generate a
trial vector, the distance and direction from current population like information
is used.
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DE is being tried to improve continuously. The recent modified DE versions
with appropriate applications can be found in [2]. Experimental work in [20]
indicates that DE outperforms the particle swarm optimization (PSO) [5] and
genetic algorithm (GA) [4]. Almost in all fields of science and technology like
mechanical engineering design [16], signal processing [3], chemical engineering
[8] and specially in machine intelligence and pattern recognition [12], DE is been
the preferred technique.

The variation and selection process are the two engines, which move the DE
population’s evolution towards the goal. However, without converging to local
optima, DE is easily suspected to stop moving towards global optima [6]. These
limitations demand to incorporate a local search approach in DE strategy to
exploit the search region and hence to set the equilibrium between exploration
and exploitation capabilities of DE. In this paper, Levy Flight random walk
based local search strategy is proposed and assimilated with DE. The proposed
strategy iteratively reduces the step size of the candidate solution movement
in the search space within which the optima is known to exist. And hence can
be used to get the global optima of a unimodal and/or multimodal functions.
Further, the proposed strategy is distinguished on 15 test problems to the basic
DE and its recent variants named, Fitness based DE (FBDE) [17] and Scale
factor Local Search Differential Evolution (SFLSDE) [11].

Rest of the paper is organized as follows: Section 2 describes the Levy flight
based local search strategy. Levy flight based local search in DE (LFDE) is
proposed in section 3. In Section 4, experimental results are discussed. Finally,
in section 5, paper is concluded.

2 Levy Flight Based Local Search

While adopting the local search techniques in general global search algorithms,
all or some individuals of the generation try to identify better solutions in their
small neighborhoods. So, these techniques are implemented in between the run-
ning iterations of population based search algorithms. The hybridized form of
population based global search algorithms with local search techniques is called
as memetic algorithms. In these algorithms, the global search ability tries to
get the most promising regions in the search space, while the incorporated local
search strategy examines closely the surroundings of some already found regions
i.e., focuses rightly on exploitation. Recently, Sharma et al. [18] proposed a lévy
flight local search (LFLS) strategy and incorporated the proposed strategy with
ABC algorithm. In this paper, the LFLS strategy is hybridized with DE algo-
rithm to enhance its exploitation capability.

The Levy Flight is a random walk in which the amount of movement is defined
as step-length. The random step lengths are drawn from a certain probability
distribution called Lévy distribution and defined as equation (1) [18]:

L(s) ∼ |s|−1−β , where β (0 < β ≤ 2) is an index and s is the step length. (1)

The paper utilizes Mantegna algorithm [21] to generate random step sizes
using a symmetric Lévy stable distribution. Here the term ‘symmetric’ is mean
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to say that the step size may be positive or negative. In Mantegna’s algorithm,
the step length s is calculated by

s =
u

|v|1/β , (2)

where u and v are normally distributed numbers i.e., u ∼ N(0, σu
2), v ∼

N(0, σv
2) here,

σu =

{
Γ (1 + β)sin(πβ/2)

βΓ [(1 + β)/2]2(β−1)/2

}1/β

, σv = 1. (3)

This distribution (for s) obeys the expected lévy distribution for |s| ≥ |s0|,
where s0 is the smallest step length [21]. Here Γ (.) is the Gamma function and
calculated as follows:

Γ (1 + β) =

∫ ∞

0

tβe−tdt. (4)

In a special case when β is an integer, then we have Γ (1 + β) = β!.
In the proposed strategy, lévy distribution is used to generate the step sizes

to exploit the search area and calculated as follows:

step size(t) = 0.01× s(t)× SLC, (5)

here t is the iteration counter for local search strategy, s(t) is calculated using
l‘evy distribution as shown in equation (2), SLC is the social learning component
of the global search algorithm and 0.01 is used to reduce the step size so that
new solutions remains in search space.

The solution update equation based on the proposed local search strategy is:

x′
ij(t+ 1) = xij(t) + step size(t)× U(0, 1), (6)

here xij is the current position of ith individual and step size(t)×U(0, 1) is the
actual amount of flight drawn from lévy distribution which is being added to
move individual on next position.

The pseudo-code of the proposed LFLS is shown in Algorithm 1 [18]. In
Algorithm 1, ε determines the termination of local search.

3 Levy Flight Based Local Search in DE (LFDE)

Population based optimization algorithms work well if they can maintain both
the exploration and the exploitation as well. Finding out the different unknown
segments of the the solution search space is the exploration, while, searching
new potentials nearby already explored regions is the exploitation. Step size in
DE algorithm, plays an important role because both exploration and exploita-
tion can be done through it. The higher step size is responsible for exploration
but can skip true solution, while, low step size results in exploitation and slow
convergence. So the favorable variation in step sizes must be achieved in order
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Algorithm 1.Lévy Flight Local Search:

Input optimization function Minf(x) and β;
Select an individual xi in the swarm which is going to be modified;
Initialize t = 1 and σv = 1;
Compute σu using equation (3);
while (t < ε) do

Compute step size using equation (5);
Generate a new solution x′

i using equation (6);
Calculate f(x′

i);
if f(x′

i) < f(xi) then
xi = x′

i;
end if
t = t+ 1;

end while

to improve the performance of the algorithm. Most of the algorithms in the op-
timization environment are lacking in this direction and so is the case with DE
i.e., basic DE can not be suggested as an efficient algorithm [10, 6, 10].

Therefore, to achieve the same, Levy Flight based local search (LFLS) (de-
scribed in section 2) has been applied in between the basic DE. In the proposed
local search technique, only the best individual (say ith) in current population
is allowed to search better solution in its neighborhood. The pseudo-code of the
proposed LFDE is shown in algorithm 2.

In Algorithm 2, ε is the termination criteria for the proposed local search.
CR (same as crossover probability in binomial crossover) is a perturbation rate
(a number between 0 and 1) which controls the amount of perturbation in the
best solution, U(0, 1) is a uniform distributed random number between 0 and
1, D is the dimension of the problem and xk is a randomly selected solution
within population. See section 4.2 for details of these parameter settings. The
LFLS is applied in the basic DE to overcome the drawback of DE search process
and named as Levy Flight based local search in Differential Evolution (LFDE).
Pseudo-code of the LFDE is shown in Algorithm 3.

4 Experimental Results and Discussion

4.1 Test Problems Under Consideration

Table 1 shows the list of 15 different global optimization problems (f1 to f15) [1],
which are taken under consideration, to figure out the performance of LFDE.
All considered problems are of minimization type in nature and each has different
degree of complexity and multimodality.
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Algorithm 2.Lévy Flight based local Search in DE:

Input β, s and the best solution xbest of the current population;
Initialize t = 1 and σv = 1;
Compute σu using equation (3);
while (t < ε) do

Compute step size using equation (5);
Generate a new solution x′

best as;
for j = 1 to D do

if U(0, 1) < CR then
x′
bestj = xbestj + 0.01 × s× (xbestj − xkj)× U(0, 1);

else
x′
bestj = xbestj ;

end if
end for
Calculate f(x′

best);
if f(x′

best) < f(xbest) then
xbest = x′

best;
end if
t = t+ 1;

end while

Algorithm 3.Levy Flight based local search in Differential Evolution (LFDE):

Initialize the control parameters F and CR;
Create and initialize the population P (0) of NP individuals;
while Termination criteria do

for each individual xi(G) ∈ P (G) do
Evaluate the fitness f(xi(G));
Generate the trial vector ui(G) by applying the mutation operator;
Generate an offspring x′

i(G), by applying the crossover operator;
if f(x′

i(G)) is better than f(xi(G)) then
Add x′

i(G) to P (G+ 1);
else

Add xi(G) to P (G+ 1);
end if

end for
Apply LFLS using Algorithm 2

end while
Return the fittest solution;



Lèvy Flight Based Local Search in Differential Evolution 253

T
a
b
le

1
.
T
es
t
p
ro
b
le
m
s

T
es

t
P

ro
b
le

m
O

b
je

ct
iv

e
fu

n
ct

io
n

S
ea

rc
h

R
an

g
e

O
p
ti

m
u
m

V
a
lu

e
D

A
E

S
p
h
er

e
f 1

(x
)

=
D i=

1
x

2 i
[-
5
.1

2
,
5
.1

2
]

f
(0

)
=

0
3
0

1
.0

E
−

0
5

D
e

J
o
n
g

f4
f 2

(x
)

=
D i=

1
i.
(x

i
)4

[-
5
.1

2
,
5
.1

2
]

f
(0

)
=

0
3
0

1
.0

E
−

0
5

G
ri

ew
a
n
k

f 3
(x

)
=

1
+

1
40

00
D i=

1
x

2 i
−

D i=
1
co

s(
x

i √
i
)

[-
6
0
0
,
6
0
0
]

f
(0

)
=

0
3
0

1
.0

E
−

0
5

R
o
se

n
b
ro

ck
f 4

(x
)

=
D i=

1
(1

00
(x

i+
1

−
x

2 i
)2

+
(x

i
−

1)
2
)

[-
3
0
,
3
0
]

f
(1

)
=

0
3
0

1
.0

E
−

0
2

R
a
st

ri
g
in

f 5
(x

)
=

10
D

+
D i=

1
[x

2 i
−

10
co

s(
2π

x
i
)]

[-
5
.1

2
,
5
.1

2
]

f
(0

)
=

0
3
0

1
.0

E
−

0
5

A
ck

le
y

f 6
(x

)
=

−2
0

+
e

+
ex

p
(−

0.
2

D
D i=

1
x

i
3
)

[-
1
,
1
]

f
(0

)
=

0
3
0

1
.0

E
−

0
5

M
ic

h
a
le

w
ic

z
f 7

(x
)

=
−

D i=
1
si
n

x
i
(s

in
(ix

i
2

π
)2

0
)

[0
,

π
]

f
m

in
=

−9
.6

6
0
1
5

1
0

1
.0

E
−

0
5

C
o
si

n
e

M
ix

tu
re

f 8
(x

)
=

D i=
1
x

i
2

−
0.

1(
D i=

1
co

s
5π

x
i
)
+

0.
1D

[-
1
,
1
]

f
(0

)
=

−D
×

0
.1

3
0

1
.0

E
−

0
5

E
x
p
o
n
en

ti
a
l

f 9
(x

)
=

−(
ex

p
(−

0.
5

D i=
1
x

i
2
))

+
1

[-
1
,
1
]

f
(0

)
=

−1
3
0

1
.0

E
−

0
5

C
ig

a
r

f 1
0
(x

)
=

x
0
2

+
10

00
00

D i=
1
x

i
2

[-
1
0
,
1
0
]

f
(0

)
=

0
4

3
0

1
.0

E
−

0
5

S
u
m

o
f

d
iff

er
en

t
p
ow

er
s

f 1
1
(x

)
=

D i=
1
|x

i
|i+

1
[-
1
,
1
]

f
(0

)
=

0
3
0

1
.0

E
−

0
5

S
te

p
fu

n
ct

io
n

f 1
2
(x

)
=

D i=
1
(

x
i
+

0.
5

)2
[-
1
0
0
,
1
0
0
]

f
(−

0
.5

≤
x

≤
0
.5

)
=

0
3
0

1
.0

E
−

0
6

In
v
er

te
d

co
si

n
e

w
av

e
f 1

3
(x

)
=

−
D

−
1

i=
1

ex
p

−
(x

2 i
+

x
2 i
+

1
+

0.
5x

i
x

i
+

1
)

8
×

I
[-
5
,
5
]

f
(0

)
=

−D
+

1
1
0

1
.0

E
−

0
5

w
he

re
,
I

=
co

s
4

x
2 i

+
x
2 i+

1
+

0
.5

x
i
x

i+
1

L
ev

y
m

o
n
ta

lv
o

1
f 1

4
(x

)
=

π D
(1

0s
in

2
(π

y
1
)

+
D

−
1

i=
1

(y
i

−
1)

2
×

(1
+

10
si
n2

(π
y

i+
1
))

+
(y

D
−

1)
2
),

w
he

re
y

i
=

1
+

1 4
(x

i
+

1)
[-
1
0
,
1
0
]

f
(−

1
)

=
0

3
0

1
.0

E
−

0
5

L
ev

y
m

o
n
ta

lv
o

2
f 1

5
(x

)
=

0.
1(

si
n2

(3
π
x

1
)

+
D

−
1

i=
1

(x
i

−
1)

2
×

(1
+

si
n2

(3
π
x

i+
1
))

+
(x

D
−

1)
2
(1

+
si
n2

(2
π
x

D
))

[-
5
,
5
]

f
(1

)
=

0
3
0

1
.0

E
−

0
5



254 H. Sharma et al.

4.2 Experimental Setting

The basic DE (DE/rand/1/bin) [13] and its variants namely, Scale factor local
search DE (SFLSDE) [11] and Fitness based DE (FBDE) [17] are compared
with proposed LFDE algorithm and for the comparison, the adopted experimen-
tal setting is defined as follows:

– Population size NP=50 and the number of runs = 100.
– The scale factor F=0.4.
– For DE variants SFLSDE and FBDE, F and CR are set as suggested by

their respective authors [14, 11].
– The stopping criteria is either achieving the mentioned acceptable error in

table 1 or reaching the maximum number of function evaluations (which is
set to be 2.0× 105).

– The value of β = 2 is to be set based on the empirical experiments.
– To set ε i.e., the termination criteria of LFLS, different values of ε are

analyzed to measure the performance of LFDE for considered test problems
over 30 runs in Figure 1(a). Outcome in Figure 1(a) declares ε = 10 as better
choice as it gives better success rate. Therefore, termination criteria is set to
be ε = 10.

– To set the parameter CR, its sensitivity with respect to different values of
CR in the range [0.1, 1], is examined in the Figure 1(b) and the performance
of LFDE is measured for 10 runs over 15 considered problems. It is ob-
served from Figure 1(b) that the test problems are very sensitive towards
CR and value 0.2 gives comparatively better success rate. Therefore CR is set
to be 0.2.
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Fig. 1. (a) Effect of parameter ε on success rate, (b) Effect of parameter CR on success
rate

4.3 Results Comparison

Table 2 displays the numerical outcomes of the proposed algorithm LFDE and
basic DE/rand/1/bin and its variants SFLSDE and FBDE with experimen-
tal setting 4.2. Table 2 reported the performance in terms of four parameters
namely, success rate (SR), average function evaluations (AFEs), mean error
(ME) and standard deviation (SD). It can be observed from the table that
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LFDE outperforms in terms of reliability, efficiency and accuracy as compare
to the DE/rand/1/bin, SFLSDE and FBDE for most of the problems. Fur-
ther, to analyze the performance of LFDE more deeply, acceleration rate (AR)
[15], Mann-Whitney rank sum test [9] and success performance have been carried
out for results of considered algorithms.

Table 2. Comparison of the results of test problems, TP: Test Problems

TP Algorithm SD ME AFE SR

f1

LFDE 8.08E-07 9.09E-06 22467.45 100
DE 8.24E-07 9.06E-06 22444 100
FBDE 7.47E-07 9.22E-06 31923.83 100
SFLSDE 8.65E-07 9.00E-06 24626.15 100

f2

LFDE 1.15E-06 8.61E-06 17942.3 100
DE 8.51E-07 9.01E-06 20859.5 100
FBDE 1.29E-06 8.42E-06 24369.23 100
SFLSDE 1.17E-06 8.77E-06 20345.45 100

f3

LFDE 8.00E-07 9.20E-06 33253.7 100
DE 5.00E-03 1.71E-03 55540 86
FBDE 8.09E-07 9.16E-06 48091.22 100
SFLSDE 1.03E-03 1.57E-04 39382.59 98

f4

LFDE 1.65E+01 3.35E+01 200000 0
DE 4.78E+02 9.84E+01 200000 0
FBDE 1.67E+01 3.11E+01 200000 0
SFLSDE 2.93E+01 2.48E+01 199471.82 3

f5

LFDE 6.97E-07 9.18E-06 147122.32 100
DE 4.63E+00 1.49E+01 200000 0
FBDE 7.23E-07 9.22E-06 130754.62 100
SFLSDE 7.83E-07 9.03E-06 153260.76 100

f6

LFDE 4.38E-07 9.51E-06 41936.39 100
DE 4.42E-07 9.46E-06 43100.5 100
FBDE 3.93E-07 9.59E-06 62374.9 100
SFLSDE 4.19E-07 9.55E-06 46190.02 100

f7

LFDE 1.92E-06 7.83E-06 16734.33 100
DE 4.26E-02 4.21E-02 171411 20
FBDE 4.22E-03 5.72E-04 27415.76 96
SFLSDE 3.19E-02 1.14E-02 66530.88 76

f8

LFDE 7.32E-07 9.12E-06 21677.2 100
DE 4.72E-02 1.33E-02 37386 92
FBDE 7.26E-07 9.15E-06 32219.5 100
SFLSDE 5.77E-01 5.74E+00 197797.14 1

f9

LFDE 6.38E-07 9.10E-06 17054.85 100
DE 9.15E-07 8.98E-06 17269 100
FBDE 7.91E-07 9.16E-06 25087.79 100
SFLSDE 7.78E-07 9.03E-06 23664.52 100

f10

LFDE 8.38E-07 9.12E-06 39203.2 100
DE 8.75E-07 9.02E-06 39861.5 100
FBDE 8.97E-07 9.04E-06 54213.75 100
SFLSDE 8.73E-07 8.97E-06 43232.55 100

f11

LFDE 2.47E-06 7.03E-06 6613.17 100
DE 2.06E-06 7.08E-06 7837 100
FBDE 2.07E-06 7.40E-06 10695.75 100
SFLSDE 1.99E-06 7.32E-06 8865.53 100

f12

LFDE 2.38E-08 1.38E-07 14632.01 100
DE 6.28E-01 1.90E-01 39465 87
FBDE 2.92E-08 4.97E-07 20033.2 100
SFLSDE 4.86E-08 6.78E-07 16309.22 100

f13

LFDE 1.66E-06 8.53E-06 58968.34 100
DE 6.55E-01 9.19E-01 171662 20
FBDE 2.25E-06 7.58E-06 103044.78 100
SFLSDE 8.24E-01 7.64E-01 132969.26 39

f14

LFDE 7.49E-07 9.02E-06 20234.23 100
DE 1.03E-02 1.05E-03 21505 99
FBDE 7.92E-07 9.24E-06 29712.55 100
SFLSDE 9.15E-07 8.87E-06 22139.07 100

f15

LFDE 6.75E-07 9.05E-06 20342.31 100
DE 1.87E-03 3.38E-04 25809 97
FBDE 7.94E-07 9.16E-06 29314.37 100
SFLSDE 8.05E-07 9.03E-06 24379.87 100
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First, the considered algorithms are analyzed for the convergence speed by
measuring the average function evaluations (AFEs). A low value of AFEs means
higher convergence speed. Function evaluations for each problem is averaged over
100 simulations in order to minimize the effect of the stochastic nature of the
algorithms. Based on AFEs, acceleration rate (AR) is calculated to compare
the convergence speed as:

AR =
AFEALGO

AFELFDE
, (7)

where, ALGO is any of the considered algorithms with which we are comparing
our proposed algorithm LFDE and AR > 1 means LFDE converges faster
i.e., taking lesser number of function evaluations to converge. Table 3 shows
convergence speed comparison between LFDE and DE, LFDE and FBDE,
and LFDE and SFLSDE in terms of acceleration rate AR. It is clear from
Table 3 that convergence speed of LFDE is higher than the other algorithms
for most of the test problems.

Table 3. Acceleration Rate (AR) of LFDE compare to the basic DE, FBDE and
SFLSDE, TP: Test Problems

TP DE FBDE SFLSDE
f1 0.998956268 1.420892447 1.09608122
f2 1.162587851 1.358199896 1.133937678
f3 1.670190084 1.446191552 1.184307009
f4 1 1 0.9973591
f5 1.359413038 0.888747676 1.041723377
f6 1.027758946 1.487369323 1.101430524
f7 10.24307516 1.638294452 3.975712204
f8 1.724669238 1.48633126 9.124662779
f9 1.012556545 1.471006195 1.387553687
f10 1.016791997 1.382890937 1.102781151
f11 1.18505951 1.617340852 1.340587041
f12 2.697168742 1.369135204 1.114626083
f13 2.911087543 1.747459399 2.254926288
f14 1.062802983 1.468429982 1.094139485
f15 1.268734967 1.441054138 1.1984809

Further, the Mann-Whitney rank sum [9], a non-parametric test, which is a
well established test for comparison among non-Gaussian data, is applied for the
comparison of the considered algorithms. In this paper, this test is performed
at 5% level of significance (α = 0.05) between LFDE - DE, LFDE - FBDE
and LFDE - SFLSDE. Table 4 shows the results of the Mann-Whitney rank
sum test for the average number of function evaluations of 100 simulations.
First we observed the significant difference by Mann-Whitney rank sum test
i.e., wether the two data sets are significantly different or not. If significant
difference is not seen (i.e., the null hypothesis is accepted) then sign ’=’ appears
and when significant difference is observed i.e., the null hypothesis is rejected
then compare the average number of function evaluations. And we use signs ’+’
and ’-’ for the case where LFDE takes less or more average number of function
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Table 4. Results based on mean function evaluations and the Mann-Whitney rank
sum test at α = 0.05 significance level, TP: Test Problems

TP LFDE
Vs

LFDE
Vs

LFDE
Vs

DE FBDE SFLSDE
f1 = + +
f2 + + +
f3 + + +
f4 = = =
f5 + - +
f6 + + +
f7 + + +
f8 + + +
f9 + + +
f10 + + +
f11 + + +
f12 + + +
f13 + + +
f14 + + +
f15 - + +
Total number of
+ sign

12 13 14

Table 5. Comparison among LFDE, DE, FBDE and SFLSDE based on Success
Performance (SP) for scalable problems, TP: Test Problems

TP LFDE DE FBDE SFLSDE
f1 22467.45 22444 31923.83 24626.15
f2 17942.3 20859.5 24369.23 20345.45
f3 33253.7 64581.39535 48091.22 40186.31633
f4 1E+24 1E+24 1E+24 6666666.667
f5 147122.32 1E+24 130754.62 153260.76
f6 41936.39 43100.5 62374.9 46190.02
f7 16734.33 857055 28558.08333 87540.63158
f8 21677.2 40636.95652 32219.5 19779714
f9 17054.85 17269 25087.79 23664.52
f10 39203.2 39861.5 54213.75 43232.55
f11 6613.17 7837 10695.75 8865.53
f12 14632.01 45362.06897 20033.2 16309.22
f13 58968.34 858310 103044.78 340946.8205
f14 20234.23 21722.22222 29712.55 22139.07
f15 20342.31 26607.21649 29314.37 24379.87

evaluations than the other’s, respectively. Therefore in Table 4, ’+’ shows that
LFDE is significantly better and ’-’ shows that LFDE is worse. As Table 4
includes 39 ’+’ signs out of 45 comparisons, it can be concluded that LFDE
performs significantly better than DE, FBDE and SFLSDE.

Success Performance (SP) [7] of all the considered algorithms is also quantified
in the paper using the equation:

SP =
AFEs

Number of Successful Runs
× Total Runs, (8)

The calculated SPs of all the considered algorithms are shown in Table 5 and
corresponding box plots are given in Figure 5. Any algorithm seems to be good
if it takes less function evaluations and more successful runs, so it is clear from
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Fig. 2. LFDE:Boxplots for Success Performance

equation (8) that algorithm having low SP will be considered better. If none
success is achieved by any algorithm then we assigned a large number 6× 104 as
success performance to that problem so that it will be called worst as having high
SP value. It is clear from Figure 2 that LFDE is better among the considered
algorithms as interquartile range and median of SP are comparatively low.

5 Conclusion

This paper incorporated a Levy Flight based local search strategy in DE. Pro-
posed strategy (LFDE) enables the algorithm to generate new solutions in the
vicinity of the best solution based on parameter namely perturbation rate i.e.,
enables exploitation of the search space in the neighborhood of current popula-
tion’s best candidate solution. Further, the proposed algorithm is tested on 15
optimization problems and compared to basicDE and its recent variants namely,
Fitness based DE (FBDE) and Scale Factor Local Search DE (SFLSDE). Dif-
ferent Statistical analysis is done in the paper to prove the reliability, efficiency
and accuracy of proposed algorithm LFDE over the other algorithms.
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Abstract. This paper presents a novel optimal edge detection scheme based on 
the concepts of fuzzy Smallest Univalue Assimilating Nucleus (SUSAN) and 
JADE (an adaptive Differential Evolution variant with Optional External 
Archive). Initially, the Univalue Assimilating Nucleus (USAN) area is 
calculated from the intensities of every neighborhood pixel of a pixel of interest 
in the test image. The USAN area edge map of each of the RGB components is 
fuzzified subject to the optimization of fuzzy entropy, together with fuzzy edge 
sharpness factor, using JADE. Adaptive thresholding converts the fuzzy edge 
map to spatial domain edge map. Finally, the individual RGB edge maps are 
concatenated to obtain the final image edge map. Qualitative and quantitative 
comparisons have been rendered with respect to a few promising edge detectors 
and also optimal fuzzy edge detectors based on metaheuristic algorithms like 
the classic Differential Evolution (the classic DE/rand/1) and the Particle 
Swarm Optimization (PSO).  

1 Introduction 

Edges of an image are mainly boundaries between two regions which have great 
difference in their respective pixel intensities. Edges help to demarcate an image into 
objects and background.  

Edge detectors can be broadly classified into directional [1-3] and non-directional 
edge detectors [4, 5]. However, every existing edge detector has its own set of 
drawbacks. The Canny edge detection [4, 5] algorithm, for instance, does not 
guarantee that the intensity discontinuities in an image correspond to actual edges of 
the object. Future modifications of the Canny algorithm include Rothwell [6] (Canny 
with added topology) and Edison [7] (modified Canny with added measure of 
confidence and use of templates). These detectors show improved performance over 
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Canny in detecting junction edges as well as edges in low contrast regions. Roberts 
Cross Edge detector [8] takes very less computational time since only four input 
pixels need to be mathematically operated upon to determine the value of each output 
pixel. However, since it uses a very small kernel, it produces very weak responses to 
genuine edges unless they are in high contrast zones.  Sobel [9] detector performs 
better than Roberts in this aspect as it uses a 3x3 instead of a 2x2 kernel and thus 
produces higher output values for similar edges than the latter. However, the 
smoothing effect of this operator leads to edges that are several pixels wide which is 
undesirable. Zero-crossing based edge detectors like the Laplacian of the Gaussian 
(LoG) (based on the Marr-Hildreth operator) [10] test wider areas around the pixels 
and find correct places of edges, both weak and strong, but malfunction at corners and 
curves where the gray level intensity function varies. As the LoG detector strictly uses 
the laplacian filter, it fails to find the correct orientation of edges at such corners and 
curves. Non-gradient edge detectors like the SUSAN [11] detect edges in the image 
by associating a small area of neighbourhood pixels of similar intensity to each centre 
pixel. The SUSAN principle is widely applied in corner detection [12] and works 
better than LoG in finding the proper orientation of edges. However, the SUSAN is 
unable to detect weak edges and suffers from poor edge connectivity. Additionally, it 
produces thick blurry edges which require sharpening. A recently developed 
algorithm based on the Bacterial Foraging Optimization [13] aims to extract edge 
information by driving bacteria along the direction where probability of finding 
nutrients (edge) is maximum. But the performance of this algorithm is governed by 
several parameters like swim length, chemotactic steps, reproduction steps, 
elimination-dispersion steps, etc. whose simultaneous tuning for optimal test results is 
quite difficult. The parameter set empirically chosen in [13] yields disconnected edges 
due to restricted swim length and parallel edges due to path retracing by the bacteria. 

In our proposed algorithm, information about the relatively weaker edges is 
extracted from the SUSAN based USAN area edge map, using fuzzy measures. The 
parameters controlling the range and shape of the proposed bell-shaped curve, used 
for detecting the weaker edges, are determined by optimizing the fuzziness or the 
fuzzy entropy of the bell-shaped membership function. The concept of sharpness 
factor of an edge map is introduced so that sharpening of the SUSAN based USAN 
area edges are possible by regulating this factor. While the Shannon Entropy [14] is a 
measure of the randomness associated with a random variable, the fuzzy entropy [15] 
realizes the concept of entropy by using fuzzy sets, thus, containing possibilistic 
uncertainties instead of probabilistic uncertainties. Hence, we choose to optimize the 
fuzzy entropy value instead of the Shannon entropy, together with the sharpness 
factor of the image so that not only all the essential edge information is extracted but 
adequate sharpness of the edge map is also attained. Our edge detection approach 
employs an adaptive differential evolution with optional external archive [24], an 
efficient mutation strategy also known as JADE (named after the initials of its 
authors) to achieve this optimization. JADE has found widespread applications in 
several optimization problems, where it has been found to show improved 
performance from the classic DE as well as other search methods.  
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The organization of the paper is as follows: Section 2.1 introduces the SUSAN 
principle for the calculation of USAN area. Section 2.2 describes the fuzzification of 
USAN area using fuzzy membership functions while section 2.3 introduces the fuzzy 
measures required to evaluate the fuzzy entropy and sharpness factor of the fuzzy 
edge map. The need for adaptive thresholding is emphasized in section 2.4. Section 3 
presents the objective function required for optimization. Section 4 presents the 
experimental results along with their qualitative and quantitative analyses while 
Section 5 concludes the proceedings. The quantitative measures include Kappa Value 
and Pratt’s Figure of Merit. As is evident from the experimental results, the 
performance of the JADE based fuzzy edge detector remains commendable for both 
colour and gray scale images.  

1.1 Computation of SUSAN Based USAN Area 

SUSAN [11] area principle has been invoked in computing the USAN area of the 
circular mask shown in Fig.1. The gray levels of the neighbouring 36 pixels are 
compared with the intensity of the centre pixel using the comparing equation and the 
outputs are summed up to obtain the USAN area. The concept of each image pixel, 
having associated with it a local (USAN) area of similar brightness, is the basis for 
the SUSAN principle. 

 

Fig. 1. Circular Mask (orientation 3,5,7,7,7,5,3 pixels from top to bottom) 

The comparison equation of any pixel with the centre pixel is as follows:                             F (r, r0) =  ( ( ( ) ( ))                                                 (1) 

where ‘r’ is the position of any pixel, ‘r0’ is the position of the centre pixel, I(r) is 
the intensity of any pixel, I(r0) is the intensity of the centre pixel and ‘t’ is the 
threshold brightness, empirically chosen as 20 for all test cases. 

Eq. (1) is applied on the mask and then the sum of the outputs is computed from 
the equation:                                        U(r0 ) = ∑  ( , )                                                       (2) 

This U(ro) gives the USAN area of the centre pixel at the position and may vary 
from 1 to 37. Thus the USAN area serves as a measure of the number of pixels having 
the same gray level as that of the centre pixel. 
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1.2 Fuzzification of Usan Area 

The probability of an USAN area with a particular number of pixels is calculated as 
below:                                  p(k) = ( ) ∑     ⁄                                                     (3) 

where ‘k’ varies from 1 to 37 i.e. the possible range of values of the USAN area, 
p(k) is the frequency of occurrence of USAN area k and h(k) is the total number of 
pixels having area k,  with p(k) satisfying the condition   

                                     ∑ ( )= 1,                                                         (4) 

where ‘L’ is the total number of pixels in the circular mask,  i.e. in this case 37. 
Fuzzy memberships indicate how strongly a gray level belongs to the background 

or to the foreground. These membership functions convert the intensity values in the 
spatial domain into membership values of the range 0 to 1 and here it is done with the 
help of Eq. (5) which represents a histogram based Gaussian Membership Function: 

                             µ ( ) =  
( )∗  .                                           (5) 

The fuzzifier parameter, ‘ ’ is calculated in the following way: 

                                      = ∑ ( ) ∗ ( )∗∑ ( ) ∗ ( ) .                                             (6) 

Here ‘k’ is the USAN area, ‘xmax’ is the maximum USAN area. L here is 37 as 
stated before. A bell shaped function meant to enhance the membership function 
values of the original gray level values of the image is given by: 

                                     μ ( ) =  | ( ) | ,                                                  (7)                                             

where ‘a’, ‘b’, ‘c’ can be changed as per the user, which makes it more flexible.  
Weak edges are mainly detected because of this bell-shaped function which acts as a 
hedge. 

1.3 Fuzzy Measures 

Fuzzy Edge Sharpness Measures 

Fuzzy edge sharpness measures [16-24] help to determine the quality of the different 
edges, thereby serving as a measure by which strong edges can be distinguished from 
weak edges. 

The fuzzy edge sharpness factor for the weak edges can be formulated as:                               Fw = ∑ µ ( ) ∗ ( ).                                       (8)    

The average fuzzy edge sharpness factor for the weak edges can be formulated as:                   FavgW = ∑ (µ ( ) ) ∗ ( ).                                       (9) 
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The fuzzy edge fuzzy edge sharpness factor for the strong edges can be formulated 
as:                    FS  = ∑ µ ( ) ∗ ( ).                                        (10) 

The average sharpness factor for the strong edges can be formulated as:                    FavgS  =  ∑ (µ ( ) ) ∗ ( ).                                    (11)           

The average fuzzy edge sharpness factors indicate the overall sharpness of an 
image, whereas the individual fuzzy sharpness factors determine the actual deviations 
from the crossover point (here denoted by c). 

A fuzzy edge quality factor is formed by taking the ratio of the average to the 
actual value of the fuzzy edge sharpness factors. This quality factor determines the 
uncertainty present in the edges. 

The fuzzy edge quality factor for weak edges is denoted by:                    QW =                                                                                                   (12)  

The fuzzy edge quality factor for strong edges is denoted by:                          QS =                                                           (13) 

Fuzzy Entropy 
Fuzzy Entrropy [15] serves as a measure of the uncertainty or the randomness 
associated with the image information (the image being the edge map in this case) and 
is defined by: E=     ∗ ∑ µ ( ) ∗ ln µ ( ) + 1 µ ( ) ∗  ln 1 µ ( )       (14) 

Fuzzy entropy , in this case, serves as a measure of the amount of information that 
can be extracted from an image and its optimization yields the optimal parameter 
values of the bell-shaped membership function.  

 
Sharpness Factor 

The normalized fuzzy edge sharpness factor or the sharpness factor is required to 
calculate the fuzzy edge sharpness. The sharpness factor is defined as: 

      =                                                       (15) 

This definition helps us to fix a limit on the fuzzy edge sharpness factor, because 
increasing its value beyond the limit would cause loss of edge information. For a good 
edge map, the value of the sharpness factor should be in the range 1 to 1.5.  

1.4 Adaptive Thresholding 

Image thresholding [28-30], be it global or local, takes a grayscale image as input and 
produces a binary image as output. Global thresholding processes compute a global 
threshold value for the entire grayscale image which demarcates between the 
foreground and the background pixels. However, an image may have spatial 
variations in illumination and in such cases, the threshold has to be dynamically 
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varied over the image. There are various processes of adaptive thresholding for eg. the 
Chow and Kaneko Method [29], local thresholding [30], etc. The Chow and Kaneko 
method divides the image into a number of sub-images and calculates the threshold 
for the individual sub-images. Finally it interpolates the results of the sub-images to 
determine the threshold for each pixel. Local thresholding (as has been applied in our 
algorithm) investigates the neighborhood of each pixel and statistically determines the 
threshold for each pixel. The statistic used may be mean, median or mean of the 
maximum and minimum intensity values in the neighborhood. The statistic used in 
thresholding the fuzzy domain edge maps to obtain the final edge maps in our case 
was mean and the window size was kept between 7x7 to 15x15, depending on image 
size. 

 
 
 
 
 
 
 
 

(a)                                (b) 

Fig. 2. a) An image having changing lighting conditions b) Image obtained after application of 
local adaptive thresholding 

2 Objective Function For Optimization 

Fuzzy entropy is a function of fuzzy sets that becomes lesser when the sharpness of 
the argument fuzzy set is improved. The entropy as well as the edge sharpness factor 
determines edge quality. So their simultaneous optimization is necessary.  

The entropy function E is optimized subject to the constraint =                                                            (16) 

For this, an objective function   J is defined as: = +  ∗                                          (17) 

The value of  is chosen to be 0.5 and  is chosen as 1.5 to yield a desirably 
sharp edge map. While optimizing J several experimentally found constraints were 
applied after which the set of constraints -4<a<0; 1<b<6; 1<c<4 was chosen. 
Optimization was carried out using JADE, where the a, b, c parameters of the chosen 
30 member population were initialised subject to the set of constraints presented 
above. The fuzzifiers  for the USAN area edge maps of all the test images, 
calculated using Eq. (6), prior to the optimization of the objective function J, were 
found to be in the range of 15 to 22. A low value of  , generally below 5, 
corresponds to extremely thick edges while a high value, typically beyond 60, leads to 
loss of information due to high  .Thus the  values of all the population members 
were initialized within 5 to 60.  
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                       (i)                      (j)                       (k)                    (l)    

Fig. 5. (a) Canny(b) Edison (c) Rothwell (d) LoG (e) SUSAN (f) Roberts (g) Sobel (h) BFA 
Based Edge Detector (i) Optimal Fuzzy(DE) (j) Optimal Fuzzy(PSO) (k) Proposed Method 
(Optimal Fuzzy(JADE)) (l) True/ Majority Image 

 
 
 
 

                          (a)                      (b)                       (c)                       (d) 

 
               
 
 

                     (e)                     (f)                      (g)                      (h) 

 
 
 
 

                           (i)                       (j)                     (k)                       (l)   

Fig. 6.   (a) Canny (b) Edison(c) Rothwell (d) LoG (e) SUSAN (f) Roberts (g) Sobel (h) BFA 
based Detector (i) Optimal Fuzzy(DE) (j) Optimal Fuzzy(PSO) (k) Proposed Method (Optimal 
Fuzzy(JADE)) (l) True/ Majority Image 
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Figures 5 & 6 indicate that the optimal fuzzy edge detector using JADE performs 
better than the other edge detectors. For instance in Fig. 5, the weak edges to the 
rightmost bottom corner, the leftmost upright structure, etc. are almost indeterminable 
in the PSO (Fig. 5(j)) and BFA based systems (Fig. 5(h)) while they are almost 
clearly visible in the fuzzy JADE edge map (Fig. 5(k)). Additionally, the PSO and 
BFA based spatial edge maps show weak edge connectivity and inability to detect the 
weak edges completely. It is observed that though the edges are accurately detected 
using the BFA based detector [13], the method lacks in presenting complete edges 
due to restrictions imposed on the maximum swim length for a bacterium. Also, thick 
edges appear due to bacteria moving parallel to an edge. On the other hand, the 
DE/rand/1-based spatial domain edge maps (Figures 5(i), 6(i)) show  inadequate 
sharpening of edges and hence this method shows no significant improvement over the 
SUSAN (Figures 5(e), 6(e))  method of edge detection which also suffers from the 
problem of having thick and blurry edges. As is evident from the experimental results, 
the performance of the JADE based fuzzy edge detector remains commendable for all 
the test images and as compared to the other metaheuristic based fuzzy and non-fuzzy 
algorithms. 

As for the traditional edge detectors, Canny (Figs. 5(a), 6(a)) and Rothwell (Figs. 
5(c), 6(c)) edge detectors produce double edges while Edison (Figs. 5(b), 6(b)) shows 
abrupt discontinuities in the edge maps. Roberts (Figs. 5(f), 6(f)) and Sobel (Figs. 
5(g), 6(g)) detect minimum number of edges among all these edge detectors due to 
restricted kernel size. LoG edge maps ((Figs. 5(d), 6(d)) malfunction at corners. The 
optimization of fuzzy entropy using JADE assigns optimal membership values to both 
weak and strong edges in such a way that even the relatively weaker edges in the low 
contrast regions as well as in poorly illuminated regions can be distinguished. The edge 
quality is also improved by regulating the image sharpness factor. Hence our proposed 
edge detection approach preserves the unique characteristics of each image without 
distorting it and also serves as a good detector of weak edges. 

3.2 Quantitative Analysis 

Kappa Value 
Kappa value [32] of an image with respect to a ground truth or majority image is a 
measure of its pixel-to-pixel similarity with the truth image. A majority or truth image 
in our case has been formed from the edge maps obtained by using Canny, Edison, 
Rothwell, LoG, Roberts, Sobel and SUSAN. A ground truth pixel will be an edge 
pixel if majority of the edge detectors mentioned above produce an edge pixel at that 
coordinate. Table 2 shows the Kappa Values of all the edge detectors. Our proposed 
approach shows maximum truthfulness or maximum agreement with the majority 
image as is evident from its highest kappa values for all test images. Kappa Value is a 
statistic given by: =                                          (18) 
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Table 2. Kappa Values for various edge maps 

ALGORITHM KAPPA VALUES 
Lena Cameraman Coins Trees Pillsetc 

Canny 
Edison 

Rothwell 
LoG 

SUSAN 
Roberts 
Sobel 

BF based system  
Fuzzy(PSO) 
Fuzzy(DE) 

Fuzzy(JADE) 

0.4592  
0.4654 
0.4384 
0.3872 
0.4250 
0.3441 
0.3792 
0.5125 
0.4997 
0.5433 
0.6401 

0.4174  
0.4364 
0.5284 
0.4974 
0.5564 
0.3104 
0.3242 
0.6393 
0.3167 
0.6403 
0.6899 

0.5543  
0.3654 
0.4984 
0.5011 
0.4680 
0.3291 
0.3743 
0.5125 
0.4212 
0.4733 
0.6594 

0.5343  
0.5254 
0.5374 
0.5115 
0.5184 
0.3971 
0.4102 
0.5784 
0.4307 
0.5641 
0.6112 

0.2243  
0.5754 
0.5941 
0.5621 
0.4380 
0.4142 
0.4292 
0.5255 
0.4017 
0.5134 
0.6971 

 

Pratt’s Figure of Merit 
Pratt’s Figure of Merit (FOM) [33] measures the ideality factor of an edge detector on 
a scale of 0 to 1, based on its ability to detect and localize edge points and distinguish 
noisy pixels from edge pixels. An FOM value of 1 indicates that the edge map 
produced by the algorithm perfectly resembles the ideal edge map whereas an FOM 
value of 0 refers to complete deviation from ideality. FOM is mathematically 
represented as: 

                             =    ∑ ∗ ,                                           (19) 

where  = max ( , ),  represents the total number of edge pixels in the 
obtained edge map while  refers to the edge pixels in the ideal edge map. The 
scaling factor f is kept at a value of 0.9 while d represents the distance between the 
actual edge pixel and the nearest ideal pixel. The normalization is done with the 
maximum of  and  to take into consideration the penalty that may occur due to 
smeared ( > ) or fragmented edges ( < ). 

In Figures 8 and 9, our proposed method is compared with three of the existing 
traditional edge detectors, search-based Canny and Sobel and zero-crossing based 
LoG, and also with the recently developed bacterial foraging based edge detector [13] 
and optimal fuzzy edge detection schemes based on PSO and DE/rand/1. The Pratt 
values of the edge maps are computed and compared in Table 3 with two sample edge 
maps taken from the Berkeley Segmentation Dataset (http://www.eecs.berkeley.edu/ 
Research/Projects/CS/vision/bsds)., shown in Fig. 7(a) and 7(b), serving as the ground 
truth images. 

 
 

 
 

 
                                       (a)                                                  (b) 

Fig. 7. (a) Truth Image (Test Image 1) (b) Truth Image (Test Image 2) 
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                            (e)                        (f)                     (g)                     (h) 

Fig. 8. (a) Test Image 1 (b) Proposed Approach (using JADE) (c) Optimal Fuzzy (PSO) edge 
map (d) Optimal Fuzzy (DE) edge map (e) Bacterial Foraging based edge map (f) Canny Edge 
Map (g) LoG Edge Map (h) Sobel Edge Map 

 
 
 
   

 
                        (a)                         (b)                        (c)                      (d) 

 
 
 
 
 

                    (e)                          (f)                          (g)                    (h) 

Fig. 9. (a) Test Image 2 (b) Proposed Approach (using JADE) (c) Optimal Fuzzy (PSO) (d) 
Optimal Fuzzy (DE) edge map (e) BF based edge detector (f) Canny Edge Map (g) LoG Edge 
Map (h) Sobel Edge Map 

Table 3. Pratt’s Figure Of Merit 

             Algorithm Pratt’s Figure Of Merit 

Test Image 1 Test Image 2 

Canny 

LoG 

Sobel 

BF based system  

Optimal Fuzzy(DE) 

Optimal Fuzzy(PSO) 

Optimal Fuzzy(JADE)

0.6022 

0.5631 

0.3156 

0.5784 

0.6232 

0.5883 

0.6753

0.5232 

0.4458 

0.3080 

0.4958 

0.5771 

0.5536 

0.6635
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Table 3 shows that in both cases, our proposed method yields the highest value of 
FOM, thus behaving as the closest approximate to the ideal edge maps. Canny and 
LoG produce too many double edges and hence have low FOM value. Sobel yields a 
very low FOM value as it detects lesser number of edges. While the DE based system 
suffers from thick edges due to inadequate sharpening, the BFA and PSO based 
systems show poor edge connectivity and inability to detect weak edges, along with fat 
blurry edges in case of the BFA based system. The optimal fuzzy edge maps (using 
JADE) have regulated sharpness and also show proper detection of weak edges, thus 
justifying the relatively high FOM or Pratt values of the edge maps. 

Note that the quantitative measures for all metaheuristic algorithms were calculated 
after averaging through 25 independent runs for each test image, each run being 
continued till 60,000 function evaluations.  

4 Conclusions 

The experimental results show that the proposed optimal fuzzy edge detection 
algorithm, using an adaptive DE with optional external archive (popularly known as 
JADE), is able to detect weak edges accurately by optimizing the parameters that 
control the shape of the bell-shaped fuzzy membership function. Bi-level adaptive 
thresholding binarizes the fuzzy edge maps to yield the spatial domain edge maps for 
the RGB components in case of a colour image. The main advantage of using this 
method is that: 

a)  Our edge detector retains the shape of the image, shows great edge connectivity 
and has improved edge quality, as indicated by the relatively high Pratt’s figure of 
merit [33] and optimal Shannon’s Entropy [14] value. 

b) Owing to the ability of this edge detector to detect weak edges accurately while 
still preserving the shape of the object, it can be used in biometric applications like 
palm print identification, face detection, contour feature extraction, etc.  

Future work with the proposed approach would be to extend it for noisy images 
and images subjected to motion blur. The main disadvantage of this method is that it 
fails to suppress edges due to substantial amount of noise that distorts the shape of the 
image.  
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Abstract. Multi-level image thresholding is an important aspect in many image 
processing and computer vision applications. In the last decade, many fuzzy 
based image thresholding techniques have been proposed. In this article a new 
method for multi-level image thresholding is proposed using Type II Fuzzy 
sets. A new entropy measure is defined which is maximized to obtain the 
optimal thresholds for an image. As the number of thresholds increases, 
exhaustive search appears to be very time consuming. So, Differential 
Evolution (DE), a meta-heuristic algorithm, is used for fast selection of optimal 
thresholds. The proposed algorithm is compared with a fuzzy entropy based 
algorithm using image quality assessment measures Feature Similarity Index 
Measurement (FSIM) and Gradient Similarity Measurement (GSM). The use of 
DE is also justified by comparing it with other modern state-of-art algorithms 
like Gravitational Search Algorithm (GSA), Particle Swarm Optimization 
(PSO) and Genetic Algorithm (GA). 

1 Introduction 

Multi-Level Image thresholding is a method in which an image is segmented into 
various objects. Over the years it is being applied as a basic step for several computer 
vision applications like pattern recognition, feature extraction, identification, image 
registration etc. Otsu [1] developed a non-parametric multilevel image segmentation 
algorithm. Many entropy based algorithm has also been proposed like Shannon 
entropy [2], Tsalli’s entropy [3], Renyi’s entropy [4-5] and a fuzzy entropy based 
algorithm [6]. But the demerits, like longer computational time and complexity, could 
not be avoided. Zhao et al. [7] thresholded the image by partitioning the histogram 
using fuzzy membership values and derived a condition for optimal threshold 
selection, which was later modified by Tao et al.[8] where they proposed a fuzzy 
entropy based technique. They partitioned the image histogram into various objects 
using fuzzy partition. 

Type II Fuzzy sets is a generalization of Type I fuzzy sets. A measure called ultra 
fuzziness is associated with image segmentation using Type II Fuzzy Sets, which has 
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been used to obtain the optimal image thresholds in [9-12]. Although many 
algorithms for bi-level image segmentation using Type II Fuzzy Sets have been 
proposed, it has not been explored for multi-level segmentation. In this paper, a new 
Type II Fuzzy based multi-level image segmentation algorithm is proposed. A 
measure Type II Fuzzy entropy is introduced, which is maximized in order to obtain 
the best thresholds. But as the number of thresholds increases, the time required for 
execution will increase almost exponentially. For this reason a powerful meta-
heuristic Differential Evolution (DE) is used for fast convergence and less 
computational time. Although there exists many other meta-heuristic like Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search 
Algorithm(GSA), Ant Colony Optimization (ACO), Stimulated Annealing (SA), 
Bacteria Forging Optimization (BFO), etc, DE stands out to best for optimizing the 
proposed fitness function, which is discussed in section 4. 
    The rest of the paper is organized as follows: Section 2 provides a very brief 
introduction to Type II Fuzzy Sets and the proposed algorithm of multi-level image 
segmentation. Section 3 provides a brief introduction to Differential Evolution and 
section 4 shows the experimental results and comparisons. Lastly we conclude in 
section 5. The proposed algorithm is compared with [8], which is a fuzzy type I 
entropy based algorithm, which has been referred as Fuzzy Type I for the rest of the 
paper. 

2 Multilevel Thresholding Using Fuzzy Type II Sets 

A fuzzy set A [13-14], in a finite set = , , … ,  may be represented as    = , ( )| ∈ , 0 ≤ ( ) ≤ 1  

These sets are generally called Type-I fuzzy sets. Although membership values are 
assigned to the elements of this set, it cannot handle much uncertainty. For this reason 
Type-II fuzzy sets was introduced in which a range of membership values are used 
instead of a single value. It may be defined as: = ,  ( ), ( ), ∈ , 0 ≤  ( ), ( ) ≤ 1                     (1) 

where  ( ) and ( ) are the upper and lower membership functions respectively. 

Let a digital image  be of the size of  ∗ . Let ( , ) be the gray value of the 
pixel ( , ) where ∈ 1,2, … ,  and ∈ 1,2, … , . If  is the number of gray 
levels by which image I can be represented, the set of all gray levels 0, 1, 2 … , 1  
is represented as : ( , ) ∈  ( , ) ∈  = ( , ): ( , ) = , ∈ 0, 1, 2 … , 1                        (2) 

Let = , , … ,  be the normalized histogram of the image where  =( ∗ )⁄ ,  is the number of pixels in  . A measure ultra-fuzziness is 
associated with a fuzzy set. If the membership values can be defined without any 
uncertainty then ultra-fuzziness should be 0, whereas when membership values can 
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only be indicated as an interval, the amount of ultra-fuzziness will increase until it 
reaches a maximum value of 1. The ultra-fuzziness for an image for the    level 
may be defined mathematically as: 

= ∗ (  ( ) ( ))                                               (3)  
where ∈ 1, … , + 1 ,  is the trapezoidal fuzzy membership function for the 
gray levels to belong to the  level out of + 1 levels of segmentation, as shown in 
fig 1.   and  are the upper and lower fuzzy membership functions as described in 

eqn. 1. Here we have used  = ( ) ⁄  and = ( ) , ∈ (1,2 . The value of  

considered by us is 1.5.   can be mathematically expressed as: 

( ) =
0        , ≤  , < ≤           1        , < ≤    , < ≤0        , >

                                    (4) 

where  and , ∈ 1,2, … , + 1 , are the fuzzy parameters and = = 0,= = 1 ,  being the number of thresholds. The fuzzy type II entropy 
for the  level of segmentation may be defined as: 

= ∗ (  ( ) ( )) ∗ ln ∗ (  ( ) ( ))                (5) ∈ 1,2, … , + 1 . The total entropy is the summation of the entropies for all the 
levels,  ( , , … , , ) =                                                   (6) 

The optimal fuzzy parameters can be found out by maximizing the total entropy, ( , , … , , )∗ = ( )                                          (7) 

The thresholds for the image is that point, where the membership value of a level of 
segmentation falls to 0.5, and as the membership functions are linear, it may be 
written that the  threshold is, = 12 ( + ), ∈ 1,2, … ,                                           (8) 

where  is the number of thresholds. DE is used to reduce the search time to find the 
optimal thresholds. The parameter set ( , , … , , ) acts as an individual of the 
population in DE. 



 A Differential

 

Fig. 1. 1.1: Fuzzy membersh
upper and lower approximatio

Recursive method for Type I

Type2entropy(v) // v=[v1,v2

 if (n==4)                            
       trapezoidal(v)     //
       ⁄ ,   =     
 

           ∑ ( ( )
 

           ∑ ( )∗(  (
   else 
         H  Type2entropy([v
    end if     
end of function 

Fu
zz

y 
M

em
be

rs
hi

p 
va

lu
es

 

          a1

                

          
             

Fu
zz

y 
M

em
be

rs
hi

p 
va

lu
es

 

 Evolution Approach to Multi-level Image Thresholding 

1.1 

 
1.2 

hip function for n+1 level of segmentation, 1.2: An example
n membership function for bi-level segmentation 

I Fuzzy Entropy calculation 

2,v3,…vn] is the vector of fuzzy parameters 
 //n is the total number elements in v 

//trapezoidal() returns the fuzzy membership values using eqn. 

 //Both the operations are done element wise ( )) ∗ ( )   // h  is the normalized histogram of the image ( ) ( )) ∗ ln ( )∗(  ( ) ( ))          
v1,v2,v3,v4])+Type2entropy([v5,v6,…,vn]) 

1   c1      a2     c2                      an       cn     L-1 
                  Gray Levels 

  a1                                     c1                       L-1 
                      Gray Levels 

277 

e of 

5 



278 R. Burman, S. Paul, and S. Das 

 

Two dummy threshold values, 0 and L-1 are added with the fuzzy parameters, when 
calling this function. So the format of function call will be Type2entropy ([0, 0, a1, c1, 
a2, c2 …, an, cn, L-1, L-1]) 

3 Differential Evolution (DE) 

DE is a global optimization technique, which was proposed by Storn [15]. DE 
searches for a global optimum point in a D-dimensional real parameter space . In 
our algorithm, a simple version of DE, named DE/rand/1 scheme is used. The ith 
individual of the population which is a vector of dimension D can be represented as, ( ) = , ( ), , ( ), … . , , ( )  

The first step is initialization, where the population is initialized randomly within the 
search space. This is done as shown below, 

, ( ) = + ∗ , = 1    = 1     (9) 

where  and  are the maximum and minimum bound of the search space, 
NP is the total population involved in the search process and rand is a random number 
in between 0 and 1. In every iteration, for each parent a vector, a mutant vector, called 
donor vector, is obtained through the differential mutation operation. To create the ith 

donor vector  ( ) for the thi  parent vector, three other parent vectors (say the 1, 2 
and 3-th vectors such that 1, 2, 3 ∈ 1,   and 1≠ 2≠ 3) are chosen at 
random from the current population. The donor vector may be expressed as, ( ) = ( ) + ∗ ( ) ( )                                    (10) 

where F is a scalar quantity called Weighting Factor. The next step is to enhance the 
potential diversity of the donor vectors to create the trial vectors. A binomial 
crossover operation is performed on each of the D variables of a vector as, 

, ( ) =  , ( ),  (0,1) ≤   =                                                = , ( ) ,                                                                 (11) 

where = 1   and ∈ 0,1  is the jth

 evaluation of a uniform random 

generator. ∈ 1,2, … . , , is a randomly chosen index to ensure that ( ) gets at 
least one component of ( ) and Cr is the crossover rate. The trial vector is updated 
as the new parent vector for iteration t+1, if its fitness function value is more (for 
maximization) than current parent vector, in iteration t.              ( + 1) = ( ),  ( ) ≥ ( ) , 

                                = ( ),  ( ) ≤ ( )  
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The above steps are repeated until the termination criterion is reached. We have 
used number of iterations as the termination criterion. An extensive survey on DE 
may be found in [16]. 

4 Experimental Results 

The simulations are performed in Matlab 2012a in a workstation with Intel Core i3 
2.9 GHz processor. For testing and comparison, 4 images have been chosen arbitrarily 
from Berkeley Segmentation Dataset and Benchmark [17].  

Table 1. Set-up for DE 

No. of Runs 20 
No. of iterations per run 100 

Dimension of the search space(D) 2*No. of Thresholds 
Upper bound of search space Maximum gray level present in the image 
Lower bound of search space Minimum gray level present in the image 

Number of Particles(NP) 10*D 
Weighing Factor(F) 0.5 
Crossover Rate(Cr) 0.9 

 
 We have compared the proposed Type II Fuzzy method with Type I Fuzzy entropy 

based algorithm as in [8]. The test images thresholded by the proposed algorithm and 
the Type I Fuzzy method is shown in fig 2 for 2, 3, 4 thresholds. The image number 
corresponds to the number provided in the dataset. The fuzzy membership function 
parameters and the corresponding thresholds for the test images is listed in table 2 and 
in table 3 for Fuzzy Type II proposed method and Type I method.  

 

 

Fig. 2. Test images thresholded by Fuzzy Type I and II method 

 
Image Numbers 

55067 238011 241004 317080 

    
2.1.1 2.2.1 2.3.1 2.4.1 

Original Images 

    
2.1.2 2.2.2 2.3.2 2.4.2 
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Fig. 2. (continued) 

    
2.1.3 2.2.3 2.3.3 2.4.3 

Type I Fuzzy method (3 Levels) 

    
2.1.4 2.2.4 2.3.4 2.4.4 

Fuzzy Type II method(3 Levels) 

    
2.1.5 2.2.5 2.3.5 2.4.5 

Fuzzy Type I method(4 Levels) 

    
2.1.6 2.2.6 2.3.6 2.4.6 

Fuzzy Type II method(4 Levels) 

    
2.1.7 2.2.7 2.3.7 2.4.7 

Fuzzy Type I method( 5 Levels) 

    
2.1.8 2.2.8 2.3.8 2.4.8 

Fuzzy Type II method( 5 Levels) 

Histograms 
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Table 2. Fuzzy parameters and thresholds for images thresholded by Fuzzy Type II method 

Image No. 
No. of 

thresholds 
(TN) 

Fuzzy Parameters Thresholds 

238011 
2 28,73,110,255 51,183 
3 28,74,94,94,107,252 51,94,180 

4 29,72,86,113,113,113,113,252 51,100,113,183 

241004 
2 25,131,131,255 78,193 
3 25,142,142,185,185,254 84,164,220 

4 25,75,75,136,136,186,186,254 50,106,161,220 

317080 
2 8,96,96,252 52,174 

3 8,105,105,105,105,252 57,105,179 

4 8,102,102,102,102,203,203,252 55,102,153,228 

     55067 
2 12,63,63,219 38,141 

3 12,64,64,133,133,217 38,99,175 

4 12,66,66,92,92,131,131,215 39,79,112,173 

 
In fig 2.1.3, it may be seen that the bushes merged with the mountains is not 

visible, but it is properly segmented by the proposed algorithm in fig 2.1.4. Also in fig 
2.1.3, the transition in mountains are not clearly defined, due to improper choice of 
thresholds, which is properly done by the proposed algorithm, which segments the 
sky, mountains and the bushes perfectly. In fig 2.2.3, only the moon is separated from 
the sky, but the trees are merged with the sky, which is properly segmented in fig 
2.2.4. In fig 2.3.3, which segmented by Fuzzy Type I method, the mountain is merged  
with the sky, which is properly segmented by the proposed Fuzzy Type II method. 
Also the rocks are not properly segmented from the surrounding in fig 2.3.3, which is 
properly done in fig 2.3.4. It can be seen from the original image fig 2.3.1, there exists 
two mountain ranges with different gray levels, which is properly segmented from 
each other, when the number of thresholds is increased, as is done by the proposed 
algorithm in fig 2.3.8, but not in fig 2.3.7 which is segmented by Type I Fuzzy 
Entropy method. In fig 2.4.3, the deer is not properly segmented from the 
background, which is done by the proposed algorithm in fig 2.4.4. In 2.1.7, the 
mountain ranges are not segmented properly from each other, which is done by the 
proposed Type II method. 

 
Table 3. Fuzzy parameters and thresholds for images thresholded by Fuzzy Type I method 

Image No. 
No. of 

thresholds 
(TN) 

Fuzzy Parameters Thresholds 

238011 
2 62,122,123,178 92,151 
3 86,106,107,159,160,255 96,133,208 
4 85,107,108,147,148,228,228,253 96,128,188,241 

241004 
2 25,97,98,148 61,123 
3 25,93,94,95,96,207 59,95,152 
4 25,94,95,98,99,164,164,190 60,97,132,177 
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Table 4. (continued) 

317080 
2 62,174,175,252 118,214 
3 64,131,132,181,182,252 98,57,217 
4 23,122,123,130,131,191,191,252 73,127,161,222 

     55067 
2 55,134,135,222 95,179 
3 6,127,128,129,130,222 67,129,176 
4 52,112,113,134,135,174,174,217 82,124,155,196 

Table 5. FSIM and GSM of test images 

Image No. 
No. Of 

thresholds (TN) 
Fuzzy Type I Fuzzy Type II 

FSIM GSM FSIM GSM 

238011 
2 0.6624 0.9749 0.8379 0.9797 
3 0.6582 0.9746 0.8594 0.9882 
4 0.6598 0.9747 0.8702 0.9908 

241004 
2 0.5908 0.9261 0.6794 0.9599 
3 0.6931 0.9557 0.7177 0.9694 
4 0.7163 0.9595 0.7479 0.9699 

317080 
2 0.6153 0.9512 0.6372 0.9527 
3 0.6453 0.9605 0.6893 0.9645 
4 0.7141 0.9705 0.7481 0.9751 

    55067 
2 0.7661 0.9697 0.8058 0.9782 
3 0.8061 0.9766 0.8268 0.9811 
4 0.7781 0.9749 0.8288 0.9827 

Table 6. Mean fitness function value and its standard deviation 

Image 
No. 

TN 
GSA PSO GA DE 

fmean Std. fmean Std. fmean Std. fmean Std. 

38011 
2 11.4316 1.21E-01 11.3577 2.36E-02 11.3568 2.07E-01 11.4907 2.36E-07 
3 14.9668 1.01E-01 15.0499 2.31E-01 15.0733 1.77E-01 15.5711 9.11E-15 
4 17.9144 2.79E-01 17.9814 1.21E-01 18.1618 1.84E-01 18.5434 3.15E-06 

241004 
2 13.5425 4.58E-02 13.5652 2.28E-02 13.5568 7.06E-02 13.6097 6.69E-06 
3 17.1457 2.86E-01 17.3599 1.12E-01 17.2973 2.14E-01 17.5498 3.65E-15 
4 20.7938 1.18E-01 20.4551 1.31E-01 20.8065 4.39E-02 20.8677 1.09E-14 

317080 
2 14.1098 7.02E-02 14.2623 3.22E-02 14.2431 9.29E-02 14.3238 7.87E-12 
3 17.9488 8.21E-02 18.0022 1.65E-01 18.1431 5.76E-02 18.2541 8.29E-15 
4 21.4309 9.61E-02 21.2355 1.08E-01 21.4835 6.47E-02 21.6667 3.15E-08 

 55067 
2 13.1160 8.17E-02 13.3602 1.14E-01 13.0923 1.04E-01 13.3739 2.01E-09 
3 16.1581 1.71E-01 16.4728 1.24E-01 16.5837 1.30E-01 16.7403 5.40E-06 
4 19.4894 1.79E-01 19.7575 2.04E-01 19.4033 1.20E-01 19.9396 2.67E-09 

 
Two modern Image Quality Assessment (IQA) measures, namely Feature 

Similarity Index (FSIM) [18] and Gradient Similarity Measurement (GSM) [19] are 
used for quantitative comparisons. The measures for the thresholded images in fig 2 
are listed in table 3(Higher the value of the measure, better is the segmentation). It 
may be noticed that the proposed algorithm dominates the Fuzzy Type I method of 
image segmentation. 
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Table 7. Average computational time consumed by DE, GSA, PSO and GA 

Image No. 
No. Of 

thresholds (TN) 
Computational time (in second) 

      GSA        PSO       GA       DE 

238011 
2 1.8586 1.6535 5.9674 1.6031 
3 3.2792 3.0401 10.6179 2.9307 
4 5.1945 4.5844 17.2011 4.5592 

241004 
2 1.9042 1.8075 6.3232 1.7557 
3 3.5769 3.2537 11.2242 3.1678 
4 5.5361 4.8719 17.8267 4.8354 

317080 
2 1.9974 1.8558 6.3868 1.8154 
3 3.5332 3.2297 11.4714 3.1114 
4 5.6833 5.0335 17.6465 4.9289 

    55067 
2 1.8709 1.7624 6.1427 1.6993 
3 3.5264 3.1718 11.1587 3.0829 
4 5.5268 4.8462 17.2196 4.7554 

 
computational time is listed. It may be seen that DE requires least computational time, 
followed by PSO which takes almost same time as DE, but on the higher side, 
followed by GSA and maximum by GA, which takes almost 4-5 times the time 
consumed by DE. It may be noticed that the optimum fitness value for all the images 
are maximum for DE with respect to the other optimizers. Also the standard deviation 
of the optimum fitness value is minimum for all the images when optimized by DE. 
The convergence plots for DE, PSO, GSA and GA are shown for image 55067 in fig 
3.1, 3.2, 3.3 for 2, 3, 4 thresholds respectively. It may be seen from the convergence 
plots that when the number of thresholds are less, DE and PSO have almost same 
convergence rate. As the number of thresholds increases, the difference between the 
convergence plots increases. But in all the cases, DE has the maximum optimized 
fitness value.  

5 Conclusion 

An algorithm of image thresholding should be such that it segments the image into 
different objects accurately and at the same time consumes as less time as possible to 
accomplish the task. The proposed algorithm based on Type II Fuzzy sets produces 
better results than the Type I Fuzzy entropy based algorithm. The use of DE speeds 
up the search process. Results reflect that DE dominates meta-heuristics. Future work 
may be undertaken to improve this algorithm to segment the images more accurately 
and consume lesser time, as required for very fast real time image segmentation and 
patter recognition problems. 
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Abstract. Differential Evolution is a stochastic, population-based opti-
mization algorithm, which grew out of the need to optimize real-parameter,
real-valued functions. The Differential Evolution variant that we propose
to describe in this paper modifies the mutation scheme of the variant
DE/best/1. We propose a three tier mutation scheme, to be suitably
carried out on selected sections of the population in question. Also, the
proposed variant tries to lessen the myriad troubles posed by stagnation,
which is a problem faced by all Differential Evolution algorithms. Our
comparative studies indicate that the proposed variant is able to com-
pete in a direction parallel to the state-of-the-art Differential Evolution
variants like JADE and jDE.

Keywords: optimization, Differential Evolution(DE), novel mutation
scheme, stagnation.

1 Introduction

Differential Evolution [6], [8]-[10] emerged in the late 1990s to serve the im-
mediate need of mathematicians, engineers and technicians to solve real-world
optimization problems. Over the years, cumulative research on differential evo-
lution and its sundry varieties has reached an impressive state. Modifications
have been proposed by introducing innovative mutation schemes, schemes that
better implement crossover, and tuning parameters like the scale factor, F and
the crossover ratio, Cr.

In this paper, we propose two new algorithmic components, which can be used
to improve results. They are given as follows:

1. The mutation scheme of DE/best/1 has been retained but a provision has
been made to change the mutation schemes for three different sections of the
population.

2. A sincere effort has been made to remove the problem of stagnation by
introducing the control parameter stagnate when there is no improvement of

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 286–297, 2013.
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global best fitness value after mutation, crossover and selection for certain
successive generations. If this happens, we annihilate and regenerate the
stagnation-causing portion of the population.

The proposed DE variant is compared with DE/rand/1/bin, DE/current-to-
best/1/bin, SaDE, JADE, jDE and DEGL over 25 standard numerical bench-
mark functions taken from the CEC 2005 competition and special session on
real-parameter optimization.

The paper is organized as follows: Section II gives a general overview of the
DE family of algorithms. Section III explains the essential features of the pro-
posed DE variant. The experimental settings for the benchmarks and simulation
strategies are presented in section IV along with results that outline the perfor-
mance of the algorithm. Finally section V, presents a short discussion about the
probable applications of the algorithm in prospective areas.

2 Differential Evolution : A General Discussion

Differential Evolution is one method which is a member of a class of methods
called metaheuristics. It is an iterative scheme developed by Storn and Price in
1997 [8] which seeks to minimize an objective function by iteratively seeking a
parameter vector X∗ which minimizes the objective function f(X∗) (f : Ω ⊆
IRD −→ IR), that is f(X∗) < f(X) where X = [x1, x2, x3, . . . , xD]T , the pa-
rameter vector which characterizes the performance of a system, for all X ∈ Ω,
where Ω is a non-empty, large, finite set serving the purpose for the domain of
the search.

2.1 Initialization of the Vectors Controlling the Performance of the
System

Differential Evolution searches for a global optimum in a search space IRD com-
prising of D dimensions. The first step is to initialize a population of NP , D
dimensional, real-valued parameter vectors, where NP is the population size for
the optimization problem at hand. We call each such vector a genome or chromo-
some. In analogy with biological processes, the genomes will modify their values
over generations which may be denoted by G = 0, 1, 2, . . . , Gmax. The ith vector
of the population for the current generation may be represented by

Xi,G = [x1,i,G, x2,i,G, x3,i,G, . . . , xD,i,G].

The initialization of the population at G = 0 must be done taking care of
the bounds which restrict the parameter vector X. As such, the minimum and
maximum values for X are given by

Xmin = [x1,min, x2,min, x3,min, . . . , xD,min],

Xmax = [x1,max, x2,max, x3,max, . . . , xD,max].
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The initialization of the jth component of the ith vector is done as follows

xj,i,0 = xj,min + randi,j [0, 1] (xj,max − xj,min),

where randi,j [0, 1] is a uniformly distributed random number lying between 0 and
1 (0 ≤ randi,j [0, 1] ≤ 1) and is instantiated independently for each component
of the ith vector. This is done so as to ensure that the population initialized at
G = 0 covers, as far as possible, the range of values that can possibly be taken
by X.

2.2 Mutation with Difference Vectors

Once the initialization has been done, the objective of the algorithm is to create a
donor vector V i,G corresponding to each member of the population (rechristened
as the target vector, Xi,G) in the current generation through a process called
mutation. The five most commonly used mutation schemes are as follows:

1. DE/rand/1

V i,G = Xri1,G
+ F (Xri2,G

−Xri3,G
)

2. DE/best/1

V i,G = Xbest,G + F (Xri1,G
−Xri2,G

)

3. DE/current-to-best/1

V i,G = Xi,G + F (Xbest,G −Xi,G) + F (Xri1,G
−Xri2,G

)

4. DE/best/2

V i,G = Xi,G + F (Xri1,G
−Xri2,G

) + F (Xri3,G
−Xri4,G

)

5. DE/rand/2

V i,G = Xri1,G
+ F (Xri2,G

−Xri3,G
) + F (Xri4,G

−Xri5,G
)

The indices ri1, r
i
2, r

i
3, r

i
4 and ri5 are mutually exclusive random integers chosen

from the closed interval [1, NP ] and all of them should be different from i. These
indices are randomly generated anew for each donor vector. The scale factor F
is a positive control parameter for scaling the difference vectors. Xbest,G is the
best individual vector with the best fitness (i.e. corresponding to a particular
minimization problem, Xbest,G has the lowest objective function value).
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2.3 The Crossover Scheme

Crossover involves themixing of components between the donor vector and the tar-
get vector Xi,G to form the trial vector U i,G = [u1,i,G, u2,i,G, u3,i,G, . . . , uD,i,G].
The DE family of algorithms essentially uses two kinds of crossover: exponential
(or two-point-modulo) and binomial (or uniform).We discuss the latter as the pro-
posed DE variant uses it. The binomial crossover scheme may defined as follows:

uj,i,G =

{
vj,i,G, randi,j [0, 1] ≤ Cr, orj = jrand,
xj,i,G, otherwise.

where, as explained in the previous section randi,j [0, 1] is a uniformly distributed
random number created afresh for each jth component of the ith parameter
vector. jrand is a randomly chosen integer lying in the interval [1, D] which
ensures that U i,G gets at least one component from V i,G. It is instantiated once
for each vector for each generation. See [4] for a DE algorithm containing novel
mutation and crossover strategies.

2.4 The Selection Scheme

Selection is the process that ascertains whether the target or the trial vector
survives to the next generation which is denoted by G = G + 1. The selection
operation may be described as follows:

Xi,G+1 =

{
U i,G, f(U i,G) ≤ f(Xi,G),
Xi,G, f(U i,G) > f(Xi,G).

where f(X) is the given objective function to be minimized.

3 Algorithm of the Proposed Differential Evolution
Variant

In this section, we slowly begin to develop the main aspects of the proposed DE
variant. We start with defining the main parameters used. The scale factor, F
has been given a value of 0.8, and the crossover rate, Cr has been given the
value of 0.9, the latter value having been found suitable for a wide variety of
optimization problems that can be successfully tackled by Differential Evolution.
Parameter-selection in DE is addressed in [5]. The algorithm has been tested on
a population NP of 100 individuals with the number of dimensions D being
variable and set at 30, 50 and 100 respectively.

3.1 Development of a Novel Mutation Scheme that Closely Mimics
Behavior Seen in the Natural World

Mutation Type I : Mutation between the Best and the Worst. The
proposed DE variant uses a mutation scheme that is a slight departure from
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the mutation scheme defined earlier by DE/best/1. The scheme in question is
defined by

V i,G = Xbest,G + F (Xri1,G
−Xri2,G

)

where ri1 and ri2 are mutually exclusive random integers chosen in such a way
that the maximum improvement in the present generation is given utmost im-
portance. This is done by ensuring that ri1 is chosen from the best p% and ri2
from the worst p% of the population. As explained earlier, the population con-
sists of 100 individuals, and here we have chosen p = 20. The novelty of this
approach is clearly seen if we consider the equation defined above. A close look
at the term in parenthesis suggests the formation of the vector (Xri1,G

−Xri2,G
),

which indicates that this vector is nothing but one that provides the direction
that is approximately the direction of maximum improvement, since ri1 and ri2
are chosen from the best and worst p% of the population respectively.

Mutation Type II : Mutation between Two Individuals of the Best
p% of the Population Apart from the above, the proposed DE variant also
considers the possibility of a mutation between two randomly selected members
of the best p% of the population. The proposed advantage of this type of muta-
tion is to overcome the overtly exploratory nature of the mutation type I and to
make it a bit more exploitative. Since, in the present mutation type, the muta-
tion is being performed taking into consideration Xri1,G

and Xri2,G
, which are

randomly selected vectors taken from the best p% of the population, it can be
expected that the two aforementioned vectors do not differ by a great deal with
respect to their fitness values. The mutation type II has the cumulative effect
of directing the donor vector towards the historically best vector which has the
best fitness value Xbest,G. Hence, we find that this type of mutation maintains
the best members of the present generation and progressively directs them more
and more towards Xbest,G. Therefore, this mutation type localizes the search
region of the proposed DE variant around the region of the vector Xbest,G.

Mutation Type III : Average Case Mutation The average case mutation
type is included to maintain diversity and also the general degree of randomness
that characterizes a metaheuristic. This third mutation type seeks to mutate any
two randomly selected vectors of the population excluding the best p% of the
population, since this case has already been considered in the first mutation type.
At this juncture, it becomes an immediate necessity to differentiate between the
mutation type III and the earlier described mutation types I and II.

As compared to the exploratory nature of the mutation type I and the ex-
ploitative nature of the mutation type II, the mutation type III is neither ex-
ploratory nor exploitative. Mutating between two random individuals of the
best p% of the population ensures that the search is confined to contours around
Xbest,G, and mutating between two random individuals of the best and worst
p% of the population ensures that the search space is generously explored.

The overall mutation scheme, which is a combination of the types, I, II and
III is carried out in the following manner: For a number of individuals equal to
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2p% of the population we carry out the mutation type I, that is, a mutation
between the best and worst p% of the population. For a number equal to p% of
the population, the mutation type II is chosen, namely a mutation between any
two members of the best p% of the population. For the remaining percentage of
the population, we carry out the mutation type III, the average case mutation
type elucidated earlier.

The mutation scheme is successfully executed by taking into consideration the
term Sorted Population which contains the individuals of the present generation
but in a sorted order. The sorting is done in such a manner that the individual
with the best fitness value is placed first and the individual with the worst
fitness value is placed last. In other words, Sorted Population contains all the
individuals of the present generation, sorted according to their fitness values, the
fittest being given priority.

3.2 Crossover

The proposed DE variant uses a novel crossover scheme. This elite crossover
operation incorporates in its working a greedy parent-selection strategy. For
each donor vector V i,G, a vector is randomly selected from the best p% vectors
of the present population and then binomial crossover is performed between the
donor vector and the randomly chosen vector in order to generate the trial vector
U i,G.

3.3 Stagnation, Its Connotations and an Attempted Removal

Stagnation refers to the trapping of the population near local extrema that
causes major problems by preventing the population from progressing towards
the much coveted global extrema.

The stagnation in the proposed DE variant is detected by the control param-
eter stagnate. When the fitness of the population does not improve even after
mutation and crossover for several generations, there arises the need for annihi-
lation and regeneration of the so-called “bad” part of the population. The rule
that has been followed for annihilation and regeneration is as follows: Here the
worst p

2% of the population is annihilated and the same number of chromosomes
is regenerated using a regeneration rule. The parameter stagnate is chosen such
that:

1. The stagnation is detected properly.
2. The population with regenerated chromosomes gets sufficient opportunity to

overcome the stagnation by improving their fitness values.

The annihilation and regeneration rule can be presented as follows: To gener-
ate a new population, each chromosome is generated according to the following
rule: For every dimension j, where j = 1, 2, 3, . . . , n, a random number rndj
uniformly distributed within (0, 1) is generated and compared with a parameter
pro ∈ (0, 1). If rndj ≤ pro, then New Chromosomej is set to a randomly gener-
ated real number uniformly distributed in the legal range [Lj, Uj], where Lj and
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Uj are the lower and upper bounds respectively of the dimension j. Otherwise,
New Chromosomej is inherited from any member selected randomly from the
best p

2% of the population, that is to say,

New Chromosomej =

{
rand(Lj, Uj), rndj ≤ pro,
Sorted Populationj

ran, otherwise.

where Sorted Population is the sorted array containing the present population
and New Chromosome has each member of the newly generated sub-population
(which is of the same size as the p

2% of the population to be annihilated). Here,
ran is a random positive integer less than the ceiling of p

2% of the population.
Now, after generation of the desired number of chromosomes, this sub-population
is injected into the present population replacing the worst p

2% of its members.

The parameter pro is kept equal to D
NP where D is the dimensionality of the

optimization problem at hand and NP is the number of individuals in the pop-
ulation. This newly generated sub-population possesses some desirable features
of the present population as some of its components are chosen from the best
vectors of the present population.

For unimodal functions, stagnation rarely occurs; so the stagnate parameter
would be ideally quite high for such functions. However, for multimodal and
hybrid functions with noise, stagnation occurs pretty frequently and choosing
stagnate to be at a lesser value will lead to better results. Experiments with a
wide range of problems suggest that stagnate = D

2 seems to be a suitable choice
for black-box optimization problems.

4 Experiments and Results

4.1 Numerical Benchmarks

The proposed algorithm (abbreviated as CAR DE from now on) is tested using
a set of standard benchmark functions from the special session and competition
on real parameter optimization held under the IEEE CEC 2005. These func-
tions include a diverse set of features like multimodality, ruggedness, noise in
fitness, ill-conditioning, rotation etc. and based on the classical benchmarks like
Rosenbrock’s, Rastrigin’s, Griewank’s, Schwefel’s and Ackley’s functions. A de-
tailed description of these functions appears in [11] and is not repeated here. In
summary, functions 1 to 5 are unimodal, functions 6 to 14 are multimodal and
functions 15 to 25 are hybrid functions.

4.2 Algorithms Compared and Parametric Setup

The performance of CAR DE is compared with the following algorithms that
include two classical DE variants and four state-of-the-art adaptive DE variants:

1. DE/current-to-best/1/bin with F = 0.8 and Cr = 0.9;
2. DE/rand/1/bin with F = 0.8 and Cr = 0.9;
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Table 1. Mean and Standard Deviation of the Error Values for F1 to F10(50D). The
Best Entries are Marked in Boldface.

Functions → f1 f2 f3 f4 f5
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
9.6015e − 05 3.960e + 13 5.469e+ 7 1.180e + 4 8.709e+ 03
(1.2837e − 05) (9.307e + 02) (1.328e+ 07) (3.332e + 03) (6.938e+ 02)

DE/current-to-best/bin
2.1443e − 06 2.136e + 03 1.030e+ 07 8.5675e + 03 7.462e+ 03
(6.1254e − 06) (1.128e + 03) (6.375e+ 06) (2.8624e + 03) (1.326e+ 03)

JADE
7.4615e − 14 5.6310e − 04 8.7156e+04 3.160e + 03 3.055e+ 03
(2.4190e − 04) (7.8233e − 06) (3.6847e+04) (4.134e − 01) (5.485e+ 02)

jDE
3.1544e − 09 5.202e + 03 2.977e+ 07 1.0194e + 04 4.206e+ 03
(4.9946e − 09) (1.486e + 03) (5.744e+ 06) (2.1828e − 01) (5.088e+ 02)

SaDE
1.4872e − 11 2.280e − 03 7.179e+ 05 9.778e + 04 5.992e+ 03
(2.8335e − 12) (8.545e − 03) (1.007e+ 06) (9.835e + 01) (4.464e+ 02)

DEGL
2.3462e − 20 1.1757e − 07 2.3114e+ 05 1.5746e + 03 5.0692e+ 02
(5.6234e − 20) (6.5592e − 08) (1.032e+ 05) (9.501e + 00) (5.803e+ 02)

CAR DE
5.8927e-36 5.1189e-13 8.5215e+ 04 1.5795e-02 4.0927e+02
(0.0000e+00) (1.4956e-14) (1.6874e+ 04) (2.2227e-02) (1.6839e+02)

Functions → f6 f7 f8 f9 f10
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
4.9162e + 01 6.1953e + 03 2.1142e+ 01 3.468e + 02 3.763e+ 02
(1.182e+ 01) (4.594e − 12) (3.330e− 02) (1.199e + 01) (1.578e+ 01)

DE/current-to-best/bin
1.0782e + 07 6.6691e + 03 2.1133e+ 01 2.406e + 02 2.5467e+ 02
(1.237e+ 07) (1.795e + 02) (3.251e− 02) (2.939e + 01) (7.6634e+ 01)

JADE
1.5413e + 01 6.1932e + 03 2.1136e+ 01 1.352e+02 1.935e+ 02
(1.0642e + 01) (1.840e + 00) (3.251e− 02) (2.591e+00) (2.060e+ 01)

jDE
4.1758e + 01 6.3114e + 03 2.1132e+ 01 1.716e + 02 1.9597e+ 02
(8.910e+ 00) (1.596e + 01) (3.807e− 02) (1.409e + 01) (5.6236e+ 01)

SaDE
1.1337e + 01 6.1951e + 03 2.1132e+ 01 1.148e + 02 6.342e+01
(1.044e+ 01) (4.594e − 12) (3.458e− 02) (1.266e + 01) (1.287e+01)

DEGL
1.3452e + 01 6.1953e + 03 2.1131e+ 01 1.620e + 02 1.0217e+ 02
(1.108e+ 01) (4.594e − 12) (3.917e− 02) (1.743e + 01) (3.5590e+ 01)

CAR DE
1.0653e+01 1.1084e-12 2.1131e+01 1.5422e + 02 1.7213e+ 02
(3.9319e+00) (4.0164e-14) (2.0287e-02) (2.1849e + 01) (4.3521e+ 01)

3. JADE with c = 0.1, p = 0.05, and optional external archive [12];
4. jDE with Fl = 0.1, Fu = 0.9, and τ1 = τ2 = 0.1 [1];
5. SaDE [7];
6. DEGL/SAW [3] with α = β = F = 0.8, Cr = 0.9, and neighborhood

size=0.1 ∗NP .

The population size NP of all the DE variants is kept at 100 irrespective of the
dimension D.

4.3 Simulation Strategies

Functions f1 to f25 are tested for 50 and 100 dimensions. The maximum number
of FEs are set to 500000 for 50D problems and 1000000 for 100D problems as
per the guidelines of the CEC 2005 special session [11]. All the simulations have
been done on an Intel Core-i5 CPU machine with 4 GB memory and 2.5 GHz
speed.

4.4 Results on the Numerical Benchmarks

Tables 1, 2, 3 and 4 show the mean and standard deviation of the 50 best-
of-the-run-errors for 50 independent runs of each of the seven algorithms on
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Table 2. Mean and Standard Deviation of the Error Values for F11 to F25(50D). The
Best Entries are Marked in Boldface.

Functions → f11 f12 f13 f14 f15
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
7.264e+ 01 2.049e + 06 3.596e+ 01 2.339e + 01 5.090e+ 02
(1.212e+ 00) (5.925e + 05) (1.446e+ 00) (1.486e − 01) (7.981e+ 01)

DE/current-to-best/bin
4.950e+ 01 2.505e + 05 3.412e+ 01 2.286e + 01 4.989e+ 02
(4.4551e + 00) (1.137e + 05) (8.9042e+ 00) (4.091e − 01) (5.001e+ 01)

JADE
6.208e+ 01 1.768e + 05 2.3112e+ 01 2.284e + 01 3.769e+ 02
(1.744e+ 00) (7.105e + 04) (4.784e− 01) (2.5486e − 01) (8.764e+ 01)

jDE
7.330e+ 01 1.473e + 05 2.5603e+ 01 2.309e + 01 4.000e+ 02
(1.008e+ 00) (1.928e + 05) (1.322e+ 00) (2.8437e − 01) (0.000e+ 00)

SaDE
6.634e+ 01 8.871e+03 2.771e+ 01 2.284e + 01 3.8827e+ 01
(1.485e+ 00) (7.092e+03) (4.112e+ 00) (2.0634e − 01) (1.0755e+ 02)

DEGL
6.290e+ 01 5.781e + 04 3.063e+ 01 2.262e + 01 3.8982e+ 02
(1.1360e + 01) (4.566e + 04) (4.361e+ 00) (3.3750e − 01) (4.9284e+ 01)

CAR DE
4.1575e+01 1.4989e + 06 1.4648e+01 2.1956e+01 3.6446e+02
(1.4847e+00) (2.8857e + 05) (4.0440e+00) (1.0006e+00) (1.2395e+01)

Functions → f16 f17 f18 f19 f20
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
2.7343e + 02 3.7286e + 02 9.9043e+ 02 9.4100e + 02 9.8536e+ 02
(1.0498e + 01) (3.1287e + 01) (4.8709e+ 01) (3.8003e + 01) (4.4956e+ 01)

DE/current-to-best/bin
2.5387e + 02 2.5234e + 02 9.2089e+ 02 9.2667e + 02 9.3586e+ 02
(1.4757e + 01) (5.7296e + 01) (5.6632e+ 01) (5.9865e + 01) (5.3925e+ 01)

JADE
1.437e+ 02 1.896e + 02 9.206e+ 02 9.6031e + 02 9.8672e+ 02
(5.2267e + 01) (3.8745e + 01) (1.893e+ 00) (2.5236e + 01) (1.8675e+ 02)

jDE
2.716e+ 02 3.059e + 02 9.145e+ 02 9.2090e + 02 9.9121e+ 02
(4.7190e + 00) (1.163e + 01) (3.163e+ 01) (1.0406e + 01) (1.5365e+ 01)

SaDE
1.5420e + 01 1.934e + 02 9.041e+ 02 9.3493e + 02 9.3167e+ 02
(6.1686e + 01) (2.9679e + 00) (5.208e+ 01) (1.9639e + 01) (2.0137e+ 01)

DEGL
1.3153e + 02 1.7659e + 02 9.6067e+ 02 9.1430e + 02 9.2196e+ 02
(1.9986e + 01) (2.3653e + 01) (2.8458e+ 01) (2.0105e + 01) (4.5874e+ 01)

CAR DE
1.2552e+02 1.2393e+02 8.4017e+02 8.4094e+02 8.3885e+02
(1.2970e+00) (1.3762e+00) (1.0514e+00) (3.1157e+00) (1.8098e+00)

Functions → f21 f22 f23 f24 f25
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
9.1108e + 02 9.9463e + 02 9.1185e+ 02 7.9849e + 02 1.7586e+ 03
(5.7474e + 02) (1.3465e + 01) (2.5986e+ 01) (2.4586e + 01) (4.5365e+ 00)

DE/current-to-best/bin
8.9465e + 02 9.3443e + 02 9.2645e+ 02 7.9456e + 02 1.7846e+ 03
(1.7465e + 02) (1.1026e + 01) (2.5986e+ 02) (1.3642e + 01) (6.7654e+ 00)

JADE
8.523e+ 02 9.1370e + 02 8.103e+ 02 2.000e + 02 1.6632e+ 03
(3.5175e + 02) (2.4356e + 01) (2.4572e+ 02) (0) (5.5842e+ 00)

jDE
8.0619e + 02 9.796e + 02 8.3044e+ 02 2.000e + 02 1.728e+ 03
(1.0896e + 02) (1.4851e + 01) (1.0787e+ 02) (0) (6.2562e+ 00)

SaDE
8.6400e + 02 9.7245e + 02 8.6405e+ 02 2.000e + 02 1.7586e+ 03
(1.5799e + 02) (3.3383e + 01) (1.5266e+ 02) (0) (3.1453e+ 00)

DEGL
8.3600e + 02 9.4242e + 02 8.3934e+ 02 7.2465e + 02 1.571e+ 03
(2.1772e + 02) (3.5647e + 01) (1.6620e+ 02) (8.3066e + 01) (6.5096e+ 00)

CAR DE
7.3459e+02 5.001e+02 7.0374e+02 2.000e+02 2.3126e+02
(8.9992e+00) (8.2260e+00) (7.8156e+01) (0) (6.4983e+00)

25 numerical benchmarks for 50D and on the first 14 benchmarks for 100D
respectively. Note that the best-of-the-run error corresponds to the absolute
difference between the best-of-the-run value f(Xbest) and the actual optimum
f∗ of a particular objective function, i.e., |f(Xbest) − f∗|. Table 1 and 2 reveal
that CAR DE outperformed the other DE variants in 21 out of 25 functions for
50D problems and performs well specially for multimodal and hybrid functions.
Tables 3 and 4 show that this algorithm defeats the other DE variants in 11
out of 14 functions for 100D problems. Thus the increasing dimensionality does
not worsen the performance of this algorithm. Note that CAR DE retains its
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Table 3. Mean and Standard Deviation of the Error Values For F1 To F10(100D). The
Best Entries are Marked in Boldface.

Functions → f1 f2 f3 f4 f5
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
2.9467e − 05 8.9371e + 04 9.7635e+ 07 3.0937e + 05 1.0675e+ 06
(3.0947e − 04) (7.4925e + 04) (8.4625e+ 03) (4.9875e + 03) (4.8437e+ 03)

DE/current-to-best/bin
8.4735e − 06 9.0927e + 03 9.8525e+ 06 7.5821e + 04 5.0967e+ 05
(9.4927e − 05) (8.4736e − 05) (5.0948e+ 03) (8.6745e + 03) (5.8453e+ 03)

JADE
6.4825e − 10 3.4923e + 03 2.9371e+06 5.0342e+04 7.5251e+ 05
(4.0249e − 09) (8.4725e − 06) (7.4728e+04) (6.9785e-03) (3.9464e+ 03)

jDE
7.4627e − 07 5.9371e + 03 8.9372e+ 06 7.9261e + 04 2.9361e+ 05
(3.9371e − 09) (8.4625e − 07) (3.0927e+ 04) (2.7456e + 03) (6.4536e+ 03)

SaDE
8.2615e − 08 2.9471e + 04 7.9171e+ 06 6.0283e + 04 9.7364e+ 05
(5.0445e − 09) (7.7352e − 03) (8.0936e+ 02) (6.9573e + 03) (2.0936e+ 03)

DEGL
9.6844e − 07 8.9261e + 04 4.8326e+ 07 1.9372e + 05 9.0936e+ 05
(4.0937e − 08) (8.4563e − 06) (5.0945e+ 04) (4.9463e + 04) (6.9382e+ 03)

CAR DE
9.099e-13 1.5207e+01 4.5832e+ 06 9.7403e + 04 1.7284e+04
(7.1901e-14) (2.8769e+01) (2.9612e+ 04) (2.6157e + 04) (2.7346e+03)

Functions → f6 f7 f8 f9 f10
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
1.8946e + 05 1.8574e + 05 2.2497e+ 01 9.3752e + 02 9.7631e+ 02
(4.9372e + 01) (4.0832e + 02) (3.0423e+ 01) (6.7322e + 01) (1.5787e+ 01)

DE/current-to-best/bin
9.3967e + 04 1.6738e + 05 2.2308e+ 01 9.4065e + 02 7.5467e+ 02
(7.4925e + 01) (8.4735e + 02) (8.4725e+ 00) (7.6695e + 01) (5.64334e+01)

JADE
7.5329e + 04 9.0417e + 04 2.1964e+ 01 8.9272e + 02 5.935e+ 02
(7.3725e + 01) (8.4735e + 02) (9.4673e+ 01) (4.5043e + 01) (8.8760e+ 01)

jDE
8.1876e + 04 1.1625e + 05 2.2197e+ 01 9.3264e + 02 6.9597e+ 02
(8.4752e + 00) (7.4637e + 02) (7.4627e+ 00) (7.3645e + 01) (7.7653e+ 01)

SaDE
2.0172e + 04 9.8463e + 04 2.2075e+ 01 9.2737e + 02 8.3426e+ 02
(8.2514e + 01) (8.4623e + 02) (9.3736e+ 00) (5.1369e + 01) (1.6378e+ 01)

DEGL
4.2684e + 04 1.2383e + 05 2.2210e+ 01 9.5591e + 03 8.2017e+ 02
(5.8352e + 01) (9.4573e + 02) (4.8252e+ 00) (3.9274e + 01) (3.5590e+ 01)

CAR DE
1.8396e+02 1.8914e+04 2.1674e+01 5.9232e+02 4.9012e+02
(9.8705e+01) (1.5657e+03) (3.0845e+01) (2.2333e+01) (8.4560e+01)

Table 4. Mean and Standard Deviation of the Error Values for F11 to F14(100D). The
Best Entries are Marked in Boldface.

Functions → f11 f12 f13 f14
Algo ↓ Mean(Std) Mean(Std) Mean(Std) Mean(Std)

DE/rand/1/bin
9.2648e + 01 9.049e + 06 5.2926e+ 01 4.4339e + 01
(1.9212e + 00) (7.925e + 05) (4.346e+ 00) (1.4836e − 01)

DE/current-to-best/bin
6.9150e + 01 6.505e + 05 4.4132e+ 01 4.5186e + 01
(6.6451e + 00) (4.137e + 05) (3.5042e+ 00) (4.4091e − 01)

JADE
9.1208e + 01 6.768e + 05 3.4141e+ 01 4.2684e + 01
(4.7744e + 00) (2.105e + 04) (4.0834e+ 00) (3.8163e − 01)

jDE
7.7630e + 01 7.473e + 05 3.8650e+ 01 4.3309e + 01
(9.4008e + 00) (7.928e + 05) (4.322e+ 01) (2.7163e − 01)

SaDE
8.4684e + 01 9.0781e+04 3.5713e+ 00 4.2874e + 01
(3.485e+ 00) (5.9092e+03) (5.112e+ 00) (2.5343e − 01)

DEGL
8.1290e + 01 8.8781e + 05 4.063e+ 01 4.2662e + 01
(1.360e+ 01) (7.1566e + 04) (2.361e+ 01) (6.9834e − 01)

CAR DE
6.2910e+01 4.4677e + 05 3.3179e+01 4.0225e+01
(4.1313e+00) (1.8670e + 04) (4.9355e+00) (2.4122e-01)

superiority in case of rotated, shifted functions and functions with noise in fitness.
Therefore, function rotation and incorporation of multiplicative noise does not
hamper the performance of the algorithm significantly.



296 S. Mukherjee et al.

Fig. 1. Progress toward the optimum solution for median run of eight algorithms over
two numerical benchmarks (in 50D).
Left: Shifted rotated Griewank’s function f7; Right: Shifted Rotated Weierstrass func-
tion f11.

Fig. 2. Progress toward the optimum solution for median run of eight algorithms over
two numerical benchmarks (in 50D).
Left: Rotated Hybrid Composition Function f21; Right: Composition function f25.

For further illustration, in Fig. 1 and 2, we show the convergence graphs for
the median run of (where the runs were sorted according to the final best error
values achieved in each) the CAR DE algorithm on four benchmarks in 50D.

5 Conclusion

The results for 50 dimensions reveal the performance of CAR DE to be almost
comparable to that of JADE (and SADE in some instances) for all the unimodal
functions, however the performance of CAR DE is slightly better for multimodal
functions, and significantly better for hybrid functions. In all the hybrid functions,
CAR DEperforms better than all the state-of-the-artDE variants. The results ob-
tained for higher dimensions support the superiority of CAR DEover the otherDE
variants. Specially, the hybrid functions of 50 dimensions andmultimodal functions
of 100dimensions lucidlydemonstratehowthenovelmutation schemecoupledwith
annihilation and regeneration can improve the efficiency of DE.

The real challenge to an evolutionary algorithm comes in the form of optimiza-
tion of highly complex, noisy and higher dimensional functions (such as those
working in 50 or 100 dimensions). As the complexity of the function increases,
there arrives the need to efficiently explore the search space.

The present algorithm tries to optimize such more complex functions, attain-
ing that purpose without losing much of its explorative nature for functions
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of smaller dimensions. Further improvements to the CAR DE algorithm may
be made by tuning the algorithmic parameters and maintaining an adaptive
external archive.
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Abstract. Most of the real world optimisation problems are inherently
dynamic and constrained. In a Dynamic Constrained Optimization Prob-
lem (DCOP), the objective function as well as the constraint functions
change with respect to time. While several algorithms already exist in
the purview of dynamic optimization, the introduction of constraint
makes the challenge more sophisticated. Conventional DCO algorithms
involve a Core-Optimizer (e.g. GA, PSO etc.) accompanied by a separate
constraint-handling technique e.g., a repair method, or a penalty func-
tion. However, it has been observed that ordinary repair methods with
elitism significantly decrease the diversity of the population during the
exploitation stage and the penalty functions cannot properly deal with
disconnected feasible regions. In this paper, we present a new algorithm
based on the Differential Evolution algorithm as well as a modified ver-
sion of a repair method that produces improved results. The proposed
approach incorporates knowledge-reusing and knowledge-restarting in or-
der to produce a quick recovery and faster convergence.

1 Introduction

Basic goal of constrained optimization problems [1], is to minimize the objec-
tive function subjected to few constraints. Evolutionary Algorithms (EAs) are
efficient to perform unconstrained search. But in constrained environments, the
search process becomes complicated due to additional criterion of satisfying the
constrains and often these two objectives become conflicting.

Dynamic Optimization problems (DOPs) are a large subset of the real world
optimization problems where the objective function is dynamic in nature i.e., the
objective function varies with time. These problems are different from dynamic
problems (also known as dynamic environments) only when the underlying fitness
landscape changes during the operation of the EA [2]. These problems are to
be solved online by an optimization algorithm as time goes on. The Dynamic
Constrained Optimization Problems, as referred in [3] are more challenging, since
the objective function as well as the constraints changes with time. An efficient
DCO algorithm, therefore must be able to sense the change in the optimization
environment and adaptively modify its search strategy.

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 298–309, 2013.
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The prime challenges of DCOP can be shortlisted in two categories i.e. out-
dated memory and lack of diversity. Usually after a change in the environment,
the intellegence gathered by the population becomes outdated. So the algorithm
must be able to track change and to do that the population should contain
enough diversity to explore the problem landscape.

Recent works on DCOP has involved the triggered Hyper-Mutation Genetic
Algorithm. In hyper-mutation, introduced in [4], the mutation rates are triggered
to a very large value whenever a change in detected. In this way, this algorithm
copes with the dynamics of the environment by introducing diversity in the
population and then the algorithm adapts to new environments. However, this
algorithm cannot detect a change when new global optima are exposed without
changing the objective value of the previous optima. Also, determining the cor-
rect mutation rate is very difficult since it is a function of the degree of change
in the environment.

In the paradigm of swarm based optimization algorithms, Particle Swarm
Optimization, applied by Hu and Eberhart [7], was modified such that the swarm
is diversified by randomized relocation of the particles after a change in the
environment is detected. Following a more sophisticated approach [8], the swarm
can be divided into a hierarchy of sub-swarms in order to introduce diversity. But,
determining the number of sub-swarms is a tough challenge and this algorithm
fails to converge to an optimum when there is a large change in the objective
landscape, as well.

This paper introduces an algorithm to solve dynamic constrained optimiza-
tion problems efficiently using the DE with an offspring repair technique. The
proposed algorithm tracks changes in the environment separately and relocates
the population all over the modified feasible region whenever environment is re-
structured. Thus, it can search the whole feasible space and explore new global
optima irrespective of the presence of small or large changes in the fitness space.
The worst particle in every generation is randomly replaced by a new particle
from the feasible space which introduces diversity in the algorithm. Also, the
gravitational constant is replaced by a high value whenever the population is
relocated and henceforth, maintains diversity for the first few generations.

Of the CH methods available, the penalty function, which is the most popular
CH method in current use, fails when there are several disconnected feasible
regions in the constraint space. Further dynamic feasible regions and switching of
the global optimum amongst the regions separeted by high degree of infeasibility
aggravates the situation. The CH technique used here is the repair method. In
this technique, if any offspring enters the infeasible region, it is replaced by a
random particle between it and its closest feasible solution in the population.
Therefore, the information in the infeasible particle is partially preserved.

A short introduction to the Dynamic Constrained Optimization Problem is
provided in Section 2. This section also discusses some real-life applications of
DCOPs. Section 3 introduces Differential Evolution (DE) [9]. The shortcom-
ings of conventional CH techniques and the benefits of using a repair method
are discussed in Section 4. Section 5 describes the detection of change in an
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environment and Section 6 shows a comparative analysis of several DCO al-
gorithms. This section also gives a thorough discussion explaining the better
performance of our algorithm. Finally, Section 7 provides our conclusions and
suggests some possible paths for future research.

2 Dynamic Constrained Optimization

Without loss of generality, a Dynamic Constrained Optimization Problem in
continuous domain can be stated as follows:

min
x∈Dt⊆[L,U ]

f(x, t) (1)

Gi(x, t) ≤ 0, ∀i ∈ {1, 2, ....m}, (2)

where t ∈ N+ is called time (environment) variance, [L,U ] = {x = (x1, x2, ...xn) |
Li ≤ xi ≤ Ui, i = 1 ∼ n} is called search space and x={x | x ∈ [L,U ], Gi(x, t) ≤
0, i = 1 ∼ m} is called feasible space.

For ∀x ∈ Dt, if there exists a point x∗ ∈ Dt such that f(x∗, t) ≤ f(x, t) (or
f(x∗, t) ≥ f(x, t) for maxima) then x∗ is called the optimal point and f(x∗, t) is
called the optimal value for the environment t.

There are miscellaneous real life applications for continuous DCOP from which
optimal control of Hybrid systems [10,11] and Dynamic systems [12] constitute
more than 70%. Other than that, source identification, parameter estimation,
pattern recognition and classification are other popular known fields of applica-
tion for DCOP [1].

3 Differential Evolution

Differential evolution (DE) has emerged as one of the most competitive evolu-
tionary algorithm. Invented by Storn and Prince, DE is a stochastic direct search
method using populationor multiple search points [34]. Its variants have been
successfully implemented in solving multi-objective, dynamic and constrained
optimization problems and tackle many real world situations.

DE has the structure similar to genetic algorithm. It is equipped with a
population which is a collection of trial solutions. In case of real parameter
optimisation, the parameters to be optimised are encoded with in a vector
X = [x1, x2, ...xn].These individual vectors (which constitute a population) are
called parameter vectors or genomes. The population is then manipulated with
three operations namely mutation, crossover and selection. However, unlike tra-
ditional EAs, DE employs difference of the parameter vectors to explore theob-
jective function landscape. It perturbs the population members with the scaled
differences of randomly selected and distinct population members. Therefore,
there exists no separate probability distribution for generatingthe offspring.

In the search population, each vector forms a candidate solution to the
multi-dimensional optimization problem. We shall denote subsequent genera-
tions in DE by G = 0, 1..., Gmax. Since the parameter vectors are likely to
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be changed over different generations, we may adopt the following notation for
representing the ith vector of the population at the current generation
Xi,G = [x1,i,G, x2,i,G, x3,i,G, ..., xD,i,G]. Where xj,i,0 is randomly initialised with
in the search space constrained by the prescribed minimum and maximum
bounds: xj,min and xj,max∀j = 1, 2, ..., N . Hence we may initialize the jth com-
ponent of the ith vector as

xj,i,0 = xj,min + rand× (xj,max − xj,min), (3)

where rand is a uniformly distributed random numberlying between 0 and 1 and
is instantiated independently for each component of the ithvector.

Mutation, in the paradigm of DE, signifies a random perturbation about a trail
vector [34]. In the simplest version of mutation, three non overlapping vectors
X i

p,i,G, X
i
p2,i,G, X

i
p3,i,G are randomly selected from the population (p1i, p2i, p3i

are three mutually exclusive integers belonging to the range [1, NP ]). The donor
vector which is the outcome of mutation is generated as,

Vi,G = X i
p,i,G + F × (X i

p2,i,G −X i
p3,i,G) (4)

where F is the scaling factor and F ∈ [0.41].

Fig. 1. Differential Evolution

After generating the donor vector, the cross over operation comes into play to
enhance the potential diversity of the population. The genes of Vi,G and Xi,G are
interchanged to form a trial vector Ui,G = [u1,i,G, u2,i,G, .., uD,i,G]. The scheme
of binomial crossover is dictated by the following.

uj,i,G =

{
vj,i,G, if rand ≤ Cr or j = jrand
xj,i,G, otherwise

}
(5)

where jrand ∈ [1, 2, ., NP ] is a randomly chosen index ensuring that at least one
component of Ui,G is selected from Vi,G.

4 Handling Constraints

Conventional CH techniques [35] such as penalty functions are inefficient for
solving DCOPs since they are unable to track the optima when the feasible
region is disconnected and the optimum switches between these regions. On the
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contrary, a repair method maps infeasible individuals into feasible solutions with
the help of a reference population.

Repair method was introduced by Michalewicz and Nazhiyath [13]. The main
advantage of a repair method over conventional CH techniques is its idependance
of the amount of constraint violation and its ability to preserve even an infeasibile
individual which has the capability of producing good solution. On the other
hand, it has been observed that repair methods are, in a way, very robust, and
therefore, they fulfil the most significant requirements for dynamic constraint
handling.

In a repair method, we generate first a reference population which entirely
belongs to the feasible region. Now, if S is an infeasible individual, then a random
point is generated on the straight line joining S and any member R from the
reference population. If the point belongs to the feasible region, then it replaces
S in the main population. The reference population is updated as well if the
new solution has a better fitness value than the member from the reference
population.

This conventional repair method has been modified in our proposed algorithm.
Here, the initial population is generated entirely in the feasible region–i.e., the
size of the reference population is the same as the size of the overall population.
Therefore, the main population here is a null set.

Now, if the standard deviation of the population is low, then the repair method
significantly decreases the diversity of the population. Therefore, the exploration
process is affected. To get rid of this phenomenon, we have used a modified
version of the repair method. Instead of selecting R randomly selected individuals
from the reference population, we choose R individuals such that the distance
between R and S is minimum. In this way, the information contained in the
infeasible particle is not lost and a feasible solution is also produced. The random
selection of the generated particle also gives the mechanism a heuristic touch.

5 Detection of Changes in Environment

DCO differs from its static counterpart by the fact that either the objective
function or the constraints (or both) keep changing with time. In the benchmark
problems in this area [3], the time dependence has been modelled by setting
a number of function evaluations (1000 objective function evaluations) upto
which the environment is static. Henceforth, our problem can be viewed as a
series of distinct static constrained optimisation problems. However, in practical
situations, the environment can change with any random frequency. Considering
the worst case scenario to be when the environment changes very rapidly, the
optimization algorithm must be able to work very fast. To achieve that, the best
alternative is to use the knowledge from the previous search and that is why this
algorithm uses knowledge-reuse as well as knowledge-regeneration. Now, if there
is a change in the environment and it remains undetected, then the algorithm is
said to fail to cope with the dynamic nature of the problem. So, the detection
of change in the environment is very important and must be very fast.
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The detection of changes is realized with one or a fixed set of detectors and
their present and past objective values and constraint violations are compared.
If they are different, then, indeed, the environment has changed. Average best
fitness or some members from the population or a point (which could be random
or fixed) can be used as detectors. However, if the algorithm is assisted with
elitism, then the diversity of the population decreases eventually with genera-
tions. So, the population is trapped in a fixed part of the fitness landscape and
if the change is not in that part, then there is a possibility that the change will
be left undetected. So, this algorithm uses an entirely isolated set of detectors
and compromises some objective function evaluations to achieve a quick and
sensitive change detection system.

There are two types of changes that can affect the search process. One, is
a change in the objective function, and the other is a change in the constaint
functions. Both types of changes can be efficiently detected by establishing a set
of fixed points (i.e. pivots) and then evaluating the fitness value and the amount
of constraint violation after each iteration. Changes in the constraint functions
not only change the boundary of the feasible region but also add (or remove)
disjoint feasible regions or can change the amount of violation of any individual,
while keeping the boundary of the feasible region fixed. To detect changes in the
constraint landscape, we do not require any extra evaluations and, therefore,
there is no limitation in this case. Hence, an arbitrary number of pivots can be
assigned for detection. Now, for the former case, each time a change is detected,
some evaluations are required to set the reference values for the pivots. Added
to that, there will be some more evaluations required to compare the past and
present values of the detectors. But, it has been observed that the number of
fitness function evaluations needed for change detection is substantially small
when compared to that used for optimization purposes.

6 Results and Discussions

Real-life applications of DCOPs are numerous, e.g. dynamic aircraft schedul-
ing [14], dynamic vehicle routing [15], video based motion capture [16], mod-
elling of oscillatory behavior of bacterial cultures [17], modelling and control of
open plate reactors [18], etc. In real-world DCO problems, the objective func-
tion and constraint functions can be combined in three different types. The first
type of combination is the case where both the objective function and the con-
straints are dynamic, as in scheduling/resource allocation problems [27], aero-
dynamic/structural design problems [31], or in many optimal control problems
[28][29][30]. In the second type of combination, the objective function is dynamic
while the constraints are static, for example, in the document stream modelling
problem [32], the evolvable hardware design problem [23] or the optimal control
problem of fermentation processes [24]. In the third type of combination, the
objective function is static and the constraints are dynamic, as can be seen in
the hydrothermal scheduling problem [25], the cargo movement problem [26] and
the ship scheduling problem [33].
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Fig. 2. G243 Fixed Objective Dynamic Constrained problem (N = 25)

The test environment used here contains all these three types of real world
DCOPs and makes the optimization process very challenging by narrowing the
feasible space sometimes e.g., in G24 5 and G24 7, the percentage of feasible
region reduces linearly from 44.61% to 7.29%. Another challenge for the algo-
rithms is the presence of disconnected feasible region e.g., G24 3 and G24 3b,
represents the first and the third type of DCOPs respectively and contains 2-3
disconnected feasible regions in average. The performance analysis of the DCO
algorithms are subject to the test problems adopted in this paper.

The main goal of optimization is producing the best possible solution which is
reflected in this case by the mean error. Although the problems here are dynamic
in nature, a better way to calculate the error as indicated in [1] is the offline
error i.e., the mean of the error in all the generations. A ranking based on the
offline errors are given in Table 1.

In real life problems, the change frequency may be very high. Considering the
worst case scenario, therefore, the DCO algorithm must gain quick recovery after
changes in the environment. Techniques such as the triggered hyper mutation
genetic algorithm enhance the mutation rate to a very high level every time a
change is detected in the environment. A few extra generations are still needed
to amplify the diversity to a reasonable level. In our algorithm, each time that a
change is detected, a part of the old population dies out and the same number
of particles are regenerated. Combined with the faster convergence of DE, this
technique provides a faster recovery.
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Table 1. Offline errors of the tested algorithms in the medium settings (pop size=25;
change frequency=1000 evaluations; objective functions change severity k = 0.5; con-
straint functions change severity S = 20).

problems→ G24-u(dF, noC) G24-1(dF, fC) G24-f(fF, fC)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.298 0.051 7 0.609 0.064 8 0.676 0.085 8
RIGA-noElit 0.221 0.025 6 0.493 0.045 7 0.546 0.072 7
HyperM-noElit 0.206 0.035 5 0.361 0.065 4 0.226 0.056 6
GA-elit 0.106 0.035 2 0.459 0.057 6 0.154 0.083 4
RIGA-elit 0.149 0.025 4 0.346 0.046 3 0.178 0.051 5
HyperM-elit 0.111 0.026 3 0.384 0.065 5 0.151 0.053 3
GA+Repair 0.468 0.059 8 0.226 0.024 2 0.041 0.011 2
DE+Repair 0.099 0.010 1 0.151 0.024 1 0.039 0.022 1

problems→ G24-uf(fF, noC) G24-2(dF, fC) G24-2u(dF,noC)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.464 0.064 8 0.356 0.049 8 0.159 0.041 7
RIGA-noElit 0.342 0.032 7 0.264 0.035 5 0.107 0.019 4
HyperM-noElit 0.124 0.041 5 0.257 0.045 4 0.130 0.022 5
GA-elit 0.063 0.022 2.5 0.288 0.050 7 0.073 0.017 2
RIGA-elit 0.069 0.020 4 0.246 0.037 2 0.091 0.024 3
HyperM-elit 0.063 0.012 2.5 0.253 0.043 3 0.068 0.016 1
GA+Repair 0.218 0.018 6 0.281 0.036 6 0.294 0.029 8
DE+Repair 0.057 0.019 1 0.191 0.014 1 0.141 0.012 6

problems→ G24-3(fF,dC) G24-3b(dF,dC) G24-3f(fF, fC)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.760 0.099 8 0.657 0.097 8 0.886 0.179 8
RIGA-noElit 0.538 0.047 7 0.500 0.038 7 0.651 0.055 7
HyperM-noElit 0.411 0.052 6 0.459 0.069 6 0.256 0.057 6
GA-elit 0.289 0.049 4 0.457 0.084 5 0.158 0.058 5
RIGA-elit 0.308 0.048 5 0.386 0.051 3 0.167 0.048 3.5
HyperM-elit 0.283 0.050 3 0.394 0.088 4 0.158 0.051 3.5
GA+Repair 0.156 0.008 2 0.171 0.019 2 0.025 0.008 2
DE+Repair 0.091 0.012 1 0.121 0.019 1 0.013 0.009 1

problems→ G24-4(dF, dC) G24-5(dF,dC) G24-6a(dF,2DR))

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.621 0.101 8 0.379 0.067 8 0.529 0.108 7
RIGA-noElit 0.490 0.053 7 0.293 0.046 7 0.366 0.030 3
HyperM-noElit 0.469 0.057 6 0.275 0.034 6 0.383 0.051 4
GA-elit 0.453 0.075 5 0.266 0.029 5 0.674 0.157 8
RIGA-elit 0.421 0.047 3 0.240 0.035 3 0.333 0.050 2
HyperM-elit 0.426 0.075 4 0.248 0.039 4 0.491 0.071 6
GA+Repair 0.211 0.015 2 0.236 0.024 2 0.431 0.074 5
DE+Repair 0.121 0.021 1 0.121 0.011 1 0.047 0.009 1

problems→ G24-6b(dF,fC,1R) G24-6c(dF,2DR,easy) G24-6d(dF,2DR,hard)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.448 0.054 8 0.446 0.041 8 0.543 0.127 8
RIGA-noElit 0.331 0.035 3 0.329 0.039 4 0.366 0.040 4
HyperM-noElit 0.340 0.046 4 0.323 0.037 2 0.370 0.046 5
GA-elit 0.408 0.057 6 0.441 0.052 7 0.510 0.075 7
RIGA-elit 0.309 0.039 2 0.325 0.029 3 0.342 0.057 2
HyperM-elit 0.390 0.039 5 0.394 0.051 6 0.456 0.041 5
GA+Repair 0.427 0.048 7 0.390 0.038 5 0.354 0.038 3
DE+Repair 0.101 0.012 1 0.79 0.010 1 0.91 0.011 1

problems→ G24-7(fF, dC) G24-8a(dFnC,ONISB) G24-8b(dFfC,OICB)

algo.↓ mean std Rank mean (std) Rank mean (std) Rank

GA-noElit 0.721 0.088 8 0.426 0.050 8 0.835 0.068 8
RIGA-noElit 0.543 0.059 7 0.346 0.031 6 0.719 0.071 7
HyperM-noElit 0.495 0.053 6 0.374 0.043 7 0.681 0.072 6
GA-elit 0.316 0.053 4 0.266 0.028 2 0.662 0.056 5
RIGA-elit 0.416 0.068 5 0.304 0.028 5 0.598 0.064 3
HyperM-elit 0.315 0.062 3 0.279 0.028 3 0.608 0.071 4
GA+Repair 0.181 0.017 2 0.300 0.033 4 0.251 0.051 2
DE+Repair 0.033 0.009 1 0.217 0.033 1 0.227 0.039 1
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Fig. 3. G247 Fixed Objective Dynamic Constrained problem (N = 25)

The change detection technique used in conventional DCOPs is based on one
or on a fixed set of detectors. Hence, most of the known algorithms usually track
the change based on the average best fitness [19] or on some members of the
population or on a point (single detector, could be random or fixed). Although, in
order to get better solution, the diversity of the population should be allowed to
eventually decrease and the population can be centered in a part of the objective
space. If the change occurs in some other zone, then it cannot be detected using
the members of the same population. To get rid of that, this algorithm is assisted
with an entirely isolated detection system. The use of a single detector is risky for
obvious reasons. So, we used a detector-grid made of a fixed set of equally spaced
points as reference and compared for a random member from that grid. To make
the method more sensitive, the number of detectors and the comparators can be
increased at the expense of function evaluations.

On the other hand, some members from the previous population remain in-
tact at every regeneration of the population. So, if the change does not affect
the global optima, then the algorithm can easily deal with that, too. The best
solution in this case would be not to regenerate the population, although this
algorithm cannot indulge in that. But this does not change the statistics in a
significant way. Thus, this algorithm combines knowledge-reusing, that produces
faster solution and helps to learn the nature of the dynamics while knowledge-
restarting produces better solutions.
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7 Conclusions and Future Work

DCOPs are meant to be solved online. In this paper, we proposed an algorithm
that combines DE and a repair technique to produce better objective function
values. This algorithm divides the whole problem into some discrete cases and
solves them separately while they are linked together with a change detection
technique to cope up with the dynamic nature of the problem.

The modified repair method we proposed preserves diversity. It does not get
trapped by disconnected feasible regions like the penalty function and performs
better in handling constraints.

The change detection technique used in this algorithm is basic but very ef-
fective. Although it can be made more efficient by selecting more pivot points
simultaneously, while compromising some objective function evaluations. Never-
theless this sort of scheme would have some problems when the change-frequency
is very high. In the proposed algorithm, we have made a trade-off between these
two issues. However, in our future work, we aim to design a different approach
that consumes less function evaluations to detect a change in the environment.
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Abstract. Differential Evolution(DE) is one of the most versatile evo-
lutionary techniques that optimizes a problem by iteratively trying to
improve a candidate solution with regard to a given measure of quality.
Recent developments on DE includes self adaptation of its parameters
(F=step size and CR=cross-over probability) making it a parameter free
optimizer. A new self adaptive DE(jDE) proposed by Janez Brest, is a
robust improvement of DE, where the self adaptive parameters undergo
similar operations of genetic operators. This paper aims at introducing
a unique mutation strategy by modifying the existing ”DE/rand/1/bin”
strategy of jDE with Difference Mean Based Perturbation (DMP) tech-
nique. The algorithm addressed as ADE-DMP is basically a variant of
jDE, but the modified mutation scheme ensues within the algorithm ef-
fective search of area near the current best that effectively proves it to
be a better and fast optimizer in complex real world problems of diverse
domains.

1 Introduction

Differential Evolution(DE) is arguably one of the most effective evolutionary
techniques of global optimization known for its simplicity, fast convergence and
its manifold applications in various field of optimization including scientific and
engineering fields, introduced by Storn and Price[1–4]. Proper tuning of the
parameters is an integral part for realizing quality solutions by DE. The common
practiced method includes the selection of a value for a particular parameter and
then tuning it by repeated application keeping it to be fixed throughout the run.
But the choice of parameters for a particular problem may not be the correct
choice for another problem. Parameter control essentially brought the revolution
for DE that eventually proves it to be one of the best optimization techniques
of the present era. Recent works include self adaptive parameter control where
the parameters to be adjusted are encoded in the individuals and undergo the
similar operations of genetic operators. Such an improvement on a basic DE
framework can be observed in a new self adaptive DE, jDE by Janez Brest[5].

In this paper the mutation scheme used in jDE, ”DE/rand/1/bin” has been
modified with a unique upgradation technique called Difference Mean based Per-
turbation(DMP) that offers a perfect blend of exploration and exploitation to the

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 310–320, 2013.
c© Springer International Publishing Switzerland 2013



Adaptive DE with Difference Mean Based Perturbation 311

original version of jDE. The improvement of the mutation scheme over the one
used in jDE is clearly reflected in the performance of ADE-DMP on comparison
with other state-of-artEAs proposed in literature as well as jDE itself. The stable
yet steady rate of convergence offered by DMP mutation is also evident from
the convergence characteristics of our method. Some selected problems of the
real world optimization problems of Competition on Testing Evolutionary Al-
gorithms on Real-world Numerical Optimization problems, held under the 2011
IEEE Congress on Evolutionary Computation(CEC 2011)[6] are chosen to judge
the performance of ADE-DMP. The problems are quite diverse in the respect
that they include low and high dimensionality problems with unequal bound
constraints, high complexity and constraint in the function evaluations. Func-
tion Evaluation is supposed to be the biggest challenge for all the EAs in the
competition as minimizing a high dimensionality problem within such a limited
function evaluations, to obtain the best optimal combinations for the particu-
lar problem requires a powerful optimization technique that is both fast and
efficient. The proposed method successfully outperforms the other approaches in
the competition satisfying the constraint of function evaluations in a statistically
significant way, thereby yielding the best optimal solutions in most of the test
cases considered.

2 Adaptive DE with Difference Mean Based Perturbation
(ADE-DMP)

The convergence rate of jDE is no doubt better than the conventional DE al-
gorithm but when applied on the real world problems as mentioned in [6] jDE
fails to obtain the best optimal solution within limited function evaluations.
The algorithm remains slow to convergence speed required and fails to attain
optimal solution. The problems with high dimensionality and high complexity
necessarily demand an approach that sufficiently provides an optimal tradeoff
between exploration and exploitation so that desired solution can be obtained
within minimum function evaluations. The proposed method modifies the mu-
tation scheme for jDE to satisfy the above said demand thereby making jDE
fast in terms of convergence and also by embedding an explorative characteristic
to the conventional jDE search mechanism. The mutation scheme is updated as
follows:

vG+1
i = xG

r1 + FG+1
i [(xG

r2 − xG
r3) + (ω ∗ directed vectori)], (1)

where r1, r2, r3 are randomly chosen indices from [1, NP ] where NP is the pop-
ulation size, and ω is the inertia factor. vG+1

i denotes the mutation vector for
i-th individual in G+1 -th generation and xG

r1 denotes a randomly chosen indi-
vidual in G-th generation. Generation of directed vector is discussed in Section
2.1. Here the F and CR parameters are evolved similar to the procedure as
described in jDE [5].
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Fig. 1. Perturbation with difference mean based scaling coefficient-an illustration

2.1 Directed Vector Generation

The directed vectori is generated according to a Difference Mean based Pertur-
bation (DMP) scheme which is explained in Table 1.

Outline of DMP . The DMP scheme amounts to simply perturbing (mu-
tating) a newly generated population member with a scaled unit vector along
any random direction. The unit vector is scaled by the difference mean formed
by subtracting the dimensional mean of the individual to be perturbed from
the current best individual of the population. Note that dimensional mean is a
scalar quantity obtained by averaging the components of a vector individual from
the population. As will be discussed subsequently, DMP causes an individual to
search effectively near current best.

Motivation behind DMP Scheme. In DMP the mean of the components
of the best vector is subtracted from the corresponding mean of the target in-
dividual selected for perturbation. The result is a difference mean which is used
to scale a unit vector in random direction. This ensues within the scheme, a mix
of explorative and exploitative behavior, retaining the true essence of attraction
towards the best individual. Suppose we consider two vectors A and B, where
A is the best vector and B can be any random individual from the population.
Mean can be chosen as a measure of the central tendency as average of a set
of values is highly dependent on the outlying observation that appears to de-
viate markedly from other members of the sample in which it occurs, known
as outliers[7]. The arithmetic mean indicates the central tendency of a collec-
tion of numbers taken as the sum of the numbers divided by the size of the
collection. Thus, if we consider the dimensional values of A to form a set say
a = {a1, a2, ..., an} and that of B as b = {b1, b2, ..., bn} , then both aand b has a
definite mean each. Let us denote these with ā and b̄ . Let there exist at least one
bi, iε[1, n] such that bi is greater or smaller than ai by a significant margin that
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largely contributes to the difference between the best vector A and any vector
B. Suppose the other component of vectors A and B are more or less close to
each other. As per the above assumptions, the mean of b will be highly influ-
enced by bi and the difference between ā and b̄ will be proportional to bi There
may be positive or negative deviation from the central mean i.e. the mean of the
best individual. Therefore difference mean can very well determine the spread of
the population members. It increases with the spread of solutions surrounding
the best individual, but it tends to zero with convergence. Instead of random
scaling while perturbing an individual, the difference mean can be used as an
effective scaling coefficient. The unit random vector generated from a normal
distribution, adds exploration to the scheme as the direction and sense of the
perturbation can be random. Fig. 1 shows the gradual decrease in the difference
mean as the individual moves towards the locally best individual using DMP. If
an individual is perturbed only by DMP scheme then the update equation will
be:

xi,j = xi,j + directed vectori,j . (2)

∀i = (k1, k2, ..., NP ) and ∀j = (1, 2, .., D). As we can see in Fig. 1, initially the
individual being far away from the best individual generates a large difference
mean, and hence the sphere within which new solution is to be generated by
eqn.(3), has comparatively large radius. Now using only DMP repetitively it can
be shown that as the mean difference between the best vector and the other
individual is reduced, the radius of the sphere tends to zero and the individual
gradually converge. It is to be noted that since we have considered a contour
plot, we have used circle in the figure which is a projection of sphere in horizontal
plane. It is evident from the figure that this update scheme ensures an effective
search of the area near the current best. The arrows shown within the circle
signify the possible movements of the individual in those directions indicating the
explorative nature of the scheme. We can thus conclude that the difference mean
based perturbation scheme retains the influence of the attraction towards the
best individual by reducing the difference mean providing a scope for convergence
and at the same time the randomly directed unit vector enhances the explorative
characteristics.

Problems of DE Variants in High Dimensionality and Possible Rem-
edy by DMP. DE variants are characterized by localized search around part
of the search space for better exploitation of the source. The parents taking part
in mutation and recombination produce offsprings and guide them in favorable
parts of the search space which leads to better convergence in search spaces.
Unlike previous EAs where search mechanism of the parent population was not
generally restricted to a particular direction, DE evolved with this enhanced op-
timizing technique. We explain the above fact with the following example. DE
mutation in 1-D(where D is the dimension of the problem) field with two par-
ticles will produce solution only in that part in which the resultant vector will
get directed. In two dimensional fields this solution will get concentrated to one
of the four possible quadrants. Usage of CR parameter in DE aids optimization
by aligning part of the vector solution towards one of the parent which already
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enjoyed superior place in the landscape. In other words the vector obtained by
mutation is rotated towards favorable parts leading to an improved EA. This
makes DE unique and superior to PSO. The concentrated local search in parts
of the landscape that is guided by parent vectors makes DE exploitation much
effective than Genetic Algorithm[8]. However concentrated search of DE with
increasing dimensionality is not always suitable. In one dimension the search is
in 1/2 part of the landscape, the possible directions being left or right. In 2-D
space, the search is in 1 out of 4 quadrants and thus 1/4 part of the landscape
gets explored. In 3-D space, the search is in 1/8 of the search space and so
on. Thus with increasing dimensionality the search gets more and more concen-
trated. As time devoted to optimization in higher dimensionality spaces is quite
adequate this does not provide serious hindrance to optimization till a specific
level. However if dimension is soared as high as 1000 or more as seldom is the case
for high dimensional optimization or practical life problems performance of DE
as well as some DE variants that involve DE alike steps is hampered. The reason
is quite obvious from previous analogies. With dimensionality the search space
is decreasing as 1/(2D). Naturally as D increases the search region diminishes to
very little portion of the Hyper-sphere. A very simple remedy to such problem
is generating solutions all through the landscape as used by algorithms like GA.
However such an optimization technique by random movement in random direc-
tion may not be very reliable. What we require is a practical optimized scenario
by minimizing the trade off error between the two possible techniques, one for
guided exploitation like DE and other for added exploration like GA. Retaining
the essence of mutation and recombination of classical DE, DMP overcomes the
exhaustive search technique of DE by the use of randomly generated directed
vector besides incorporating the explorative characteristics of GA. The direction
defined in a mutation scheme in classical DE is strictly determined by the differ-
ence between two vectors and is certainly biased by the positional information
of the two selected vectors. But in DMP the directional vector defined by DE is
approximated by its dimensional mean since we have already discussed earlier
that the mean can be a very good statistical measure of a vectors positional
information. The dimensional mean is thus used to scale a randomly directed
vector in search space which ensures uniform initialization of offspring vector.
The randomization incorporated in the jDE mutation in eqn. (1) thus essentially
provides an optimal trade off between the concentrated and exhaustive search
technique offered by DE besides ensuring a uniform offspring generation over the
entire search domain. This feature can be declared as the most important as-
pect of ADE-DMP as the mutation used here gains pre-dominance especially in
high dimensional scenarios, which justifies its performance in the test problems
considered in this paper.

2.2 Effect on Successful Updates per Generation

The modification on the mutation scheme can be realized with the increase in
successful updates per generation compared to jDE. If the new set of control
parameters can produce offsprings that eventually survives under DE selection,
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then that individual may be declared as a successful update. The increased suc-
cessful updates have a direct influence on the fast convergence of the algorithm.
It is evident from Fig. 2(b) that the average successful update at any point of
the search procedure is always greater than that of jDE. Moreover Fig. 2(a)
shows that the function evaluations required to obtain the same objective func-
tional value by ADE-DMP and jDE are much less in case of ADE-DMP thereby
establishing the fact that it is a quite faster approach than jDE.

Table 1: Algorithm: directed vector Generation

Step1. Calculate the dimensional mean of the best individual
of a population:

best avg =
1

D

D∑
j=1

(xbest,j), (3)

where D is the number of search space dimensions and indi-
cates the j th component of the current best population mem-
ber xbest.
Step2. Now calculate the dimensional mean of the ith member
of the population:

ind avgi =
1

D

D∑
j=1

(xi,j), ∀i = (k1, k2, ..., NP ). (4)

Step3. Calculate the difference between the mean of the best
and mean of the ith member of the population obtained in
Step2..

diff meani = best avg − ind avgi. (5)

Step4. Generate a vector with components chosen randomly
from unit normal distribution with zero mean and unity vari-
ance:

v = {v1, v2, ..., vd}, viεN(0, 1), ∀i ε (1, 2, ..., D). (6)

Step5. The directed vector is thus generated by scaling v by
the obtained difference mean for the corresponding individual:

directed vectori = diff meani ∗ v̂, ∀i = (k1, k2, ..., NP ),
(7)

where, v̂ = v
‖v‖ .
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2.3 Effect of Inertia Weight

The use of inertia factor ω in eqn.(2) controls the influence of directed vec-
tor in the mutation scheme. The DMP mutation imparts into the mutation
scheme a balanced combination of exploration and exploitation. But the use
of directed vectori till the end may cause the population to converge prema-
turely. So to avoid early stagnation the effect of directed vectori i.e. the term
FG+1
i ∗ directed vectori in eqn.(1) has been reduced gradually during the later

stage of the search procedure to maintain required spread in the population. The
inertia factor ω is given as:

ω = 0.9− 0.5 ∗ (1− 1

G
), G = current generation. (8)

Table 2 justifies the necessity of ω in eqn. (2) by tabulating the results obtained
on selected problems [TP10, TP11.1, TP11.6, T11.9] of [6] using ω as mentioned
in eqn.(1) and without using ω in eqn.(1) i.e. replacing ω by 1. It is evident
from Table 2 that the control of DMP mutation by use of inertia weight highly
influences the performance of ADE-DMP.

Table 2. Comparison between the results obtained by ADE-DMP using and without

using inertia weight
Test Problem Without ω With ω

TP10 -21.45 -21.74
T11.1 5.19E+04 5.14E+04
TP11.6 1.22E+05 1.21E+05
TP11.9 9.26E+06 9.25E+06

3 Results and Discussions

ADE-DMP is tested using a set of selected benchmark functions (T10, T11.1-
T11.10) from the Competition on Testing EvolutionaryAlgorithms on Real-world

Fig. 2. (a) Successful Update vs. Function Evaluations using ADE-DMP mutation
and jDE mutation (b) Convergence characteristic for TP11.7
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Table 3. Best objective functional values achieved by ADE-DMP and other well-known
state-of-artEAs

Numerical Optimization problems, held under the 2011 IEEE Congress on Evolu-
tionary Computation(CEC 2011)[6]. These functions span a diverse set of problem
features, including multimodality, high dimensionality and high complexity. The
mean best-of-the-run errors and standard deviations over 50 independent runs are
reported for 11 functions in Table 3. Each run on each function is continued till
a maximum number of Function Evaluations (FEs) equal to 1.5E+05 as recom-
mended in [6]. The population size NP is kept fixed at 100 for all the functions.
All the runs have been taken on a machine with Windows 7 64-bit configura-
tion, 4GB RAM, 500GB hard disk and 2.26 GHz Intel Core i3-350M Processor.
Wilcoxons rank sum test for independent samples [9] is conducted at the 5%
significance level in order to judge whether the results obtained with the best
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Sample Convergence graphs obtained by ADE-DMP on all test problems

Convergence graph for Fig.(a) TP11.1 Fig.(b) TP11.2 Fig.(c) TP11.3 Fig.(d) TP11.4
Fig.(e) TP11.5 Fig.(f) TP11.6 Fig.(g) TP11.7 Fig.(h) TP11.8 Fig.(i) TP11.9 Fig.(j)

TP11.10 Fig.(k) TP10

performing algorithm differ from the final results of rest of the competitors in
a statistically significant way. P-values obtained through the rank sum test be-
tween the best algorithm and each of the remaining algorithms over all the
functions are presented in Table 3. For the P-value entries NA stands for Not
Applicable and occurs for the best performing algorithm itself in each case. If
the P-values are less than 0.05 (5% significance level), it is a strong evidence
against the null hypothesis, indicating that the better final objective function
values achieved by the best algorithm in each case is statistically significant and
has not occurred by chance. Analysis of Table 3 reveals that ADE-DMP consis-
tently outperforms GA-MPC[10] and other DE variants in 10 out of 11 cases in
a statistically significant way. In test case T11.1 GA-MPC performs marginally
better than ADE-DMP. In the Circular Antenna Array Design Problem (TP10)
also ADE-DMP is successful in obtaining the best optimal combination of cur-
rent and phase excitations. Ranking has been done for each algorithm on the
basis of their performance on each function and average rank has been reported.



Adaptive DE with Difference Mean Based Perturbation 319

When more than one algorithm has the same result ranking has been done on
the basis of the standard deviation. Considering the above assumption WI-DE
and ADE-DMP are ranked better than the other algorithms in case of TP11.3
though GA-MPC, SAMODE[11], ED-DE[12], MOD-DE-LS[13] has obtained the
same result.

To study the convergence characteristics of ADE-DMP, the Best Objective
Functional Value in log scale vs. Function Evaluations is plotted for all the cases
T11.1-T11.10 mentioned above. In case of T10 radiation pattern(Gain(in db) vs
Azimuthal Angle) for circular antenna array in optimal setting is plotted.

4 Conclusion

In this paper the effect of modifying the mutation scheme of jDE by addition of
directed vector generated by DMP technique has been explored and different test
conditions are used in this context to verify our proposals. The DMP strategy
involves filtering out the best aspect of every dimension associated with a func-
tionally favourable individual and using it to guide any other individual towards
the global optimum. The best aspect as discussed is conveyed by the mean of all
the best aspects and hence the use of the mean based up gradation. The mean
difference is used to scale a randomly directed vector which when added to the
selected individual to be perturbed is guided through random paths towards the
global best. Thus a balanced exploration and exploitation is readily satisfied. In
addition, DMP scheme is free from any parameters. The use of mutation factor
for each directed vector increases the robustness of the scheme. Moreover the
controlled use of the directed vector prevents premature stagnation and pro-
vides a steady rate of convergence. Also it has been shown that ADE-DMP has
a faster rate of convergence than conventional jDE which is an essential criterion
for optimization with constrained function evaluations. In spite of the fact that
the problems chosen to test the efficacy of ADE-DMP offers high dimensionality,
high complexity, multimodality etc. the proposed method has proved its supe-
riority over most of the other renowned approaches thereby establishing it as a
fast and promising optimizer.
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Abstract. This paper presents an effective method of transmission line 
management in power systems. Two conflicting objectives 1) generation cost 
and 2) transmission line overload are optimized to provide non-dominated 
Pareto-optimal solutions. A fuzzy ranking-based multi-objective differential 
evolution (MODE) is used to solve this complex nonlinear optimization 
problem. The generator real power and generator bus voltage magnitude is 
taken as control variables to minimize the conflicting objectives. The fuzzy 
ranking method is employed to extract the best compromise solution out of the 
available non-dominated solutions depending upon its highest rank. N-1 
contingency analysis is carried out to identify the most severe lines and those 
lines are selected for outage. The effectiveness of the proposed method has been 
analyzed on standard IEEE 30 bus system with smooth cost functions and their 
results are compared with non-dominated sorting genetic algorithm-II (NSGA-
II) and Differential evolution (DE). The results demonstrate the superiority of 
the MODE as a promising multi-objective evolutionary algorithm to solve the 
power system multi-objective optimization problem. 

1 Introduction 

Optimal power flow (OPF) is an important tool for power system management. The 
aim of OPF problem is to optimize one or more objectives by adjusting the power 
system control variables while satisfying a set of physical and operating constraints 
such as generation and load balance, bus voltage limits, power flow equations, and 
active and reactive power limits. A variety of optimization techniques had been 
applied to solve the OPF problem such as gradient method [1], linear programming 
method [2] and interior point method. In conventional optimization methods, 
identification of global minimum is not possible. To overcome the difficulty, 
evolutionary algorithms like genetic Algorithm (GA) [3], particle swarm optimization 
[4], differential evolution [5], gravitational search algorithm [6], tabu search 
algorithm [7] and artificial bee colony algorithm [8] had been proposed.  

In [9], the authors’ proposed a fuzzy logic based approach to alleviate the network 
overloads by generation rescheduling. The generation shift sensitivity factor (GSSF) 
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was used to decide the changes in generation. In [10], the authors’ proposed an optimal 
location of interline power flow controller (IPFC) in a power system network using 
artificial bee colony algorithm (ABC). Minimization of line loss, economic dispatch of 
generators, improve power flow and reduction in the overall system cost which includes 
the cost of active power generation and the installation cost of IPFC were also 
considered for obtaining the optimal location. In [11], the authors’ proposed a static 
security enhancement through optimal utilization of thyristor-controlled series 
capacitors (TCSC). The branches ranking in the system was based on determination of 
single contingency sensitivity (SCS) index which helped to decide the best locations for 
the TCSCs. The objective of the optimization problem was to eliminate or minimize line 
overloads as well as the unwanted loop flows under single contingencies. In [12], the 
authors’ proposed the use of genetic algorithm (GA) and multi-objective genetic 
algorithm (MOGA) to alleviate the violations of the overloaded lines and minimize the 
transmission power losses for different operating conditions. In [13], the authors’ 
proposed a multi-objective particle swarm optimization (MOPSO) method for 
transmission line overload management. Two competing objectives were considered for 
minimization such as line overloads and operating cost of generators. The overloads in a 
transmission network were alleviated by generation rescheduling. In [14], the authors’ 
proposed a graphical user interface (GUI) based on a genetic algorithm. It was used to 
determine the optimal location and sizing parameters of multi type FACTS devices 
which facilitate maximization of power system loadability in a transmission network. In 
[15], the authors’ proposed a non-dominated sorting genetic algorithm (NSGA), niched 
multi-objective genetic algorithm (NPGA) and strength multi-objective evolutionary 
algorithm (SPEA) to minimize two competing objective functions such as fuel cost and 
emission. The results of these proposed methods were compared to each other. The 
SPEA method had better diversity characteristics and was more efficient when 
compared to other methods. In [16], the authors’ proposed an application of hybrid 
differential evolution with particle swarm optimization (DEPSO) to solve the maximum 
loadability problem. The results were compared with multi agent hybrid particle swarm 
optimization (MAHPSO) and differential evolution (DE). This proposed algorithm had 
improved the loadability margin with less number of iterations by consuming more time 
per iteration when compared to other algorithms. In [17], the authors’ proposed a survey 
on development of multi-objective evolutionary algorithms (MOEAs). It covered 
algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic 
MOEAs, co-evolutionary MOEAs, selection and offspring reproduction operators, 
MOEAs with specific search methods, MOEAs for multimodal problems, constraint 
handling and MOEAs, computationally expensive multi-objective optimization 
problems (MOPs), dynamic MOPs, noisy MOPs, combinatorial and discrete MOPs, 
benchmark problems, performance indicators and applications. 

In this paper, a fuzzy ranking based multi-objective differential evolution for 
overload management in power system network is presented with an illustrated 
example.                                                      

The organization of the paper is as follows: Section 2 presents the optimization 
problem formulation for transmission line overload management. Section 3 presents 
the algorithm of proposed MODE for transmission line overload management. The 
simulation results for different contingency cases in IEEE 30 bus system is presented 
in section 4. Finally, conclusion and future works is given in Section 5.   
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2 Problem Formulation 

The objective function of the proposed method is to find an optimum value of shift in 
active power generation and generator bus voltage magnitude along with network 
constraints so as to minimize the total generation cost and line overloads simultaneously 
in the network. The problem of proposed MODE may be stated as follows. 

2.1 Objective Function 

Objective 1. Minimize total generation cost 
 

(1) 
 

where:  
    GC    Generation cost 

Number of participating generators  

Generation of thi generator 
Cost coefficients of generator i                         

                       
Objective 2. Minimize transmission line overload by reducing Overload Index 

 
(2) 

 
where:  
           OI     Overload Index 

       LN    Number of overloaded lines 

      iLF    MVA flow on line i  

      icapiL
 
MVA capacity of line i  

2.2  Constraints 

2.2.1 Equality Constraints 
Generation/load balance Equation 

 
 (3) 

 
 

2.2.2 Inequality Constraints 
(i) Voltage constraints 

 (4) 
 

(ii) Generator constraints 
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 (6) 

3 Proposed MODE Algorithm 

MODE was proposed by Xue et al. in [18]. This algorithm uses a variant of the 
original DE, in which the best individual is adopted to create the offspring. A multi-
objective-based approach is introduced to implement the selection of the best 
individuals. 

The main algorithm consists of initialization of population, fitness evaluation, 
Pareto-dominance selection, performing DE operations and reiterating the search on 
population to reach true Pareto-optimal solutions. 

The steps involved in the proposed MODE for transmission line overload 
management are described below.     

Step 1: Set up MODE parameters like population size, number of generations, 
crossover probability and scaling factor. 
Step 2: Read line data, bus data and cost for each generator. 
Selection of control variables embedded in the individuals is a first step while 
applying evolutionary computation algorithm. Generator real powers redispatch and 
generator bus voltage magnitude is the control variables in this work. Hence, the 
control variables are generated randomly satisfying their practical operation 
constraints (5) and (6).          
Step 3: For each member of population, run newton raphson (NR) power flow and 
compute slack bus power and check for limit violations if any. If it violates the 
operational limit then the corresponding member is regenerated. For each member of 
population, run NR power flow to evaluate objective functions 1 and 2 using 
equations (1) and (2). Identify the individuals that give non-dominated solutions in the 
current population and store them in non-dominated elitist archive (NEA). Set 
generation counter, G=0. 
Step 4: Perform mutation and crossover operations using equations (7) and (8) on all 
the members of the population, i.e., for each parent Pi   
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Step 5: Evaluate each member of the population. Check the dominance with its 
parents. If the candidate dominates the parent, the candidate replaces the parent. If the 
parent dominates the candidate, the candidate is discarded. Otherwise, the candidate is 
added to a temporary population (tempPop). 
Step 6: Add the latest solution vectors (current population) to the tempPop. Then use 
the non-dominated sorting and crowding assignment operators to select the 
individuals to the next generation.  

max,min, gigigi VVV ≤≤
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Step 7: Store the non-dominated solutions in the NEA. If NEA size exceeds the 
desired number of Pareto-optimal set, then select desired number of the least crowded 
members with the help of crowding assignment operator. Empty the tempPop. 
Step 8: Increment the generation counter, G to G+1 and check for termination criteria. 
If the termination criterion is not satisfied, then go to Step 4; otherwise output the 
non-dominated solution set from NEA. 
Step 9: Apply fuzzy ranking method, determine membership values of the objective 
functions 1 and 2 using equation (9). 
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where:  

         min
iF and max

iF  are the expected minimum and maximum values of ith objective 

function.  
The value of the membership function indicates how much (in scale from 0 to 1) a 
solution is satisfying the ith objective iF .The best solution can then be selected using 

fuzzy min-max proposition. 
Step 10: Determine the best compromise solution of the objective functions 1 and 2 
using equation (10).    

[ ]{ }k
jonbestsoluti FMax )(min μμ =

                                                                           

(10) 

 
where:   
          j is number of objectives to be minimized and k are number of Pareto-optimal 
solutions obtained. 

4 Simulation Results 

The simulation studies are performed on system having 2.27 GHz Intel 5 processor 
with 2 GB of RAM in MATLAB environment. The proposed MODE is applied to 
minimize two conflicting objectives of generation cost and line overload for different 
contingency cases in IEEE 30 bus system. The transmission line limits and generator 
cost coefficients are taken from [19]. The upper and lower voltage limits at all the 
buses except slack are taken as 1.10 p.u and 0.95 p.u respectively. The slack bus 
voltage is fixed to its specified value of 1.06 p.u. To demonstrate the effectiveness of 
the proposed method, three different harmful contingency cases are considered which 
are shown in table 1. The results of all three cases are compared with other 
evolutionary algorithms. For the studies, the following parameters are used. 
Population size: 40 
No. of generation: 100  
Scaling factor: 0.3  
Crossover probability: 0.6. 
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Table 1. Simulated Cases 

Test system Simulated cases 

IEEE 30 Bus   A Outage of line 1-2 under base case 

  B Outage of line 1-3  under base case 

  C Outage of line 2-5 under 20% increased load case 

 
The Summary of contingency analysis for the test system before generation 

rescheduling is summarized in table 2. The control variable setting of the proposed 
method to minimize the generation cost and line overload for all three cases is shown 
in table 3. The control variable setting of NSGA-II method to minimize the generation 
cost and line overload for all three cases is shown in table 4. The control variable 
setting of the single objective DE method to minimize the line overload for all three 
cases is shown in table 5. The four intermediate solutions with their membership 
value out of the obtained non-dominated solution set using the proposed method for 
all three cases are shown in table 6. The best solutions are shown in bold in table 6 
and have a rank of 0.6621, 0.6560 and 0.7813 which means that the two conflicting 
objectives are satisfied at least 66.21%, 65.60% and 78.13%. The Pareto-optimal 
solution for the proposed method compared with NSGA-II method for all three cases 
are shown in table 7. 

Table 2. Summary of contingency analysis for IEEE 30 bus system 

Cases Outage 
   line 

Line 
overloaded 

Line   
limit 

(MVA) 

Actual 
power 
flow 

(MVA) 

Overload 
factor 
(OLF) 

OI Total 
power 

violation 
(MVA) 

   A 
 

1-2 1-3    130 307.0136   2.3616 61245 426.7022 
 3-4    130 279.6035   2.1508   

 4-6 90 175.5527   1.9506   

 6-8 32   46.5144   1.4536   
   B 1-3 1-2    130 274.0264   2.1079 21969 196.1237 

 2-4 65   86.1203   1.3249   

 2-6 65   92.7203   1.4265   

 6-8 32   35.2567   1.1018   

   C 2-5 1-2    130 213.9041   1.6454 21190 359.8447 
 1-3    130 140.0342   1.0772   
 2-4 65   91.2433   1.4037   
 3-4    130 130.0068   1.0001   

 2-6 65 126.3806   1.9443   
 4-6 90 152.5479   1.6950   
 5-7 70 136.8100   1.9544   
 6-7    130 157.6918   1.2130   
 6-8 32   53.2260   1.6633   
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Table 3. Control variable setting of the proposed method for all three cases 

Control 
variables 

Variable setting 

Solution I 
(Best generation cost) 

Solution II 
(Best overload index) 

Solution III 
(Best compromise 

solution) 
     A  B     C     A B     C A B C 

P1 144.90 149.42 202.02 129.67 129.63 167.59 138.16 141.38 191.36 
P2 57.78 54.08 52.44 64.64 60.65 42.10 63.35 57.16 47.24 
P5 24.48 22.31 30.28 25.42 24.63 48.33 23.16 22.79 39.92 
P8 33.24 33.02 34.44 34.57 32.20 33.89 33.77 32.69 34.18 
P11 21.66 16.06 22.18 20.00 24.21 27.85 20.89 22.06 24.45 
P13 16.46 19.27 20.34 21.82 21.19 35.73 18.20 17.33 21.47 
V1 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 
V2 1.044 1.035 1.054 1.020 1.034 1.028 1.026 1.034 1.047 
V5 1.028 0.993 0.961 0.992 0.991 0.953 1.011 1.001 0.950 
V8 1.030 0.996 1.029 1.020 1.019 1.015 1.027 1.001 1.026 
V11 1.094 1.062 1.078 1.092 1.069 1.084 1.098 1.070 1.091 
V13 1.076 1.040 1.078 1.054 1.056 1.045 1.045 1.041 1.100 

Table 4. Control variable setting of NSGA-II method for all three cases 

Control 
variables 

Variable setting 
Solution I Solution II Solution III 

 A  B C A B C A B C 
P1 145.35 149.50 204.24 129.95 129.99 165.75 138.55 141.17 185.49 
P2  68.01  51.23  55.02  68.26  61.60  44.95  68.22  56.78  47.36 
P5  24.85  23.32  29.21  27.57  26.28  49.77  25.96  24.15  39.64 
P8  31.28  29.81  32.27  34.98  30.77  34.42  33.59  30.24  34.46 
P11  14.37  23.41  23.33  14.66  26.75  21.47  14.26  24.32  21.78 
P13  14.61  16.73  18.08  20.61  17.04  39.94  16.77  16.78  29.45 
V1  1.060  1.060  1.060  1.060  1.060  1.060  1.060  1.060  1.060 
V2  1.023  1.034  1.060  1.018  1.038  1.013  1.018  1.034  1.045 
V5  0.997  1.023  0.969  0.993  1.025  0.952  0.994  1.022  0.985 
V8  1.019  1.018  1.038  1.015  1.015  0.979  1.018  1.020  1.032 
V11  1.079  1.070  1.095  1.071  1.090  1.079  1.085  1.070  1.100 
V13  1.100  1.022  1.100  1.088  1.055  1.100  1.099  1.023  1.073 

Table 5. Control variable setting of single objective DE method for all three cases 

Control 
variables 

Variable setting Control 
variables 

Variable setting 

 A B     C  A B    C 
P1 126.70 128.15 184.22 V1 1.060 1.060 1.060 
P2 70.89 69.61 24.81 V2 1.024 1.033 1.035 
P5 26.55 25.02 48.27 V5 0.999 0.988 0.955 
P8 31.97 32.71 32.17 V8 0.980 0.976 1.001 
P11 16.36 10.00 29.05 V11 0.982 1.021 1.024 
P13 24.43 28.09 37.47 V13 0.961 0.950 1.078 
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Table 6. Pareto-optimal intermediate solutions of the proposed method based on fuzzy ranking  

Cases  Generation   
Cost ($/h) 

      OI µ1 
 

µ2 
 

µmin 
 

A 843.80   1.99 0.0837 0.9902 0.0837 
 841.42  66.71 0.6621 0.6695 0.6621 
 843.50    4.17 0.1561 0.9793 0.1561 
 841.88  40.17 0.5500 0.8009 0.5500 

    B 822.65 151.42 0.7480 0.5986 0.5986 
 823.66 114.17 0.6546 0.6974 0.6546 
 823.21 129.79 0.6958 0.6560 0.6560 
 829.39     2.18 0.1244 0.9942 0.1244 

    C 1058.41 305.76 0.9592 0.3951 0.3951 
 1069.89   73.19 0.7023 0.8552 0.7023 
 1066.36 106.34 0.7813 0.7896 0.7813 

 1072.04    62.93 0.6543 0.8755 0.6543 

Table 7. Pareto-optimal solution for all three cases 

Pareto-optimal solution Method Cases Generation   
cost ($/h) 

   OI 

    Solution I 
 

Proposed A 840.16 282.89 
NSGA-II 840.63 284.80 
Proposed B 819.92 377.26 
NSGA-II 821.10 380.08 
Proposed C    1056.59 505.46 

NSGA-II    1056.24 617.18 
    Solution II 

 
Proposed A 844.15 0 
NSGA-II 844.97 0 
Proposed B 830.74 0 
NSGA-II 831.44 0 
Proposed C    1101.27 0 
NSGA-II    1110.51 0 

    Solution III 
 

Proposed A 841.42  66.71 
NSGA-II 841.73  73.64 

Proposed B 823.21 129.79 
NSGA-II 824.48 125.49 
Proposed C    1066.36 106.34 
NSGA-II    1069.09 125.68 

 
From table 7, it is clear that; overload is managed by changing both rescheduling 

of generators active power and generator bus voltage magnitude for all three cases. If 
the operator wants to alleviate the line overload completely, he will choose solution 
II. However, if the operator allows some overload and takes solution I. To satisfy 
solutions I and II, the operator will choose solution III which gives best compromise 
solution. In line 1-2 outage under base load case, GA based approach reported in [20] 
was not completely minimize the severity index even if rescheduling of generators 
active power and generator bus voltage magnitude and still has the severity index of 
2.473 when compared to proposed method. The control variable setting of GA based 
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approach to minimize the line overload is shown in table 8. The generation cost and 
real power loss for best overload index of the proposed method compared with 
NSGA-II and single objective DE for all three cases are shown in table 9.  

Table 8. Control variable setting of GA based approach for case A 

Control 
variables 

Generator 
active power 

(MW) 

Control 
variables 

Generator 
bus voltage 

(p.u) 
P1 145.49 V1 1.035 
P2 57.36 V2 0.998 
P5 24.42 V5 0.959 
P8 34.82 V8 0.967 
P11 18.03 V11 1.02 
P13 17.2 V13 0.9500 

Table 9. The generation cost and real power loss for best overload index 

Method Cases 
 Generation Cost ($/h) Real Power Loss (MW)  

A B C    A B C 
   Proposed 844.15 830.74 1101.27 12.73 9.12 15.41 

   NSGA-II 844.97 831.44 1110.51 12.62 9.04 16.22 

   DE 852.62 840.41 1112.72 13.50 10.19 15.91 

 
The Pareto-optimal front of generation cost and overload index for all three cases 

compared with NSGA-II method are shown in figure 1, 2 and 3 respectively.  
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Fig. 1. Pareto-optimal front for Case A 
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Fig. 2. Pareto-optimal front for Case B 
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Fig. 3. Pareto-optimal front for Case C 
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In all three cases, the proposed method relieves all the overloaded lines reported in 
table 2 by changing both rescheduling of generators active power and generator bus 
voltage magnitude. From table 9, it is clear that; the proposed method relieves all the 
overloaded lines with a minimum generation cost when compared to other methods. 
The computation time for proposed and NSGA-II methods for Case A , Case B and 
Case C are 22.94, 22.87 and 23.99 and 33.59, 31.30 and 33.98 seconds respectively 
for 100 generations.  

5 Conclusion and Future works 

This paper has proposed multi-objective differential evolution based transmission line 
overload management by both rescheduling of generators active power and generator 
bus voltage magnitude in a contingent power network. The proposed method has been 
tested and examined on the standard IEEE-30 bus system. Line overloads are 
simulated due to unexpected line outage under base case and 20% increased load 
conditions. In all the considered three cases A, B and C, the proposed method has 
relieved all the overloaded lines with a minimum generation cost of 844.15 $/h, 
830.74 $/h and 1101.27 $/h respectively, when compared to NSGA-II and DE 
methods. The proposed MODE is capable of handling two conflicting objectives and 
provides for a set of non-dominated Pareto-optimal solutions with least computation 
time when compared to NSGA-II. This helps the system operator to select the proper 
solution for overload alleviation and generation cost minimization whereas, single 
objective DE algorithm does not provide any choice for the operator and gives only 
one best solution considering the objectives. 

For future works, we aim to extend the proposed approach with Euclidean 
minimum spanning tree-based multi-objective optimization evolutionary algorithm 
for overload management in large power system network with inclusion of series 
FACTS devices along with generation rescheduling and validation using T-test. 
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Abstract. Almost all the industrial processes are multivariable in nature and are 
very difficult to control, since it involves many variables, strong interactions and 
nonlinearities. Conventional controllers are most widely used with its optimal 
parameters for such processes because of its simplicity, reliability and stability. 
Coal gasifier is a highly nonlinear multivariable process with strong interactions 
among the loop and it is difficult to control at 0% operating point with sinusoidal 
pressure disturbance. The present work uses Normalized Normal Constraint 
(NNC) algorithm to tune the parameters of decentralised PI controller of coal 
gasifier.  Maximum absolute error (AE) and Integral of Absolute Error (IAE) are 
objective function while the controller parameters of decentralised PI controller 
are the decision variables for the NNC algorithm. With the optimal controller the 
coal gasifier provides better response at 0%, 50% and 100% operating points and 
also the performance tests shows good results.  

Keywords: Coal gasifier, Multi-Objective Optimization, Multivariable process, 
Normalized Normal Constraint Algorithm, PID Controller tuning.   

1 Introduction 

Gasification is a thermo-chemical process, that convert any carbonaceous material 
(Solid Fuel-coal) in to combustible gas known as "producer gas or syngas" under 
certain pressure and temperature. Coal gasifier is a highly non-linear, multivariable 
process, having five controllable inputs, few non-control inputs and four outputs with 
a high degree of cross coupling between them. The process is a four-input, four output 
regulatory problem for the control design (keeping limestone at constant value). 
Gasifier exhibits very complex dynamic behaviour with mixed fast and slow 
dynamics and it is highly difficult to control. The plant inputs and outputs with their 
allowable limits, control specifications are mentioned in the challenge pack [1]. The 
performance of coal gasifier under sinusoidal pressure disturbance at 0% operating 
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point does not satisfy the performance requirement as mentioned in [1]. Until recently 
researchers have attempted to design controllers and/or retuned the baseline controller 
to meet the performance requirements at 0%, 50% and 100% load conditions. 
Analysis, design and implementations of advanced control schemes for coal gasifier 
are reported in the literature [2-9]. Apart from conventional techniques soft 
computing techniques are also utilized [10 - 12], where controller parameters are 
retuned to meet the desired objectives. This provides the scope for new optimization 
algorithms to be used with this problem. 

2 Control Specifications 

The complete transfer function model of the gasifier can be represented in the form: 
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Where, 
Gij=transfer function from ith input to jth output 
y1= fuel gas caloric value (J/kg); y2=bed mass (kg); 
y3=fuel gas pressure (N/m2);  y4=fuel gas temperature (K); 
u1 =char extraction flow (kg/s); u2=air mass flow (kg/s); 
u3=coal flow (kg/s);   u4=steam mass flow (kg/s); 
u5=limestone mass flow (kg/s); d =sink pressure (N/m2); 

 
Limestone flow rate is fixed at 1/10th of coal flow rate and thus the process can be 

reduced to 4X4 MIMO process for control purpose. For a multivariable process 
decentralised control schemes are usually preferred. The structure of decentralized 
controller used in gasifier control can be represented as;   
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Where, Kp = proportional gain;  
τi = Integral time;  
Kf= feedforward gain. 

 
It employs three PI controllers and one feedforward + feedback controller for coal 

flow rate. The given controller structure with provided controller parameters satisfies 
the performance requirements at 50% and 100% operating points but fails to satisfy 
the constraints at 0% load for sinusoidal pressure disturbance( i.e. PGAS exceeds the 
limit of ±0.1bar). The decentralised controller may be re-tuned to meet the desired 
performance requirement even at 0% operating point.  



 NNC Algorithm Based Multi-objective Optimal Tuning 335 

 

2.1 Input Limits 

The input actuator flow limits and rate of change of limit are associated with the 
physical properties of the actuator, should not exceed as shown in table 1. 

Table 1. Input limits 

Input variable Max(kg s-1) Min(kg s-1) Rate(kg s-2) 

Coal inlet flow (WCOL) 10 0 0.2 
Air inlet flow (WAIR) 20 0 1.0 
Steam inlet flow (WSTM) 6.0 0 1.0 
Char extraction (WCHR) 3.5 0 0.2 

2.2 Output Limits 

Gasifier outputs should be regulated within the limits (table 2) for sink pressure 
(PSink) disturbance test, load change test and other tests. The desired objective is the 
outputs should be regulated as closely as possible to the demand. 

Table 2. Output limits 

Output variable Objective Limits 

Fuel Gas Calorific vale (CVGAS) Minimize 
fluctuations  

For all 
Output variables 

± 10KJ kg-1 
Bed mass (MASS)  ± 500 kg 
Fuel Gas Pressure (PGAS) ± 0.1 bar 
Fuel Gas Temperature (TGAS) ± 1 K 

3 Multiobjective Optimization  

In the recent past Multi objective optimization algorithm [13,14] are most widely used 
in process industries than single objective optimization algorithm since the design 
requirements are more. Multi-Objective optimization involves two or more objectives 
are optimized simultaneously under certain constraints. The discussions about various 
multi-objective evolutionary approaches from the analytical weighted aggression to 
population based approaches, and the Pareto-optimality concepts are discussed in 
literature. Pareto based approaches are most suitable for multi-objective optimization 
problems, due to the ability to produce multiple solutions in less computation time. 
Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), Pareto Archive 
Evolutionary Strategy (PAES) and micro Genetic algorithm (microGA) are the three 
highly competitive Evolutionary Multi Objective (EMO) algorithms used in recent 
past. The mathematical formulation of Normalized Normal Constraint (NNC) 
algorithm was described in [15]. Some of the characteristics of this algorithm may 
include; Initial condition assumed to the optimization routine dominates the NNC 
results. This algorithm does not have memory of the pareto points obtained 
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previously.  The minimization of desired performance specification in multi objective 
problems can be states as  

( ) ( ) ( )[ ]xxx nμμμ ....,..........min 21
                                               (3) 
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Where,  ( ) rxgq = inequality constraint;  ( ) sxhk =  equality constraint 

 xnx = dimension vector of design variables;   lix = lower constraint limit 

 uix = upper constraint limit 

In our proposed work, the objective function is to minimize the 8 variables as listed in 
table 3. The controller parameters of decentralized PI controller for all the four loops 
are the decision variables(equation 2). A unique solution is not possible with this 
formulation. Minimize the each objective function, 

( ) nixix ,......,2,1min =μ                                        (5) 

The ends of pareto frontier is the function of obtained anchor point (figure 1).  
The Utopian point is given by uμ , 

  ( ) ( ) ( )[ ]Tn
n

u xxx **2
2

*1
1 .........,.......... μμμμ =         (6) 

Normalization of searching space is given by 
  { } uN

nlllL μμ −== ........21           (7) 

 
Where,    [ ]N

N
NNN μμμμ ,...,..........21=           (8) 

( ) ( ) ( )[ ]**2*1 ,,........,..........max n
iii

N
i xxx μμμμ =           (9) 

And thus the normalized design metrics is given by 

( ) ( )ni
l

x

i

ii
i ...,,.........2,1,

*1
=

−
=

μμμ         (10) 

The difference between normalized anchor vectors is given by 
** kn

kN μμ −=           (11) 

For a prescribed number of solutions km , the normalized increment kδ  is defied along 

the direction kN  

( )11,
1

1 −≤≤
−

= nk
mk

kδ          (12) 

The distributed points on the Utopian hyperplane are described as 


=

=
n

k

k
kjpjX

1

*
μα            (13) 

Where,  101
1

≤≤= = kj

n

k kj and αα         (14) 

And thus the multi-objective optimization problem can be transformed into 
minimization of pjX  single objective problem in normalization domain. 

 i.e.     nx μmin            (15) 
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Fig. 1. Graphical representation for Normal constraint method 

4 Problem Formulation and Implementation 

Figure 2 shows the implementation of Multi-objective Optimization technique applied 
to tune the parameters of PI controller of ALSTOM gasifier. Integral of Absolute 
Error (IAE) and Maximum Absolute Error (AE) for each output at 0% load and 0% 
change in coal quality are the objective function for Multiobjective NNC algorithm 
while controller parameters of PI controller are taken as decision variables.  

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Block diagram of Optimization scheme 
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Table 3 shows the desired 8 objective functions to be used for solving the multi-
objective problem. Input constraints are associated with the given Simulink model 
and it is not included in the specifications. Minimization of these 8 desired 
performance specifications is the objective function (μn(x)). The parameters of 
multivariable baseline PI controller for the four loops are the decision variables(x=8). 
The upper (xui) and lower (xli) boundary limits are set as 1 and 0 respectively. The 
controller should respond quickly than the process and hence sampling time is 
selected as 0.5 seconds.   

Table 3. Objectives 

Objectives Description 
1 Max. absolute error of CVGAS (μ1(x)) 
2 Max. absolute error of MASS(μ2(x)) 
3 Max. absolute error of PGAS(μ3(x)) 
4 Max. absolute error of TGAS(μ4(x)) 
5 IAE of CVGAS over 300s(μ5(x)) 
6 IAE of MASS over 300s(μ6(x)) 
7 IAE of PGAS over 300s(μ7(x)) 
8 IAE of TGAS over 300s(μ8(x)) 

 
The procedure is as follows; 

1) At 0% load and 0% coal quality apply a sinusoidal pressure disturbance 
(amplitude 0.2bar and frequency of 0.04Hz). 

2) Run the simulation over 300seconds.  
3) Calculate IAE and AE (objective function μn(x) as shown in table 3).  
4) Run NNC algorithm (Matlab code). Upper and lower constraint limits are 

fixed as 1 and 0 respectively. 
5) Best optimal controller parameters are obtained. These controller parameters 

(decision variables) of PI controller are the best tuned values. 

The decentralized controller parameters (Kp, Kf and Ki) of the four loops ( CV-
Calorific value, BM-bedmass, Pr – pressure and Tg – temperature) by different 
approaches are given in table 4. These parameters are used to evaluate the 
performance of performance of the gasifier under different scenarios.  

Table 4. Comparison of PI Controller parameters 

Parameter Dixon PI[1]  Simm A[10] MOPI[12] SOPI[12] NNC-PI  

CV_Kp -0.000123 -0.00015445 -0.016972 -0.01956 -0.0003 
CV_Ki -0.0000804 -0.00010867 -0.024813 -0.05001 -0.0008 
BM_Kp 0.1451 0.1814 0.18498 0.119 0.26063 
BM_Kf 1.0328 1.2910 1.741 1.029 1.82638 
Pr_Kp 0.000202 0.00022281 0.0003055 0.0002575 0.0002 
Pr_Ki 0.0000265 0.00000614 0.00001077 0 0.00001 
Tg_Kp 1.7013 2.1266 2.2825 2.0420 1.69774 
Tg_Ki 0.00948 0.0119 0.097237 0.2220 0.01 
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5 Performance Tests 

Following performance tests are conducted to verify the robustness of the system for 
the tuned values of baseline PI controller. Test results should satisfy the constraints 
for all performance tests. Using the tuned parameters, simulation is run for 300 
seconds at 0%, 50% and 100% load conditions with sinusoidal and step pressure 
disturbance and any constraint violations are observed.  

5.1 Pressure Disturbance Tests 

A step change in pressure disturbance of 0.2 bar and a sinusoidal pressure disturbance 
of amplitude 0.2 bar and frequency 0.04 Hz is applied to the Alstom gasifier at 0%, 
50% and 100% load conditions.  

   
                (a) Outputs and Limits                                          (b). Inputs and Limits 

Fig. 3.   Response to step disturbance at 0%, 50% and 100% load 

   
                (a) Outputs and Limits                                            (b) Inputs and Limits 

Fig. 4.   Response to sinusoidal disturbance at 0%, 50% and 100% load 

The obtained results for the above six pressure disturbance tests are compared with 
[1] and listed in table 5.  
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Table 5. Summary of pressure disturbance test 

Test 
Description 

Output Maximum Absolute 
Error 

IAE 

NNC-PI Dixon-PI NNC-PI Dixon-PI 

100% Load, 
Step 
Disturbance 

CVGAS(J/kg) 
MASS(kg) 
PGAS(N/m2) 
TGAS(ºK) 

925.28
6.94 
5713.84 
0.24 

4885.23 
6.94 
5018.94 
0.24 

7391.13
1622.00 
89738.61 
58.09 

60989.48 
1597.03 
78475.47 
65.09 

50% Load, 
Step 
Disturbance 

CVGAS(J/kg) 
MASS(kg) 
PGAS(N/m2) 
TGAS( °K) 

965.75
8.45 
6433.74 
0.25 

5102.16
8.45 
5790.93 
0.27 

8071.78
3041.31 
112756.06 
73.23 

64766.48 
840.04 
94310.73 
77.13 

0% Load, 
Step 
Disturbance 

CVGAS(J/kg) 
MASS(kg) 
PGAS(N/m2) 
TGAS(°K) 

946.34
11.05 
8326.24 
0.29 

5875.95 
11.05 
7714.53 
0.32 

10128.00
3183.29 
117495.57 
65.51 

86561.16 
1330.92 
120167.73 
77.05 

100% Load, 
Sinusoidal 
Disturbance 

CVGAS(J/kg) 
MASS(kg) 
PGAS(N/m2) 
TGAS(°K) 

353.39
9.39 
4366.07 
0.27 

4101.30 
10.89 
4981.41 
0.38 

132962.88
4066.29 
1616664.37 
90.75 

1545471.04 
4154.65 
1857629.38 
134.44 

50% Load, 
Sinusoidal 
Disturbance 

CVGAS(J/kg) 
MASS(kg) 
PGAS(N/m2) 
TGAS(ºK) 

397.32
11.04 
5336.92 
0.30 

4715.68 
12.87 
6209.91 
0.42 

149245.74
4930.16 
1983626.23 
100.28 

1759740.23 
5041.36 
2307614.42 
149.47 

0% Load, 
Sinusoidal 
Disturbance 

CVGAS(J/kg) 
MASS(kg) 
PGAS(N/m2) 
TGAS(°K) 

666.55
14.26 
9116.02 
0.34 

5869.69 
16.35 
11960.42 
0.48 

185010.85
6240.53 
3071406.23 
119.79 

2074977.65 
6016.65 
3845931.81 
159.09 

5.2 Load Change Test 

Stability of the gasifier and controller function across the working range of the plant 
is verified by load change test. For this purpose the system is started at 50% load in 
steady state and ramped it to 100% over a period of 600 seconds (5% per minute). 
The actual load, CVGAS and PGAS track their demands quickly to setpoint while 
Bedmass takes more time to reach its steady state, though manipulated inputs coal 
flow and char flow have reached their steady state immediately. TGAS reached its 
steady state at around 12 minutes from the start, immediately char flow rate has 
regulated back nearly to its steady state point,  

5.3 Coal Quality Test 

The quality of coal gas depends on the coal quality (carbon content and moisture 
content). In this test, the quality of coal increased and decreased by 18%, and the 
above pressure disturbance test are conducted to verify the robustness of the 
controller. Input-output responses for sinusoidal and step change in PSink are 
obtained for 300 seconds and are shown in figure 5 to 10.  
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(a) Outputs and Limits                                           (b) Inputs and Limits 

Fig. 5. Response to change in Coal quality at 100 % Load for sinusoidal change in PSink 

   
                      (a)  Outputs and Limits                                         (b) Inputs and Limits 

Fig. 6.   Response to change in Coal quality at 100 % Load for step change in PSink 

   
                    (a) Outputs and Limits                                            (b) Inputs and Limits 

Fig. 7. Response to change in Coal quality at 50% Load for sinusoidal change in PSink 

0 100 200 300
-10

-5

0

5

10
C

V
G

A
S

 (
K

J/
kg

)

 

 

0 100 200 300
-500

0

500

M
as

s 
(k

g)

 

0 100 200 300
-0.1

-0.05

0

0.05

0.1

Time (s)

P
G

A
S

 (
ba

r)

 

 

0 100 200 300
-1

-0.5

0

0.5

1

Time (s)

T
G

A
S

 (
K

)

 

 

No Change

+18% Change

-18% Change

0 100 200 300
0

1

2

3

C
ha

r 
(k

g/
s)

0 100 200 300
0

5

10

15

20

A
ir 

(k
g/

s)

 

 

0 100 200 300
0

5

10

Time (s)

C
oa

l (
kg

/s
)

0 100 200 300
0

2

4

6

S
te

am
 (

kg
/s

)

Time (s)

No Change
+18% Change

-18% Change

0 100 200 300
-10

-5

0

5

10

C
V

G
A

S
 (

K
J/

kg
)

 

 

0 100 200 300
-500

0

500

M
as

s 
(k

g)

 

0 100 200 300
-0.1

-0.05

0

0.05

0.1

Time (s)

P
G

A
S

 (
ba

r)

 

 

0 100 200 300
-1

-0.5

0

0.5

1

Time (s)

T
G

A
S

 (
K

)

 

 

No Change

+18% Change

-18% Change

0 100 200 300
0

1

2

3

C
ha

r 
(k

g/
s)

0 100 200 300
0

5

10

15

20

A
ir 

(k
g/

s)

 

 

0 100 200 300
0

5

10

Time (s)

C
oa

l (
kg

/s
)

0 100 200 300
0

2

4

6
S

te
am

 (
kg

/s
)

Time (s)

No Change

+18% Change

-18% Change

0 100 200 300
-10

-5

0

5

10

C
V

G
A

S
 (

K
J/

kg
)

 

 

0 100 200 300
-500

0

500

M
as

s 
(k

g)

 

0 100 200 300
-0.1

-0.05

0

0.05

0.1

Time (s)

P
G

A
S

 (
ba

r)

 

 

0 100 200 300
-1

-0.5

0

0.5

1

Time (s)

T
G

A
S

 (
K

)

 

 

No Change

+18% Change

-18% Change

0 100 200 300
0

1

2

3

C
ha

r 
(k

g/
s)

0 100 200 300
0

5

10

15

20

A
ir 

(k
g/

s)

 

 

0 100 200 300
0

5

10

Time (s)

C
oa

l (
kg

/s
)

0 100 200 300
0

2

4

6

S
te

am
 (

kg
/s

)

Time (s)

No Change

+18% Change

-18% Change



342 R. Kotteeswaran and L. Sivakumar 

 

   
                    (a) Outputs and Limits                                          (b) Inputs and Limits 

Fig. 8. Response to change in Coal quality at 50 % Load for step change in PSink 

   
                   (a) Outputs and Limits                                          (b) Inputs and Limits  

Fig. 9. Response to change in Coal quality at 0 % Load for sinusoidal change in PSink 

 

   
                   (a) Outputs and Limits                                            (b) Inputs and Limits 

Fig. 10. Response to change in Coal quality at 0% Load for step change in PSink 
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The analysis of the above test is shown in table 6, which shows the violation of the 
variables under positive and negative change in coal quality. Since input constraints 
are inbuilt in the actuator limits, output constraints are considered to be the actual 
violation. TGAS and PGAS violate the limits under change in coal in coal quality for 
sinusoidal pressure disturbance and no output variable is found for step pressure 
disturbance. 

Table 6. Violation variables under coal quality change (±18%) (↑ - the variable reaches its 
upper limit, ↓ the variable reaches its lower limit) 

Load 100% 50% 0% 
Disturbance type Sine Step Sine Step Sine Step 
Coal quality 
increase (+18%) 

Char↓ 
Tgas↑ 

Char↓ 
 

Char↓ 
Tgas↑ 

Within 
 limits 

Char↓ 
WStm↓Pgas↑ 

Within 
 limits 

Coal quality 
decrease (-18%) 

Coal↑ 
Tgas↓ 

Coal↑ 
 

Within  
limits 

Coal ↑ 
 

Char↑ 
Pgas ↑ WStm↓ 

Char↑ 
 

6 Conclusion 

This paper uses Normalized Normal Constraint (NNC) algorithm to retune the 
parameters of decentralised PI controller for pressure loop of coal gasifier. The 
existing controller with decentralised PI controller does not satisfy the performance 
requirements at 0% operating point for sinusoidal disturbance and hence optimal 
tuning parameters are required. Proportional gain and Integral time for the 
decentralised PI controller are the decision variables while the maximum Absolute 
Error (AE) and Integral of Square Error (IAE) are the objective function for NNC 
algorithm. The existing PI controller parameters are replaced by obtained controller 
parameters and performance tests are conducted. Pressure disturbance test shows 
excellent results and meets the performance requirement satisfactorily even at 0% 
operating point. Load change test and coal quality tests are also conducted. The limits 
for coal quality variation are set to ±18%. For the allowable limits of coal quality 
variations test results shows that the NNC based decentralised PI controller provides 
good results in all aspects.  
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Abstract. Real field power systems are suffering from the various problems 
since two decades passed. Among them one of the vital problems is the real 
power loss minimization issue. In this paper the said issue is tried to be solved 
utilizing one of the interesting meta-heuristic technique i.e., Simulated 
Annealing method. While solving the same, few control and state variables are 
controlled and monitored such that system parametric violations do not occur. 
Finally obtained results are compared with other reported technique which 
proves the effectiveness of the approached technique.     

Keywords: Real power loss minimization, Reactive power dispatch, Voltage 
Stability, Simulated Annealing. 

1 Introduction 

Real Power Loss Minimization (RPLM) is an all time important aspect of the power 
system. It is handled strictly as real power loss reduces the efficiency of power 
transmission & distribution. Initially this problem is solved as optimal power flow [2] 
which evolved many factors like cost minimization, real power loss minimization etc.  
Cost minimization is always prioritized over loss minimization. Hence the real power 
loss minimization is handled separately as reactive power dispatch (RPD) problem. The 
RPD problem focuses the real power loss minimization aspect along with the stable 
voltage profile [3]. The RPD problem is evaluated by controlling generator bus voltages 
and variable transformer tap changer along with the shunt capacitors placements to few 
load buses. Alike the various optimization problem this problem are also having few 
control and state variables. The control variables are the Generator bus voltages (VG), 
Shunt Var compensators (QC), and Transformer taps setting (T). The state variables for 
the considered problem are Generator real power output at slack bus (Pg1), Generator 
reactive power output (QG), Load bus voltage (VL), and bus voltage angle (θ ). The RPD 
problem has been solved by several linear and non-linear programming since two 
decades are passed. As the nature of the RPD problem is nonlinear, non differentiable 
and multi-constraint based, perfection in obtaining the optimum result remains 
untouched while solving with the previously mentioned techniques. In this connection 
meta-heuristics techniques handle this type of problem quite accurately [12]. These 
techniques have already achieved successful feedback in solving the RPD problem 
while testing with the bus systems like IEEE 6-bus, IEEE 14-bus and IEEE 30-bus 
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system. Among them few meta-heuristics techniques are tabu search algorithm [1], 
evolutionary programming [15], genetic algorithm [9], modified genetic algorithm [11], 
differential evolutionary algorithm [5, 13], particle swarm optimization [7] and 
simulated annealing [18] which have been observed to be very effective. In this paper 
single solution based Simulated Annealing (SA) technique is studied to solve the said 
problem for the higher bus systems like IEEE 118-bus system. In 1983 Kirpatrik et al. 
first proposed the said technique which is based on the annealing phenomenon of a 
solid, liquid or gasesous material [6]. The benefit of the technique is not only its fastness 
it can escape from the local minima. Population based techniques fit well for the RPD 
problem although it requires large processing time. Therefore sometimes SA is utilised 
with many other population based methods like GA as a hybrid solution methodology 
(GASA) [17]. In this paper SA technique gives much better result compared to the base 
cases where Newton Raphson method is applied to solve the RPD problem without 
shunt capacitors placement. Additionally SA based result are compared with few other 
population based evolutionary techniques which shows improvement in optimum value 
as well as operating time.  

2 Problem Formulation: 

RPD problem explore the minimization of the real power loss by maintaining stable 
voltage profile. In this paper RPD is solved by controlling VG, QC and T. Apart from 
the controlled variable few state variables are to be measured. Controlled variables are 
generated with the help of evolutionary algorithms whereas state variable are bounded 
by the system operating limit. These are maintained by few equality and inequality 
equations during the programme execution.  

In the generalized approach, the RPD problem can be expressed as: 
min f(x,u)  s.t . 
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Where  f(x,u) is the objective function which explains the minimization of total active 
power losses in transmission system (RPD) where x represents state or dependent 
variable of the system [θ, VL , Pg1 , QG]T  and u represents the control or independent 
variable [VG , T,  QC]T.  

In this connection, the tuned RPD problem can be expressed as: 
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Where, ng is the total number of generator buses and nbus are the total buses in the 
network. PGEN and PLOAD is the total generated power and the total load power 
connected to the given system. PLoss is the power loss in the network. In this paper 
PGEN and PLOAD is calculated via Newton Raphson method. 
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The minimization of the above optimisation problem is subjected to a number of 
equality and inequality constraints. Equality constraints are comprised of active and 
reactive power balance equation. Inequality constraints are consisted of Generation 
constraints which further are represented as Generation bus voltages, reactive power 
outputs, Transformer constraints, Shunt VAR constraints and Security Constraints. 
Due to large size of the system, few simplifications in the objective function are 
considered without violating the aim. Once the objective function is settled simulated 
annealing (SA) technique is applied to solve the RPD problem. 

3 Simulated Annealing (SA) 

In 1983 being inspired by the annealing process of liquids to freeze or metals and 
glass to crystallize, Kirkpatrick, Gelatt and Vecchi proposed a new solution 
methodology named Simulated Annealing Technique [6]. SA has several strong 
points over other metaheuristics techniques. Amongst them the most important one is 
that the SA will never stick into the local minima. The annealing logic formation of 
SA technique is very easy though cooling criteria scheduling is pretty hard. SA is a 
single solution based optimization technique. Therefore the fundamental logic 
formation of SA technique mainly depends on random searching of good solution 
variables which will be accepted if objective function improves. 

3.1 Steps of Simulated Annealing Algorithm 

Step 1: Initially variables (x) are generated with the help of (3) where the uniform 
probability distribution function is used.  

)( minmaxmin)0(
jjjjj xxxx −+= σ  (3) 

where [1,....D]j ∈ , D is the dimension of the system. With the initial solution 

vector objective function f(x) is calculated.  

Step 2: Initial temperature (Ti) and final temperature (Tf) is considered. 
Step 3: According to the fundamental logic of SA technique geometric cooling 
schedule is set which subjects to T=Ti and T=α*T, where current temperature is stored 
at T. This way T will vary to crystallize or freeze till the final temperature comes. The 
multiplying factor α usually lies between 0.5 to 1. 
Step 4: When the annealing process is started, a new set of solution is generated by 
(4) as given below. 

randnxx nn +=+1  (4) 

where, xn is the initial solution, xn+1 is the new set of solution and ‘randn’ is the 
random number generation operator in MATLAB 7.1. Henceforth new set of 
objective function f(x(n+1)) is calculated with xn+1. With this the difference in energy 
level i.e., δf = f(x(n+1)) - f(xn) is calculated to proceed the annealing schedule. 
Step 5: Acceptance Criteria:  
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Fig. 1. Simulated Annealing Technique in Flow chart 
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If the new solution is better it will be accepted, otherwise a random number r will be 
generated. According to Metropolis criteria [8] new solution may be accepted if (5) 
satisfies.  

rkTfp >−= ]/exp[ δ  (5) 

where k is the Boltzmann’s constant. If improved response is obtained, xn+1 and f(xn+1) 
will be replaced by the previous data. The loop or the iteration will continue 
depending upon the terminating condition. Terminating condition may be set as 
reaching to the final temperature i.e. final iteration N (=n: 1: N) or arrival of certain 
number of repetitive result or even reaching to the optimal value. The working step of 
the SA method is explained in Fig. 1.  

4 Result Analysis 

4.1 SA Implementation with the RPD Problem 

Initially a solution vector (x) is generated for the IEEE 118-bus system using Equ. (3). 
After considering Ti , Tf and α, cooling schedule is fixed. Then new solution vector is 
generated via Equ. (4). Subsequently new fitness function with the new solution 
vector is calculated. δf is calculated to proceed the annealing schedule. If the new 
solution is better it will be accepted, otherwise a random number r will be generated 
and Metropolis criteria i.e., Equ. (5) will be checked. The operating cycle will be 
continued until terminating condition is reached. In this paper the execution will 
terminate either reaching to the final temperature point or exceeding the preset 
maximum number of repetitive solution.   

4.2 SA Based Parameter Selection 

As programming software MATLAB 7.1 is considered here. In this paper a large 
power system network of IEEE 118-bus systems [16] is chosen for solving the real 
power loss minimization aspect. The said bus network consists of hundred and 
eighteen numbers of buses among them 69th bus is considered as slack bus having 
1.07 pu as magnitude. In the system total fifty four number of generator buses is 
present. For solving the RPD problem the generator bus voltages are controlled. 
Remaining sixty three buses are load buses among them twelve buses are chosen for 
shunt compensation to minimize active power loss. Apart from this, nine tap changing 
transformers are placed in various positions of the network for the RPD problem 
solving issue. The bus data and line data are considered from the power system test 
case archive available online [16]. To calculate power loss Newton Raphson method 
is used as load flow study tool [10]. Optimal results of any evolutionary computation 
techniques depend on the proper choice of the different parameters. The chosen 
parameters for the proposed method are considered as Ti=1 , Tf=10-8, Maximum 
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repetition of result=150, α=0.9. The considered range for the controlled variables (Vg 
as generator bus voltages, T as transformer tap setting and Qc as shunt capacitors) and 
state variables (VL as load bus voltages) are given in Table 1. 

Table 1. Range of operation for the control variables 

Sl No. Units IEEE 118-Bus System 

1. Pu 0.95≤ VL ≤1.10 

2. Pu 0.95≤ Vg  ≤ 1.10 

      3. Pu 0.90≤  T ≤1.10 

 4. 
 

Pu 
 

               0.0≤ Qc34 ≤ 14.0 
  0.0≤ Qc44 , Qc45, Qc46, Qc83≤ 10.0 
               0.0≤ Qc48 ≤ 15.0 
               0.0≤ Qc74 ≤ 12.0 
    0.0≤ Qc79, Qc82 , Qc105 ≤ 20.0 
           0.0≤ Qc107 ,Qc110 ≤ 6.0 

4.3 Result for IEEE 118-Bus System 

By applying SA technique PLOSS decreases to 128.735 MW and the % PLOSS reduces to 
2.10266 from the Newton Raphson based solution. In this case the average and the 
worst values are obtained as 130.173 MW and 131.405 MW respectively after fifty 
trial runs. Moreover standard deviation of the 50 trial run is calculated here within the 
paper via (6).  


=

−=
N

i
iN xx

N
S

1

2)(
1

 (6) 

Where (x1, x2, …, xN) are the observed value of the sample items and  x is the mean 
value of the observation and N stands for the number of sample collected (50 trial 
runs in this case). The obtained standard deviation is 0.868405. 

The Fig. 2 shows the best, average and worst response curves by the SA technique. 
According to the Fig. 2 the optimization process converges nearly at the final 
temperature whereas the other two observed responses converges even earlier. 

The obtained results in terms of the controlled variables are given in Table 2. 
While analyzing the results one crucial point is to be mentioned that no result  
violates the stability and thermal operating limit. Even the results are obtained  
within 28.325 sec.  
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Fig. 2. SA Technique based result for IEEE 118-bus system 

Table 2. Detailed variables for the SA Method 

Control 
Variables 

Obtained   
Value 

Control 
Variables 

Obtained   
Value 

Control 
Variables 

Obtained   
Value 

Vg1 1.0656 Vg61 1.0036 Vg111 0.9535 
Vg4 1.0263 Vg62 1.0077 Vg112 0.9619 
Vg6 1.0431 Vg65 1.0160 Vg113 1.0514 
Vg8 1.0226 Vg66 0.9946 Vg116 0.9706 
Vg10 1.0606 Vg70 1.0253 T6-10 0.9008 

Vg12 1.0972 Vg72 0.9809 T4-12 1.0888 

Vg15 1.0673 Vg73 0.9730 T28-27 0.9902 

Vg18 1.0235 Vg74 1.0587 T6-10 0.9178 

Vg19 0.9987 Vg76 1.0040 T4-12 0.9594 

Vg24 0.9743 Vg77 0.9606 T28-27 1.0785 

Vg25 1.0771 Vg80 0.9657 T6-10 1.0873 

Vg26 1.0496 Vg85 1.020 T4-12 1.0053 

Vg27 1.0459 Vg87 1.0516 T28-27 1.0072 

Vg31 1.0446 Vg89 1.0610 Qc34 12.323 

Vg32 1.0419 Vg90 1.0231 Qc44 9.4884 

Vg34 1.0819 Vg91 1.0484 Qc45 7.6147 

Vg36 0.9981 Vg92 1.0240 Qc46 5.9607 



352 S. Biswas, K.K. Manadal, and N. Chakraborty 

 

Table 2. (continued.) 

Vg40 0.9503 Vg99 1.0309 Qc48 12.842 

Vg42 0.9841 Vg100 0.9635 Qc74 1.0142 

Vg46 0.9902 Vg102 1.0631 Qc79 0.1484 

Vg49 1.0177 Vg103 1.0733 Qc82 3.1344 

Vg54 0.9983 Vg104 1.0061 Qc83 2.0100 

Vg55 0.9612 Vg105 1.0222 Qc105 2.6430 

Vg56 0.9903 Vg107 0.9803 Qc107 3.5365 

Vg59 1.0807 Vg110 0.9630 Qc110 4.8126 

 
Table 3 shows the comparative analysis between the proposed methods and few 

other evolutionary techniques.  
Table 3 shows a SA based comparative study with respect to different techniques 

including DE and PSO. From the table it is seen that SA is being able to reduce % 
PLOSS to 9.56, 8.0192, 7.867 and 0.064 with respect to L-SACP-DE, CGA, SPSO-07 
and DE techniques respectively 

Table 3. Comparative analysis  

Applied algorithms to 
RPD problem 

Obtained minimized 
value of Power Loss in 
MW for the IEEE 118-
bus system 

L-SACP-DE [4] 141.79864 
CGA [14] 139.41498 
SPSO-07 [19] 139.27522 
DE [13] 128.318  
Proposed method 

in this paper i.e. SA 
128.235 

 
Hence it can be concluded that the proposed method based result is very much 

impressive in respect to optimum value as well as the operating time. 

5 Conclusion 

In this paper a very significant problem of power system is analyzed by applying one 
of the vital meta-heuristic techniques. The single solution based technique SA shows 
improved result compared to the base case within very little operating time. Even the 
comparative study with few population based technique results the effectiveness of 
the proposed method. As a summary of the study it can be concluded that for the 
considered large bus system SA gives improved results in terms of both power loss as 
well as CPU operating time.  
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Abstract. For economic and efficient operation of power system optimal sche-
duling of generators in order to minimize fuel cost of generating units and its 
emission is a major consideration. This paper presents hybrid approach of using 
Artificial Bee Colony (ABC) and Simulated Annealing (SA) algorithm to solve 
highly constrained non-linear multi–objective Combined Economic and Emis-
sion Dispatch (CEED) having conflicting economic and emission objective. 
The mathematical formulation of multi objective CEED problem with valve 
point is formulated and then converted into single objective problem using price 
penalty factor approach. Performance of proposed hybrid algorithm is validated 
with IEEE 30 bus six generator systems and a 10 generating unit system.  
Programming is developed using MATLAB. The results obtained and computa-
tional time of proposed method is compared with ABC and SA algorithm. Nu-
merical results indicates proposed algorithm is able to provide better solution 
with reasonable computational time. 

Keywords: Economic Dispatch, Emission Dispatch, Power Loss, Multi objec-
tive Optimization. 

1 Introduction 

The Economic Dispatch problem can be stated as determining the least cost power 
generation schedule from a set of online generating units to satisfy the load demand at 
a given point of time [1]. Though the core objective of the problem is to minimize the 
operating cost satisfying the load demand, several types of physical and operational 
constraints make ED highly nonlinear constrained optimization problem, especially 
for larger systems [2]. In recent years, environmental considerations have regained 
considerable attention in the power system industry due to the significant amount of 
emissions like sulphur dioxide (SO2) and nitrogen oxides (NOx).So along with eco-
nomic dispatch environmental dispatch must also be carried out. Since economic and 
emission objectives are conflicting in nature, a combined approach is the best to 
achieve an optimal solution [3].  

Power plants commonly have multiple valves that are used to control the power 
output of the units. When steam admission valves in thermal units are first opened, a 
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sudden increase in losses is registered which results in ripples in the cost function. 
This effect is known as a valve point loading. Typically, the valve-point results in as 
each steam valve starts to open, the ripples like in to take account for the valve-point 
effects, sinusoidal functions are added to the quadratic cost function[4].This type of 
problem is extremely difficult to solve with conventional gradient based techniques 
due to the abrupt changes and discontinuities present in the incremental cost function. 
The CEED problem with valve point effect is a Multi-objective problem which can be 
solved by Multi-objective Optimization [5]. 

Traditional methods such as lambda iteration, base point participation factor, gra-
dient method and Newton method may not converge to feasible solutions for complex 
problems whose objective function is not continuously differentiable and has a dis-
continuous nature.  This method fails for non-convex problem except dynamic pro-
gramming in which no restriction is imposed on the shape of cost curves, also this 
method suffer from dimensionality problem and excessive computation effort. 

The multi-objective optimization problem is formulated using Combined Econom-
ic Emission Dispatch (CEED) approach which merges the cost and emission objec-
tives into one optimization function such that equal importance is assigned to both 
objectives [6]. Several classical methods were proposed to solve economic dispatch 
problem such as lambda iteration method, Gradient method, base point and participa-
tion factor method [7]. Heuristic method for solving economic dispatch is presented  
in [8-20]. The formulation of multi objective CEED problem by weighting function 
method and priority ranking method using hybrid ABC-PSO method is presented  
in [21]. 

In this paper the CEED problem is first solved by ABC method and the optimal 
schedules are obtained. This schedule is given as starting point for Simulated Anneal-
ing and the optimal schedules are obtained. This approach combines the advantages of 
faster convergence of ABC method and robustness of SA method to find the global 
solution of highly non linear CEED problem with valve point effect.   

The proposed method converts the multi –objective problem into a single objective 
problem by using a penalty factor approach. Methods which convert multi objective 
into single objective using weights generate the non dominated solution by varying 
the weights, thus requiring multiple runs to generate the desired Pareto set of solution. 
Various other approaches given in [23],[24] and [25] solves the conflicting objective 
functions simultaneously using multi objective evolutionary search strategies and find 
out compromise solution. 

2 Formulation of Combined Economic and Emission Dispatch 
(CEED) 

The multi-objective CEED problem is formulated by combining the economic dis-
patch problem and emission dispatch problem into a single objective using price  
penalty factor method. 
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2.1 Formulation of Multi Objective CEED problem 

The objective of the multi-objective CEED problem which has two conflicting objec-
tives as economic and emission objective is to find the optimal schedules of the  
thermal generating units which minimizes the total fuel cost and emission from the 
thermal units subject to power balance equality constraint and bounds. The mathemat-
ical formulation of the multi objective CEED problem is given below  ,    (1) 

subject power balance equation given in (2) and bounds given in (3) ∑ = 0    (2) 

, ≤ ≤ ,    (3) 

where  
 Total fuel cost of  generating units with valve point effect = ∑  ( ) = ∑  + + + ∗ sin , $   (4) 

 Total emission cost  generating units = ∑  ( ) = ∑  + + +    (5) , , , ,  Emission coefficients of thermal unit   , ,  Fuel cost coefficients of thermal unit   ,  Coefficients to model the effect of valve point of thermal unit   
  Total number of thermal generating units 
  Number of buses 

 Power generation of thermal unit   
 Total demand of the system 
 Real Power transmission loss in the system ,  Minimum generation limit of thermal unit   , Maximum generation limit of thermal unit   

In the above formulation the transmission loss in the system is calculated using  matrix coefficients calculated from load flow solution as given in [14] and incorpo-
rated into power balance equality constraint. These loss coefficients are independent 
of slack bus. The transmission loss in the system is expressed using  matrix coeffi-
cients as = ∑ ∑ + ∑ +   (6) 

The above multi objective problem can be combined into a single objective prob-
lem using price penalty factor approach. The price penalty factor approach to combine 
this multi objective problem in to a single objective is given in the next section. 
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2.2 Penalty Factor Approach 

As mentioned earlier Multi-objective CEED is converted into a single objective prob-
lem using penalty factor approach. The sequential steps involved in calculating penal-
ty factor are listed below 

• Evaluate the maximum cost of each generator at its maximum output. 

, = , + , + + ∗ sin , , $  (7) 

• Evaluate the maximum emission of each generator at its maximum output. 

, = ∑  , + , + + ,    (8) 

• Divide the maximum cost of each generator by its maximum emission = ,,     (9) 

• Arrange  in ascending order. Add , of each unit one at a time starting from 
the smallest  unit until it meets the total demand  

• At this stage,  associated with the last unit in the process is the price penalty 

factor  in $  for the given load. 

2.3 Conversion of Multi Objective CEED to Single Objective Formulation  

The multi objective CEED is converted into single objective optimization using price 
penalty factor and the respective formulation is given below ∑  ( ) + ∑  ( )    (10) 

subject to power balance equality constraint and bounds given below ∑ = 0   (11) 

, ≤ ≤ ,    (12) 

In (10) the ( ) can also be replaced by ( ) if the valve point effect has to be neg-

lected. = ∑  ( ) = ∑  + +  . In this paper the above formulation 
is solved using hybrid ABC-SA method. A Brief algorithm of ABC and SA is presented in the 
next section 

3 Artificial Bee Colony Algorithm 

ABC algorithm is one of the most promising methods for solving complex non-
smooth optimization problems in power systems. It simulates the behavior of real 
bees for solving optimization problems. The colony of artificial bees consists of three 
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groups of bees: employed bees, onlookers and scouts. The first half of the colony 
consists of the employed artificial bees and the second half includes the onlookers. 
The number of employed bees is equal to the number of food sources around the hive. 
The employed bee whose food source has been exhausted by the bees becomes a 
scout. Communication among bees related to the quality of food sources takes place 
in the dancing area. This dance is called a waggle dance. The four control parameters 
of ABC algorithm are  

•   –  The number of colony size(employee bee+ onlookers) 

•   =    The number of food sources equals the half of the colony 

size. 
•  – A food source which could not be improved through limit trials is aban-

doned by its employee bee. 
•   –The number of cycles for foraging (a stopping criterion). 

4 Simulated Annealing 

Simulated Annealing (SA) is a stochastic optimization technique and it can be used to 
solve our CEED problem since our objective is to find an optimal solution. Simulated 
Annealing is a random search technique which exploits an analogy between the way 
in which a metal cools and freezes into a minimum energy perfect crystalline structure 
with minimum defects (the annealing process) and the search for a minimum  
in a more general system. There are four control parameters that are directly asso-
ciated with its convergence (to an optimized solution) and its efficiency. They are 
Initial temperature, Final temperature, Rate of temperature decrement, Iteration at 
each temperature. 

5 Hybrid ABC-SA Algorithm 

In this paper, a hybrid ABC-SA algorithm is proposed for solving CEED problem. 
The proposed ABC-SA is a method of combining the advantages of faster computa-
tion of Artificial Bee colony Algorithm with robustness of Simulated Annealing (SA) 
so as to increase the global search capability. The ABC algorithm starts with a set of 
solutions and based upon the survival of fittest principle, only the best solution moves 
from one phase to another. This process is repeated until the any of the convergence 
criteria is met. At the end of the iterations the optimal solution is the one with the 
minimum total cost out of the set of solutions. The time of convergence of ABC de-
pends upon the values of the randomly set control parameters. SA algorithm starts 
with an initial operating solution and every iteration improves the solution until the 
convergence criteria is met. The optimal solution obtained from SA algorithm de-
pends upon the quality of the initial solution provided. In this paper the initial solution 
provided to SA is the optimal solution obtained from ABC algorithm. Since a best 
initial solution is given to SA algorithm the optimal solution obtained from this Hybr-
id approach is better than the solution obtained from ABC or SA algorithms.  
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The sequential steps involved in the proposed algorithm ABC-SA algorithm is 
 given below 

1. The cost data, emission data and valve point data of each generating unit are read 
and system load is also specified. 

2. The minimum and maximum operating limits of the generating units are speci-
fied. 

3. The penalty factor to combine the multi objective problem into a single objective 
problem is obtained from the algorithm given in section 2.2. 

4. Using this penalty factor a lossless dispatch is carried out using ABC algorithm 
for the formulation given by equation (10) to (12) with = 0. 

5. With the solution obtained an AC power flow is carried out and the B-loss coeffi-
cients are obtained [14]. These coefficients are used for calculation of real power 
loss in the subsequent iterations. 

6. The various control parameters of the ABC algorithm are initialized. Formulation 
given by equation (10) to (12) is solved using the ABC algorithm developed in 
MATLAB.  

7. ABC runs till its stopping criterion (the maximum number of iterations) is met,  
8. In order to obtain the optimal control parameters, the steps 7 to 10 is run many 

times with one control parameter fixed and all other control parameters are varied. 
This step is repeated to find the best control parameter for ABC algorithm. 

9. With the best control parameters set, the ABC algorithm is carried and the optimal 
solution is obtained. With this optimal schedule an AC load flow is carried out 
and using the solutions of AC load flow the new  Coefficients are obtained and 
considered for the subsequent iteration. 

10. The optimal solution of ABC is given as the starting point (Initial guess vector) to 
the SA algorithm and the control parameters of SA are set. 

11. Then, the SA algorithm starts its search process and it is run until its stopping cri-
terion is met. 

12. With this optimal solution the total fuel cost of the thermal generating units and 
its emission cost are calculated. 

6 CASE STUDY – IEEE 30 Bus System 

In order to validate the proposed algorithm a case study with IEEE 30 bus test system 
consisting of 6 generating units and 41 transmission lines is carried out. The valve 
point effect is not considered. The load demand of this test system is 500 . The 
total load in the IEEE 30 bus system is 283.4 . Each of the real power demand is 
scaled to increase the total demand to 500 .  The fuel cost coefficients and emis-
sion function coefficients to minimize sulphur oxides(SOx) and Nitrogen 
oxides(NOx) caused by thermal plant along with generator capacity limits of each 
generator are given in appendix table A1. With the schedules obtained from lossless 
dispatch a load flow is carried out and the B-co-efficient matrix computed from the 
load flow analysis is given in appendix table A2. The penalty factor to combine the 
multi objective problem into single objective problem is calculated as given in section 
2.2 and is found to be = 43.15 $/  
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For this system the optimal dispatch is obtained using ABC, SA and Hybrid ABC-
SA algorithm and are compared in the subsequent sections 

6.1 Solution of CEED Problem Using ABC Method 

Since evolutionary algorithm is used to solve CEED, certain parameters of the algo-
rithm have to be randomly adjusted. The optimal control parameters for ABC algo-
rithm are found by varying each parameter and setting one parameter constant at a 
time and this process is repeated to find the optimal control parameters. The optimal 
control parameter for this test system is found as   =  30  , limit = 300 , = 500. With these parameters ABC algorithm is run for twenty times and 
the schedules are shown in table 1. The optimal schedules from the ABC algorithm is 
shown in bold in table 1. 

Table 1. Optimal Schedules of CEED problem obtained using ABC algorithm 

RUNS P1 

(MW)

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

LOSS

(MW)

Fuel 

COST

($/hr) 

Emission

(kg/hr) 

Total  

COST 

($/hr) 

TIME 

(sec) 

1 10.02 23.96 94.56 119.11 134.22 127.99 9.89 27671 273.91 39491 5.50 
2 10.01 18.40 108.26 99.22 131.72 141.52 9.17 27583 271.90 39316 5.9 
3 10.00 12.13 109.93 89.08 130.91 157.46 9.53 27556 276.34 39480 5.90 
4 10.03 10.00 96.851 104.87 161.80 125.71 9.27 27499 277.11 39457 5.65 
5 10.06 11.85 94.82 72.35 194.52 125.79 9.41 27485 291.81 40076 5.63 
6 10.00 10.67 125.98 84.97 138.11 138.17 7.93 27519 279.03 39559 3.49 
7 10.01 11.62 91,69 78.40 191.13 126.76 9.63 27484 288.68 39941 3.43 
8 10.01 10.07 118.68 108.28 130.46 130.64 8.17 27552 277.58 39530 3.51 
9 10.03 10.46 116.08 65.82 171.25 134.61 8.27 27473 286.37 39830 3.43 
10 10.02 10.00 120.56 74.49 163.23 129.56 7.88 27471 282.72 39670 3.49 
11 10.02 10.30 93.12 59.36 202.65 134.30 9.77 27502 301.87 40528 3.47 
12 10.00 10.03 111.93 102,75 147.25 126.35 8.33 27504 275.67 39400 3.42 
13 10.02 11.70 122.89 35.00 186.99 141.78 8.39 27563 313.29 41082 3.46 
14 10.15 10.13 108.59 106.17 140.35 133.37 8.79 27525 274.78 39382 3.42 
15 10.04 10.02 40.08 88.23 200.25 167.03 15.68 27728 312.28 41592 3.45 
16 10.06 10.99 143.16 77.66 138.85 126.19 6.93 27553 289.35 40039 3.46 
17 10.00 10.41 123.95 95.43 130.03 138.23 8.08 27541 277.93 39534 3.43 
18 10.13 35.81 88.20 90.35 158.36 127.65 10.53 27704 270.87 39392 3.50 
19 10.02 14.65 97.57 121.73 140.04 125.40 9.44 27598 277.23 39560 3.45 
20 10.00 10.07 115.74 76.17 158.14 138.24 8.37 27474 279.73 39545 3.48 

 
At the end of several trial runs the best optimal fuel cost is found to be 27583 $/hr 

and the emission is found to be 271.90 kg/hr. The total cost of the system is obtained 
as 39316 $/kg. These results are obtained within a computation time of 5.65 seconds. 
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6.2 Solution of CEED Problem Using SA Method 

Similar to ABC method, the parameters of SA method is also tuned to certain trial 
values like (i.e. cool schedule=0.5T and 0.8T, Temp (T) =200 and 300, Max 
tries=8000 and 10000).Among the several results the best optimal solution is obtained 
with cool schedule=0.8T, T=100 and Max tries=8000 and is shown in table 2. 
At the end of several trial runs the best optimal fuel cost is found to be 27498 $/hr and 
the emission is found to be 275.60 kg/hr. The total cost of the system is obtained as 
39391 $/kg. These results are obtained within a computation time of 58.44 seconds. 

6.3 Solution of CEED Problem Using Hybrid ABC-SA Method 

In this method the best schedule obtained in ABC method is given as initial start to 
SA algorithm and the parameters of the SA are set as T= 100, cool schedule= 0.8T 
and Max tries= 5000. The optimal schedule obtained from the hybrid method is 
shown in table 2.The optimal fuel cost is found to be 27588 $/hr and the emission is 
found to be 271.71 kg/hr. The total cost of the system is obtained as 39313 $/kg 
which is better than the ABC method and the SA method as shown by the comparison 
table 2. These results are obtained within a computation time of 18.57 seconds. The 
computational time is more than ABC method but the optimal cost is further reduced 
than the ABC method. The results are better than the hybrid approach used in [22] 
and this is mainly due to the computation of loss using B loss coefficients obtained 
from lossless dispatch in hybrid ABC-SA method which is very reasonable when 
compared to the B loss matrix used in [22].  

Table 2. Comparison of the optimal schedules obtained by ABC, SA and Hybrid ABC-SA 
method and Hybrid ABC-PSO method used in [22] 

Optimal Schedules ABC SA ABC-SA Ref [22] 

P1(MW) 10.01 10.00 10.90 54.6 
P2(MW) 18.40 10.00 18.37 32.484 
P3(MW) 108.26 94.53 108.41 48.548 
P4(MW) 99.22 93.12 99.29 77.517 
P5(MW) 131.72 155.81 131.68 167.28 
P6(MW) 141.52 146.49 140.62 137.29 
LOSS(MW) 9.17  9.97 9.31 17.718 
FUEL OST($/hr) 27583 27498 27588 28157 
EMISSION (lb/hr) 271.90 275.60 271.71 288.01 
TOTAL COST ($/hr) 39316 39391 39313 40584.6 
TIME (sec) 5.9 58.44 18.57 - 

6.4 Case Study on 10 Generating Units with Valve Point Effect 

This case study consists of a standard test system with 10 generating units. The valve 
point effect is considered. The complexity to the solution process has significantly 
increased. In as much as this is a larger system with higher non-linearity, it has more 
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local minima and thus it is difficult to attain the global solution. The load demand of 
this test system is 2000 MW. The fuel cost coefficients with valve point co-efficient 
and emission function coefficients to minimize sulphur oxides(SOx) and Nitrogen 
oxides(NOx) caused by thermal plant along with generator capacity limits of  each 
generator are given in appendix  table A3& table A4.  Here the losses in the system 
are also considered. The B matrix of the test system is tabulated in appendix table A5. 
As mentioned earlier economic and emission objectives are combined using Penalty 
factor approach. The penalty factor obtained from the procedure described in section 
2.2. is  = 51.99$/  

In this method the best optimal schedule obtained in ABC method is given as ini-
tial start to SA algorithm and the SA method. The best optimal is obtained at T= 100, 
cool schedule= 0.8T and Max tries= 8000. The optimal power schedule of the 10 
generating units and the loss of the system is tabulated in table 3. At the end of sever-
al trial runs the best optimal fuel cost is found to be 113510 $/hr and the emission is 
found to be 4169 kg/hr. The total cost of the system is obtained as 330210 $/kg. These 
results are obtained with a computation time of 22.35 seconds.  

Table 3. Optimal Schedules obtained using Hybrid ABC-SA Method 

P1 
(MW) 

P2 
(MW)

P3 
(MW) 

P4 
(MW) 

P5 
(MW)

P6 
(MW)

P7 
(MW)

P8 
(MW)

P9 
(MW)

P10 
(MW) 

LOSS 
(MW) 

55.00 70.32 81.18 96.47 159.72 155.92 229.31 337.57 431.34 467.57 84.45 

7 Conclusion 

This paper has implemented a hybrid ABC and SA algorithm for solving the com-
bined economic and emission dispatch problem including valve point effect. Results 
obtained from the proposed method are compared with ABC, SA and Hybrid ABC-
PSO method. From the case studies carried out on the test systems and the results 
obtained indicate the proposed algorithm is able to find better optimal schedules in a 
reasonable computational time.  
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Table A1. Fuel and Emission Coefficients for IEEE 30 Bus System with 6 Generator Bus 

 
UNIT 

a  
($/hr) 

b ($/MWhr) c 
($/(MW)2hr)

α 
(kg/MW)2 hr

β 
(kg/MWhr)

γ 
(kg/hr) 

PMax 

(MW) 

PMin 

(MW) 

1 0.15247 38.53973 756.79886 0.00419 0.32767 13.85932 125 10 
2 0.10587 46.15916 451.32513 0.00419 0.32767 13.85932 150 10 
3 0.02803 40.39655 1049.32513 0.00683 -0.54551 40.2669 250 40 
4 0.03546 38.30553 1243.5311 0.00683 -0.54551 40.2667 210 35 
5 0.02111 36.32782 1658.5696 0.00461 -0.51116 42.89553 325 130 
6 0.01799 38.2704 13356.2704 0.00461 -0.51116 42.89553 315 125 

Table A2. B-Loss Coefficient Matrix for IEEE 30 BUS System 

0.8422 0.1411 -0.0069 0.0033 0.0009 0.0012 0.0304 
0.0009 0.0019 0.1411 0.0677 -0.0023 0.0001 0.0077 
-0.0069 -0.0023 0.0167 -0.0087 -0.0069 0.0069 -0.0009 
0.0055 0.0037 -0.0033 0.0001 -0.0087 0.0164 0.0012 
0.0009 0.0009 -0.0069 0.0055 0.0121 0.0005 -0.0001 
0.0005 0.0258 0.0012 0.0019 -0.0069 0.0037 -0.0012 
0.0304 0.0077 -0.0009 0.0012 -0.0001 -0.0012 0.0014 

Table A3. Fuel Cost Coefficients of 10 Generating Units 

 
UNIT 

a 
($/MW)2hr 

b 
$/(MW)2hr 

c 
$/(MW)2hr 

d ($/hr) e 
rad/MW 

1 0.12951 40.5407 1000.40 33 0.0174 
2 0.10908 39.5804 950.606 25 0.0178 
3 0.12511 36.5104 900.705 32 0.0162 
4 0.12111 39.5104 800.705 30 0.0168 
5 0.15247 38.539 756.799 30 0.0148 
6 0.10587 46.1592 451.325 20 0.0163 
7 0.03546 38.3055 1243.53 20 0.0152 
8 0.02803 40.3965 1049.99 30 0.0128 
9 0.02111 36.3278 1658.56 60 0.0136 
10 0.01799 38.2704 1356.65 40 0.0141 
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Table A4. Emission Coefficients of 10 Generating Units 

α 
(lb/MW)2 hr 

β (lb/MWhr) γ 
lb/hr 

eta 
lb/hr 

Lambda 
(1/MW) 

PMax 

(MW) 

PMin 

(MW) 

0.04702 -3.9864 360.0012 0.25475 0.01234 55 10 
0.04652 -3.9524 350.0012 0.25473 0.01234 80 20 
0.04652 -3.9023 330.0056 0.25163 0.01215 120 47 
0.04652 -3.9023 330.0056 0.25163 0.01215 130 20 
0.0042 0.3277 13.8593 0.2497 0.012 160 50 
0.0042 0.3277 13.8593 0.2497 0.012 240 70 
0.0068 -0.5455 40.2699 0.248 0.0129 300 60 
0.0068 -0.5455 40.2699 0.2499 0.01203 340 70 
0.0046 -0.5112 42.8955 0.2547 0.01234 470 135 
0.0046 -0.5112 42.8955 0.2547 0.01234 470 150 

 

Table A5. B Loss Coefficeints of 10 Generating Units 

 
 

0.000049 0.000014 0.000015 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 0.000016 
0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018 
0.000015 0.000016 0.000039 0.00001 0.000012 0.000012 0.000014 0.000014 0.000016 0.000016 
0.000015 0.000016 0.00001 0.00004 0.000014 0.00001 0.000011 0.000012 0.000014 0.000015 
0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016 
0.000017 0.000015 0.000012 0.00001 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015 
0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018 
0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.00004 0.000015 0.000016 
0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019 
0.00002 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044 



Spectrum Allocation in Cognitive Radio Networks
Using Firefly Algorithm

Kiran Kumar Anumandla, Shravan Kudikala,
Bharadwaj Akella Venkata, and Samrat L. Sabat

School of Physics, University of Hyderabad, Hyderabad -500046, India
kirankumara@uohyd.ac.in, slssp@uohyd.ernet.in

Abstract. In cognitive radio network, Spectrum Allocation (SA) problem is a
NP-hard problem which needs to be solved in real time. In this work, a recent bio-
inspired heuristic Firefly algorithm (FA) is used for solving SA problem. Three
objective functions namely (a) Max-Sum-Reward (MSR), (b) Max-Min-Reward
(MMR) and (c) Max-Proportional-Fair (MPF) are optimized to maximize the
network capacity. The performance of FA is compared with Particle Swarm Op-
timization (PSO) and Artificial Bee Colony (ABC) algorithms in terms of qual-
ity of solution (network capacity) and timing complexity. The simulation result
reveals that the Firefly algorithm improved quality of solution and timing com-
plexity by 17% and 100% respectively compared to PSO, in contrast to 13% and
103% compared to ABC algorithm. FA proved to give maximum utilization of
network capacity by assigning conflict free channels to secondary users.

1 Introduction

Now a days, the numbers of wireless devices have increased which in turn resulted in in-
creased demand for radio spectrum. To eliminate the interference between the spectrum
users, current policies allocate fixed spectrum slice to each wireless application. Due to
the fixed licensing policy only 6% of spectrum is utilized temporally and spatially [15].
Studies have reported that the under-utilized spectrum can be utilized using cognitive
radio technology. In this technology, each cognitive radio user (Secondary user) can
adapt to various technologies and utilize the vacant spectrum with out any interference
to the licensed users (Primary users). Cognitive radio is built on a software-defined ra-
dio and work as an intelligent wireless communication system, that can sense, learn
and adapt to statistical variations in the input and utilize vacant spectrum efficiently [7].
By using four main functionalities such as spectrum sensing, spectrum management,
spectrum mobility and spectrum sharing, secondary users can opportunistically utilize
the spectrum holes. Secondary users must opportunistically utilize the vacant licensed
spectrum subject to the constraints imposed by licensed users. Due to spectrum hetero-
geneity, spectrum available to cognitive users vary with respect to location and time,
because of traffic variation of primary users. The interference between the neighboring
users can be avoided by proper coordination between them. This in turn will improve
the spectrum utilization. The main objective of the cognitive radio is to maximize the
spectrum utilization. This demands dynamic spectrum access, hence an efficient spec-
trum allocation algorithm need to be developed to support dynamic spectrum access
and to provide fairness across all the secondary users.

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 366–376, 2013.
© Springer International Publishing Switzerland 2013
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The spectrum allocation model has been implemented by using game theory [16], auc-
tion and pricing mechanisms [8], graph coloring [29] and local bargaining algorithms[14].
This model can also be formulated as an optimization problem and it has been solved by
using different evolutionary algorithms like genetic algorithm (GA), quantum genetic
algorithm (QGA), particle swarm optimization (PSO) [28] and Artificial Bee Colony
(ABC) [22].

ABC algorithm is a recent swarm intelligent optimization algorithm inspired by the
foraging behavior of honey bees [9,10,11]. The colony consists of three groups of bee:
employed bees, onlookers and scouts. Each employed bee is associated with a food
source and onlooker bees contribute the information of the food sources found by em-
ployed bees to choose better one. If some food sources are not improved for more
cycles, the scouts are translated to a few employed bees which search for new food
sources. PSO is another general purpose swarm based optimization method [20,12,13],
inspired by foraging activity of birds. Each particle of PSO is influenced by the fittest
particle of the swarm as well as its history while traversing in the search space. Im-
proving the algorithm is as good as finding new algorithm, which outperforms present
techniques. Improving the algorithm may further improve the quality of solution at the
cost of increased complexity. Basically our motivation is real-time implementation of
SA problem in hardware (which is out of scope of the present paper), where compu-
tational complexity is a major constraint. So, we are limiting our studies to original
form of the algorithm. In this paper, we used Firefly algorithm to solve the spectrum
allocation problem and compared its performance with basic PSO and ABC in terms of
quality of solution and time complexity to obtain the results.

In recent years, Firefly algorithm has emerged as a heuristic algorithm to solve op-
timization problems [24]. The use of fireflies as an optimization tool was initially pro-
posed by Yang in 2008 [23] which imitate the social behavior of fireflies, according
to distinctive flashing and attraction properties of fireflies to protect themselves from
predators and absorb their prey. Improved variants of FA had been proposed in order to
compare the method with other meta-heuristic algorithms.

This paper aims to solve SA problem using FA and compare the performance with
PSO and ABC to maximize the network capacity. The rest of the paper is described
as follows. Section 2 provides the previous works related to the methods which solve
spectrum allocation problem and the applications of FA. The context of FA is explained
in Section 3. The SA model of cognitive radio network is described in Section 4. Cog-
nitive radio spectrum allocation based on firefly algorithm is presented in Section 5.
Section 6 provides experimental setup and simulation results followed by conclusions
in Section 7.

2 Related Work

In the literature, various evolutionary algorithms were used to solve spectrum alloca-
tion problem of cognitive radio networks. Zhijin Zhao et al., solved spectrum allocation
problem using GA, QGA and PSO algorithms. It has been shown that these evolution-
ary algorithms greatly outperform the commonly used color sensitive graph coloring
algorithm [28]. Fang Ye et al., proposed an improved genetic spectrum assignment
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model, in which genetic algorithm is divided into two sets of feasible spectrum as-
signment and randomly updates the spectrum assignment strategies [27]. The penalty
function is added to the utility function to achieve spectrum assignment strategy that
satisfies the interference constraints with better fitness. This method resulted better per-
formance than the conventional genetic and quantum genetic assignment model [27].
Xiaoya Cheng et al., proved that a biological inspired ABC optimization algorithm per-
forms better than GA for optimizing the spectrum allocation for fairness and efficiency
for cognitive users [22]. This paper defines a general framework for spectrum allo-
cation in cognitive radio system and optimize the allocation of spectrum for fairness
and efficiency. An Ant Colony System (ACS) technique based on the Graph Coloring
Problem (GCP) is proposed for spectrum allocation in CR network [4]. The perfor-
mance of ACS was compared with PSO for various number of secondary users, primary
users and available channels. ACS performed better than the other algorithms, but it re-
quires more execution time to converge the solution. Ahmad Ghasemi et al., proposed a
multi-objective spectrum allocation model is presented and a new spectrum allocation
method based on Differential Evolution (DE) algorithm with the multi-objective func-
tions as weighted summation of Max-Sum-Reward (MSR), Max-Min-Reward (MMR)
and Max-Proportional-Fair (MPF) [6].

In this work, a new population based meta-heuristic algorithm namely FA is used,
to solve the spectrum allocation problem. Nature inspired metaheuristic algorithms are
becoming popular to solve global optimization problems [26]. In literature, FA is be-
ing used for solving nonlinear design, structural optimization, wireless sensor network
localization and multi-modal optimization problems etc. It is reported that Firefly algo-
rithm performs better compared to other evolutionary algorithms in terms of quality of
solution and convergence rate.

FA is used to solve standard pressure vessel design problem and the solution provided
by FA is far better than other algorithms, and also proposed a few test functions to
validate the FA algorithm [25]. Firefly algorithm was used to solve Economic Emissions
Load Dispatch Problem [3]. The experimental result has clearly shown the efficiency
and success rates of the firefly algorithm compared to particle swarm optimization and
genetic algorithm for solving the particular optimization problem [1]. Amir Hossein
et al., applied firefly algorithm for mixed variable structural optimization [19]. The
FA code was tested to solve six structural optimization problems. The optimization
results indicated that FA is more efficient than other meta-heuristic algorithms such as
PSO, GA, SA and HS [5]. Saibal et al., performed a comparative study of FA with
PSO for noisy non-linear optimization problems [2]. It was proved that FA is more
powerful in terms of time taken to solve the optimization problem because of the effect
of attractiveness function which is unique to the firefly behavior [17]. The application
of FA algorithm for solving spectrum allocation problem is not yet explored.

3 Firefly Algorithm

This section briefs about the nature of firefly algorithm. Fireflies produce short and
rhythmic flashes. These flashes are to attract female partner (communication) and to
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attract potential prey. In addition, flashing may also serve as a protective warning mech-
anism. Light intensity from a particular distance r from a light source obeys inverse
square law, as distance increases light intensity decreases. Furthermore, the air absorbs
light which becomes weaker and weaker as the distance increases. These two combined
factors make most fireflies visible only to a limited distance. The FA has mainly two
important issues, change in light intensity, formulation of attractiveness. The attractive-
ness of a firefly is calculated by its brightness, which in turn is corresponding fitness
of objective function. As the light intensity and the attractiveness decreases as the dis-
tance from the source increases. So the light intensity and attractiveness are considered
as monotonically decreasing functions. The light source obeys inverse square law and
light intensity is a function of distance expressed as [24]

I(r) = Ioe−γr2
(1)

where I is the light intensity, Io is the original light intensity and γ is light absorption
coefficient. As a firefly’s attractiveness is proportional to the light intensity seen by
adjacent fireflies, so it is defined as.

β (r) = βoe−γr2
(2)

where βo is attractiveness at r = 0
If firefly j attracts the firefly i, then it moves towards firefly j and the state of firefly

i can be described as

xi = xi +βoe−γr2
i j (x j − xi)+αεi (3)

where xi and x j are the locations of firefly i and firefly j. α is randomization parameter
and εi is a vector of random numbers with uniform distribution. The pseudo code for
FA is given in Algorithm 1.

4 Spectrum Allocation Model of Cognitive Radio Network

In this section we describe about the SA model of cognitive radio network architecture.
Assume a network of N secondary users (1 to N), M spectrum channels and K primary
users (1 to K). The general spectrum allocation model consists of channel availability
matrix L = {ln,m|ln,m ∈ {0,1}}N×M, where ln,m = 1 if and only if channel m is available
to user n, and ln,m = 0 otherwise. The channel reward matrix B = {bn,m}N×M where
bn,m represents the reward that can be obtained by user n using the channel m. The
interference constraint matrix C = {cn,p,m|cn,p,m ∈ {0,1}}N×N×M represents the inter-
ference constraint among secondary users, where cn,p,m = 1 if users n and p would
interfere with each other if they use channel m simultaneously and cn,p,m = 0 otherwise
and cn,p,m = 1− ln,m if n = p [18].

In real-time applications, the spectrum environment changes slowly while users per-
form network-wide spectrum allocation operation quickly. Here we assume that the
location, available spectrum, etc. are static during the spectrum allocation, thus L, B
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Algorithm 1. Pseudo-code for Firefly Algorithm (FA) [24]
Step 1: Initialize the control parameter values of the FA : light absorption coefficient γ ,
attractiveness β , randomization parameter α , maximum number of iterations tmax, the number of
fireflies NP, domain space D

Step 2: Define objective function f (−→x ), −→x = (x1,x2,x3, ...,xd), Generate the initial location of
fireflies xi (i = 1,2, ...NP) and set the iteration number t = 0
Step 3:

while t ≤ tmax do
for i=1 to NP //do for each individual sequentially do

for j=1 to NP //do for each individual sequentially do
compute light intensity Ii at xi is determined by f (xi)
if Ii ≤ I j , then
Move firefly i towards j as described in Equation 3
endif
Attractiveness varies with distance r via e−γr

Evaluate new solutions and update light intensity
Check the updated solutions are within limits

end for
end for
Step 3.1:
Rank the fireflies and find the current best;
Increase the Iteration Count
t = t + 1

end while

and C are constant in an allocation period. The conflict free spectrum assignment ma-
trix A = {an,m|an,m ∈ {0,1}}N×M, where an,m = 1 if channel m is allocated to secondary
user n, and an,m = 0 otherwise. A must satisfy the interference constraints defined by C:

an,m.ap,m = 0, i f cn,p,m = 1,∀1 ≤ n, p ≤ N,1 ≤ m ≤ M (4)

For the given L and C, spectrum allocation is to maximize network utilization U(R) and
the optimal conflict free channel assignment matrix A∗:

A∗ = argmax
A∈(L,C)

U(R) (5)

Here, we consider three fitness functions as in [28].

1. Max-Sum-Reward (MSR): It maximizes the total spectrum utilization in the system
regardless of fairness. This optimization problem is expressed as:

MSR : U(R) =
N

∑
n=1

M

∑
m=1

an,m.bn,m (6)

2. Max-Min-Reward (MMR): It maximizes the spectrum utilization of the user with
the least allotted spectrum. This optimization problem is expressed as:



Spectrum Allocation in Cognitive Radio Networks Using Firefly Algorithm 371

MMR : U(R) = min
1≤n≤N

M

∑
m=1

an,m.bn,m (7)

3. Max-Proportional-Fair (MPF): It maximizes the fairness for single-hop flows and
the corresponding fairness-driven utility optimization problem expressed as:

MPF : U(R) = (
N

∏
n=1

(
M

∑
m=1

an,m.bn,m))
1/N (8)

5 Spectrum Allocation Based on Firefly Algorithm

In the proposed FA-based spectrum allocation, each population specifies the conflict
free channel assignment matrix. Here we propose to encode only those elements such
that ln,m = 1 and it refers to the dimension of the population. The value of every element
in the population is randomly generated that satisfies interference constraints C. The
value of L, B and C are initialized as [18]. The proposed FA-based spectrum allocation
algorithm proceeds as follows:

1. Given L = {ln,m|ln,m ∈ {0,1}}N×M, B = {bn,m}N×M and
C = {cn,p,m|cn,p,m ∈ {0,1}}N×N×M, set the dimension of the population as D =

∑N
n=1 ∑M

m=1 ln,m, and set L1 = (n,m)|ln,m = 1 such that the elements in L1 are ar-
ranged in ascending order with n and m.

2. Initialize the control parameters of the algorithm α , β , γ and tmax.
3. Generate the initial location of fireflies randomly Xi = [x1,i, ....,x3,i, ...,xD,i] where

xd,i ∈ 0,1, and i ∈ (1 . . .NP)
4. Map the population xd,i to an,m, where (n,m) is the dth element of L1 for all d ∈

1 . . .D and i∈ (1 . . .NP). The complete A matrix should satisfy the constraint matrix
C, if any violations are there then one of the user will get the channel m depends on
their reward value and the corresponding element of the matrix A is set to 1 or 0.

5. Compute the fitness of the each individual of the current population and ranking
fireflies according to their intensity (fitness values).

6. Find the current best solution and move all fireflies to the better locations as defined
in Algorithm 1.

7. If it reaches the predefined maximum generation then derive the assignment matrix
as mentioned in the step 4 and stop the process else go to step 4 and continue.

6 Experimental Setup and Results

To evaluate the FA algorithm for solving spectrum allocation problem, we setup the
objective functions by assuming that the network is noiseless and static environment.
The entire experiment is carried out in MATLAB software. In this setup, we consider
that the network has N secondary users, K primary users and M channels in network.
Each primary user selects the channel from the available list and having the protection
range of dP which is constant. Each secondary user can adjusts its communication range
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with in the bounds of dmin and dmax to avoid the interference between the secondary and
primary users.

By setting the values of N=20, M=20, K=20, dP=2 , dmin=1 and dmax=5, the channel
availability, reward, constraint matrices are derived as in pseudo-code of Appendix 1
[18]. For comparison purpose the same problem was solved by using PSO and ABC al-
gorithms. The parameters of PSO algorithm are defined as follows: Number of particles
NP=20, maximum iterations as 500, weighting coefficients c1, c2 are set to 0.9 and iner-
tial weight ω=0.3. The algorithmic parameters of ABC are set as: colony size NP=20,
number of cycles=500 and limit=100. For FA number of fireflies NP=20, maximum
iterations as 500, α=0.25, β =0.2 and γ=1 [23].

Table 1. Performance analysis of FA, PSO and ABC

Fitness Function
FA PSO ABC

Time Reward std % Time Reward std % Time Reward std %
MSR 2.520e+4 2587 2.34 5.098e+4 2488 2.35 5.109e+4 2195 1.78
MMR 2.532e+4 60.8 15.18 5.111e+4 54.4 30.82 5.245e+4 46.5 8.19
MPF 2.525e+4 118.8 3.26 5.103e+4 101.3 3.89 5.134e+4 105 4.15

In this experimental setup, both algorithms were run for 20 independent runs. Indi-
vidually three fitness functions MSR, MMR and MPF as in Equation (6), (7) and (8) are
optimized using PSO, ABC and Firefly algorithms. The results are tabulated in Table.1.
This table describes about the mean timing complexity of the algorithm, mean reward
value (quality of service) and standard deviation (in percentage) of 20 runs. The compu-
tational timing complexities of FA, PSO and ABC are evaluated as [21]. The following
test code ( Algorithm 2 ) was used for evaluating timing complexity.

Algorithm 2. Test Code
for i=1 to 1000
x= double(5.55);
x=x+x; x=x./2; x=x*x; x=sqrt(x); x=log(x);
x=exp(x); y=x/x;
end for

The timing complexity (execution time) T of each algorithm is calculated as:

T =
T2 −T1

T0
(9)

where T2 is the total execution time of the optimization problem, T1 is the time re-
quired for objective function alone and T0 is the execution time of test code. T1 is ob-
tained by evaluating each objective function for 3000 iterations and T2 is the time for
total execution time including objective function over 3000 function evaluations.
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The convergence graphs under a fixed network topology is shown in Fig.1, Fig.2 and
Fig.3. These figures corresponding to MSR, MMR and MPF objective functions respec-
tively, optimized by FA, PSO and ABC algorithms. The FA algorithm achieved a max-
imum of ~17% and ~13% performance improvement in quality of service (MPF) and
~100%, ~103% improvement in timing complexity with respect to PSO and ABC algo-
rithms. Fig.4 shows the convergence graphs for N=10, M=10 and K=10, corresponding
to three fitness functions (MSR value is divided by number of secondary users).
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Fig. 1. Convergence Graph (Maximum Sum Reward)
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Fig. 2. Convergence Graph (Max Min Reward)

Fig.5 shows the convergence graphs for N=5, M=5 and K=5, corresponding to three
fitness functions. In this figure, PSO performs better compared to FA and ABC, be-
cause of lower dimension of the problem. From all the convergence graphs, it can be
concluded that FA has attained higher reward value. This confirms the superiority of FA
algorithm having high convergence speed, quality of solution and low timing complex-
ity with respect to PSO and ABC algorithms.



374 K.K. Anumandla et al.

0 50 100 150 200 250 300 350 400 450 500
80

85

90

95

100

105

110

115

120

No. of Iterations

R
ew

ar
d 

(M
P

F
)

FA
PSO
ABC

Fig. 3. Convergence Graph (Max Proportional Fair Reward)
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7 Conclusion

Spectrum allocation (SA) for cognitive radio network is computationally complex, real
time NP-hard optimization problem. In this work, the SA problem is solved by using
three evolutionary methods: particle swarm optimization (PSO), Artificial Bee Colony
(ABC) and firefly algorithm (FA). Recent literature reported that FA’s dominance over
PSO and ABC on test functions due to its unique characteristic of attraction towards
global best population member. In PSO, particles are oriented towards global best par-
ticle irrespective of distance between them. But FA introduces a distance paradigm
that has implicit local as well as global search motivation, thereby maintaining diver-
gence. In this paper, we focused on performance evaluation of three methods to the SA
problem in-terms of critical characteristics of optimization algorithms such as accuracy,
convergence speed and repeatability. In all aspects, result shows that FA’s performance
is superior to that of PSO and ABC, proving maximum utilization of network capacity
by optimizing MSR, MMR and MPF utilization objective functions and provide conflict
free channel assignment to secondary users.
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work.
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Abstract. This paper presents bi-objective identical parallel machine 
scheduling problem with minimization of weighted sum of makespan and 
number of tardy jobs simultaneously. It is a known fact that identical parallel 
machine scheduling problem with makespan and number of tardy jobs based 
criteria is NP hard. Metaheuristics has become most important choice for 
solving NP hard problems because of their multi-solution and strong 
neighborhood search capabilities in a reasonable time. In this work Simulated 
Annealing Algorithm (SA) and Genetic Algorithm (GA) has been proposed to 
optimize two different objectives namely (i) minimization of make span (ii) 
minimization of number of tardy jobs using combined objective function 
(COF). The effectiveness of the proposed algorithm have been analyzed by 
means of benchmark problem taken from the literatures and relative 
performance measures for the algorithm have also been computed and analyzed. 
Computational results show that GA outperforms SA by a considerable margin. 

Keywords: Identical parallel machine scheduling, Genetic Algorithm, 
Simulated Annealing Algorithm, make span, number of tardy jobs. 

1 Introduction 

Scheduling deals with the allocation of resources to tasks over given time periods and 
its goal is to optimize one or more objectives [1]. Each and every task can have 
different priority index level, some may have an earliest starting time and while others 
may have the due date criteria. The corresponding objectives can also lead to different 
forms and the primary objective may be the minimization of the completion time of 
the last job and other may be the minimization of the number of jobs completed after 
their corresponding due dates. In general minimizing the make span and minimizing 
the number of tardy jobs also minimizes the time the shop is operating which also 
implies to minimize the support cost as well as the maximize the use of resources. In 
this work we are focusing on identical parallel machine scheduling with the objective 
of minimizing make span and number of tardy jobs simultaneously. 

Earlier Graham [2] proposed LPT, Coffman, Garey and Johnson [3] proposed 
MULTIFIT algorithm, Lee and Massey [4] presented the COMBINE algorithm in 
which the MULTIFIT has obtained the initial solution by LPT were used to minimize 
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make span. Later Ghomi et.al [5] and Riera et.al, [6] presented pair-wise interchange 
(PI) algorithm, Gupta et.al, [7] proposed LISTFIT algorithm, Lee et.al, [8] presented 
Simulated Annealing Approach (SAA), Ali et.al, [9] proposed discrete particle swarm 
optimization algorithm (DPSO), Chen et.al [10] proposed hybrid dynamic harmony 
search algorithm, and Liang et.al [11] proposed variable neighborhood search 
algorithm (VNS) for minimizing make span in single objective identical parallel 
machine scheduling problems. 

Gupta et.al, [12] proposed lower bounds, Briand et.al, [13] presented the computation 
of good quality lower bound and upper bound, Baoqiang Fan et.al, introduced pseudo-
polynomial-time algorithm and fully-polynomial-time approximation [14], and 
Yunqiang Yin et.al, proposed branch and bound procedure with two agents [15] for 
minimizing number of tardy jobs in the production scheduling. 

In this work an attempt has been made to develop a methodology to solve two 
different objectives by considering them as a single objective using combined 
objective function (COF).  The proposed algorithm is experimented with benchmark 
problems given in literatures and found consistent.  

2 Problem Description 

A set N = {J1, J2,…,Jn} of n jobs are to be scheduled on a set M = {M1,M2,…,Mm } of 
m identical parallel machines. The objective is to find the optimal schedule S = {S1, 
S2, ….,Sm} where Sj is a subset of jobs assigned to machine Mj such that max{ C1(S), 
C2(S),…,Cm(S) } = Cmax(S) is minimum where, 

  
                                       ( ) = ∑ 

∈                                                            (1) 

While the second criterion considered in this problem is to minimize the number 
of tardy jobs where it is associated with each job j and its due date has to be dj>0. Let 
Uj = 1 if due date for job j is smaller than the completion time Cj of job j, otherwise Uj 

= 0. The total number of tardy jobs (Nt) is defined as 
                                                        = ∑                                                    (2) 

Combined objective fitness function (COF) is obtained by combining all the above 
two objectives into single scalar function so as to minimize makespan and number of 
tardy jobs simultaneously which has been framed as:                          ( ∗ ) + (1 ) ∗                                             (3) 

 
Where, δ is the weight value for makespan in the objective function and 1 < δ < 0. 
Weight values have been considered to give relative importance to individual criteria 
in combined objective fitness function where δ ∈ {0.3}. The initial sequence of jobs 
is allocated to the machines by means of FAM (First Available Machine) rule. The 
FAM rule is used to assign the unscheduled jobs to the available machine at earliest 
time among the all others.  
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The following assumptions are considered in this problem: 

i. Each job Ji∈N has only one operation and a deterministic processing time (pi) 
for the operation which includes any setup time required. 

ii. All the jobs are ready at time zero. 
iii. Pre-emption, division, cancellation of operations of any job is not allowed. 
iv. Each machine can process one job at a time and there is no precedence relation 

between jobs. 

3 Proposed Methodology  

In this work, Simulated Annealing Algorithm (SA) and Genetic Algorithm (GA) have 
been implemented to obtain optimal solution using combined objective fitness 
function (COF). 

3.1 Proposed Simulated Annealing Algorithm (SA)  

In a SA approach feasible solutions to the problem are found out using following steps. 

Step 1: Initialization the initial temperature (T), annealing rate, cooling function. 
Step 2: The algorithm begins with generation of initial job sequence by means of 
Longest Processing Time (LPT) and assign the job sequence to {S} and BEST. 
Obtain the combined-objective fitness function using the equation (3) for {S} by 
applying the First Available Machine (FAM) rule to assign the jobs over machines.  
Step 3: The annealing function will then modify this schedule and return a new 
schedule that has been changed by an amount proportional to the temperature. 
Step 4: The algorithm determines whether the new schedule{S'} is better or worse 
than the current{S}. If {S'} is better than the {S}, it becomes the next 
schedule{S=S'}. If the {S'} is worse than the {S}, the algorithm may still make it the 
next schedule based on an acceptance probability. 
Step 5: The algorithm lowers the temperature proportional to cooling rate and store 
the best point found so far. 
Step 6: The algorithm stops when the temperature reaches 0. 

3.1.1   Parameters for Simulated Annealing Algorithm.  

(i) Initial Temperature (Ti)  ∈ {1000} 
(ii) Final Temperature   (Tf) ∈ {0} 
(iii) Annealing Rate        (ar) ∈ {0.85} 
(iv) Number of perturbation at each temperature drop (Np) ∈ {10} 

4 Proposed Genetic Algorithm (GA)  

In this paper GA has been implemented to obtain optimal solution for the problem. 
The logical flow of the algorithm can be illustrated by the pseudo code shown below. 

Step 1: Choose a Coding Scheme to represent decision variable, Choose appropriate 
Reproduction, Crossover and Mutation operators.  
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Choose population size, crossover probability, Mutation probability and the 
Termination criterion. 
Step 2: Generate the Initial Population and evaluate the fitness values 
Do while Termination Criterion is not met 
Step 3: Perform Reproduction to create intermediate mating pool 
Step 4: Perform Crossover to create off springs 
Step 5: Perform Mutation on every string of the intermediate population 
Step 6: Evaluate the strings in the new population 
End do 
Decode the best string in the final population to get the solution.  
  
3.2.1   Solution Representation 
The each chromosome in GA represents the job order sequence based on which jobs 
are assigned to the machines. For solving identical parallel machine scheduling 
problem using GA, the chromosomes have to be coded in the form of string structure. 
In this paper, phenostyle codification has been used to represent the solution for the 
problem. Chromosome representations have been represented using an example. If the 
floor has three machines and six jobs that is N = {J1,J2,…,J6}, M = {M1,M2,M3}, {pi} = 
{39,21,22,30,36,40}, a feasible schedule S = {S1,S2,S3} = { (J6,J4), (J1,J2), (J3,J5) }, 
then the solution can be represented as given in Fig.1. 
 

J6 J4 0 0 0 0   J1 J2 0 0 0 0   J3 J5 0 0 0 0 

Fig. 1. Chromosome Representation 

3.2.2   Fitness Evaluation  
Basic nature of GA is suited for solving maximization problems. Maximization 
problems are usually transformed into minimization problem by suitable 
transformation. Fitness function F (i) has been initially derived from the objective 
function and used in successive genetic operations. If the problem stated are 
maximization problem then F (i) = O (i), where O (i) is the objective function value 
of ith individual and F (i) is the fitness function value of ith individual. In case of 
minimization problem then it has to be converted into equivalent maximization 
problem, where its fitness values are                                          ( ) = 1( )                                                                                    (4) 

In this paper, minimization work has been carried out, fitness value f(i) has been 
calculated using equation 3 and 4. 
 
3.2.3   Selection Operator  
The selection operator has been modelled on the basis of Roulette wheel [16] 
mechanism. The probability of selection operator for each chromosome is based on a 
fitness value relative to the total fitness value of the population.The Fitness value for 
this work is F(i) = 1/COF, where COF is given in equation 3. 
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3.2.4 Crossover 
Two parent strings have been selected randomly with the crossover probability and 
crossover site is also selected in a random manner. These two parent strings have been 
exchanged after the crossover site. New two child strings are developed. An example 
of crossover is shown in Fig. 2 and Fig. 3  
 
                                                      

J6 J5 0 0 0 0   J1 J4 0 0 0 0  J2 J3 0 0 0 0 

J6 J2 0 0 0 0   J1 J3 0 0 0 0  J5 J4 0 0 0 0 

Fig. 2. Chromosomes Before Crossover 

                                  

J6 J5 0 0 0 0   J1 J3 0 0 0 0  J5 J4 0 0 0 0 

                                  

J6 J2 0 0 0 0   J1 J4 0 0 0 0  J5 J3 0 0 0 0 

Fig. 3. Chromosomes After Crossover 

 
3.2.5 Mutation 
In this case with a very small probability, a random number ‘r’ is generated for each 
individual. The particular individual undergoes mutation when the mutation 
probability pm < r. Fig. 4 and Fig. 5 shows before and after mutation process 
respectively. 
 

J6 J2 0 0 0 0   J1 J3 0 0 0 0  J5 J4 0 0 0 0 

Fig. 4. Chromosomes Before Mutation 

J6 J2 0 0 0 0   J5 J3 0 0 0 0  J1 J4 0 0 0 0 

Fig. 5. Chromosomes After Mutation 

3.2.6    Control Parameters  

Based on the trail experiments the control parameter values for GA have been 
determined which produces satisfactory outputs are given as below. Population size 
(Np) = 20, Cross over probability (pc) = 0.85, Mutation probability (pm) = (1/n) where 
n is the number of jobs, and Termination = stop after 100 generations. 
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5 Computational Experiments 

Gupta et.al, [7] proposed several uniform distribution generating schemes for 
generating four problem sets to conduct experiments is as shown in Table. 1. Several 
computational experiments have been carried out using m, n and minimum and 
maximum values of uniform distribution used to generate processing times. For 
generating the due dates, it has to be lie between the processing time as well as the 
average value of the processing time with the tightness. From the literature [17], the 
tightness is found to be 1.10 which means the due date is at most as bigger as the 10% 
of the average processing time. The due dates are calculated using the relation taken 
from the literature as given by,                             d = random p , ∑ p /m ∗ TG                                          (5) 

Where, TG is the tightness. 

Table 1. Summary of Computational Experiments 

Experimental 
names 

m n p 

E1 3,4,5 2m,3m,5m U(1,20),U(20,50) 

E2 2,3,4,6,8,10 10,30,50,100 U(100,800) 

E3 3,5,8,10 
3m+1,3m+2,4m+1, 
4m+2,5m+1,5m+2 

U(1,100),U(100,200),U(100,800) 

E4 
2 9 U(1,20),U(20,50),U(50,100),  

U(100,200),U(100,800) 
3 10 

 
All algorithms are coded in MATLAB 6.5 and are executed in Intel® Core ™ i5 

CPU M430 @ 2.27 GHz 2.27GHz with 4GB RAM.  

6 Results and Discussion 

The relative performance of the one Algorithm with respect to another algorithm is 
calculated for the proposed metaheuristics. For example, a value of c/d in GA/SA 
means that among the one hundred problems, there are c number of problem instances 
for which GA yields a better solution than SA, d problems for which SA performs 
better than GA and 100-c-d problems for which both GA and SA yield the same 
solution. The Table 2 to Table 7 shows the relative performance of the metaheuristics 
for the experiment levels E1, E2, E3 and E4 and its weight value has been taken as 
0.3. These tables also show the computation time in seconds for the proposed SA and 
GA. From these tables column 12 shows the relative performance measures of GA 
over SA. 
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Table 2. Results for Experiment E1 when δ=0.3 

m n Pgen 
SA GA δ=0.3 

MIN MEAN MAX CPU 
time MIN MEAN MAX CPU 

time GA/SA 

3 

6 
U(1,20) 

5.1 8.71 11.7 0.15 3.7 7.92 11.7 112.22 80/5 
9 8 13.06 18.8 0.17 7.1 11.62 16.2 132.7 95/4 

15 17.7 21.98 26.7 0.25 13.5 19.62 23.9 178.78 100/0 
6 

U(20,50) 
18.4 24.21 30.3 0.16 17.6 23.58 28.7 125.31 60/10 

9 29.4 35.96 42.4 0.18 27.9 34.9 41.4 152.06 77/21 
15 49.3 59.17 66.1 0.22 45.2 58.2 65.1 178.62 74/26 

4 

8 
U(1,20) 

6.2 9.55 13.9 0.19 4.9 8.64 12.4 153.88 80/11 
12 9 14.29 19.7 0.17 8.3 12.5 17.2 169.41 98/2 
20 18.1 23.96 28.8 0.3 15.2 21.06 26.5 211.97 99/1 
8 

U(20,50) 
19.4 24.7 29.5 0.19 19.6 24.28 28.8 145.63 57/31 

12 30.3 36.6 44.5 0.21 30 36.17 42.1 181.58 52/44 
20 49.2 59.91 68.8 0.25 50.6 59.3 67.3 199.1 64/34 

5 

10 
U(1,20) 

5.4 10.18 13.9 0.21 4.6 9.24 12.7 164.71 81/11 
15 10.6 15.34 20.6 0.24 8.8 13.64 18 193.13 95/5 
25 19.3 26.03 31.4 0.36 15.1 22.62 29.6 288.1 99/1 
10 

U(20,50) 
21.3 25.92 31.7 0.2 20.9 25.82 30.2 176.54 46/47 

15 31 37.85 45.4 0.25 31.1 37.68 44.2 165.4 52/47 
25 53 62.01 70.2 0.36 53.7 61.34 70.2 267.93 67/31 

 

Table 3. Results for Experiment E2 when δ=0.3 

m n Pgen 
SA     GA            δ=0.3 

MIN MEAN MAX CPU 
time MIN MEAN MAX CPU 

 time GA/SA 
2 

10 

U(100, 
800) 

466.5 682.55 954.2 0.47 462.7 669.74 918.8 125.93 85/15 

3 321.3 468.59 620.4 0.18 311.1 458.26 614.7 136.99 73/27 

2 

30 

1669.5 2078 2415.5 0.24 1663.6 2075.5 2430.4 212 70/30 

3 1115.3 1397.3 1622 0.25 1114.2 1394 1628.6 246.01 61/38 

4 849.4 1063 1255.6 0.27 903.6 1062.2 1231.6 274.56 60/40 

6 594.9 729.43 848.7 0.31 580.8 712.96 888.9 330.84 89/11 

8 444.8 569.19 659.6 0.35 438.5 552.59 727.8 385.35 89/11 

10 374.4 473.12 559.9 0.36 364 443.47 525.2 358.74 95/5 

2 

50 

2856 3368.1 3920.3 0.31 2856.7 3365.6 3929.5 303.77 80/20 

3 1916.4 2263.2 2633 0.34 1909.7 2261.2 2655 388.31 57/43 

4 1467.9 1712.3 1988 0.36 1481.9 1710.1 1986.3 391.43 55/45 

6 993.3 1169 1363 0.43 981.9 1157.3 1335.4 472.25 81/19 

8 761.8 899.2 1045.5 0.5 746.9 879.94 1020.4 540.05 93/7 

10 623 737.78 870.4 0.58 588.9 703.89 878.5 614.7 96/4 

2 

100 

6056.3 6789.6 7624 0.52 6049 6783.4 7623.1 635.29 78/22 

3 4070.8 4555 5124 0.56 4050.4 4552.5 5104.1 563.12 64/36 

4 3064.5 3435.9 3845.2 0.62 3041.5 3416.1 3835.2 623.92 83/16 

6 2065.8 2324.5 2600.9 0.74 2059.3 2302.6 2581.7 798.57 89/11 

8 1563.6 1767.6 1989.8 0.86 1560.7 1744.6 1954.6 807.15 94/6 

10 1279 1443.6 1622.4 1.01 1249 1396.9 1565.3 1082.09 98/2 
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Table 4. Results for Experiment E3 U(1,100) when δ=0.3 

m n Pgen 
SA GA δ=0.3 

MIN MEAN MAX CPU 
time 

MIN MEAN MAX CPU  
time 

GA/SA 

3 

10 

U(1,100) 

27.8 58.03 85.3 0.21 27.3 55.98 76.9 136.8 86/11 

11 39.6 61.97 84.6 0.17 38.6 59.19 78.1 138.75 84/14 

13 40.3 75.77 98.8 0.19 40.6 75.39 96.1 152.62 50/43 

14 51.3 80.08 116.1 0.19 49.5 77.38 113.5 153.32 89/10 

16 63.4 89.45 117.5 0.2 59.5 87.05 108.3 164.74 82/16 

17 57.9 94.08 119.2 0.22 55.5 91.36 117.6 168.58 83/17 

5 

16 40.6 58.19 77.2 0.22 38.9 56.49 71.4 189.2 61/36 

17 37.8 60.61 76.8 0.23 35.5 58.75 75.8 198.74 66/31 

21 52.9 75.26 109.5 0.27 51.5 73.05 108.2 223.52 69/30 

22 59.6 77.75 96.9 0.27 58.1 76.08 95.1 232.37 60/35 

26 70.9 92.8 115.1 0.31 66.6 90.5 109.2 256.84 75/24 

27 74.9 95.13 129.5 0.31 73.1 93.75 115.8 265.74 69/29 

8 

25 42.4 60.24 83.1 0.33 45.3 59.9 77.9 312.94 41/57 

26 47 62.81 78.1 0.31 47 62.35 75.4 326.1 51/48 

33 59.4 78.36 94.1 0.4 58.9 77.61 92.4 387.56 56/43 

34 61.4 80.3 101.2 0.38 59.8 78.54 92.9 394.99 64/36 

41 74.9 96.4 116.8 0.47 71.5 94.43 114.4 464.81 74/24 

42 79.9 99.82 118.8 0.46 78 98.24 118 465.83 65/34 

10 

31 46.3 61.97 75.8 0.39 48 61.55 74.1 419.91 47/52 

32 47.2 64.14 89.8 0.37 49.1 63.54 82.6 438.66 44/56 

41 62.4 81.32 104.4 0.51 60 80.16 99.1 523.61 62/38 

42 67.7 83.84 98.2 0.49 69.4 82.89 100.9 550.93 52/47 

51 81.5 99.56 118.4 0.59 78.7 97.28 109.1 442.51 67/32 

52 83.1 102.58 123.2 0.62 85.2 100.52 122.2 558.56 68/31 
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Table 5. Results for Experiment E3 U(100,200) when δ=0.3 

m n Pgen 
SA GA δ=0.3 

MIN MEAN MAX 
CPU 
time MIN MEAN MAX 

CPU 
time GA/SA 

3 

10 

U(100,200) 

150.2 171.37 192.8 0.20 138.4 157.85 187 158.57 99/1 

11 155.7 181.33 208 0.19 151.2 175.38 206 161.74 98/2 

13 190.4 217.63 241.6 0.18 176.2 202.75 224.2 156.96 100/0 

14 195.2 226.98 248.5 0.22 186.6 220.5 243.5 156.32 98/2 

16 234.2 265.77 297 0.22 220.2 250.97 278.7 180.78 100/0 

17 239.5 270.59 305.8 0.23 233.2 263.37 295.4 196.92 96/3 

5 

16 149.2 171.89 186.9 0.21 143.4 158.5 173.4 146.97 100/0 

17 157.7 176.66 203.6 0.22 147.7 167.2 190.1 191.77 99/1 

21 196.5 217.9 235.3 0.27 184.2 203.09 226 191.07 100/0 

22 199.8 222.86 247.8 0.27 184.3 213.07 244.9 177.76 100/0 

26 231.2 264.56 291.1 0.31 211.6 250.2 276.9 154.10 100/0 

27 241.5 269.75 291.8 0.31 232.6 259.81 285.6 167.82 99/1 

8 

25 145.3 171.28 183.6 0.32 141.1 158.21 170.3 211.16 100/0 

26 160.5 177.28 194.4 0.30 152.4 166.97 179.8 193.02 100/0 

33 196.2 220.3 239.1 0.36 185.8 207.87 227.8 243.83 100/0 

34 208.1 223.85 245.1 0.41 196.6 213.59 231.7 244.65 99/1 

41 247.7 268.36 287.3 0.47 238.5 256.05 274.4 262.58 97/3 

42 252.6 271.73 294 0.43 240.8 260.68 286.4 234.44 100/0 

10 

31 159.8 173.62 190.1 0.42 146.7 161.35 175.7 205.44 98/2 

32 166.5 179 210.4 0.43 153.7 167.79 178.6 225.48 100/0 

41 208.2 223.21 236.5 0.51 197.6 210.68 224.8 249.52 97/2 

42 211 226.33 246.3 0.51 200.3 215.06 234 249.81 99/1 

51 252.1 271.11 292.2 0.62 239.9 258.7 282.9 303.49 99/1 

52 261.4 274.27 288 0.56 249.2 263.19 286.3 323.51 100/0 
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Table 6. Results for Experiment E3 U(100,800) when δ=0.3 

m n Pgen 
SA GA δ=0.3 

MIN MEAN MAX CPU  
time MIN MEAN MAX CPU 

 time GA/SA 

3 

10 

U(100,800) 

319.9 469.68 666 0.17 310.1 459.11 613.3 87.20 70/29 
11 365 533.22 696.8 0.16 365.1 521.31 660.4 146.31 81/19 
13 426.7 621.44 884 0.18 413.7 611.22 828.5 160.32 75/25 
14 398.3 659.59 839.7 0.19 400.4 654.2 807.8 156.90 67/33 
16 532.3 733.59 905.8 0.20 530.6 726.01 897.1 172.61 69/30 
17 578.7 790.34 1009.5 0.21 577.1 783.72 993.1 178.67 69/31 

5 

16 302.4 461.02 610.2 0.20 292.6 456.05 581.6 113.24 67/33 
17 376 498.92 679.9 0.22 364.4 496.31 674.8 194.98 65/35 
21 412.2 593.01 732.3 0.26 408.8 590.67 749.9 124.07 59/41 
22 448.4 630.37 783.4 0.25 445.2 625.92 775.4 153.35 67/33 
26 598 742.86 923.4 0.28 584.6 742.09 895.9 226.58 43/56 
27 621.4 761.12 899.4 0.25 617.9 755.43 968.3 173.07 67/33 

8 

25 392.2 473.37 589.1 0.29 364.1 453.71 582.5 160.22 92/8 
26 391.3 487.38 582.7 0.30 387.5 473.79 628.1 216.26 79/21 
33 490.7 607.16 707.6 0.34 487.9 586.88 712.7 188.37 90/10 
34 529 640.2 776.8 0.32 507.4 625.48 779.6 192.65 86/14 
41 596.5 746.07 866.3 0.47 592.8 726.63 871.9 288.21 87/13 
42 655.1 772.94 929.8 0.41 656.3 759.16 936.4 229.66 85/15 

10 

31 398 477.35 552.4 0.36 370.4 452.18 583.5 442.80 93/7 
32 398.5 491.42 567.4 0.37 382.1 467.1 581.2 248.74 90/10 
41 491.9 614.74 723.6 0.43 479.3 586.54 679 378.55 97/3 
42 544 635.85 741.2 0.44 531.9 616.09 809 452.19 89/11 
51 647.5 751.58 847.1 0.45 602.5 723.93 851.4 356.15 95/5 
52 661.5 771.8 874.8 0.51 642.8 746.79 873.9 284.66 90/10 

 

Table 7. Results for Experiment E4 when δ=0.3 
 

m n Pgen 
SA GA δ=0.3 

MIN MEAN MAX CPU  
time MIN MEAN MAX CPU  

time GA/SA 

2 9 

U(1,20) 12.4 17.73 24 0.25 9.7 15.84 22.2 154.56 98/1 
U(20,50) 44.7 53.23 63.5 0.18 41.7 50.23 60.5 154.61 99/1 
U(1,100) 46 73.49 103.1 0.17 44.7 71.04 98.6 147.17 97/1 

U(50,100) 93.2 110.00 131.5 0.16 85.5 104.14 127.9 153.01 98/2 
U(100,200) 175.6 219.20 251 0.17 173.3 207.46 244.9 136.66 100/0 
U(100,800) 439.4 626.89 839.9 0.16 423.5 612.33 806.9 152.22 89/10 

3 10 

U(1,20) 10.6 14.92 20.2 0.19 9.5 13.28 17.9 123.44 100/0 
U(20,50) 35.2 42.65 53.2 0.17 32.2 39.33 50.8 162.66 100/0 
U(1,100) 27.8 56.52 85 0.16 27 53.81 81.7 158.80 87/11 

U(50,100) 71.4 86.74 99 0.16 66.7 80.58 92.3 160.88 98/2 
U(100,200) 150.5 170.54 198.2 0.18 135.8 158.75 194.4 157.98 99/1 
U(100,800) 282.5 460.07 644.3 0.17 281 450.22 616.1 113.08 76/22 
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From the above results it is clear that GA is superior to SA for the identical parallel 
machine scheduling problem with bi-objective optimization of minimizing makespan 
and minimizing number of tardy jobs simultaneously. 
 

7 Conclusion and Scope for Future Research 

The problem presented in this paper belongs to NP hard and different metaheuristics 
have been analyzed. The effectiveness of the proposed metaheuristics is analyzed by 
the number of test problems taken from the literatures and a weight value for the bi-
objective fitness function has been considered. The relative performance of the each 
metaheuristics over other has been analyzed. Some of the major findings from the 
present work have been stated as follows. 

Combined objective fitness function proposed for scheduling the jobs in identical 
parallel machine scheduling problem confirms to be an effective and comprehensive 
measure, as multiple decisions are frequently involved in this dynamic and 
competitive environment. By changing the weight values different set of optimal 
solutions can be obtained. 

For considering the bi-objective identical parallel machine scheduling problem, the 
metaheuristics GA and SA have been proposed and analyze the effectiveness of the 
proposed algorithm and found that the GA gives the better schedule with minimum 
performance measures considered. 

The outcome of this research leaves scope for further research towards employing 
a local search mechanism to further optimize the optimal solution. The proposed 
algorithm can be extended towards non identical parallel machines. Multi objective 
optimization algorithm can also be developed to produce a pareto optimal front. 
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Abstract. In many real word problems, optimization problems are non-
stationary and dynamic. Optimization of these dynamic optimization problems 
requires the optimization algorithms to be able to find and track the changing 
optimum efficiently over time. In this paper, for the first time, a multi-swarm 
teaching-learning-based optimization algorithm (MTLBO) is proposed for op-
timization in dynamic environment. In this method, all learners are divided up 
into several subswarms so as to track multiple peaks in the fitness landscape. 
Each learner is learning from the teacher and the mean of his or her correspond-
ing subswarm instead of the teacher and the mean of the class in teaching phase, 
and then learners learn from interaction between themselves in their corres-
ponding subswarm in learning phase. Moreover, all subswarms are regrouped 
periodically so that the information exchange is made with all the learners in the 
class to achieve proper exploration ability. The proposed MTLBO algorithm is 
evaluated on moving peaks benchmark problem in dynamic environments. The 
experimental results show the proper accuracy and convergence rate for the 
proposed approach in comparison with other well-known approaches. 

Keywords: Teaching-Learning-Based Optimization Algorithm, Dynamic Envi-
ronments, Multi-swarm, Moving Peaks Benchmark problem. 

1 Introduction  

Many real world optimization problems are dynamic in which global optimum and 
local optima change over time. These dynamic optimization problems (DOPs) vary 
when the environment changes over time. Algorithms which are designed for optimiz-
ing in dynamic environments have some principles that distinguish them from algo-
rithms designed in static environment. Finding global optimal value is not sufficient 
for optimizing in dynamic environments and tracking optimum during the changes in 
the environment is also important.  

During recent years, various evolutionary computing and swarm intelligence me-
thods, such as Genetic Algorithm [1], Evolution Strategy [2], Genetic Programming 

                                                           
* Corresponding author. 
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[3], Particle Swarm Optimization [4], Differential Evolution [5], Immune-based Algo-
rithm [6], An Ant Colony Optimization [7], Estimation of Distribution Algorithm [8], 
Cultural Algorithm [9], Firefly Algorithm [10], have been proposed for solving opti-
mization problems in dynamic environments. They have different design philosophies 
and characteristics. A survey of the research done on optimization in dynamic  
environments over the past decade is provides in [11]. An extensive performance 
evaluation and comparison of 13 leading evolutionary algorithms with different cha-
racteristics is presented by using the moving peaks benchmark and by varying a set of 
problem parameters in [12].  

It can be seen that, in order to design these algorithms for dynamic environments, 
two important points have to be taken into consideration: diversity loss and outdated 
memory. The problem of outdated memory is usually solved by either simply setting 
each individual’s memory position to its current position, or by reevaluating every 
memory position and setting it to either the old memory or current individual position, 
whichever is better. Diversity loss happens at environment change when swarm is 
converging on a peak. According to diversity loss, there are various methods for gene-
rating or maintaining population’s diversity in dynamic environments. Reported me-
chanisms in the literatures for either diversity maintenance or diversity enhancement 
have been classified into four groups in [13, 14]: maintenance diversity after a 
change, maintenance diversity throughout the run, multi-swarm approaches, memory-
based approaches. 

TLBO [15, 16] is a new meta-heuristic algorithm with a great potential for disco-
vering multiple optima simultaneously due to their ability of keeping good balance 
between convergence and diversity maintenance. In this paper, for the first time, a 
multi-swarm teaching-learning-based optimization algorithm (MTLBO) is proposed 
for optimization in dynamic environment. The proposed MTLBO algorithm divided 
up the population into several subswarms so as to track multiple peaks in the fitness 
landscape and all subswarms are regrouped in certain interval generations (regrouping 
period) so that the information exchange is made with all the learners in the class to 
achieve proper exploration ability. The proposed approach is evaluated on the moving 
peaks benchmark (MPB) problem [17] in dynamic environments. 

The paper is organized as follows. Section 2 briefly describes the teaching-
learning-based optimization algorithm. Section 3 presents the proposed algorithm in a 
dynamic environment. Section 4 gives the results of the proposed algorithm on the 
moving peaks benchmark problem and compares it with some approaches from the 
literature. Finally, Section 5 draws some conclusions and gives directions for future 
research regarding the MTLBO. 

2 Teaching-Learning-Based Optimization 

Rao et al. [15, 16] first proposed a novel teaching-learning-based optimization 
(TLBO) which mimics teaching-learning process in a class between the teacher  
and the students (learners). Like other nature-inspired algorithms, TLBO is also a 
population based method which uses a population of solutions to proceed to the global 
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solution. TLBO has emerged as one of the most simple and efficient techniques for 
solving single-objective benchmark problems and real life application problems since 
it has been empirically shown to perform well on many optimization problems [18, 
19, 20, 21, 22]. These are precisely the characteristics of TLBO that make it attractive 
to extend it to solve multi-objective optimization problems [23, 24, 25]. 

For TLBO, the population is considered as a group of learners or a class of learners 
and different design variables will be analogous to different subjects offered to learn-
ers. The learners’ result is analogous to the "fitness", as in other population based 
optimization techniques. The teacher is considered as the best solution obtained so 
far. Moreover, learners also learn from interaction between themselves, which also 
helps in their results. The process of working of TLBO is divided into two parts: 
Teacher Phase and Learner Phase.  

2.1 Teaching Phase 

A good teacher is one who brings his or her learners up to his or her level in terms of 
knowledge. But in practice this is not possible and a teacher can only move the mean 
of a class up to some extent depending on the capability of the class. This follows a 
random process depending on many factors. 

Let Mi be the mean and Ti be the teacher at any iteration i. Ti will try to move mean 
Mi towards its own level, so now the new mean will be Ti designated as Mnew. The 
solution is updated according to the difference between the existing and the new mean 
given by 

_ * ( )i new F iD ifference M ean r M T M= − ⋅                          

(1) 

where TF is a teaching factor that decides the value of mean to be changed, and r is a 
random number in the range [0, 1]. The value of TF can be either 1 or 2, which is 
again a heuristic step and decided randomly with equal probability as 

  [1  (0,  1)]FT round rand= +                                      (2) 

This difference modifies the existing solution according to the following  
expression 

_i i inewX newX Difference Mean= +                             (3) 

Hence, learner modification is expressed as 
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2.2 Learning Phase 

Learners increase their knowledge by two different means: one through input from  
the teacher and other through interaction between themselves. A learner interacts 
randomly with other learners with the help of group discussions, presentations, formal  
communications, etc. A learner learns something new if the other learner has more  
knowledge than him or her. Learner modification is expressed as 
 

, ,

, ,
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3 The Proposed Algorithm (MTLBO) 

In this section, a multi-swarm teaching-learning-based optimization algorithm 
(MTLBO) is proposed and used to solve dynamic optimization problems in a dynamic 
environment.  

3.1 Multi-Swarm 

The main idea of multi-swarm algorithms [26] is to divide up the swarm into several 
subswarms in order to track multiple peaks in the fitness landscape. In this way, the 
different subswarms maintain information about several promising regions of the 
search space, and can be regarded as a kind of diverse, self-adaptive memory.  

Even though it has been shown the better performance of TLBO method over other 
natured-inspired optimization methods in some areas, it is necessary to modify it for 
optimization in dynamic environments. In this paper, a multi-swarm teaching-
learning-based optimization algorithm (MTLBO) is presented. In this method, the 
learners are divided up into small sized subswarms in order to increase diversity. Each 
subswarm uses its own members to search for better area in the search space. Once 
subswarms are constructed, instead of the teacher and the mean of the class, each 
learner is learning from the teacher and the mean of his or her corresponding subs-
warm in teaching phase. Then each learner is learning in his or her corresponding 
subswarm in learning phase. 
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3.2 Periodic Regrouping 

Since the learners of each subswarm are learning from the mean of their own corres-
ponding subswarm, they may easily converge to a local optimum. In fact, there will 
be not enough information exchange among the small sized subswarms if the subs-
warm structures are not changed, thus the algorithm will be performed by means of 
these subswarms searching in parallel.  

In our algorithm, the learners are regrouped dynamically [26] in certain interval 
generations (regrouping period) and start learning using a new configuration of small 
swarms. In this way, the information obtained by each subswarm is exchanged among 
the small sized subswarms, simultaneously the diversity of the population is in-
creased. In fact, the subswarm structures are regrouped less frequently (regrouping 
period being higher) helping the algorithm to have high exploitation and high conver-
gence rate. Otherwise, the algorithm has more exploration and diversity to cover more 
search space. Hence a proper regrouping period (set 5 in our case) helps to balance 
the exploitation and exploration of the algorithm, thus to have better performance 
compared with the original TLBO. 

3.3 The Framework of MTLBO for DOPs  

In MTLBO, we use the teacher of all learners as the monitoring point to detect the 
environmental changes. Before updating the teacher, we reevaluate its fitness value. If 
its fitness changes, it indicates that an environmental change occurs. Once an envi-
ronmental change is detected, MTLBO needs to reevaluate fitness values of all learn-
ers. Otherwise, if it fails to detect the change, the previous learners will be used in the 
new environment. The framework of MTLBO for DOPs is shown in Algorithm 1.  
 

Algorithm 1: MTLBO( ) 

1  Begin
2     Initialize parameters 
3     Initialize learners X and evaluate all learners 

X 
4     Divide the learners into small sized subswarms 
5     Donate the Teacher and the Mean of each subs-

warm 
6     while(stopping condition not met) 
7          Perform Teaching phase in each subswarm 
8          Perform Learning phase in each subswarm 
9          if  the environmental change detected 
10             reevaluate all learners 
11         endif 
12         if  mod(gen, Period) == 0 
13            Randomly Regrouping all learner and Di-

viding into subswarms 
14         end 
15    endwhile 
16 end 
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4 Experimental Analyses 

To evaluate the efficiency of the proposed algorithm, the proposed algorithm was 
compared with some well-known algorithms on the well-known Moving Peaks 
benchmark (MPB) for dynamic environments.  

4.1 Moving Peaks Benchmark Problem 

In recent years, there has been a growing interest in studying EAs for DOPs due to 
their importance in real world applications since many real world optimization prob-
lems are DOPs. Over the years, a number of dynamic problem generators have been 
used in the literature to create dynamic test environments to compare the performance 
of EAs. The MPB problem proposed by Branke [17] has been widely used as dynamic 
benchmark problem in the literature. Within the MPB problem, the optima can be 
varied by three features, i.e., the location, height, and width of peaks. For the D-
dimensional landscape, the problem is defined as follows: 

                 21,2, ,
1

( )
( , ) max

1 ( ) ( ( ) ( ))
i

Di p
i j ijj

H t
F x t

W t x t X t=
=

=
+ −                  (4) 

where ( )iH t  and ( )iW t  are the height and width of peak i at time t, respectively, 

and ( )ijX t  is the jth element of the location of peak i at time t. The p independently 

specified peaks are blended together by the “max” function.  

The position of each peak is shifted in a random direction by a vector iv


 of a dis-

tance s (s is also called the shift length, which determines the severity of the problem 
dynamics), and the move of a single peak can be described as follows: 
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                     (5) 

where the shift vector ( )iv t


 is a linear combination of a random vector r


 and 

the previous shift vector ( -1)iv t


 and is normalized to the shift length s. The corre-

lated parameter λ is set to 0, which implies that the peak movements are uncorrelated. 

The multi-dimensional problem space of the moving peaks function contains sev-
eral peaks of variable height, width and shape. These move around with height and 
width changing periodically. The default settings and definition of the benchmark 
used in the experiments of this paper can be found in Table 1, which are the same as 
in all the involved algorithms.  

Standard performance measures of dynamic evolutionary algorithms have been 
used to evaluate the performance of the proposed algorithm. The offline error [27] is 
defined as the average of the current errors over the entire run, where the current error 
is defined as the smallest error found since the last change in the environment. The 
mean offline error is evaluated by Eq. (10) 

1

1
_ ( )

K

k kk
Offline error H F

K =
= −                               (10) 
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where K is the total number of environments for a run, Hk is the optimum value of the 
kth environment and Fk is the best solution obtained by an algorithm just before the 
kth environmental change. 

Table 1. Default Settings for the MPB Problem 

Parameters Value 

p (Number of peaks) 10 
D (Number of dimensions) 5 
s (the range of allele value) [0,100] 
Change frequency 5000 
H0 (the initial height for all peaks) 50.0 

W0 (the initial width for all peaks) 0 
H (the range of the height of peaks 

shifted)  
[30,70] 

W (the range of the width of peaks 
shifted)  

[1,12] 

Height severity  7.0 
Width severity 1.0 

shift severity  1.0 

4.2 Experimental Settings 

For all experiments, unless stated otherwise, the parameters have been set as follows: 
the search space has D=5 dimensions within [0, 100], there is p=10 peaks, the peak 
heights vary randomly in the interval [30, 70], and the peak width parameters vary 
randomly within [1, 12]. The peaks change position every 5000 evaluations by a dis-
tance of S=1 in a random direction, and their movements are uncorrelated (the MPB 
coefficient λ =0). For each run of an algorithm, there were K = 100 environments, 
which result in K×U =5×105 fitness evaluations. For each experiment, 20 independent 
runs are executed, and the results are the average of 20 independent runs. The number 
of learners is set to be 20. 

4.3 Effect of Varying the Shift Severity s 

As we know, the peaks are more and more difficult to track with the increasing of the 
shift length. Hence the performance of all algorithms degrades when the shift length 
increases. In this group of experiments, we compare the performance of MTLBO with 
SPSO, mQSO and CPSO on the MPB problems with different problem settings in 
terms of the shift severity, in order to detect the robustness of tracking and locating 
multiple optima in changing environments. The experimental results in terms of the 
offline error and standard deviation are shown in Table 2. The experimental results of 
SPSO, mQSO and CPSO are taken from the corresponding paper [28].  

From Table 2 and Fig.1, it can be observed that the proposed algorithm has much 
better performance than other algorithms. In fact, the results show the proposed  
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algorithm is robust with number of peaks and can achieve acceptable results when the 
number of peaks is low or when the number of peaks is high. We can conclude that 
MTLBO is more adaptable of tracking the changing optima on the MPB problems 
with different problem settings in terms of the shift severity. 

Table 2. Offline error±Standard error on the MPB with different shift severities 

s MTLBO SPSO mQSO CPSO(70,3) 

0 0.10±0.01 0.95±0.08 1.18±0.07 0.80±0.21 

1 0.31±0.16 2.51±0.09 1.75±0.06 1.056±0.24 

2 0.42±0.12 3.78±0.09 2.40±0.06 1.17±0.22 

3 0.84±0.47 4.96±0.12 3.00±0.06 1.36±0.28 

4 1.06±0.35 2.56±0.13 3.59±0.10 1.38±0.29 

5 1.19±0.61 6.76±0.15 4.24±0.10 1.58±0.32 

6 1.52±0.33 7.68±0.16 4.79±0.10 1.53±0.29 
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Fig. 1. Offline error on the MPB with different shift severities s 

4.4 Effect of Varying the Peaks p  

This set of experiments is designed to investigate the performance of MTLBO with 
different peaks p on the MPB problem. The number of peaks is set to different values 
in {1, 2, 5, 7, 10, 20, 30, 40, 50, 100, 200}. The experimental results in terms of the 
offline error and standard deviation are shown in Table 2. The experimental results of 
SPSO, mQSO and CPSO are taken from the corresponding paper [27]. Fig.2 presents 
the convergence characteristics of MTLBO for each test function. 
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Table 3. Offline error±Standard error on the MPB with different number of peaks 

p MTLBO SPSO mQSO CPSO 

1 0.05±0.03 2.64±0.10 5.07±0.17 0.14±0.11 
2 0.08±0.04 2.31±0.11 3.47±0.23 0.20±0.19 

5 0.16±0.08 2.15±0.07 1.81±0.07 0.72±0.30 

7 0.08±0.03 1.98±0.04 1.77±0.07 0.93±0.30 

10 0.11±0.02 2.51±0.09 1.80±0.06 1.056±0.24 

20 0.13±0.05 3.21±0.07 2.42±0.07 1.59±0.22 

30 0.14±0.06 3.64±0.07 2.48±0.07 1.58±0.17 

40 0.15±0.04 3.85±0.08 2.55±0.07 1.51±0.12 

50 0.15±0.03 3.86±0.08 2.50±0.06 1.54±0.12 
100 0.14±0.06 4.01±0.07 2.36±0.04 1.41±0.08 
200 0.12±0.04 3.82±0.05 2.26±0.03 1.24±0.06 

 
From Table 3 and Fig.2, it can be seen that the performance of MTLBO is not  

influenced too much when the number of peaks is increased. The offline error per-
formances of MTLBO are small but their standard error performances are too much 
influenced. The experiment confirms that the results achieved by MTLBO are better 
than the results of the other three algorithms on the MPB problems with different 
peaks. We can conclude that MTLBO is able to cope well with environments consist-
ing of a large number of peaks, too.  

 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6
Offline error on the MPB with different peaks size p

peaks size

O
ff

lin
e 

er
ro

r

 

 

SPSO

mQPSO
CPSO

MTLBO

0 10 20 30 40 50 60 70 80 90 100
30

35

40

45

50

55

60

65

70
Mean of Best function values(s=1,p=10)

FES

B
es

tF
it

 

 

Maximum Peak

MTLBO

Fig. 2. Offline error on the MPB with differ-
ent peaks size p 

Fig. 3. Performance curves on the MPB 
 with s=1 and p=10 



398 F. Zou et al. 

 

5 Conclusion 

In this paper, a multi-swarm teaching-learning-based optimization algorithm 
(MTLBO) is firstly proposed for optimization in dynamic environment. The proposed 
approach was evaluated and compared with several well-known methods on various 
configuration of the moving peak benchmark problem in dynamic environments. The 
experimental results show the proper accuracy and convergence rate for the proposed 
approach in comparison with other well-known approaches and the proposed ap-
proach is more effective in dealing with the MPB Problem. 

Also, there are some relevant works to pursue in the future. Firstly, a hybrid of 
some diversity maintenance techniques may be used to maintain the population diver-
sities. Secondly, neighborhood-based approaches or memetic extensions can be done 
to improve local search ability of algorithm in order to prevent the algorithm into a 
local optimum. Finally, these approaches may be used to solve CEC 2009 problems.  
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Abstract. The Vehicle Routing Problem (VRP) is one of the most important 
problems in the field of Operations Research and logistics. This paper presents 
a novel Ant Colony Optimization algorithm abbreviated as ACO_PLM to 
solve the Vehicle Routing Problem efficiently. By virtue of this algorithm we 
wish to propose novel pheromone deposition, local search & mutation 
strategies to solve the VRP efficiently and facilitate rapid convergence. The 
ACO_PLM provides better results compared to other heuristics, which is 
apparent from the experimental results and comparisons with other existing 
algorithms when tested on the twelve benchmark instances. 

Keywords: VRP, ant system, ACO_PLM, pheromone deposition, sequential 
local search heuristic, intra-route mutation, inter-route mutation. 

1 Introduction 

The Vehicle Routing Problem [1] is a problem of representative logistics that has 
been studied widely in Operations Research literature over the past fifty years. The 
classical Vehicle Routing Problem (VRP) is defined as follows: several vehicles are 
deployed, each with a fixed capacity and must deliver order quantities of goods to n 
customers from a single depot (i=0). Knowing the distance between customers and , 
the objective of the problem is to minimize the total distance travelled by the vehicles 
in such a way that only one vehicle handles the deliveries for a given customer and 
the total quantity of goods that a single vehicle delivers do not be larger than . As the 
VRP is an NP-hard problem, real world instances having more than 50-75 customers 
cannot be solved by means of exact algorithms. However, researchers have 
developed several heuristics such as basic constructive mechanisms (Clarke & White 
savings algorithm [2], 2-opt local search [3]), simulated annealing (Chiang and 
Russel [4], Osman [5]), genetic algorithms (Berger et al. [6], Tan et al. [7], Osman et 
al. [8]), particle swarm optimization (Marinakis et al. [9],V Kachitvichyanukul [10]), 
ant colony optimization (Doerner et al.[11) etc which have been used many times in 
the past to solve instances of the VRP to near optimality. Among these heuristics, the 
ant colony optimization (ACO) algorithm proposed by Dorigo et al. [12], has been 
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successfully utilized in the past to solve a variety of NP-hard combinatorial 
optimization problems such as the Travelling Salesman Problem [13], the Flow-shop 
Scheduling Problem [14-15], the VLSI routing problem [16], etc. The ACO 
essentially mimics the food- gathering dynamics of the ant colony, wherein the ants 
communicate with each other by means of stigmergy [17]. 

Several versions of the VRP have been studied in literature, each of which can be 
encoded using the ACO by considering the depot as the nest and the customers as 
the food. This may provide efficient solutions as the VRP is very similar to the 
food-seeking behavior of the ant colonies in nature. One of the earliest ACO 
algorithms that could be used to solve the VRP was proposed by Bullenheimer et 
al. [18]. They proposed a hybrid ant system algorithm with the 2-opt and the saving 
algorithm for the VRP. Other researchers who contributed to ACOs that may be used 
to solve the VRP are Chen & Ting [19], Bin et al. [20], etc. 

In this paper, we propose a novel pheromone deposition scheme that not only 
ensures that the pheromone concentration increase exponentially with time but also 
integrates the global feature and the local feature of the formed routes to facilitate 
faster convergence. We also propose a novel sequential constructive local search 
heuristic with greedy traits that may be utilized as the local search operator to yield 
fitter solutions. We also propose a novel two-way mutation scheme which ensures 
that sufficient diversity is maintained throughout computation. Hence, by virtue of 
this paper the novel features that we wish to incorporate in the standard ACO are: a 
novel Pheromone deposition scheme, a novel Local search scheme and a novel 
Mutation scheme; each of which can be adapted accordingly to solve a variety of 
combinatorial optimization problems. Hence, the proposed ACO_PLM can not 
only be used to solve the VRP efficiently but also as an efficient general 
combinatorial optimizer. The remainder of the paper can be organized as follows. 
The mathematical model for the VRP is discussed in Section 2. In Section 3 we 
discuss the novel ant system and its components in details. Some computational 
results are provided in Section 4 and finally, we conclude in Section 5. 

2 The Vehicle Routing Problem (VRP) 

The Vehicle Routing Problem (VRP) can be represented by a complete weighted 
directed graph where represents the set of vertices and represents the set of arcs. The 
vertex  represents the depot and the remaining vertices represent the customers. With 
each arc is associated a positive weight  that represents the distance (or travel 
time/cost) between the two customers. Each customer has a non- negative demand 
and each car has a capacity Q. We assume that the service time for each customer is 
zero. The aim is to minimize the net cost of all the vehicle routes with the following 
restrictions: 

•  Every customer is visited only once by a vehicle. 
•  All the routes begin and end at the depot. 
•  For each vehicle’s route, the net demand should not exceed Q. 
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The VRP is an NP-hard combinatorial optimization problem that has been studied 
extensively over the past fifty years due to its paramount importance in the field of 
distribution management. 

3 The Novel Ant System 

3.1 Representation of the Solution 

Figure 1 represents an example of the VRP. The corresponding tabular representation 
of this VRP is shown in Figure 2. The tabular representation is used for ease of 
computation. This is referred to as the Route Table (denoted by RT  

). The node 
marked ‘0’ represents the Depot while the remaining nodes represent the customers. As 
can be inferred from Figure 1, each route begins and ends at the depot. For example, the 

route corresponding to Route ID2  is actually ( v0 → v3 → v4 → v5 → v0 ). Hence, the 

net distance that a vehicle has to traverse for a route:  
represented in the nth row of a route table is given by: 

                 (1) 

Hence, the fitness of this vehicle’s route, denoted by: 

                                                       (2) 

The overall distance that the vehicles need to cover for a given route table is given 
by the sum of the distances represented by the individual routes of the vehicles. The 
fitness of the complete route table, denoted by fitness(RT ) is the inverse of this 
distance. 

 

Fig. 1. An example of the VRP 
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Fig. 2. Route Table 

3.2 Key Components of the Ant Colony Optimization (ACO) Algorithm 

Ants gather food by communicating with each other by means of a process referred to 
as stigmergy, wherein ants deposit on the ground a substance called pheromone 
forming in this way a pheromone trail. Ants can smell the pheromone and in 
probability choose the path with greater pheromone deposition. Using ACO, an 
individual ant simulates a vehicle, and its route is constructed by incrementally 
selecting customers until all customers have been visited. Initially, each ant starts at 
the depot and the set of customers included in its tour is empty. The ant selects the 
next customer to visit from the list of feasible locations and the storage capacity of 
the vehicle is updated before another customer is selected. The ant returns to the 
depot when the capacity constraint of the vehicle is met or when all customers are 
visited. The total distance LT is computed as the objective function value for the 
complete route of the artificial ant. The ACO algorithm constructs a complete tour 
for the first ant prior to the second ant starting its tour. This continues until a 
predetermined number of ants M each construct a feasible route. 

The key steps of the ACO algorithm are: 
 
1) Initialization Phase: The various parameters are initialized. The different 

edges in the connected graph are initialized with their initial pheromone content. 
The ants are placed at the various nodes. 

 
2)  Route Construction Phase: The next node to which an ant located at node 

will move is determined by the probability (where K refers to the set of all the 
unvisited nodes in its neighbourhood and j refers to the particular unvisited node 
belonging to the set K that is under contention) as – 

                                                 (3) 

In the above formula, Γij refers to the pheromone concentration on the arc, 

 where dij refers to the distance between nodes i & j and α , β are 

constants. The ant travels to that unvisited node in its neighbourhood for which the 
transition probability value is the highest. This process is repeated for all the ants 
present in the system. During computation, a tabu list is maintained which updates  
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the list of nodes already visited by the ants. Once a node is visited, it cannot be 
visited again. Also, a check is maintained as to whether the capacity of the kth ant 
(vehicle) has been exceeded or not. If exceeded, then the selected customer is 
assigned as the first customer in the route of the (k+1)th ant, and the afore-
mentioned process is repeated again and again till the list of unvisited nodes becomes 
null. 

3) Route Improvement/Mutation Phase: A route improvement heuristic/local 
search operator is applied to the obtained routes so as to facilitate faster convergence 
to the optimal solution. This may be accompanied by a mutation operator that may 
act on the obtained routes to promote diversity and ensure that the algorithm does not 
get trapped at local optima, which aren’t as fit as the global best. This step isn’t 
compulsory and is usually incorporated into the fabric of an ACO to facilitate 
convergence. 

4) Pheromone Updating Phase: The pheromone concentration on each arc (i, j) 
is updated as: 

 

In the above formula, ρ ∈ (0,1) represents the pheromone evaporation rate and  
represents the pheromone deposited by the kth ant (link) in a system of M ants. 

3.3 Novel Pheromone Updating Rule 

The traditional ACO proposed by Dorigo et al. utilized a uniform pheromone 
deposition rule, which in spite of its many merits had a major drawback as it cannot 
ensure that subsequent ants follow the same trajectory. However, an exponentially 
increasing time function ensures that subsequent ants close enough to a previously 
selected trial solution will follow the trajectory, as it can examine gradually thicker 
deposition of pheromones over the trajectory. Hence, theoretically the convergence 
characteristics of the ant system should improve as the deception probability is less. 
So, we have adopted an exponential pheromone deposition rule [21], which is 
described as follows – 

We may rewrite the equation no. (3) as: 

                             (5) 
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If we consider an exponentially increasing pheromone deposition rule: 

                                           (6) 

Then the complete solution of the above differential equation is given as: 

               (7) 

From the above equation number (6), it is quite ostensible that the value of Γij (t) 

converges rapidly to a steady value of  for positive values of ρ and T. 

Hence, we utilize an exponentially increasing pheromone deposition rule in order 
to facilitate rapid convergence to the optimal solution. 

The other novel component which we wish to incorporate in the proposed 
pheromone deposition scheme is a weighted rule that takes into consideration the 
overall fitness of the solution as well as the contribution of the current link to the 
solution. Hence, if LT 

be the total length of a route and Lk 
be the contribution of the kth 

ant (route adopted by the kth vehicle), then,  

                     (8) 

Since the strategy for updating the increased pheromone considered both the global 
feature and local feature of a solution, it can possibly ensure that the assigned 
increased pheromone is directly proportional to the quality of routes. Hence the more 
favorable the link/route is, the more is the pheromone increment allocated to it. 
Hence, more accurate directive information is provided for later search. Meanwhile, 
by adjusting the pheromone assigning method for the links of current optimal path 
automatically, the algorithm can facilitate more intensive search in the next cycle in a 
more favorable area, which helps in expanding its learning capacity from past 
searches. 

3.4 Route Improvement/Mutation scheme 

The two components of the Route Improvement/Mutation Scheme are: 

1) Sequential Constructive Local Search heuristic (SCLS) 

The SCLS heuristic aims to improve upon an existing route table by recursively 
operating on the constituent routes of the table, trying to make them fitter. It 
recursively searches for shorter sub-paths within a given traversal and combines 
them step-by-step to ensure that the derived solution is as fit as possible. This 
facilitates a faster convergence towards the optimal solution for the proposed 
algorithm. The SCLS is described in depth in Figure 3. 
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Fig. 3.   Pseudo-code for the Sequential Local Search heuristic 

2) Mutation Scheme 

The mutation scheme that we propose in this paper is two-fold, i.e. there are two 
kinds of mutation that a route table can undergo: 

 

Inter-route mutation – In this mutation scheme, two routes are selected from the list 
of M routes, and then any two cities belonging to the two routes are exchanged with 
each other. But, the drawback of this scheme is that the resulting route table so obtained 

                                                                                            

BEGIN SCLS ( ) 

// TR Route Table 

// 'TR Derived Route Table 

FOR Mii ;1  

        )(iRp T
 

         )( pn  Number of customers in the route p  

       // All the derived routes are stored in matrix Z  
           ;1l  

          FOR )(;1 pnjj  

                 );(),( jpljZ  

                  ))(( pnlwhile  

 Search for ;rightx  //
rightx  is the first element to the right of the current element 

which has not occurred in the route. 
 

 Search for ;leftx   //
leftx  is the first element to the left of the current element 

which has not occurred in the route.  
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                     ;),( leftxljZ  
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      ))()'(( pfitnesspfitnessif  

 ;')(' piRT
 

       else  
 ;)(' piRT

 

        end  
 ;1ii  

 END loopi  

)()'(( TT RfitnessRfitnessif  
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else  
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may not be a valid one, i.e. the maximum capacity of a vehicle may be exceeded as a 
result of the 2-opt exchange. Hence, every pair of cities belonging to the two routes are 
considered and 2-opt exchange is applied to them until the resulting route table is a valid 
one. In case no valid route table can be obtained, the inter- route mutation operation is 
aborted and the original route table remains unaltered. 

 

Intra-route mutation – This mutation scheme suggests that any two customers 
(nodes) that fall in the route of the same vehicle (ant) are selected randomly and 
exchanged. As the net demand of the customers present in the route remains 
unaltered, the mutant so obtained will definitely represent a valid route table. 

 

We must note that during mutation, a solution may undergo either one or both of the 
afore-mentioned mutations. As it is desirable that the diversity of the population is 
initially large and it should decrease with time to promote convergence, the mutation 
rate is adapted accordingly. If the maximum number of iterations is T, then the mutation 
probabilities for undergoing Inter-route mutation and Intra-route mutation in the tth 

iteration are given by (where,  are constants) : 

                                 (9) 

                                (10) 

3.5 Algorithm Flowchart 

 
Fig. 4. ACO_PLM Flowchart 
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4 Results and Discussion 

In our tests on the VRP problem instances, the proposed ACO_PLM algorithm is 
coded in MATLAB and the experiments are executed on a Pentium P-IV 3.0 GHz 
PC with 512MB memory. The twelve VRP instances on which we’ve performed our 
tests can be downloaded from the OR library [22]. The optimal solution for each 
instance is also listed in [22]. We have compared our algorithm with the Improved 
ACO (IACO) as proposed by Bin et al. [20], the Improved genetic algorithm(IGA) 
for the VRP proposed by Honglin & Jijun [23] and the parallel tabu search algorithm 
(RR-PTS) by Rego and Roucairol [24]. The values assigned to the various 
parameters of the ACO_PLSM when tested upon all the instances are stated in Table 
No. 1 and the results are compiled in Table No. 2. 

The parameter values defined in Table 1 have been determined by careful 

analysis as well as trial and error. The values of  α , β , Q1 , Q2 have been determined 
over several trials of the ACO_PLM on the given 12 instances. As can be seen from 
the afore-mentioned values, we allow the predominance of Intra-route mutation over 
Inter-route mutation because it may be found by virtue of analysis that the SCLS( ) is 
effective in obtaining extremely fit solutions from original solutions that may be 
less fit or quite unfit. Hence, if an otherwise fit path is affected adversely by 
virtue of the intra-route mutation then the local search heuristic is able to annul the 
negative effect by virtue of its characteristic extensive search property. But in case of 
inter-route mutation, customers that may be geographically very distant from each 
other may be coupled into a vehicle’s route and this may not augur well with the 
SCLS( ) due to the presence of one or more isolated nodes, which may make it 
impossible to derive fit route(s) starting from the original path traversal. 

For each instance of the VRP we have stated the value of the best known solution. 
We have stated the best, average and worst result for all the four algorithms in Table 
II. The afore-mentioned results have been obtained over 50 runs of each algorithm 
on all the problem instances. As evident from the table, the proposed ACO_PLM 
clearly outperforms the IGA and the RR-PTS. Its performance is also found to be 
more consistent than that of the IACO as inferred from over fifty runs where both 
the algorithms were continuously compared with each other. 

Table 1. The optimal values of the parameters of ACO_PLM 
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2.3 1.1 1200 450 0.98 0.80 0.95 0.65 200 0.2 
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Table 2. Comparison of the results over 50 runs obtained using ACO_PLM, IACO, IGA and 
RR-PTS for the twelve VRP instances  

 

5 Conclusion 

Since a delivery route can comprise of absolutely any combination of customers, 
the VRP is an NP-hard combinatorial optimization problem. In this paper we have 
used a modified version of the ACO in order to solve the VRP efficiently. Here we 
have mainly looked for better convergence speed and accuracy. A novel pheromone 
deposition scheme has been proposed that not only ensures faster convergence but 
also ensures that the global feature is integrated with the local feature. A novel 
sequential constructive local search operator is proposed which paves way for faster 
convergence as well as fitter solutions. At the same time to maintain better 
convergence speed we have introduced some new mutation techniques which 
maintain diversity and prevent the algorithm from converging at local optima. We 
have compared its performance with that of three other relevant algorithms and from 
the results obtained, we find that the proposed algorithm performs more efficiently 
than the rest. Furthermore, as the proposed algorithm is not studded with features that 
are only specific to the VRP, it can be treated as a general combinatorial optimizer. 
Hence, we may infer that by virtue of this algorithm, we have maximized the speed 

Algorithm 
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IACO 

 
IGA 

 
RR_PTS 

 
C1 

 

 
524.61 

Best 
Average 
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524.61 
524.61 
524.61 

524.61 
524.61 
524.61 

524.61 
524.61 
524.61 

524.61 
524.61 
524.61 

 
C2 

 

 
835.26 
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Average 
Worst 

835.26 
838.88 
844.56 

835.26 
848.85 
859.30 

838.49 
852.36 
861.12 
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858.20 
871.23 
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826.14 
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828.28 
835.12 
844.86 
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844.32 
861.12 

842.13 
850.34 
872.34 

842.13 
867.00 
870.24 
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1028.42 
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1028.42 
1044.12 
1053.12 

1028.42 
1042.52 
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1055.32 
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1310.11 
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1344.41 

1335.36  
1362.37 
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901.06  

882.32 
892.34 
910.23 

 
C9 

 

 
1162.55 

Best 
Average 
Worst 

1162.55 
1190.23 
1208.20 

1162.55 
1194.87 
1228.90 

1188.00  
1222.24 
1253.31  

1190.11 
1240.12 
1282.12 
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1395.85 
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Average 
Worst 

1395.85 
1413.44 
1433.68 

1395.85 
1412.92 
1433.68 

1430.12 
1472.33 
1504.12 

1439.07  
1487.78 
1520.04  
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1042.11 
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Average 
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1042.11 
1044.16 
1052.20 

1042.11  
1048.12 
1056.26  

1051.71  
1059.13 
1077.33  

1055.65 
1067.88 
1080.90 
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819.56 
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Average 
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819.56 
824.56 
836.78 

819.56  
823.66 
842.51  

833.31  
840.61 
850.04  

833.31 
843.32 
864.43 
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and the accuracy of the search process.Further research can include modification 
of the ACO_PLM and its adaption to solve other versions of the VRP that also 
consider time windows, more depots, etc. 
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Abstract.  The proposed work demonstrates the application of Bee Colony 
Optimization (BCO) technique for the tuning of Fractional Order Proportional-
Integral-Derivative (FOPID) controller for Three Interacting Tank system.  
FOPID controller parameters are composed of proportionality constant, integral 
constant, integral order, derivative constant and derivative order.  Grunwald-
Letnikov definition is used for the defining the derivative controller and 
Oustaloup’s filter technique is used for the approximation of the function.  
Tuning FOPID controller parameters is more complicated as it involves a five 
dimensional search.  Tuning is effected using an evolutionary optimization 
technique, the bee colony optimization so as to minimize the Integral Time 
Absolute Error (ITAE).  The proposed technique is used to control three 
interacting tank process.  The proposed FOPID controller tuned using Bee 
colony optimization technique may serve as an alternative for the tuning of the 
fractional order controllers. 

1 Introduction 

Fractional calculus is thriving for the past two decades with the research progress in the 
field of chaos.  Fractional order modeling and control design for dynamical system are 
still in introductory stage.  The basic concepts of fractional order calculus is dealt with 
by Gement,  Méhauté,  Oustaloup and Podlubny [1-4].  Fractional calculus finds its 
role in varied fields like Chaos, fractals, biology, electronics, communication, digital 
signal processing, dynamical system modelling and control etc. [5-8].  Design of 
fractional order dynamical models and controller have gained popularity in recent past 
with the development of fractional calculus [9-13,16].  Fractional order PID controller 
was conceptualized by Podlubny  and effectiveness of the proposed work was 
demonstrated.  Realization of the FOPID controller.  Various studies have been carried 
out in the frequency domain approach, pole distribution of characteristic equation, pole 
placement technique evolved [14].  Integrating a fractional component in a integer 
order controller will result in FOPID.  Till date PID controllers are termed as 
workhorse in automation of many industrial applications.  The only change to be made 
is the introduction of fractional order to the integral and derivative component. Tuning 
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the fractional order PID controller parameter is complicated because of the five 
dimensional search requirements.  Evolutionary optimization techniques like Genetic 
algorithm, Particle Swarm optimization, Bacterial foraging, differential evolution, Bee 
colony optimization etc. are gaining popularity in the tuning of the controller 
parameters.  Bee colony Optimization is a swarm intelligent technique used to find a 
global optimal solution for any real-world problems. The BCO algorithm is based on 
the model that is obtained from the communicative behavior of the honey bees.  Bee 
colony optimization algorithm is inspired by the behavior of a honey bee colony in 
nectar collection. This biologically inspired approach is currently being employed to 
solve continuous optimization problems.  The bee colony optimization algorithm is 
inspired by the behavior of a honey bee colony in nectar collection[15]. This 
biologically inspired approach is currently being employed to solve continuous 
optimization problems, training neural networks, mechanical and electronic 
components design optimization, combinatorial optimization problems etc.  The make 
span of the solution is analogous to the profitability of the food source in terms of 
distance and sweetness of the nectar. Hence, the shorter the make span, the higher the 
profitability of the solution path. Once a feasible solution is found, each bee will return 
to the hive to perform a waggle dance. The waggle dance will be represented by a list 
of "elite solutions", from which other bees can choose to follow another bee's path. 
Bees with a better make span will have a higher probability of adding its path to the list 
of "elite solutions", promoting a convergence to an optimal solution.  In the proposed 
work, the fractional order PID controller parameters is brought out by using the 
optimal values obtained from BCO. 

2 Three Interacting Tank Process Description 

The level control of three interacting tanks involves complex design and 
implementation procedure, as the response of each tank depends on the response of 
other tanks.  Moreover the process is non-linear.  Using classical control technique, 
the level control becomes complicated.  The plant has three interacting tanks 
interconnected by manual control valves.  The flow fin1 to the first tank and the flow 
fin2 to the third tank are the plant inputs.  The levels of the three interacting tanks are 
the outputs of the plant.  Thus the plant is a two inputs and three output systems.   The 
process liquid is pumped to the first interacting tank from the sump by pump 1 
through the control valve 1 and the input flow to the first interacting tank is fin1.  The 
process liquid is pumped to the third interacting tank from the sump by pump 2 
through the control valve 2 and this input flow to the third interacting tank is fin2.  The 
three levels in the three interacting tank are measured using differential pressure 
transmitters.  The three interacting tanks are interconnected through manual control 
valves.  The inputs are voltages u1 converted to 4-20mA current that causes the 
actuation of the control valve and adjusts the inflow fin1 into the first interacting tank 
and voltage  u2 converted to 4-20mA current that causes the actuation of the control 
valve and adjusts the inflow fin2 to the third interacting tank.  In the present work, u2 is 
kept constant and u1 is controlled.  The setup diagram of the three interacting tanks is 
shown in figure 1. 
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Fig. 1. Hardware Set-up of Three Interacting Tank Level Process 

The setup consists of three cylindrical process tanks, overhead sump, submersible 
pump, three Differential Pressure Transmitter (DPT), rotameter, control valve and 
interfacing card. The process tank is cylindrical and made of a transparent glass. 
Provisions for water inflow and outflow are provided at the top and bottom of the tank 
respectively. A pump is used for discharging the liquid from the storage tank to Tank 
1. The inflow to the Tank 1 is maintained by a control valve. Differential Pressure 
Transmitter is used for liquid level measurement.  In this open vessel process, tank 
pressure is given to the high-pressure side of the transmitter and the low-pressure side 
is vented to the atmosphere.  Rotameter is used for the monitoring of the level. Gate 
valves one each at the outflow of the tank 1, 2 and 3 are also provided to maintain the 
level of water in the tanks. Clockwise rotation ensures the closure of the valve, thus 
stopping the flow of liquid and vice versa.  A 25-pin male connector is used here to 
interface the hardware setup with the PC. The electrical output generated from the 
potentiometer is first converted into a digital value before applying it to the computer. 
The process parameters of the three interacting tank set in tabulated in Table 1. 

Table 1.   Process Parameters of the three interacting tank 

Sl. 
No. 

Process parameters Values

1. Area of the Tank, Ai 615.7522cm2

2. Area of the connecting 
pipes, aij 

5.0671cm2

3. Valve ratio
β12 0.9
β 23 0.8
β 3 0.3

4. Pump Gain, Ki 75cm3/V.s
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3 Input-Output Characteristics 

The three interacting process has two manipulated variable the inflow to the tank 1 (u1) 
and tank 3 (u2) regulated by the control valve.  The output of the process are the levels 
(h1,h2, h3) of the tanks 1, 2 and 3 respectively.  The inflow u2 is maintained constant at 
0.5V and the open loop response of the three interacting tanks is obtained by varying 
the voltage u1 from 0.5V to 7.5V. The steady state I/O data are tabulated in Table 2.  
The I/O characteristics of the three interacting tanks for varying values of u1 are shown 
in figure. 2.    In the present work, the inflow u1 is considered as the manipulated 
variable and the height of the third tank h3 is considered as the output of the process.  

Table 2. I/O Data obtained from the Lab Scale setup 

 

 

Fig. 2. I/O characteristics of the three interacting tanks for varying values of u1 

4 Fractional Calculus 

The differintegral operator, aDt
q, is a combined differentiation-integration operator 

commonly used in fractional calculus.  
This operator is a notation for taking both the fractional derivative and the 

fractional integral in a single expression and is defined by 

Fin1 h1 h2 h3 Fin1 h1 h2 h3 

0.500 1.310 1.280 1.240 4.50 37.35 34.560 31.020 

1.000 3.105 2.968 2.792 5.00 45.38 41.860 37.560 

1.250 4.288 4.077 3.800 5.50 54.11 49.995 44.665 

1.500 5.660 5.350 4.960 6.00 63.66 58.745 52.425 

2.000 9.001 8.465 7.753 6.50 73.90 68.100 60.700 

2.500 13.12 12.260 11.169 6.75 79.25 73.180 65.135 

3.000 18.01 16.770 15.203 7.00 85.10 78.400 69.700 

3.500 23.67 22.000 19.850 7.50 96.99 89.260 79.420 

4.000 30.13 27.914 25.137 
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where q is the fractional order which can be a complex number and a and t are the 
limits of the operation.  There are some definitions for fractional derivatives.  The 
commonly used definitions are Grunwald-Letnikov, Riemann-Liouville and Caputo 
definitions (Podlubny1999b).  The Grunwald-Letnikov definition is given by 
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The Riemann-Liouville definition is the simplest and easiest definition to use.  This 
definition is given by 
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Where n is the first intger which is not less than q i.e. n-1≤q<n and Γ is the Gamma 
function. 

inf
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0
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For functions f(t) having n continuous derivatives for t≥0 where n-1≤q<n, the 
Grunwald-Letnikov and the Riemann-Liouville definitions are equivalent.  The 
Laplace transforms of the Riemann-Liouville fractional integral and derivative are 
given as follows: 
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The Riemann-Liouville fractional derivative appears unsuitable to be treated by the 
Laplace transform technique because it requires the knowledge of the non-integer 
order derivatives of the function at t=0.  This problem does not exist in the Caputo 
definition that is sometimes referred as smooth fractional derivative in literature.  This 
definition of derivative is defined by 
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Where m is the first integer larger than q.  It is found that the equations with 
Riemann-Liouville operators are equivalent to those with Caputo operators by 
homogeneous initial conditions assumption.  The Laplace transform of the Caputo 
fractional derivative is  
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Contrary to the Laplace transform of the Riemann-Liouville fractional derivative, 
only integer order derivatives of function f are appeared in the Laplace transform of 
the Caputo fractional derivative.  For zero initial conditions, previous equation 
reduces to  

q
0{ ( )} ( )q

tL D f t s F s=  

The numerical simulation of a fractional differential equation is not simple as that 
of an ordinary differential equation.  Since fractional order differential equations do 
not have exact analytic solutions, approximations and numerical techniques are used.  
The approximation method, Oustaloup filter is given by 
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The approximation is valid in the frequency range [ωl, ωh ]; gain k is adjusted so 
that the approximation shall have unit gain at 1 rad/sec; the number of poles and zeros 
N is chosen beforehand (low values resulting in simpler approximations but also 
causing the appearance of a ripple in both gain and phase behaviours); frequencies of 
poles and zeros are given by 
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5 Bee Colony Optimization Technique 

The ways of communication of the bee for find the food sources is very interesting.  
In the bee hive, the worker bees are responsible for food collection. The worker bees 
in a honey bee colony are grouped as food-storer, scout and forager. The food 
collection is organized by the colony by recruiting bees for different jobs. The 
recruitment is managed by the forager bees which can perform dances to 
communicate with their fellow bees inside the hive and recruit them. The scouts are 
sent to different directions in search of honey.  Each bee visits a number of flowers.  
The floral finding are communicated to the other bees through dancing.  At the 
entrance of the hive is an area called the dance-floor, where dancing takes place. 

Different types of dances have been identified: 

Waggle Dance  

It is an advertisement for the food source of the dancer. Another forager can leave her 
food source and watch out for a well advertised food source. A forager randomly 
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follows dances of multiple recruiting foragers and seems to respond randomly as well. 
Especially a bee does not compare several dances. A dance does not seem to contain 
any information that helps to choose a food source. 

Tremble Dance  
The foragers are more likely to perform the tremble dance if they have to wait long 
for a food-storer bee to unload their nectar after their arrival at hive. Foragers perform 
the tremble dance on the dance-floor and in the brood nest as well, whereas the 
waggle dance is limited to the dance-floor. So maybe bees in the hive are addressed, 
too. According to Seeley worker bees in the hive are ordered by the tremble dancers 
to give up their jobs and to unload nectar. 

The orientation of the bee along with the frequency of the vibrations indicates the 
direction and the distance of the flowers from the hive.  The dance is observed by the 
other bees which will find the location and the quantity of the food source.  All the 
worker bees, who finds flower will dance, but majority of the worker bees will follow 
the elite bee-the bee which had located a better and nearer food source than the 
remaining bees.   

6 Bee Colony Optimized FOPID Tuning for Three Interacting 
Tank Process 

Figure 3 shows the block diagram of the FOPID controller optimized using bee 
colony technique.  The Bees algorithm is developed to obtain the optimal controller 
parameters such as KP, KI, KD, λ and μ  Then it is implemented in FOPID controller to 
obtain the response.  
 

 

Fig. 3.   Block diagram of FOPID controller tuned Three Interacting Tank Process 

6.1 Performance Index 

In this section, the feedback controller design is formulated as an optimization 
problem and the solution is sort through steps of Ant Colony Optimization (ACO). 
The technique uses ACO to tune the PID parameters online for a minimum ITAE for 
each region separately.  Due to the variety of PID control law permutations, it is 
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necessary to specify a minimum set of attributes that is PID controller is assumed to 
be of non-interacting form as defined below: 

1
( )c p i dG s K K K s

s
μ

λ= + +  

By suitable transformation of the parameters this form is converted to interacting 
form.  Minimizing the following error criteria generates the controller parameter 

0

( ) ( )     
T

IT A E r t y t t d t= −
 

where r(t) = reference input,  y(t) = measured variable 
 
At first, the bee, i.e. the PID parameters are randomly initialzed.  The fitness 

function is defined as 1/ITAE. Smaller the fitness function, the better performance of 
the system response with the specified PID parameters.   

6.2 Algorithm: Bee Colony Optimization for FO-PID Controller Tuning 

1. Intialize the population of solutions xi,j 

2. Evaluate the population 
3. Cycle =1 
4. Repeat 
5. Produce new solutions (food source positions) νi,j in the neighbourhood of xi,j 

for the employed bees using  the formula  

, , , ,( )i j i j ij i j k jx x xν φ= + −
 

where k is the solution in the neighbourhood of I, φ is a random number and 
evaluate them 

6. Apply the greedy selection process between xi and νi 

7. Calculate the probability values Pi for the solutions xi by means of their 
fitness values using  
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The fitness values of solutions are calculated as 
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Normalize Pi values into [0,1] 
8. Produce the new solutions ( new positions) νi  for the onlookers from the 

solutions xi, selected depeding on Pi and evaluate them 
9. Apply the greedy selection process for the onlookers between νi and xi 

10. Determine the abandoned solution (source) if exists and replace it with a new 
randomly produced solution xi for the scout using  
xij = minj + rand(0,1)*(maxj-minj) 
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11. Memorize the best food source position (solution) achieved so far 
12. Cycle = cycle +1, Until cycle = Maximum cycle Number 

The termination criterion can be in two was: either by ending the program when 
objective function value reaches a reasonably low value or after a finite number of 
iterative steps. In the present case, the program was terminated after 45 iterations. 

7 Comparison of BCO-IOPID Controller with BCO-FOPID 
Controller 

The BCO algorithm was implemented by developing a dedicated software using 
MATLAB. Figure 4 shows the heights h1, h2 and h3 of the three interacting tanks for 
the set values fixed are 15cm, 35cm, 70cm, 61cm and 8cm at an interval of 5000s.   
Figure 5 shows the response for the regulatory problem with set point fixed at 50cm 
and disturbance  applied at an interval of 2500s using an integer and fractional order 
controller.  Figure 6 shows the response for the servo regulatory problem for the three 
interacting tank process 
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 4.a. Integer order PID controller        4.b. Fractional order PID controller 

Fig. 4. Height changes in all the three tanks for servo change with set point change of  
15cm, 35cm,70cm, 61cm and 8 cm at an interval of 5000 secs 

Table 3. Performance indices for the IOPID and FOPID controller for three interacting tank 
process 

Control Performance Indices Performance Indices 
IAE ISE ITAE IAE ISE ITAE 

Integer order PID controller    

              
0.0938

2.7079+ +0.075s
s

 

Fractional Order PID controller

0.2225
0.3155

0.9978
0.8242+ +0.4989s

s
 

Servo 50380 71930 6.943*108 38876 50290 4.897*108 
Regulatory 32460 43850 1.742*108 26780 32123 1.358*108 
Servo-
Regulatory 

53890 74280 7.085*108 37484 45761 4.183*108 
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          5.a. Integer order PID controller         5.b. Fractional order PID controller 

Fig. 5. Height changes in all the three tanks for regulatory change with set point fixed at 50cm 
and disturbance applied at an interval of 2500 secs 
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         6.a. Integer order PID controller             6.b. Fractional order PID controller 

Fig. 6. Height changes in all the three tanks for servo-regulatory change for set point change of 
15cm, 35cm,70cm, 61cm and 8 cm at an interval of 5000 secs and disturbances applied at 
2500s, 7500s,12500s, 17,500s and 22500s respectively 

8 Conclusion 

Three interacting tank process control is effected using Bee colony optimization 
technique based Integer order and Fractional Order PID controller.  The performance 
selected is Integral Time Absolute Error.    The integer order PID controller involves 
optimization of three parameters Kp, Ki and Kd whereas the fractional order controller 
involves two more additional parameters λ and µ increasing the number of controller 
parameters as five.  Applying bee colony optimization, the integer order parameters 
are found out.  The work can be extended by implementation of other swarm 
intelligence techniques like particle swarm optimization, ant colony optimization, etc. 
On investigation of the performance indices, it can be observed that the IAE, ISE and 
ITAE for servo and servo-regulatory problem for a fractional order controller is less 
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compared to the integer order controller.  On analysis, it can be inferred that the 
fractional order controller can be implemented for the control of a nonlinear process. 
The scope of the future work is to implement other swarm intelligence techniques like 
particle swarm optimization, bacterial foraging, fish schooling and evolutionary 
optimization techniques like genetic algorithm, differential evolution etc. and the 
performance can be computed. 
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Abstract. This manuscript presents an approach to allocate static capacitors 
along radial distribution networks using the artificial bee colony algorithm. In 
general practice the high potential buses for capacitor placement are initially 
identified using loss sensitivity factors. However, that method has proven less 
than satisfactory as loss sensitivity factors may not always indicate the appro-
priate placement. In the proposed approach, the algorithm identifies optimal siz-
ing and placement and takes the final decision for optimum location within the 
number of buses nominated. The result is enhancement of the overall system 
stability index and potential achievement of maximum net savings. The  
obtained results are compared with those achieved using recent heuristic me-
thods and show that the proposed approach is capable of producing high-quality 
solutions. 

1 Introduction 

Reactive power addition can be beneficial only when correctly applied. Correct appli-
cation means choosing the correct position and size of the reactive power support. It is 
unmanageable to achieve zero losses in a power system, but it is likely to keep them 
to a minimum rate [1-3] in order to reduce the system overall costs. Capacitive  
reactive power support is used for the reduction of power losses together with other 
benefits; such as increased utilization of equipment, unloading of overloaded system 
components, and stopping the premature aging of the equipment.  

A comprehensive survey of the literature from the last decade focusing on the  
various heuristic optimization techniques applied to determine the OCP and size is 
presented in [4]. Several heuristic tools that facilitate solving capacitor allocation 
optimization problems that were previously difficult or impossible to solve have been 
developed in the last decade [5-18].  

Algorithms for enhancing voltage stability of electrical systems by OCP have been 
developed [19, 20], a relationship between voltage stability and loss minimisation was 
developed and the concept of maximising voltage stability through loss minimisation 
was outlined [21, 22].  
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In this paper, an ABC-based approach is utilized to ascertain the optimal size and se-
lect optimum locations of shunt capacitors. High potential buses for capacitor placement 
are initially identified by the observations of LSF with weak VSI of buses. The pro-
posed method improves the voltage profile and reduces system losses in addition to 
enhancing voltage stability. The method has been tested and validated on a variety of 
radial distribution systems and the detailed results are presented. Different simplified 
methods of normal load distribution flow and other special techniques have been pro-
posed [23, 24]. The distribution power flow suggested in [24] is used in this study. 

2 Static Voltage Stability Index 

Many different indices have been introduced to evaluate the power systems security 
level from the point of voltage static stability [25-28]. A new steady state VSI is pro-
posed [28] for identifying the node, which is most sensitive to voltage collapse and 
expressed in Eq. (1) is utilised in the work. Fig. 1 shows the simple electrical equiva-
lent of the radial distribution system. ( ) = | | 4 . . 4 . + . . | |  (1) 

For stable the operation of the radial distribution networks, VSI (j) ≥0. The node, at 
which the value of the VSI has lower value, is more sensitive to collapse. The node 
with the smallest VSI is the weakest node and the voltage collapse phenomenon will 
start from that node. Therefore, to avoid the possibilities of voltage collapse; the VSI 
of nodes should be maximized. 

 

Fig. 1. line i-j power system model 

3 Modeling of Objective Function and Constraints 

The objective of capacitor allocations in the distribution system is to maximise the 
active power loss reduction, maximise the revenue of capacitor allocations and to 
enhance the system static stability subject to specific operating constraints. The objec-
tive function is mathematically formulated as, . . . . + . ( )

+(1 ). . ( )  (2) 

Subject to the satisfaction of the Active and reactive power flow balance equations 
and a set of inequality constraints; 

Zij=Rij+jXij

i j

Pj+jQj
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3.1 Power Balance Constraints 

Power balance (Active and Reactive) constraints, which are equality constraints and 
include two nonlinear recursive power flow equations, can be formulated as follows, = ( ) + ( )

+ ( ) = ( ) + ( )  (3) 

3.2 Voltage Limit Constraint 

The voltage magnitude at each bus must be maintained within its limits and is ex-
pressed as, , ≤ | | ≤ , , = 1 …  (4) 

3.3 Reactive Compensation Limit 

Reactive power constraint in which injected reactive power at each candidate bus 
must be within their permissible ranges. ≤ ≤ , = 1 …  (5) 

3.4 Line Capacity Limit 

The apparent power flow through the line S  is restricted by its maximum rating limit 
as,  ≤ , = 1 …  (6) 

3.5 Maximum Total Compensation 

From practical limitation, maximum compensation by using capacitor bank is limited 
to the total load reactive power demand.  ( ) ≤ ( ) (7) 

3.6 Overall System Power Factor 

System Power Factor should be maintained within desirable lower and upper limits. ≤ ≤ (8) 

A penalty factor associated with each violated constraint is added to the objective 
function in order to force the solution to stay away from the infeasible solution space; 
to respect the inequality constraints. Therefore, the optimal solution is established 
when no constraints is violated or even with acceptable tolerance and the objective 
function is maximised. 
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4 Identification of Potential Buses Using LSF 

The estimation of these candidate nodes basically helps in significant reductions of 
the search space for the optimization procedure. In this proposed work, LSF is utilised 
for this purpose [22].  

The LSF may be able to predict which bus will have the greatest loss reduction 
when reactive compensation is put in place. Consider a distribution line connected 
between ‘i’ and ‘j’ buses as shown in Fig. 1. 

Active power loss in the ijth line between i-j buses is given as shown in (9), = + .  (9) 

Thus, the sensitivity analysis factor is a derivative of the power loss with reactive 
power , as indicated in (10), = 2 .  (10) 

The values are arranged in descending order for all the lines of the given system. 
The descending order of the elements vector will decide the sequence in which  
the buses are to be considered for compensation.  Buses of higher LSF and lower  
VSI have a greater chance of being selected as candidate locations for capacitor  
installations. 

5 Artificial Bees Colony Algorithm 

The ABC algorithm was proposed by Karaboga for optimizing numerical complex 
problems [29]. It simulates the intelligent foraging behaviour of honey bee swarms. It 
is a very simple, robust and population based stochastic optimization algorithm in 
nature. The performance of the ABC algorithm has been compared with those of other 
well-known modern heuristic algorithms such as GA, DE and PSO on constrained and 
unconstrained problems [30, 31]. The algorithm has a well-balanced exploration and 
exploitation ability. Recent enhancements of ABC have been proposed [32-34] to 
improve performance of sharing information between artificial bees and to enhance its 
performance. 

A bee carrying out random search is called scout. In the ABC algorithm, first half 
of the artificial colony consists of employed bees and the second half constitutes the 
artificial onlookers. For every food source, there is only one employed artificial bee. 
The employed bee whose food source is exhausted by the employed and onlooker 
bees becomes a scout.  

At initialization stage, a set of food source positions are randomly selected by the 
artificial bees and their nectar amounts are determined. These bees come into hive and 
share the nectar information of sources with the bees waiting on the dance area within 
the hive.  

After sharing the information, every employed bee goes to the food source area vi-
sited by her at the previous cycle since that food source exists in her memory, and 
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then chooses a new food source by means of visual information in the neighborhood 
of the present one. Then an onlooker prefers a food source area depending on the 
nectar information distributed by the employed bees on the dance area. As the nectar 
amount of a food source increases, the chance with which that food source is chosen 
by an onlooker increases, too.  

After arriving at the selected area, employed bee chooses a new food source in the 
neighborhood of the one in the memory depending on visual information. Visual in-
telligent evidence is based on the comparison of food source positions. When the 
nectar of a food source is abandoned by the bees, a new food source is randomly de-
termined by a scout bee and replaced with the abandoned one. In this model, at each 
cycle one scout goes outside for searching a new food source and the number of em-
ployed and onlooker bees were equal. The probability  of selecting a food source i 
is determined by using = ∑  (11) 

After all artificial onlookers have selected their food sources; each of them deter-
mines a food source in the neighborhood of his chosen food source and computes its 
fitness.  

The best food source among all the neighboring food sources determined by the 
onlookers associated with a particular food source i will be the new location of the 
food source i. If a solution represented by a particular food source does not improve 
for a predetermined number of iterations then that food source is abandoned by its 
associated employed bee and it becomes a scout. This tantamount to assigning a ran-
domly generated food source to this scout and changing its status again from scout to 
employed. After the new location of each food source is determined, another iteration 
of ABC algorithm begins.  

The whole process is repeated again and again till the termination condition is sa-
tisfied. The food source in the neighborhood of a particular food source is determined 
by altering the value of one randomly chosen solution parameter and keeping other 
parameters unchanged. 

The procedure of the ABC algorithm to solve OCP can be summarized in the flow 
chart diagram of Fig. 2. 

6 Numerical Results and Simulations 

In order to test the effectiveness and performance of the proposed ABC-based algo-
rithm, it has been applied to several distribution radial test systems. Due limitations of 
space supposed by submission guidelines, only the 34-bus radial distribution system 
is selected for reporting and demonstration in this article, to test and  examine the 
applicability of the proposed approach. Simulations are carried out using MATLAB 
environment, release of 2011a/®7.12 and executed on a Laptop with Processor Intel® 
Core i5 CPU 2.40 GHz with a 4.0 GB of RAM with 32-bit operating system. In all 
calculations; for all the test cases, the following constants are assumed and applied as 
shown in Table 1. 



 Artificial Bee Colony-Based Approach for Optimal Capacitor Placement 429 

 

 

Fig. 2. Flow Chart of ABC Algorithm and capacitor allocations 

Table 1. Constants for the rates using a long with test cases 

SN Item Proposed rate 

1 Average energy cost $0.06/kWh 

2 Depreciation factor 20% 

3 Purchase cost $25/kVAr 

4 Installation cost $1,600/location 

5 Operating cost $300/year/location 

6 Hours per year 8760 

 
The net savings are calculated using: N =      + /  

(12) 

It is well-known that LSF observations, may not lead to the optimum locations. 
Due to the fact the LSF calculations depend on the network topology, configurations, 
loading, etc… and to tackle these limitations, the algorithm will search the optimum 
number of buses and select them for capacitor placements [35]. The proposed method 
has been programmed and implemented using MATLAB [36, 37]. 
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34-Bus Test System: Numerical Results and Simulations 
This 34-bus test case has 4-lateral radial distribution system which is shown in Fig. 3. 
The data of the system are obtained from [2]. The total load of the system is 
(4,636.5+j2,873.5) kVA.  

 

Fig. 3. Single line diagram of a 34-bus radial distribution network 

Using base LF to candidate the potential buses for capacitor placement and based 
on LSF and VSI values; as follows, [19, 22, 20, 21, 23, 24, 25, 26 & 27]. Parameters 
adopted for the ABC algorithm for the test case of a 34-bus, and the required inequali-
ty constraints to be relaxed and respected are given in Table 2. 

Table 2. Control parameters adopted for the ABC algorithm and target setting for the 
constraints 

Item Proposed Setting/bounds 

Swarm size (SN) 60 

Limit 30 

 MCN 100 

Bus Voltage constraint 0.95 ≤ v ≤ 1.05
Power Factor Constraint 0.95 ≤ PF ≤ 0.99

Allowable capacitor range 0 kVAr to 1500 kVAr with step of 50 kVAr 

After running the proposed optimization algorithm to select the optimal locations 
and determine the capacitor optimal sizes, the outcome leads to only 2 locations for 
capacitor placement which are buses 19 and 24 with optimum capacitor ratings of 950 
kVAr and 900 kVAr, respectively. The CPU computational time needed is 10.08 s to 
accomplish this optimization process by the proposed ABC-based method. The results 
of the proposed method compared with the results of GA [12], PSO [6], HS-based [2], 
PGSA [15] and EA [38] for the reactive compensation required and relevant bus allo-
cations are shown in Table 3. 

For comparison purposes, the reported figures in [12], [6], [2], [15] and [38] of 
reactive power at specific buses are recycled to calculate the system losses and the net 
savings (refer to Table 4) with the same rates proposed in this article as shown in 
Table 1 and Eq. (12). 
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The system overall power factor is significantly corrected from 0.856 lagging (base 
case) to 0.980 lagging with capacitor allocations, respectively. The VSI of a 34-bus 
radial distribution system without and with compensations is depicted Fig. 4.  

Table 3. Optimal Location of Capacitor placement and value of capacitor size 

Method ABC GA [12] PSO [6] HS [2] PGSA [15] EA [38] 
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 (19, 950) 

(24, 900) 

 

(5, 300) 

(9, 300) 

(12, 300) 

(22, 600) 

(26, 300) 

(19, 781) 

(22, 803) 

(20, 479) 

(26, 1400) 

(11, 750) 

(17, 300) 

(4, 250) 

(19, 1200) 

(22, 639) 

(20, 200) 

(8, 1050) 

(18, 750) 

(25, 750) 

Table 4. Results and comparisons of a 34-Bus radial feeder test case ( = 0.5) 

Item 
Without 

OCP 

With OCP 

ABC  GA [12] PSO [6] HS [2] PGSA [15] EA [38] 

VSImin
a 0.7860 0.8130 0.8071 0.8097 0.8219 0.8074 0.8149 

VSImax
a 0.9765 0.9797 0.9796 0.9800 0.9811 0.9800 0.9808 ( ) 28.621 30.122 29.089 29.135 29.321 29.115 29.268 

Ploss (kW) 221.74 167.99 164.96 169.36 168.48 171.96 161.27 

Reductions in Ploss

% 
--- 24.24% 25.61% 23.62% 24.02% 22.45% 27.27% PF  0.856 0.980 0.983 0.997 0.999 0.974 0.984 ∑ QC(kVAr) --- 1,850 1,800 2,063 2,700 2,039 2,550 

Net Savings/year --- $17,756 $15,093 $15,570 $12,017 $15,590 $17,173 
a Excluding slack bus # 1 

From the results illustrated and shown in table 4, the ABC algorithm yields to re-
duce peak losses to 167.99 kW with 1,850 kVAr installed at 2 locations only (buses 
19 & 24), which are optimally selected using the current methodology out of 9 initial 
higher potential buses estimated by LSF calculations. The net savings gained are 
$15,093, $15,570, $12,017, $15,590, $17,173 and $17,756 using GA [12], PSO [6], 
HS [2], PGSA [15], EA [38] and the ABC algorithm, respectively.  

If the objective is being to minimise the active power loss only (high potential 
buses are pre-identifies as outlined in section 4 using LSF) or to maximise VSI only 
(high potential buses are of those with lower VSI), irrespective the cost savings, while 
maintaining the equality and inequality constraints. Table 5 depicts the extracted 
summaries for the cases of VSI maximization and Ploss minimization as well. In the 
case of VSI maximization, the nominated buses for capacitor allocations are identified 
based on lowest buses VSI values. 
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Fig. 4. VSI values of buses against bus number with and without OCP (2 locations) 

Table 5. Summaries of the VSI and Ploss objectives 

Item 
Power loss Minimisation 

 ( = 1 & = 0) 
VSI Maximisation 

 ( = 0) 

VSImin
a 0.812 0.824 

VSImax
a 0.981 0.981 ( ) 29.2815 30.3061 

Ploss (kW) 161.087 169.92 

 0.9978 0.9952 ∑ (kVAr) 
2,600 

(3 locations)

2,450 

(8 locations) 

Net Savings/year $17,018 $8,785 
a Excluding slack bus # 1 

7 Conclusion 

The application of the ABC optimization approach for solving the problem of capaci-
tor allocations (sizing and location) to maximise the net benefits and to improve sys-
tem static voltage stability has been presented and investigated. The numerical results 
of the simulation indicate a considerable improvement in active power losses reduc-
tions, voltage stability enhancements, and power factor corrections while maximizing 
the net savings. The achieved results via the ABC-based method are competitive 
compared to the other recent heuristic methods in terms of the quality of the solution 
and computational efficacy. The main advantage of the ABC algorithm is that it does 
not require expending more effort in tuning the control parameters, as in the case of 
GA, DE, PSO and other EAs. This feature marks the ABC-based algorithm as being 
advantageous for implementation. 
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Nomenclatures 
N total network buses 

 total network active loss 
VSI(j) voltage stability index of bus j 

Rij resistance of line i-j 
Xij reactance of line i-j | | voltage magnitude  of bus i 

 voltage magnitude  of bus j 
Pj total effective real power load fed through bus j 
Qj total effective reactive power fed through bus j 

 energy cost 
T time period 

 total active power loss after compensation 
 total active peak power loss before compensation 
 cost of installation 
 number of candidate effective buses (that have compensations > 0) 
 cost of the capacitor 
 depreciation factor 
 magnifying factor 

n number of lines 
 number of load buses 

 weighting factor 

 active power supplied from the slack bus 
 reactive power supplied from the slack bus ( ) active power demand of load at bus i ( ) reactive power demand of load at bus i ( ) active power loss at branch j ( ) reactive power loss at branch j ( ) amount of reactive power of installed capacitors at bus i ,  lower permissible voltage limit at bus i ,  upper permissible voltage limit at bus i 
 lower reactive power limit of compensated bus i 
 upper reactive power limit of compensated bus i 

 actual line flow of line i 
 rated line transfer capacity 
 lower limit of overall system power factor at substation (slack bus) 
 upper limit of overall system power factor at substation (slack bus) 

 fitness of the solution represented by food source i 
SN total number of food sources 
MCN maximum cycle number 
 

List of Abbreviations 
ABC artificial bees colony 
DE differential evolution 
GA genetic algorithm 
LSF loss sensitivity factor 
OCP optimal capacitor placement 
PGSA plant growth simulation algorithm 
PSO particle swarm optimization 
PS pattern search 
VSI voltage stability index 
HS heuristic search 
EA evolutionary algorithm 
P.U. per unit 
LF load flow 
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Abstract. This paper presents Grammatical Bee Colony algorithm.
Grammatical Bee Colony is variant of Grammatical Evolution algorithm
in which Artificial Bee Colony is used as search engine to write a pro-
gram in any arbitrary language. The performance of Grammatical Bee
Colony is tested on benchmark problems. Experimental results shows
that Grammatical Bee Colony is able to generate programs.

Keywords: Artificial bee colony, Grammatical evolution, Grammatical
bee colony, Grammatical differential evolution, Grammatical swarm.

1 Introduction

Grammatical Evolution (GE) [1,2] is developed by C. Ryan et al. in 1998. GE
is a form of Genetic Programming (GP) [3] which can write programs in any
arbitrary language. Variable-length genetic algorithm is used in genotype-to-
phenotype mapping in standard GE. O’Neill et al. proposed Grammatical Swarm
(GS)[5] algorithm. Particle swarm optimization(PSO) [6] algorithm is used as a
learning algorithm in GS to generate the programs in any arbitrary language.
O’Neill et al.[7] proposed Grammatical Differential Evolution(GDE) which is
another variant of GE algorithm. GDE algorithm adopts Differential Evolu-
tion(DE) learning algorithm.

The objective of this paper is to use Artificial Bee Colony [8] algorithm as
a search engine to generate computer programs. The devised method is termed
as Grammatical Bee Colony (GBC) algorithm in this paper. GBC algorithm is
tested to solve benchmark problems taken from Genetic Programming literature.

Organization of this Paper. Grammatical Evolution along with its different
learning algorithms is described in Section 2. Grammatical Bee Colony is dis-
cussed in Section 3. Experiments and Results are described in Section 4. Finally
a conclusion is given in Section 5.
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2 Grammatical Evolution and Its Learning Algorithms

Genetic Programming(GP) was invented by Koza [3] in the year 1992 to evolve
the computer programs automatically. GP is a form of Genetic Algorithm(GA)
in which each genome is a tree structure used to represent computer program.
GE is a form of grammar based genetic programming [4] in which Context Free
Grammar(CFG) is combined with GP to put restrictions in search space ac-
cording to problems of interest and derivation trees are constructed from the
predefined CFG. Genomes are variable-length linear array in forms of binary
strings in GE. Bankus-Naur Form (BNF) of CFG is used to map genotype-to-
phenotype for generating programs in any arbitrary language. There are two
variants of Grammatical Evolution with respect to learning algorithm and they
are Grammatical Swarm and Grammatical Differential Evolution.

Grammatical Swarm (GS) is a variant of Grammatical Evolution. In GS,
particle swarm optimization (PSO) [6] algorithm is used as learning algorithm for
generating computer programs through genotype-to-phenotype mapping process.
Each particle in particle swarm optimizer represents a set of integer codons from
which computer programs are generated using BNF grammatical rules.

Grammatical Differential Evolution(GDE) is a GS like variant of Grammatical
Evolution algorithm. In GDE, Differential Evolution (DE) algorithm is used as
search engine in generating computer programs. Each vector in DE represents a
set of integer codons to map from genotype to phenotype using BNF grammatical
rules.

The both GDE and GS became unable to outperform over GE algorithm.
This paper makes an attempt to use Artificial Bee Colony (ABC) algorithm as
a learning algorithm in GE. The description of ABC algorithm is given in the
next section.

3 Grammatical Bee Colony

Artificial Bee Colony(ABC) [8] is successfully used in Artificial Bee Colony Pro-
gramming(ABCP) proposed by D. Karaboga et al. [9]. In ABCP, ABC algorithm
is used in program induction for symbolic regression. Food source’s position in
ABC represents computer programs by trees as like in GP. Grammatical Bee
Colony (GBC) uses Artificial Bee Colony (ABC) algorithm as a search engine
to generate computer programs through genotype-to-phenotype mapping using
BNF of Context-Free Grammar. A solution in ABC algorithm is represented
as food source’s position. Obviously, a food source’s position represents a geno-
type in GBC. Using BNF of Context-Free Grammar, programs (phenotype) are
generated from the food source’s position.

3.1 Artificial Bee Colony

D. Karaboga [8] developed Artificial Bee Colony(ABC) algorithm which is an
optimization algorithm based on the foraging behaviour of honey bees. In this
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algorithm, food source represents a solution of a problem. Artificial bee colony
has three groups of bees and they are employed bees, onlookers and scout. Em-
ployed bees search new food source in their neighbourhood of food source in
their memory. Onlookers take information from employed bees in the hive and
select one of the food sources. They search new food by themselves in the neigh-
bourhood of food source. An employed bee become a scout when its food source
is abandoned and again searches for new food source. “limit” is one important
control parameter in ABC algorithm and it is used to determine,after how many
trials, employed bees will become scouts. A detail description of ABC algorithm
is given in Table 1.

Table 1. Artificial Bee Colony Algorithm

1. Initialize a population Xi(i = 1, 2, ..., n)
2. Evaluate fitness Fi

3. while (t < CY CLEmax) or (stop criterion)
4.Generate new solutions ( food source position ) Vij in the neighbourhood of Xij for
the employed bees using the following equation:

Vij = Xij + Φij(Xij −Xkj) (1)

where k is the neighbourhood of i, Φij is a random number in the range [−1, 1] and
evaluate them.
5. Select better solution from Xij and Vij

6. Calculate the probability values for Pi for the solutions Xij by means of their
fitness values using the following equation:

Pi =
fiti∑NP
i=1 fiti

(2)

fitness is calculated by the following equation:

fiti =

{
1

1+Fi
if Fi ≥ 0

1 + |Fi| if Fi < 0
(3)

9. Normalize the Pi values in the range (0,1)
8. Generate new solutions Vij for the onlookers from the solution Xij selected de-
pending on Pi and evaluate them
9. Select better solution from Xij and Vij

10. Determine the abandon solution after “limit” and replace that by a new randomly
generated solution for the scouts using the following equation:

Xij = Xmin + (Xmax −Xmin)× rand(0, 1) (4)

11. Evaluate new solutions and find the best solution so far
12. end while
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3.2 Backus-Naur Form of Context-Free Grammar

The Backus-Naur Form (BNF) of Context-Free Grammar(CFG) is used for
genotype-phenotype mapping. BNF is a metasyntax used to express Context-
Free Grammar. An example of BNF of CFG is described below:

1. <expr> := (<expr><op><expr>) (0)

| <var> (1)

2. <op> := + (0)

|- (1)

|* (2)

|/ (3)

3. <var> := x1 (0)

|x2 (1)

3.3 Genotype and Phenotype

In Grammatical Bee Colony, food source’s position is used to represent a genome
and it is a set of integer codons in the range [0,255]. A part of genotype repre-
sentation is given in Fig.1 for an example.

Fig. 1. Genotype Representation

A mapping process is used to map from integer-value to rule number in the
derivation of expression using BNF of Context-Free Grammar by the following
ways:

rule=(codon integer value)MOD (number of rules for the current non-terminal)
In the derivation process, if the current non-terminal is <expr> , then, the rule
number is generated by the following way:

rule number=(152 mod 2)=0
<expr> will be replaced by (<expr><op><expr>)

<expr> :=(<expr><op><expr>) (152 mod 2)=0

:=(<var><op><expr>) (58 mod 2)=0

:=(x1<op><expr>) (160 mod 4)=0

:=(x1+<expr>) (97 mod 2)=1

:=(x1+<var>) (221 mod 2)=1

:=(x1+x2)

When derivation run out of codons, then the derivation again starts from the
beginning of the genome. This process is called as wrapping. When same rule
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number is generated again and again for a variable(for an example,<expr> is
replaced by (<expr><op><expr>)). Therefore it will take indefinite time and
the wrapping process may become failure. Therefore, in this work, wrapping
process is done for two times. After wrapping process, if there are non-terminals
remain in the derived string, it is denoted as invalid and its fitness is assigned a
very small value so that it can be replaced by better valid individual later.

4 Experiments and Results

4.1 Benchmark Problems

Santa Fe Ant Trail Problem The Santa Fe Ant Trail is a standard bench-
mark problem in GP research. The objective of this problem is to evolve a
computer program by which an artificial ant can find all 89 pieces of food in a
non-continuous trail in 600 time steps. The trail is located on a 32× 32 toroidal
grid. The ant can run left, right move one square forward and may look ahead
one square in its front to determine whether that square contains any food. All
actions, except of looking ahead of food, take one time step. The ant starts from
top-left corner of the grid facing the first piece of food on the trail. The fitness
function is calculated as the difference between the total number of pieces of
foods before and after the runs:

fitness = 89− F

where F is the total number of pieces of food eaten by ant at the end of the run.
The BNF of CFG for this problem is given in below:

1. <code> := (<code><line>) | <line>

2. <line> := <condition> | <op>

3. <condition> := if(food_ahead()){<line>}else{<line>}

4. <op> := left(); | right(); | move();

The generated program using the above grammar is placed in a loop with
following termination criteria:

1. T ime Steps = 600 or
2. Ant eats all 89 pieces of foods placed in the grid.

Symbolic Regression Problem. The target function is f(x) = x+x2+x3+x4

and 100 fitness cases are generated randomly in the range [0,1]. The fitness
function is calculated as the sum of absolute error over 100 fitness cases. The
BNF of CFG for this problem is given in bellow:

1. <expr> := (<expr><op><expr>) | <var>

2. <op> := + | - | * | /

3. <var> := x

’/’ is protected division.
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Even 3-Parity Problem. Even 3-parity problem has 8 fitness cases and the
fitness function is calculated as the sum of absolute error over 8 fitness cases.
The BNF of CFG for this problem is given in bellow:

1. <expr> := (<expr><op><expr>) | <var>

2. <op> := or | and | nor | nand

3. <var> := x1 | x2 | x3

3-Multiplexer. 3-input multiplexer problem has been tested with GBC. 3-
input multiplexer problem has 8 fitness cases and the fitness function is calcu-
lated as the sum of absolute error over 8 fitness cases. The BNF of CFG for this
problem is given in bellow:

1. <expr> := (<expr><op><expr>) | <var>

2. <op> := or | and | nor | nand

3. <var> := x1 | x2 | x3

4.2 Parameters Settings

The parameters of GBC are set as following:Population size = 100, Dimension
= 100, Number of cycle = 300, Limit = 5.

The parameters of GS are set as following: Population size = 30, Dimension
= 100, Number of iteration = 1000, Vmax = 0.5 × 255, c1 = c2 = 1.49445,
{ωmax, ωmin} = {0.9, 0.4}

The parameters of GDE/rand/1/bin are set as following:Population size =
500, Dimension = 100, Number of iteration = 60, Scale Factor =0.8
Cross-over rate = 0.8.

Each of GBC, GS and GDE algorithms is allowed to run for 30, 000 number
of function evaluations(FEs) in a single run.

4.3 PC Configuration

1. System: Windows 7
2. CPU: AMD FX -8150 Eight-Core
3. RAM: 16 GB
4. Software: Matlab 2010b

The experiments are carried out for each problem with 50 separate runs.
Mean and standard deviation of best-run-errors of each problem for Grammat-
ical Swarm, Grammatical Differential Evolution and Grammatical Bee Colony
are given in Table 21. From this results it has been seen that Grammatical Swarm
performed better than Grammatical Differential Evolution and Grammatical Bee
Colony in Santa Fe Ant Trail Problem. There are no difference in performances of

1 Results in bold-face indicates better
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Grammatical Differential Evolution as well as Grammatical Bee Colony in Even
3-Parity problem where as a near solution to them is produced by Grammatical
Swarm. Grammatical Bee Colony performed better than Grammatical Swarm
in multiplexer problem. Grammatical Differential Evolution performed better in
symbolic regression problem than Grammatical Swarm and Grammatical Bee
Colony. A t-test has been carried out between GBC and the best outcomes of
GS and GDE for statistical significance test with 95% confidence interval and
degree of freedom =98. There is no significance difference between GDE and
GBC for even-3 parity and symbolic regression problems. Grammatical Swarm
statistically outperformed over GBC for Ant problem whereas GDE statistically
outperformed over GBC for multiplexer problem. Therefore these results demon-
strate the proof of concept that Grammatical Bee Colony can generate programs
successfully to solve problems of interest. The convergence graphs of GBC for
each problem are given in Figure 2.

Table 2. Mean and standard deviation of best-run-errors

Problems GS GDE/rand/1/bin GBC

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Santa Fe Ant Trail 25.3 3.30275 28.86 6.1578 32.30 11.1268

Symbolic Regression 7.98 6.4296 6.93 8.3208 8.22 6.6231

Even 3-Parity 2.00 0.00 1.98 0.1414 1.98 0.3187

3-Multiplexer 0.92 0.1414 0.48 0.5046 0.82 0.3880

A GBC generated program for Santa Fe Ant Trail problem and using that pro-
gram, ant eats 64 pieces of total 89 pieces of food

move();

if(foodahead()) right();

else if(foodahead()) left();

else if(foodahead())

if(foodahead())

if(foodahead())

if(foodahead()) right();

else left(); end;

else right(); end;

else if(foodahead()) right();

else if(foodahead()) left();

else if(foodahead())

if(foodahead()) left();

else move(); end;

else move(); end;

end; end; end;



Grammatical Bee Colony 443

else left(); end; end; end;

if(foodahead()) if(foodahead()) move();

else if(foodahead())

if(foodahead()) if(foodahead())

if(foodahead()) if(foodahead())

if(foodahead()) right(); else right(); end;

else if(foodahead()) right();

else if(foodahead()) if(foodahead())

if(foodahead()) move(); else right(); end;

else right(); end;

else if(foodahead()) right();

else move(); end; end; end; end;

else move(); end; else right(); end;

else move(); end; else move(); end; end;

else right(); end;

A GBC generated program for Symbolic Regression problem (absolute rror=
3.011480e-015)

plus(pdivide(plus(times(x,times(times(x,x),x)),x),

pdivide(x,x)),times(plus(x,times(x,x)),x))

pdivide function is defined as follows to avoid division by zero error:

function value =pdivide(arg1,arg2)

if abs(arg2)<= 0.00001 value=arg1;

else value=arg1/arg2;

end

end

A GBC generated program for Even 3-Parity problem(absolute error=1)

nor(nor(x2,and(x3,x1)),and(and(and(x2,x2),

and(x2,nand(or(x3,x1),nand(x3,x1)))),x2))

A GBC generated program for 3-Mulitplexer problem(absolute error=0)

and(nand(x1,x2),or(and(x3,nand(or(and(x3,x1),x2),and(x2,x3))),

or(nor(nor(x2,x2),and(x3,and(nand(x1,x3),x3))),x1)))
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(a) (b)

(c) (d)

Fig. 2. Convergence graphs of GBC for Santa Fe Ant Trail(a), Symbolic Regression(b),
Even-3 Parity(c), Multiplexer(d)

5 Conclusions

Grammatical Bee Colony algorithm is devised in this paper. Grammatical Bee
Colony is a variant of Grammatical Evolution in which Artificial Bee Colony
algorithm is used as search engine to generate computer programs by map-
ping from genotype to phenotype. The Grammatical Bee Colony algorithm is
applied to the benchmark problems and compared with Grammatical Differen-
tial Evolution, Grammatical Swarm algorithm. Experiment results shows that,
like Grammatical Differential Evolution and Grammatical Swarm, Grammatical
Bee Colony is also able to generate computer programs. Future work will lead
to performance improvement of Grammatical Bee Colony algorithm as well as
its applications. A comparative study with Artificial Bee Colony Programming
can be an another interesting future work of this paper.
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Abstract. The lifetime of a wireless sensor network is dependent on the
type of sensor deployment. If the application permits deterministic de-
ployment of nodes and if the sensor nodes are limited, quality of sensing
and energy conservation can be enhanced by restricting the sensing range
requirement. This paper addresses deterministic deployment of nodes for
probabilistic target Q-coverage. A probabilistic coverage model considers
the effect of distance and medium on the sensing ability of a node. We use
Artificial Bee Colony (ABC) algorithm to compute the optimal deploy-
ment of sensor nodes such that the required sensing range is minimum
for probabilistic target Q-coverage.

Keywords: Sensor Deployment, Target Coverage, Q-Coverage, ABC
Algorithm.

1 Introduction

Maximization of network lifetime is one of the main challenges in wireless sen-
sor networks. Energy can be efficiently used through proper energy utilization
schemes, depending on the application. If the application permits determinis-
tic deployment of nodes, energy wastage can be controlled by restricting the
sensing range required and the quality of coverage can be improved in case of
probabilistic coverage.

Sensor nodes are deployed to achieve either area coverage or target coverage. To
achieve area coverage, if the sensors have fixed sensing range, optimal deployment
patterns are preferred to minimize the number of sensor nodes required. The cov-
erage requirement of the application also has an impact on the network lifetime.
Some applications require that each target has to be monitored by at least one sen-
sor node (simple coverage), whereas some might require a high number of sensor
nodes to monitor the targets (k-coverage). In some applications, each target may
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c© Springer International Publishing Switzerland 2013
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(a) (b)

Fig. 1. Comparison (a) Random deployment with fixed sensing range and (b) Deter-
ministic deployment with optimal sensing range

have a different coverage requirement. This is known as Q-coverage problem. In
this paper, we focus on probabilistic target Q-coverage problem. The number of
sensor nodes to be deployed are limited and the sensing range has to be minimized
to control energy usage and improve quality of coverage.

Figure 1a shows a random deployment of sensor node S1. Here S1 has a pre-
defined sensing range sr. Figure 1b shows a case of deterministic deployment of
S1 where the sensing range is restricted/reduced so that it is optimal for all the
targets to be monitored.

1.1 Types of Sensor Deployments

The deployment of sensor networks varies with the application considered. In
some environments, it can be predetermined and be placed in the exact locations.
For some environments, the nodes can be air-dropped or deployed by other
means [1].

Depending on the density of nodes in a network, a sensor network deployment
can be categorized as dense deployment or sparse deployment.

– Dense Deployment
A dense deployment involves relatively large number of sensor nodes. It is
used when higher level of coverage has to be satisfied.

– Sparse Deployment
A sparse deployment includes only a few number of nodes. It is used when
dense deployment is not feasible because of cost of deployment or other
factors.

Based on the type of deployment, a sensor network deployment can be cate-
gorized as random deployment or deterministic deployment.
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– Random Deployment
Random deployment is suitable if no prior knowledge of the region is avail-
able. It is mainly used for military applications, inaccessible area, hostile
region etc. However, random deployment does not always lead to effec-
tive coverage, especially if the sensors are clustered at some parts of the
region [2].

– Deterministic Deployment
Deterministic deployment is suitable for accessible regions. It is also pre-
ferred if powerful, sophisticated and expensive nodes are used which require
careful planning and placement [3]. Non-sensitive applications usually use
deterministic deployment.

1.2 Types of Sensing Models

Most research works assume that the sensing region of a sensor node is a sensing
disc, that is, a sensor node has the uniform contribution in all directions of its
sensing region. In the basic (binary) model, if a target lies within the sensing
region of a sensor node, it is always assumed to be detected with probability 1
otherwise with probability 0. This idealized binary model has been extensively
used to analyze the coverage problems of sensor networks. But in real deployment
of sensor nodes, the sensing capabilities of sensor nodes have relations with the
environment and then it is imperative to have practical considerations at the
design stage. Such a sensing model is known as probabilistic sensing model. Thus,
in general there are two sensing models: binary sensing model and probabilistic
sensing model.

Binary Sensing Model In a binary sensing model, the target is either mon-
itored with full confidence or not monitored. Let S = {S1, S2, . . . , Sm} be the
set of sensor nodes and T = {T1, T2, . . . , Tn} be the set of targets in a given
region. A sensor node located at (x1, y1, z1) can cover a target at (x2, y2, z2) if
the Euclidean distance between the sensor node and the target is less than or
equal to the sensing range sr.√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≤ sr (1)

A binary sensing model is given by,

STij =

{
1 if dij ≤ sr,

0 otherwise
(2)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. dij corresponds to the Euclidean
distance between Si and Tj

Probabilistic Sensing Model. The sensing range is not a disk in probabilis-
tic sensing models [4]. With probabilistic model, the probability that the sensor
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detects a target depends on the relative position of the target within the sen-
sors’ sensing range. Basically the probability of detecting a target is assumed to
diminish at an exponential rate with the increase in distance between a sensor
and that target. Probabilistic coverage applies with some kinds of sensors e.g.
acoustic, seismic etc., where the signal strength decays with distance from the
source, and not with sensors that only measure local point values e.g. tempera-
ture, humidity, light etc. [5].

As in [6], we use the following exponential function to represent the confidence
level in the received sensing signal:

STij =

{
e−αdij if dij ≤ sr,

0 otherwise
(3)

where 0 ≤ α ≤ 1 is a parameter representing the physical characteristics of
the sensing unit and environment.

The coverage of a target Tj which is monitored by multiple sensor nodes Sj

is given by,

STj(S j) = 1−
∏

Si∈Sj

(1 − STij) (4)

2 Related Work

Network performance metrics such as energy consumption, coverage, delay and
throughput etc. are affected by the position of sensor nodes. For example, large
distances between nodes weaken the communication links, lower the throughput
and increase the energy consumption [6]. It is always a challenging task to make
use of the available energy in a fair manner. The coverage requirement varies
from application to application. Q-coverage is one where each target may have
a different coverage requirement. Earlier work on Q-coverage problem [7][8][9] is
based on random deployment of nodes. The model under consideration is binary.
In such cases, sensor scheduling is a solution to maximize the network lifetime.
The method proposed by Gu et al. [7] is based on column generation, where
each column corresponds to a feasible solution. Chaudhary et al. [8] present a
greedy heuristic, High Energy and Small Lifetime (HESL), to generate Q-covers
by prioritizing sensors in terms of the residual battery life. Liu et al. [9] also
propose a heuristic for Q-coverage problem with scheduling as a solution.

Du et al. [10] propose to improve sensor network performance by deploying
some mobile sensors in addition to a large number of static sensors. Mobile
sensors are used to increase sensing coverage, provide better routing and con-
nectivity for sensor networks. The areas that equire better coverage are identified
and mobile sensors are moved towards that area. Shen et al. [11] propose Grid
Scan which is applied to calculate the basic coverage rate with arbitrary sensing
radius of each node. This approach is used to ensure k-coverage of the area and
it is used to provide better coverage with less nodes. A re-deployment approach
is used to obtain better coverage rate.
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Initial work on probabilistic coverage address area coverage problem [5][12].
In [12], the problem is formulated as an optimization problem with the objective
to minimize cost while all the points are covered with some required probabil-
ity. The minimum number of sensors that are to be activated to maintain the
required level of coverage is identified in [4].

Artificial Bee Colony (ABC) Algorithm [13] is an optimization algorithm
based on the intelligent foraging behavior of honey bee swarm. ABC algorithm
has been found to solve optimization problems efficiently. There are other algo-
rithms also based on the behavior of natural bees [14]. Compared to other swarm
intelligence based algorithms like GA, Particle Swarm Optimization (PSO), ABC
is observed to perform better [13]. ABC algorithm was applied to sensor deploy-
ment problem in irregular terrain by Udgata et al. [15]. Mini et al. used ABC
algorithm initially to solve simple coverage problem [16] and later to solve k-
coverage and Q-coverage problems [17]. The sensing model used in these prob-
lems is a binary sensing model, where a target is fully monitored or not at all
monitored.

The dynamic deployment problem in WSNs with mobile sensors on a binary
sensing model was solved using ABC algorithm [18]. Ozturk et al. [19] use ABC
algorithm to solve dynamic deployment problem in WSNs within the scenario
of mobile and stationary sensors on a probabilistic detection model. Andersen
et al. [20] consider sensor deployment in a three dimensional space to achieve
a desired degree of coverage and also to minimize the number of sensor placed.
Most of the existing works on sensor deployment address area coverage problem
in wireless sensor networks.

To the best of our knowledge, this is the first work to address sensor deploy-
ment for probabilistic target Q-coverage problem. This paper is an extension
to our earlier work [21] where we use artificial bee colony algorithm to solve
probabilistic target k-coverage problem.

3 Problem Definition

Given a set of n targets T = {T1, T2, . . . , Tn} located in U × V × W region
and m sensor nodes S = {S1, S2, . . . , Sm}, place the nodes such that T =
{T1, T2, . . . , Tn} is monitored by Q = {q1, q2, . . . , qn} number of sensor nodes
such that target Tj needs to be monitored by at least qj number of sensor nodes,
where 1 ≤ i ≤ n and with a total probability p such that the required sensing
range is minimum. The objective is to cover Tj with at least qj sensor nodes,
probability p and to minimize

F = ∀i((max(distance(Si, Hg)))) (5)

where H is the set of all targets monitored by Si, i = 1, 2, . . . ,m , g =
1, 2, . . . , h, where h is the total number of targets Si monitors.
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Algorithm 1. Proposed Method of sensor deployment for probabilistic sensing
model

1: Initialize the solution population B
2: Evaluate fitness ((Equation(5)))
3: Produce new solutions based on probabilistic Q-coverage
4: Choose the fittest bee
5: cycle = 1
6: repeat
7: Search for new solutions in the neighborhood
8: if new solution better than old solution then
9: Memorize new solution and discard old solution
10: end if
11: Replace the discarded solution with a newly randomly generated solution
12: Memorize the best solution
13: cycle = cycle+ 1
14: until cycle = maximumcycles

4 Proposed Method

Let B be the solution population in a region with stationary targets. Each so-
lution Ba = {(x1, y1, z1), (x2, y2, z2), . . . , (xm, ym, zm)} where a = 1, 2, . . . , nb ,
nb the total number of bees and m the total number of nodes to be deployed,
corresponds to a bee. The initial solution is generated in such a way that all the
targets can be probabilistically covered, and no sensor node is left idle without
contributing to probabilistic Q-coverage. Let Rj be the subset of sensor nodes
which can make each target Tj meet the required probability. If Rj satisfies Q-
coverage requirement of Tj , Tj is assigned to each sensor node in Rj . If it does
not satisfy Q-coverage, then identify the nearest nodes which do not belong to
Rj that can make Tj Q-covered, along with Rj . Tj is assigned to these new sen-
sor nodes in addition to Rj . Each sensor node is then placed at the center of all
the targets which are assigned to it. If some target will not be probabilistically
covered due to this shift of location, this move should not be allowed.

The fitness function used to evaluate the solutions is the euclidean distance
between each target and the sensor location to which it is associated. Each sensor
node is associated to a cluster, where a cluster corresponds to the set of targets
monitored by the sensor node. Let Di = (Di1, Di2, Di3) be the initial position of
ith cluster. F (Di) refers to the nectar amount at food source located at Di. After
watching the waggle dance of employed bees, an onlooker goes to the region of
Di with probability Gi defined as,

Gi =
F (Di)∑m
l=1 F (Dl)

(6)

where m is the total number of food sources. The onlooker finds a neighbor-
hood food source in the vicinity of Di by using,

Di(t+ 1) = Di(t) + δij × v (7)
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Table 1. Sensing Range for Probabilistic Target Q-Coverage

Sensing Range

α Probability Q Best Mean Standard Deviation

1-2 2.0616 2.0616 0
0.6 1-3 3.9751 4.0235 0.0439

1-4 3.9427 3.9547 0.0208
1-2 2.0616 2.0616 0

0.7 1-3 3.7723 3.8672 0.0836
0.05 1-4 3.9147 3.9761 0.0719

1-2 2.0616 2.0616 0
0.8 1-3 3.8876 3.9565 0.0815

1-4 3.8286 3.9514 0.1233
1-2 2.0616 2.0616 0

0.9 1-3 3.943 3.9721 0.0297
1-4 3.9254 3.9858 0.055
1-2 2.0616 2.0616 0

0.6 1-3 3.8579 3.9443 0.1061
1-4 3.9178 3.9591 0.0611
1-2 2.0616 2.0616 0

0.7 1-3 3.8544 3.9946 0.1216
0.1 1-4 3.8623 3.9178 0.1078

1-2 2.0616 2.0616 0
0.8 1-3 3.9269 3.9494 0.0264

1-4 3.9652 4.0359 0.0627
1-2 3.6976 3.9003 0.1771

0.9 1-3 4.0306 4.1559 0.1095
1-4 4.1482 4.3142 0.1648
1-2 2.0616 2.0616 0

0.6 1-3 4.0044 4.0378 0.0289
1-4 3.9331 3.9378 0.004
1-2 2.0616 2.0616 0

0.15 0.7 1-3 3.9766 3.9827 0.0061
1-4 3.9273 3.9803 0.0912
1-2 3.4953 3.6227 0.1207

0.8 1-3 3.8904 4.0533 0.168
1-4 3.9161 4.0423 0.1204
1-2 2.0616 2.0616 0

0.6 1-3 3.9354 3.9735 0.0449
0.2 1-4 3.8028 3.9391 0.1228

1-2 3.4768 3.5369 0.0941
0.7 1-3 3.9114 4.0044 0.1294

1-4 3.8978 3.9552 0.0516

The onlooker finds a neighborhood food source in the vicinity of Di by using
Equation 7. The solutions are never allowed to move beyond the edge of the
region. The new solutions are also evaluated by the fitness function. If any new
solution is better than the existing one, that solution is chosen and the old one
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Fig. 2. Sensing range requirement for 10x10x10 grid with α=0.1

is discarded. Scout bees search for a random feasible solution. The solution with
the least sensing range and that satisfies probabilisticQ coverage is finally chosen
as the best solution. The proposed scheme is shown in Algorithm 1.

5 Results and Discussion

The initial experiments are carried out on a 10x10x10 grid. 5 sensor nodes are
to be deployed to monitor 10 targets. The total number of bees (colony size) is
10, with half of them being employed bees and half onlookers. The number of
cycles is 500, limit for neighborhood search is 20 and the number of runs is 3.
MATLAB 2007a is used for implementation.

Since a probabilistic coveragemodel considers the effect of medium on the sens-
ing ability of a node, we vary the value of α. α is assumed to take values 0.05, 0.1,
0.15 and 0.2. The value of Q also affects the sensing range required. We vary Q-
values 1 to 2, 1 to 3 and 1 to 4. The required probability is set to 0.6, 0.7, 0.8 and
0.9. The sensing range required depends highly on Q. With α at 0.15, the targets
cannot be covered with a probability 0.9 and with α = 0.2, the targets cannot
be covered with a probability 0.8 or higher (Table 1). Figure 2 shows the sensing
range requirement for this set-up with α = 0.1. It can clearly be seen that for
the targets to be monitored with Q=[1,2], the sensing range required for coverage
with probability 0.6, 0.7 and 0.8 are the same. But when a higher probability of
0.9 is required, a noticeable increase in the sensing range is observed. When the
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Fig. 3. Sensing range requirement for 100x100x20 grid

Table 2. Sensing Range for Probabilistic Target Q-coverage (100×100×20 grid)

Sensing Range

Probability Q Best Mean Standard Deviation

1-2 28.0531 28.0764 0.0378
0.6 1-3 28.0543 28.0998 0.0517

1-4 28.0545 28.0560 0.0027

1-2 28.0538 28.0955 0.0422
0.7 1-3 28.0545 28.1372 0.0737

1-4 28.0545 28.1345 0.1386

1-2 28.0545 28.4431 0.3564
0.8 1-3 28.0545 28.4431 0.3564

1-4 28.0545 28.4431 0.3564

1-2 28.9500 29.2468 0.2888
0.9 1-3 28.9500 29.2468 0.2888

1-4 28.9500 29.2468 0.2888

value of Q is increased, the sensing range required for coverage with probability
0.6, 0.7 and 0.8 is much higher compared to that forQ=[1,2]. But there is no major
change in the sensing range requirement even for a higher probability requirement
of 0.9. The measured standard deviation shows that the method is a robust one.
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We also consider a 100 × 100 × 20 grid for experimentation to see how the
algorithm performs on a larger grid. Three instances of 100 targets being moni-
tored by 10 sensor nodes are considered. The results are reported as an average
of the sensing range required for these three instances. α is assumed to be 0.01.
Figure 3 clearly shows that there is no significant change in the sensing range
requirement for different values of Q. The slight variation in the sensing range
required can be seen in Table 2. With Q-coverage requirement, for probability
0.8 and 0.9, the sensing range required for Q values 1 to 2, 1 to 3 and 1 to 4
are the same. These results show that the algorithm is a reliable one even for a
larger grid.

6 Conclusion

In this paper, we consider deterministic deployment of sensor nodes for proba-
bilistic sensing model where the deployment locations are computed such that
the required sensing range is minimum and probabilisticQ-coverage requirement
is satisfied. Here, the number of sensor nodes is assumed to be limited. ABC al-
gorithm is used to computed the optimal deployment locations. We studied the
variation in sensing range for a range of detection probabilities (p), coverage
requirement (Q) and physical medium characteristics (α). The use of ABC al-
gorithm proves to be a reliable one since no significant change is observed in the
standard deviation of obtained sensing range among various runs for a larger
region or for higher values of Q. In future, we plan to study connected coverage
with probabilistic detection model.
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Abstract. In this paper a master-slave approach to chaos synchronization in 
commensurate fractional order (FO) Lü system has been studied via optimally 
designed fractional order Proportional Integral Derivative (PID) Controller. An 
optimization frame work based on integral time indices has been considered  
for tuning the unknown parametric constants of FOPID controller. The optimi-
zation task was carried out using bees swarm intelligent based Artificial Bee 
Colony algorithm. A comparative study based on conventional PID control 
scheme has also been performed to highlight the advantage of using fractional 
order controller for fractional order systems.  Simulation results presented for 
synchronization of chaos in two Lü systems supports the claim for proposed 
approach. 

Keywords: Attractor, Chaos, Lyapunov exponent, artificial bee colony, swarm 
intelligence. 

1 Introduction  

In a class of nonlinear dynamical systems, chaotic behavior can be found in systems 
that show different trajectories in the phase portrait for different initial conditions. 
Among many definitions for a system to exhibit chaos, the most widely accepted is 
that of Lyapunov exponents (corresponding to the states of the governing differential 
equation should be positive) [1]. In real time applications like secure communications, 
biological systems, information processing [2], synchronization of such chaotic sys-
tems with unequal initial conditions is necessary. Since last decade the concept of 
fractional calculus attracted researchers working in the area of physics and engineer-
ing applications. Though it is a 300 year old topic, it found its application in late 
1900. Many systems such as visco-elastic systems, electromagnetic waves etc., are 
known to exhibit fractional dynamics [3]. Recent studies also revealed that chaos exist 
in nonlinear systems those exhibit fractional order dynamics [4]. 
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Chaotic behaviors have been found in many systems of them which include Lorenz 
system, Chen system, Lü system, Rossler system etc [4]. Lü system acts as a bridge 
between Lorenz and Chen system and it represents transition from one to other. In this 
paper we considered chaos synchronization in two identical fractional order Lü sys-
tems governed by two different initial conditions. Synchronization has been done with 
the aid of external control action. Since the chaotic systems’ trajectories will deviate 
widely even for minute changes in initial conditions, external control action should be 
employed for faster synchronization. As the system considered has fractional charac-
teristics it is wise to use a controller having the similar characteristics. Hence we  
propose fractional order PID or PIλDμ controller for synchronization purpose. The 
concept of PIλDμ controller has been invented by Podlubny [5], it has five degrees of 
freedom for tuning to meet additional design specifications for complicated systems. 

A typical chaos synchronization problem can be considered as a master-slave or 
drive-response configuration. Traditionally integer order chaotic systems are imple-
mented with aid of conventional PID controller, fuzzy controller etc [6, 7]. The same 
approach has been implemented with help of fractional components. As it has 5 un-
known variables, designing an optimum FOPID controller requires fine tuning of 
parametric gains {KP, KI, KD, λ, μ} which in return calls for real parameter optimiza-
tion in five-dimensional hyperspace. Literature studies [17] and also our previous 
experiences [8] show the superior performance of recently evolved Artificial Bee 
Colony (ABC) algorithm for real world optimization problems. This superior perfor-
mance can be ascribed to its well organized exploitation and exploration phases [8].  

The rest of the paper is categorized as sections and is organized as follows. Section 
2 gives a brief introduction to the integral (differential) operators used in fractional 
calculus and their approximations. Section 3 describes the master slave chaos syn-
chronization framework with two FO Lü systems. In section 4 we discussed the de-
signing principles of PIλDμ and the objective function considered for tuning. Section 5 
provides the essential rudiments of ABC algorithm.  Section 6 presents the simulation 
results and comparisons with different controllers. Finally, this paper ends with con-
clusions and future scope in Section 7.  

2 Fractional Derivatives and Integrals: A brief  

A misnomer yet recently evolved as one of powerful tools in calculus i.e., Fractional 
Calculus is a generalization of differentiation and integration to a noninteger-order 
operator aDt

α. This continuous integro-differential operator is defined as 
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Where )(αR represents the real part of fractional order. There are many defini-

tions for general fractional differentiation and can be found in literature [4, 9]. The 
three most popular and frequently used definitions are the Grünwald-Letnikov (GL) 
definition, the Riemann-Liouville (RL) and Caputo definitions. It was also shown that 
for wide range of functions, these GL, RL and Caputo are equivalent under some 
conditions [10]. In this article we considered GL based definition for time based si-
mulation of FO chaotic Lü system. Further we also used Caputo definition for devel-
oping the controller for synchronization of chaotic systems (which will be explained 
in section 3). According to GL based definition for αth order integro-differential of a 
function can be written as 
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where [x] represents the integer part of x, a and t are the bounds for aDt
αf(t). The 

binomial coefficients in Eqn (2) can be calculated using Euler’s Gamma function and 
factorial judiciously, defined as 
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An equivalent relation to the explicit numerical approximation of q-th order deriva-
tive at points kh (k=1,2,…) has the following form [4]. 
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where Lm is the “memory length”, tk= kh, h is the time step and  cj
(q) (j=0,1,….) are 

binomial coefficients. These can be recursively calculated with following formula [4] 
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The general numerical solution of the fractional differential equation is given by 
)),(()(0 ttyftyDq
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Eqn (6) is used to evaluate the fractional derivatives involved in the Lü system.  

3 Master-Slave Synchronization of Chaotic Fractional Order 
Lü Systems 

According to [2], it is well known that a unified chaotic system may be represented by 
the following set of non-linear differential equations. 
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where 0<α<1. If the extreme values of α are considered i.e., for α=0 the system 
will be transformed to original Lorenz system and on the other hand for α=1 the sys-
tem represents the Chen system. Now for an intermediate value α=4/5 the system is 
known as Lü system which connects the aforementioned Lorenz and Chen system and 
represents the transition from one to another. The following equations represent con-
ventional Lü system 
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where (a,b,c)∈R3 are constant parameters and when these set equals (36, 3, 20) 
system (8) has a chaotic attractor [3]. Its generalization using fractional calculus with 
respect to time is given by Eqn (9)  
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where 13,2,10 ≤< qqq  are the derivative orders for x, y, and z respectively.  The 
above states are numerically evaluated using Eqn (6) with help of Eqn (4) and (5) The 
system defined by Eqn (9) has three equilibrium points at 

( ) ( ) ( )cbcbcEcbcbcEE ;:;;:;0;0;0 321 −−===  

The Eigen values for the Jacobian matrix (obtained via Eqn 9) evaluated at E1 E2 E3 
results in a saddle point and also two saddle-focus points [4]. Petras et al. suggested 
that, for the Eigen values obtained a minimal commensurate order to keep the system 
chaotic is q>0.915. As this paper deals with commensurate order we considered 
q1=q2=q3=0.95 and the obtained phase plots are depicted in Fig 1.  

The master-slave configuration of fractional order Lü system is represented in (9) 
and (10). Assuming that the system defined in 9 represents master then corresponding 
slave system is given in Eqn (9).  
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In Eqn (9), the control action u(t) is the output of an optimally tuned fractional or-
der PID controller and is given by 
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Here e(t) represents the error between state trajectory of any of the state of master 
and slave system for two different initial conditions. The following initial conditions 
have been considered for master and slave system respectively 

 
→=== }3.0,5.0,2.0{ 000 zyx Master system  

→−=== }5ˆ,10ˆ,20ˆ{ 000 zyx Slave system  

4 Optimal Design of PID/FOPID Controller  

4.1 Fractional Order Controller: A Brief  

The idea of a fractional order PID or FOPID controller derives its origin from the 
concept of fractional order differentiation and integration [11, 12]. Though popular 
definitions of fractional derivative like Grunwald-Letnikov and Riemann Loville de-
finitions are prevalent, in terms of fractional order systems Caputo definition is wide-
ly preferred [13]. This definition of fractional derivative is used to derive fractional 
order transfer function models from fractional order differential equations with zero 
initial conditions. According to Caputo’s definition the αth order derivative of a func-
tion f(t) with respect to time is given by following equation 
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Fig. 1. Phase portraits among different state variables for the fractional order Chaotic Lü System 

With an assumption of zero initial conditions the time domain operator αD can be 

simply represented in frequency domain as αs . A negative sign in the order of deriva-
tive (-α ) indicates a fractional integral operation. Hence the FOPID controller is a 
sum of fractional operators along with controller gains. The transfer function repre-
sentation of a FOPID controller is given in Eqn (13) 

 μ
λ sK

s

K
KsC D

I
P ++=)(  (13) 

This typical controller consists of three controller gains {Kp, KI, KD} and two more 
fractional order operators {λ,μ}. For Instance, if λ=1 and μ=1 Eqn (13) reduces to 
classical controller in parallel structure. In order to implement a controller of form 
Eqn (13), Oustaloup’s band limited frequency domain rational approximation tech-
nique has been used in this paper and also in most of FO control literatures [14]. 

4.2 Digital Realization of Fractional Orders  

The rationale behind the choice of frequency domain rational approximation of 
FOPID controller is that it can be easily implemented in real hardware using higher 
order analog or digital filters, corresponding to each fractional order differentiation or 
integration in FOPID controller. 

The infinite dimensional nature of fractional order differentiator and integrator in 
FOPID controller structure creates hardware implementation issues in industrial ap-
plication of FOPID controllers. However, recent research results demonstrated that 
band-limited implementation of FOPID controllers using higher order rational transfer 
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function approximation of the integro-differential operators give satisfactory perfor-
mance in industrial applications [15]. Oustaloup’s recursive approximation, which has 
been implemented to realize fractional integro-differential operators in frequency 
domain, is given by the following equation 
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Here the poles, zeros and gain of the filter can be recursively evaluated as: 

 

( )
12

1
2

1

+

+++









=

N

nk

b

h
bk

α

ω
ωωω ; 

( )
12

1
2

1

'
+

−++









=

N

nk

b

h
bk

α

ω
ωωω  (15) 

where q
hK ω= . In above equation set α is the order of the differ-integration, 

(2N+1) is the order of the filter and (ωb,ωh)is the expected fitting range. In the current 
study, 5th order Oustaloup’s recursive approximation is done for the integro-
differential operators within a frequency band of the constant phase elements (CPEs) 

as }10,10{ 22−∈ω rad/sec. 

4.3 Objective Function  

PID/FOPID controller parameters are tuned in optimal fashion such that drive gives 
optimal performance. For tuning of controllers, we considered two objective functions 
i.e., Integral Absolute Error (IAE); Integral Time Squared Error (ITSE) criterion. The 
optimal parameters of PID/FOPID controller are obtained by minimizing these objec-
tive functions via an optimization algorithm. Eqn (16, 17) represents the mathematical 
formulation of these objective functions 
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Every integral performance index has certain advantages in control system design. 
The squared deviations have been minimized with help of an optimization algorithm. 
Also the time multiplication term in above Eqn (17) enforces the synchronization 
error to be small at later stages. The squared term in the error index puts large penal-
ties for larger magnitudes of error than that with its absolute value resulting in high 
value of control signal. 
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5 Artificial Bee Colony Algorithm  

Artificial Bee Colony (ABC) algorithm is a stochastic optimization algorithm, in-
spired by the foraging behavior of honey bees. ABC was first proposed by Karaboga 
[16, 17] for optimization of multivariable and multi-modal continuous functions. As 
of remaining evolutionary and swarm based algorithms ABC algorithm consists of 
two phases i.e., exploitation phase taken care by employed & onlooker bee and explo-
ration phase taken care by scout bee [16]. In ABC algorithm, each solution  
corresponding to the problem is denoted as food source and is represented by a D-
dimensional real-valued vector; on other hand fitness of solution corresponds to the 
nectar amount of associated food source. The algorithm begins by initializing all em-
ployed bees with randomly generated food sources (solutions). The position of ith food 
source that corresponds to a solution in D-dimensional hyper space can be represented 
as [ ]iDiii xxxX ,...., 21= and it can be generated by following equation. 

 )(*)1,0( jjjij lbubrandlbx −+=  (18) 

Here, i=1,2,3…,FS; j=1,2,3…,D; FS is the number of food sources (equivalent to 
half to total number of bees) and D is the number of variables to be optimized; rand is 
a random number in the range (0, 1); ubj and lbj corresponds to upper and lower 
bounds of the jth

 dimension respectively. 
Initially, an employed bee tries to exploit in the vicinity of random food source as-

sociated to it and updates its step based on Eqn (19) 

 )( kjijijnew xxRxx −×+=  (19) 

where k is a randomly chosen index and ),...,2,1( FSk ∈ such that ik ∉ . R is a 

uniformly distributed random number in the range of [-1, 1]. As soon as xnew has been 
generated, a greedy mechanism is applied between xnew and its corresponding pre-
vious entity xij via fitness value. If the obtained new fitness value is better than the 
fitness value achieved so far, then the bee moves to this new food source discarding 
the old source. After all employed bees are done with local exploitation i.e, once em-
ployed bee phase is completed they share their information regarding food sources to 
onlooker bees. An onlooker bee selects a particular food source Xi based on the prob-
ability Pi defined as 
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fiti corresponds to fitness value of ith food source and as the chosen problem is a 
minimization problem fitness is calculated according to following equation. 

 
( ))(1

1

XJ
fiti +

=  (21) 



 Chaos Synchronization in Commensurate Fractional Order Lü System 465 

 

J(X) represents either J1 or J2 functions in this context. Based on above probability 
relation with respect to food source profitability onlooker tries to exploit a food 
source making use of Eqn (19) and similar greedy mechanism is performed. In the 
due course of iterative process, it may happen that a food source cannot be improved 
after N number of trials and this ultimately leads to delay in optimization process or 
leads to poor convergence. To eliminate this, an exploration scheme is been incorpo-
rated via scout bee. Each bee will search for a better food source for a certain number 
of cycles (limit), and if the fitness value does not improve then that particular bee 
becomes a Scout. Food source corresponding to that scout bee is abandoned and is 
initialized to random food source.  
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Fig. 2. Unsynchronized master and slave response of fractional order Lü systems 

6 Simulations and Results  

Fig. 2 depicts the responses of x, y, z of FO Lü system before synchronization. From 
the Fig 2 it is evident that for chosen initial conditions, master & slave response are 
showing wide deviations in their trajectories. This calls for design of good external 
controller for synchronization. To highlight the advantage of PIλDμ controller over 
PID controller we also designed PID controller and compared it with the former.  

6.1 J1 Objective Function Minimization Based Design of PID/FOPID 
Controllers 

J1 represents Integral Absolute Error (IAE) based objective function. Table I provides 
the parametric gains obtained for PID/FOPID controller and also we recorded mean 
(standard deviation) for 25 independent runs. From the Table 1 and Fig 3 (a) it is clear 
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that FOPID provided less synchronization error when compared with PID based con-
troller. Further from Fig 4 it is evident that with in less than 1 sec both the controllers 
are able to synchronize master response with slave response. On other hand a close 
look towards trajectory obtained in z state indicates that the synchronization was not 
good at earlier stages.  

 
 
 
 
 
 

 

 

Fig. 3. Convergence of PID/FOPID for (a) IAE (b) ITSE based objective function towards 
optimum 

6.2 J2 Objective Function Minimization Based Design of PID/FOPID 
Controllers 

J2 denotes Integral time squared Error (ITSE) criterion. Table I provide the parametric 
gains obtained for PID and FOPID controller including mean (standard deviation) for 
25 independent runs. In this approach also FOPID based design gave less objective 
function value than conventional PID controller. Controllers designed using this ob-
jective function criterion performed well to the previous one. Fig 5 shows the state 
trajectories for x, y, and z states of master and slave obtained using optimal PID and 
FOPID controllers.  

From the figures it is evident that all the state trajectories are synchronized with in 
no time unless J1 based design. Fig 3(b) shows the convergence of Artificial Bee co-
lony algorithm towards minimum for ITSE based design.  From Table 1, both J1 and 
J2 based design controllers indicate that there is less requirement of parameter gain 
KD. This can be better visualized in the case of FOPID controller where KD and asso-
ciated derivative operator obtained to be 0. The main advantage of FOPID is that it 
gives more degree of freedom and hence tuning controller for a system considered 
may result in normal proportional control to complex FOPID controller.  

Table 1. Comparision between IAE & ITSE based design  

 Kp KI KD λ μ Mean Std 

IAE-PID 20.000 20.000 0.6902 - - 0.2232 0.0118 
IAE-FOPID 19.9341 20.000 19.2890 0.9293 0 0.1201 0.0016 
ITSE-PID 9.0562 20.000 0 - - 0.0731 0.0020 
ITSE-FOPID 8.5789 20.000 0 0.9734 0 0.0684 1.55e-5 

 

(a) (b) 

0 100 200 300 400 500
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

NFEs

J 2(
m

in
)

 

 

ITSE-PID

ITSE-FOPID

0 100 200 300 400 500
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

NFEs

J 1(
m

in
)

 

 

IAE-FOPID

IAE-PID



 Chaos Synchronization in Commensurate Fractional Order Lü System 467 

 

0 1 2 3 4 5 6 7 8 9 10
-20

-10

0

10

20

A
m

pl
itu

de
 o

f 
x

 

 

Master Slave-PID Slave-FOPID

 

0 1 2 3 4 5 6 7 8 9 10

-20

-10

0

10

20

30

A
m

pl
itu

de
 o

f 
y

 

 
Master Slave-PID Slave-FOPID

 

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

20

30

40

50

Time (sec)

A
m

pl
itu

de
 o

f 
z

 

 

Master Slave-PID Slave-FOPID

 

Fig. 4. Synchronization of the state trajectories for IAE based Controllers 

0 1 2 3 4 5 6 7 8 9 10
-20

-10

0

10

20

A
m

pl
itu

de
 o

f 
x

 

 

Master Slave-PID Slave-FOPID

 

0 1 2 3 4 5 6 7 8 9 10

-20

-10

0

10

20

30

A
m

pl
itu

de
 o

f 
y

 

 

Master Slave-PID Slave-FOPID

 

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

Time (sec)

A
m

pl
itu

de
 o

f 
z

 

 

Master Slave-PID Slave-FOPID

 

Fig. 5. Synchronization of the state trajectories for ITSE based Controllers 

7 Conclusions  

In this paper we propose an optimal fractional order controller design for chaos syn-
chronization in two identical fractional order Lü systems. Swarm intelligence based 



468 A. Rajasekhar, S. Das, and S. Das 

 

Artificial Bee Colony algorithm has been employed to obtain optimal parametric gains 
via minimizing an objective function. A conventional PID controller has also been 
designed and its performance is compared with proposed approach. From the simula-
tions and results it was clear that FOPID controller outperformed PID controller, which 
suggest that a fractional system indeed require a fractional control signal. Our future 
research would focus on designing control schemes for chaos synchronization in-
commensurate systems and also for hyper chaotic systems. 
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Abstract. Large scale optimization problems or optimization problems involv-
ing high-dimensions often appear in real world application scenario. The ma-
thematical representation of these problems appears similar to that of traditional 
low dimensional problems but they exhibit high interdependencies among the 
variables to be optimized. Hence normal evolutionary algorithms or swarm in-
telligence based methods cannot be directly operated on these problems to find 
global optimum. In these situations, cooperating approaches are proved to be 
very valuable, since they are based on though simple yet power strategy “divide 
and conquer”. Though handy, computational burden of cooperative approach 
oriented methods will be high, as they involve optimization of various subcom-
ponents for predefined number of steps. On other hand, recently evolved Micro 
Evolutionary Algorithms (micro-EAs) are shown to be very powerful strategies 
for solving optimization problems, as they involve very small population of just 
a few individuals.  This advantage of micro-EA is accompanied by its tendency 
towards to get stuck in local optima. Hence this paper tries to combine the ad-
vantages of both cooperative strategies and also micro-EAs nature accompanied 
with a swarm intelligent Artificial Bee Colony (ABC) algorithm as main opti-
mizer, to solve optimization problems of very high dimension.  The proposed 
variant is termed as “Cooperative Micro-Artificial Bee Colony” (CMABC)  
algorithm. Computer simulations over benchmark suite considered and also  
extensive comparisons over cooperative variants of state-of-art Differential 
Evolution method show the superiority of proposed algorithm. 

Keywords: cooperative approach, global optimization, large scale optimization. 

1 Introduction 

Curse of dimensionality is one of the serious problems in the field of optimization and 
often poses very difficult situation for normal evolutionary algorithm to tackle prob-
lems of high-dimension. Although many strategies for solving these kind of problems 
are initiated, propagated and developed, Cooperative Evolutionary Algorithms 
(CEAs) are proven to be one of best and powerful methods for solving intriguing 
large scale problems [1, 2]. CEAs follow a simple principle based on “divide and 
conquer” strategy, in which a problem of high-dimension is divided in to low-
dimensional subcomponents. A huge number of cooperative populations attack these 
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low-dimensional components and evolve them concurrently [3]. Cooperation among 
subpopulations (populations that are used to evolve subcomponents) is responsible for 
exploring hidden landscapes and builds complete solution to the problem considered. 
CEA includes Genetic Algorithms (cooperative coevolutionary Genetic Algorithms) 
[2], Particle swarm optimization methods (CCPSO) [4, 5], Differential Evolution 
(COMDE) [3, 6], Artificial Bee Colony algorithms [7, 8]. Literature studies also  
reported various schemes that are to be considered while dividing dimensions,  
populations and they can be found in [5, 6].  

On foil, another interesting class of algorithms frequently used for large-scale high 
dimension optimization problems consists of micro-EAs, which are instances of typi-
cal EAs characterized by small population size and often simple fitness. Initially they 
are applied to problems comprising dimensions in proportionate with their population 
size. Recently with help of some added heuristics they are also used to tackle very 
high dimension problems [9. 10, 11]. Search stagnation and attraction towards local 
optimum can be identified as main drawback of micro-EAs and it is primarily caused 
by their population size, which ultimately limits their exploration capability. Hence, 
efficiency is limited in high dimensions problem and becomes serious issue in com-
plex and problems having strong interdependencies among variables. To overcome 
these kind of sprouting problems micro-EAs are usually combined with diversity-
preserving schemes, so that the algorithm will not converge to same solution  

To combine advantages of cooperative approaches and rapid convergence of micro-
EAs we suggest a new algorithm termed as “Cooperative Micro Artificial Bee Colony” 
(CMABC) algorithm. Artificial Bee Colony algorithm is a newly evolved swarm intel-
ligent (SI) algorithm extensively used for optimization problems ranging from numeri-
cal function optimization to real world problems [15]. This method has outperformed 
existing state of art evolutionary algorithms and remained to be one of the best contend-
ers among EAs and SI algorithms. In this context, large scale problems involving very 
high dimensions are partitioned into low-dimensional subcomponents and each sub-
component is handled by ABC algorithm employed with small population. Information 
sharing among subpopulations helps in constructing complete solutions for evaluation 
of each individual with the original objective function.  A benchmark suite comprising 
of 5 test functions are considered to verify the performance of proposed approach and 
also CMABC is compared with conventional ABC method and also two cooperative 
variants of DE. Highly promising results over the compared methods followed by good 
convergence shows the superiority of proposed method.  

The rest of paper is organized as follows: Section 2 deals with the rudiments of 
ABC algorithm. In Section 3 CMABC approach is unfold, followed by experimental 
results in Section 3. A brief discussions over the results obtained are provided in Sec-
tion 5. The paper concludes while unfolding future research focus in Section 6. 

2 Artificial Bee Colony Algorithm 

Artificial Bee Colony (ABC) algorithm was first proposed and developed by Karabo-
ga [12, 13] for solving numerical optimization problems [14].  Since its inception in 
2005, ABC has been evolved in to a very powerful optimization tool in the field of 
swarm intelligence. As that of rest of swarm intelligent based methods like PSO, 
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ACO, BFO it is also a population-based stochastic optimization algorithm, which 
proceeds through iterations. Till now ABC remained one of the best competitors in 
optimizing various real world practical optimization problems ranging from 2-D PI 
controller problem to 150-D economic load dispatch problem. A comprehensive view 
of its developments and applications can be found in references cited [15].  

This nature inspired method based on bees foraging strategy classifies bees into 
three groups namely employed bees, onlooker bees and scout bees. A colony of bees, 
say 2*n number of bees are equally distributed between employed and onlooker bees. 
A one-to-one mapping is associated between a food source and employed (onlooker) 
bee. An employed bee of abandoned food source becomes scout. ABC algorithm has a 
well constructed exploitation phase (carried out by employed and onlookers) and good 
exploration strategy (by scout). The underlying concept of ABC algorithm is summa-
rized below. 

1. Foragers equal to half of total number of bees are randomly employed to 
search the potential food sources.  

2. A local exploitation will be initiated by a forager, if it visits a profitable food 
source and is termed as employed bee. It also retains position of food source.  

3. After performing substantial amount of exploitation task, employed bees re-
turn to hive and then they share information about food sources with onlooker 
bees via waggle dances.   

4. Based on dances (here equality profitability of food source) an onlooker 
chooses an employed bee food position. Now onlookers start to act as em-
ployed and employed bees (returned to hive) will be termed as onlookers. 

5. Now the newly evolved employed bees start to exploit the potential areas. 
This process is repeated until all the onlookers are ready with new positions.  

6. In due course of time it may happen that a source pertaining to an employed 
bee may be exhausted and eventually it is abandoned. The bee associated to 
abandoned source is termed as scout and it starts to explore new areas.  

ABC algorithm begins by initializing all employed bees to randomly generated 
food sources (solutions) in a search space. In a n-dimensional hyper space, the position 
of a food source corresponding to ith employed bee can be represented as  

[ ].,...., 21 iniii xxxX =  and is generated by Eqn (1) 

 )()1,0( jjjij lbubrandlbx −×+=   (1) 

Here, i=1,2,3…,FS; j=1,2,3…,n; FS is the number of food sources and n is the 
number of variables to be optimized; rand is a random number in the range (0, 1); ubj 

and lbj corresponds to upper and lower bounds of the jth
 dimension respectively. 

As discussed in Step 2, an employed bee tries to exploit the randomly visited food 
source and it updates its step using following Eqn.  

 )( kjijijnew xxRxx −×+=  (2) 
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where a randomly chosen index ),...,2,1( FSk ∈ such that ik ∉ . R is a uniform-

ly distributed random number in the range of [-1, 1]. Each employed bee performs 
greedy mechanism after updating its position. This mechanism is applied between xnew 
and its corresponding previous entity xij via fitness value. If the obtained new fitness 
value is better than the fitness value achieved so far, then the bee moves to this new 
food source discarding the old source. This will help the bees to retain best values 
every time and will drive the algorithm to converge much faster. After successful 
completion of exploitation task, employed bees share their information regarding food 
sources to onlookers. An onlooker bee selects a particular food source Xi based on the 
probability Pi defined as 
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fiti corresponds to fitness value of ith food source and as the chosen problem is a 
minimization problem fitness is calculated according to following equation. 
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F(X) corresponds to objective function to be minimized. Eqn (4) has been consi-
dered because the present objective of study is minimization and the algorithm has 
property of finding maximum profitable food source (solution). Hence Eqn (4) is used 
and for maximization directly fiti represents objective function value. Based on above 
probability relation (3) with respect to food source profitability, onlooker tries to  
exploit a food source making use of Eqn (2) and similar greedy mechanism is  
performed. The above two phases i.e., employed bee and onlooker bee phases are 
performed in round robin fashion.  

As said before, in due course of iterative process, it may happen that a food source 
cannot be improved after N number of trials and this ultimately leads to delay in op-
timization process or leads to poor convergence. To eliminate this, an exploration 
scheme has been incorporated in the algorithm via scout bee. Each bee will search for 
a better food source for a certain number of cycles (limit), and if the fitness value 
doesn’t improve then that particular bee becomes a Scout. Food source associated to 
the scout bee is abandoned and is initialized to random food source. In this version 
only on scout bee has been considered. This process is continued till the termination 
criterion is reached or required solution is obtained. 

3 Cooperative Micro Artificial Bee Colony Algorithm 

Cooperative Micro Artificial Bee Colony algorithm or simply CMABC involves con-
cept of Cooperative Evolutionary Algorithms (CEAs), Micro Evolutionary Algo-
rithms (Micro-EAs) and Artificial Bee Colony Algorithm. Following the pioneering 
work of Parsopoulos [3], these strategies when combined judiciously will produce 
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fruitful results. A micro-ABC will be discussed first and later cooperative methods 
link to this micro ABC resulting in CMABC. 

Micro-ABC shares its similarities with its parent algorithm ABC. The only differ-
ence is the size of population, which is very small when compared to normal method. 
As food sources (solutions) has to be equally distributed among employed and on-
lookers a population size of NB=6, can be of good choice [11]. Not only Micro-ABC 
any Micro-EA will have a hidden advantage and an explicit disadvantage (which has 
to be rectified). Due to less number of population, Micro-ABC is expected to con-
verge rapidly to optimum (may or may not be global optimum). As mentioned in [3], 
the ratio of n/NB, is measure of hardness met by an algorithm for a problem consi-
dered. Literature studies and experimental results suggest that in many situations 
higher the ratio (>1) much harder the problem becomes for an algorithm. Hence the 
disadvantage of Micro-ABC is that it can be well suited for low-dimension problems.  

This particular disadvantage can be alleviated by incorporating cooperative scheme 
in to Micro-ABC, which results in CMABC method. A divide and conquer approach 
has been used and it is represented by following set of equations. The original dimen-
sion of problem is decomposed in to small groups. Let 

knnn ,....,, 21 be K positive 

integers such that  
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Here n corresponds to the dimension of problem considered. So, from the above 
equation it is clear that a solution vector of original problem can be divided into K sub 
components. Each subcomponent is addressed by different subpopulation, Pi of size 
NBi, and dimension equal to ni, i=1, 2,3…K. Hence, each subpopulation is given a 
task of minimizing its corresponding subcomponent, which has dimension very much 
less than the original problem dimension. Thus maintaining a good n/NB ratio.  

As the subcomponent dimension differs from original dimension, one more hurdle 
met by algorithm is how to evaluate the individual with respect to an objective func-
tion? This problem can be approached by using a mechanism termed as information 
sharing, in which a buffer memory is created. All the subpopulations deposit their best 
individuals in this buffer memory. It is occasionally referred as context vector and it is 
defined as an n-dimensional vector, and is defined as 

( )nbmbmbmBM ,...,, 21= where each subpopulation deposits its contribution in its 

respective kth position. Suppose, if: 

 ( )][][
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is the nk-dimension vector contributed by the kth subpopulation, Pk, k=1,2,…,K, 
then the context vector or buffer solution is given by  

 [ ]][]2[]1[ ,...,, KbsbsbsBM =  
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   Hence, the ith sub individual of the jth subpopulation is defined as  
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 This ith individual is evaluated using the buffer vector, BM, by substituting the 
components associated to jth subpopulation in the corresponding jth position of buffer 
vector, where remaining components get unaffected. 
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context vector of form 
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 The pseudo code of proposed method is presented below and an example value of 
subcomponent calculation is provided in section IV. 

Pseudo code of CMABC  

Input:  K /* number of subpopulations*/    NBi /* size of subpopulation*/ 

      ni /* dimensions of subpopulation*/ i=[1,2,…,K]*/ 

  M /* Context Vector*/ 

1. Initialize subpopulation randomly 

2. Initiate context vector BM using above strategy 

3. While (iterations!=maximum) 

      For k=1 to K 
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           For i = 1 to NBk 

1. Update individual ][k
ix  with ABC Employed (onlookers) and 

scout bees.  Evaluate )( ][k
ixf and )(BMf  

2. Apply Greedy mechanism for the above 

 ][k
ix and pass components to context vector 

           End 

       End  

End While 

4.  Record the solutions and print them  

4 Experimental Section 

As the proposed method derives its origin from a variant of DE a test suite similar to the 
DE was chosen so that comparison would be fare. A high-dimensional test suite was 
considered and the specifications are tabulated in Table 1. To highlight the advantages 
of CMABC we also compared it with normal ABC and also two cooperative variants of 
DE [3]. The parameters involved in this search process are recorded in Table 2. 

Table 1.   Benchmark Problems 

Function Range

Sphere (F1) [-100, 100]n

Rosenbrok (F2) [-30, 30]n

Rastrigin (F3) [-5.12, 5.12]n

Griewank (F4) [-600, 600]n

Ackley (F5) [-20, 20]n

Table 2. CMABC and ABC algorithm parameters 

Parameter Description Value

NBk subpopulation size# 6

FSk Food sources NBk 

nk subpopulation dimension 5

max_iter maximum iterations 1000

limitCMABC limit parameter for ABC (NBk/2)*nk 

limitABC limit parameter for ABC 200
#equally distributed among employed and onlookers 



476 A. Rajasekhar and S. Das 

 

As discussed earlier that ABC will follow one-to-one mapping between bee allot-
ted and food source. Hence food source will be equal to half of total size of colony. 
Parameter limit plays key role in exploration point of view; a random value leads to 
poor performance of algorithm. Our previous studies state that if limit is set to product 
of employed bee and total dimension of problem, the results will be extremely good. 
Hence we applied similar strategy to CMABC as well, on other hand this concept will 
not come handy in ABC method (used for comparison in current study) as the itera-
tions are less and the value of limit will be more than the iterations hence an optimum 
value of 200 is chosen [13]. The dimensions considered are in the multiples of 300 
and individuals obtained are multiples of 360, hence ratios will be of integers and also 
aforementioned ratio will be less than 1 for both ABC and CMABC. 

Table 3.  Dimensions, Sobpopulations, Total Individuals  

Problem 
Dimension 

Total number of 
individuals 

Total number of 
subpopulations 

300 360 60

600 720 120

900 1080 180

1200 1440 240

 
Example 1: Consider a problem having dimension 300, for this problem based on 
Table 2 parametric set up following calculations can be obtained.  

 n or 1D=300; (dimension of problem) 

 K=n/nk=300/5=60; (total of K subcomponents) 

 Total Individuals=K*NBk=60*6=360; 

 No. of Employed (onlookers-CMABC)=NB/2=6/2=3;  

 limitCMABC=(NBk*nk)/2=(6*5)/2=15; 

 

 

 

 

 

 

                     Fig. 1a Convergence of ABC w.r.t F1          Fig. 1b Convergence of ABC w.r.t F1 
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                Fig. 2a Convergence of ABC w.r.t F2     Fig. 2b Convergence of ABC w.r.t F2 

 
 
 
 
 
 
 
 
 
 

         Fig. 3a Convergence of ABC w.r.t F3           Fig. 3b Convergence of ABC w.r.t F3 

 
 
 
 
 
 
 
 

 

Fig. 4a Convergence of ABC w.r.t F5             Fig. 4b Convergence of ABC w.r.t F5 

5 Discussions  

Fig 1-4 provides the convergence plots for ABC method and CMABC methods (for 
various dimensions) respectively. For each and every instance ABC method faced a 
serious problem in converging towards optimum. From Fig 1(a)-4(a) it is also evident 
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that convergence deteriorated with increase in dimensionality, which is known as 
“curse of dimensionality” discussed in previous sections. More over for dimension 
above 1000 the convergence is very poor and is almost linear. On the other hand Fig 
1(b)-4(b) depicts the convergence characteristics of CMABC method over dimensions 
ranging from 300-1200, from sphere function to Ackley function it is clear that con-
vergence is not much affected with the increase in dimensions. This is mainly due to 
the added advantage of cooperative nature followed by micro nature of algorithm, 
which drives algorithm towards optimum more rapidly. Table 4-Table 8 provides the 
Mean (Std) results obtained for 25 independent test trails, for ABC and CMABC. To 
showcase the advantage of CMABC two cooperative micro variants of DE [3] are 
also compared. Tabular values reflect the superior performance of CMABC in all the 
cases considered 

The only parameter that has to be chosen in the CMABC is the total size of popula-
tion, where as for COMDE (variant of DE used for comparison) apart from size of 
population scaling factor F, followed by crossover rate CR, has to be chosen optimal-
ly. These two factors play a key role in DE and hence used should be careful in 
choosing values that balance harmonious relation. In CMABC limit is set as function 
of population and dimensionality and hence there will not be any difficulty in choos-
ing optimal value. Also with help of limit parameter the subpopulation will have good 
exploration capability along with exploitation. For instance, a 300-D problem decom-
posed in to 60 subcomponents each having 5-subdimensions will have limit value 
equal to 15 (NB/2 * nk). Hence each individual in a subpopulation will be subjected to 
a trail check for every 15 iterations and if any of them is not able provide better value; 
a scout mechanism is carried out.  

These hidden advantages in proposed strategy cumulatively sum up to give highly 
promising results over the rest of them. The performance of proposed method can be 
further improved by providing adaptive nature for grouping of subcomponents.     

Table 4. Sphere Function: Mean and Standard Deviation (std) values obtained for CMABC & 
comparative methods  

Dim(D) ABC CMABC COMDE1 COMDE2 

300 
2.7302e+04 
(9.5946e+03) 

1.9867e+04  
(8.9724e+02) 

8.6876e+04 
 (1.5732e+04) 

9.3599e+04  
(2.2051e+04) 

600 
4.4255e+05  
(1.9077e+04) 

4.0964e+04  
(1.9525e+03) 

1.8909e+05  
(2.0218e+04) 

2.0026e+05  
(3.4124e+04) 

900 
1.0821e+06  
(2.4272e+04) 

6.1087e+04  
(3.9624e+03) 

2.7960e+05  
(2.6643e+04) 

3.1485e+05  
(4.5966e+04) 

1200 
1.8816e+06  
(5.6735e+04) 

7.8102e+04 
 (1.6795e+03) 

3.5644e+05 
 (2.8171e+04) 

4.1765e+05 
 (3.6677e+04) 
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Table 5. Rosenbrock Function: Mean and Standard Deviation (std) values obtained for 
CMABC & comparative methods  

Dim (D) ABC CMABC COMDE1 COMDE2 

300 
1.1151e+07 
(9.4697e+06) 

2.9605e+06 
(2.0675e+05) 

1.2478e+08 
(4.4738e+07) 

1.7087e+08  
(3.9198e+07) 

600 
1.2815e+09 
(2.0128e+08) 

5.7833e+06 
(7.1771e+05) 

2.5380e+08 
(6.8593e+07) 

4.0705e+08  
(6.5600e+07) 

900 
3.7998e+09 
(2.0632e+08) 

9.6210e+06 
(6.5142e+05) 

3.7215e+08 
(6.9986e+07) 

6.2499e+08 
 (9.1419e+07) 

1200 
7.2564e+09 
(2.3577e+08) 

1.1329e+07 
(2.5777e+05) 

5.1075e+08 
(8.6568e+07) 

8.7136e+08 
 (8.9369e+07) 

Table 6. Rastrigin Function: Mean and Standard Deviation (std) values obtained for CMABC 
& comparative methods 

Dim (D) ABC CMABC COMDE1 COMDE2 

300 
1.0493e+03 
(1.9893e+01) 

8.6733e+02  
(9.4350e+00) 

1.6969e+03  
(9.6112e+01) 

1.4579e+03 
 (1.1371e+02) 

600 
4.1560e+03 
(1.0854e+02) 

1.7383e+03  
(9.6776e+01) 

3.3438e+03  
(1.6715e+02) 

3.4638e+03 
 (1.2190e+02) 

900 
8.3384e+03 
(7.2774e+01) 

2.5386e+03  
(3.7478e+01) 

5.0532e+03 
 (2.1358e+02) 

5.6513e+03  
(1.7424e+02) 

1200  
1.2702e+04 
(2.4585e+02) 

3.4110e+03  
(4.6170e+01) 

6.6904e+03 
 (1.6206e+02) 

7.8643e+03 
 (2.1178e+02) 

Table 7. Griewank Function: Mean and Standard Deviation (std) values obtained for CMABC 
& comparative methods 

Dim (D) ABC CMABC COMDE1 COMDE2 

300 
2.8539e+02 
(7.9797e+01) 

1.8944e+02  
(1.5891e+01) 

8.2556e+02  
(1.4660e+02) 

8.5437e+02 
 (1.8164e+02) 

600 
3.9453e+03 
(2.2046e+02) 

3.5998e+02  
(2.7179e+00) 

1.6579e+03  
(1.2883e+02) 

1.9105e+03 
 (2.7263e+02) 

900 
9.9258e+03 
(1.2836e+02) 

5.2569e+02 
 (2.2904e+01) 

2.4738e+03 
 (2.1885e+02) 

2.7540e+03 
 (2.9849e+02) 

1200  
1.6818e+04 
(2.7895e+02) 

7.1089e+02 
 (2.8326e+01) 

3.3135e+03 
 (2.4706e+02) 

3.7251e+03 
 (3.6052e+02) 

Table 8. Ackley Function: Mean and Standard Deviation (std) values obtained for CMABC & 
comparative methods 

Dim (D) ABC CMABC COMDE1 COMDE2 

300 
1.2824e+01  
(4.7000e-01) 

8.3703e+00 
 (1.5077e-01) 

1.3792e+01  
(5.1525e-01) 

1.3949e+01  
(6.2472e-01) 

600 
1.7399e+01 
 (1.1987e-01) 

8.3690e+00  
(1.1231e-01) 

1.3651e+01  
(3.6977e-01) 

1.4605e+01  
(3.6721e-01) 

900 
1.8783e+01 
 (9.1087e-02) 

8.3266e+00 
 (7.0677e-02) 

1.3741e+01 
 (4.2847e-01) 

1.4902e+01  
(3.2222e-01) 

1200 
2.0779e+01 
 (7.5031e-02) 

8.3405e+00 
 (6.3217e-02) 

1.3794e+01  
(3.0914e-01) 

1.5002e+01  
(2.6469e-01) 
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6 Conclusions  

A cooperative frame work imbibed with micro nature of Artificial Bee Colony is pro-
posed and suggested for solving large scale optimization problems. The algorithm is 
made parameter free (trial and error) and the advantages of proposed method are vali-
dated on a benchmark suite. From the results obtained and comparisons with reported 
results it is very clear that CMABC proved to be very valuable tool for problems of 
high dimensions. As suggested by Li [5] random grouping methods may also be use-
ful for these kinds of methods.  Our future research will focus on strengthening the 
proposed approach for solving non-separable functions and also few real world intri-
guing problems as well. Exploitation schemes based on Cauchy and Gaussian muta-
tions and their extensions to CAMC are also subject of interest. 
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Abstract. In this paper, an improved Genetic Algorithm (GA) is proposed for 
solving multicast routing problem by optimizing combined objectives of net-
work lifetime and delay. This algorithm employs Genetic Operator combination 
(GOC) and immigrant strategies. The GOC contains modified topology  
crossover, node and energy mutations. Immigrant strategies are the specific re-
placement operators designed for dynamic optimization problems and it is natu-
rally suited for multicast routing in ad hoc networks. The random immigrant 
with random replacement, random immigrant with worst replacement, elitism 
based immigrant and hybrid immigrant strategies are combined with GOC indi-
vidually, and formed four different algorithms. The performance of these  
algorithms is evaluated in different size networks through simulation.  The re-
sults of the proposed algorithms are compared with other existing algorithms 
using nonparametric statistical tests with average ranking. These test results en-
dorse that the proposed algorithms improve the performance of GA in solving 
multicast routing problems effectively. 

Keywords : Ad Hoc Networks, Multicast Routing, Genetic Operator Combina-
tions (GOCs), Immigrant Strategies. 

1 Introduction 

Ad hoc networks are decentralized infrastructure less networks. The topology of this 
network is changes depending on the nodes mobility. The communication between 
two nodes is carried out either directly or with the help of intermediate nodes which 
belong to the same network and is influenced by the nodes transmission range. This 
network facilitates numerous applications like video conferencing, military, vehicular 
network, content distribution and aquatic applications [1]. Ad hoc networks are cha-
racterized by non-restricted mobility and easy deployment, which make them very 
popular [2]. Multicasting [3, 4] is one type of service in ad hoc networks where the 
source node sends the message to many sinks through more than one path. The life of 
the ad hoc network depends on the individual node’s residual battery. If the battery 
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power consumption is high in any one of the nodes, the chances of network’s life 
reduction due to path-breaks are also more. This may lead to packet loss during pack-
et forwarding in the multicast network [5]. The objectives considered in multicast 
routing problem include minimization of routing cost [6], minimization of link delay, 
maximization of the network lifetime, and maximization of the throughput [7]. The 
constraints in multicast routing problem are loop formation [8], link breaks [9], fixed 
bandwidth, fixed end-to-end delay and fixed link capacity [10]. Multicast routing is a 
Non-deterministic Polynomial (NP) hard problem for large scale and wide area net-
work [11].  

Many researchers have applied Genetic Algorithm (GA) for solving multicast 
routing with various coding and genetic operators [12-17]. The performance compari-
son of ST and Prufer coding for various crossover and mutation methods are dis-
cussed in [13-16]. The performance of GA is also depends on genetic operators used 
for the particular coding adopted. Karthikeyan et al. have proposed different genetic 
operators such as Modified Topology Crossover (MTC), Energy-II and Energy-III 
mutations and Genetic Operator Combinations (GOCs) for improving the perfor-
mance of GA for multicast routing problems. Recently, to improve the performance 
of GA, different immigrant strategies have employed for handling Multicast routing 
and similar optimization problems. Tinos et al. have proposed Random Immigrants 
Genetic Algorithm (RIGA) for this problem. Yang et al. have proposed Elitism based 
Immigrant Genetic Algorithm (EIGA) to overcome the drawback of the RIGA in a 
slowly changing environment.  

In this paper, an improved Genetic Algorithm (GA) with GOC and immigrant 
strategies is proposed for solving multicast routing problem. The immigrant strategies 
such as Random Immigrant (RI) [18], Elitism based Immigrant (EI) and Hybrid Im-
migrant (HI) [19] are considered in the proposed framework.  These immigrant strate-
gies are combined with GOC and formed several algorithms. Simulations are carried 
over in different networks. The obtained results of the proposed algorithms are com-
pared with existing algorithms using non parametric statistical tests such as Friedman, 
Aligned Friedman and Quade [20].  

The remainder of this paper is organized as follows: Section 2 discusses the  
problem description. Section 3 explains the proposed genetic algorithm. Section 4 
elaborates the simulation results and finally Section 5 contains the conclusions and 
future work. 

2 Problem Description 

Assume that a network is represented as a graph G = (N.L), where N and L denote the 
set of nodes and links, respectively. The sample weighted graph of ad hoc network 
model is given in Fig. 1. The nodes are labeled as 1, 2, 3… n.  
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Fig. 1. Graph 

Let s ϵ N be the source and   be the set of destinations. In a multicast 
tree T(s,M), the total number of nodes is denoted as | |, the total number of links is 
denoted as | |. The multicast tree T(s,M) can be generated from the nodes of graph G 
through which the source will send the message to multiple destinations. Multicast 
routing is a challenging service of ad hoc networks. Based on the paths and the 
routing parameter, a multicast tree is generated from the graph. In this work, lifetime 
of the multicast tree and the delay of each link are considered as routing metric. The 
delay function is defined as ( ): . R+ is the set of positive real numbers. 
The total delay of the network is given in Eq. (1). 

 ( , ) = ∑ ( )∈ ( , )  (1) 

(i, j) denotes a link with node i and j  which can transmit a packet to each other with a 
transmission power less than the maximum transmission power at each node, where  ( , ) ∈  . The set of nodes connected to node i by links is denoted as Degi. Each 
node i is assumed to have Residual Battery Energy RBEi. Let denote the flow (in 
datagram units/s) from node i to node j. Assume that the energy consumption of node 
i to transmit a unit of datagram to node j is . Based on the assumption that and 

values for all the nodes are same, the datagram flow rate Cij is equated to the prod-

uct of and . i.e. = ∗ Λ . The lifetime of node i is given in Eq. (2). 

 = ∑  ∈  (2) 

The total network life time of the network is given in Eq. (3). 

 =  ∈  (3) 

In Fig. 1, node 2 is considered as a source node, and nodes 5 and 8 are designated as 
destination nodes. There are many paths to reach the destination nodes from the source 
node. Sample paths include [2-4-8, 2-3-5], [2-1-4-8, 2-3-4-5] etc. This can be obtained 
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by forming spanning trees with source node as the root and destination node as one of 
the leaf nodes as given in Fig. 2. Li is the location index given near each node.  

 

 

Fig. 2. Spanning Tree for the graph in Fig.1  

From the tree, the paths to reach the destinations are identified. Then delay and net-
work life time are calculated for evaluating the set of spanning trees. When calculating 
the path from the source to multiple destinations, battery power of the source node is not 
taken into account. It is assumed that the source node contains unlimited power. The 
node locations are determined using Global Positioning Systems (GPS). The nodes 
moved infrequently and hence the GPS has to operate for a very less number of periods 
and worked in regular time intervals. This is for determining the locations of the net-
work nodes based on which the distance between the two nodes is calculated. The dis-
tance metric is directly proportional to the overall delay of the links.   

In this paper, multiple objectives such as maximization of the network lifetime and 
the minimization of the time delay are considered. However, the objectives are com-
bined into a single maximization objective [14] as given in Eq. (4).  

 ( , ) =  ∗ 1 ∗ 2 (4) 

Where, 
α    -    Positive real coefficient 
OF(X)-   Objective value for the individual X 

F1 -   ( , )        

F2 -   tnet 
The number of broken links is taken as a constraint. During the generation of span-

ning trees for the given graph, some of the trees may have broken links. Trees with 
broken links are not valid. To handle this, a penalty parameter-less constraint han-
dling scheme is employed [21]. 

2

143

765

Li=1 

2 4 7 

3 8 6 5 8
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3 Proposed Genetic Algorithm  

Genetic Algorithm (GA) is a search heuristic that mimics the process of natural evolu-
tion. This heuristic is routinely used to generate useful solutions to optimization and 
search problems. GA belong to the larger class of Evolutionary Algorithms (EA), 
which generate solutions to optimization problems using techniques inspired by natu-
ral evolution, such as inheritance, mutation, selection, and crossover [22].  Currently 
GA stands up as a powerful tool for solving complex, nonlinear, non-smooth, discrete 
optimization problems.  

In a GA, a population of strings (called chromosomes), which encodes candidate 
solutions to an optimization problem, evolves toward better solutions. Traditionally, 
solutions are represented in binary as strings of 0s and 1s, but other encodings such as 
integer, real, mixed integer are also possible. The evolution usually starts from a pop-
ulation of randomly generated individuals and happens in generations. In each genera-
tion, the fitness of every individual in the population is evaluated, multiple individuals 
are stochastically selected from the current population based on their fitness, and 
modified (recombined and possibly randomly mutated) to form a new population. The 
new population is then used in the next iteration of the algorithm. Commonly, the 
algorithm terminates when either a maximum number of generations has been pro-
duced, or a satisfactory fitness level has been reached for the population. Coding, 
GOC and immigrant strategies used in the proposed GA for multicasting routing are 
discussed in the following sections. 

3.1 Sequence and Topology (ST) Coding 

The integer coding scheme is employed to represent nodes and location index of the 
parent node.  In this coding scheme, a unique identification number is assigned using 
a preorder-visited method which is from top to bottom, and then from left to right in 
order to visit a multicast tree. The location index value is started from 1 to the number 
of nodes present in the tree. There are two parts in the chromosome. The first part is 
the sequence part. The node identification numbers are continuously inserted until the 
last node is reached. The second part of the chromosome is the topological part in 
which the parent’s location index values of all the nodes are stored.  The length of the 
sequence and topological parts are equal to the number of nodes present in the net-
work. The first element of the topological part is always 0 because the parent node 
index value of the route node is 0. For example, the spanning tree given in the Fig. 2 
is converted by ST encoding and it is given in Fig. 3. The sequence part is created 
based on the location index order. Topological part is formed by mentioning the par-
ent index of each gene present in the sequential part. For example, the third gene in 
the sequence part is 5 and its parent (i.e. node 3) index value is 2 which is placed in 
third gene of topological part. 
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Fig. 3. ST coding illustration 

 

Fig. 4. Proposed GA 

Final Population 

Immigrant strategy 

Initial Population 

Evaluation 

Selection 

MTC 

Node mutation 

Yes

No 

Offspring 

Energy mutation 

Is stopping 
criteria met? 



 Improvement in Genetic Algorithm with Genetic Operator Combination (GOC) 487 

3.2 Genetic Operator Combination (GOC) and Immigrant Strategies 

In general, the performance of the GA is highly dependent on the genetic operators used 
and their parameter settings. Also, during different evolution stages, different genetic 
operators are found to be more effective than others. Hence, in this paper GOC1 [12] is 
used due to its better performance than the other operators. The GOC1 includes mod-
ified topology crossover (MTC), node mutation and energy mutation operators.  

Recently, immigrant strategies are introduced for improving the performance of 
GA. The GA performance may degrade due to network topology change. In such a 
dynamic environment, immigrant schemes are helping the GA to converge into the 
right solution space. The immigrant schemes considered for this multicast routing 
problem are Random Immigrant with Random Replacement (RI-RR), RI with Worst 
Replacement (RI-WR) [18], Elitism based Immigrant (EI) and Hybrid Immigrant (HI) 
[19]. RI-RR is generating a chromosome randomly and replaced randomly in the pop-
ulation where as the RI-WR is replaced with the worst individual. The EI is replaced 
best chromosome in each generation with worst one. HI is a combination of both RI-
RR and EI. The proposed GA is illustrated in Fig.4. 

3.3 Initial Population 

The initial population is generated using uniform random numbers. The generated 
trees fitness values are evaluated. If the chromosome is invalid, then the numbers of 
broken links are calculated and the same is assigned to the constraint violation for that 
chromosome.  

3.4 Penalty Parameter-Less Constraint Handling Scheme 

In this paper, a penalty parameter-less constraint handling scheme proposed by Deb is 
used to handle the number of broken links. To handle this constraint, the Eq. (7) is 
used. 

 ( ) =   ( ),                          ( ) = 0 ( ),        (5) 

Where, 
     ( )   - Objective function value of the ith solution of chromosome X 

OFworst     - Objective function value of the worst solution  ( )       -  Equality constraint 
Hence, without using a penalty factor, fitness function is determined by combining 

objective and constraint violations. 

4 Simulation Results        

The performance of GA with immigrant strategies is tested on four different ad hoc 
networks with varying nodes such as 10, 20, 30 and 40.  Waxman’s random graph 
generator [23] is used for generating the network graph randomly. The link weights 
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are calculated based on the nodes distance and it is assumed as the delay values in 
milliseconds. All simulations run on a Core 2 Duo Intel processor operating with 
1GB RAM which is connected with the high end multiuser server with MatLab.  To 
fix the suitable GA parameters such as population size (pop-size), mutation proba-
bility (Pm), and crossover probability (Pc) initial trial simulations are conducted 
with different combinations of parameters before taking actual results. GA parame-
ters are fixed at pop-size=100, mutation probability Pm = 0.3 and crossover  
probability Pc = 0.7.  Being a stochastic optimization algorithm, to get meaningful 
conclusions, statistical performance measures are calculated with 20 independent 
runs. Statistical tests such as Friedman, Aligned Friedman and Quad are used to 
determine the best algorithm through average ranking. The significance of the first 
rank method is addressed by the p value obtained from the tests such as Holm, 
Hommel and Holland. Initially a pool of genetic algorithms is created with various 
genetic operators such as crossover, mutations and immigrant strategies. Table 1 is 
illustrates variants of genetic algorithms namely GA1to GA4 with corresponding 
immigrant strategies and its probability values.  

Table 1. Genetic Algorithms with corresponding immigrant strategies and its probability 

Algorithm Immigrant strategy Probability 

GA1 RI-RR 0.3 
GA2 RI-WR 0.5 
GA3 EI 0.5 
GA4 HI 0.3 

 

 

Fig. 5. Mean of the algorithms with different probability 
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The MTC, node mutation, and energy mutation are used in GA variants as these op-
erators gave better results [12]. Different immigrant strategies are added along with that 
to form the various genetic algorithms. The immigrant probabilities of different GA 
may vary. Due to their better performance, they are considered. This is shown in Fig.5. 

With the mean obtained from 20 runs from the proposed GA1 to GA4 and existing 
algorithms of [12, 14, and 15] in different networks, the average rankings are generat-
ed in Friedman, Aligned Friedman and Quade tests. This is given in Table 2.  

Table 2. Average rankings of the algorithms 

Algorithms Friedman 
Aligned 

Friedman 
Quade 

GA1 3.72 75.625 3.79 
GA2 3.7 60.349 3.49 
GA3 3.92 70.025 4.16 
GA4 3.85 64.35 3.82 

GOC1 4.22 76.075 4.21 
GOC2 4.52 76.025 4.17 
GAST 5.9 112.6 6.12 

ST 6.14 108.949 6.23 
 
The average rankings show that the proposed GA2 is performing well when com-

pared with other algorithms. This is highlighted in Table 2.  It is also necessary to 
confirm that GA2 is how significantly better than the other algorithms. This is done 
by obtaining p value with the level of significance α = 0.05 in Holm, Hommel and 
Holland tests. These values are listed in Table 3. 

The Holm and Hommel tests reject the hypothesis that have a p value ≤ 0.01. The 
Holland test rejects the hypothesis that have a p value ≤ 0.0102. From the results of 
Table 3, it is clear that the existing algorithms GOC2, GAST and ST are rejected and 
it implies that the proposed GA2 is significantly better than these algorithms. At the 
same time, GA1, GA3, GA4 and GOC1 have not been rejected. Even though they 
were behind in average ranking with GA2, the performance of these algorithms are 
also better. They have been highlighted in the Table 3. With these test results, it is 
proved that the proposed GA2 improves the performance of GA for multicast routing 
in ad hoc networks. 

Table 3. The p value with level of significance α = 0.05 

Algorithms 
Friedman/Aligned Friedman/ Quade 

Holm Hommel Holland 
GA1 0.05 0.05 0.05 
GA3 0.01667 0.01667 0.01695 
GA4 0.025 0.025 0.0253 

GOC1 0.0125 0.0125 0.01274 
GOC2 0.01 0.01 0.0102 
GAST 0.00833 0.00833 0.00851 

ST 0.00714 0.00714 0.0073 
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5 Conclusions and Future Work 

In this paper, for improving the performance of GA, GOC and immigrant strategies 
are proposed to address multicast routing problem in ad hoc networks. The four im-
migrant strategies used are random immigrants with random replacement, random 
immigrants with worst replacement, elitism based immigrant and hybrid immigrant. 
An augmented objective function is formulated by combining network lifetime and 
time delay. Simulations are carried over in different genetic algorithms with GOC and 
various immigrant strategies on different size networks. The results obtained from 
simulations are experienced through statistical tests. The test results clearly show that 
the proposed genetic algorithms such as GA1 to GA4 are better than the existing algo-
rithms for solving multicast routing problem in ad hoc network. 

In the proposed GAs, the genetic operator combinations and immigrant strategy are 
working in fixed probability in each algorithm. As a part of future work, it is decided 
to keep all the immigrant strategies with an adaptive probability in a single genetic 
algorithm with an ensemble manner for producing better results. Since it is an ad hoc 
network, it is also plan to test on different topologies of various networks.  
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Abstract. Excessive dying in nature causes reduction in diversity and leads to 
extinction of organism. In this work to avoid excessive dying we propose expli-
cit dying strategies as part of Genetic Algorithm. A solution is removed from 
next generation population in a deterministic way by using dying strategy. Mul-
ti-objective Genetic Algorithm (MOGA) takes decision of removal of solution, 
based on one of these three strategies. Experiments were performed to show 
impact of dying of solutions and dying strategies on the performance of 
MOGA. Further to improve performance of MOGA an ensemble of dying strat-
egy is proposed. Ensemble of Dying Strategy based MOGA (EDS-MOGA) has 
been implemented  and its results show that ensemble of dying strategy has giv-
en better performance than MOGA with single dying strategy. 

1 Introduction 

Genetic Algorithm (GA) mimics the process of natural selection and is robust tool for 
search and optimization problems [1]. Many researchers have proven this. Review 
done by suganthan et.al in [14] present the development of multi-objective evolutio-
nary algorithms (MOEAs) primarily during the last eight years. The survey covers 
algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic 
MOEAs, co-evolutionary MOEAs, selection and offspring reproduction operators, 
MOEAs with specific search methods, MOEAs for multimodal problems, constraint 
handling and MOEAs, computationally expensive multi-objective optimization prob-
lems (MOPs), dynamic MOPs, noisy MOPs, combinatorial and discrete MOPs, 
benchmark problems, performance indicators, and applications. In addition, some 
future research issues are also presented.  

Genetic algorithm uses selection, crossover and mutation operators to evolve a set 
of solutions of current generation. Selection operator is then used to select fit solu-
tions from current generation as next generation population [1]. Weaker Solutions 
which are not selected die out and do not reappear. Thus dying is implicit part of se-
lection mechanism. Solutions having better fitness produce fitter offspring and selec-
tion strategies are likely to select both parent and their offspring. Solutions (parent 
solution) present in first generation inherit their properties to offspring solutions by 
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using cross over operator. In subsequent generations good properties of parent solu-
tions are carrying forward by offspring solutions generated by crossover operator. 
Problem with this selection strategy is that, after few generation whole population is 
dominated by presence of few solutions from initial population and their offspring i.e. 
trail of very few solutions from initial population   reach to final generation and most 
of the solutions die out somewhere in between generations. Thus selection strategy 
based on survival of fittest reduces diversity and convergence of solutions. So, a new 
mechanism is needed to avoid excessive dying of solutions.  

In this work to control excessive dying of solutions, dying has been made explicit 
part of evolutionary process and three strategies for dying of solution have been pro-
posed and implemented. A solution is deterministically removed from next generation 
population by using one of the three proposed dying strategies. Impact of dying rate 
of solutions on the performance of GA has been studied. Idea of gradual dying is 
modeled and a new framework of MOGA has been used to demonstrate the same. 

According to No Free Lunch (NFL) Theorems for optimization if an algorithm per-
forms well on one set of problems then it will perform poorly on all others [10]. With 
this observation we propose ensemble of dying strategy based MOGA (EDS-MOGA) 
that can optimize given set of problems. 

The remainder of the paper is organized as follows. Section 2 briefs about proposed 
dying strategies. In Section 3, experimentation and results of three strategies are given. 
Section 4 presents ensemble of dying strategy based MOGA and its experimental re-
sults. Section 5 compares performance of EDS-MOGA with individual strategy of 
dying and NSGA-II-MPX. Finally section  6 with draws conclusions. 

2 Three Dying Strategies 

A thought; dying of parent solution; opposite of selection of parent solution, is mate-
rialized in this work. Proposed three strategies of dying or parent removal (ParRem) 
are given below. 

ParRem1: Remove solution having minimum distance from one or more solutions of 
next generation population. In this strategy before removing a solution from next 
generation population distance between all the solutions is checked. Since similarity 
means uniformity and dissimilarity means diversity, according to this strategy similar 
solution should die out and dissimilar solution should remain in population in order to 
have diversity in population. The solution having minimum distance from its neighbor 
solution will be removed from next generation population. Distance between solutions 
is calculated in objective space and distance measure used is Euclidean distance. 
Pseudo code for distance calculation is given below. 

Initialize min_d = 9999, 
 for  j = 1 : N-1  
       for   i =  j+1 : N 
             d = distance between first parent(ith)  and second parent (jth ) parent  
            if   (d < min_d) 
                 min_d = d; 
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                      idx =i; 
          end if  
      endfor 
 endfor 

where N is population size, min_d is minimum distance between two parent solutions. 
idx is index of parent having minimum distance. A parent having idx index will be 
removed from next generation population. 

ParRem2:  Remove solution having maximum SNOV (Summation of Normalized 
Objective Value). In this strategy to make effective range of all the objective func-
tions equal objective values are normalized. After normalization effective range of all 
the objective function will be zero to one. Assign SNOV to each solution in next gen-
eration population. The SNOV will be treated as single scalar fitness of the solution. 
Now remove solution having highest SNOV value (for minimization of objective). 
Pseudo code for SNOV calculation is given below. 

for m = 1 : M (number of objectives) 
Find the maximum and minimum objective values of the mth objective and calculate 
the  range  of the mth    objective. 

Normalize the mth objective values of all members using the equation: 

( ) ( )
minmax

min

ff

fxf
xf m

m −
−

=
 

       where mf is the normalized mth objective value. 
 end for 
 for i = 1 :  N 
      Sum all normalized objective values of the member to   obtain a single value. 
 endfor 

ParRem3: Remove solution having poor fertility count. Frequency of reproduction is 
an important parameter in determining species survival: an organism that dies young 
but leaves numerous offspring displays, according to Darwinian criteria, much great-
er fitness than a long-lived organism leaving only one [11][12]. 

In this strategy, parameter fertility_count keep record of frequency of reproduction 
of a parent solution. Initially when population is initialized, zero fertility_count is 
assigned to all the solution in the population. If a parent solution produces offspring 
better than the parent solution then fertility_count of parent solution is incremented by 
one. Now fertility_count of parent solution is assigned to better offspring solution. In 
next generation population, dying of a solution is insured on the basis of fertili-
ty_count of the solution. A solution having minimum fertility_count will be removed 
from next generation population. Pseudo code is given below. 

for i = 1 to N 
      fertility_count(i) = 0; 
 endfor 
 for gen = 1 to maxgen 
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      for i   = 1 to N 
If offspring solution wins the multi-level   tournament then fertility_count of first par-
ent solution is incremented by 1 and assigned as fertility_count to winner offspring 
solution. 
    endfor 
    Remove solution having lowest fertility_count 
   … 
endfor 

3 Experimentation and Results 

A Multi-objective Genetic Algorithm with Dying strategy has been coded using Mat-
Lab 7.1. Experimental study is performed to investigate the behavior of the proposed 
three strategies of Dying in terms of convergence and diversity. The MOGA proce-
dure used for experimentation is given below.  

Algorithm 
Begin: 
Initialization: 
Set the parameter values for  maxgen (Maximum number of generation ), Dying rate 
in % (Perc), Size of population (N), Probability distribution index for MPX [3] opera-
tor, number of parents and number offspring generated by MPX operator.  

Processing: 
1. Generate N solutions randomly then tune them using OBL and keep tuned solu-

tions in POP 
2. Assign  number 1,2,…,N as parent number sequentially to each solution in POP 
3. Calculate   Gen_Rem = ( maxgen / (N*Perc))  
4. iGen_Rem = Gen_Rem 
5. for gen = 1 : maxgen 
         Set off_pool and Next_gen to be the empty set 
         for  i  =  1:N 

o Select first solution sequentially and second solution randomly from POP 
o Now apply MPX crossover operator on the selected solutions and gener-

ate two offspring. Assign parent number of first parent to both the 
offspring. 

o Using Multi-level tournament selection select best among first parent and 
offspring solutions 

o Copy best solution in Next_gen and put the offspring which is not se-
lected in the off_pool 

        end for 
        if  gen  ==  Gen_Rem 

o Use dying strategy to remove one solution from Next_gen and insert one 
solution, from off_pool, whose parent number is not same as the removed 
solution. 
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o Gen_Rem = Gen_Rem  +  iGen_Rem 
o POP = Next_gen 

         else 
     POP = Next_gen 
        end ifelse 
   end for 
End 

Initialization and Tuning the Population:  In proposed algorithm population tuning 
is done by using opposition based learning [5]. A solution is sequentially selected 
from initial population and its opposite solution is calculated by using opposition 
based learning as given in [13]. Now tournament is played between solution and op-
posite solution and winner is selected as tuned solution and loser is discarded. This 
procedure is repeated for every solution. If there are N solutions in the initial popula-
tion then N tune solutions are generated.    

Tournament Selection: In this algorithm multi-level tournament selection is used. In 
first level of tournament selection, tournament is played between two offspring solu-
tions. In second level, tournament is played between winner offspring solution and 
First parent. The winner of second level of tournament is selected as best solution and 
becomes member of next generation population. 
MPX (Multi-parent Crossover with Polynomial distribution) operator is used for cros-
sover. One can find details of MPX operator in [3]. 30 independent runs have been 
taken for each problem with different strategies. Dying rate is chosen empirically. 
Experimental parameter settings used are: 

• Population size  (N) = 300 
• Maximum no. of generation (maxgen) =  3000 
• Dying rate (Perc) = 10%, 30%, 40%, 50%, 60%, 90% 
• Probability Distribution index ( μ ) for MPX crossover operator =  1 
• Number of Parents =  2 
• Number of children = 2 

Test functions: The test problems (UF1-UF9) in this work are taken from IEEE 
CEC2009 special session and   competition [4]. Functions UF1-UF7 has two objec-
tives and UF8 &UF9 are three objective functions. 

Metric used for Performance measure:  

• Inverted Generational Distance (IGD): The IGD (Inverted Generational Dis-
tance) metric is used as performance indicator to quantify the quality of the ob-
tained results. The IGD metric measures “how well is the Pareto-optimal front 
represented by the obtained solution set”. [4] 

• SPREAD (Δ): This metric is used to measure diversity among solution. This 
metric takes care of uniform distribution and extent of distribution of obtained 
solution. [2] 
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3.1 Results 

We have proposed three strategies of dying of solution, implemented them and seen 
their performance on function UF1-UF9. Table 1 shows best performance (MeanIGD 
and SPREAD) of three strategies of dying of solution on function UF1-UF9. Also 
Table 2 shows Statistical Sum of Problems for which each strategy obtains signifi-
cantly better results. During experimentation it is observed that for all three strategies 
best results for MeanIGD and SPREAD have been obtained for dying rate at or below 
50%. Hence we can say that excessive dying of solutions affects the convergence to 
and diversity in Pareto front. 

Table 1. Comparison of Performance of ParRem1, ParRem2 and ParRem3 on Function UF1-
UF9 with Population Size = 100 and Number of Generations = 3000  

Scheme ParRem1 ParRem2 ParRem3 Sign test 

Function MeanIGD 
(Dying rate) 

SPREAD 
(Dying rate) 

MeanIGD 
(Dying rate) 

SPREAD 
(Dying rate)

MeanIGD 
(Dying rate)

SPREAD 
(Dying 
rate) 

(IGD, 
SPREAD) 

UF1 0.061657 
(50%) 

0.58012 
(50%) 

0.060779 
(10%) 

0.55635 
(50%) 

0.067689 
(10%) 

0.55652 
(50%) 

( - , -) 

UF2 0.019220 
(50%) 

0.40815 
(50%) 

0.023877 
(50%) 

0.45033 
(50%) 

0.022364 
(10%) 

0.42707 
(30%) 

( + ,+) 
 

UF3 0.201176 
(10%) 

0.52668 
(10%) 

0.170225 
(10%) 

0.47090 
(50%) 

0.180125 
(10%) 

0.50012 
(30%) 

(+ ,+ ) 

UF4 0.050215 
(10%) 

0.50465 
(50%) 

0.0543763 
(10%) 

0.53480 
(50%) 

0.054034 
(10%) 

0.55244 
(30%) 

( - ,+ ) 

UF5 0.153826 
(10%) 

0.67871 
(50%) 

0.208118 
(10%) 

0.78428 
(50%) 

0.201256 
(10%) 

0.63878 
(50%) 

( + ,+) 

UF6 0.064901 
(10%) 

0.70065 
(50%) 

0.0704405 
(10%) 

0.76884 
(50%) 

0.059221 
(30%) 

0.67963 
(50%) 

( + ,+) 

UF7 0.083477 
(10%) 

0.67037 
(50%) 

0.113827 
(30%) 

0.79031 
(50%) 

0.110274 
(10%) 

0.70431 
(50%) 

( + ,+) 

UF8 0.755344 
(50%) 

0.46400 
(50%) 

0.738952 
(50%) 

0.68068 
(50%) 

0.738637 
(30%) 

0.65029 
(10%) 

( - ,+ ) 

UF9 0.899907 
(30%) 

0.63089 
(50%) 

0.9045648 
(10%) 

0.58913 
(40%) 

0.959632 
(30%) 

0.68203 
(10%) 

( + ,+) 

 
From Table 1 it is observed that dying strategy ParRem1 with dying rate 50% has 

outperformed ParRem2 and ParRem3 in terms of SPREAD on four functions (UF2, 
UF4, UF7 and UF8) out of nine functions. ParRem2 has outperformed ParRem1  
and ParRem3 on three functions (UF1 & UF3 with dying rate 50% and UF9 with 
dying rate 40%). ParRem3 has outperformed ParRem1 and ParRem2 on two functions 
(UF5 and UF6 with dying rate 50%). After analyzing the performance of the three 
strategies we have selected dying strategy ParRem1 and dying rate 50% for further 
experimentation.  
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Table 2. Statistical Sum of Problems for which each strategy obtains significantly better results 

Metric ParRem1 ParRem2 ParRem3 
MeanIGD 04 01 01

SPREAD 04 02 02

Total 08 03 03

From above discussion it is found that different strategies have given better perfor-
mance on different functions. One strategy is not capable to solve all the optimization 
functions.   

4 Ensemble of Dying Strategy Based MOGA (EDS-MOGA) 

Ensemble learning is a machine learning paradigm where multiple learners are trained 
to solve the same problem. An ensemble combines a series of k learned models D1, 
D2,…,Dk, with the aim of creating an improved composite model D*. A given set of 
solutions P is used to create k sets, P1, P2,…Pk where Di (1<i<=k-1) is used to solve 
Pi. Ensemble is able to boost a weak learner to strong learner. Ensemble learning has 
proven to be very efficient and effective for adjusting algorithmic control parameters  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Flowchart of EDS-MOGA 

Initialize population and Set values for parameters  maxgen & Perc
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and operators in an online manner. Reference [9] proposes to use an ensemble of dif-
ferent Neighborhood Sizes in MOEA/D[18] and dynamically adjust their selection 
probabilities based on their previous performances. In the paper [16],differential evo-
lution with an ensemble of restricted tournament selection (ERTS-DE) algorithm is 
introduced to perform multimodal optimization. It is impossible for a single constraint 
handling technique to outperform all other constraint handling techniques always on 
every problem irrespective of the exhaustiveness of parameter tuning. To overcome 
this selection problem, an ensemble of constraint handling methods (ECHM) to tackle 
constrained multi-objective optimization problems has been used. The ECHM is inte-
grated with multi-objective differential evolution (MODE) algorithm [7]. In [17] au-
thors propose an ensemble of mutation and crossover strategies and parameter values 
for DE (EPSDE) in which a pool of mutation strategies, along with a pool of values 
corresponding to each associated parameter competes to produce successful offspring 
population. Thus work done in [6]-[9] and [15]-[17] motivated authors to use ensem-
ble methods to improve performance of MOGA with dying strategy. 

Flowchart of proposed Ensemble of Dying Strategy Based Multi-Objective Genetic 
Algorithm (EDS-MOGA) is given in fig. 1. EDS-MOGA maintains a pool of three 
dying strategies. Population is divided into three sub populations.  A Learning Period 
(LP) of few generation is defined and three subpopulations are evaluated with three 
dying strategy for LP generations. After LP generations’ performance of each subpo-
pulation is compared and the strategy assigned to subpopulation having better objec-
tive function values will be selected as winner dying strategy. Three subpopulations 
are combined and the winner dying strategy will be used to evolve combined popula-
tion for rest of the generations.  

4.1 Experimentation and Results 

Experiments are performed to demonstrate the behavior of the proposed approach in 
terms of convergence and diversity. Dying rate is chosen as 50% and other parameter 
setting used are same as given in section 3. 

Table 3. Performance Comparison of EDS-MOGA with ParRem1, ParRem2 and ParRem3  

Scheme ParRem1        ParRem2       ParRem3       EDS-MOGA  

Function MeanIGD  SPREAD  MeanIGD SPREAD MeanIGD SPREAD MeanIGD  SPREAD  

UF1 0.061657  0.58012  0.060779 0.55635 0.067689 0.55652 0.054910  0.55891  

UF2 0.019220  0.40815  0.023877 0.45033 0.022364 0.42707 0.013663  0.40647  

UF3 0.201176  0.52668  0.170225 0.47090 0.180125 0.50012 0.097539 0.49136 

UF4 0.050215  0.50465  0.054376 0.53480 0.054034 0.55244 0.016117  0.50529  

UF5 0.153826  0.67871  0.208118 0.78428 0.201256 0.63878 0.094909 0.53358  

UF6 0.064901  0.70065  0.070440 0.76884 0.059221 0.67963 0.060966  0.66912  

UF7 0.083477  0.67037  0.113827 0.79031 0.110274 0.70431 0.080293  0.66937  

UF8 0.755344  0.46400  0.738952 0.68068 0.738637 0.65029 0.271814 0.46076 

UF9 0.899907  0.63089  0.904564 0.58913 0.959632 0.68203 0.165976  0.55382  
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4.2 Results 

MeanIGD and SPREAD values of UF1-UF9 produced by EDS-MOGA are reported 
in table 3. Table 3 also shows MeanIGD and SPREAD values of three dying strate-
gies on UF1-UF9 function. EDS-MOGA has outperformed MOGA with single dying 
strategy i.e.ParRem1,ParRem2 and ParRem3 on functions UF1-UF5 & UF7-UF9 in 
terms of IGD metric and on functions UF2,UF5-UF9 functions in terms of SPREAD 
metric. EDS-MOGA combines’ features of three dying strategy and contribution of 
each strategy has produced good convergence and diversity in the population. Dying 
strategies are dynamically selected by EDS-MOGA. The selection of appropriate 
strategy by EDS_MOGA has helped in improving performance of EDS-MOGA. 

4.2.1 Comparison of EDS-MOGA with other Algorithms 
Performance of EDS-MOGA is compared with NSGA-II [2] and SNOVMOGA 
(Summation of Normalized Objective Value based multi-objective Genetic algorithm) 
[19] algorithms.  For fair comparison SBX operator in NSGA-II is replaced by MPX 
operator and mutation operator is also removed. NSGA-II-MPX is coded in MatLab 
7.1. SNOVMOGA uses Summation of normalized objective value based sorting as 
discrimination technique while selecting parent solutions for formation of next gener-
ation population. In order to have diversity among solutions it uses reference point 
based improved selection method. Details of SNOVMOGA can be found in [19]. 

MeanIGD and SPREAD values of EDS-MOGA, NSGA-II-MPX and 
SNOVMOGA algorithms are reported in Table 4. EDS-MOGA has outperformed 
NSGA-II-MPX on functions UF1-UF6 &UF8-UF9. NSGA-II-MPX has given better 
MeanIGD and SNOVMOGA has given better SPREAD on UF7 function when com-
pared to EDS-MOGA. Also SNOVMOGA has outperformed EDS-MOGA on func-
tion UF1 in terms of SPREAD metric. 

Table 4. Performance Comparison of EDS-MOGA with  NSGA-II-MPX  and SNOVMOGA 

Scheme EDS-MOGA  NSGA-II-MPX SNOVMOGA 

Function MeanIGD  SPREAD   MeanIGD   SPREAD MeanIGD SPREAD 

UF1 0.054910 0.55891 0.068187 0.697345 0.101826 0.536142 

UF2 0.013663 0.40647 0.024311 0.540971 0.038288 0.428002 

UF3 0.097539 0.52136 0.135773 0.666309 0.316289 0.588970 

UF4 0.016117 0.50529 0.019737 0.682081 0.055698 0.631167 

UF5 0.094909 0.53358 0.211415 0.658579 0.593035 0.697120 

UF6 0.142566 0.66912 0.152526 0.694642 0.311779 0.684705 

UF7 0.080293 0.65037 0.031356 0.606167 0.066914 0.531024 

UF8 0.271814 0.46076 0.536727 0.616086 0.322564 0.793246 

UF9 0.165976 0.55382 0.375251 0.703306 0.108465 0.604505 
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Fig 2-9 shows plots of nondominated set obtained by EDS-MOGA and NSGA-II-
MPX. Function UF5 is having discontinues Pareto-front. EDS-MOGA has successful-
ly converged solutions on the Pareto-front of UF5 function whereas NSGA-II-MPX 
fails on UF5 as solutions are away from Pareto-front. EDS-MOGA has given poor 
spread on function UF7 as shown in fig. 6 where as NSGA-II-MPX has given good 
spread on UF7 as shown in fig.7. EDS-MOGA has shown better convergence and 
diversity when compared to NSGA-II-MPX. 
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Fig. 2. Best approximate of UF2 with EDS-
MOGA 
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Fig. 3. Best approximate of UF2 with 
NSGA-II-MPX 
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Fig. 4. Best approximate of UF4 with EDS-
MOGA 
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Fig. 5. Best approximate of UF4 with 
NSGA-II-MPX 
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Fig. 6. Best approximate of UF7 with EDS-
MOGA 
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Fig. 7. Best approximate of UF7 with 
NSGA-II-MPX 
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Fig. 8. Best approximate of UF5 with EDS-
MOGA 

0 0.5 1 1.5 2
0

0.5

1

1.5

2
UF5 

f
1

f 2

 

Fig. 9. Best approximate of UF5 with 
NSGA-II-MPX 

5 Conclusion 

This work has given insight into dying of solutions and its impact on performance   of 
algorithm. Dying is implicit part of selection process i.e. solutions which are not se-
lected die out. We have proposed and implemented strategies for explicit dying of 
solution in specific generations. Three strategies for dying of solution from next gen-
eration population have been proposed and implemented along with new MOGA 
framework. Experimental results indicate that the proposed MOGA with three strate-
gies of dying of solutions is able to guide the search process towards the optimum for 
the seven bi-objective and the two 3-objective test functions. On comparing perfor-
mance of three strategies of dying of solutions we found that no single strategy is 
capable enough to optimize all functions (UF1-UF9). 

To improve performance of MOGA with dying strategy an ensemble of dying 
strategy is proposed and implemented. EDS-MOGA use all the three strategies of 
dying to evaluate solutions for few generations and then selects one dying strategy for 
remaining generations. Selection of dying strategy is based on performance of strate-
gy in previous generations. EDS-MOGA has outperformed MOGA with single dying 
strategy. Also EDS-MOGA has shown better performance on many functions when 
compared to NSGA-II-MPX and SNOVMOGA. Thus ensemble of dying strategy has 
improved performance of MOGA. 

Future work will be on fine tuning the selection of dying strategy and more strate-
gy can be designed to have better convergence and diversity. 
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Abstract. Intermittent characteristic of renewable power resources like photo-
voltaic (PV) power and wind power makes it very important to include power 
production at various times when evaluating the distribution system perfor-
mance. This paper presents the effect of the intermittent renewable energy  
resources in the distribution system reconfiguration for loss reduction. The loss 
minimization problem is solved using the Ant Colony Optimization (ACO)  
algorithm implemented in the Hyper Cube (HC) framework. The 32-bus distri-
bution network is studied for optimizing the configuration with and without the 
intermittent generations. The results of reconfiguration using the ACO algorithm 
show the improvement in the buses voltage profile with installing of PV and 
wind power sources with different values of solar irradiance and wind speed. 

1 Introduction 

Unpredicted variations in the electrical power generation from renewable energy re-
sources are increasing day after day [1]. Wind and solar energy are both renewable 
energy and are also characterized by their intermittency [2, 3]. Intermittency means 
that they have both a non-controllable variability and are partially unpredictable. Non-
controllable variability implies that an individual resource may be unavailable when 
needed. In fact wind turbines are really dependent of wind speed. Wind generation 
varies thus over time according to the wind speed. It is also very difficult to predict 
with accuracy wind’s output even if the forecasting methods are improving. Photovol-
taic (PV) panels have the same dependency towards the sunlight.  

Distribution system Reconfiguration is the process of changing the topology of the 
distribution systems by changing the open/closed status of switches to transfer loads 
among the feeders.  Two types of switches are used in primary distribution systems. 
There are normally closed sectionalizing switches and normally opened tie switches. 
Many advantages are obtained from feeder reconfiguration. Among them are real 
power loss reduction, balancing system load, bus voltage profile improvement, in-
creasing system security and reliability, and power quality improvement. The concept 
of network reconfiguration for loss reduction was first introduced in reference [4]. 
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Many reconfiguration techniques have been proposed which can be grouped into 
three main categories. One based on blend of heuristics and optimization techniques 
[5] which have very time consuming for large distribution systems therefore not prac-
tical for real time implementation. The second, based upon purely heuristics [6] where 
the optimality is not guaranteed and the algorithms are more likely to fall into local 
optimum. The third, techniques based on Artificial Intelligence and modern heuristics 
such as: Genetic Algorithms [7], Particle Swarm Optimization [8], Simulated Anneal-
ing [9], Tabu Search [10], etc. These AI based algorithms overcome the shortcoming 
of the conventional methods in saving the computation time, ensuring accuracy and 
optimality and thus suitable for real time applications [11]. There has been growing 
attention in algorithms inspired by the observation of natural phenomena to help solv-
ing complex combinatorial problems. In this paper, the Ant Colony Optimization 
(ACO) algorithm, proposed in [12], is employed to solve the reconfiguration problem. 
ACO algorithm is inspired by the foraging behavior of real ant colonies.  

Authors of [13, 14, 15, 16] considered the output powers extracted from distributed 
generators (DGs), including the intermittent resources, as fixed values. As analyzed in 
[16], reconfiguration optimization problem of distribution network with DGs is solved 
using ACO and harmony search (HS) algorithms. ACO algorithm requires less prac-
tice to reach the optimum solution than HS Algorithm. This guarantees existing of the 
ACO solution. The ACO is considered in this paper to investigate the impact of the 
intermittent resources on the network reconfiguration at various times. 

This paper is constructed as follows; section 2 presents the PV and wind turbine 
models as an intermittent energy sources. Section 3 explains the optimization problem 
of distribution system minimum loss reconfiguration. Section 4 illustrates the ACO 
algorithm for solving the network reconfiguration problem. Section 5 shows the study 
results of the 32-bus test systems. Finally the conclusion is given in Section 6. 

2 Calculation of Photovoltaic and Wind Power 

The Generated output power from the PV panel given by Eq. (1) depends on the area 
of PV panel , solar irradiance coefficient µ and the efficiency of the PV panel Ω 
[17, 18]. Values of  and Ω can be obtained from manufacturer’s data sheet. = Ωµ (1)

The extracted power output from the wind turbine is given in Eq. (2) where ψ is the 
Albert Betz constant, ξ is the air density,  is area swept by turbine rotor, and ν is 
the wind speed [17, 18]. Values of ψ,  and ξ can be obtained also from manufac-
turer’s data sheet. = 12 ψ ξ ν  (2)

The intermittent parameters’ values µ and ν are taken from Table 1 [18]. The table 
shows the data of solar irradiance and wind speed data over 24 hours. Calculation of 
the power generated can be achieved at any irradiance level and wind speed by using 
the Eq. (1) and Eq. (2), respectively. In this work, the intermittent resources are con-
sidered as a constant power factor generation. The reactive power generation is calcu-
lated using the real power and the power factor for each PV panel and wind turbine. 
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Table 1. Intermittent parameters at different times during a day 

Time (hour) Solar irradiance,   (W/m2) Wind speed,   (m/s) 

1 AM 0 3.03 

6 AM 32.18 6.39 

11 AM 872.77 4.32 

6 PM 139.98 6.07 

3 Loss Reduction Reconfiguration Problem 

Reconfiguration problem is formulated as follows: 

2

j 1

Minimize    | |
RN

f Rj Ij
=

=   (3)

Subject to:    
1. The bus voltage magnitude 

bmaxmin N  i  ; V  | Vi | V ∈∀≤≤  (4)

2. The current limit of branches 

Rmaxj  N  j  ; I  |Ij | ∈∀≤  (5)

3. Radial Topology 

where f is the fitness function to be minimized corresponds to the total power loss in 
the system, Rj is the resistance of the branch j and Ij  is the magnitude of the current 
flowing through the branch j , Vi is the voltage on bus i ,Vmin and Vmax are mini-
mum and maximum bus voltage limits respectively, Ij and Ijmax are current magni-
tude and maximum current limit of branch j respectively and Nb and NR are the total 
number of buses and branches in the system respectively. The objective Function is 
calculated starting from the solution of the power flow equations that can be solved 
using the Forward/Backward Sweep method [5]. This method has excellent conver-
gence characteristics and is very robust and proved to be efficient for solving radial 
distribution networks. 

To check the radiality constraints for a given configuration, a method based on the 
bus incidence matrix Â is used [19, 20] in which a graph may be described in terms of 
a connection or incidence matrix. Of particular interest is the branch to node inci-
dence matrix Â, which has one row for each branch and one column for each node 
with a coefficient aji in row i and column j. The value of aji = 0 if branch j is not con-
nected to node i, aji = 1 if branch j is directed away from node i and aji = −1 if branch 
j is directed towards node i. For a network calculation, a reference node must be cho-
sen. The column corresponding to the reference node is omitted from Â and the resul-
tant matrix is denoted by A. If the number of branches is equal to the number of nodes 
then, a square branch-to-node matrix is obtained. The determinant of A is then calcu-
lated. If det(A) is equal to 1 or −1, then the system is radial. Else if the det(A) is equal 
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to zero, this means that either the system is not radial or group of loads are discon-
nected from service. 

4 Ant Colony Algorithm 

It is well known that the real ants are capable of finding the shortest path between 
their nest and food sources by the indirect communication between them via phero-
mone trails and this behavior forms the fundamental paradigm of the ant colony opti-
mization algorithm [21].  

ACO Paradigm 
In the ACO method, a set of artificial ants cooperate in finding optimal solutions to 
difficult discrete optimization problems. These problems are represented as a set of 
points called states and ants move through adjacent states. Exact definitions of state 
and adjacency are problem specific. The ACO adopts three main rules: 

1. The State Transition Rule 
At first, each ant is placed on a starting state. Each will build a full path from the be-
ginning to the end state through the repetitive application of the state transition rule, 
which is also called (“random proportional rule”). 

)i(Jj ,
(i,m)][(i,m)][

 (i,j)][(i,j)][
  (i,j)P k

Jk(i)m

βα

βα
k ∈∀

ητ
ητ=


∈

 
(6)

where,  Pk(i,j) is the probability with which ant k in node i chooses to move to node j, 
τ(i,j) is the pheromone which deposited on the edge between nodes i and j, η(i,j) is the 
visibility of the edge connecting nodes i and j which is problem specific (e.g. inverse 
of the edge distance) , Jk(i) is the set of nodes that remain to be visited by ant k  posi-
tioned on node i. α  and β  are parameters that determine the relative importance of 
pheromone versus the path`s visibility. The state transition rule favors transitions 
toward nodes connected by shorter edges with greater amount of pheromone. 

2. Local Pheromone Updating Rule 
While constructing the solution, each ant modifies the pheromone on the visited 

path. It is an optional step intended to shuffle the search process. It increases the ex-
ploration of other solutions by making the visited lines less attractive. 

0  )j,i()1(  )j,i( ρτ+τρ−=τ  (7)

where τ(i,j) is the amount of pheromone deposited on the path connecting nodes i and 
j, τ0 is the initial pheromone value and ρ is a heuristically defined parameter. 

3. Global Pheromone Updating Rule 
When all tours are completed, the global updating rule is applied to edges belong-

ing to the best ant tour providing a greater amount of pheromone to shortest tour. 
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1  )j,i()1(  )j,i( −σδ+τσ−=τ  (8)

where δ is a parameter belonging to the globally best tour and σ is the pheromone 
evaporation factor element in the interval [0-1]. This rule is intended to make the 
search more directed enhancing the capability of finding the optimal solution. 

Formulation of ACO in the HC Framework  
The HC framework is a recently developed framework for the standard ACO [22, 23]. 
It is based on changing the pheromone update rules used in ACO algorithms so that 
the range of pheromone variation is limited to the interval [0-1], thus providing auto-
matic scaling of the auxiliary fitness function used in the search process and resulting 
in a more robust and easier to implement version of the ACO procedure. The distribu-
tion system is represented as an undirected graph G (B, L) composed of set B of 
nodes and a set L of arcs indicating the buses and their connecting branches (switch-
es) respectively. Artificial ants move through adjacent buses, selecting switches that 
remain closed to minimize the system power losses. The solution iterates over three 
steps: 

1. Initialization: 
The Solution starts with encoding (i) system parameters such as; set of supply substa-
tions S; set of buses NB; set of branches NR where each branch has 2 possible states 
either “0” for an opened tie switch or “1” for a closed sectionalizing switch); load data 
Pload, Qload; branch data Rb, Xb; base configuration of the system C(0) defined by 
the system`s tie switches, initial power losses of the system f(C(0)) by solving the 
power flow for C(0) and evaluating the fitness function f and (ii) algorithm parame-
ters such as; number of artificial ants in each iteration N; initial pheromone quantity 
τ0 assigned to each switch; evaporation factor of pheromone trails ρ; the parameters α 
and β that determine the relative importance of the line `s pheromone versus its visi-
bility; a counter h for the number of iterations, a counter x that is updated at the end of 
the iteration with no improvement in the objective function;  maximum number of 
iterations Hmax, and maximum number of iterations Xmax with no improvement in 
the objective function respectively. The base configuration is then set as an initial 
reference configuration and as the best configuration found so far such that Cbest= 
Cbest(0) =C(0).  

2. Ants’ Reconfiguration and Pheromone Updating 
In each iteration h, a reference configuration is set as the best configuration of the 
previous iteration such that Cbest(h-1)= Cref (h). N Ants are initially located on  N  
randomly chosen open switches and are sent in parallel in such a way that each ant n 
in the hth iteration introduces a new radial configuration Cn(h) by applying the state 
transition rule. Once all ants finish their tour, the configuration corresponding to each 
ant is evaluated by computing the objective function f(Cn(h)). The best configuration 
of the hth iteration Cbest(h) is identified which is the configuration corresponds to the 
minimum evaluated objective function of all ants (minimum power loss). The best  
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configuration of the hth iteration Cbest(h) is compared to the best configuration so far 
Cbest such that if f(Cbest(h) ) < f(Cbest ), the overall best configuration is updated 
such that Cbest = Cbest(h). Finally, the pheromone updating rules are applied such 
that for all switches that belong to the best configuration, the pheromone values are 
updated using Eq. (9). Otherwise, the pheromone is updated using Eq. (10). 

ρσ+τρ−=τ −   )1(  )1h()h(  (9)

 )1(  )1h()h( −τρ−=τ  (10)

where, τ(h) is the new pheromone value after the hth iteration, τ(h-1) is the old value of 
pheromone after the (hth -1) iteration, ρ is arbitrarily chosen from the interval [0-1] 
and σ is a heuristically defined parameter which was chosen to be equal (f(Cbest) / 
f(Cbest

(h) ) since f(Cbest
(h)) cannot be lower that f(Cbest) the pheromone assigned to any 

switch cannot fall outside the range [0-1] so that the pheromone update mechanism is 
fully consistent with the requirements of the HC framework.  

3. Termination Criteria 
The solution process continues until maximum number of iterations is reached 

h=Hmax, or until no improvement of the objective function has been detected after 
specified number of iterations x=Xmax. 

5 Numerical Results and Simulations 

In this section, the 32-bus system is tested. The system is a 12.66 kV radial distribu-
tion system whose data is given in [6]. The system has one supply point, 32 buses, 3 
laterals and 5 tie switches. The total substation loads of the initial configuration are 
3715 kW and 2300 kVAR. The base configuration of the system is shown in Fig. 1 
and can be defined by the system`s tie switches 13, 37, 22, 26 and 29. It has real pow-
er loss of 203 kW. The HC-ACO parameters used are N=10, α=0.1, β=0.9, ρ=0.04, 
τ0=1, Hmax=100 and Wmax=10. Four intermittent generators are installed as shown in 
Table 2 based on the study in [24]. In this work, PV panels are installed at buses 2 and 
5 whereas wind turbines inserted at buses 23 and 28. The following ten cases are: 
considered as follows: 

1. Base configuration of the system without intermittent resources. 
2. Reconfiguration of case (1) using the ACO algorithm. 
3. Including PV and wind energy in the base configuration of the system at 6:00 AM. 
4. Reconfiguration of case (3) using the ACO algorithm. 
5. Including PV and wind energy in the base configuration of the system at 11:00 AM. 
6. Reconfiguration of case (5) using the ACO algorithm. 
7. Including PV and wind energy in the base configuration of the system at 6:00 PM. 
8. Reconfiguration of case (7) using the ACO algorithm. 
9. Including PV and wind energy in the base configuration of the system at 1:00 AM. 
10. Reconfiguration of case (9) using the ACO algorithm. 
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Fig. 1. Base configuration of the 32-bus system. Tie switches are represented by dotted lines. 

Table 2. Installation buses of PV array and wind farm 

Bus # 2 (PV array) 5 (PV array) 23 (wind farm) 28 (wind farm) 

P.F. 0.9 0.9 0.9 0.9 

 
Intermittent power (in Table 3) is calculated using Eq. (1) and Eq. (2) based on the 

manufacturing data sheets [25, 26, 27] and the coefficients in Table 1 for the cases 3, 
4, 5, 6, 7, 8, 9 and 10. From the manufacturing data sheets [25, 26], PV module is 
taken as 36 cells with 3 modules per panel. This work considers PV array of 372 pa-
nels. The PV module has an efficiency of 15.4 % and area of 1.656 m2. The wind 
turbine [27] has Albert Betz constant of 0.4, air density of 1.23 and radius of turbine 
rotor of 10 m. The wind farm is considered in this work contains 30 wind turbines. 

Table 3. Power generated from PV arrays and wind farms  

 
Case 

3,4 

Case 

5,6 

Case 

7,8 

Case 

9,10 

Solar Irradiance 

(W/m2) 
32.18 872.77 139.98 0 

Wind speed (m/s) 6.39 4.32 6.07 3.03 

PPV at node#2  (kW) 9.14  247.86 39.75 0 

QPV at node#2 (kVAR) 4.43 120.05 19.25 0 

PPV at node#5  (kW) 9.14  247.86 39.75 0 

QPV at node#5  (kVAR) 4.43 120.05 19.25 0 

PWind at node#23  (kW) 605.33 187.04 518.86 64.54 

QWind at node#23  (kVAR) 293.17 90.58 251.29 31.26 

PWind at node#28  (kW) 605.33 187.04 518.86 64.54 

QWind at node#28  (kVAR) 293.17 90.58 251.29 31.26 
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Tables 4 and 5 show the simulation results of the ten cases. As shown, tie switches 
of the system before the reconfiguration (Table 4) are 13, 37, 22, 26 and 29 with  
minimum power loss of 103 kW corresponding to case 3. The cases in Table 5 are 
corresponding to the reconfiguration of the cases in Table 4.  The final tie switches of 
cases in Table 5 are different than the corresponding cases in Table 4. Also the confi-
gurations of cases (2, 4, 6, 8 and 10) are different. These results imply that due to the  
intermittent nature of the renewable energy resources installed in the distribution sys-
tem, the configuration of the network changed (as illustrated in Tables 4 and 5) which 
makes the real time reconfiguration of the distribution network necessary. Real time 
reconfiguration can be achieved by sending suitable commands to the tie switches as a 
part of the smart distribution grid. 

Table 4. Effect of PV and wind power before reconfiguration  

 Case 1 Case 3 Case 5 Case 7 Case 9 

Base 

Tie Switches 

13    37    22   

26    29 

13    37    22    

26    29 

13    37    22    

26    29 

13    37    22    

26    29 

13    37    22    

26    29 

Ploss (kW) 203 103 137.2 110.7 189.9 

LBV 
0.9129 

at bus #17 

0.9287 

at bus #17 

0.9240 

at bus #17 

0.9273 

at bus #17 

0.9146  

at bus #17 

Table 5. Effect of PV and wind power after reconfiguration  

 Case 2 Case 4 Case 6 Case 8 Case 10 

Final 

Tie Switches 

13    18    23    

33    27 

14    36    22   

33    25 

13    18    23    

25    33 

10    37    22    

25    33 

14    18    23    

33    25 

Ploss (kW) 139.5 65.8 96 71.9 129.7 

LBV 
0.9378 

at bus #31 

0.9604 

at bus #17 

0.9478 

at bus #32 

0.9597 

at bus #32 

0.9444 

at bus #31 

 
The voltage profile of different cases of the system is shown in Fig. 2 to Fig. 6. 

Low bus voltage (LBV) of the initial configuration of the system (cases of Table 4) is 
varied according to the intermittency of the PV panels and wind turbines but still 
occur at the same bus # 17. In cases 4 and 8, most of the node voltages have been 
improved after reconfiguration as shown in Fig. 3 and Fig. 5, respectively. In case 4, 
the LBV value is that of bus 17 equals to 0.9604 p.u. achieving 3.41% improvement 
than case 3. In case 8, the LBV value is that of bus 32 equals to 0.9597 p.u. achieving 
3.49% improvement than case 7. Fig. 3 to Fig. 6 illustrate that the voltage profile 
improvement of the reconfigured network depends on the change of the PV and wind 
power. 
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Fig. 2. Voltage profile for cases 1 and  Fig. 3. Voltage profile for cases 3 and 4 

 

Fig. 4. Voltage profile for cases 5 and 6 Fig. 5. Voltage profile for cases 7 and 8 

 

 

Fig. 6. Voltage profile for cases 9 and 10 
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6 Conclusion 

This paper studied the reconfiguration of a distribution network with intermittent 
energy plants for loss minimization using ACO method. ACO optimization algorithm 
was used to find the most appropriate topology of the distribution system with and 
without intermittent resources that minimize the total system power loss. The objec-
tive function is subjected to many constraints such as bus voltage limits, branch cur-
rent limits and radial configuration format. The simulation results showed how to 
involve the intermittent renewable energy resources in the distribution system consi-
dering the reconfiguration process.  The solar and wind power were calculated based 
on manufacturers’ information.  Then different cases were studied to show the effect 
of the generated power variation on the resulting tie switches, minimum losses and 
low bus voltage. Insertion of PV panels and wind turbine to the study distribution 
system reduced the total power loss and improved bus voltage profile. Losses were 
further reduced by reconfiguration. Unpredicted nature of the renewable energy 
changed the system topology which needs a real time reconfiguration in order to keep 
minimum loss of distribution system over different weather conditions. 
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Abstract. In this paper we improve the meta heuristic algorithm known as 
Cuckoo Search (CS) to solve optimization problems. The proposed Inter-
species Cuckoo Search (ISCS) algorithm is based on the brood parasitic 
behavior of different inter-related cuckoo species in different areas in 
combination with Levy flight behavior(which changes with the terrain) of birds. 
The proposed algorithm is then tested against various test functions and its 
performance is compared with genetic algorithms, particle swarm optimization 
and previous versions of Cuckoo Search algorithm. 

Keywords: clustering, inter-species cuckoo search, Levy flight, metaheuristics, 
optimization. 

1 Introduction 

Modern meta-heuristic algorithms are more and more inspired by natural entities and 
as an example we see various different swarm intelligence methods emerging. For 
example cuckoo search (CS) algorithm [1] is inspired by brooding behavior of 
cuckoo, while the bat algorithm [3] comes forth from echolocation behavior of bats,  
firefly algorithm [4] was inspired by flashing pattern of tropical fireflies and particle 
swarm optimization (PSO) [5] was inspired by fish and bird swarm intelligence found 
in nature. The main reason behind the emergence and success of different meta-
heuristic methods is the proper imitation of nature and mostly biological systems i.e. 
the presence of acute intensification and diversification [6]. Some very modern and 
advanced works on this topic are done in [25]. Cuckoo search has some very modern 
applications in discrete domain as well i.e. in job scheduling problems [26, 27]. 
Cuckoo Search via Levy Flights [1] is a novel meta-heuristics algorithm which is 
based on the interesting breeding behavior such as brood parasitism of certain species 
of cuckoos. The basic ideas applied are the aggressive reproduction strategy of 
cuckoo and usage of Levy flights. Cuckoo Search algorithm is being widely used in 
engineering optimization problems [2] with exceptionally good results. However this 
method has space for improvement and here we improve Cuckoo Search by dividing 
the entire breeding ground in different terrains via clustering and using different types 
of Levy flights for different areas. This change not only reduces the optimization time 
but also increases the search accuracy. Simulation results show that the improved 
algorithm has better optimization ability. 
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2 Basic Cuckoo Search Algorithm 

2.1 Cuckoo Breeding Behavior 

Cuckoo are fascinating birds, not only because of the beautiful sounds they can make, 
but also because of their aggressive reproduction strategy. Some species such as the 
ani and Guira cuckoos lay their eggs in communal nests, though they may remove 
others’ eggs to increase the hatching probability of their own eggs [12]. A number of 
species engage the obligate brood parasitism by laying their eggs in the nests of other 
host birds (often other species). There are three basic types of brood parasitism: intra-
specific brood parasitism, cooperative breeding, and nest takeover. Some host birds 
can engage in direct conflict with the intruding cuckoos. If a host bird discovers the 
eggs are not their owns, they will either throw these alien eggs away or simply 
abandon the nest and build a new nest elsewhere. Some cuckoo species such as the 
New World brood-parasitic Tapera have evolved in such a way that female parasitic 
cuckoos are often very specialized in the mimicry in colour and pattern of the eggs of 
a few chosen host species [12]. This reduces the probability of their eggs being 
abandoned and thus increases their reproductivity. 

2.2 Levy Flights 

Various studies have shown that flight behavior of many animals and insects has 
demonstrated the typical characteristics of Levy flights [4, 15, 13, 14]. A recent study 
by Reynolds and Frye shows that fruit flies or Drosophila melanogaster, explore their 
landscape using a series of straight flight paths punctuated by a sudden 90o turn, 
leading to a Lévy-flight-style intermittent scale free search pattern. Studies on human 
behaviour such as the Juhoansi hunter-gatherer foraging patterns also show the typical 
feature of Levy flights. Even light can be related to Levy flights [1]. Subsequently, 
such behaviour has been applied to optimization and optimal search, and preliminary 
results show its promising capability [13, 15, 19, 20]. 

Cuckoo Search 
The basic version of Cuckoo Search (CS) explained by Xin-She Yang and Suash Deb 
[1] has the following rules: 

1) Each cuckoo lays one egg at a time, and dump its egg in randomly chosen nest; 
2) The best nests with high quality of eggs will carry over to the next generations; 3) 
The number of available host nests is fixed, and the egg laid by a cuckoo is 
discovered by the host bird with a probability ∈ap   [0, 1]. The last assumption can be 

approximated by the fraction of the n nests that are replaced by new nests with 
random solutions. 

For a maximization problem, the fitness of the solution can simply be proportional 
to the objective function. Other forms of fitness can be defined in a similar way to the 
fitness function in genetic algorithms.  

Here each egg in a nest represents a solution, and each cuckoo egg represents a 
new solution, the aim is to use the new and potentially better solutions (cuckoos) to 
replace a not-so-good solution in the nests. 

The basic steps of Cuckoo Search (CS) are shown as a part of the proposed 
algorithm in Fig. 1. 
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When generating new solutions )1( +tx for, say cuckoo i, a Levy flight is performed 

          )()()1( λα Levyxx t
i

t
i ⊕+=+ ,                                          (1) 

where α > 0 is the step size which is related to the scales of the problem of interest. 
In most cases, it was taken as 

α = O (1). The product ⊕ means entry-wise multiplications. Levy flights 
essentially provide a random walk while their random steps are drawn from a Levy 
distribution 

          λ−= tuLevy ~ ,         (1 < λ ≤ 3),                                   (2)                  

which has an infinite variance with an infinite mean. Here the consecutive 
jumps/steps of a cuckoo essentially form a random walk process which obeys a 
power-law step-length distribution with a heavy tail. 

3 Inter-species Cuckoo Search 

In case of multimodal situations the basic Cuckoo Search may not be able to find all 
the optima and as this search uses only Yang-Deb levy as Levy flight method it might 
lead to less robustness and unable to search the whole region effectively. 

In our proposed algorithm known as the Inter-species Cuckoo Search (ISCS) we 
improve basic Cuckoo Search such that it can perform exceptionally sound even in 
multimodal situations and with more robustness.  

Here we divide the whole search space in various regions or terrains and disperse 
the host nests equally in these regions. Then we assume different kinds of cuckoo are 
present in different regions and their random walk behavior are also different. Thus, 
different types of cuckoo species are present in the total search space. The generation 
of new solutions around the best solutions is dependent upon the levy flights and since 
different species of cuckoo exhibit different types of Levy flight the Inter-species 
Cuckoo Search can explore the search space more effectively and can perform much 
better local search than the basic version of cuckoo search in both unimodal and 
multimodal situations. A substantial fraction of the new solutions are generated by far 
field randomization. The cuckoo in different regions communicate with each other by 
replacing some of the worst solutions or nests of one region with the best solutions of 
other regions after a fixed interval of time i.e. after a certain no of function evaluations. 
The most important features of the proposed algorithm over basic Cuckoo Search are 
explained afterwards. 

3.1 Clustering 

The main idea behind Inter-species Cuckoo Search (ISCS) is the division of entire 
search space into various regions or terrains. This crucial step is performed by 
clustering the initial search space into various clusters and treating each cluster as a 
habitat only for a particular species of cuckoo. Here we have used the well known  

“k-means” algorithm for clustering but any clustering method would suffice. Here 
the number of clusters or regions was kept to a fixed value but it can also be variable or 
adaptive if needed. 
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3.2 Different Levy Flights 

A Lévy flight is a random walk in which the step lengths have a probability 
distribution that is heavy-tailed. When defined as a walk in a space of dimension 
greater than one, the steps made are in isotropic random directions. The variation of 
levy flights is done on the basis of distribution of step sizes. The variants are explained 
below, 

• Yang-Deb levy: 

This variant was used by Xin-She Yang and Suash Deb [1] and in this case the random 
distribution steps are drawn from a Levy distribution 

            λ−= tuLevy ~ ,      (1 < λ ≤ 3),                                    (3)                             

which has an infinite variance with infinite mean. The consecutive jumps or steps form a 
random walk process which obeys a power-law step length distribution with a heavy tail. 

• Cauchy Levy flight: 

Here the step sizes of Levy flights are drawn from Cauchy distribution or Cauchy–
Lorentz distribution. It is a continuous probability distribution and It has the 
distribution of a random variable that is the ratio of two independent standard normal 
random variables. This has the probability density function 

)1(
1

)1,0;(
2x

xf
+

=
π

.                                               (4) 

Thus the distribution of step size is done by the simplest form of Cauchy distribution 
known as standard Cauchy distribution. 

• Rayleigh Levy flight: 

In this type of Levy flight the distribution of step sizes is  Normal distribution, which is 
a continuous probability distribution, defined by the formula 

            
2

2

2
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2
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μ

πσ

−−
=

x

exf                                               (5) 

The parameter μ in this formula is the mean or expectation of the distribution (and also 
its median and mode). The parameter σ is its standard deviation; its variance is 
therefore 2σ . 

• Gaussian walk: 
In some cuckoo species i.e. in some regions the distribution of step size in Levy flights 
follow Gaussian walk which is an inverse cumulative normal distribution. 

3.3 Information Sharing 

In order to explore the search space effectively and to reduce computation a method 
of data sharing among cuckoo of different region or species is used. After a certain 
number of generations the worst 10 nests of a species or region are replaced by 10 
nests taken randomly from the best 10 nests of every other cuckoo species. This step 
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makes the algorithm more robust and a certain amount of far field randomization is 
also covered by this step. 
 

Inter-species Cuckoo Search 
 
begin 

     Objective function f(x),   
T

dxxx ),...,( 1=
 

     Generate initial population of 

              n host nests ix
 (i = 1, 2, ..., n) 

      Divide the entire population in 4 clusters using k-means algorithm (each cluster 
contains n/4 nests). 
     while (t < MaxGeneration) or (stop criterion) 
          for each cluster do, 
             if  (cluster number ==1), 
                apply Yang-Deb levy flight; 
             end 
             if  (cluster number ==1), 
                apply Cauchy Levy flight; 
             end 
             if  (cluster number ==1), 
                apply Rayleigh flight; 
             end 
             if  (cluster number ==1), 
                apply Gaussian walk; 
             end 
             Get a cuckoo randomly by Levy flights 

             Evaluate its quality/fitness iF  
             Choose a nest among n (say, j) randomly 

             If 
)( ji FF >

, 
                  Replace  j by the new solution; 
             end 

 A fraction )( ap  of worse nests are abandoned and new   ones are built; 
 Keep the best solutions (or nests with quality   solutions); 
 Rank the solutions and find the current best for each cluster, 
             After every 10 generations, 
             For each cluster do, 
Replace 10 worst nests of the cluster by a random set  of 10 best nests of every other 
cluster.  
     end while 
find global best solution 
end  
 

Fig. 1. Pseudo code of the Inter-species Cuckoo Search (ISCS) 
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Thus, in Inter-species Cuckoo Search (ISCS) the entire search space is divided in 
different terrains in which different species of cuckoo exist. In each region a basic 
version of cuckoo search is performed with different types of distributions are used to 
determine the step size of Levy flights. In each region some of the new solutions are 
generated by levy flights around the best solution obtained so far, this is the main 
local search performed within the cluster or region. However, a substantial fraction of 
new solutions are generated by far field randomization within the cluster radius i.e. 
within the species but whose locations are far enough from the current best solution in 
the region.  

The presence of different species of cuckoo in different regions makes the 
algorithm suitable for any multimodal scenario and there exists a certain amount of 
data/information sharing among the different species. This data sharing is done by 
replacement of a certain number of worst nests of a region by a random set created 
from a certain number of best nests of all other regions. This information sharing 
creates the opportunity of a finer search around the local best solutions found in 
various clusters and provides a better chance to reach the global optimum. 

4 Implementation and Numerical Experiments 

4.1 Validation and Parameter Settings 

To test the performance of the proposed algorithm the Inter-species Cuckoo Search 
was coded in Matlab and run on a PC with an Intel Core Duo 2.4GHz CPU, 4GB 
RAM, running Windows XP.  

In Fig. 2, Fig. 3 and Fig. 4 we show how the cuckoos have explored the entire 
search space and within 10 generations they have clustered around the global best 
solution. Afterwards the exact global position was found as a result of the finer local 
search performed by different cuckoo species around the best solution. 

Here we have used n=40 nests divided into 4 clusters or regions, i.e. 10 nests for 

each cuckoo species. In most of our simulations we have used α = 1 and ap =0.25 and 

n=40 to 60. 
From the figure, we can see that, as the optimum is approaching, most nests 

aggregate towards the global optimum. Also the nests are distributed throughout the 
search space but within 10 generations they cluster around the global best. The 
presence of different types of cuckoo species makes the algorithm useful in multimodal 
and multi-objective optimization problems.  

The number of host nests i.e. the population size n was varied from 20 to 400 in 
steps of 20 but for most optimization problems we found n=40 or n=60 would produce 

decent results. The probability ap  was chosen randomly for each cluster and these 

values were between 0.1 and 0.5. No parameters were changed in the expressions of  
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different levy flights. Thus, no fine adjustment was needed for any specific problems 
and so the Inter-species Cuckoo Search (ISCS) proves to be a very much generalized 
heuristic algorithm with a broader range of possible applications. 

4.2 Test Function 

Any new optimization algorithm should also be validated and tested against these 
benchmark functions. In our simulations, we have used the following test functions. 

De Jong’s first function is essentially a sphere function 
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 Easom’s test function is unimodal 
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Shubert’s bivariate function 
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has 18 global minima in the region   
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The value of its global minima is 7309.186* −=f . 

 Griewangk’s test function has many local minima 
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but a single global minimum 0* =f at )0,...,0,0(* =x  for all  

-600 ≤ ix  ≤ 600 where i = 1, 2, …, d. 

Ackley’s function is multimodal 
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with a global minimum 0* =f  at )0,...,0,0(* =x  in the range of 

768.32768.32 ≤≤− ix  where i = 1, 2, …, d. 

 The generalized Rosenbrock’s function is given by 
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which has a minimum 0* =f  at =*x  (1, 1, …, 1). 

 Schwefel’s test function is also multimodal 
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with a global minimum of 9829.418* −=f  at 9687.420* =ix   

   (i = 1, 2, …, d). 

 Rastrigin’s test function 
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Fig. 2. Initial distribution of cuckoo nest 
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Fig. 3. Position of cuckoo nests and fitness value after 5 generations  

 
Fig. 4. Position of cuckoo nests and fitness value after 10 generations 

4.3 Comparison of ISCS with CS, PSO and GA 

After implementing the proposed ISCS algorithm with Matlab we compare it with 
basic Cuckoo Search (CS), particle swarm optimization (PSO), and genetic 
algorithms (GA) for various standard test funtions.  

We have carried out extensive simulations in Matlab and each algorithm has been 
run at least 100 times so as to carry out meaningful statistical results. Algorithms were 
made to stop when the variations of function values are less than a given tolerance 

1010−≤ε . The results are summarized in the following tables (see Tables 1 and 2) 
where the global optima are reached. The numbers are in the format: average number 
of function evaluations (success rate), so 927±105 (100%) means that the average 
number (mean) of function evaluations is 927 with a standard deviation of 105. The 
success rate of finding the global optima for this algorithm is 100%. 
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From the results, we see that the ISCS algorithm performs much better than PSO, 
CS and GA for all test functions. Thus, we can say that the ISCS is much more 
efficient in finding global optimum with higher success rate in both unimodal and 
multi-modal functions.  
 

Functions 
Function evaluations needed to reach stopping criteria 
PSO GA CS ISCS 

Multiple 
peaks 

3719 ± 
205(97%) 

52124 ± 
3277(98%) 

927 ± 
105(100%) 

907 ±50 
(100%) 

Michalewic
z’s (d=16) 

6922 ± 
537(98%) 

89325 ± 
7914(95%) 

3221 ± 
519(100%) 

3100±34 
(100%) 

Rosenbrock
’s (d=16) 

32756 ± 
5325(98%) 

55723 ± 
8901(90%) 

5923 ± 
1937(100%
) 

5632±776 
(100%) 

De Jong’s 
(d=256) 

17040 ± 
1123(100%
) 

25412 ± 
1237(100%
) 

4971 ± 
754(100%) 

4264±606 
(100%) 

Schwefel’s 
(d=128) 

14522 ± 
1275(97%) 

227329± 
7572(95%) 

8829 ± 
625(100%) 

7665±241 
(100%) 

Ackley’s 
(d=128) 

23407 ± 
4325(92%) 

32720 ± 
3327(90%) 

4936 ± 
903(100%) 

4115±586 
(100%) 

Rastrigin’s 79491 ± 
3715(90%) 

110523± 
5199(77%) 

10354 ± 
3755(100%
) 

9753±1709
(100%) 

Easom’s 17273 ± 
2929(90%) 

19239 ± 
3307(92%) 

6751 ± 
1902(100%
) 

5109±1397
(100%) 

Griewank’s 55970 ± 
4223(92%) 

70925 ± 
7652(90%) 

10912 ± 
4050(100%
) 

9122±4021
(100%) 

Shubert’s 
(18 
minima) 

23992 ± 
3755(92%) 

54077 ± 
4997(89%) 

9770 ± 
3592(100%
) 

9003±3209
(100%) 

5 Conclusion 

In this paper we have proposed an improved version of Cuckoo Search (CS). Inter-
species Cuckoo Search (ISCS) is a new meta-heuristic Cuckoo Search based on the 
breeding strategy of different cuckoo species living in different regions. The Levy 
flights performed by different species of cuckoo are also different in nature. The 
proposed algorithm uses clustering to divide different cuckoo species and there is 
sufficient information sharing between different cuckoo species. The Matlab 
simulations and comparisons validate that the proposed algorithm outperforms other 
algorithms such as genetic algorithms, particle swarm optimization and basic Cuckoo 
Search in both unimodal and multi-modal objective functions.   The reasons behind 
such success are the existence of different cuckoo species as well as different levy 
flights and reduction in the number of parameters to be adjusted. In fact, the only 
parameter to be fine-tuned was the population size n, which was fixed for all functions 
and it was found that the convergence rate was almost insensitive to this parameter. 

The other parameter used in basic Cuckoo Search (CS) was the probability, ap  but in 
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case of our proposed algorithm every cluster or region has a randomized value of ap  

and thus we do not need any parameter adjustment for different functions. 
The Inter-Species Cuckoo Search was applied on many other real world problems 

such as Economic load dispatch (ELD) problems of various range, some power system 
related problems and some other engineering problems such as permutation flowshop 
scheduling problem, hybrid flowshop scheduling problem and railway time-table 
scheduling problems. The last three problems have discrete solution representation; 
hence the ISCS was modified accordingly to be suitable for application in discrete 
domain. The ISCS was also applied in CEC 2011 benchmark problems [28] where its 
performance was compared with that of PSO, GA, DE and some other meta-heuristics. 
The results were very promising but due to lack of sufficient space we are unable to 
provide all the tables and necessary data. In future, we will surely publish the complete 
set of results and comparisons. 
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Abstract. The shortest/optimal path planning is essential for efficient operation 
of autonomous vehicle. In this paper a cuckoo search based approach has been 
implemented for mobile robot navigation in an unknown environment 
populated by a variety of obstacles. This metaheuristic algorithm is based on the 
levy flight behavior and brood parasitic behavior of cuckoos. A new objective 
function has been developed between robot and position of the goal and 
obstacles present in the environment. Depending upon the objective function 
value of each nest in swarm, the robot avoids obstacles and proceeds towards 
goal. The optimal path is generated with this algorithm when robot reaches its 
goal. Several simulation results are presented here to demonstrate the potential 
of proposed algorithm.   

Keywords: Cuckoo search, Levy flight, Mobile robot, path planning. 

1 Introduction 

Autonomous path planning of mobile robot has acquired considerable attention in 
recent years. The major issue in autonomous mobile robot is its path planning in 
uncertain and complex environment. If robot wants to travel among the unknown 
obstacles to reach a specified goal without collisions, then various sensors must be 
needed to perceive information about the real world environment. The sensor based 
motion planning approaches uses either global or local path planning depending upon 
the surrounding environment. Global path planning requires the environment to be 
completely known and the terrain should be static, on other side local path planning 
means the environment is completely or partially unknown for the mobile robot. 
Many exertions have been paid in the past to improve various robot navigation 
techniques. 

In literature review, there can be found several researchers have been worked on 
many intelligent techniques for mobile robot navigation. Many authors have 
considered a controller with complete information of the environment [1-2].Due to 
the complexity and uncertainty of the path planning problem, classical path planning 
methods, such as visibility Graph [3], voronoi diagrams [4], grids [5], cell 
decomposition [6], artificial potential field [7], rule Based Methods [8], and rules 
learning techniques [9] are not appropriate for path planning in dynamic 
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environments. The use of the above algorithms for path finding for mobile robot 
requires more time and the finding of this path will not completely feasible for real-
time movement. In recent times most popular metaheuristic algorithms such as 
genetic algorithm (GA) [10-12], simulated annealing (SA) [13-14], ant colony 
optimization (ACO) [15-16], firefly algorithm (FA) [17], and particle swarm 
optimization (PSO) [18-20] have been implemented for path planning of mobile 
robot. Most of these metaheuristic algorithms are inspired, mimicking the successful 
features of the underlying biological, physical or sociological systems. 

In this paper, we introduce a new variant of cuckoo search algorithm for solving 
the path planning problem of mobile robot. Cuckoo search is an optimization 
metaheuristic search algorithm developed by Yang and Deb in 2009[21-22], which 
was inspired by obligate parasitic behavior of some cuckoo, by laying their eggs in 
nest of other host birds. An advantage of CS is that, the number of parameters to be 
tuned is less than GA and PSO and thus it is potentially more generic to implement to 
a wider class of optimization problem. Finally, simulation results are presented to 
verify the effectiveness of the proposed algorithm in various scenarios populated by 
variety of static obstacles. 

2 Cuckoo Search Algorithm 

In nature, cuckoo has an aggressive reproduction strategy that involves the female 
laying her fertilized eggs in the nest of another species to let host birds to hatch and 
brood young cuckoo chicks. Sometimes the host bird discover that the eggs are not 
it’s own and either destroy the cuckoo egg or abandon the nest and start their own 
brood elsewhere. 

Cuckoo search is a newly developed metaheuristic algorithm for solving 
optimization problems, which based on the obligate brood parasitic behavior of some 
cuckoo species in combination with the levy flight behavior of some birds. In CS 
algorithm, levy flight is used for generating nests or solutions after each iteration. 

A levy flight is type of random walk in which steps are distributed in terms of step 
lengths according to a heavy tailed probability distribution. Levy flight is a random 
walk in which the increments are distributed according to power law that is 

y x β−=  
where 1<β<3 and therefore has an infinite variance. 
For simplicity in describing new cuckoo search algorithm [21], Yang and Deb used 
the following three idealized rules 

1) Each cuckoo lays one egg at a time, and dump its egg in randomly chosen 
nest; 

2) The best nests with high quality of eggs will carry over to the next 
generations; 

3) The number of available host nests is fixed, and the egg laid by a cuckoo is 
discovered by the host bird with a probability paϵ [0,1].  

In this case, the host bird can either throw the egg away or abandon the nest, and build 
a completely new nest at new location. For simplicity, this last assumption can be 
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approximated by the fraction pa of the n nests are replaced by new nests (with new 
random solutions). 

For a maximization problem, the quality or fitness of a solution can simply be 
proportional to the value of the objective function. Other forms of fitness can be 
defined in a similar way to the fitness function in genetic algorithms. For simplicity, 
we can use the following simple representations that each egg in a nest represents a 
solution, and a cuckoo egg represent a new solution, the aim is to use the new and 
potentially better solutions (cuckoos) to replace a not-so-good solution in the nests. Of 
course, this algorithm can be extended to the more complicated case where each nest 
has multiple eggs representing a set of solutions. For this present problem, we will use 
the simplest approach where each nest has only a single egg. 

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be 
summarized as the pseudo code shown in Fig. 1. 

When generating new solutions ( 1)tX +  for, say, a cuckoo i, a levy flight is 
performed  

( 1) ( ) ( )t t
i iX X levyα λ+ = + ⊕  

where α>0 is the step size which should be related to the scales of the problem of 
interests. In most cases, we can use α= 1. The above equation is essentially the 
stochastic equation for random walk. In general, a random walk is a Markov chain 
whose next status/location only depends on the current location (the first term in the 
above equation) and the transition probability (the second term). The product ⊕  
means entry wise multiplications. This entry wise product is similar to those used in 
PSO, but here the random walk via Levy flight is more efficient in exploring the 
search space as its step length is much longer in the long run. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Fig. 1. Algorithm of Cuckoo search 

Objective function ( ),f x  1 2( , ,...... )T
dx x x x=  

Generate initial population of n host nests ( 1, 2,.........n)ix i =  

while (t<Max Generation) or (Stop criterion) do 
       Get a cuckoo randomly by Levy flights 
       Evaluate its quality/fitness iF  

       Choose a nest among n (say j) randomly  
       if ( )i jF F>  then 

            replace j by the new solution  
       end   
       A fraction (pa) of worse nests are abandoned and new ones are built 
       Keep the best solutions (or nests with quality solutions) 
       Rank the solutions and find the current best 
End while 
Post process results and visualization 
End 
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3 Architecture of Robot Path Planning with Cuckoo Search 
Technique 

Cuckoo search is a new optimization concept which broadly falls under swarm 
evolutionary computation techniques. The objective considered in the section is robot 
path planning in an unknown environment populated by variety of obstacles. Based 
on the sensory information about the target and obstacles, we adopt cuckoo search 
algorithm to solve it. We firstly transform the navigation problem into a minimization 
one and formulate a objective function equation based on the position of the target 
and the obstacles present in the environment. Then we implement CS to solve the 
above optimization problem. During this process results, the locations of the globally 
best nest in each iterative are selected and robot reaches these locations in sequence. 
When the robot does not detect any obstacles in its target path, then it will travel 
towards its destination. Then it is not necessary to implement any intelligence 
technique to travel the robot within its environment. The developed flow chart 
diagram for the current analysis is given in Fig [2]. 
 

Formulation of objective function 
 

Each solution in the problem space is associated with a numeric value. In CS, a nest 
egg of best quality will lead to a new generation. Therefore the quality of a cuckoo’s 
egg (new cuckoo) is related to the optimized path length for the robot. As is explained 
in the above optimization algorithm, each location to be reached by the robot is 
calculated based on the distance between itself and the goal and obstacles present in 
the environment. In general, the robot path planning is mainly depends upon the 
following two conditions, 
a) Robot should have kept up maximum distance from the nearest obstacle. The 

distance between the robot and obstacle is calculated by the following equation,  

(Dist)ROB= 2 2( ) ( )
N NOB ROB OB ROBx x y y− + −  

b) Robot should have kept up minimum distance from the goal. The distance 
between the robot and goal is calculated by the following equation, 

                         (Dist)RG= 2 2( ) (y )G ROB G ROBx x y− + −  
Based on the above two conditions the objective function of the nest can be expressed 
as follows: 

1 2
1

(n ) . .
min

j d

i i
i j

OB OB

f c c n G
n OB

∈

= + −
−

 
Based on the above objective function, we notate G as the goal, whose coordinate is 
(xG,yG). In addition we assume that the ‘N’ number of obstacles present in the 
environment and denote them as OB1, OB2, OB3 … OBN, their coordinates are 
(xOB1,yOB1), (xOB2,yOB2), (xOB3, yOB3)… (xOBN, yOBN). Due to limit range of the robot 
sensor, in each step it can able to recognize a number of obstacles present in the 
environment and number of obstacles being recognized by the robot sensor in some 
step is denoted as OBdϵ { OB1, OB2, OB3, …OBN}. 
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It can be seen from the objective function that when ni is nearer to the goal, the value 

of in G− will be less and when ni is far from the obstacles, the value of min

j d

i j

OB OB

n OB

∈

−   will 

be large. So the problem solved by CS is a minimization one. 
 

 

Fig. 2. Flow chart represented for the proposed algorithm 

From the objective function equation, it can be clearly understood that the controlling 
or fitness parameters c1 and c2 have influence on the robot trajectory. When c1 is large, 
the robot will be far away from the obstacles, if it is less there will be chance to collide 
with them. Other side, when c2 is large, robot has a strong potential to move to goal, 
resulting the path length being short, otherwise it will be large.   

4 Simulation Results 

We have tested our proposed algorithm in two dimensional path planning through 
series of simulation experiments under unknown or partially known environment.  
Our implementation was compiled using MATLAB R2008a processing under 
Windows XP. All the simulation results were applied on PC with Intel core2 
processor running at 3.0GHz, 4GB of RAM and a hard drive of 160GB.  
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As per the simulation experiments by Yang and Deb [21], it was found that 
population size n=15 to 40 and discovery rate pa=0.25 are suitable for solving most of 
optimization problems. In order to start the proposed algorithm for path planning of 
mobile robot, the following parameters of CS are taken into consideration. 
No. of Nest (population size) n=30 
Step size α=1 
Probability of discovery rate=0.25 
Maximum generation=300 nos. 

The simulation results were also compared with GA and PSO and it is verified that 
using proposed algorithm the robot reached to the specified target in optimum path 
length (Table-1). 
 

 

Fig. 3. Fitness landscape of obstacle function 

 

Fig. 4. Activation of CS algorithm for obstacle avoidance 



 Cuckoo Search Algorithm for the Mobile Robot Navigation 533 

 

 

Fig. 5. Obstacle avoidance by single robot using current algorithm (C1=1, C2=1.0e-04) 

 

Fig. 6. Obstacle avoidance by single robot in maze environment 

Table 1.  

SL No. Path length cover by the robot in pixels 

Fig.5 Fig.6 Fig.7 

CS 170 310 138 

PSO 198 329 152 

GA 203 341 166 
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Fig. 7. Wall following by single robot using current algorithm 

(C1=0.8, C2=1.0e-03) 

5 Conclusion and Future Work 

In this research paper, a new metaheuristic algorithm has been developed for path 
planning problem of autonomous mobile robot in an unknown or partially known 
environment populated by variety of static obstacles. It has been found that the CS 
algorithm is capable of avoiding obstacles and effectively guiding the mobile robot 
moving from the start point to the desired destination point with optimum/shortest 
path length. The authenticity of the proposed algorithm has been verified and proven 
by simulation experiments using MATLAB. The simulation results were also 
compared with GA and PSO and it is verified that using proposed algorithm the robot 
reached to the specified target in optimum path length. In future real time 
implementation is to be carried out using robot and multiple robots are to be 
considered instead of a single mobile robot.         

References 

1. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, New York (1990) 
2. Canny, J.E.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988) 
3. Lozano-Perez, T.: A simple motion planning algorithm for general robot manipulators. 

IEEE Journal of Robotics and Automation 3, 224–238 (1987) 
4. Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two 

dimensional space using generalized voronoi diagrams. Discrete & Computational 
Geometry 2, 9–31 (1987) 

5. Payton, D., Rosenblatt, J., Keirsey, D.: Grid- based mapping for autonomous mobile robot. 
Robotics and Autonomous Systems 11, 13–21 (1993) 



 Cuckoo Search Algorithm for the Mobile Robot Navigation 535 

 

6. Regli, L.: Robot Lab: Robot Path Planning. Lectures Notes of Department of computer 
Science. Drexel University (2007) 

7. Khatib, O.: Real time Obstacle Avoidance for manipulators and Mobile Robots. In: IEEE 
Conference on Robotics and Automation, vol. 2, pp. 505–505 (1985) 

8. Fujimura, K.: Motion Planning in Neritic Environments. Springer (1991) 
9. Ibrahim, M.Y., Fernandes, A.: Study on Mobile Robot Navigation Techniques. In: IEEE 

International Conference on Industrial Technology, vol. 1, pp. 230–236 (2004) 
10. Castillo, O., Trujillo, L., Melin, P.: Multiple objective genetic algorithms for path-planning 

optimization in autonomous mobile robots. Soft Computing 11, 269–279 (2007) 
11. Hamdan, M., El-Hawary, M.E.: A novel genetic algorithm searching approach for dynamic 

constrained multicast routing. In: Proc. IEEE/CCECE, pp. 1127–1130 (2003) 
12. Zein-Sabatto, S., Ramakrishnan, R.: Multiple path planning for a group of mobile robots in 

a 3D environment using genetic algorithms. In: Proc. IEEE Southeast, pp. 359–363 (2002) 
13. Qidan, Z., Yongjie, Y., Zhuoyi, X.: Robot Path Planning Based on Artificial Potential 

Field Approach with Simulated Annealing. In: Proc. ISDA 2006, pp. 622–627 (2006) 
14. Park, M.G., Lee, M.C.: Experimental evaluation of robot path planning by artificial 

potential field approach with simulated annealing. In: Proc. SICE, vol. 4, pp. 2190–2195 
(2002) 

15. Chen, X., Kong, Y., Fang, X., Wu, Q.: A fast two-stage ACO algorithm for robotic path 
planning. Neural Computing and Applications 22(2), 313–319 (2013) 

16. Shirong, L., Linbo, M., Jinshou, Y.: Path Planning Based on Ant Colony Algorithm and 
Distributed Local Navigation for Multi-Robot Systems. In: Proc. IEEE Int. Conf. on 
Mechatronics and Automation, pp. 1733–1738 (2006) 

17. Liu, C., Gao, Z., Zhao, W.: A New Path Planning Method Based on Firefly Algorithm. In: 
Fifth International Joint Conference on Computational Sciences and Optimization, pp. 
775–778 (2012) 

18. Zhang, Y., Gong, D.W., Zhang, J.H.: Robot path planning in uncertain environment using 
multi-objective particle swarm optimization. Neuro-Computing 103, 172–185 (2013) 

19. Tang, Q., Eberhard, P.: A PSO-based algorithm designed for a swarm of mobile robots. 
Structural and Multidisciplinary Optimization 44, 483–498 (2011) 

20. Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot Path Planning using Particle Swarm 
Optimization of Ferguson Splines. In: Proc. IEEE/ETFA, pp. 833–839 (2006) 

21. Yang, X.S., Deb, S.: Cuckoo Search via Levy Flights. In: Proc. of World Congress on 
Nature & Biologically Inspired Computing, pp. 210–214 (2009) 

22. Deb, S.: Engineering Optimisation by Cuckoo Search. International Journal of 
Mathematical Modelling and Numerical Optimisation 3, 330–343 (2010) 

23. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010) 
24. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Computing 

and Application (2013), doi:10.1007/s00521-013-1367-1 
25. Yang, X.S., Deb, S.: Discrete Cuckoo search algorithm for the travelling salesman 

problem. Neural Computing and Application (2013), doi:10.1007/s00521-013-1402-2 
26. Rakshit, P., Konar, A., Bhowmik, P., Goswami, I., Das, S., Jain, L.C., Nagar, A.K.: 

Realization of an Adaptive Memetic Algorithm Using Differential Evolution and Q-
Learning: A Case Study in Multi-robot Path Planning. IEEE T. Systems, Man, and 
Cybernetics: Systems 43(4), 814–831 (2013) 

27. Panda, R., Agrawal, S., Bhuyan, S.: Edge Magnitude based Multilevel Thresholding using 
Cuckoo Search Technique. Expert Systems with Applications 40(18), 7617–7628 (2013) 



536 P.K. Mohanty and D.R. Parhi 

 

Appendix I: Tuning of Parameters C1 and C2 

The choice of the controlling parameters (C1,C2) will affect the shape of the 
trajectory that the robot will move on toward the target position. 
 

 
C1=2, C2=1.0e-05  

 
C1=3, C2=1.0e-07  

 
C1=1, C2=1.0e-10 

 
C1=2.8, C2=1.0e-09 

 
C1=3.4, C2=1.0e-09 

 
C1=5, C2=1.0e-08 
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Abstract. This paper presents the design and performance analysis of 
Gravitational Search algorithm (GSA) based Proportional Integral (PI) 
controller and Proportional Integral Derivative controller with derivative Filter 
(PIDF) for Automatic Generation Control (AGC) of multi-area power system. 
At first, various conventional error criterions such as Integral of Absolute Error 
(IAE), Integral of Square Error (ISE), Integral of Time multiplied by Square 
Error (ITSE) and Integral of Time multiplied by Absolute value of Error 
(ITAE) are considered and the PI controller parameters are optimized 
employing GSA. The effect of objective function on system performance in 
terms of settling time, maximum overshoot and minimum damping ratio are 
analyzed.  The control parameters of GSA algorithm are tuned by carrying out 
multiple runs of algorithm for each control parameter variation. The superiority 
of the proposed GSA optimized PI/PIDF controller is demonstrated by 
comparing the results with some recently published modern heuristic 
optimization techniques such as Differential Evolution (DE),  Bacteria Foraging 
Optimization Algorithm (BFOA) and Genetic Algorithm (GA) for the same 
interconnected power system. 

Keywords: Automatic Generation Control (AGC), Proportional-Integral (PI) 
controller, Proportional Integral Derivative controller with derivative Filter 
(PIDF), Gravitational Search Algorithm (GSA). 

1 Introduction 

The main objective of a power system utility is to maintain continuous supply of 
power with an acceptable quality to all the consumers in the system. The system will 
be in equilibrium, when there is a balance between the power demand and the power 
generated [1],[12]. There are two basic control mechanisms used to achieve power 
balance; reactive power balance (acceptable voltage profile) and real power balance 
(acceptable frequency values). The former is called the Automatic Voltage Regulator 
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(AVR) and the latter is called the Automatic Load Frequency Control (ALFC) or 
Automatic Generation Control (AGC). For multi area power systems, which normally 
consist of interconnected control area, AGC is an important aspect to keep the system 
frequency and the interconnected area tie-line power as close as possible to the 
intended values [2]. The mechanical input power to the generators is used to control 
the system as it is affected by the output electrical power demand and to maintain the 
power exchange between the areas as planned. AGC monitors the system frequency 
and tie-line flows, calculates the net change in the generation required according to 
the change in demand and changes the set position of the generators within the area so 
as to keep the time average of the ACE (Area Control Error) at a low value.  ACE is 
generally treated as controlled output of AGC. As the ACE is adjusted to zero by the 
AGC, both frequency and tie-line power errors will become zero [3], [4], [11].  

The aim of the present work is:  

 to study the effect of objective function of the system performance 
 to tune the control parameters of GSA 
 to demonstrate the advantages of GSA over other techniques such as DE, 

BFOA and GA which are recently reported in the literature for the similar 
problem 

 to show advantages of using a modified controller structure and objective 
function to further increase the performance of the power system 

2 System Under Study 

System under investigation consists of two area interconnected power system of non 
reheat thermal plant as shown in Fig. 1. Each area has a rating of 2000 MW with a 
nominal load of 1000 MW. The system is widely used in literature is for the design 
and analysis of automatic load frequency control of interconnected areas [6], [7]. In 
Fig. 1, B1 and B2 are the frequency bias parameters; ACE1 and ACE2 are area control 
errors; u1 and u2 are the control outputs form the controller; R1and R2 are the governor 
speed regulation parameters in pu Hz; TG1 and TG2 are the speed governor time 
constants in sec; ΔPV1 and ΔPV2 are the change in governor valve positions (pu); ΔPG1 
and ΔPG2 are the governor output command (pu); TT1 and TT2 are the turbine time 
constant in sec; ΔPT1 and ΔPT2 are the change in turbine output powers; ΔPD1 and 
ΔPD2 are the load demand changes; ΔPTie is the incremental change in tie line power 
(p.u); KPS1and KPS2 are the power system gains; TPS1and TPS2 are the power system 
time constant in sec; T12 is the synchronizing coefficient and ΔF1 and ΔF2  are the 
system frequency deviations in Hz. The relevant parameters are taken from [6]. Each 
area of the power system consists of speed governing system, turbine and generator as 
shown in Fig.1.  
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Fig. 1. Transfer function model of two-area non reheat thermal system 

3 Overview of Gravitational Search Algorithm 

Gravitational Search Algorithm (GSA) is one of the newest heuristic algorithms 
inspired by the Newtonian laws of gravity and motion [8]. In GSA, agents are 
considered as objects and their performance is measured by their masses. All these 
objects attract each other by the force of gravity and this force causes a global 
movement of all objects towards the objects with a heavier mass. Hence masses co-
operate using a direct form of communication through gravitational force.  

3.1 Law of Gravity  

Each particle attracts every other particle and the gravitational force between the two 
particle is directly proportional to the product of their masses and inversely 
proportional to the distance between them R. It has been reported in literature that R 
provides better results than R2 in all experiment cases [9]. 

3.2 Law of Motion  

The current velocity of any mass is equal the sum of the fraction of its previous 
velocity and the variation in the velocity. Variation in the velocity or acceleration of 
any mass is equal to the force acted on the system divided by mass of inertia. 

For a system with ‘n’ agent (masses), the i-th position of an agent Xi is defined by: 

),........,........,( 1 n
i

d
iii xxxX =                     (1) 

for i =1,2,…..n                        
Where  
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d
ix  represents the position of i-th agent in the d-th dimension. 

At a specific time ‘t’, the force acting on mass ‘i ' from mass ‘j’ is defined as: 

 ))()((
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Where  
 ajM  is the active gravitational mass related to agent j 

 piM  is the passive gravitational mass related to agent i 

 )(tG  is the gravitational constant at time t 
 ∈  is small constant 

 )(tRij  is the Euclidian distance between two agents i and j given by: 

 
2

)(),()( tXtXtR jiij =      (3) 

The stochastic characteristic in GSA algorithm is incorporated by assuming that 
the total forces that act on agent ‘i’ in a dimension‘d’ be a randomly weight sum of d-
th components of the forces exerted from other agents as: 
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Where  jrand  is a random number in the interval [0, 1] 

The acceleration of the agent ‘i' at the time t and in the direction d-th, )(tad
i is 

given by the law of the motion as: 
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Where  )(tMii is the inertia mass of i-th agent. 

The velocity of an agent is updated depending on the current velocity and 
acceleration. The velocity and position are updated as: 

 )()(*)1( tatvrandtv d
i

d
ii

d
i +=+           (6)  

                  )1()()1( ++=+ tvtxtx d
i

d
i

d
i            (7)  

Where irand is a uniform random variable in the interval (0, 1). The random 

number is used to give a randomized characteristic to the search process. 
The gravitational constant G is initialized at the beginning.  To control the search 

accuracy it is reduced with time and expressed as function of the initial value (Go) 
and time t as: 

 )/(
0)( TteGtG α−=            (8) 

Where α is a constant and T is the number of iteration. 
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To achieve a good compromise between exploration and exploitation, the number 
of agents is reduced with lapse of Eq. (5) and therefore a set of agents with bigger 
mass are used for applying their force to the other. The performance of GSA is 
improved by controlling exploration and exploitation. To avoid trapping in a local 
optimum GSA must use the exploration at beginning. By lapse of iterations, 
exploration must fade out and exploitation must fade in.  

4 Proposed Approach 

4.1 Controller Structurer  

In the present paper, identical controllers have been considered for the two areas as 
the two areas are identical. The structure of PID controller with derivative filter is 
shown in Fig. 2 where PK , IK  and DK  are the proportional, integral and derivative 

gains respectively, and N is the derivative filter coefficient. When used as PI 
controller, the derivative path along with the filter is removed from Fig. 2.  
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Fig. 2. Structure of PID controller with derivative filter 

4.2 Objective Function  

To determining the optimum values of controller parameters conventional objective 
functions are considered at the first instance. The objective functions considered are 
IAE, ISE, ITSE and ITAE as given below: 

( ) dtPFFISEJ
simt
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Where, 1FΔ and 2FΔ are the system frequency deviations; TiePΔ is the incremental 

change in tie line power; simt is the time range of simulation; iζ is the damping ratio 

and n is the total number of the dominant eigen values; ST  is the sum of the settling 
times of frequency and tie line power deviations respectively; 1ω to 3ω are weighting 

factors. The problem constraints are the PI/PIDF controller parameter bounds. 
Therefore, the design problem can be formulated as the following optimization 
problem. 

Minimize J             (13)
           
Subject to 

For PI controller: maxmin PPP KKK ≤≤ , maxmin III KKK ≤≤       (14) 

For PIDF controller: 

maxmin PPP KKK ≤≤ , maxmin III KKK ≤≤ maxmin DDD KKK ≤≤       (15)           

The minimum and maximum values of PID controller parameters are chosen as -2.0 
and 2.0 respectively. The range for filter coefficient N is selected as 1 and 300. 

5 Results and Discussions 

5.1 Application of GSA 

The model of the system under study is developed in MATLAB/SIMULINK 
environment and GSA program is written (in .mfile). The developed model is 
simulated in a separate program (by .m file using initial population/controller 
parameters) considering a 10% step load change in area 1. At the first instance, the 
following parameters are chosen for the application of GSA: population size NP=30; 
maximum iteration =500; gravitational constants 0G =30 and α =10; 0K = total 

number of agents and decreases linearly to 1 with time [10]. Optimization is 
terminated by the prespecified number of generations. The flowchart of proposed 
optimization is shown in Fig. 3.  
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Fig. 3.  Flow chart of proposed GSA optimization approach 

The optimization was repeated 50 times and the best final solution among the 50 
runs is chosen as final controller parameters. The best final solutions obtained in the 
50 runs for each objective functions are shown in Table 1. To investigate the effect of 
objective function on the dynamic performance of the system, settling times (2% of 
final value) and peak overshoots in frequency and tie-line power deviations along 
with minimum damping ratios are also provided in Table 1. It can be seen from Table 
1 that best system performance is obtained with maximum value of damping ratio and 
minimum values of settling times and peak overshoots in frequency and tie-line 
power deviations when ITAE is used as objective function. 

Table 1. Tunned controller parameters, settling time, peak overshoot and minimum damping 
ratio for each objective function 

Objective 
function 

Controller 
parameters 

TS(sec) Peak Overshoot  
 
ζ KP 

(-ve) 
KI ∆F1 ∆F2 

∆PTie ∆F1 ∆F2 
∆PTie 

ISE 0.0120 0.8641 21.30 21.30 15.10 0.0594 0.0877 0.0152 0.0626 
IAE 0.0117 0.7668 18.00 18.00 12.90 0.0450 0.0710 0.0119 0.0733 
ITSE 0.1228 0.7849 16.20 16.20 11.10 0.0499 0.0838 0.0127 0.0882 
ITAE 0.1701 0.6492 12.00 11.90 8.90 0.0390 0.0590 0.0083 0.1144 

5.2 GSA Parameter Tuning 

The success of GSA is heavily dependent on setting of control parameters namely; 
constantα , initial gravitational constant G0, population size NP and number of 
iteration T. A series of experiments were conducted to properly tune the GSA control 
parameters in order to optimize the PI parameters employing ITAE objective 
function. Table 2 shows the GSA outcomes as a result of varying its control 
parameters.  
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Table 2. Study of tuning GSA parameters 

Parameter Min Ave Max St.Dev Other parameters 
α=10 0.6659897 0.8980626 1.0123918 0.1265678  

NP=20,T=50, 

G0=100 

α=15 0.6659897 0.7841139 1.0001651 0.1267459 
α=20 0.6659897 0.7291873 0.9182768 0.0802699 
α=25 0.6749712 0.9000713 0.9754091 0.1228549 
α=30 0.6870195 0.9164638 1.0123918 0.1375834 

G0=30 0.6659945 0.8046012 1.0123918 0.1184529  

NP=20,T=50, 
α=20 

 

G0=70 0.6659988 0.8512434 1.0225763 0.1282661 
G0=100 0.6659897 0.7291873 0.9182768 0.0802699 
G0=130 0.6680531 0.7790509 1.0225763 0.1055190 
G0=150 0.6678854 0.7991217 1.0035452 0.1988937 
NP=10 0.6881325 0.8231840 1.0315944 0.1988937  

T=50, α=20, 
G0=100 

NP=15 0.6706229 0.8019416 0.9426240 0.1250767 
NP=20 0.6659897 0.7291873 0.9182768 0.0802699 
NP=25 0.6659897 0.7280129 0.9146560 0.0702121 
NP=30 0.6659897 0.7279858 0.9135081 0.0679424 
T=30 0.6650960 0.8781403 0.9742163 0.1040270 NP=20,G0=100, 

α=20 T=50 0.6659897 0.7291873 0.9182768 0.0802699 
T=100 0.6659897 0.6774539 0.8739539 0.0571679 
T=200 0.6659897 0.6764037 0.8739539 0.0570019 
 
To quantify the results, 50 independent runs were executed for each parameter 

variation. It is clear from results shown in Table 2 that the best settings for constant 
α , gravitational constant G0, population size NP and number of iteration T are 
α =20, G0=100, NP=20 and  T=100 respectively.  

5.3 Analysis of Result 

It is clear from Table 3 that with PI structured controller and ITAE objective function 
(J4), minimum ITAE value is obtained with GSA (ITAE=0.6659) compared to ITAE 
values with GA (ITAE=2.74), BFOA (ITAE=1.827) and DE (ITAE=0.9911) 
techniques. So it can be concluded that for the similar controller structure (PI) and 
same objective function (ITAE) GSA outperforms GA, BFOA and DE techniques. It 
is also evident from Table 3 that minimum ITAE value (ITAE=0.1174) is obtained 
with a PIDF controller and therefore the performance of PIDF controller is superior to 
that of PI controller. However, when the modified objective function ( 5J ) given by 

equation (13) is used better performance is obtained in all respects. The minimum  

Table 3. Tunned controller parameter and error with ITAE objective function 

Technique Tuned controller Parameter  
ITAE  KP

 
KI KD N 

GA: PI [6] -0.2346 0.2662 - - 2.7474 
BFOA: PI [6] -0.4207 0.2795 - - 1.8270 
DE: PI [7] -0.2146 0.4335 - - 0.9911 
GSA: PI  -0.1880 0.6179 - - 0.6659 
GSA: PIDF 1.1884 1.9589 0.3456 54.3260 0.1174 
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damping ratio ( 2374.0=ζ ), ITAE value (ITAE= 1.3096) and settling times (5.17, 

6.81 and 4.59 sec for 1FΔ , 2FΔ  and TiePΔ respectively) are better compared to those 

with DE, BFOA and GA technique as shown in Table 4. The best system performance 
is obtained with GSA optimized PIDF controller optimized using the modified objective 
function as evident form Table 4. For better visualization of the improvements with the 
proposed approach, the above results are presented graphically in Fig. 4.  

Table 4. Settling time, minimum damping ratio and error with modified objective function   

Technique Tuned controller Parameter Settling time Ts(Sec)  
 
ζ  

 
ITAE  

 KP KI KD N ∆F1 ∆F2 ∆Ptie 

DE: PI [7] -0.4233 0.2879 - - 5.38 6.95 6.21 0.2361 1.6766 
GSA: PI -0.4383 0.3349 - - 5.17 6.81 4.59 0.2374 1.3096 
GSA: PIDF 1.4011 1.9981 0.7102 93.2760 1.92 3.19 2.86 0.4470 0.1362 
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Fig. 4. Comparison of settling time (a) GSA PIDF:J5 (b) GSA PIDF:J4 (c) GSA PI:J5 (d) DE PI 
: J5 (e) BFOA PI: J4 (f) DE PI : J4  (g) GA PI : J4  (h) GSA PI:J4     

6 Conclusion 

An attempt has been made for the first time to apply a powerful computational 
intelligence technique like GSA to optimize PI and PIDF controller parameters for 
AGC of a multi-area interconnected power system. It is observed the performance of 
the power system is better in terms of minimum damping ratio, settling times and 
peak overshoots in frequency and tie-line power deviations when ITAE objective 
function is used compared to IAE, ISTE and ISE objective functions. Then, the 
parameters of GSA technique are properly tuned and the recommended GSA 
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parameters are found to be: α =20, G0=100, NP=20 and T=100 respectively. Further, 
a modified objective function is employed and the parameters of PI and PIDF 
controller are optimized by tuned GSA. The superiority of the proposed method is 
confirmed by comparing the results with DE, BFOA and GA techniques.  
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Abstract. In this paper, a linear phase finite impulse response (FIR) high pass 
(HP) digital filter is designed using a recently proposed heuristic search 
algorithm called gravitational search algorithm (GSA). Various evolutionary 
techniques like conventional particle swarm optimization (PSO), differential 
evolution (DE) and the proposed gravitational search algorithm (GSA) have 
been applied for the optimal design of linear phase FIR HP filters. Real coded 
genetic algorithm (RGA) has also been adopted for the sake of comparison. In 
GSA, agents are considered as objects and their performances are measured by 
their masses. All these objects attract each other by the gravity forces and these 
forces cause a global movement of all objects towards the objects with heavier 
masses. Hence, masses cooperate amongst each other using a direct form of 
communication through gravitational forces. The heavier masses (which 
correspond to better solutions) move more slowly than the lighter ones. This 
guarantees the exploitation step of the algorithm. GSA is apparently free from 
getting trapped at local optima and premature convergence. Extensive 
simulation results justify the superiority and optimization efficacy of the GSA 
over the afore-mentioned optimization techniques for the solution of the 
multimodal, non-differentiable, highly non-linear, and constrained filter design 
problems. 

1 Introduction 

Digital filter is essentially a system or network that improves the quality of a signal 
and/or extracts information from signals or separates two or more signals which are 
previously combined. The nature of this filtering action is determined by the 
frequency response characteristics, which depends on the choice of system 
parameters, i.e., the coefficients of the difference equations. Thus, by proper selection 
of the coefficients, one can design frequency selective filters, that pass signals with 
frequency components in some bands while attenuate signals containing frequency 
components in other frequency bands. There are different techniques for the design of 
digital filters, such as window method, frequency sampling method etc. [1]. The 
major drawback of windowing method is that it does not allow sufficient control on 
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the frequency response in the various frequency bands and other filter parameters 
such as transition width and it tends to process relatively long filter lengths. The 
designer always has to compromise on one or other of the design specifications. Due 
to several disadvantages of classical optimization methods, evolutionary methods 
have been adopted in the design of optimal digital filters with better control of 
parameters and the highest stop band attenuation. Different evolutionary optimization 
techniques are reported in the literatures like Real Coded GA (RGA) [2-3], orthogonal 
genetic algorithm (OGA) [4], Tabu search [5], Differential Evolution (DE) [6], 
Adaptive Differential Evolution (ADE) [7], Particle swarm optimization (PSO) [8-9], 
some variants of PSO like PSO with Quantum Infusion (PSO-QI) [10], some hybrid 
algorithms like DE-PSO [11] have been applied for the filter design problem. 

Most of the above algorithms show the problems of fixing algorithm’s control 
parameters, premature convergence, stagnation and revisiting of the same solution 
over and again. In order to overcome these problems, recently, Gravitation search 
algorithm (GSA) [12] has been applied to IIR filter design problem. 

In this paper, the same optimization algorithm GSA and a novel fitness function 
are employed for the linear phase FIR HP filter design. In the GSA, agents / vectors 
are considered as objects and their performance is measured by their masses. All these 
objects attract each other by the gravity forces, and these forces produce a global 
movement of all objects towards the objects with heavier masses. Hence, masses 
cooperate using a direct form of communication through gravitational forces. The 
heavier masses (which correspond to better solutions) move more slowly than lighter 
ones. This guarantees the exploitation step of the algorithm. GSA does not 
prematurely restrict the searching space; the searching space varies during the search 
process. To validate the proposed method, the results obtained by GSA are compared 
to those of classical optimization techniques like Parks–McClellan (PM) algorithm, 
and other evolutionary approaches like RGA, conventional PSO, and DE. A 
comparison of simulation results reveals the optimization efficacy of the GSA over 
the above optimization techniques for the solution of the multimodal, non-
differentiable, highly non-linear, and constrained FIR HP filter design problems. 

2 FIR High Pass Filter Design 

Digital filters are classified as finite impulse response (FIR) or infinite impulse 
response (IIR) filters depending upon whether the response of the filter is dependent 
on only the present inputs or on the present inputs as well as the previous outputs, 
respectively. A finite-duration impulse response filter has a system function of the 
form given in (1). 

( ) ( )
=

−=
N

n

nznhzH
0

                          (1) 

where h(n) is called impulse response. The FIR filter structures are always stable, 
and can be designed to have a linear phase response. The impulse responses h(n) are 
to be determined in the design process and the values of h(n) will determine the type 
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of the filter, e.g., low pass, high pass etc. The design of filters is based on three broad 
criteria, namely, the filters should provide as little distortion as possible to the signal; 
flat pass band; exhibit attenuation characteristics with the highest stop band possible. 
Other desirable characteristics include narrow filter length, short frequency transition 
width beyond the cut-off point, and the ability to manipulate the attenuation in the 
stop band.  

In this paper, the GSA and the other algorithms PM, RGA, PSO, DE are 
individually applied in order to obtain the actual FIR HP filter response as close as 
possible to the ideal response. The designed filter with h(n) vectors is even symmetric 
and of even order. The length of h(n) is N+1, i.e., the number of coefficients 
(dimension D) is N+1. An ideal filter has a magnitude of 1 in the pass band and a 
magnitude of 0 in the stop band. The error between the magnitudes of the actual and 
the ideal frequency spectrums of actual and ideal filters, respectively, is used to 
evaluate the error fitness value of each vector. At each iteration, the vectors are 
updated by GSA. Error fitness values of vectors are computed using the new 
coefficients. The h(n) vector obtained after a certain maximum number of iterations or 
after the error is below a certain limit is considered to be optimal, resulting in a filter 
with optimal frequency response. As linear phase FIR filter provides symmetrical 
coefficients, therefore, the dimension of the problem is halved.  The frequency 
response of the FIR digital filter can be calculated as, 

( ) ( ) nj
N

n

j kk enheH ωω −

=
=

0

;      (2) 

where 
N

k
k

πω 2= ; ( )kjeH ω    is the Fourier transform complex vector. This is the FIR 

filter frequency response. The frequency in [0, π] is sampled with N points. 
The ideal magnitude response of the filter for the HP filter iH  is given as, 

( )
otherwise.   0              

;1for        1

=
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j
i

keH ωωω
                         (3) 

In this work, a novel error fitness function has been adopted in order to achieve 
much higher stop band attenuation. The error fitness function used in this paper is 
given in (4). Using (4), it is found that the proposed filter deign approach results in 
considerable improvement in frequency responses over the PM, RGA, PSO, DE  and 
other optimization techniques, reported in the prevailing literatures.  

( )( )[ ] ( )( )[ ] −+−−= sp HabsHabsabsJ δωδω
 

1    (4) 

where pδ  and sδ  are the ripples in the pass band and the stop band, respectively. 

For the first term of (4), ∈ω pass band including a portion of the transition band and 
for the second term of (4), ∈ω stop band including the rest portion of the transition 
band. The portions of the transition band chosen depend on pass band edge and stop 
band edge frequencies. 
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The error fitness function given in (4) represents the generalized fitness function to 
be minimized using the evolutionary algorithms RGA, conventional PSO, DE and the 
GSA individually. Each algorithm tries to minimize this error fitness J and thus 
improves the filter performance. Unlike other error fitness functions [6], [9-11] which 
consider only the maximum errors, J involves summation of all absolute errors for 

the whole frequency band, and hence, minimization of J  yields much higher stop 
band attenuation and lesser pass band ripples. Transition width is affected a little. 
Since the coefficients of the linear phase filter are matched, the dimension of the 
problem is thus halved. By only determining half of the coefficients, the filter can be 
designed. This greatly reduces the computational burdens of the algorithms, applied to 
the optimal design of linear phase FIR filters.  

3 Optimization Techniques Employed 

3.1 Real Coded Genetic Algorithm (RGA)  

Steps of RGA as implemented for optimization of h(n) coefficients are adopted from 
[2-3]. In this work, initialization of real chromosome string vectors of np population, 
each consisting of a set of h(n) coefficients is made. Size of the set depends on the 
number of coefficients in a particular filter design. 

3.2 Particle Swarm Optimization (PSO) 

PSO is a flexible, robust population-based stochastic search or optimization technique 
with implicit parallelism, which can easily handle with non-differential objective 
functions, unlike traditional gradient based optimization methods. Mathematically, 
velocities of the vectors and the vectors are modified according to the equations given 
in [9].  

3.3 Differential Evolution (DE) Algorithm 

DE was proposed by Rainer Storn and Price in 1997 [16]. DE is a population based, 
biological evolutionary strategy intimated, stochastic optimization algorithm that 
searches the solution space by using the weighted difference between two population 
vectors to determine the third vector. Apart from randomly generated population 
vectors, DE goes through Mutation, Crossover and Selection in each iteration cycle 
and then repeats again till the maximum iteration cycles.  

3.4 Gravitational Search Algorithm 

The limitations of PSO and DE are that they may be influenced by parameter 
convergence and stagnation problem. To overcome the problems associated with DE  
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and PSO; this paper adopts one recently proposed novel heuristic optimization 
algorithm known as gravitational search algorithm (GSA) for the purpose of FIR 
digital filter design. 

In GSA [12-15], agents / solution vectors are considered as objects and their 
performance is measured by their masses. All these objects attract each other by the 
gravity forces, and these forces cause a global movement of all objects towards the 
objects with heavier masses. Hence, masses cooperate using a direct form of 
communication through gravitational forces. The heavier masses (which correspond 
to better solutions) move more slowly than lighter ones. This guarantees the 
exploitation step of the algorithm. 

One way to perform a good compromise between exploration and exploitation is to 
reduce the number of agents with lapse of time. Hence, it is supposed that a set of 
agents with bigger masses apply their forces to the other. However, this policy is to be 
adopted carefully because it may reduce the exploration power and increase the 
exploitation capability. The details are given in [12-13]. 
The steps of the algorithm are depicted in Table 1.  

Table 1. Steps of GSA as implemented for linear phase FIR HP filter design 

step1. Initialization: Population (swarm size) of agent vectors, nP=25; maximum 
iteration cycles = 200;   number of filter coefficients h(n) = (nvar/2 + 1),  filter 
order = nvar (even and symmetric for linear phase FIR filter); minimum and 
maximum values of filter coefficients, hmin = -2,  hmax = 2; number of 
samples=128; 1.0=pδ , ;01.0=sδ  

α =20; G0 =1000; rNorm=2; 

rPower=1;velo=zeros(nP,nvar/2+1);ε =0.0001. 
step2. Generate initial agent vectors h(n) of filter coefficients (nvar/2 +1)  
                     randomly within limits.  
step3. Computation of error fitness values of the total population, nP, as defined 
                     by (4). 
step4. Computation of the population based best solution (hgbest) vector. 
step5. Update )(tG , )(tbest , )(tworst and )(tM i

for 
pni  ,...,2 ,1= ;  t is current  

                     iteration cycle. 
step6. Calculation of the total forces in different directions. 
step7. Calculation of accelerations and velocities of agents. 
step8. Updating agents’ positions. 
step9. Repeat Steps 3 to 8 until the stopping criterion (either maximum iteration 
                     cycles or near global optimal solution or agent, hgbest) is met.  
step10. Finally, hgbest is the vector of optimal filter coefficients (nvar/2 +1). Form 
                     complete nvar coefficients by copying (because the filter is even  
                     symmetric and has linear phase characteristic) before getting the final  
                     FIR HP optimal frequency spectrum. 
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4 Results and Discussions 

In order to demonstrate the effectiveness of the proposed optimal filter design 
method, optimal designs of FIR HP filters of two different orders 20 and 24 are 
realized using PM, RGA, PSO, DE and GSA individually. The MATLAB simulation 
has been performed extensively to realize the FIR HP filters. The numbers of the 
respective filter coefficients are 21 and 25. The sampling frequency has been chosen 
as fs = 1Hz. Also, for all the simulations the number of sampling points is taken as 
128. Each algorithm is run for 100 times to get the best solutions. The best results are 
reported in this work. Table 2 shows the best chosen parameters used for different 
optimization algorithms. The parameters of the HP filters to be designed are: pass 
band ripple (δp) = 0.1; stop band ripple (δs) = 0.01; pass band (normalized) edge 
frequency (ωp) = 0.55; stop band (normalized) edge frequency (ωs) = 0.45; and 
transition width=0.1. The best optimized coefficients for the designed HP filter of 
orders 20 and 24 have been individually computed by PM algorithm, RGA, PSO, DE 
and GSA. 

Table 2. RGA, PSO, DE, GSA parameters 

Parameters RGA PSO DE GSA 
Population size 120 25 25 25 
Iteration cycles 100 100 100 100 
Crossover rate 1.0 - -  
Crossover Single Point Crossover - -  
Mutation rate 0.01 - -  
Mutation Gaussian Mutation - -  
Selection, probability Roulette, 1/3 - -  
C1= C2 - 2.05   

min
iv , max

iv  - 0.01, 1.0   

wmax, wmin - 1.0, 0.4   

rC , F - - 0.3, 0.5  

α, G0,     20, 1000,  
rNORM , rPower    2, 1 
ε    0.0001 

Table 3. Comparative results of performance parameters of all algorithms for FIR HP filter of 
order 20 

Algorithm FIR HP filter of order 20 
Maximum 
stop band 
attenuation 

(dB) 

Maximum, 
average 
pass band 
ripple 
(normalized) 

Maximum, 
average 
stop band 
ripple 
(normalized) 

Transition 
width 
(normalized) 

Execution 
Time for 
100 cycles (s) 

PM    23.55 0.066, 0.066 0.06642,0.06632 0.0837  - 
RGA    25.25 0.119,0.1137 0.05461, 0.0248 0.0863 4.5116 
PSO    28.1 0.124, 0.119 0.03935, 0.01919 0.0863 3.0249 
DE    29.16 0.137, 0.127 0.03483, 0.02605 0.0875 3.7754 
GSA    31.78 0.143, 0.125 0.02577, 0.01599 0.0896 2.1011 



 Design and Simulation of FIR High Pass Filter using Gravitational Search Algorithm 553 

 

Table 4. Statistical parameters of stop band attenuation for different algorithms 

Algorithm FIR HP filter of order 20 FIR HP filter of order 24 
Stop Band Attenuation (dB) Stop Band Attenuation (dB) 
Maximum Mean Variance Standard 

Deviation
Maximum Mean Variance Standard 

Deviation 
PM  23.55 23.564  0.00010 0.0101  23.55 23.556 0.000024 0.00489 
RGA  25.25 32.095  20.975 4.579  27.85 35 12.472 3.531 
PSO  28.1 35.39  16.1874 4.0234  28.65 35.092 11.5287 3.395 
DE  29.16 37.056  18.312 4.279  35.39 38.22 3.1978 1.788 
GSA  31.78 36.292  5.864 2.4216  32.84 36.145 4.1837 2.0454 

Table 5. Comparative results of performance parameters of all algorithms for FIR HP filter of 
order 24 

Algorithm FIR HP filter of order 24 
Maximum stop 
Band 
attenuation 

(dB) 

Maximum, 
average 
pass band 
ripple 
(normalized) 

Maximum, 
average 
stop band 
ripple 
(normalized) 

Transition 
width 
(normalized) 

Execution 
Time for 
100 cycles  
(s) 

PM 23.55 0.066, 0.066 0.06642, 0.06637   0.0835 - 
RGA 27.85 0.131, 0.118 0.0405, 0.01807   0.0725 5.1309 
PSO 28.65 0.12, 0.1143 0.0369, 0.01744   0.0743 3.7564 
DE 30.23 0.119, 0.10033 0.0313, 0.01566   0.0813 4.2963 
GSA 32.84 0.121, 0.115 0.0228, 0.01518   0.0778 2.9133 

Figure 1 depicts the magnitude (dB) plots for the FIR HP filter of order 20 
designed individually by the above algorithms. Table 3 summarizes the comparative 
results of different performance parameters like, maximum stop band attenuation, 
maximum and average pass band ripples, maximum and average stop band ripples 
and transition width of the HP filter of order 20, designed using PM, RGA, PSO, DE 
and GSA individually. Table 4 shows the statistical data like mean, variance and the 
standard deviation of the stop band attenuation for the designed HP filters of orders 
20 and 24 using the above algorithms. 
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Fig. 1. Magnitude (dB) plot for the FIR HP filter of order 20 
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Fig. 2. Magnitude Plot (dB) for FIR HP Filter of order 24 

Figure 2 depicts the magnitude (dB) plots for the FIR HP filter of order 24 
designed individually by the above algorithms. Table 5 summarizes the comparative 
results of different performance parameters like, maximum stop band attenuation, 
maximum and average pass band ripples, maximum and average stop band ripples 
and transition width of the HP filter of order 24, designed using PM, RGA, PSO, DE 
and GSA. Table 6 shows the comparative best results of GSA and other reported 
works in regard to the FIR HP filter design. 

Table 3 shows that the proposed GSA based approach for the 20th order FIR HP 
filter design results in the highest 31.78 dB stop band attenuation, maximum pass 
band ripple (normalized) of 0.143, average pass band ripple (normalized) of 0.125, 
the lowest maximum stop band ripple (normalized) of 0.02577, average stop band 
ripple (normalized) = 0.01599 and transition width = 0.0896.  

Table 4 shows that the variance and the standard deviation of stop band attenuation 
for the FIR HP filters of orders 20 and 24, respectively, designed using GSA are the 
lowest among other aforementioned evolutionary optimization algorithms. Table 5 
shows that the proposed GSA based approach for the 24th order FIR HP filter design 
results in the highest 32.84 dB stop band attenuation, maximum pass band ripple 
(normalized) of 0.121, the lowest maximum stop band ripple (normalized) of  0.0228, 
average pass band ripple (normalized) =0.115, average stop band ripple (normalized)  
=0.01518 and transition width of 0.0778. From the figures and tables, it is evident that 
with almost same level of the transition width, the proposed GSA based filter design 
approach produces the highest stop band attenuation (dB) and the lowest stop band 
ripple. So, in the stop band region, the filters designed by GSA results in the best 
responses as compared to PM, RGA, PSO and DE.  From Table 6, one can infer that 
the GSA based filter design approach is the best so far among those of the literatures 
available for this purpose. 
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Table 6. Comparison of GSA’s results with other reported results 

Model Parameter 
 Filter 

type 
Order Maximum 

stop band 
attenuation (dB) 

Maximum 
pass band 
ripple 
(normalized) 

Maximum 
stop band 
ripple 
(normalized)

Transition width 

[6] Low pass 20 NR* >0.08 >0.09 >0.16 
[11] Low Pass 20 <23 dB 0.291 0.270 >0.13 
[8] Low Pass 33 <29dB NR* NR* NR* 

Band Pass 33 <25 dB NR* NR* NR* 
[9] Low pass 30 <30dB(Approx.) 0.15 0.031 0.05 
[10] Low Pass 20 < 27dB >0.1 >0.06 >0.15 

Band pass 20 <8dB >0.2 >0.05 >0.07 
GSA High Pass 20 31.78 0.143 0.02577 0.0907 

 High Pass 24 32.84 0.121 0.0228 0.0778 
NR* means not reported in the referred literature 

4.1 Comparative Effectiveness and Convergence Profiles of RGA, PSO, DE 
and GSA 

In order to compare the algorithms in terms of the error fitness value, Figure 3 shows 
the convergences of error fitness values obtained by RGA, PSO, DE and GSA. The 
convergence profiles are shown for the FIR HP filter of order 24. As shown in Figure 
3, RGA converges to the minimum error fitness value of 2.70 in 5.1309s; PSO 
converges to the minimum error fitness value of 2.0830 in 3.7564s; DE converges to 
the minimum error fitness value of 1.5350 in 4.2963s; whereas the GSA converges to 
the minimum error fitness value of 0.9686 in the lowest time 2.9133s. The above 
mentioned execution times for 100 cycles may be verified from Table 5. 
The similar convergence profiles have been achieved for the FIR HP filter of order 
20, which are not shown here. The execution times for 100 cycles for RGA, PSO, DE 
and GSA, respectively, are shown in Table 3 for the FIR HP filter of order 20. 
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Fig. 3. Convergence Profiles for RGA, PSO, DE and GSA in case of 24th Order FIR HP Filter 
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Hence, for the FIR HP filter designs, GSA converges to the least minimum error 
fitness values in the lowest execution times for finding the optimum filter coefficients.  
GSA’s lowest execution time is because of its very few easy computational steps 
devoid of any mutation, crossover, selection etc., which are present in other 
algorithms. With a view to the above fact, it may finally be inferred that the 
performance of the GSA is the best among all algorithms. All optimization programs 
are run in MATLAB 7.5 version on core (TM) 2 duo processor, 3.00 GHz with 2 GB 
RAM. 

5 Conclusions 

In this paper, a meta-heuristic gravitational search algorithm (GSA) is applied to the 
solution of the constrained, multi-modal, non-differentiable, and highly nonlinear FIR 
high pass filter design problem, which achieves optimal filter coefficients and the 
highest stop band attenuation and the lowest stop band ripples with a little increase or 
change in the transition width. It is revealed that GSA converges very fast to the best 
quality near optimal solution and possesses the best convergence characteristics, i.e., 
the lowest minimum error fitness value among other prevailing algorithms reported in 
this work. It is also evident from the results obtained by a large number of trials that 
GSA is consistently free from the shortcoming of premature convergence exhibited by 
the other optimization algorithms. The simulation results clearly reveal that GSA may 
be used as a good optimizer for the solution of obtaining the optimal filter coefficients 
in a practical digital filter design problem in digital signal processing systems. 
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Abstract. Management of reactive power resources is vital for stable and 
secure operation of power systems in the view point of voltage stability. In the 
present work, opposition-based gravitational search algorithm (OGSA) is 
applied for the solution of optimal reactive power dispatch (ORPD) of power 
systems. ORPD is an optimisation problem that decreases grid congestion with 
one or more objective of minimising the active power loss for a fixed economic 
power schedule. In this study, OGSA is tested on the standard IEEE 30-bus test 
system with different test cases such as minimisation of active power losses, 
improvement of voltage profile and enhancement of voltage stability. The 
obtained results are compared with those reported in the literature. Simulation 
results demonstrate the superiority and accuracy of the proposed algorithm. 
Considering the quality of the solution obtained, the proposed algorithm seems 
to be effective and robust to solve the ORPD problem. 

Keywords: Opposition-based gravitational search algorithm, optimal reactive 
power dispatch. 

1 Introduction 

In power systems, basic objective of optimal reactive power dispatch (ORPD) is to 
identify optimal setting of control variables which minimize the given objective 
function as either total transmission line loss ( LossP ), or absolute value of total 
voltage deviation (TVD), or improvement of voltage stability index (VSI) while 
satisfying the unit and system constraints. This goal is accomplished by proper 
adjustment of reactive power variables like generator voltage magnitudes, transformer 
tap settings and switchable VAR sources [1]. Increased interests are being paid by the 
researchers towards the application of artificial intelligence technology for the 
solution of the ORPF problems. Genetic algorithm (GA) [2], improved GA [3], 
adaptive GA [4], evolutionary programming (EP) [5], particle swarm optimization 
(PSO) [6], hybrid PSO [7], bacterial foraging optimization (BFO) [8], differential 
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evolution (DE) [9-11], seeker optimization algorithm (SOA) [12], gravitational search 
algorithm (GSA) [13] are just a few among the numerous techniques reported in the 
recent literatures. Blending of wavelet mutation with GSA is presented in [14]. A 
novel dynamic constrained optimization with offspring repair based GSA is 
introduced in [15].Which have been used for the solution of the ORPD problems of 
power system.  

In the present work, a new opposition-based GSA (OGSA) [16] is applied for the 
solution of the ORPD problems of power system. The performance of the proposed 
hybrid algorithm is tested on standard IEEE 30-bus test system for the ORPD 
problems. The potential and effectiveness of the proposed approach are demonstrated 
by comparing the results to those reported in the recent literatures. 

The rest of the paper is organized as follows. In Section 2, mathematical problem 
formulation is done. Proposed optimization algorithm and its application to the ORPD 
problems are narrated in Section 3. Numerical examples and simulation results are 
presented in Section 4 to demonstrate the performance of the proposed algorithm for 
the ORPD problems. Section 5 focuses on the conclusion of the present work.  

2 Mathematical Problem formulation 

2.1 Minimization of Real Power Loss 

The objective of the reactive power optimization is to minimize the active power loss 
in the transmission network, which can be defined as follows [12] 

    
 −+==

∈

→→

ENk
ijjijikLoss VVVVgfPMin XX )cos2()( 22

2,1 θ
 
              (1)          

where ),( 21 XXf
→→

denotes the active power loss function of the transmission 

network; 1X
→

 is the control variable vector T
CkG QTV ].[ ;  2X

→
 is the dependent 

variable vector; GV  is the generator voltage vector (continuous) except the slack bus 

voltage; kT is the transformer tap vector (integer); CQ is the shunt capacitor/inductor 

vector (integer); LV is the load bus voltage vector; GQ is the generator reactive power 

vector; ),( jik = , BNi ∈ , iNj ∈ , kg  is the conductance of branch k; ijθ is the 

voltage angle difference between buses i and j; iGP is the injected active power at bus 

i; iDP is the demanded active power at bus i; iV is the voltage at bus i; ijG is the 

transfer conductance between bus i and j; ijB is the transfer susceptance between 

buses i and j; iGQ is the injected reactive power at bus i; iDQ is the demanded 

reactive power at bus i; EN  is the of number of network branches; PQN  is the of 

number of PQ buses; BN  is the of number of total buses; iN  is the set of numbers of 

buses adjacent to bus i (including bus i); 0N  is the of number of total buses excluding 
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slack bus; CN is the of number of possible reactive power source installation buses; 

GN is the of number of generator buses; TN  is the of number of transformer 

branches; lS  is the power flow in branch l; the superscripts “min” and “max” in (1) 

denote the corresponding lower and upper limits, respectively. 

2.2 Minimization of TVD 

Minimization of TVD of load buses can allow the improvement of voltage profile 
[1].This objective function may be formulated as follows            

 −=
∈ LNi

ref
ii VVTVDMin                                          (2) 

where LN  is the number of load buses in the power system and ref
iV  is the 

desired value of the voltage magnitude of the ith bus which is equal to 1.0 p.u. 

2.3 Improvement of VSI 

The VSI objective may mathematically be expressed as:        

)]min[max()min( max kLLL ==  where LNk ,....,2,1=
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where kL is the voltage stability indicator (L-index) of the kth node and may be 

formulated as [9]: 
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where jiF is the (i, j)th components of the sub matrix obtained by the partial 

inversion of BusY and is given by 
 

][][ 1
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(5) 

where jjY is the self-admittance of the jth bus; jiY is the mutual admittance 

between the jth bus and the ith bus; ijα is the phase angle of the term ijF ; iδ , jδ  are 

the phase angle of the ith and the jth bus voltages, respectively.  

2.4 Equality and Inequality Constraints of ORPD Problems 

It is worth mentioning that during the process of optimization, all the constraints are 
satisfied as explained below [1]. 

 

(a) The load flow equality constraints are satisfied by power flow algorithm. 
(b) The generator bus voltage ( GiV ), transformer tap setting ( kT ) and switchable 

reactive power compensations ( CiQ ) are optimization variables and these 
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are self-restricted between their respective minimum and maximum values 
by the algorithm.   

(c) The limits on active power generation at the slack bus ( slackGP ) , load bus 

voltages ( LiV ), reactive power generation ( GiQ ) and transmission line flow 

( liS ) are state variables. These are restricted by adding a penalty function to 

the objective functions. 

3 Proposed Optimization Algorithm and Its Application to 
ORPD Problem 

3.1 Gravitational Search Algorithm 

Rashedi et al. proposes gravitational search algorithm (GSA) in [17]. Based on GSA, 
mass of each agent is calculated after computing current population’s fitness given in 
(6)-(7)
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where )(tworst  and )(tbest  are defined in (8)-(9).  
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Total forces applied on an agent from a set of heavier masses should be considered 
based on the law of gravity as stated in (10) which is followed by calculation of 
acceleration using the law of motion as presented in (11). Afterwards, next velocity of 
an agent, (as given in (12)), is calculated as a fraction of its current velocity added to 
its acceleration. Then, its next position may be calculated by using (13). 
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In GSA, the gravitational constant ( G ) will take an initial value ( 0G ), and it 

will   be reduced with time as given in (14) 

         








−

×= max
0)( iter

iter

eGtG
τ

                                          
(14) 

3.2 Opposition-Based GSA 

Tizhoosh introduced the concept of opposition-based learning (OBL) in [18].  The 
steps of the proposed OGSA algorithm are enumerated in Fig. 1 
 

Step 1 Read the parameters of power system and those of OGSA and specify the 
lower and upper limits of each variable. 

Step 2 Population-based initialization ( 0P ). 

Step 3 Opposition-based population initialization ( 0OP ). 

Step 4 Select 
pN fittest individuals from set of },{ 00 OPP as initial 

population
0P  

Step 5 Fitness evaluation of the agents using the objective function of the problem 
based on the results of Newton–Raphson power flow analysis [19]. 

Step 6 Update )(tiM  based on (6)-(7), )(tbest based on (8), and

 

)(tworst  based 

on   (9), and )( tG based on (14) for pNi .,,.........2,1= . 

Step 7 Calculation of the total forces in different directions by using (10). 
Step 8 Calculation of acceleration by (11) and the velocity by (12). 
Step 9 Updating agents’ positions by (13). 

Step 10 Check for the constraints of the problem. 
Step 11 Opposition based generation jumping. 
Step 12 Go to Step 5 until a stopping criterion is satisfied. 

 

Fig. 1. Pseudo code of the proposed OGSA algorithm 

4 Numerical Examples and Solution Results 

The proposed hybrid OGSA has been applied to solve the ORPD problems of IEEE 
30-bus test power system. The software has been written in MATLAB 2008a 
language and executed on a 2.63 GHz Pentium IV personal computer with 3 GB 
RAM. 

4.1 Test System  

IEEE 30-bus power system is taken as test system. The system input data are given in 
[13]. This test system has nineteen control variables and these are six generator 
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voltage magnitudes (at the buses 1, 2, 5, 8, 11 and 13), four transformers with off-
nominal tap ratio (at lines 6–9, 6–10, 4–12 and 28–27) and nine shunt VAR 
compensation devices (at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29). The total 
system demand is 2.834 p.u. at 100 MVA base 

4.1.1 Minimization of System 
LossP  for IEEE 30-Bus Power System 

The proposed approach is applied for minimization of 
LossP  as one of the objective 

function. The obtained optimal values of control variables, as obtained from the 
proposed OGSA method are given in Table I. The results obtained by the proposed 
OGSA are compared to those reported in the literature like GSA [13], biogeography-
based optimization (BBO) [20], DE [9], comprehensive learning PSO (CLPSO) [21], 
PSO [21] and self-adaptive real coded GA (SARGA) [22]. The obtained minimum 

LossP  from the proposed approach is 4.4984 MW. The value of 
LossP yielded by 

OGSA is less by 0.01591 MW (i.e. 0.3524%) compared to GSA-based best results of 
4.514310 MW. Comparative DE-, GSA- and OGSA-based convergence profile of 

LossP  (MW) for this test power system is presented in Fig.2. From this figure it may 

be observed that the convergence this test system is promising one. The 
computational times of the compared algorithms are also shown in Table I. It may be 
seen from this table that the computing time of OGSA is less than other evolutionary 
meta-heuristics including the basic GSA reported in [13]. 

Table 1. Comparison of simulation results for IEEE 30-bus test power system with LossP  

minimization objective 

Variable OGSA  Variable OGSA 
Generator voltage  Capacitor banks 

1V , p.u. 1.0500  10−CQ , p.u. 0.0330 

2V , p.u. 1.0410  12−CQ , p.u. 0.0249 

5V , p.u. 1.0154  15−CQ , p.u. 0.0177 

8V , p.u. 1.0267  17−CQ , p.u. 0.0500 

11V , p.u. 1.0082  20−CQ , p.u. 0.0334 

13V , p.u. 1.0500  21−CQ , p.u. 0.0403 

Transformer tap ratio  23−CQ , p.u. 0.0269 

96−T  1.0585  24−CQ , p.u. 0.0500 

106−T  0.9089  29−CQ , p.u. 0.0194 

124−T  1.0141  LossP , MW  4.4984  

2728−T  1.0182  TVD,  p.u. 0.8085  

CPU time, s  89.19  L-index, p.u. 0.1407 
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Table 2. Statistical comparison of results of IEEE 30-bus power test system based with LossP  

minimization 

Variable OGSA 
 

GSA  
[13] 

BBO  
[20] 

DE 
[9] 

CLPSO  
[21] 

PSO  
[21] 

SARGA  
[22] 

LossP , (MW)  4.4984  4.514310  4.5511  4.5550  4.5615  4.6282  4.57401 
TVD,  (p.u.) 0.8085  0.875220  NR*  1.9589  0.4773  1.0883  NR*  
L-index, (p.u.) 0.1407 0.141090 NR* 0.5513 NR*  NR*  NR* 
CPU time, (s)  89.19 94.6938  NR*  NR*  138  130  NR*  
NR* means not reported 

 

Table 3. Comparison of simulation results for IEEE 30-bus test power system with (a) TVD 
minimization objective and (b) improvement of VSI 

Variable (a) TVD minimization (b) Improvement of VSI
OGSA GSA [13] DE [9] OGSA GSA [13] DE [9] 

Generator voltage

1V , p.u. 0.9746 0.983850 1.0100 1.0951 1.100000 1.0993 

2V , p.u. 1.0273 1.044807 0.9918 1.0994 1.100000 1.0967 

5V , p.u. 0.9965 1.020353 1.0179 1.0991 1.100000 1.0990 

8V , p.u. 0.9982 0.999126 1.0183 1.0991 1.100000 1.0346 

11V , p.u. 0.9826 1.077000 1.0114 1.0995 1.100000 1.0993 

13V , p.u. 1.0403 1.043932 1.0282 1.0994 1.100000 0.9517 

Transformer tap ratio

96 −T  0.9909 0.900000 1.0265 0.9728 0.900000 0.9038 

106 −T  1.0629 1.100000 0.9038 0.9000 0.900000 0.9029 

124 −T  1.0762 1.050599 1.0114 0.9534 0.900000 0.9002 

2728 −T  1.0117 0.961999 0.9635 0.9501 1.019538 0.9360 
Capacitor banks

10−CQ , p.u. 0.0246 0.000000 4.9420 0.0021 5.000000 0.6854 

12−CQ , p.u. 0.0175 0.473512 1.0885 0.0265 5.000000 4.7163 

15−CQ , p.u. 0.0283 5.000000 4.9985 0.0000 5.000000 4.4931 

17−CQ , p.u. 0.0403 0.000000 0.2393 0.0006 5.000000 4.5100 

20−CQ , p.u. 0.0000 5.000000 4.9958 0.0000 5.000000 4.4766 

21−CQ , p.u. 0.0270 0.000000 4.9075 0.0000 5.000000 4.6075 

23−CQ , p.u. 0.0385 4.999834 4.9863 0.0000 5.000000 3.8806 

24−CQ , p.u. 0.0257 5.000000 4.9663 0.0009 5.000000 3.8806 

29−CQ , p.u. 0.0000 5.000000 2.2325 0.000 5.000000 3.2541 

LossP , MW  6.9044 6.911765 6.4755 5.9198 4.975298 7.0733 

TVD, p.u. 0.0640 0.067633 0.0911 1.9887 0.215793 1.419 
L-index, p.u. 0.13381 0.134937 0.5734 0.1230 0.136844 0.1246 
CPU time, s 190.14 198.6532 NR* 185.16 NR* NR* 
NR* means not reported 
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4.12. Minimization of System TVD for IEEE 30-Bus Power System 
The proposed OGSA-based approach is also applied for the minimization of TVD of 
this test power network. The results yielded by the proposed OGSA-based approach 
are presented in Table 3. The results obtained by the proposed OGSA are compared to 
those reported in the literature like GSA [13] and DE [9]. From this table, 5.37% 
improvement in TVD may be recorded by using the proposed OGSA-based algorithm 
as compared to GSA counterpart reported in [13]. Comparative DE-, GSA- and OGSA-
based convergence profile of of TVD (p.u.) for this test power system is presented in 
Fig. 3. From this figure it may be observed that the convergence profile of TVD (p.u.) 
for the proposed OGSA-based approach for this test system is promising one. 

4.1.3 Minimization of System VSI for IEEE 30-Bus Power System 
Results obtained by the proposed OGSA algorithm for the improvement of VSI for 
IEEE 30-bus test power system are also presented in Table 3. The results obtained by 
the proposed OGSA are compared to those reported in the literature like GSA [13] 
and DE [9]. From this table, 10.11% improvement in VSI may be recorded by using 
the proposed OGSA-based algorithm as compared to GSA reported in [13].  

 

Fig. 2. Comparative convergence profiles of transmission loss for IEEE 30-bus test power system 

 

Fig. 3. Comparative convergence profile of TVD for IEEE 30-bus test power system 
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Fig. 4. Comparative convergence profile of VSI for IEEE 30-bus test power 

5 Conclusion 

In this paper, the proposed OGSA algorithm has been successfully implemented to 
solve ORPD problem of IEEE 30-bus test power network. It has been observed that 
the proposed OGSA algorithm has the ability to converge to a better quality near-
optimal solution. This algorithm possesses better convergence characteristic and 
robustness than other prevailing techniques reported in the recent literature. It is also 
clear that the proposed OGSA algorithm is free from the shortcoming of premature 
convergence exhibited by the other optimization algorithms. Thus, the proposed 
algorithm may become a promising tool for solving some other more complex 
engineering optimization problems for the future researchers. 
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Abstract. In this article swarm Intelligence based gravitational search 
algorithm (PSOGSA) is used to solve combined economic and emission 
dispatch (CEED) problems. The CEED problem is modeled with the objective 
of minimizing fuel cost as well as emission level while satisfying associated 
operational constraints. Here the multi-objective function is converted into 
single objective function using price penalty method. The performance of 
PSOGSA approach is investigated on standard 10 unit system, 6 unit system 
and 40 unit system .The results obtained by simulation are compared with the 
recent reported results. The simulation result shows the fast convergence and its 
potential to solve complicated problems in power system.    

1 Introduction 

The aim of classical economic load dispatch (ELD) problem is to determine the 
schedule of generation which minimizes cost while satisfying load demand and 
operational constraints [1]. However this single objective problem is no longer 
considered alone due to the increased concern about the pollution and its harmful 
effects. Moreover the combustion of fossil fuel in thermal power plant releases NOx, 
SOx and Cox emissions. These emissions have adverse effect on human lives as well 
as on environment. This led utilities to adopt modified design to minimize the 
pollutants. Also cost and emission are the two conflicting objectives which cannot be 
minimized simultaneously and generates a set of solution which cannot be considered 
optimal solution to the problem. Thus a compromise solution between the fuel cost 
and emission was obtained with the variation in weights. This bi-objective problem is 
converted into a single objective using price penalty factor method and is known as 
combined economic and emission dispatch problem (CEED).  

Conventional optimization method such as goal programming technique [2], 
weighted min-max method [3] were used to solve the multi-objective optimization 
problem. Other evolutionary computation algorithms such as genetic algorithm(GA) 
[4], differential evolution (DE)[5], particle swarm optimization (PSO)[6], 
gravitational search algorithm (GSA)[7], chaotic ant swarm optimization (CASO)[8] 
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has been applied successfully to solve the EED problems. Gravitational search 
algorithm with wavelet mutation (GSAWM) [14] is also applied to solve the complex 
ELD problem. 

Recently numerous techniques like multi-objective harmony search (MOHS) [9], 
oppositional gravitational search algorithm (OGSA) [10], multi-objective differential 
evolution algorithm (MODE) [11], fuzzy based bacterial foraging algorithm (MBFA) 
[12], quasi-oppositional teaching learning based optimization (QOTLBO) [13], are 
applied to solve these problem.  

The PSOGSA [16] technique is a hybrid evolutionary algorithm which 
incorporates the power of PSO in searching the global optimal solution into GSA with 
a higher convergence speed and accuracy. The PSOGSA algorithm modifies the 
velocity of GSA using the global search capability of PSO such that the convergence 
speed is improved. 

This article presents the application of PSOGSA algorithm to solve the CEED 
problem with fuzzy decision scheme. To measure the effectiveness of hybrid 
PSOGSA algorithm, it has been implemented on three standard test cases with 
different dimension and complexity. The rest of article is organized as follows: 
mathematical model of CEED problem is described in section 2. A brief description 
of PSOGSA is explained in section 3. The simulation study and the numerical results 
obtained are presented in section 4. Finally, conclusion is drawn in section 5. 

2 Mathematical Model of CEED Problem 

2.1 Economic Load Dispatch Problem 

The objective function for ELD is modeled as:  min = ∑ ( )              (1) 

Where  and  are real power output (MW) and total cost of   generating unit, 
,  and  are the cost coefficients of  generating unit.  is the number of 

generating units. 

Where ( ) = + +            (2) 

Considering valve point loading effect, cost function is given by- ( ) = + + + sin ( )         (3) 

Where   and  are the cost coefficients for valve point loading effects. 

2.2 Emission Dispatch  

The aim of emission dispatch is to minimize the atmospheric pollutants caused by the 
combustion of fossil fuel in thermal power plants. Mathematically the function is 
expressed as: ( ) = ∑ + + + exp ( )               (4) 
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Where , , ,    are the emission coefficients corresponding to   
generating unit.  

The generation cost and emission are minimized subjected to the following 
constraints: 

1) Generator capacity constraints- 
To obtain stable operation output power of each generating unit must lie within its 

lower  and upper  limits-  ≤ ≤           (5) 

2) Load balance constraints- ∑ = +                          (6) 

Where   system load demand and  is the real power transmission loss.  is 
calculated using - coefficients, expressed as- = ∑ ∑                       (7) 

2.3 Combined Economic and Emission Dispatch Problem 

The two competing objectives, cost and emission are combined together using price 
penalty factor to obtain a single objective function. The fuel cost is calculated in $/hr 
and emission is defined in lb/hr but for a single objective function it is necessary to 
measure both in same units, for this a price penalty factor is introduced with emission 
so that the total cost is obtained in $/hr. The CEED problem minimizes the cost and 
emission simultaneously while satisfying the load demand and associated constraints. 
The problem can be formulated as- min = ( ) + (1 ) ( )         (8) 

Where  is the total cost in $/hr, 0 < < 1 is a compromise factor which is a 
random number between the interval [0, 1] and  is the price penalty factor in $/hr 
and is calculated as- = ( )( )                                                      (9) 

When  is 1, the function becomes the classical ELD problem. When  is 0, the 
function becomes only emission dispatch function minimizing the emission of the 
system. Therefore to obtain a compromise solution between cost and emission, value 
of  should lie somewhere between 0 and 1. 

2.4 Best Compromise Solution 

To obtain the best compromise solution from a set of non dominated solutions, fuzzy 
based mechanism is used. In this the membership value of every objective from the 
Pareto front is computed using the membership function defined as [15]: 
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( ) =  1;   ≤; < <0; ≥       (10) 

Where  and  are the minimum and maximum values of the   objective. 
The normalized membership function  for each non-dominated solution  is 
evaluated as: = ∑∑ ∑                 (11) 

Where  represents the number of objectives,  is the obtained non-dominated 
solutions from the Pareto front. The best compromise solution is the one for which  
is maximum. 

3 Hybrid PSOGSA  

The PSOGSA is a heuristic optimization algorithm described by S. Mirjalili et al. in 
2010[16]. Hybridization involves the combination of functionality of two algorithms 
i.e. it uses gbest of PSO in calculating the global best position with that of  local 
search ability of GSA. This retains the best position found so far on the search space 
so that the particle having the best fitness value moves more slowly than the particle 
having lower fitness value.  

In this algorithm, initially a population of N agents is assumed and is determined 
randomly in the search space.  = , … . , … . . , ,      = 1,2, … …                    (12) 

Where  corresponds to the  position of agent in dimension ,  represents the 
dimension of the problem. 

The force at particular time  acting on mass  from mass  is expressed as follows: ( ) = ( ) ( ) ( )( )  ( ) ( )       (13) 

Where ( ) and ( ) are masses of agents  and , ( ) represents the 
gravitational constant at time ,  ( ) is the Euclidean distance between the two 
agents   and  and  is a small constant. ( ) = ( ), ( )         (14) 

Gravitational constant ( ) is calculated as: ( ) =                          (15) 

Where  is expressed as the initial value of gravitational constant,  is user 
specified constant,  is the current iteration and  corresponds to maximum number of 
iterations. 
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The acceleration of agent  in dimension  at time  is expressed as follows: ( ) = ( )( )                                                (16) 

The total force on agent  in dimension  is calculated as follows: ( ) = ∑ ( ),                      (17) 

Where  is the random number determined in the interval [0, 1]. 
In each iteration, the velocity of the next agent is described as- ( + 1) = . ( )+ ( ) + ( )      (18) 

Where ( ) is the velocity of agent  at iteration  in dimension ,   is a 
weighting function,  is a weighting factor,  is a random number between 0 and 
1, ( ) is the acceleration of agent  at iteration  in dimension ,  is the best 
position of swarm found so far and  is the position of agent  in  dimension. 

The next position of agent is calculated as- ( + 1) = ( ) + ( + 1)      (19) 

Where ( + 1) is the velocity of next agent and  is the position of  agent in 
dimension  at iteration . 

 With the evaluation of fitness value, masses can be updated as follows: ( ) = ( ) . ∗ ( )( ) ( )    = 1,2, . . ,      (20) ( ) = ( )∗∑ ( )       (21) 

Where ( ) corresponds to the fitness value of the agent  at any 
time , and ( ) and ( ) are the minimum and maximum fitness value of all 
agents. 

4 Numerical Example and Simulation Results 

The effectiveness of hybrid PSOGSA for the solution of CEED problem is 
investigated on three standard test systems. These are 10 unit with non smooth cost 
function and loss coefficient, 6 unit  system with smooth cost function and loss 
coefficients and 40 unit system with non-smooth cost function and without loss 
coefficients. The algorithm is implemented in MATLAB 7.8 and system 
configuration is Intel core i3 processor with 2.3 GHz and2 GB RAM.  

4.1 Test System I: Ten Unit System 

This test system contains ten thermal generating unit with valve point loading effect 
in cost and emission function. In this system loss coefficients are also considered. The 
entire system data is adopted from [7], with a demand of 2000MW. The results 
obtained in terms of optimum power output, cost, emission, transmission loss and 
average computational time by different methods is presented in table 1. The best 
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value in terms of cost achieved by PSOGSA approach is 113459.8719 $/hr and in 
terms of emission is 4110.24916 lb/hr. Comparison of results is made with strength 
Pareto evolutionary algorithm 2(SPEA 2)[11], non dominated sorting genetic 
algorithm II(NSGA-II) [11], Pareto differential evolution (PDE) [11], multi-objective 
differential evolution algorithm (MODE) [11], gravitational search algorithm (GSA) 
[7], quasi-oppositional teaching learning based optimization (QOTLBO)[13] and 
teaching learning based optimization(TLBO)[13]. Table 1, shows that the 
compromise solution obtained from the hybrid PSOGSA approach is less than the 
other reported methods. The Pareto optimal front obtained by hybrid PSOGSA for 10 
unit system is presented in Fig.1.  

 

Fig. 1. Pareto optimal front for ten unit system 

Table 1. Result of 10 unit system with a demand of 2000 MW 

Unit PSOGSA QOLTBO 
[13] 

TLBO 
[13] 

GSA    [7] MODE 
[11] 

PDE    
[11] 

NSGA-II 
[11] 

SPEA 2 
[11] 

Pg1 55.0000 55.0000 55.0000 54.9992 54.9487 54.9853 51.9515 52.9761 
Pg2 80.0000 80.0000 80.0000 79.9586 74.5821 79.3803 67.2584 72.8130 
Pg3 84.9001 84.8457 83.9202 79.4341 79.4294 83.9842 73.6879 78.1128 
Pg4 83.9537 83.4993 82.8342 85.0000 80.6875 86.5942 91.3554 83.6088 
Pg5 142.7178 142.9210 132.0131 142.1063 136.8551 144.4386 134.0522 137.2432 
Pg6 163.4025 163.2711 173.9880 166.5670 172.6393 165.7756 174.9504 172.9188 
Pg7 299.8566 299.8066 299.7099 292.8749 283.8233 283.2122 289.4350 287.2023 
Pg8 315.4092 315.4388 317.9684 313.2387 316.3407 312.7709 314.0556 326.4023 
Pg9 428.4821 428.5084 427.0166 441.1775 448.5923 440.1135 455.6978 448.8814 

Pg10 430.1033 430.5524 431.3955 428.6306 436.4287 432.6783 431.8054 423.9025 
Cost ($/hr) 113459.8719 113460 113471 113490 113480 113510 113540 113520 
Emission  

(lb/hr) 
4110.24916 4110.2 4113.5 4111.4 4124.9 4111.4 4130.2 4109.1 

PLoss 
(MW) 

83.8253 83.8433 83.8459 NA NA NA NA NA 

4.2 Test System II: Six Unit System 

For this test case the unit data for cost, emission and losses is adapted from[11], the 
load demand is set at 1200 MW. The best value in terms of cost achieved by 
PSOGSA method is 64911.6638 $/hr and the best value in terms of emission is 
1281.44834 lb/hr. Comparison of result in terms of generator schedule, cost, emission 
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and losses were made with quasi-oppositional teaching learning based optimization 
QOTLBO[13], teaching learning based optimization(TLBO)[13], strength Pareto 
evolutionary algorithm 2(SPEA 2)[11], non dominated sorting genetic algorithm 
II(NSGA-II) [11], Pareto differential evolution(PDE) [11], multi-objective differential 
evolution algorithm(MODE) [11] in table 2. The Pareto optimal front obtained by the 
hybrid PSOGSA approach for 6 unit system is shown in Fig. 2. 

Table 2. Result of six unit system with a demand of 1200 MW 

Unit PSOGSA QOTLBO
[13] 

TLBO
[13] 

MODE
[11] 

PDE     
[11] 

NSGA-
II [11] 

SPEA2  
[11] 

Pg1 107.4170 107.3101 107.8651 108.6284 107.3965 113.1259 104.1573 
Pg2 121.4823 121.4970 121.5676 115.9456 122.1418 116.4488 122.9807 
Pg3 206.3238 206.5010 206.1771 206.7969 206.7536 217.4191 214.9553 
Pg4 205.4595 206.5826 205.1879 210.0000 203.7047 207.9492 203.1387 
Pg5 307.1902 304.9838 306.5555 301.8884 308.1045 304.6641 316.0302 
Pg6 303.6222 304.6036 304.1423 308.4127 303.3797 291.5969 289.9396 
Cost 
($/hr) 

64911.6638 64912 64922 64843 64920 64962 64884 

Emission 
(lb/hr) 

1281.44834 1281 1281 1286 1281 1281 1285 

PLoss 
(MW) 

51.4949 51.4955 51.4955 NA NA NA NA 

 
Fig. 2. Pareto optimal front for six unit system 

4.3 Test System III: Forty Unit System 

A 40 generating unit system with valve point loading effect in the fuel cost and 
emission functions with loss coefficients. The load demand is set as 10500 MW. The 
system data is taken from [7]. The best value of cost achieved by PSOGSA is 
125681.1656 $/hr and emission is 197532.94859 lb/hr. Table 3 shows the comparison 
of result obtained by PSOGSA with quasi-oppositional based teaching learning based 
optimization(QOTLBO)[13], teaching learning based optimization(TLBO)[13], non 
dominated sorting genetic algorithm II(NSGA-II) [11], Pareto differential 
evolution(PDE) [11], multi objective differential evolution algorithm(MODE) [11] 
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and gravitational search algorithm(GSA) [7]. Solution obtained by PSOGSA in terms 
of fuel cost is less than the other reported methods except QOTLBO [13] and TLBO 
[13]; however the emission level obtained by PSOGSA method is less as compared to 
all methods. Fig. 3 shows the Pareto optimal front obtained by PSOGSA approach for 
40 unit system.     

Table 3. Result of 40 unit system with a demand of 10500 MW 

Unit  PSOGSA QOTLBO
[13] 

TLBO
[13] 

GSA    
[7] 

MODE  
[11] 

PDE      
[11] 

NSGA-II 
[11] 

Pg1 114.0000 114.0000 114.0000 113.9989 113.5295 112.1549 113.8685 
Pg2 114.0000 114.0000 114.0000 113.9896 114.0000 113.9431 113.6381 
Pg3 120.0000 120.0000 91.9893 119.9995 120.0000 120.0000 120.0000 
Pg4 179.7331 179.7593 177.4467 179.7857 179.8015 180.2647 180.7887 
Pg5 97.0000 97.0000 97.0000 97.0000 96.7716 97.0000 97.0000 
Pg6 140.0000 140.0000 140.0000 139.0128 139.2760 140.0000 140.0000 
Pg7 284.2133 300.0000 300.0000 299.9885 300.0000 299.8829 300.0000 
Pg8 290.1226 298.9093 283.7368 300.0000 298.9193 300.0000 299.0084 
Pg9 285.4145 300.0000 300.0000 296.2025 290.7737 289.8915 288.8890 
Pg10 200.3682 130.0996 130.0000 130.3850 130.9025 130.5725 131.6132 
Pg11 318.2831 243.7055 318.1965 245.4775 244.7349 244.1003 246.5128 
Pg12 316.3484 318.4741 241.5727 318.2101 317.8218 318.2840 318.8748 
Pg13 394.2793 394.4004 391.9916 394.6257 395.3846 394.7833 395.7224 
Pg14 394.2794 394.3418 394.4501 395.2016 394.4692 394.2187 394.1369 
Pg15 394.2798 394.2703 394.3549 306.0014 305.8104 305.9616 305.5781 
Pg16 394.2799 394.4013 394.0597 395.1005 394.8229 394.1321 394.6968 
Pg17 486.2944 489.3143 490.5281 489.2569 487.9872 489.3040 489.4234 
Pg18 488.3961 489.3548 484.2089 488.7598 489.1751 489.6419 488.2701 
Pg19 421.5203 511.1648 423.9535 499.2320 500.5265 499.9835 500.8000 
Pg20 421.5206 421.8134 507.3859 455.2821 457.0072 455.4160 455.2006 
Pg21 433.5204 434.5654 438.5029 433.4520 434.6068 435.2845 434.6639 
Pg22 433.5215 434.5536 433.6163 433.8125 444.5310 433.7311 434.1500 
Pg23 433.5191 433.9734 434.1238 445.5136 444.6732 446.2496 445.8385 
Pg24 433.5211 433.7659 446.0748 452.0547 452.0332 451.8828 450.7509 
Pg25 433.5203 434.9881 437.2666 492.8864 492.7831 493.2259 491.2745 
Pg26 433.5205 434.1780 433.3886 433.3695 436.3347 434.7492 436.3418 
Pg27 10.0000 10.0574 10.2118 10.0026 10.0000 11.8064 11.2457 
Pg28 10.0000 10.3295 11.1608 10.0246 10.3901 10.7536 10.0000 
Pg29 10.0000 10.0147 10.2531 10.0125 12.3149 10.3053 12.0714 
Pg30 97.0000 97.0000 97.0000 96.9125 96.9050 97.0000 97.0000 
Pg31 186.0240 190.0000 190.0000 189.9689 189.7727 190.0000 189.4826 
Pg32 190.0000 190.0000 190.0000 175.0000 174.2324 175.3065 174.7971 
Pg33 190.0000 190.0000 190.0000 189.0181 190.0000 190.0000 189.2845 
Pg34 200.0000 200.0000 200.0000 200.0000 199.6506 200.0000 200.0000 
Pg35 200.0000 200.0000 200.0000 200.0000 199.8662 200.0000 199.9138 
Pg36 200.0000 200.0000 200.0000 199.9978 200.0000 200.0000 199.5066 
Pg37 110.0000 110.0000 110.0000 109.9969 110.0000 109.9412 108.3061 
Pg38 110.0000 110.0000 110.0000 109.0126 109.9454 109.8823 110.0000 
Pg39 110.0000 110.0000 110.0000 109.4560 108.1786 108.9686 109.7899 
Pg40 421.5206 421.5651 459.5306 421.9987 422.0682 421.3778 421.5609 
Cost 
($/hr) 

125681.1656 125161 125602 125782 125792 125731 125825 

Emission 
(lb/hr)  

197532.94859 206490.4 206648.3 210932.9 211190.2 211765.5 210949.1 
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Fig. 3. Pareto optimal front for 40 unit system 

4.4 Parameter Selection  

In PSOGSA, population (N), gravitational constant (G0), acceleration coefficient (α), 
weighting factor (C1 and C2) are the four control parameters. The performance of 
algorithm is dependent on these parameters therefore a detailed study was carried out 
to obtain the optimal value by varying the parameters. Here 20 independent trials have 
been made for each combination and maximum numbers of iterations are set to 500. 
The performance of PSOGSA is tested on 6 unit system with loss coefficients. After a 
careful experimentation the following input parameters were selected to obtain the 
optimal value: population size (N) =60, gravitational constant(G0) =1, acceleration 
coefficient(α) =10, C1=2.5, C2=1.0 and maximum number of iteration=500. 

1) Effect of C1 and C2 on PSOGSA algorithm 
Initially parameter  set at N =60, G0 =1and α =10.To obtain the optimum value of 

weighting factor C1 and C2, the value of C1 and C2 were increased from 1.0 to 2.5 
with a step size of 0.5. Table 4 shows the effect of variation of C1 and C2 for 
obtaining minimum, maximum, mean cost and standard deviation for 20 repeated 
trials. The optimal value which gives best results is: C1=2.5 and C2=1.0.     

2) Effect of acceleration coefficient on the PSOGSA performance 
Change in acceleration coefficient affects the PSOGSA performance. Increasing 

acceleration coefficient does not produce any significant improvement in the results 
rather it increases the standard deviation and computational speed of algorithm and is 
not capable of searching the minimum. Table 5 shows the performance of acceleration 
coefficient for different values keeping N =60, G0 =1, C1=2.5 and C2=1.0. 

3) Effect of gravitational constant on PSOGSA  
Too large value of gravitational constant makes the algorithm computationally 

inefficient, also the average cost, standard deviation and maximum cost increases with 
increases in the value of gravitational constant. G0 is varied from 1 to 30 with a step 
size of 10. It can be seen from the Table 6 that minimum cost was obtained when 
G0=1.   
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Table 4. Effect of C1 and C2 on 6 unit system (test case II, 20 trials) 

Case C1 C2 Min cost
($/hr) 

Avg cost
($/hr) 

Max cost 
($/hr) 

SD 

1. 

1.0 

1.0 64914.2364 64919.1901 64923.1712 4.0044 
2. 1.5 64914.9443 64917.6482 64923.8382 5.3749 
3. 2.0 64918.1279 65302.2253 65499.6911 332.6822 
4. 2.5 65233.3684 65294.6299 65377.7930 74.6617 
5. 

1.5 

1.0 64911.9147 64914.9325 64917.4635 2.8045 
6. 1.5 64911.7101 64913.5514 64915.9932 2.2037 
7. 2.0 65264.6206 65346.2945 65427.9689 115.5046 
8. 2.5 64912.4194 65191.1590 65398.1173 250.6791 
9. 

2.0 

1.0 64913.5478 64915.3488 64917.8698 2.24914 
10. 1.5 64914.5142 64915.4958 64916.4458 0.9661 
11. 2.0 64913.5534 65025.5271 65248.2012 192.8424 
12. 2.5 64914.3474 65444.3139 65974.2805 749.4858 
13. 

2.5 

1.0 64911.6638 64912.7645 64914.7399 1.3746 
14. 1.5 64912.4963 64913.2655 64914.5602 1.1278 
15. 2.0 64916.0428 65032.9721 65266.0821 201.8795 
16. 2.5 64914.7834 64915.7069 64916.6304 1.3060 

Table 5. Effect of α on 6 unit system (test case II, 20 trials) 

Sr. No. Min cost ($/hr) Avg cost ($/hr) Max cost ($/hr) SD 
1. 10 64911.6638 64912.7645 64914.7399 1.3746 
2. 20 64912.2824 64919.8822 64928.1949 6.5481 
3. 30 64919.2769 64925.3023 64931.3277 8.5212 

Table 6. Effect of G0 on 6 unit system (test case II, 20 trials) 

Sr. No. G0 Min cost ($/hr) Avg cost ($/hr) Max cost ($/hr) SD 
1. 1 64911.6638 64912.7645 64914.7399 1.3746 
2. 10 64914.7971 64915.8911 64916.9851 1.5471 
3. 20 64915.8571 64916.5560 64917.2550 0.98846 
4. 30 64912.6939 64931.2832 64949.8726 26.2893 

4) Effect of population size 
To achieve the global best results population size must be optimum. Large 

population makes the algorithm slow, increases average cost and standard deviation. 
Test was carried out with different population sizes 60,120,180 and 240 for 20 
repeated trials. Table 7 list the performance of PSOGSA with different population 
size. From Table 7 it can be seen that N=60 gives best generation cost.  

Table 7. Effect of population on 6 unit system (test case II, 20 trials) 

Sr. No. N Min cost ($/hr) Avg cost ($/hr) Max cost ($/hr) SD 
1. 60 64911.6638 64912.7645 64914.7399 1.3746 
2. 120 64911.6696 64913.4880 64914.6466 1.5944 
3. 180 64912.2418 64919.6968 64926.5717 7.1825 
4. 240 64913.3331 64914.3316 64915.3038 0.98561 

4.5 Comparative Study 

1) Computational Efficiency 
As seen from the table 1, 2 and 3 the minimum cost achieved by the PSOGSA method 
is 113459.8719 $/hr, 64911.6638 $/hr and 125681.1656 $/hr for test system I, II and 
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III respectively. The minimum cost obtained for test system III is 125681.1656 $/hr is 
not best but the emission obtained is 197532.94859 ton/hr is less as compared to the 
reported methods in the literature. It can be seen from the table 8 that the minimum 
cost and average computational time obtained by PSOGSA method is less as 
compared to other techniques. Therefore it can be concluded that PSOGSA is 
computationally efficient than the other mentioned methods.  

Table 8. Comparison of computational efficiency 

Test System Method Min cost ($/hr) Time/Iter (sec) 

10 unit system 

PSOGSA 113459.8719 0.00919 
QOTLBO[13] 113460 3.14 

TLBO[13] 113471 3.78 
GSA[7] 113490 NA 

MODE[11] 113480 3.82 
PDE[11] 113510 4.23 

NSGA-II[11] 113540 6.02 
SPEA 2[11] 113520 7.53 

6 unit system 

PSOGSA 64911.6638 0.00740 
QOTLBO[13] 64912 1.91 

TLBO[13] 64922 2.18 
MODE[11] 64843 3.09 

PDE[11] 64920 3.52 
NSGA-II[11] 64962 5.42 
SPEA 2[11] 64884 7.05 

40 unit system 

PSOGSA 125681.1656 0.0318 
QOTLBO[13] 125161 4.76 

TLBO[13] 125602 5.02 
GSA[7] 125782 NA 

MODE[11] 125792 5.39 
PDE[11] 125731 6.15 

NSGA-II[11] 125825 7.32 

2) Solution Quality  
It can be seen from the Table 1, 2 and 3 that the best compromise solution obtained 

from hybrid PSOGSA method is less as compared to reported results. In this price 
penalty factor is multiplied with emission function so that equivalent cost curve is 
obtained in $/hr. It is observed that PSOGSA has the ability to achieve global 
minimum in consistent manner for different types of CEED problems. 

5 Conclusion 

In this article, the PSOGSA algorithm is implemented on three standard CEED 
problem with different dimension and complexity. The CEED problem is formulated 
into a single objective function by employing price penalty factor approach, which 
aims to minimize the fuel cost and emission simultaneously. The obtained simulation 
result is compared with other approach available in recent literature, which depicts the 
efficiency of PSOGSA in solving complex nonlinear problems. From the comparative 
study it can also be concluded that PSOGSA has fast convergence and provides either 
better or comparable results than the other reported methods. 
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Abstract. This paper presents a new approach based on particle swarm optimi-
zation (PSO) for determining the optimal reliability parameters of composite 
system using non-sequential Monte Carlo Simulation (MCS) and Generalized 
Regression Neural Network (GRNN). The cost-benefit based design model has 
been formulated as an optimization problem of minimizing system interruption 
cost and component investment cost. Solution of this design model requires the 
analysis of several reliability levels which needs to evaluate EDNS index for 
those levels. Evaluation of EDNS in non-sequential MCS requires state adequa-
cy analysis for several thousands of sampled states. In conventional approaches, 
a dc load flow based load curtailment minimization model is solved for analyz-
ing the adequacy of each sampled state which requires large computational re-
sources. This paper reduces the computational burden by applying GRNN for 
state adequacy analysis of the sampled states. The effectiveness of the proposed 
methodology is tested on the IEEE 14-bus system. 

Keywords: Composite electric power system, Reliability planning, Monte 
Carlo simulation, Generalized Regression Neural Network, Particle swarm op-
timization. 

1 Introduction 

The power utility satisfying the desired reliability can serve better to the customers 
than the system with sufficient reserve in normal demand condition. The objective of 
achieving better reliability of system components increases the energy price to the 
customers due to the increase in investment. But the improved reliability level of the 
utility reduces the interruption of power to the customers, thereby generates additional 
revenue for the power utility. The trade-off between the investment required for meet 
out the desired reliability and the reduction in power interruption cost can be the crite-
ria for designing the optimum reliability parameter of system equipments [1-4].  

Optimal design of components reliability parameters based on relative cost analysis 
are described in [5] and [6]. The optimization algorithms employed in these ap-
proaches are based on classical optimization techniques such as gradient projection 
method, polynomial-time algorithm and Bender’s decomposition algorithm. Genetic 
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algorithm (GA) has used for reliability design of a power distribution system [7] and 
composite electric system by Su and Lii [8,9]. Design of optimal reliability parame-
ters based on cost-benefit analysis systematically attempts to balance both the  
investment cost and the system interruption cost for better planning. It requires the 
evaluation of reliability indices for different system reliability levels. The states sam-
pled in this optimization procedure are in the order of several millions and requires 
state adequacy evaluation for each state. Authors in their previous work developed a 
methodology based on non-sequential MCS for optimal reliability planning of com-
posite electric power system. In that approach dc load flow based state adequacy 
model has solved using linear programming simplex method for several thousand 
sampled states of the same system [10].  

The main objective of this paper is to develop a methodology for optimal reliability 
design of composite system based on Generalized Regression Neural Network 
(GRNN), non-sequential MCS and PSO algorithm. In this approach expected demand 
not served index (EDNS) for different reliability levels is evaluated using non-
sequential MCS. The state adequacy analysis of the sampled states for a single relia-
bility level is performed using dc load flow based load curtailment model and these 
analyzed states can be used as a training data of GRNN [12]. For other reliability 
levels of the same system, the sampled states are analyzed using the GRNN. This 
approach yields the optimal forced outage rate (U) parameters for system components 
and the system EDNS index. The validity of the proposed method is tested on IEEE 
14-bus system [15]. The results obtained using GA is also provided for comparing the 
performance of the proposed method. 

2 Methodology 

In the era of smart grid, electric power utilities are under sustained pressure for pro-
viding power with adequate service reliability at lower energy tariff due to the com-
petitive nature of supply industry. The design of optimal reliability parameters for 
system components are carried out after the system configuration and their power 
ratings are planned. 

2.1 Optimal Reliability Design Model 

In reliability planning the optimal value of forced outage rate of system components 
(U) are designed in such a way that to minimize the total interruption cost of the sys-
tem plus the investment cost required for the components. The investment cost re-
quired for achieving the desired reliability parameters of each component is divided 
into installation cost and equipment manufacturing cost. Installation cost depends 
upon type of the component i.e. generator or transmission line, size of the element and 
location where components to be installed. The equipment cost involved in the manu-
facturing of reliable components depends on the design principles adopted, materials 
used and skilled workmanship etc. The cost involved in manufacturing the equipment 
is directly proportional to availability rate and inversely proportional to the outage 
rate. The investment cost given by [9] is 
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 = ∑ +   1     (1) 

    Interruption cost is the revenue loss of the utility which depends on the shortage 
of energy supply to the customers due to the outages in generators and/or in transmis-
sion lines. This cost can be computed from the outage cost of 1 MWhr multiply by 
energy not supplied and is given by 

  =   ∗  ∗ 8736 (2) 

    The optimal reliability design model also imposing the limit on upper bounds of 
U and system expected demand not served (EDNS) to avoid the dilution of system 
reliability below certain level and can be defined as 

  =  +     

  =  ∑ ( +    ) +  ∗  ∗ 8736 (3) 

Subject to 
 Ui    ≤   Uimax  (4) 

 EDNS   ≤  EDNSmax (5) 

Where C is the total cost, Cinterrupt is the system interruption cost, Cinvestment is 
the total component investment cost, Closs is the outage cost of 1MWhr, Cinstali is 
the installation cost co-efficient for component i, Cequipiis is the equipment cost co-
efficient for component i, Ui is the forced outage rate of component i, Uimax is the 
maximum value of forced outage rate of component I and EDNSmax is the maximum 
value of system EDNS. This reliability design model is solved using the PSO  
algorithm in which each particle represents a potential solution i.e. each particle cor-
responds to a particular reliability level. The EDNS index evaluated based on non-
sequential MCS and GRNN has used for calculating the interruption cost of each 
particle. 

2.2 Evaluation of Expected Demand Not Served Index 

The objective of calculating reliability indices in the non-sequential MCS approach is 
equivalent to calculating the expected value of a given test function ( ) where F(x) 
is the test function to verify whether the system state  is adequate. For EDNS index, 
the test function F(x) represents the amount of load curtailment in MW required to 
alleviate the operating constraint violations and maintain power balance. For failure 
state load curtailment is a non-zero value (F(x)>0) and equal to zero for success state 
(F(x) =0). EDNS is evaluated by adding up all the unserved power demand over every 
sample divided by the total number of samples simulated. This work utilizes GRNN 
for state adequacy evaluation in MCS approach.  

2.3 Generalized Regression Neural Network for State Adequacy Evaluation in 
non-Sequential MCS 

The states sampled in the optimal reliability design optimization are in the order of 
several millions and requires estimation of test functions for each sampled state. Test 
functions can be estimated by conducting the state adequacy analysis using the dc 
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load flow based load curtailment minimization model [11] which requires the optimi-
zation procedure for each state.  In this approach, computational requirement for state 
adequacy evaluation is reduced by developing a method based on GRNN. The train-
ing data for GRNN is obtained from the sampled states of MCS for the first particle of 
the initial generation. Each particle represents a particular system reliability level of 
the system. The adequacy analysis of the states sampled for first particle is performed 
using dc load flow based load curtailment minimization model. The trained GRNN is 
used for evaluate the adequacy of the states sampled for other particles and estimate 
the test functions for that reliability levels.  

GRNN devised by Specht is based on non-linear regression theory for function es-
timation [12, 13]. It has the ability of performing kernel regression and non-
parametric approximation of any arbitrary function between input and output vectors. 
The network architecture is a single pass learning algorithm with massive parallel 
structure. The topological structure of GRNN consists of input layer, pattern layer, 
summation layer and output layer as shown in Fig.1.  

 

Fig. 1. GRNN architecture 

The GRNN for state adequacy evaluation of sampled states has input layer neurons 
equal to number of system components and the output layer neurons equal to number 
of buses with loads. The number of hidden layer neurons is equal to number of train-
ing patterns in the data set which is set to ‘NS’. All hidden units simultaneously re-
ceive the n-dimensional binary valued input vector, where n is number of components 
in the system (i.e. 1 for up state and 0 for down state).  

The input layer where no data processing performed is connected to the pattern 
layer. This pattern layer has a group of radial basis neurons and each neuron presents 
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a training pattern in the data set. Its output is a measure of the distance of the input 
from the stored pattern. Bias b is used to adjust the sensitivity of radial basis neuron, 
when established in the network it can be automatically set to 0.8326/spread.  Each 
neuron in the pattern layer is connected to two neurons in the summation layer. This 
layer has ‘o’ number of S-summation neurons and one D-summation neuron, where 
‘o’ is the number of neurons in output layer. The S-summation neuron and D-
summation neurons computes the sum of weighted outputs and unweighted outputs of 
the pattern layers respectively. The connection weights between pattern layer units 
and D-summation neuron is set to unity. The output layer neuron simply divides the 
output of each S-summation neuron by that of each D-summation neuron.  

2.4 Implementation of PSO Algorithm for Optimal Reliability Design 

PSO is a population based stochastic optimization technique developed by Kennedy 
and Eberhart in 1995 [14], inspired by social behavior of bird flocking or fish school-
ing. The optimal reliability planning model formulated as a non-linear optimization 
problem in equation (3) can be solved using the PSO algorithm as follows 

Step 1: 
Initialize the PSO parameters such as population size, maximum number of genera-

tions, number of variables, C1, C2, Wmax, and Wmin and read the problem parame-
ters like number of generators, transmission lines, load bus, upper and lower limits on 
forced outage rate of system components and system EDNS, line data, bus data and 
sample size for MCS. 

Step 2:  
Set the forced outage rate of system components as unknown state variable X =(x1, 

x2, …,xn). Where n is total number of generators and transmission lines in the sys-
tem. 

Step 3: 
Set the generation counter t=0 and generate initial population of ‘p’ particles ran-

domly i.e. { X0(j)=( x1,x2,…… ,xn), j = 1,...,p }. Xi
0(j) is generated randomly by 

selecting a value with uniform probability over the search space [ Xmin , Xmax ] 
using the eq. 

    ( )  =  +  ∗ (  )        (12)  

Where Xmin  & Xmax are minimum & maximum value of forced outage rate of 
that component, i is the component number and j is the particle number. Similarly 
generate random initial velocities of all particles { V0(j),  j=1,...,p } where  Vi0(j) is 
generated by randomly selecting a value with uniform probability over the search 
space  [ Vmin, Vmax ].  

Step 4: 
If generation t=0 and particle j=1, for the first particle which represents a particular 

system reliability level, state adequacy evaluation is carried out for the states sampled 
in MCS using dc load flow based load curtailment model and estimate the test func-
tions. A multi-dimensional array consists of components state and the value of the test 
function for all the samples is created. This is used as a training data of GRNN for 
state adequacy evaluation and proceeds to next step. Otherwise go to next step. 
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Step 5: 
Evaluate the fitness of each particle according to the objective function given in 

equation (3) and check the constraint violations of each particle. This requires the 
calculation of EDNS index using non-sequential MCS with state adequacy evaluation 
using GRNN. 

Step 6: 
Form pbest set from each particle and assign gbest from the pbest set. Where pbest 

is the individual best of that particle and gbest is the global best of PSO algorithm. 

Step 7: 
Update the generation counter t=t+1. 

Step 8: 
Using the gbest and the pbest, update the jth particle velocity using   
   = W *   + C1 * rand1 * ( pbestj    ) + C2 * rand2 * ( gbest   ). 

Step 9: 
Based on the updated velocities, each particle changes its positions as Xj

t+1. If the 
particle violates its position limits in any dimensions then set its position at the proper 
limit and do steps 5 and 6. Then go to next step. 

Step 10: 
When any of the stopping criteria is satisfied, like there is no change in the fitness 

value for certain number of consecutive generations or maximum number of genera-
tions reached , stop the algorithm or else go to step 6. 

3 Numerical Results 

The proposed optimal reliability design approach has been applied to IEEE 14-bus 
system. The investment cost co-efficient chosen in this simulation are similar to refer-
ence [10]. The performance of PSO for minimizing the optimal reliability design 
model has been compared with the results of GA. The results are not compared with 
reference [10], because the line data and maximum line loading of transmission lines 
are not given in that paper.  PSO parameters fixed for simulation are population size 
is 20, maximum number of generation is 150, C1 is 1.8, C2 is 1.6, Wmax is 0.9 and 
Wmin is 0.4. GA parameters are population size is 20, maximum number of genera-
tions is 150, crossover rate is 0.85 and Mutation rate is 0.05. The optimization proce-
dure is stopped when there is no change in the fitness value for 50 consecutive gen-
erations or when maximum number of generations reached, whichever occur first.   

3.1 IEEE-14 Bus System 

IEEE 14-bus system has 14 buses, 2 generators, 20 transmission lines and 11 bus 
loads [10, 15]. The maximum line flow ratings are assumed. The total load connected 
to the system is 259 MW and the outage cost assumed for loss of 1MWhr is 
0.0000185 M$. EDNS which is required for calculating the fitness for each particle is 
evaluated using non-sequential MCS with sample size of 10000. The GRNN for state 
adequacy evaluation has 22 neurons in the input layer and 11 neurons in the output 
layer with spread factor of 0.18. The training data for GRNN is obtained from the 
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50000 samples of the system reliability level represented by the first particle of the 
initial generation using dc load flow based load curtailment model. The upper bound 
of forced outage rate for generators is 0.05, transmission lines is 0.2 and the system 
EDNS is 35 MW.  

Optimal forced outage rate parameters designed for generators and transmission 
lines of the system are presented in table 1. The PSO solution of the optimal design 
model converges to a total cost of 10.1562 M$/year and GA results a total cost of 
10.3954 M$/year. PSO solution results a lower total cost than GA solution. It is in-
ferred from the solutions that a higher investment reduces the system EDNS and 
achieves lower interruption cost and vice versa. This proves the applicability of the 
model used in optimal reliability design of system components.  The convergence 
characteristics of PSO and GA for IEEE 14-bus system are given in fig. 2.   

Table 1. Designed Optimal Forced Outage Rate Parameters for IEEE 14-bus System  

Component GA PSO 
Generator 1 0.0393 0.0382 
Generator 2 0.0428 0.0481 
Line 1 0.0368 0.0214 
Line 2 0.0464 0.0422 
Line 3 0.0436 0.0242 
Line 4 0.0496 0.0745 
Line 5 0.0810 0.0471 
Line 6 0.0985 0.0963 
Line 7 0.0355 0.0473 
Line 8 0.0736 0.0311 
Line 9 0.0878 0.0505 
Line 10 0.1569 0.0952 
Line 11 0.1518 0.0983 
Line 12 0.0948 0.0354 
Line 13 0.1795 0.1655 
Line 14 0.0773 0.0506 
Line 15 0.1528 0.0502 
Line 16 0.1249 0.1153 
Line 17 0.1602 0.1208 
Line 18 0.1409 0.0522 
Line 19 0.1683 0.1910 
Line 20 0.1023 0.1819 
EDNS (MW) 34.27 30.08 
Interruption 
cost 
(M$/year) 

5.5385 4.8614 

Investment 
cost 
(M$/year) 

4.8569 5.2948 

Total cost 
(M$/year) 

10.3954 10.1562 
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IEEE 14-bus system. The GRNN state adequacy evaluation approach eliminates sev-
eral million optimization procedures required for solving the dc load flow based load 
curtailment model (for IEEE 14-bus system- 3000*10000). Thereby it drastically 
reduces the computational requirement of state adequacy evaluation in optimal relia-
bility design. .  Finally this proposed approach achieved the compromised solution 
and better total cost. Therefore the proposed method is cost effective and efficient.  

4 Conclusion 

A PSO based optimal design of reliability parameters for composite power system 
components such as generators and lines using non-Sequential MCS with GRNN 
based state adequacy evaluation has been presented. The optimal reliability design 
model has formulated in terms of components forced outage rates and system EDNS. 
Non-sequential MCS with fixed sample size are used for evaluating the EDNS index 
which is required for calculating the fitness of each particle. State adequacy evalua-
tion for each sampled state in MCS is carried out using the GRNN for calculating the 
test function. By utilizing GRNN, several million numbers of optimization procedure 
required for the solution of dc load flow based load curtailment model has been elim-
inated. The feasibility of the proposed PSO approach has been verified by applying 
the present method on IEEE14-bus system. By analyzing the results it can be ob-
served that optimal design of reliability parameters using PSO method gives higher 
quality solution by converge to a lower total cost and have better convergence charac-
teristics than GA method. The proposed approach achieved the compromised solution 
with lower total cost than GA method. This proves the applicability of the design 
model selected for composite power system. So the proposed approach is cost effec-
tive and efficient, and can be used for modifying the reliability parameters of the ex-
isting systems and also in designing of reliability parameters for the new systems.  
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Abstract. In this paper, we propose a modified Bacteria Foraging-
Particles Swarm Optimization(BF-PSO) algorithm for QoS multicast
routing. This meta-heuristic optimization algorithm generates a least
cost multicast tree under multiple constraints. The algorithm uses ran-
dom parameters of Particle swarm optimization algorithm to minimize
the delay in reaching the global solution. The Simulation results show
that the proposed algorithm is more effecient than the existing meta-
heuristic algorithms such as Genetic Algorithm, Quantum behaved Par-
ticle Swarm Optimization.

Keywords: BFO, multicast tree, PSO, QoS.

1 Introduction

Multicast routing is one of the most important communication techniques over
the IP networks for multimedia and real-time applications. These applications
include audio/video conferencing, distance learning and televised company meet-
ings.In, multicasting, the source sends a packet only once, even if it needs to
be delivered to a large number of receivers, using the network resources opti-
mally. The transfer of information from source to multiple receivers is decided
by the Multicast tree. The QoS requirement of the multicast tree is to provide
cost sensitive delivery service for the required applications by ensuring sufficient
bandwidth, controlling latency and jitter and reducing packet loss.

This QoS multicast routing problem has drawn wide spread attention from
researchers who have been using different methods to solve the problem using
conventional algorithms, such as exhaustive search routing, greedy routing as
well as heuristic and meta-heuristic algorithms. The multicast routing problem
is known to be NP-Complete [2].

The Genetic algorithm (GA) is one of the most popular intelligent optimiza-
tion algorithms applied to QoS Multicast routing problem. Hwang et al. [3] pro-
posed a GA-based algorithm for multicast routing problem. In this algorithm,
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a multicast tree is produced by the means of finding the paths from the source
node to each destination node and merging the paths into a tree. The optimiza-
tion of a multicast tree is achieved through a serial path selection,by crossover
and mutation operation. However, when the network is large, the time of search-
ing paths is so long that the algorithm is inefficient. A tree growth based ACO
algorithm [4] has been proposed to generate a multicast tree in the way of tree
growth and optimizing ant colony parameters through the most efficient com-
bination of various parameters.However, the pheromone updating strategy may
lead to converge the solution quickly at the local optima.

Liu et al. [8] and Wang et al. [9] proposed a Particle Swarm Optimization
(PSO) based algorithms to solve the QoS Multicast Routing problem by means of
serial path selection to realize the optimization of a multicast tree. The multicast
tree can obtain a feasible solution by exchanging paths in the vector. A tree
based PSO algorithm is proposed by Wang et al. [15] to optimize the multicast
tree directly. It is unlike the other conventional methods to finding paths and
integrating them to generate a multicast tree.However, the construction of a
limited number of multicast trees randomly and simply merging and deleting
the loops may not generate a very close to optimal tree. Sun et al. [10] described
an algorithm based on the quantum-behaved PSO (QPSO), for QoS multicast
routing. The proposed method converts the QoS multicast routing problem into
an integer-programming problem and then solves the problem by QPSO.A hybrid
PSO with GA operator [17] is used for multicast routing problem. In [17], a set
of k-shortest paths are generated as particles and a two point crossover is done
on any two randomly chosen particles. It usually happens that this crossover
generates a duplicate particle and reduce the searching ability. It again requires
an extra effort in removing the duplicate particle and generate a new particle.

The Bacteria Foraging Optimization(BFO) algorithm is one of the new and
promising meta-heuristic algorithm proposed by K.M.Passino [18]. The BFO has
been used in load dispatch and congestion management problems[22][20]. In this
paper, we propose a BF-PSO based algorithm to solve the QoS multicast routing
problem. We apply a modified BFO algorithm that uses the parameters of PSO
to generate a least cost delay constraint QoS multicast tree. The BFO algorithm
selects S number of multicast trees generated as bacterias. Using the process
of chemotaxis in which the parameters of PSO algorithm are used to find the
tumbling direction, we obtain the optimum multicast tree.

The paper is organised as follows: The problem statement of the QoS multicast
routing is presented in the next section. Section 3 presents the proposed BF-PSO
based algorithm for QoS multicast routing. The simulation results and analysis
is presented in section 4. The section 5, summarises the conclusion of the paper.

2 Problem Statement

The communication network can be represented as an undirected weighted graph
G(V,E), where V is a finite set of all nodes that represents routers or switches
and E is a finite set of all edges that represents phyisical or logical connection
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between nodes. Let s ∈ V be the source node of a multicast group, and M ⊆
V − s be a set of destination nodes of the multicast group; such that s and M
construct a multicast tree T (s,M). Let R+ be the set of all real numbers that are
nonnegetive. The QoS metrics, for each link e ∈ E can be defined as: Bandwidth
function=⇒ Bandwidth(e) : E → R+

Delay function =⇒ Delay(e) : E → R+

Cost function =⇒ Cost(e) : E → R+

Jitter function =⇒ Jitter(e) : E → R+

Loss rate function =⇒ LR(e) : E → R+

Let a multicast tree T (s,M), spans the source node s and the set of destination
nodes M, that have following relations. The path from source to any destination
t ∈M is represented as PT (s, t):

Cost(T (s,M)) =
∑

e∈T (s,M)

Cost(e)

Delay(PT (s, t)) =
∑

e∈PT (s,t)

Delay(e)

Jitter(T (s,M)) =

√ ∑
e∈T (s,M)

(D(s, t)− delay avg)2

Where delay avg is the average value of delay in the path from the source to the
destination nodes.

Loss Ratio of the path is:

LR(PT (s, t)) = 1−
∏

e∈PT (s,t)

(1− LR(e))

Bandwitdth(PT (s, t)) = min{Bandwidth(e)|e ∈ PT (s, t})
The QoS constraints of the multicast tree is as follows:

1. Delay constraint : Delay(PT (s, t)) ≤ DC, ∀t ∈ M i.e the maximum delay
from source to destination in the multicast tree T should be less than or
equal to the delay constraint DC.

2. Jitter constraint : Jitter(T (s,M)) ≤ JC i.e delay Jitter of the multicast
tree should not exceed the jitter constraint JC.

3. Bandwidth constraint : Bandwidth(PT (s, t)) ≥ BC, ∀t ∈ M i.e the minimum
bandwidth of the multicast tree at every link should be greater or equal to
the bandwidth constraint BC.

4. Loss ratio constraint :LR(PT (s, t)) ≤ LRC, ∀t ∈ M , i.e the loss rate of the
path from source to any destination should be less than or equal to the loss
rate constraint LRC.
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3 QoS Multicast Routing Based on BFO-PSO

The idea of BFO algorithm is based on the fact that natural selection tends to
eliminate animals with poor foraging strategies and favor those having success-
ful foraging strategies [18]. In the process of foraging, E. coli bacteria that are
present in our intestines undergo four stages, namely, chemotaxis, swarming, re-
production, and elimination and dispersal. In search space, BFO algorithm seeks
optimum value through the chemotaxis of bacteria, and realize quorum sensing
via assemble function between bacterial, and satisfy the evolution rule of the
survival of the fittest make use of reproduction operation, and use elimination-
dispersal mechanism to avoiding falling into premature convergence.

An improved Bacteria Foraging Algorithm was proposed by W. Korani in the
year 2008, naming it BF-PSO algorithm [19]. Both the algorithms of BFO and
PSO are combined in BF-PSO. A unit length direction of tumble characteristic
is shown in bacteria is randomly generated in BFO algorithm. This generation
of random direction may lead to delay in reaching the global solution. Thus,
the PSO ability to exchange the social information and the ability to find a
new solution by elimination and dispersal of BFO algorithm is incorporated in
BF-PSO. In this algorithm, the global best position and local best position of
each bacterium can decide the unit length random direction of tumble behavior
of the bacteria. The tumble direction update during the process of chemotaxis
loop is determined by:

φ(p+ 1) = w ∗ φ(j) + C1 ∗R1(plbest− pcurrent)

+C2 ∗R2(pgbest− pcurrent)

where, pcurrent is the current postion of the bacteria and plbest is the local
best position of each bacteria and pgbest is the global best position of each
bacteria.

3.1 Representation and Initialization of Bacteria

In order to generate a QoS multicast tree from the network model, the delay
of the links are set to infinite which have the available bandwidth less than
the required bandwidth. Then k-least delay paths are generated by using the k-
Bellman-Ford algorithm. The delay constrained paths for each destination of the
multicast group are selected from the k-least delay paths. For a set of multicast
destination nodes, where M = {d1, d2, ...., dm} and a given source node s, a bac-
terium in our proposed BFO algorithm is represented as b = {x1, x2, ......, xm}.
Each bacterium represents a multicast tree and each bacterium has m number of
components, i.e. {x1, x2, ...., xm}, where the ith component represents the path
to the ith destination in a multicast tree. Each component in a bacteria selects
a feasible path from k-number of delay constrained paths to each destination.
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Each bacterium is a candidate solution of QoS multicast tree from source node
to each destination. A bacterium represents a multicast tree after randomly
combining the paths from the generated k- least cost delay constrained paths and
removing the loops, if any. After the multicast trees are randomly generated and
chosen by bacteria, loop deletion and calculation of fitness function is performed.

3.2 A Modified BF-PSO Based Multicast Routing Algorithm

The pseudo code of the modified BF-PSO algorithm is given below:
[Step 1]Initialization:

1. S: Number of bacteria in the population.
2. Nc: No. of chemotactic steps.
3. Ns: Swimming length.
4. Nre: No. of reproduction steps.
5. Nre: No. of reproduction steps.
6. Ned: No. of elimination- dispersal steps.
7. Ped: Probability for elimination-dispersal.
8. C(i)[i = 1, 2, S]: Size of step taken in random direction of tumble.
9. C1, C2, R1, R2, w : PSO parameters.
10. P (p, q, r) : θi(p, q, r)|i = 1, 2, ..S; position of bacteria.
11. Generate random vector φ(p) whose elements lie between [1, k].

[Step 2] Elimination-Dispersal loop: ell = ell+ 1 from step 3-7.
[Step 3]Reproduction loop: k = k + 1 step 4-6.
[Step 4]Chemotaxis loop: k = 1.Ns.

Chemotactic step for every bacterium(i)
Calculation of fitness function: J(i, j) then let Jlast = J(i, j).
Jlocal(i, j) = Jlast(i, j)
P (i, j) = P (i, j) + C(i) ∗ φ(m, i)
J(i, j + 1) = Fitness(P (i, j + 1))
Swim:let m = 0

While(n < Ns)
If J(i, j + 1, ) < Jlast
Jlast = J(i, j + 1)
P (i, j + 1) = P (i, j + 1) + C(i) ∗ φ(m, i)
J(i, j + 1) = Fitness(P (i, j + 1))
pcurrent(i, j + 1) = P (i, j + 1)
Jlocal(i, j + 1) = Jlast(i, j + 1)

Else
pcurrent(i, j + 1) = P (i, j + 1)
Jlocal(i, j + 1) = Jlast(i, j + 1)
let m = Ns

n = n+ 1
Evaluation of plbest and pgbest for each bacterium
If (j ≥ 3) and pgbest(j) = pgbest(j − 1)
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break from chemotactic loop
φ(m, i+ 1) = w ∗ φ(m, i) + C1 ∗R1(plbest− pcurrent)

C2 ∗R2(pgbest− pcurrent)

[Step 6] Reproduction: Compute the health of the bacterium i:

jihealth = minNc+1
j=i {Fitness(P (i, j))}

[Step 7] Elimination-Dispersal: Eliminate and disperse bacteria with proba-
bility Ped.

3.3 Bacteria Movement and Calculation of Fitness Function

The movement of bacteria is defined by tumbling and swimming during the
process of chemotaxis. In the chemotactic process, the fitness of the ith bac-
terium, 1 ≤ i ≤ S in the jth chemotactic step, 1 ≤ j ≤ Nc is computed as
Fitness(P (i, j)). The Nc is the maximum number of chemotactic steps taken
during the iteration, where P (i, j) is the current position of the ith bacterium
at jth chemotactic step. the bacterium at position P (i, j) represents a multicast
tree T (s,M).The fitness function evaluated is stored in the Jlast.
Fitness(P (i, j)) is defined as:

Fitness(T (s,M)) = Cost(T (s,M))
+τ1min(DC −Delay(PT (s, t)), 0)
+τ2min(JC − Jitter(PT (s, t), 0)
+τ3min(BC −Bandwidth(PT (s, t)), 0)

Where τ1, τ2, τ3 are the weights predefined for delay, delay-jitter and bandwidth
respectively.

After calculation of the fitness function, we update the local position of the
bacterium with respect to the next chemotactic step. During its lifetime, a bac-
terium must undergo one tumble behavior. The φ(m, i) decides the direction for
the tumble behavior for the bacterium. A bacterium in its chemotactic phase un-
dergoes a maximum of Ns number of swimming steps. During swimming if the
updated local psition of the bacterium is better than the previous local best po-
sition Jlast, then Jlast is updated with J(i, j+1). The PSO parameter pcurrent
is evaluated. The current position pcurrent is updated if the current position
of the bacterium is better than the previous current position of the bacterium.
With each movement the current position of the bacteria is updated as well as
the fitness function. Thus each bacterium moves towards the optimum solution
of QoS multicast tree in the chemotactic step. The local best position plocal and
global best postion pgbest of each bacterium is evaluated after the loop swiming
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for maximum of consequtive Ns steps. If the global best position pgbest doesnot
change over three chemotactic phase then the chemotactic step is stopped and
the reproduction phase starts.

Reproduction. In the reproduction phase, the multicast trees obtained in the
chemotactic step are sorted and arranged with respect to their fitness values
J i
health. The bacterium that has the best fitness value for each chemotactic step

are chosen and arranged in ascending order. The bacteria with highest fitness
values die and the remaining bacteria with best value remains and copies .

J i
health = minNc+1

j=1 {Func(P (i.j))}

Elimination-Dispersal. In the last step that is in elimination-dispersal step
the weakest or the poor bacteria are dispersed with probability of Ped.

4 Simulation Results

In the proposed algorithm, each bacteria represents a possible multicast tree
from the source node s to all the destination nodes. If the network is densely
connected or the size of the network is large, the number of possible routes of
a source-destination pair becomes huge. This makes it obvious that the number
of possible routes between two nodes heavily depends on the network topology.
An algorithm was designed using the k-shortest path method to automatically
generate k number of shortest paths ranging between[5, 20], for each destination.
All the experiments were done with Matlab 2009b on Windows 7 and executed
on a PC with 2.33 GHz-CPU and 4 GB RAM.

The bandwidth and delay of each link are uniformly distributed in the range
[40,80] and [0,30] respectively. The cost of each link is uniformly distrubuted in
the range [5,10]. The proportion of the multicast member nodes is made varied
between 10% to 70% for different testing paradigms. The average solution is ob-
tained by runnig the program 50 times. For comparison, GA-PSO[17], QPSO[16],
PSO[9] were tested on the same set of problems.

We used the WAXMAN[1] model in the experiments inorder to generate dif-
ferent scale random network topologies. The convergence time of the proposed
algorithm is calculated for networks by varying the number of nodes from 20
to 120. The number of destinations are taken as 25% of the number of nodes.
The convergence time of the proposed BF-PSO algorithm in comparision to the
convergence time of PSO, QPSO and GA-PSO algorithms using the same net-
work topologies is shown in Fig.1. The simulation result shows that the BF-PSO
algorithm takes less time in converging than other heuristic algorithms.

We consider a network of 100 nodes to study the performance of the proposed
algorithm in terms of multicast tree cost, delay and delay-jitter in comparision
to the existing algorithms. The cost, delay and delay-jitter of PSO, QPSO, GA-
PSO algorithms were also calculated in the network.The number of destination
nodes were taken from 10% to 70%. Fig.2 shows the comparision of multicast tree
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Fig. 1. Convergence time of the multicast tree with 25% destination variable nodes
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Fig. 2. Cost of the multicast tree

cost of the proposed algorithm with the existing algorithms.The result reflects
that the cost of PSO is highest while QPSO has the lowest cost. BF-PSO has
a better cost than PSO and GA-PSO. Fig.3 shows the delay of the multicast
generated by each algorithm that is averaged over different destination nodes
with 100 network nodes. It is observed that the delay of the multicast tree
generated by our proposed algorithm is less that the existing algorithms. Fig.4
shows the delay-jitter of the multicast tree generated by each algorithm in a 100
network nodes. It is also observed that the delay-jitter is less than all the other
algorithms.
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Fig. 4. Delay-jitter of the multicast tree with 100 nodes

It can be thus observed that the multicast tree obtained by the BF-PSO has
cost more than the QPSO but comparatively less delay and delay-jitter showing
that BF-PSO can generate the higher quality solutions on the multicast routing
probems.

5 Conclusions

In this paper, a novel multicast routing algorithm based BF-PSO algorithm us-
ing random velocity parameters of PSO is proposed. The algorithm utilizes the
discrete PSO algorithm to optimally search the solution space for the optimal
multicast tree satisfying the qualtiy of service requirement.To verify the perfor-
mance of the proposed algorithms, simulations were carried out with different
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sizes of multicast groups on diverse topology networks. Experimental results
show that the algorithm is feasible and effective. It not only converges fast, but
also can escape from local optimum and effectively search for the global opti-
mum.

References

1. Waxman, B.M.: Routing of multipoint connections. IEEE J. Select Areas Com-
mun. 6(9), 1617–1622 (1988)

2. Wang, Z., Crowcroft, J.: Quality of service for supporting multi- media application.
IEEE J. Select Areas Commun. 14, 1228–1234 (1996)

3. Ren, K., Zeng, K., Lou, W.: Multicast routing based on genetic algorithms. J.
Inform. Sci. Eng., 885–901 (2000)

4. Wang, H., Shi, Z., Ma, J., et al.: The tree-based ant colony algorithm for multi-
constraints multicast routing. In: Proceedings of the 9th International Conference
on Advanced Communication Technology (ICACT 2007), February 12-14, vol. 3,
pp. 1544–1547. IEEE, Seoul (2007)

5. Wang, H., et al.: A tree-growth based ant colony algorithm for QoS multicast
routing problem. Expert Systems with Applications (2011), doi:10.1016/j.eswa,
03.065

6. Wang, Y., Xie, J.Y.: Ant colony optimization for multicast routing. In: Proceedings
of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2000),
December 4-6, pp. 54–57. IEEE, Tianjin (2000)

7. Chu, C.H., Gu, J.H., Hou, X.D., et al.: A heuristic ant algorithm for solving QoS
multicast routing problem. In: Proceedings of the 2002 Congress on Evolution-
ary Computation (CEC 2002), May 12-17, vol. 2, pp. 1630–1635. IEEE, Honolulu
(2002)

8. Liu, J., Sun, J., Xu, W.-b.: QoS multicast routing based on particle swarm opti-
mization. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS,
vol. 4224, pp. 936–943. Springer, Heidelberg (2006)

9. Wang, Z., Sun, X., Zhang, D.: A PSO-based multicast routing algorithm. In: Pro-
ceedings of Third International Conference on Natural Computation (ICNC), pp.
664–667 (2007)

10. Sun, J., Liu, J., Xu, W.-b.: QPSO-based QoS multicast routing algorithm. In:
Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L.,
Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 261–268. Springer, Heidelberg
(2006)

11. Panigrahi, B.K., Ravikumar Pandi, V., Das, S.: An Adaptive Particle Swarm Opti-
mization Approach for Static and Dynamic Economic Load Dispatch. International
Journal on Energy Conversion and Management 49, 1407–1415 (2008)

12. Panigrahi, B.K., Ravi Kumar Pandi, V.: An Improved Adaptive Particle Swarm
Optimization Approach for Multi Modal Function Optimization. International
Journal of Information & Optimization Sciences 29(2), 359–375 (2008)

13. Xi-Hong, C., Shao-Wei, L., Jiao, G., Qiang, L.: Study on QoS multicast routing
based on ACO-PSO algorithm. In: Proceedings of 2010 International Conference
on Intelligent Computation Technology and Automation, pp. 534–537 (2010)

14. Ghosh, S., Das, S., Kundu, D., Suresh, K., Panigrahi, B.K., Cui, Z.: An inertia-
adaptive particle swarm system with particle mobility factor for improved global
optimization. Neural Computing and Applications 21(2), 237–250 (2012)



600 R. Pradhan, M.R. Kabat, and S.P. Sahoo

15. Wang, H., Meng, X., Li, S., Xu, H.: A tree-based particle swarm optimization for
multicast routing. Computer Network 54, 2775–2786 (2010)

16. Sun, J., Fang, W., Wu, X., Xie, Z., Xu, W.: QoS multicast routing using a quantum-
behaved particle swarm optimization algorithm. Engineering Applications of Arti-
ficial Intelligence 24, 123–131 (2011)

17. Abdel-Kader, R.F.: Hybrid discrete PSO with GA operators for efficient QoS-
multicast routing. International Journal of Hybrid Information Technology 4(2)
(April 2011)

18. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and
control. IEEE Control Sys. Mag. 22(3), 52–67 (2002)

19. Mishra, S., Tripathy, M.: Bactera Foraging-Based Solution to Optimize Both
Real Power Loss and Voltage Stability Limit. IEEE Transactions on Power Sys-
tems 22(1) (February 2007)

20. Panigrahi, B.K., Ravikumar Pandi, V.: A Bacterial Foraging Optimization Nelder
Mead Hybrid Algorithm for Economic Load Dispatch. IET Proceedings of Gen.
Trans. and Distribution 2(4), 556–565 (2008)

21. Korani, W.: Bacterial Foraging Oriented by Partical Swarm Optimization Stratergy
for PID Tuning. In: GECCO 2008, Atlanta, Georgia, USA, July 12-16 (2008)

22. Panigrahi, B.K., Ravikumar Pandi, V.: Congestion management using adaptive
bacterial foraging algorithm. International Journal on Energy Conversion and Man-
agement 50, 1202–1209 (2009)



 

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 601–616, 2013. 
© Springer International Publishing Switzerland 2013 

Performance Evaluation of Particle Swarm Optimization 
Algorithm for Optimal Design of Belt Pulley System 

Pandurengan Sabarinath1, M.R. Thansekhar1, and R. Saravanan2 

1 K.L.N College of Engineering, Pottapalayam– 630611, India 
jananisabari@gmail.com, thansekhar@yahoo.com 
2 JCT College of Engineering and Technology, Coimbatore, India 

saradharani@hotmail.com 

Abstract. The present scenario in the design of machine elements includes the 
minimization of weight of the individual components in order to reduce the 
overall weight of the machine elements. It saves both cost and energy involved. 
Belts are used to transmit power from one shaft to another by means of pulleys 
which rotate at the same speed or different speeds. Generally, the weight of 
pulley acts on the shaft and bearings. In the present study, minimization of 
weight of a belt pulley system has been investigated.  Particle swarm 
optimization algorithm (PSO) is used to solve the above mentioned problem 
subjected to a set of practical constraints and it is compared with the results 
obtained by Differential Evolution Algorithm (DEA). Our results indicate that 
PSO approach handles our problem efficiently in terms of precision and 
convergence and it outperforms the results presented in the literature. 

Keywords: Optimal Design, Belt pulley system, Particle swarm optimization 
algorithm. 

Nomenclature 
b  : Width of the pulley, cm 
c1 : Cognitive parameter 
c2 : Social parameter 
CR     : Crossover Constant 
dp : dia of any pulley, cm 
d1  : dia of first pulley, cm 
d1

1 : dia of third pulley, cm 
d2  : dia of second pulley, cm 
d2

1 : dia of fourth pulley, cm 
gbest : global best 
N1 : rpm of first pulley 
N1

1 : rpm of third pulley 
N2 : rpm of second pulley 
N2

1 : rpm of fourth pulley 
Np : rpm of any pulley 
NP      : Population Size 
P :power transmitted by belt pulley 

drive, hp 

pbest : particle’s best 
rand1 : Random number between 0 and 1 
rand2 : Random number between 0 and 1 
tb : thickness of the belt, cm 
t1  : thickness of first pulley, cm 
t1

1 : thickness of third pulley, cm 
t2  :thickness of second pulley, cm 
t2

1 : thickness of fourth pulley, cm 
T1 : tension at the tight side, kgf 
T2 : tension at the slack side, kgf 
V : tangential velocity of pulley, cm/s 
Wp : Weight of pulleys, kg 
w : inertia weight 
Xj

min : Lower bound of jth decision parameter 
Xj

max : Upper bound of jth decision parameter 
ρ : density of the material, kg/cm3 
σb :allowable tensile stress of belt 

material, kg/cm2 
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1 Introduction 

The most important problem that confronts practical engineers is the mechanical 
design, a field of creativity. Mechanical design can be defined as the selection of 
materials and geometry, which satisfies the specified and implied functional 
requirements while remaining within the confines of inherently unavoidable 
limitations. Engineering design can be characterized as a goal-oriented, constrained, 
decision making process to create products that satisfy well-defined human needs. 
Design optimization consists of certain goals (objective functions), a search space 
(feasible solutions) and a search process (optimization methods). The feasible solutions 
are the set of all designs characterized by all possible values of the design parameters 
(design variables). The optimization method searches for the optimal design from all 
available feasible designs. Mechanical design includes an optimization process in 
which designers always consider certain objectives such as strength, deflection, weight, 
wear, corrosion, etc depending on the requirements. However, design optimization for 
a complete mechanical assembly leads to a complicated objective function with a large 
number of design variables. So it is good practice to apply optimization techniques for 
individual components or intermediate assemblies rather than a complete assembly. 
For example, in an automobile power transmission system, the optimization of the 
gearbox is computationally and mathematically simpler than the optimization of  
the complete transmission system. Analytical or numerical methods for calculating the 
extremes of a function have long been applied to engineering computations. Although 
these methods perform well in many practical cases, they may fail in more complex 
design situations. In real design problems the number of design variables can be very 
large, and their influence on the objective function to be optimized can be very 
complicated, with a nonlinear character. The objective function may have many local 
optima, whereas the designer is interested in the global optimum. Such problems 
cannot be handled by classical methods (e.g. gradient methods) that only compute local 
optima. So there remains a need for efficient and effective optimization methods for 
mechanical design problems. Continuous research is being conducted in this field and 
nature-inspired heuristic optimization methods are proving to be better than 
deterministic methods and thus are widely used. 

Design optimization can be defined as the process of finding the maximum or 
minimum of some parameter, which may be called the objective function and it must 
also satisfy a certain set of specified requirements called constraints. Many methods 
have been developed and are in use for design optimization. All of these methods use 
mathematical programming. A belt is a loop of flexible material used to mechanically 
link two or more rotating shafts. Belts may be used as a source of motion, to transmit 
power efficiently, or to track relative movement. Belts are looped over pulleys. In a 
two pulley system, the belt can either drive the pulleys in the same direction, or the 
belt may be crossed, so that the direction of the shafts is opposite. As a source of 
motion, a conveyor belt is one application where the belt is adapted to continuously 
carry a load between two points. A pulley is a wheel on an axle that is designed to 
support movement of a cable or belt along its circumference. Pulleys are used in a 
variety of ways to lift loads, apply forces, and to transmit power.A belt and pulley 
system is characterized by two or more pulleys in common to a belt. This allows for 
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mechanical power, torque and speed to be transmitted across axles. If the pulleys are 
of differing diameters, a mechanical advantage is realized.  

There are many nature-inspired optimization algorithms, such as the Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), 
Ant Colony Optimization (ACO), Harmony Search (HS), the Grenade Explosion 
Method (GEM), etc., working on the principles of different natural phenomena. 
Particle swarm optimization (PSO) is an evolutionary computation technique 
developed by Kennedy and Eberhart in 1995. The underlying motivation for the 
development of PSO algorithm was social behavior of animals such as bird flocking, 
fish schooling, and swarm theory. Similar to genetic algorithms (GA), PSO is a 
population based optimization tool, both have fitness values to evaluate the 
population, both update the population and search for the optimum with random 
techniques, both systems do not guarantee success. However, unlike GA, PSO has no 
evolution operators such as crossover and mutation. In PSO, particles update 
themselves with internal velocity. They also have memory, which is important to the 
algorithm. Also, the potential solutions, called particles, are “flown” through the 
problem space by following the current optimum particles. Compared to GA, the 
information sharing mechanism in PSO is significantly different. In GAs 
chromosomes share information with each other. So the whole population moves like 
a group toward an optimal area. In PSO, only Gbest gives out the information to 
others. It is a one-way information sharing mechanism. The evolution only looks for 
the best solution. Compared with GA, all the particles tend to converge to the best 
solution quickly even in the local version in most cases. The advantages of PSO are 
that PSO is easy to implement and there are few parameters to adjust. PSO has been 
successfully applied in many areas, such as function optimization, artificial neural 
network training, fuzzy system control, and other areas where GA can be applied. 

The problem is formulated with single objective of minimizing weight of a belt 
pulley system without compromising specified strength. The primary optimization 
variables are: the diameters of the driver and driven pulley and width of the pulley. In 
this paper, PSO is employed in continuous optimization of engineering design of a 
belt pulley system subjected to a set of practical constraints. The constraints 
considered in this problem are power to be transmitted and size constraints. 
Formulation of fitness function as applicable to the present study is also presented. 
PSO is fairly a new non-traditional optimization technique and the algorithm is 
explained in detail. However, a brief description is included for the sake of easiness. 

2 Literature Review 

The importance and application of various traditional optimization techniques to solve 
many real world design optimization problems taken from wide range of industries 
have been discussed in [1]. The procedure and the necessary steps to design various 
mechanical elements and transmission elements with design calculations are dealt in 
[2]. The theory and applications of traditional optimization techniques such as linear 
and nonlinear programming, dynamic programming, integer programming and 
stochastic programming along with recently developed techniques such as Genetic 
Algorithm, Simulated annealing and neural network based fuzzy optimization 
techniques have been discussed with solved examples in [3]. Formulation of the 
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optimization problem for finding the width and diameters of the step of a four step 
cone pulley for minimum weight is discussed in [3]. The objective function of 
minimizing the weight of the belt pulley system is taken from [4] in which Reddy 
used geometric programming method to solve the optimal design of belt pulley 
system. The same problem is solved by using a non-traditional optimization technique 
namely Genetic Algorithm (GA) for getting the solution in [5]. The authors have also 
solved volume minimization of helical compression spring and weight minimization 
of hollow shaft using GA. GA uses the theory of Darwin based on the survival of the 
fittest. GA provides a near optimal solution for a complex problem having large 
number of variables and constraints. This is mainly due to the difficulty in 
determining the optimum controlling parameters such as population size, crossover 
rate and mutation rate [6]. ABC uses the foraging behavior of a honey bee [7]. 
Inspired by the bee behavior, Artificial Bee Colony [8] is one of the generally 
applicable techniques used for optimizing numerical functions and real-world 
problems. Compared with GA and other similar evolutionary techniques, ABC has 
some attractive characteristics and in many cases proved to be more effective [8]. 
ACO works on the behavior of an ant in searching for a destination from the source 
[9]. This co-operative search behavior of real ants inspired the new computational 
paradigm for optimizing real life systems and it is suited to solving large-scale 
optimization problems. ACO has also been applied to other optimization problem like 
the travelling salesman problem and scheduling [10]. Harmony Search works on the 
principle of music improvisation in music players [11] and GEM works on the 
principle of the explosion of a grenade [12]. These algorithms have been applied to 
many engineering optimization problems and proved effective in solving some 
specific kinds of problem. 

If individual particles in a PSO system have quantum behavior, the PSO algorithm 
is bound to work in a different fashion [14]. Similarly to Genetic Algorithm, Particle 
swarm optimization (PSO) is an optimization tool based on a population, where each 
member is seen as a particle, and each particle is a potential solution to the problem 
under analysis [15]. Jerald et al designed different scheduling mechanisms to generate 
optimum scheduling using non-traditional approaches such as genetic algorithm (GA), 
simulated annealing (SA) algorithm, memetic algorithm (MA) and particle swarm 
algorithm (PSA) by considering multiple objectives, i.e., minimizing the idle time of 
the machine and minimizing the total penalty cost for not meeting the deadline 
concurrently. Noorul Haq et al [17] used particle swarm optimization (PSO) for the 
optimal machining tolerance allocation of over running clutch assembly to obtain the 
global optimal solution. The objective was to obtain optimum tolerances of the 
individual components for the minimum cost of manufacturing. The result obtained by 
PSO was compared with the geometric programming (GP) and genetic algorithm (GA) 
and the performance of the result was analyzed. Saravanan et al [18] solved the 
problem of optimal machining parameters for continuous profile machining with 
respect to the minimum production cost subject to a set of practical constraints. Due to 
high complexity of this machining optimization problem, six non-traditional 
algorithms, the genetic algorithm (GA), simulated annealing algorithm (SA), Tabu 
search algorithm (TS), memetic algorithm (MA), ants colony algorithm (ACO) and the 
particle swarm optimization (PSO) were employed to resolve the problem. The results 
obtained from GA, SA, TS, ACO, MA and PSO were compared for various profiles. 
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For solving constrained optimization problems, many constraint handling methods 
such as static penalty, dynamic penalty, Adaptive penalty function etc has been 
proposed. In this work, Deb’s constraint handling rule [19] is used for solving the 
problem. The detailed procedure for the implementation of Differential Evolutionary 
Algorithm is presented in [20]. Gnanambal et al [21] used hybridization of DE and 
PSO (DEPSO) for determining the maximum loadability limit of power system. 

In this research paper, a particle swarm optimization algorithm is used for solving 
the weight minimization of belt pulley system problem attempted by the authors [5] 
and the results are found to be closer to the global optimum. 

3 Mathematical Formulation 

3.1 Optimum Design of Belt Pulley System 

The belts are used to transmit power from one shaft to another by means of pulleys 
which rotate at the same speed or different speeds. The stepped flat belt drives are 
mostly used in factories and workshops where the moderate amount of power is to be 
transmitted. Generally, the weight of pulley acts on the shaft and bearings. The shaft 
failure is most common due to the weight of pulleys. In order to prevent the shaft and 
bearing failure, weight minimization of the flat belt drive is essential. The schematic 
representation of the belt pulley system is presented in Fig.1 

 
Fig. 1. Schematic Representation of Belt Pulley System 
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3.2 Objective Function 

The mathematical model proposed by [5] is used in this work. The weight of the 

pulley is considered as objective function which is to be minimized as  
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Substituting the values of N1 = 1000 rpm and N1
1 = 500 rpm in the above equation 

we get d1
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Substituting the values of N2 = 250 rpm and N2
1 = 500 rpm in the above equation 

we get d2
1 = 0.5 d2 

Substituting the above relationships in equation (1), we get 
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By taking ρ = 7.2x10-3 Kg/cm3and simplifying the above equation, the objective 

function can be written as  
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It is subjected to the following constraints: 

The transmitted power (P) can be represented as  
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Assuming T2 / T1 = 0.5, P = 10 hp and substituting the above values, one gets 
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Assuming the width of the pulley either less than or equal to one fourth of the dia 
of first pulley, the constraint is expressed as 
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4 Particle Swarm Optimization 

4.1 Introduction 

Particle swarm optimization (PSO) is a population based stochastic optimization 
technique developed by Eberhart and Kennedy in 1995, inspired by the social 
behavior of bird flocking or fish schooling [13]. The particle swarm concept 
originated as a simulation of a simplified social system. The original intent was to 
graphically simulate the choreography of a bird of a bird flock or fish school. 
However, it was found that the particle swarm model can be used as an optimizer. As 
stated before, PSO simulates the behaviors of bird flocking. Suppose the following 
scenario: a group of birds are randomly searching for food in an area. There is only 
one piece of food in the area being searched. All the birds do not know where the 
food is. However, they know how far the food is in each iteration. So what’s the best 
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strategy to find the food? The effective one is to follow the bird which is nearest to 
the food. PSO learned from the scenario and used it to solve the optimization 
problems. In PSO, each single solution is a “bird” in the search space. We call it a 
“particle”. All of the particles have fitness values which are evaluated by the fitness 
function to be optimized, and have velocities which direct the flying of the particles. 
The particles fly through the problem space by following the current optimum 
particles. PSO is initialized with a group of random particles (solutions) and then 
searches for optima by updating generations. In every iteration, each particle is 
updated by following two “best” values. The first one is the best solution (fitness) it 
has achieved so far. The fitness value is stored. This value is called “pbest”. 

Another “best” value that is tracked by the particle swarm optimizer is the best 
value obtained so far by any particle in the population. This best value is a global best 
and is called “gbest”. After finding the two best values, the particle updates its 
velocity and positions. Eberhart and Shi [15] have introduced an inertia weight factor 
that dynamically adjust the velocity over time, gradually focusing the PSO into a local 
search, the particle updates its velocity and positions with the following equation: 

v[] = w∗v[]+c1 ∗rand() ∗(pbest[]−present[]) +c2 ∗rand() ∗(gbest[]−present[])     (14) 
present [] = present []+v[]                                             (15) 

where 
v[] is the particle velocity, 
present[ ] is the current particle (solution), 
pbest[ ] is the Particle’s best, 
gbest[ ] is the global best, 
rand ( ) is a random number between (0,1), and c1, c2 are learning factors, and 

usually, c1 = c2 = 2. 

4.2 PSO Parameter Control  

In PSO, the following are the parameters that need to be tuned. Here is a list of the 
parameters and their typical values used in this work based on the model reported in [18]: 

a) The number of particles: 
The typical range is 20–40. Actually for most of the problems, 10 particles are 

large enough to get good results. For some difficult or special problems, one can try 
100 or 200 particles as well. 

b) Dimension of particles: 
Particles dimension is determined by the problem to be optimized. Here, diameter 

of the driver pulley (d1), diameter of the driven pulley (d2) and the width of the pulley 
(b) are taken as the dimension of particles. 

c) Range of particles: 
This is also determined by the problem to be optimized. 
d) Learning factors: 
c1 and c2 are usually equal to 2. However, other settings are also used in different 

papers. But usually c1 equals to c2 and ranges from [0, 4] 
e) The stop condition: 
The maximum number of iterations the PSO executes. This stop condition depends 

on the problem to be optimized. 
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f) Inertia weight: 
This is the weight given to the previous velocity. Inertia weight w is based on a 

gradual decreasing from 0.9 to 0.4 with a linear decreasing rate 

4.3 PSO Algorithm 

PSO implements the foraging behavior of a bird for searching food.  The swarm 
intelligence is an emerging research field that presents features of self-organization 
and cooperation principles among group members bio-inspired on social insect 
societies [13]. PSO is initialized with a group of random particles (solutions) and then 
searches for optima by updating generations. In every iteration, each particle is 
updated by following two “best” values. The first one is the best solution (fitness) it 
has achieved so far. (The fitness value is also stored.) This value is called pbest. 
Another “best” value that is tracked by the particle swarm optimizer is the best value, 
which is the best value obtained so far by any particle in the population. This best 
value is a global best and called gbest. The equations (14) & (15) are used to update 
the velocity and position of the particle. The belt pulley system optimization model 
using PSO algorithm is shown as a flowchart in Fig.2 

 

Fig. 2. Flow chart of PSO Algorithm 
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4.4 Constraint Handling 

It is seen from the above steps that no provision is made to handle the constraints in 
the problem. Many types of constraint handling technique are available in the 
literature, such as incorporation of static penalties, dynamic penalties, adaptive 
penalties etc. Deb’s heuristic constrained handling method [19] is used in the 
proposed PSO method. This method uses a tournament selection operator in which 
two solutions are selected and compared with each other. The following three 
heuristic rules are implemented on them for the selection: 

• If one solution is feasible and the other infeasible, then the feasible solution is 
preferred. 

• If both the solutions are feasible, then the solution having the better objective 
function value is preferred. 

• If both the solutions are infeasible, then the solution having the least constraint 
violation is preferred. 

These rules are implemented at the end of the updating of particle’s position and 
velocity.  

5 Differential Evaluation Algorithm 

Differential evolution, a stochastic, simple yet powerful evolutionary algorithm, not 
merely possesses the advantage of a quite few control variables but also performs well 
in convergence was introduced to solve the global optimization by Storn and Price 
[20]. DE creates new candidate solutions by perturbing the parent individual with the 
weighted difference of several other randomly chosen individuals of the same 
population. A candidate replaces the parent only if it is better than its parent. 
Thereafter, DE guides the population towards the vicinity of the global optimum 
through repeated cycles of mutation, crossover and selection. The main procedure of 
DE [21] is explained in detail as follows. 

5.1 Initialization 

This is the first step in DE. Typically, each decision parameter in every vector of the 
initial population is assigned a randomly chosen value from within its corresponding 
feasible bounds. 

[ ]( )minmaxmin .1,0)0(
, jjjj xxrandx
G

ijx −+==  

where i = 1, . . . , NP and j = 1, . . . , D. xj,i
(G = 0) is the initial value (G = 0) of the jth 

parameter of the ith individual vector. Once every vector of the population has been 
initialized, its corresponding fitness value is calculated and stored for future reference. 
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5.2 Mutation 

The DEA optimization process is carried out by applying the following three basic 
genetic operations; mutation, recombination (also known as crossover) and selection. 
After the population is initialized, the operators of mutation, crossover and selection 
create the population of the next generation P(G+1) by using the current population P(G). 
At every generation G, each vector in the population has to serve once as a target 
vector Xi

(G) , the parameter vector has index i, and is compared with a mutant vector. 
The mutation operator generates mutant vectors (Vi

(G)) by perturbing a randomly 
selected vector (Xr1) with the difference of two other randomly selected vectors (Xr2 
and Xr3). 
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Vector indices r1, r2 and r3 are randomly chosen, which r1, r2 and r3 {1, . . . , NP} 
and r1≠ r2 ≠ r3 ≠ i. Xr1, Xr2 and Xr3 are selected anew for each parent vector. F is 
scaling mutation factor. 

5.3 Crossover 

In this step, crossover operation is applied in DEA because it helps to increase the 
diversity among the mutant parameter vectors. At the generation G, the crossover 
operation creates trial vectors (Ui) by mixing the parameters of the mutant vectors 
(Vi) with the target vectors (Xi) according to a selected probability distribution. 

Ui
(G) = uj,i

(G) ={ vj,i
(G) if randj(0,1) ≤ CR or j=s 

{ xj,i
(G) otherwise 

The crossover constant CR is usually selected from within the range [0, 1]. The 
crossover constant controls the diversity of the population and aids the algorithm to 
escape from local optima. randj is a uniformly distributed random number within the 
range (0,1) generated anew for each value of j. s is the trial parameter with randomly 
chosen index ɛ {1, . . . ,D}, which ensures that the trial vector gets at least one 
parameter from the mutant vector. 

5.3.1 Selection 
The selection operator chooses the vectors that are going to compose the population in 
the next generation. This operator compares the fitness of the trial vector and the 
corresponding target vector and selects the one that provides the best solution. The 
fitter of the two vectors is then allowed to enter into the next generation. 

Xi
(G+1) ={ Ui

(G)   if f(Ui
(G)) ≤ f(Xi

(G)) 
{ Xi

(G)    otherwise 
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The DEA optimization process is repeated across generations to improve the 
fitness of individuals. The belt pulley system optimization model using DE algorithm 
is shown as a flowchart in Fig.3 

 

Fig. 3. Flow chart of DE Algorithm 

6 Results and Discussion 

To study the performance of PSO approach, constrained optimization of input 
parameters to minimize the weight of belt pulley system was solved and the best 
results obtained through the mentioned optimization approaches in 20 trials were 
compared with those reported in the literature. PSO method was implemented using  
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JAVA to run on a PC compatible with Pentium IV, a 3.2 GHz processor and 2 GB of 
RAM (Random Access Memory). In the experiment, to start PSO approach, the 
population size is set to 20 particles, and the maximum generations (set as stopping 
condition) is set to 200 generations. A total of 4000 fitness function evaluations were 
made with this optimization approach in each run. The program was executed 20 
times to see the convergence characteristics of PSO algorithm. In this work, inertia 
weight w is based on a gradual decreasing from 0.9 to 0.4 with a linear decreasing 
rate. Better results can be obtained as per literature, if we gradually decrease the value 
of w with a linear decreasing rate.  The convergence of the results obtained by PSO 
algorithm is shown in Fig.4.  

In order to compare the performance of PSO algorithm, the same problem was 
solved by DE algorithm. Both PSO and DE algorithms were implemented using 
Matlab 7 to run on a PC compatible with Pentium IV, a 3.2 GHz processor and 2 GB 
of RAM (Random Access Memory). In this experiment, to start DE approach, the 
population size is set to 50, and the maximum generations (set as stopping condition) 
is set to 200 generations. The crossover constant is set to 0.8 and scaling mutation 
factor is set to 1. Static penalty method is applied for handling the constraints. A total 
of 10000 fitness function evaluations were made with this optimization approach in 
each run. The program was executed 20 times to see the convergence characteristics 
of DE algorithm. The convergence of the results obtained by DE algorithm is shown 
in Fig.5. From figure 5, it is evident that the result converges to 104.76 kg after 100 
generations and the best value obtained is better than the published result of 105.2 kg 
and higher than the result reported for GA and PSO. 

The results obtained by the implementation of both PSO and DE algorithms have 
been compared with the results obtained by GA and published result in Table 1. From 
Table 1, it is evident that the best value of 100.6733 kg reported by PSO algorithm is 
better than the results obtained by DEA, GA and published results. The statistical 
performance of both PSO and DE algorithms implemented in this work has been 
presented in Table 2. The number of fitness function evaluations is less for PSO 
algorithm than DEA. It clearly indicates that PSO algorithm performs well for the belt 
pulley system with minimum number of function evaluations than DEA. 

 

Fig. 4. Evolution of best mean results obtained by PSO algorithm 
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Fig. 5. Evolution of best mean results obtained by DE algorithm 

Table 1. Comparison of Results obtained by PSO with DE, GA and the Published results 

Optimal Values Results obtained 
by PSO 

Results obtained 
by DE 

Results obtained 
by GA 

Published 
Result 

Pulley dia (d1), cm 20.7217 21.0014 20.957056 21.12 

Pulley dia (d2), cm 71.8031 72.7514 72.906562 73.25 

Pulley dia (d1
1), cm 41.4434 42.0028 42.370429 42.25 

Pulley dia (d2
1), cm 35.9015 36.3757 36.453281 36.60 

Pulley width (b), cm 5.1804 5.2503 5.239177 5.21 

Pulley weight, Kg 100.6733 104.7602 104.533508 105.2 

Table 2. Statistical performance of belt pulley system 

Method Best Worst Mean Standard 
Deviation 

Evaluations 

PSO 100.6733 106.8759 101.8524 0.4912 80000 

DE 104.7602 118.4532 105.2154 0.6999 200000 

7 Conclusion 

In this paper, PSO approach is proposed and applied to solve engineering design 
problem i.e., constrained optimization of input parameters to minimize the weight of 
belt pulley system.  In order to compare the performance of PSO algorithm for the 
belt pulley problem, Differential Evolutionary Algorithm is applied to solve the same 
problem. The simulation results presented in this paper demonstrate that PSO 
approach tested is an efficient method to improve the PSO’s performance in 
preventing premature convergence to local minima. The proposed PSO approach 
performed consistently well in our work, with better results than the results obtained  
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by DE, GA and previously published solutions for these problem. In terms of 
convergence, the simulation results show that the PSO converge to obtain solutions 
closer to the good solution and present a small standard deviation. Future work will 
consider improved PSO variants (CLPSO, FIPS, and OLPSO) and other methods such 
as ABC, HS, TLBO etc. Furthermore, simulated annealing local search can be 
combined with PSO as hybrid technique for constrained problems so that better 
solutions can be obtained as a future extension of the present work. 
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Abstract. Limited fuel reserves and harmful effects of environmental pollution 
have brought about a lot of development in renewable energy sources. Among 
these renewable energy sources, solar and wind are found to be the most viable 
energy sources in the world. Due to their uncertainties in supply and the non-
linear characteristics of some of their components, the system becomes 
unreliable. But when applied as hybrid system, these sources are found to be 
more economical and efficient. In optimizing the sizing of such hybrid system 
parameters the evolutionary algorithms have been proved to give faster and 
more efficient results as compared to classical methods. This work concentrates 
in finding an optimal configuration of PV modules, Wind turbines and Battery 
numbers by minimizing the annualized cost considering the loss of power 
supply probability using Particle Swarm Optimization technique. The radiation 
and wind data of India obtained from the NASA meteorological website are 
considered for analysis. 

Keywords: Optimum system sizing, loss of power load probability, annualized 
cost of system. 

1 Introduction 

Since the oil crisis in the early 1970s, utilization of solar and wind power has became 
increasingly significant, attractive and cost-effective. In recent years, hybrid PV/wind 
system (HPWS) has viable alternatives to meet environmental protection requirement 
and electricity demands. Since they can offer a high reliability of power supply, their 
applications and investigations gain more concerns now-a-days [1]. Due to the 
stochastic behavior of both solar and wind energy, the major aspects in the design of 
the hybrid PV/wind system are the reliable power supply of the consumer under 
varying atmospheric conditions and the cost of the kWh of energy. To use solar and 
wind energy resources more efficiently and economically, the optimal sizing of 
hybrid PV/wind system with battery plays an important role in this respect. In this 
paper, one optimal sizing model for stand-alone hybrid solar–wind system employing 
battery banks is developed based on the concepts of loss of power supply probability 
(LPSP) and annualized cost of system (ACS). The decision variables included in the 



618 D. Suchitra et al. 

 

optimization process are the PV module number, PV module slope angle, wind 
turbine number, and also the wind turbine installation height as well as the battery 
number. The configuration that meets the system reliability requirements with 
minimum cost can be obtained by an optimization technique – the particle swarm 
optimization (PSO), which is generally robust in finding global optimal solutions, 
particularly in multi-modal and multi-objective optimization problems. 

2 Model of Hybrid Solar-Wind System 

A hybrid solar–wind power generation system consists of PV array, wind turbine, 
battery bank, inverter, controller, and other accessory devices and cables. A schematic 
diagram of the basic hybrid system is shown in Fig.1. The PV array and wind turbine 
work together to satisfy the load demand. When energy sources (solar and wind 
energy) are abundant, the generated power, after satisfying the load demand, will be 
supplied to feed the battery until it is charged. On the contrary, when energy sources 
are poor, the battery will release energy to assist the PV array and wind turbine to 
cover the load requirements until the storage is depleted. In order to predict the hybrid 
system performance, individual components need to be modeled first and then their 
mix can be evaluated to meet the load demand. 

 

 

Fig. 1. Block diagram of the hybrid solar–wind system 

2.1 PV Array Model 

In this paper, a mathematical model for estimating the power output of PV modules is 
used. The estimation is carried out using a computer program which uses a subroutine 
for determining the power output of a PV module. Using the solar radiation available 
on the tilted surface, the ambient temperature and the manufacturers’ data for the PV 
modules as model inputs, the power output of the PV generator, PPV, can be calculated 
according to equations 1 and 2. 
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Where Voc is the open circuit voltage, n is the  ideality factor, which varies as 
1<n<2, K = 1.38×10-23J/K is the Boltzmann constant, T is the temperature in Kelvin, 
To is the standard temperature, q = 1.6×10-23C is the  magnitude of the electron 
charge, Rs is the series resistance, Isc is the short circuit current, Isco is the standard 
short circuit current, Voc is the standard open circuit voltage , G is the solar radiation 
W/m2 , Go is the standard solar radiation, α is the factor responsible for all the non-
linear effects that the photocurrent depends on, β is a PV module technology specific- 
related dimensionless coefficient and γ is the factor considering all the non-linear 
temperature–voltage effects[2]. 

PV modules represent the fundamental power conversion unit of a PV system. It is 
mandatory to connect PV modules in series and in parallel in order to scale-up the 
voltage and current to tailor the PV array output. If a matrix of Ns× Np PV modules is 
considered, the maximum power output of the PV system can be calculated by 

pv p s module MPPT othP =N  . N  . P  . η  . η      (2) 

Where ηMPPT is efficiency of the maximum power point tracking, although it is 
variable according to different working conditions, a constant value of 95% is 
assumed to simplify the calculations. ηoth is the factor representing the other losses 
such as the loss caused by cable resistance and accumulative dust, etc. 

2.2 Solar Radiation on PV Module Surface 

The PV module can be placed at any orientation and at any slope angle, but most local 
observatories only provide solar radiation data on a horizontal plane. Thus, an 
estimate of the total solar radiation incident on the PV module surface is needed [3]. 
Generally, the total solar radiation on a tilted surface is calculated by adding the 
beam, diffuse and reflected solar radiation components on the tilted surface:  

tt bt dt reG =G +G +G      (3) 

Where Gtt is the total solar radiation on a tilt surface; Gbt, Gdt and Grt are the beam, 
diffuse and reflected radiation on the tilt surface [4].  
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Table 1. Data requirements for parameter estimation 

Temperature G0 G1

T0 Isc, Voc, Impp, Vmpp Isc, Voc, Impp, Vmpp 
T1 Null Voc 

Table 2. Parameter estimation results for the PV module performance 

 α β γ Nmpp Rs(Ω) 

Item 1.21 0.058 1.15 1.17 0.012 

3 Wind Turbine Model 

Choosing a suitable model is very important for the wind turbine power simulations. 
For a typical wind turbine, the power output characteristic can be assumed in such a 
way that it starts generating at the cut-in wind speed VC, the power output increases 
linearly as the wind speed increases from VC to the rated wind speed VR, The rated 
power PR is produced when the wind speed varies from VR to the cut-out wind speed 
VF at which the wind turbine will be shut down for safety considerations. Then the 
wind turbine power output can be simulated by 

( )

( )

W

C
R C R

R C

R R F

C F

P V =

V-V
P . V V V

V -V

P (V V V )
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≤
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     (4) 

The power curve of a wind turbine is nonlinear, the data is available from the 
manufacturer, and can be easily digitized and the resulting table can be used to 
simulate the wind turbine performance. Wind speed changes with height and the 
available wind data at different sites are normally measured at different height levels. 
The wind power law has been recognized as a useful tool to transfer the anemometer 
data recorded at certain levels to the desired hub centre 

ζ

WT
r

r

H
V=V  

H

 
 
 

     (5) 

Where V is the wind speed at the wind turbine height Hwt m/s; Vr is the wind speed 
measured at the reference height Hr m/s; and the parameter ς is the wind speed power 
law coefficient. The value of the coefficient varies from less than 0.10 for very flat 
land, water or ice to more than 0.25 for heavily forested landscapes. The one-seventh 
power law (0.14) is a good reference number for relatively flat surfaces such as the 
open terrain of grasslands away from tall trees or buildings [5]. 
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4 Battery Model 

Lead-acid batteries used in hybrid solar–wind systems operate under very specific 
conditions, which is often very difficult to predict when energy will be extracted from 
or supplied to the battery. Usually, a lead-acid battery is mainly characterized by two 
indexes, i.e. the state of charge (SOC) and the floating charge voltage. 

4.1 Battery State-Of-Charge (SOC) 

For a perfect knowledge of the real SOC of a battery, it is necessary to know the 
initial SOC, the charge or discharge time and the current. However, most storage 
systems are not ideal, losses occur during charging and discharging and also during 
storing periods. Taking these factors into account, the SOC of the battery at time t + 1 
can be simply calculated by [6]. 

bat bat

bat

I (t).Δt.ησΔt
SOC(t+1)=SOC(t). 1- +

24 C'
 
 
 

     (6) 

Where σ is the self-discharge rate which depends on the accumulated charge and 
the battery state of health- C’ at is the nominal capacity of the battery, ηbat is the 
battery charging and discharging efficiency. It is difficult to measure separate 
charging and discharging, so manufacturers usually specify roundtrip efficiency. In 
this paper, the battery charge efficiency is set equal to the round-trip efficiency, and 
the discharge efficiency is equal to 1. The current rate of the battery at time t for the 
hybrid solar–wind system can be described by equation 7. 

The inverter efficiency ƞinverter is considered to be 92% according to the load profile 
and the specifications of the inverter. In this case, the wind turbine is assumed to have 
DC output, so the use of a rectifier is not necessary. But if the wind turbine is 
designed to connect to an AC grid, then the rectifier losses should be considered for 
the part of wind energy that has been rectified from AC to DC. 

( )
( ) ( )

( )

ACload
PV DCload

inverter
bat

bat

P (t)
P t - -P t

η
I t =

V t
 

(7) 

5 Reliability Model Based on LPSP Concept 

Several approaches are used to achieve the optimal configurations of hybrid systems 
in term of technical analysis. In this study, the technical sizing model for the HPWS is 
developed according to the concept of LPSP to evaluate the reliability of hybrid 
systems. Loss of power supply probability (LPSP) is defined as the probability that an 
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insufficient power supply results when the hybrid system (PV array, wind turbine and 
battery storage) is unable to satisfy the load demand. Two approaches exist for the 
application of LPSP in designing stand-alone hybrid system. The first one is based on 
chronological simulation. This approach is computationally burdensome and requires 
the availability of data spanning a certain period of time. The second approach uses 
probabilistic techniques to incorporate the fluctuating nature of the resource and the 
load, thus eliminating the need for time-series data. Considering the energy 
accumulation effect of the battery, to present the system working conditions more 
precisely, the chronological method is employed. The power supplied from the hybrid 
system can be expressed by 

( ) ( )( )
bat minbat

available PV Wind bat bat,max

C' . SOC t -SOC0.2C'
P t =P +P +C.V .Min I = ,

Δt Δt

 
  

      (8) 

Where C is a constant, 0 indicates battery charging process and 1 indicates battery 
discharging process. Using the above developed objective function according to the 
LPSP technique, for a given LPSP value for one year, a set of system configurations, 
which satisfy the system power reliability requirements, can be obtained. 
Accordingly, the power needed by the load side can be expressed as: 

( ) ( )
( ) ( )ACload

needed DCload
inverter

P t
P t = +P t

η t
     (9) 

The objective function of the LPSP from time 0 to T can be described by: 

( )
T

available needed
t=0

h

Power.failuretime P (t)<P (t)
LPSP=

N


 

  (10) 

6 Economic Model Based on ACS Concept 

The economical approach, according to the concept of annualized cost of system 
(ACS), is developed to be the best benchmark of system cost analysis[1][25]. 
According to the studied hybrid solar–wind system, the ACS is composed of the 
annualized capital cost Cacap, the annualized replacement cost Carep and the annualized 
maintenance cost Camain. Then the ACS can be expressed accordingly by (four main 
parts are considered: PV array, wind turbine, battery and wind turbine tower) 

( ) ( ) ( )
acap arep amain

ACS=C PV+Wind+Bat+Others +C Bat +C PV+Wind+Bat+Others  

  

(11) 
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6.1 Annualized Capital Cost 

The annualized capital cost of each component (PV array, wind turbine, battery and 
wind turbine tower) is 

( ) ( )
( )

proj

proj

Y

acap cap proj cap Y

i. 1+i
C =C .CRF i,Y =C .

1+i -1
   (12) 

Where Ccap is the initial capital cost of each component, US$; Yproj is the 
component lifetime, year; CRF is the capital recovery factor, a ratio to calculate the 
present value of an annuity (a series of equal annual cash flows). The annual real 
interest rate i is related to the nominal interest rate i’ and the annual inflation rate f. 

6.2 Annualized Replacement Cost 

The annualized replacement cost is the annualized value of all the replacement costs 
occurring throughout the lifetime of the project and it is expressed as 

( )
( ) reparep rep rep rep Y

i
C = C .SFF i,Y =C .

1+i -1
   (13) 

Where Crep is the replacement cost of the component (battery), US$; Yrep is the 
component (battery) lifetime, year; SFF is the sinking fund factor, a ratio to calculate 
the future value of a series of equal annual cash flows. 

6.3 Annualized Maintenance Cost 

The system maintenance cost is deemed to be constant every year. The configuration 
with the lowest ACS is taken as the optimal one from the configurations that can 
guarantee the required reliability of power supply. 

7 Particle Swarm Optimization 

7.1 Introduction 

Particle swarm optimization (PSO) is a population based stochastic optimization 
technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social 
behavior of bird flocking or fish schooling.PSO shares many similarities with 
evolutionary computation techniques such as Genetic Algorithms (GA). The system is 
initialized with a population of random solutions and searches for optima by updating 
generations. However, unlike GA, PSO has no evolution operators such as crossover 
and mutation. In PSO, the potential solutions, called particles, fly through the problem 
space by following the current optimum particles. 
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PSO is initialized with a group of random particles (solutions) and then searches 
for optima by updating generations, the particles are "flown" through the problem 
space by following the current optimum particles. Each particle keeps track of its 
coordinates in the problem space, which are associated with the best solution (fitness) 
that it has achieved so far. This implies that each particle has a memory, which allows 
it to remember the best position on the feasible search space that it has ever visited. 
This value is commonly called pbest. Another best value that is tracked by the particle 
swarm optimizer is the best value obtained so far by any particle in the neighborhood 
of the particle. This location is commonly called gbest. The basic concept behind the 
PSO technique consists of changing the velocity (or accelerating) of each particle 
toward its pbest and the gbest positions at each time step. This means that each 
particle tries to modify its current position and velocity according to the distance 
between its current position and pbest, and the distance between its current position 
and gbest. 

7.2 PSO Algorithm 

Step 1: Generation of initial condition of each agent. Initial searching points (Si
0) and 

velocities (Vi
0) of each agent are usually generated randomly within the allowable 

range. The current searching point is set to pbest for each agent. The best evaluated 
value of pbest is set to gbest, and the agent number with the best value is stored.  
  
Step 2: Evaluation of searching point of each agent. The objective function value is 
calculated for each agent. If the value is better than the current pbest of the agent, the 
pbest value is replaced by the current value. If the best value of pbest is better than the 
current gbest, gbest is replaced by the best value and the agent number with the best 
value is stored.  
 
Step 3: Modification of each searching point. The current searching point of each 
agent is changed using follow equation.  

( ) ( )k+1 k k k
i i 1 1 i i 2 2 i V =V +C ×rand() × pbest -S +C ×rand() × gbest-S    (14) 

k+1 k k+1
i i iS =S +V    (15) 

Where 
k+1

i
V  is the Velocity of particle i at iteration k+1; k

i
V is the Velocity of particle i at 

iteration k; k+1

i
S is the Position of particle i at iteration k+1; k

i
S  is the Velocity of 

particle i at iteration k; 
1

C is the Constant weighing factor related to pbest; 
2

C is the 

Constant weighing factor related to gbest;
1

rand()  
2

rand()  are Random numbers 

between 0 and 1; pbesti is the best Position of particle i and gbest is the best Position 
of the swarm. 
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Step 4: Checking the exit condition. The current iteration number reaches the 
predetermined maximum iteration number, then exits. Otherwise, the process 
proceeds to Step 2. 

8 System Optimization Model with PSO 

The minimization of ACS function is implemented employing PSO, which can 
dynamically searches for the optimal configuration. The decision variables included 
in the optimization process are the PV module number NPV, wind turbine number 
NWT, battery number Nbat, PV module slope angle β’ and wind turbine installation 
height HWT. The initial assumption of system configuration will be subjected to the 
following inequalities constraints: 

( )PV WT batMin N , N , N   0≥    (16) 

low wt highH H H≤ ≤    (17) 

0 β 90′≤ ≤    (18) 

The hourly data used in the model are the solar radiation on horizontal surface, 
ambient air temperature, the wind speed and the load power consumption on an 
annual basis. The year 2001 is chosen as the Example Weather Year in Chennai, India 
to represent the climatic conditions for the studied project design in the following 
optimization process. The PV array power output is calculated according to the PV 
system model by using the specifications of the PV module as well as the solar 
radiation data. The wind turbine performance calculations need to take into account 
the effects of wind turbine installation height. The battery bank, with total nominal 
capacity C’bat (Ah), is permitted to discharge up to a limit defined by the maximum 
depth of discharge DOD, which is specified by the system designer at the beginning 
of the optimal sizing process. The system configuration will then be optimized by 
employing particle swarm optimization, which dynamically generates the optimal 
configuration to minimize the annualized cost of system (ACS). For each system 
configuration, the system’s LPSP will be examined for whether the load requirement 
(LPSP target) can be satisfied. So, for the desired LPSP value, the optimal 
configuration can be identified both technically and economically. 

9 Result and Discussion 

9.1 The Hybrid Solar–Wind Project Description 

The proposed method has been applied to design a hybrid system to meet a 1500W 
(24 V AC) and 300W (24 V DC) load in a location at Chennai, Tamilnadu in India. 
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According to the project requirement and technical considerations, continuous 1800W 
energy consumption is assumed as the constant demand throughout the period. The 
technical characteristics of the PV module and the wind turbine used in the studied 
project are listed in Tables 3 and 4. The GFM-1000 lead-acid batteries are employed 
in the project. They are specially designed for deep cyclic operation in consumer 
applications like the hybrid solar–wind energy systems. Each set of batteries has 
twelve 2 V/1000 Ah cells which are connected in series to give a nominal output 
voltage of 24 V. The initial capital cost, replacement cost, maintenance cost and 
lifetime of each component are in Table 5. 

Table 3. Specifications of PV module 

VOC (V) ISC (A) Vmax (V) Imax (A) Pmodule (W) 

21 6.5 17 5.73 100 

Table 4. Specifications of wind turbine 

Rated 
Power 
(kW)

Cut in 
speed 
Vc (m/s) 

Rated 
speed 
Vr (m/s)

Cut-off speed 
Vf (m/s) 

Tower 
Hhigh (m) 

Tower 
Hlow (m) 

6 2.5 10 25 50 10 

Table 5. The costs and lifetime aspect for the system components 

Components Initial Capital 
Cost (US $) 

Replacement 
Cost (US $/kAh)

Maintenance 
Cost in the 1st

year (US $) 

Life time 
(years) 

Interest 
rate I’ (%) 

Inflation 
rate f (%) 

PV array 6500 Null 65 25 3.75 1.5 
Wind turbine 3500 Null 95 25   
Battery 1500 1500 50 Null   
Tower 250 Null 6.5 25   
Others 8000 Null 80 25   

Table 6. Optimal sizing results for the hybrid solar-wind system 

NPV Nwt Nbat Hwt(m) Cost ($) LPSP β’
130 3 6 34.89 14750 0 24° 

9.2 Power Reliability and Annualized Cost of System 

The hourly radiation data for PV system and hourly wind speed data for wind turbine 
modeling for a location at Chennai in India is shown in fig 2 and 3.The temperature 
data required for the simulation of the PV module is assumed based on the 
meteorological data corresponding to this radiation input.  The output obtained for the 
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considered hybrid system executed in   MATLAB environment has been shown in 
Table 6. The minimum annualized costs of system for different LPSP (power 
reliability requirements) are calculated by the proposed optimal sizing method. It is 
observed that higher power reliable systems are more expensive than lower 
requirement systems. Choosing an optimal system configuration according to system 
power reliability requirements can help save investments and avoid blind capital 
spending. 
 

 

Fig. 2. Hourly radiation input data for Chennai 

 

 

Fig. 3. Hourly wind input data for Chennai 
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10 Conclusion 

Power supply reliability under varying weather conditions and the corresponding 
system cost are the two major concerns in designing PV and wind turbine systems. In 
order to utilize renewable energy resources of both solar and wind energy efficiently 
and economically, an optimal sizing method is developed in this work based on 
particle swarm optimization (PSO). The PSO based optimization model developed in 
this paper, optimizes the sizing of autonomous hybrid PV-wind power generation 
system using a battery bank as a backup source. The model has been used to calculate 
the system optimum configuration which can achieve the desired loss of power supply 
probability (LPSP) with minimum annualized cost of system. The decision variables 
included in the optimization process are the PV module number, wind turbine 
number, battery number, PV module slope angle and wind turbine installation height. 
Good optimal sizing performance of the algorithms has been found, and the optimal 
solution is a hybrid solar–wind system with a battery as a backup source. The 
accuracy of the  optimal solution can further be improved using advanced or Hybrid 
PSO algorithm. The loss of power supply probability is highly influenced by the 
weather conditions of that year, so under the bad weather conditions, the probability 
of loss of power supply will be higher. To meet out these conditions, the renewable 
energy sources have to be oversized.   
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Abstract. Natural problems are not static but dynamic in nature. Dy-
namism could be due to a large number of factors such as inability to
gauge accurate objective functions or changing constraints in a random
environment. As such, dynamic optimization problems are an important
requirement for solving a number of real life optimization problems. In
this paper, we present a novel technique that not only detects the chang-
ing environment but also repositions itself intelligently in the changed
landscape. Our algorithm is parallel and works on top of distributed
peer-to-peer network in a complete asynchrony. We simulate our results,
in a distributed environment ranging from 10 to 100 machines and show
the scalability to be able to increase to thousands of nodes if required.
The algorithm is tested on a popular set of benchmark functions and we
show/compare the results with known solutions of such types.

1 Introduction

Dynamic single-objective problems (DSOP) are an important class of optimiza-
tion problems wherein the decision variables or the objective function change over
a period of time. The challenge in DSOP is to track the changing global mini-
mum/maximum. Formally, a DSOP can be defined as in 1. There are several re-
searches that have been conducted in solving DSOP [1–3]. All these algorithms
work in a single computing system where the algorithm spans threads by taking
advantage of themultiple cores as present in the system.However,with the increase
in the number of variables, dimension of variables and/or objective function, such
algorithms will take a large amount of time to find the global minima. One exten-
sion of these parallel threads is to use a dedicated cluster of machines. A dedicated
cluster of machines with almost homogenous hardware/software and internetwork
is however costly and requires dedicated maintenance.

Minimize/Maximize fi (x, t) , where x = (x1, x2, x3 · · ·xn)
gj (x, t) ≤ 0, j = 1, 2, 3 · · ·J
hk,t(x) = 0, k = 1, 2, 3, · · ·K

xi = [lowi, highi]
(1)

B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, pp. 630–641, 2013.
c© Springer International Publishing Switzerland 2013
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On the other hand, peer-to-peer distributed systems (P2P) provide a viable
alternative where individual machines can participate in a computationally rich
optimization problem without any adherence to the strict administrative control
as that of a cluster. A P2P system is characterized by a loose connection of in-
dependent machines using an overlay network where nodes can join and leave at
their own wish. Being a loose cluster of machines, the design and use of a P2P
system for optimization however has a number of challenges. First, in a P2P
network there is no guarantee of node availability. A node may join, contribute
for a brief period and exit altogether from the network. Such ungraceful leave
of a node could be due to intentional leaving, software error or network parti-
tion in theP2P network. Further, even if a node is present, due to heterogeneity
or variance in the configuration of hardware and software capability among the
peer nodes, there could be an unequal distribution of job across the systems.
Both of the above problems are crucial from the purview of a computationally
rich job such as an optimization algorithm. The solution to the first problem of
non-availability of nodes is important because without it an optimization prob-
lem will never be complete and the solution to the heterogeneity is important
because without it, there would be unequal distribution of load. Unequal distri-
bution may lead to inefficient utilization of the resources as present in the P2P
system. Thus a P2P system modeled for solving optimization problems does not
only have to ensure availability of nodes for continuous optimization of the prob-
lem but should also have the provision of completely utilizing the resources of
the system.

In this paper, we present such a P2P system that aims to accurately track and
find global minimum/maximum for a DSOP. Our algorithm is based on Particle
Swarm Optimization (PSO) algorithm. We have modified certain aspects of the
PSO algorithm for efficient detection of change in the environment and move to-
wards the changing global minimum/maximum. Our algorithm consists of a num-
ber of sub-swarms, where each node runs a single swarm optimization method.
Sub-swarms connect to other sub-swarms with a deterministic and a random
method thereby facilitating both exploitation and exploration. We also handle
fault tolerance of nodes comprising the system and distribute load evenly across
the system. The algorithm has been tested with a wide range of available bench-
mark functions and in all cases we have achieved results which are at par with the
single computing systems. The architecture of P2P network is elastic and it can
scale well to thousands of nodes without any significant reduction of performance.
Although there is a large body of work in the areas of parallel particle swarm opti-
mization and such other swarm intelligence techniques, there is, however, no such
work that directly tries to optimize a DSOP in a P2P network.

This paper is organized as follows. In section 2, we define the related work
that compares our work with the existing body of research. In section 3, we
define the P2P network and the algorithms that are used to solve the DSOP.
In section 4, we show the results of the experiments and analysis and finally in
section 5, we conclude the paper and provide the directions of future research in
this area.
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2 Related Work

There is not much work done on the DSOP and most of these works are based on
algorithms that run in a single system. For example, the algorithms as defined
in [3–5] are examples of single system based optimization algorithms. [6] is a
survey of well known algorithms in the areas of evolutionary computing that
have been developed so far to solve dynamic optimization problems. [7, 8] are
also some of the recent works in this area where dynamic optimization problems
were solved. However, these developments are single system based and they have
not be tried or tested in distributed P2P systems. Our paper relates to finding
the global minimum/maximum using a set of loosely connected P2P systems.
Hence, a direct comparison of our results with the results of existing techniques
is not feasible.

3 Architecture and Algorithm

The entire distributed P2P framework for DSOP can be divided into two stages.
The first stage is the network architecture and algorithms that are used for cre-
ating and maintaining the network. The second stage is the algorithm used for
tracking/computing the global minimum/maximum of the optimization prob-
lem. The first part is the middleware that is involved in keeping the distributed
systems intact while the second part is the application itself that runs on top
of this distributed system. Since swarm intelligence requires information dissi-
pation, the routing table of the underlying overlay network of the distributed
system is partially populated and guided by the application at the top. We first
define the network and then the actual optimization algorithm in the subsequent
sections.

3.1 Network Architecture and Algorithms

We use an overlay network of nodes for communication of system as well as
application level messages. The overlay network is a circular ring and is formed
by applying consistent hashing functions. When a node joins the network, it is
provided with a unique 160 bit identifier. The identifier is derived by concate-
nating time and MAC address of the node as an input to SHA-1 hash function.
Based on the output, the ring is organized lexicographically. Figure 1 is an illus-
tration of the same. For routing messages from one node to the other, each node
maintains a routing table. The routing table entries are of three different types.
They are (i)Lexicographic neighbors (bi-directional) in both the clockwise and
anti clock wise directions (a configurable number each in either direction), (ii)
unidirectional random links (based on the number of 1s in the identifier) and (iii)
objective space neighbors. Objective space neighbors are the areas in decision
variable space which are adjacent to the node that is currently being computed.
For 2D space as illustrated, the number of neighbors is 4 and in general for
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Fig. 1. An overlay network of nodes Fig. 2. An overlay network of nodes

n-dimensional space there are 2n neighbors. The reason for maintaining the ob-
jective space neighbors is to refer to it during the strategic re-work negation
algorithm defined in the subsequent sections.

When a node needs to send a message to yet another node, the routing table for
the node is consulted to find the nearest node. Nearest node distance is the lexico-
graphic distance. The algorithm then forwards the node to the nearest node and
the same procedure is repeated till either the destination node is reached or there is
no node of that identifier. In case of the former, themessage is consumed by the des-
tination node whereas in case of the latter, the message is either consumed by the
most preceding node or an error is returned to the user. Due to non-uniformity of
node links, the reverse path can be different from the source node. Also, due to non-
uniformity of processing capability, each nodemay compute widely disparate func-
tion spaces. Therefore the neighbor space routing table changes from time to time
and is not bound to be static during the entire life cycle of a node. Our network dif-
fers from other DHT-based network such as Chord [1], Pastry [2] etc. by including
extra neighbor node information related to our objective function. This modifica-
tion is sought to decrease themessage overloadand also for fast convergence.When
a node completes its job of finding the Pareto front, it does not seek to enter into
some other nodes dimensional space. Instead, the completed or the lightly loaded
node simply skips the region of space and moves to the space which is slowly pro-
gressing or not yet processed. Thus, unlike the traditional PSO algorithms where
there is a large amount of duplication of work, this design ensures very little du-
plication of work. Hence, compared to other algorithms, the relative time to con-
vergence is faster. Due to large number of dimensions, the effective neighbors are
roughly around 2n. This is a large number even for moderately size dimensions.
Every node maintains a single indirection to its parent and each parent includes
the list of siblings. The number of siblings is not more than the number of dimen-
sions that is being used to divide the hyper-plane. Thus, the maximum number of
neighbors that a node has to store is dependent upon the problem statement and
also on the factors of division. For example, for three dimensional vectors, we first
divide the function space in one of its axis. The second level includes the divisions
of the second and so on. This increases the time to propagation but it prohibits the
overcrowding of the routing table entries of the node.
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3.2 Node Management

In a peer-peer network all nodes are symmetric and equal. Whenever a node
has to participate in the function optimization computation, the first operation
is the join operation. Upon completion of join, a node acquires a membership
to the network and participates in all its activities, which includes function
optimization, message passing, load balancing and fault-tolerance. Since each
peer-node is responsible for at-least a certain chunk of work, there must be well-
defined node leaving protocol. In this section, we define the node joining and
leave protocols. It is important to note that in an P2P network with no central
administrative unit, nodes can join and leave at any moment. Such abrupt change
in the network topology could be due to malfunctioning of hardware, software or
the network. Hence, the join and the leave protocol must handle these extreme
but major use cases as well. As noted in section 3.1, whenever a node joins, it
first creates a new pseudo-random ID of 160 bits. After the ID is created, it then
searches for an existing node in the network to communicate with. The list of
existing nodes must be supplied to the new node before it starts its operation
and is, by and large, a manual process. Once the node is connected to any of
the existing nodes, the first message it composes is to find duplication of its
own calculated node ID. Such a message is routed to the network using the
newly connected existing node. If there are no such nodes, then the node can
safely join the network. On the other hand, if such a node exists, the new node
creates a new ID and recursively follows the same process. Joining the network
involves creating the routing table entries. After the routing table entries are
successfully created, the node connects to any node in the network for work
units. Since a node already existent in the network is completely participating in
the optimization process, the new node requests work from the already existent
nodes. In our present protocol, we allow a new node to acquire work from a
number of existing nodes and selects the work that seems appropriate. Upon
selection of the work unit, the neighbors nodes are identified and the objective
neighbor node work is filled. At this stage the routing table entries are complete
and also the necessary code and work unit is with the new node. The new node
starts executing its own sequential PSO from this point. Note that this type of
work selection is completely deterministic and may take some time if the already
existing nodes do not have work to allocate to a new node. The other joining
protocol that we have investigated is to randomly select a work. Once the new
node acquires the necessary code for the functions, its solution space and work
division technique, it randomly selects a work unit from the entire available work
unit. Since the routing table entries maintains neighbor node information based
on the decision space neighbors, a message is sent from the new node to the node
which is responsible for the work chunk. If the work chunk is available, then it
is allocated to the new node or the node recursively continues the random work
unit selection process again until it gets the desired work load. It is important to
note that if the number of nodes are larger than the available work units, then
neighbor nodes can further partition its work space and allocate a few to the
newly joined node.
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The node leaving protocol is opposite of what is defined in the node joining
protocol. The leaving node broadcast leave messages to all its neighbors and
waits for a few seconds before it leaves the network. Upon leaving the network,
a hole is created in the overlay network and routing table entries of the neighbor
nodes are modified. Dynamic node churns are described in more detail in a later
subsection.

3.3 Load Balancing and Fault Tolerance

A P2P network is always a mix of diversified components: diversified in terms of
hardware resources and software components available for computation. There-
fore, there is no uniformity in the completion time of a solution space. Some
nodes may take a long time to compute a work unit whereas some nodes may
complete the same in 1/10th of the time taken by the other node. As a result,
load balancing of nodes is an important requirement in such a diversified P2P
network. We balance loads not instantaneously, but after repeated step intervals.
A step interval is a finite number of iterations. After completion of each step,
the node propagates its load to the neighbors using a broadcast. Nodes that are
lagging behind comparatively are further propagated. For broadcasting, there
are two specific rules. For each node we maintain a least and utmost load, which
are respectively 20% and 80 % of the load. If the CPU utilization falls below
or above this limit, the node broadcasts this information to the neighbors. Ev-
ery node therefore maintains the load of its neighbors. If, however, the load is
not below or above this threshold limit, there is no message sent. Hence, load
information table is not as populated as the routing table entries. Once a node
receives such information, it compares the load with all the entries and tries to
achieve equilibrium by matching low capacity nodes with the high capacity ones.
If, on the other hand, there are nodes that are still not yet matched, then the
information is passed on to the nodes neighbors. The process is repeated until
either there is a match or there are no nodes to match. When a node completes
its allocated work unit and there are no more pending works, the computational
utilization decreases by 10%. Under this circumstance, the broadcast is sent from
the node to all its neighbors till it receives new chunk of data. Thus the network
tries to balance load at the neighborhood first and if unsuccessful, propagates
the information to the next level. With this, there are no central co-coordinators
required and also the number of messages required for balancing the load is less.

As in the case of load balancing, fault tolerance is also handled co-operatively.
Each node upon joining the network maintains three fault tolerant connections
to three other nodes. These nodes need not be entries in the routing table and
random selections from the nod identifier space. After every successful time
interval, which is configurable, the node sends the best positions, work unit in
allocation information to each of these nodes. Failure to receive updates by the
majority, either due to its software/hardware or network partition, signals the
node as dead and a new node is selected for execution of the work.
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3.4 P2P DSOP

Our optimization algorithm is designed to handle all possible cases of change
detection in the environment. When there is no access to the optimization func-
tions, change may happen in multiple different points in the valid search land-
scape. For example, change could be only minimal and is concentrated near
the global optimum or there is a complete change in the optimization landscape
where the new global optimum is shifted to a far point from the preceding global
optimimum.. Further, changes might happen in two different ways - either there
is a change in the decision variable space or there is a change in the optimization
in the objective space. If the type of change is known apriori, it is relatively triv-
ial to reposition the particles in the changed landscape and find solutions close
to the prevously known global optimum. Since the change in the environment
cannot be explicitly determined, a range of pattern recognition techniques to-
gether with time series analysis can be used to predict the change. However, such
prediction will require historical data and we refrain from discussing it in this
paper. In the future, we would integrate such prediction techniques for better
positioning of particles in the changing search landscape. Interested reader may
refer to [9, 10] where technique such as these have been applied.

In our present algorithm, we have two different types of particles new particle
types and old particle types. New particle types are like foragers and they wander
in the solution space within a fixed radius. Old particles are just like the old par-
ticle swarm particles and they follow the leader which has the best values. Every
particle stores the location where it achieved the non-dominated point in its mem-
ory and after a pre-defined step, it recomputes the non-dominated set once again.
This is being done to check if there is a change in the environment. If there is a
change in the environment, the change notification is sent to each of its neighbors
by a broadcast. The change notifications are high priority messages and they are
broadcast recursively. Since, change in the environment can happen at multiple
different search spaces and many particles detect it, the number of broadcast mes-
sages could be enormously high. To reduce it, we use a threshold. Beyond a certain
threshold within a fixed interval, if a particle receives change notifications, further
notifications are simply suppressed. Therefore, such change notification only gen-
erates a small number of messages. Further, if a particle received a change notifica-
tion, and thereafter recognizes a change in its landscape within the pre-determined
interval, the change notification is also suppressed. The newborn particles do not
have any memory and they just report the optimum values.

The rationale behind the introduction of new particles is to detect changes even
when the particles have convergedto a global optimum.Cases of this type generally
occur when the change in the environment is slow. If the particles converge to the
global optimumand there is no particular change in their vicinity, the PSOwill cer-
tainly miss any new updates. This is generally the case with sentry based particles
as defined in [2]. The new particles therefore wander around the search space with
a goal to find positions which are better than the converged optimum. This also
means that the optimization process is non-stop and once started the optimiza-
tion will continue till it is stopped by intervention. In the distributed system, each
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process executes a sub-swarm and the number of particles both old and new can
vary. Such variations are necessary as machines themselves have varying configu-
rations. Further as noted in section 3.1 A, each sub-swarm is only responsible for
its search landscape. The sub-swarms exchangemessages among themselves which
includes the gbest of its search space.. The algorithm used inside each sub-swarm
is shown in Algorithm 1 and Algorithm 2.

Algorithm : Particle Execute
Description : This method is executed by each particle in the PSO
Input : Gbest
Result: Null or particle’s own best position
Begin

changeDetected by this particle ← false;
if (iteration count % curve check factor)==0 then

if (best result of this particle != ComputeFunction(pbest of this particle) then
best result of this particle ← null;
pbest of this particle ←null;
changedetected by this particle ← true;

end

end
if changeDetected by this particle←false then

update velocity;
update current position;

end
result ← ComputeFunction(n-dimensional currentPosition));
if (result dominates bestresult)) then

pbest of this particle ← current position;
bestResult of this particle ← result;
pBest ← pbest of this particle;
result ← bestResult of this particle;
changeDetected ← change detected by this particle;

end
else return null;
return (pBest,result,changeDetected);
End

Algorithm 1. Execution of a Single Particle

4 Experiment and Results

Generally, there are two most popular benchmark functions that are used for
testing DSOP. The first is the moving peaks benchmark as defined in [11] and
the second is [12]. In this paper, we have shown the results for only [11]. In [11],
there are three different test functions, hill, cone, and slope. We have used cone
function. The cone function by default has peaks of 5 dimensions. However in our
experiment we have increased the dimensions to 10, 15 and 20. Together with
distributed systems framework, the gbest of the current iteration is transferred
to the neighbors of a node. Each neighbor runs a sub-swarm. The results of the
execution for the cone function are shown in table 2-5. As shown, we have scaled
up the dimensions of the peak to 5, 10, 15 and 20. The number of peaks ranges
from 5 to 200. Each such setting (particle, number of peaks, dimensions, FES)
is run for 25 trial runs. The values as mentioned in the table are the offline error
as shown in [11]. Further, in each of the trials, the number of new particle type
is 5% of number of particles and the number of particles that are repositioned
after the change detection is between 10-50 % randomly selected from the group.
The maximum number of children that can be generated by the best particle is 5.
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Algorithm : Particle Swarm Optimization
Input : Input dataset
Result: Optimized position
Begin

Initialize N particles including old type and new type particles;
Initialize Gbest to null;
while Iteration count < Total number of iterations do

for p ← 0 to total number of particles do
(pBest,result,changeDetected) ← ExecuteParticle;
if result ! = null then

if changeDetected==true then
gbest ← null;
global non − dominated element ← null;
Notify other particles about the change;
Re randomize T% of the old type particles;

end
else
mother particle ← global non − dominated element;
if (mother particle ! = new born particle type) then

Call Give Birth to new born particles( ) of mother particle;
Add the new born particle list to the main list;
Delete the old new born particle list from the main list;
if (mother particle == new particle type) then

Re-randomize T% of the old type particles;
end

end

end

end
Increment the Iteration count;

end
Non − dominated set is the result;
End

Algorithm 2. Sub Swarm Algorithm

Figure [3-6] shows the convergence plot for the functions for a few iterations.
As evident from the figure, the theoretical global maxima is closely tracked
and followed. Apart from this, we have also executed an experiment for 500
particles distributed over a set of 50 distributed nodes. Each node executes 10
particles and some of the nodes in the setup execute only the newborn particles.
Table 2-5 shows the result for the same. It is important to note that in all the
other contemporary works in the single system based dynamic single objective
optimization, results for large dimensions such as 10,15 and 20 have not been
reported. Further, to ascertain the best values for the re-randomization, we have
shown the sensivity analysis of the moving peaks benchmark with 10-50 % re-
randomization of the old particle types. Table 1 shows the result. As evident
from the table, with the increase in the number of re-randomization particles,
the offline error performance degrades. The reason for degradation is due to the
fact that the change in the optimium position is very meagre and also near the
previously found optimium position. If the change would have drastic and at a
different position which is a distance apart, maximum re-randomization would
have been helpful. Further, to show the performance of the distributed system,
we run an experiment simulating 100 nodes for a 5 peaks , 200 dimension moving
peaks problem. The results are shown in Table 6. Compared to the same results
for a eight node system with 200 particles in total, the result is better in the
same amount of time. The P2P systems are very fruitful when they are used for
solving large scale optimization problem. For example, as mentioned in [13], the
large scale optimization problems generally takes inordinate of time.

As evident from the results, even with large dimensions, the average offline
error is low. If the number of particles used is only 100 and the functions changes
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Fig. 3. Peak Tracking plot for FES-10,000, Num-
ber of Particles: 100, 5 dimensional peaks, Num-
ber of Dimensions- 5, Number of Peaks-5

Fig. 4. Peak Tracking plot for FES-10,000, Num-
ber of Particles: 100, 5 dimensional peaks, Num-
ber of Dimensions- 10, Number of Peaks-5

Fig. 5. Peak Tracking plot for FES-10,000, Num-
ber of Particles: 100, 5 dimensional peaks, Num-
ber of Dimensions- 15, Number of Peaks-5

Fig. 6. Peak Tracking plot for FES-10,000, Num-
ber of Particles: 100, 5 dimensional peaks, Num-
ber of Dimensions- 20, Number of Peaks-5

Table 1. Sensitivity Analysis Statistical results

No of peaks FES 10% 20% 30% 40% 50%

5 500 7.95±1.68 9.73±3.23 10.03±3.11 10.46±2.67 22448.4±5173

50 500 8.62±2.81 9.16±3.09 11.67±7.51 10.85±4.86 18155.14±2789.9

5 5000 2.1±0.69 2.27±0.81 2.29±0.72 2.04±0.72 19543.99±3926.7

50 5000 3.1±0.65 3.01±0.73 3.25±0.92 3.280±0.88 16198.022±2999.79

Table 2. Statistical results for 5 dimensions

FES (Peaks ) 1 5 10 20 30 40 50 100 200

500 0.38 ±0.12 0.86 ±0.13 0.94 ±0.22 0.98± 0.17 0.98 ±0.14 0.93 ±0.15 0.98± 0.13 0.87 ±0.11 0.79 ±0.10

1000 0.49 ±0.04 0.86 ±0.09 0.88 ±0.12 0.90± 0.11 0.91 ±0.14 0.91 ±0.12 0.90± 0.10 0.89± 0.10 0.89 ±0.16

2500 0.08±
48.3E-04

0.97± 0.10 1.12 ±0.14 1.10± 0.12 1.19 ±0.15 1.15 ±0.16 1.23± 0.14 1.21± 0.20 1.08± 0.19

5000 0.01 ±0.2 1.75±0.28 1.99±0.26 2.1±0.26 2.17±0.33 2.12±0.33 2.06±0.24 2.08±0.29 1.91±0.18

10000 13.2E-04
±54.9E-05

2.01± 0.31 2.35 ±0.27 2.53± 0.31 2.73 ±0.29 2.65 ±0.28 2.72 ±0.30 2.81± 0.42 2.73± 0.50
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Table 3. Statistical results for 10 dimensions

FES (Peaks ) 1 5 10 20 30 40 50 100 200

500 6.13± 2.39 6.61± 2.70 7.37± 2.71 7.39± 3.10 7.60 ±3.46 7.80 ±3.11 7.41 ±2.95 8.06± 3.82 7.33 ±3.64

1000 2.04 ±0.41 2.21± 0.33 2.28 ±0.30 2.45± 0.39 2.25 ±0.27 2.35 ±0.28 2.33 ±0.29 2.28± 0.33 2.03 ±0.24

2500 0.67 ±0.08 1.62 ±0.17 1.89 ±0.14 1.94± 0.18 1.95 ±0.18 1.97 ±0.19 1.96 ±0.20 1.98 ±0.23 1.60 ±0.24

5000 0.28 ±0.4 2.05±0.07 2.39±0.33 2.61±0.23 2.54±0.2 2.59±0.25 2.62±0.2 2.65±0.32 2.12±0.26

10000 0.06± 0.01 2.04 ±0.26 2.53 ±0.28 2.65± 0.38 2.66± 0.29 2.95 ±0.29 2.95± 0.34 3.03 ±0.32 2.32 ±0.68

Table 4. Statistical results for 15 dimensions

FES (Peaks ) 1 5 10 20 30 40 50 100 200

500 22.88±4.3726.55±6.7726.16±7.1328.85±7.6128.17±6.1427.36±
6.19

25.75±7.5927.81±6.3227.52±5.84

1000 3.99±0.72 4.33±0.62 4.39±0.61 4.30±0.75 4.19±0.56 4.41±1.01 4.05±0.44 4.06±0.61 3.77±0.72

2500 1.97±0.28 2.99±0.39 3.13±0.30 3.24 ±0.33 3.28±0.42 3.21±0.28 3.33±0.39 3.32±0.26 3.07±0.28

5000 1.2±0.09 3±0.28 3.43±0.33 3.61±0.27 3.66±0.32 3.75±0.31 3.73±0.32 3.77±0.37 2.95±0.42

10000 0.54± 0.11 2.48 ±0.25 2.94 ±0.39 3.16 ±0.30 3.41± 0.47 3.43 ±0.38 3.42 ±0.36 3.38 ±0.35 2.54 ±0.50

Table 5. Statistical results for 20 dimensions

FES (Peaks ) 1 5 10 20 30 40 50 100 200

500 46.00
±10.51

49.66
±10.37

48.90
±12.68

49.25
±10.95

45.19
±8.20

46.20
±9.26

48.38 8.52 49.41±
6.79

48.06±
7.09

1000 6.81± 1.33 6.73± 1.93 6.30 ±0.99 7.07± 2.33 6.89 ±2.36 7.01± 2.21 7.00 2.42 6.67 ±1.81 5.86± 0.96

2500 3.72± 0.57 4.73 ±0.47 4.81 ±0.49 4.68± 0.58 4.74 ±0.37 4.93 ±0.51 5.05 0.66 4.79 ±0.54 4.44± 0.61

5000 2.66±3.66 4.01±5.2 4±5.4 4.42±6.03 4.48±5.58 4.69±6.66 4.61±5.9 4.63±6.3 3.9±5.5

10000 1.58 ±0.33 3.33± 0.50 3.75 ±0.59 3.90± 0.73 4.06 ±0.74 4.30 ±0.72 4.21 0.80 4.20 ±0.77 3.20 ±0.65

too rapidly, the offline error degrades. This happens because of the large hyper-
space created by the higher dimensional search space. On the other hand, if the
number of nodes in the distributed system is increased, as the number of par-
ticles is increased, the average offline error decreases rapidly. Table 5 shows the
result for the same.

5 Conclusion

In this paper, we have demonstrated the use of a P2P network for optimizing
DSOP. As evident, results are promising and the current setup can be utilized
to find solutions for optimization problems where the number of variables or
the dimensions are exceedingly large. With the current single system based op-
timizers, such an optimization problem will take an enormous amount of time.
Cluster based systems with special purpose high bandwidth interconnect can
be used to solve such large problems but creating and maintaining a cluster is
not a cost effective solution for small-medium enterprises. With the use of com-
modity workstations, this P2P framework can be effectively used to solve such
problems. However, P2P frameworks have certain problems. For example, P2P
systems have trust deficit and in some cases, malicious nodes can completely mis-
lead an optimization problem. Malicious nodes can alter true values and provide
misleading gbest to the network of peer-to-peer nodes. Such malicious activity
can also happen if the message communication among the set of nodes are not
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secure. In our future work, we would like to concentrate on the dependability
and security aspect of theP2P network from the purview of the needs of opti-
mization problems. With such enhancements, the present system can not only
work inside a single enterprise but also in the internet.
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Abstract. This paper is devoted to present the stochastic stability anal-
ysis of a novel PSO version, the aligned PSO, and its application to
the face recognition problem using supervised learning techniques. Its
application to the ORL database provides 100% median identification
accuracy over 100 independent runs.

1 Introduction

Particle Swarm Optimization (PSO) is a bio-inspired algorithm that tries to
mimic the the behavior of birds flocks or fish schooling. It was first proposed
by Kennedy and Eberhart [9]. A swarm of n individuals or particles search the
solution space and moves according to the equations

vk+1
i = ωvk

i + φk
1(g

k − xk
i ) + φk

2(l
k
i − xk

i ),

xk+1
i = xk

i + vk+1
i ,

(1)

where ω ∈ R is called the inertia weight, and φ1 and φ2 are random variables
uniformly distributed in the intervals [0, ag] and [0, al] with ag, al ∈ R. The first
term in the velocity update is called the inertia damping; the second term is the
social contribution and it is a stochastic discrete gradient between the positions
and the global best gk, that is, the model with the lowest misfit found; finally the
third term is called the cognitive contribution and it is also a stochastic discrete
gradient with the best position found for each particle, lki .

This equation can be considered as a particular discretization (centered in
acceleration and backward in velocity) of the continuous spring-mass system [3]:⎧⎨

⎩
x′′
i (t) + (1− ω)x′

i(t) + φxi(t) = φ1g (t) + φ2li (t) ,
xi (0) = xi0,
x′
i (0) = vi0.

(2)

2 The Novel Aligned PSO Version

In this paper we propose to adopt the same PSO discretizations for the velocities
and accelerations:

x′′
i (k) � xk+1

i − 2xk
i + xk−1

i ,

x′
i (k) � xk

i − xk−1
i ,

(3)
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and to approximate the position by an average of xk
i and xk−1

i as follows:

xk
i + xk−1

i

2
.

This approximation is commonly used in convection-diffusion problems.
Then, the new PSO algorithm, named aligned PSO, becomes:

vk+1
i = ωvk

i +
φk
1

2 (gk − xk
i ) +

φk
2

2 (lki − xk
i )+

+
φk
1

2 (gk−1 − xk−1
i ) +

φk
2

2 (lk−1
i − xk−1

i ),

xk+1
i = xk

i + vk+1
i .

(4)

It can be observed that a new term, involving the attractors gk−1 and lk−1
i ,

appears in the velocity update. This fact affects the center of attraction for each
particle, that now becomes:

ok
i =

φk
1

(
gk + gk−1

)
+ φk

2

(
lki + lk−1

i

)
2
(
φk
1 + φk

2

) ,

instead of:

ok
i =

φk
1g

k + φk
2l

k
i(

φk
1 + φk

2

) ,

in the case of the standard PSO version (1)

2.1 The First Order Stability Region

In this section we briefly analyze the stochastic stability of the aligned PSO
version, following the methodology shown in [3,4,5]. The first order dynamical
system associated with the algorithm (4) is:(

E
(
xk+1
i

)
E
(
xk
i

) )
= Aμ

(
E
(
xk
i

)
E
(
xk−1
i

))+ cμ, (5)

where
Aμ =

(
E (A) E (B)
1 0

)
,

and

A =
2ω − φk + 2

2
,

B = −φk + 2ω

2
.

(6)

The iteration matrix Aμ depends on ω and φ = E (φ). System (5) is stable when
the spectral radius of Aμ is less than one. The first order stability region turns
out to be the triangular region given by:

S1 =
{(

ω, φ
)
: −1 < ω < 1, 0 < φ < 2 (1− ω)

}
. (7)

Also the parabola
φ = 6− 4

√
2 + 2ω + 2ω, (8)

marks the limit between the real and complex eigenvalues of Aμ. Figure 1a shows
the isolines of the first order spectral radius.
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2.2 The Second Order Stability Region

The second order stability dynamical system associated with (4) is:⎛
⎜⎜⎝
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)
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1 0 0

⎞
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where matrix Aσ depends on ω and φ = E (φ) and E
(
φ2
)
. Taking into account

that the distributions of φ1 and φ2 are uniform and naming β = ag/al, we have

φ = φ1 + φ2 =
ag
2

+
al
2

= (1 + β)
ag
2
, (10)
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12
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a2l
12
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12
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2φ

2
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E
(
φ2
)
= Var (φ) + φ

2
=

2
(
2 + 3β + 2β2

)
3 (1 + β)

2 φ
2
.

Now the iteration matrix Aσ depends on ω, φ and β. The second order system
(9) is stable in region

S2 =
{(

ω, φ, β
)
: −1 < ω < 1, 0 < φ < mβ (1− ω)

}
, (11)

where

mβ =
3 (1 + β)

2

2 + 3β + 2β2
,

is the slope of the second order upper stability limit. This region is a triangle
embedded in S1. Figure 1b also shows the second order spectral radius isolines.
The upper stability limit intersects the ω axis in ω = 1. Its slope is maximum
when β = 1, being its value mβ = 12/7 . This slope is minimum when β → 0
and when β → ∞ being its value mβ = 3/2. The geometry of the first and
second order stability regions for the aligned PSO is much simpler than the ones
corresponding to the standard PSO version.

2.3 Numerical Experiments

We have performed several numerical experiments using different benchmark
functions currently used in practice. We had calculated the median logarithmic
error over 50 simulations for a grid of

(
ω, φ

)
points covering the first order

stability region. We have used 20, 40 and 100 particles for dimensions 10, 30 and
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50 respectively. We have used as objective functions the Rosenbrock, Griewank,
Rastrigin and Sphere benchmark functions. Figure 2 shows the results that have
been obtained for 30 dimensions with the Rosenbrock and Griewank functions
with the PSO and aPSO algorithms. It can be observed that the low misfit

(
ω, φ

)
points are located in a boomerang type zone that includes the upper border of
the aPSO second stability region. In the aPSO case the boomerang part tend to
vanish when the dimension of the search space increases. Also, PSO and aPSO
provide similar minimum misfits.
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Fig. 1. Spectral radius isolines for (a) first and (b) second order stability regions for
β = 1

3 Application to the Face Recognition Problem

3.1 Image Classification

The automatic image recognition problem consists of classifying a given probe
image I providing a database of training images. Mathematically the problem
can be formulated as follows: given a database of training images

Bd =
{
Ik ∈ S(n,m) (N) : k = 1, . . . , N

}
, (12)

characterized by a set of labels

Cd = {Ck ∈ {1, 2, ..., q} , k = 1, . . . , N} , (13)

and a new incoming image I /∈ Bd, the problem consists in estimating its class
C∗

I . In this definition S(n,m) is the space gray-scale images of size m × n. In
this problem the learning database typically contains Np poses of each of the q
individual classes, that is N = q ·Np. To perform the classification it is necessary
to construct a learning algorithm for the class prediction:

C∗ : S(n,m) → Cd. (14)
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Fig. 2. Logarithmic median error in 30 dimensions for (a) PSO with Rosenbrock func-
tion, (b) PSO with Griewank function, (c) aPSO with Rosenbrock function and (d)
aPSO with Griewank function

In the case of non-supervised learning the methodology is as follows:

1. First finding the image Ik ∈ Bd such as:

d (I, Ik) = min
j∈Bd

d (I, Ij) , (15)

where d is a suitable distance (or norm) criterium defined over S(n,m).
2. Once this image has been found: C∗

I = CIk = Ck.

The images are represented by a feature vector calculated for each individual
method of analysis (or attribute). Naming vk

i ∈ R
sk the feature vector of image

Ii according to the attribute k, the distance between two images Ii and Ij is
defined as follows:

d (Ii − Ij) = ‖vk
i − vk

j ‖p, (16)

where p is a certain norm defined over the k-attribute space (Rsk). The success of
the non-supervised classification implicitly depends on the relationship between
the k-attribute, the adopted criteria (norm or cosine) and the class information.
Not all the attributes used in this paper perform equally. Attributes are described
in section 3.2.

In the case of supervised classification the learning method C∗ depends also
on a set of parameters m that has to be tuned using class information coming
from a subset of images of the database (testing database). The algorithm of
supervised classification of a test images I used in this paper is as follows:
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1. From every individual non-supervised classifier built using the different at-
tributes, we retain the first Nfirst images that are closer to I.

2. Based on this classification a matrix M ∈ MNfirst×Na is built, containing
the Nfirst image candidates for each of the Na attributes (Na = 5).

3. The array c ∈ R
Nd containing the Nd different candidates is formed. For

any image candidate Ic ∈ c, its score according to the set of positions (i, j)
in matrix M is calculated as follows:

s(I(i, j)) = (Nfirst − j + 1) · w(i),

where w is a vector of weights corresponding to the trust factors assigned to
any individual classifier (attribute).

4. After calculating the scores for all images in matrix M , the final classification
of the test image I is performed by selecting the image with the major score
among all the candidates of M matrix.

The aligned PSO version is used to optimize the parameter Nfirst and the set
of weights w. For that purpose the learning database will be divided in two
different parts, one for learning and the other for optimizing. The results of the
supervised classifiers will be obtained with a validation database of images that
were not used in the supervised learning process.

3.2 Image Attributes

In this paper we have used the following list of attributes, statistical based (his-
togram and variogram), spectral (discrete cosine transform and discrete wavelet
transform), and image segmentation/regional descriptors (texture). All these
attributes can be calculated for gray scale and color images, both, locally or
globally. In the case of global analysis the attribute features are calculated over
the whole size of the image, meanwhile in the case of local features, the image
is divided into blocks. For each block the local attributes are computed and the
final feature vector is formed by merging all the local attributes into an unique
vector, always computed in the same order. In this paper we have used a parti-
tion of the images into 8× 4 blocks, nevertheless finer subdivisions could be also
adopted.

Color Histograms. An image histogram describes the frequency of the bright-
ness in the image. The shape of the histogram provides information about the
nature of the image [11].

For a gray-scale digital image I the histogram represents the discrete proba-
bility distribution of the gray-levels in the image. For this purpose the gray-scale
space ([0, 255] for an 8-bit image) is divided into L bins, and the number of
pixels in each class ni, (i = 1, L) is calculated. In this case the attribute vector
has dimension L:

HI = (n1, ..., nL).
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Relative frequencies can be also used by dividing the absolute frequencies ni by
the total number of pixels in the image.

In the case of RGB images the histogram is calculated for each color channel
IR, IG and IB , and then all the channels histograms are merged together, as
follows:

HI = (H (IR) , H (IG) , H (IB)) .

Variogram. The variogram of an image describes the spatial distribution in
each color channel. In spatial statistics [6] the variogram describes the degree of
spatial dependence of a spatial random field or stochastic process, the gray-scale
in this case. For a given value of vector h, defined by a modulus and direction,
the variogram is an index of dissimilarity between all pairs of values separated
by vector h.

The omnidirectional p-variogram is the mean of the p-absolute difference be-
tween the color values of the N(h) pairs of pixels that are located at the same
distance h:

γi(h) =
1

N(h)

N(h)∑
k=1

|ci(xk)− ci(xk + h)|p. (17)

Usually p = 2. To compute the variogram each color channel (matrix) is trans-
formed into the corresponding color vector ci(x). Typically N(h) is limited to
one third of the total number of pixels. The number of classes that have been
considered in this case was N(h) = 100.

Texture Analysis. Texture analysis of an image consists in analyzing regular
repetitions of a pattern [10]. In this paper, we use the spatial gray level co-
occurrence matrix to describe an image texture.

The gray level co-occurrence matrix (GLCM), or spatial dependence matrix of
an image I is an estimate of the second-order joint probability function Pd,θ(i, j)
of the intensity values of two pixels i and j located at a distance d apart (mea-
sured in number of pixels) along a given direction θ [2,1]. Typically the GLCM is
calculated for different pairs of d and θ. Figure 3 shows the spatial relationships
between a pixel and its adjacent pixels, and the corresponding displacement vec-
tor (d, θ). Different statistical moments can be calculated from the GLCM ma-

Fig. 3. Spatial relationships of a pixel i with its adjacent pixels
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trix, such as contrast, homogeneity, squared energy, correlation and entropy [2].
In the present case we have used a lag d = 1 for the directions 0o, 45o, 90o, 135o.
This analysis provides an attribute vector of dimension 20 for each image.

Discrete Cosine Transform (DCT). DCT is a free-covariance model reduc-
tion technique that attempts to decorrelate 2D images by projecting the rows
and columns of the incoming image into cosines of increasing frequency. DCT has
been used by Hafed and Levine [7] in face recognition, showing that DCT applied
to normalized images is very robust to variations in geometry and lightning.

Mathematically, DCT is a discrete Fourier transform that expresses a signal
in terms of a sum of sinusoids with different frequencies and amplitudes. For an
image Ik the DCT is defined as follows:

D(u, v) = c(u)c(v)

s−1∑
i=0

n−1∑
j=0

D(i,j)

where

D(i,j) = Ik(i, j) · cos π(2i+ 1)u

2s
cos

π(2j + 1)v

2n
,

u = 0, ..., s− 1, and v = 0, ..., n− 1, being

c(α) =

{ 1√
N
, if α = 0,√

2
N , if α �= 0.

N is either the number of rows (s) or columns (n) of the image. The DCT can
be expressed in matrix form as an orthogonal transformation

DCT = UDCIkV
T
DC ,

where matrices UDC and VDC are orthogonal. This transformation is separable
and can be defined in higher dimensions. The feature vector of an image Ik is
constituted by the q1 − q2 block of DCT , DCT (1 : q1, 1 : q2), where q1, q2 are
determined by energy reconstruction considerations using the Frobenius norm
of the image Ik.

Discrete Wavelet Transform (DWT). Wavelets are compact functions (de-
fined over a finite interval) with zero mean and some regularity conditions
(vanishing moments). The Wavelet transform converts a function into a lin-
ear combination of basic functions, called wavelets, obtained from a prototype
wavelet through dilatations, contractions and translations. DWT was applied to
face recognition by Kakarwal and Deshmukh [8].

The discrete wavelet transform (DWT ) of an image I ∈ M(m,n) is defined
as follows:

DWT = UT
W IVW ,
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where Uw and Vw are two orthogonal matrices constructed as follows:

UW =

[
H

G

]T
m

, VW =

[
H

G

]T
n

,

where H represents a low pass or averaging portion of the wavelet filter, and G
is the high pass or differencing portion. In the present case we have used the
transform having a maximum number of vanishing moments: the Daubechies-2
family.

4 Numerical Results

To perform the numerical analysis we have used the ORL database of faces pro-
vided by AT&T Laboratories Cambridge. The ORL database contains 400 grey
scale images, ten different poses of 40 distinct individuals taken during a period
of two years. All the images were taken against a dark homogeneous background,
varying the lighting, facial expressions and facial details. The database provides
upright and frontal poses. The size of each image is 92x112 pixels, with 256
grey levels per pixel. In all the experiments over ORL, the learning database
is composed of five poses of each individual, that are randomly selected. In the
supervised learning procedure three of the poses are used to learn and the other
two are used to optimize the learning parameters. The rest of the poses in the
database are used as probe images for establishing the accuracy of the classifica-
tion for each spectral technique, using both, global and local features. For each
attribute the classification is performed 100 different times, randomly choosing
the learning database and the set of probe images (200 images). Table 1 shows
shows the median accuracy obtained for each of the individual attributes. The
higher accuracies are obtained for the local histogram (98%), the DWT (95.5%)
and the DCT (95.25%). The variogram and the texture analysis provides lower
median accuracies. Using the supervised learning technique explained above a
median accuracy of 100% is obtained. Table 2 shows the parameters provided
by the aligned PSO, to perform the classification.

Table 1. Accuracies of each individual attribute

Classifier (Attribute) Histogram Variogram Texture DWT DCT
Median Accuracy 98.00 90.00 90.75 95.50 95.25

Table 2. Parameters for supervised learning algorithm optimized by aPSO

Attribute Histogram Variogram Texture DWT DCT Nfirst
Weights 65.21 61.84 80.15 80.02 62.14 6.00
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5 Conclusions

In this paper we present a novel PSO version, the aligned PSO that is deduced
from the PSO continuous model adopting for the trajectories a discretization that
it is in accord to the velocity discretization terms. This approach is currently
used in diffusion-convection problems. First and second order stochastic stability
analysis is also performed following the methodology that was used in the past for
other PSO family members. Numerical experiments with benchmark functions
show that performing aligned PSO parameter sets of inertia and global and local
accelerations are located close to the upper limit of the second order stability
region where exploration capabilities are very high. Finally the aligned PSO is
applied to optimize the parameters of a supervised learning algorithm to solve
the face recognition problem. Its application to the ORL database provides 100%
median identification accuracy over 100 independent runs.
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Abstract. In this paper Particle Swarm Optimization (PSO) algorithm to solve 
the Optimal Operation Management (OOM) of transmission system is pre-
sented. The purpose of the OOM problem is to decrease the total electrical 
energy cost, real power losses in transmission system and the total pollutant 
emission produced by fuel cells. Fuel cell power plants (FCPPs) have been tak-
en into a great deal of consideration in recent years. The continuing growth of 
the power demand together with environmental constraints is the great interest 
to use FCPPs in power system. One of the most important issues in the power 
system is optimal operation management which can be effected by FCPPs. The 
various objectives of OOM problem is solved as single and /or multi – objective 
problem using PSO technique. Numerical results on IEEE 30 bus test system 
have been presented. 

Keywords: Fuel Cell Power Plant(FCPP), Particle Swarm Optimization(PSO), 
Optimal Operation Management(OOM). 

1 Introduction 

Power restructuring have created increasing interest in the wide use of distributed 
generation (DG) in the electric power system. A wide variety of DG technologies and 
types are reported: renewable energy sources such as wind generators, photovoltaic 
cells, micro-turbines, fuel cells, and energy storage devices such as batteries, etc. 
[1,2]. The use of fuel cells (FCs)are preferred  because with low power generation a 
high efficiency can be obtained FCs appears as one of the most promising solution 
due to their good efficiency even at partial load, and especially due to their clean elec-
tric generation, with only water and heat as by-products. Also, their low noise and 
static operation makes them suitable to be used even in domestic generations [3, 4]. 
Studies carried out by researchers have revealed that fuel cell power plants (FCPPs) 
contribution in energy production systems will be enhanced more than 25% in near 
future [5]. An optimal operation management with regard to FCPPs in distribution 
system is discussed in [6]. The impact of FCPPs on the power transmission system-
shas not been discussed in literatures. That is the motive of choosing FCPPs in opera-
tional management in transmission system. The objective functions include: the  
total electrical energy cost, total electrical energy losses and the total pollutant emis-
sion by the fuel cells. These objectives are optimized as single and / or multi objective 
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optimization problem by finding optimal location and rating of FCCP’s, Static capaci-
tors and transformer tap ratio. Due to the simple, easy implementation and quick  
convergencePSO has attracted much attention and has obtained wide applications in 
various kinds of nonlinear optimization problems. The multi-objective PSO based 
algorithm for optimal operation of grid is discussed in [7].  The efficient constraint 
handling algorithm is given in [8]. This is the motive to choose PSO for solving the 
operation management problem in this paper. 

The paper is organized in the following manner: In section -2, the Problem 
formulation is given, In section-3, the modelling of FCCP is presented, In section -4 
the particle swarm optimization algorithm for OOM is presented. In section 5 the 
results &discussion are given and in section 6 the conclusions are arrived. 

2 Problem Formulation 

In the Optimal Operation Management (OOM) problem the various objectives consi-
dered are minimization of total electrical energy cost, total electrical energy losses 
and the total emission by FCPP’s subject of various constraints. These objectives are 
solved using PSO as single and / or multi - objective optimization problem. The vari-
ous cases considered in this study are: 

Case (i) Minimization of total cost of electrical energy  
Case (ii) Minimization of total emission of FCPP’S 
Case (iii)  Minimization of real power losses and total cost of energy. 
Case (iv) Minimization of emission and power losses  
Case (v)  Minimization of cost of energy, power loss and emission all together. 

 

2.1 Minimization of the Total Cost of Electrical Energy Generated by FCPPs 

The total cost of energy is the sum of cost of electrical energy generated by FCPP’s 
and the cost of active power generation of generators. So the objective is to minimize 
total cost of energy. 

 
     ( ) =  = + ∑         (1) 

Where, is the cost of electrical energy generated by FCPPs and is given as fol-
lows  

 
                   = 0.04 $/ ∑    (2) 

 
Where is the real power generated by FCPPs and  
 
                            ( ) + +             (3) 
Where A, B and C are the cost coefficient of the generators and Pgi is the active 

power generation by the generators. 
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2.2 Minimization of the Total Emissions 

The emission of FCPP’s depends on the quantity of power generated by FCPP’s, If 
the power produced is more, the cost and the emission will be reduced. So the objec-
tive is to minimize the total cost of energy as well as emission of FCPP’s. It is given 
as follows  

 ( ) = = + + ∑      (4) 
 

Where, is the emission of FCPP, can be defined as . 
 = + = (0.01361 + 0.00272) / ∑     (5) 

 
Where   is the nitrogen oxide pollutant of FCPP and  is the sulphur 

oxide pollutants of FCPP. The control variables for this case are the real power pro-
duced by FCPP’s and the active power generation of the generator in the system. 

2.3 Minimization of the Power Losses 

Usually FCPP’s are installed in the distribution networks. So its installation leads to 
reduce the power losses in the system .Larger the quantity of power generated by 
FCPP’s, lesser will be the power loss but the cost will also be higher. So the objective 
is to minimize the loss as well as the cost as given below.  

Minimizing the electrical energy losses of the distribution network in the presence 
of FCPPs is of great importance in optimal operation problem. So the objective consi-
dered is as follows.  ( ) = + + ∑                   (6) 

 =  | | 
 
x is the state vector which includes active power of FCPPs( ), Tap of transfor-

mers  (  ,) and capacitor reactive power( ), that can be described as follows: 
                                                              =  ,  ,  
 = , … … , ;           = , … … , ;    = , … … , ;         
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2.4 Minimization of the Emission and Power Losses 

Using FCPP’s the losses will be minimized but the pollutant emission will be there. 
Use of large capacity of FCPP’s leads to less loss and more emission, so the objec-
tives are to minimize the losses and emission together with cost of generators. 

 ( ) = + + ∑      (7) 
 
The control variables are same as given in section 2.3 
 

2.5 Minimization of Emission, Cost and Power Losses 

Here the objective is to minimize the emission produced by fuel cells , cost of elec-
trical energy generated by fuel cells , generation cost of generators and total power 
losses together. 

    ( ) = + + + ∑                        (8) 
 
The various constraints considered for all the problems mentioned earlier are men-

tioned below 
 

 Power balance constraints  
                                = ∑ | |                      (9)                                  = ∑ | |    (10) 

 Active &Reactive Power Constraints of Generators: 
                                          ≤ ≤ ; =1,2, … .                                           (11)                                          ≤ ≤ ; = 1,2, … .                   (12) 
 

 Active Power Constraints of FCPPs: 
                                                        , ≤ ≤,                                                     (13) 
 , is minimum active power of the ith FCPP and , is maximum active 

power of the ith FCPP. 
 

 Transmission Line Limits: 
                                                          < ,                                               (14) 
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and , are the active power flowing in lines and active power limit  of 
line connected between the nodes i and j, respectively. 

 
 Bus Voltage Magnitude: 

                                                             ≤ ≤                                                   (15) 
 

,  and are the voltage magnitudes of the ith bus, the maximum and min-
imum values of voltage magnitude, respectively. 

 
 Tap of Transformers: 

                                                                  < <                                (16) 

 
and are the minimum and maximum tap positions of the ith transformer 

respectively. 

3 Fuel Cell Power Plant Modelling 

The fuel cell is one of the developments in alternate energy field, In simple word, it is 
an electrochemical energy generating device. It has become one of the popular and 
interesting aspects of modern technology. There are a lot of things that are yet to be 
developed in this field and also fuel cell technology is vast and involves various ap-
plications.  

Because of their cleanness, good efficiency and high reliability, there are different 
kinds of FCs according to their characteristics. 

Generally, FCPP’s can be modelled either as PV or PQ models. It must be taken 
into account that when FCPP’s are considered as the PV models, if they generate 
reactive power to maintain their voltage magnitudes. In this paper, the FCPPs are 
modelled as the PQ model with simultaneous three-phase control. 

4 The Particle Swarm Optimization (PSO) Algorithm  

PSO method is a population-based optimization technique that was first introduced by 
Kennedy and Eberhart [9] in which each solution called ‘‘particle” flies around a 
multidimensional search space. During the flight, every particle adjusts its position 
according to its own experience, as well as the experience of neighbouring particles, 
using the best position encountered with itself and its neighbours. The swarm direc-
tion of a particle is defined by its history experience and the experience of its 
neighbours. A particle status on the search space is described by two factors: its posi-
tion and velocity, which are updated by following equations: 

 = + +    (17) 
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                                                       =  +     (18) 
 
Where k is the current iteration number and C1 and C2 are weighting factors of the 

stochastic acceleration terms, which pull each particle towards the Pbest and Gbest posi-
tions, rand1 and rand2 are two random functions in the range of [0,1], is the best pre-
vious experience of ith particle that is recorded and Pbest is the best particle among the 
entire population. The Equation (18) is used for the calculation of ith particle’s veloci-
ty considering three terms: the particle’s previous velocity, the distance between the 
particle’s best previous and current positions, and finally, the distance between the 
position of the best particle in the swarm and ith particle’s current position. 

4.1 Application of PSO Algorithm to OOM Problem 

To apply the PSO algorithm in the MOOM problem, the following steps are carried 
out. 

Step 1. Read the input data: Input data includes system parameters, line impedance, 
characteristics of FCPPs, emission functions and prices of Fuel cells, characteris-
tics of generators, limits of generator, etc. 

Step 2. Set the generation count t=0. 

Step 3. Initialize PSO parameters: the size of population, initial   velocity constants 
C1&C2. 

Step 4. Generate particles (refer to a set of control variables) within their limits.  

Step 5. Run load flow and find the power flow in the lines. 

Step 6. Calculate the fitness values of each particle of population using objective
 function 

Step 7.Find gbest and pbestbased on the fitness values and update position and velocity 
of each particle using equations. Eq(18) 

Steps 8.Check for convergence, if converged stop, else, go to step (5) 

5 Results and Discussion 

The proposed PSO algorithm is tested on IEEE 30 bus test system. This system has 6 
generators,3 fuel cells, 21 loads and 41 transmission lines with total load of 283.4 
MW and 126.2 MVAR. Matlab coding has been done for different cases: Base case 
and contingency case. 

Base Case: 
Load flow analysis is done for IEEE 30 bus system using Newton Raphson’s Method 
without inclusion of FCPPs and it is found that the power flows in all the lines are 
within the limits and generation is equal to demand and losses. The generation cost & 
losses are minimized using PSO method by varying the generation of 6 generators 
within the limits. The generator real power, the cost of generator & losses for base 
case is given in Table 1. 
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Table 1. Results for active power generation cost& using PSO for base case 

Generators 
Generation 

(MW) 
Cost of generator 

($/hr) 
Losses 
(MW) 

1 
2 
5 
8 
11 
13 

126.75 
84.11 
30.59 
18.12 
12.11 
29.10 

933.64 14.47 

 

Contingency Case: 120% Load Demand 

An increase in load by 20% leads to power flow limit violation in line 1-2 and the 
generation is not able to meet the demand. Actual Power flow limit in line 1-2 is  
100 MW. When the load increased by 120% the Power flow in line 1-2 is  
130.82 MW. So the optimum location, rating of FCCPs & generators are obtained 
using PSO. 

 
CASE 1: The total cost of electrical energy is minimized by varying the generation 

of 6 participating generators, the rating and location of FCPPs, when the load is in-
creased by 120%. The power flow in the line 1-2 is 34.75 MW. It is observed that by 
installing FCPP’s with proper rating and location, the line over load is relieved and 
also the cost of the system is reduced using PSO. It is found that the power flow in the 
line 1-2 is 34.75 MW which is well within the limit .The results obtained are shown in 
Table 2. 

Table 2. Results for minimization total cost of electrical energy 

Location of 
FCPP 

Rating of 
FCPP (kW) 

Rating of 
Generators 

(MW) 

Cost of
 FCPPs 
($/hr) 

Cost of
 Generators 

($/hr) 

Total 
 cost  
($/hr) 

29 
17 
4 

22.61 
27.92 
33.56 

141.45 
46.02 
29.62 
18.06 
12.20 
12.28 

3363.6 966.19 4329.79 

 
CASE 2: The emission produced by FCPPs & the total cost of electrical energy is 

minimized by varying generation of generators, the rating and location of FCPPs for 
contingency case. Power flow in the line 1-2 is 61.97 MW. It is found that with the 
use of FCPPs in proper place and rating, the line loading is relieved and also the emis-
sion is optimized with reduced cost. The results obtained are given in table 3. 
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Table 3. Results for minimization of emission produced by FCPP 

Location of 
FCPP 

Rating of 
FCPP 
(KW) 

Rating of 
Generators 

(MW) 

Emission 
(Kg/hr) 

Cost of  
Generators 

($/hr) 

Cost of  
FCPP’s 
($/hr) 

Total 
Cost 
($/hr) 

22 
24 
20 

5.87 
48.05 
32.88 

134.50 
39.12 
29.84 
32.69 
21.71 
19.34 

1.417 1001.8 3472 4473.8 

 
CASE 3: The cost of electrical energy generated by FCPPs and the total electrical 

energy losses is minimized by varying the generation of generators, the rating and 
location of FCPPs, capacitive reactive power and tap of transformers when the load is 
increased by 120%. The Power flow in the line 1-2 is 53.27 MW. In this case the cost 
& loss are less, when compared to case 1 and case 2 but the cost of FCPP’s is slightly 
high and is shown in Table 4.  

Table 4. Results for minimization of cost and power losses 

Loca-

tion 

of 

FCPP 

 

Rating 

of 

FCPP 

(KW) 

 

Rating 

of 

Gene-

rators 

(MW) 

Tap posi-

tion of 

transformer 

 

Capacitive 

reactive 

power 

(KVAR) 

Losse

s 

(Kw) 

Cost 

of 

FCPPs 

($/hr) 

Cost of 

Genera-

tors 

($/hr) 

Total  

cost 

($/hr) 

19 

20 

23 

12.79 

13.89 

33.96 

95.52 

70.69 

43.57 

31.15 

17.40 

22.73 

A(11)=0.95 

A(12)=0.98 

A(15)=0.94 

A(36)=0.91 

Qsh(11)=

18.35 

Qsh(24)=

11.96 

10.72 2425.6 958.84 3384.84 

 
CASE 4: The emission produced by FCPPs and the total electrical energy losses 

are minimized by varying generation of 6 generators, the rating and location of 
FCPPs, capacitive reactive power and tap of transformers when the load is increased 
by 120%. The power flow in the line 1-2 is 20.90 MW. In this case the results ob-
tained are cost of generators, emission and losses. The cost of generator and losses are 
less whereas emission is slightly higher when compared to earlier cases as given in     
Table 5. 
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Table 5. Results for minimization of emission and power losses 

Location of 
FCPP 

 

Rating 
of FCPP 

(KW) 
 

Rating 
of 

Generators
(MW) 

Tap posi-
tion of 

transformer
 

Capacitive 
reactive 
power 
(Kvar) 

Losses 
(Kw) 

Emission 
(Kg/hr) 

Cost of 
Genera-

tors 
($/hr) 

15 
11 
23 

2.95 
20.97 
36.36 

113.50 
59.21 
31.96 
27.03 
24.68 
19.63 

0.98 
0.99 
0.96 
0.94 

25.89 
49.71 

9.98 2.19 941.71 

 
CASE 5: The emission produced by FCPPs , the cost of electrical energy generated 

by FCPPs , active power generation cost and the total electrical energy losses are 
minimized by varying the generation of  generators, the rating and location of FCPPs, 
capacitive reactive power and tap of transformers, when the load is increased by 
120%. The power flow in the line 1-2 is 37.66 MW. Optimizing all the four objectives 
together, the results obtained are slightly less when compared to optimizing two ob-
jectives alone and is given in table 6 

Table 6. Results for minimization of emission, cost and power losses 

Lo-
ca-
tion 
of 
FCP
P 
 

Rat-
ing 
of 
FCPP 
(KW) 
 

Rating 
of 
Gene-
rator 
(MW) 

Tap 
posi-
tion 
of 
trans-
former 
 

Capa-
citive 
reac-
tive 
power 
(Kvar) 

Losse
s 
(Kw) 

Emis-
sion 
(Kg/ 
hr) 

Cost 
of 
Gene-
rators 
($/hr) 

Cost 
of  

FCPP’
s 

($/hr) 

Total 
cost 

($/hr) 

15 
10 
14 

6.24 
14.32 
33.46 

133.50 
39.21 
31.43 
29.03 
25.78 
18.32 

0.92 
0.94 
0.98 
0.96 

29.22 
41.49 10.10 2.28 953.38 2160.8 3114.18 

6 Conclusion 

In this paper, a PSO optimization technique has been used to Optimal Operation 
Management (OOM) problem in transmission system with Fuel Cell Power Plants 
(FCPPs).The proposed method was implemented and tested on IEEE 30 bus system 
and it can be concluded that total emissions, total power losses and total cost of elec-
trical energy are minimized. So this can be extended as a multi-objective optimization 
problem to obtain a set of Pareto optimal solution allowing the operator choice to use 
the solution for implementation. 
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Abstract. This paper proposes a proportional-integral-derivative (PID) design of 
nonlinear multi-input multi-output (MIMO) system called 2 degree-of-freedom 
(2-DOF) helicopter using particle swarm optimization (PSO) algorithm. The 
control of 2-DOF helicopter is very challenging task due to its high nonlinearity 
and complexity. The objective of the control is to control aerodynamic force of 2-
DOF helicopter by varying the speed of the pitch and yaw motor  and thus 
tracking their reference position. Statistical measurement and convergence 
analysis is done for the optimization of gain parameters of the PID controller of 2-
DOF helicopter using PSO, modified PSO (MPSO) and genetic algorithm (GA) 
for equal repetitions of the function evaluation by iteratively minimizing integral 
of squared error )(ISE , integral of time multiplied by the squared error )(ITSE  

for 25 independent trials. The numerical simulation results analysis shows the 
effectiveness of MPSO and PSO compared to GA in controlling the positions of 
2-DOF helicopter with consistent tracking.  

Keywords: Modified particle swarm optimization (MPSO), 2-DOF helicopter, 
cross-coupled PID controller. 

1 Introduction 

The experimental setup of helicopter model having two propellers driven by DC 
motors mounted on a fixed base is called as 2-DOF helicopter system is considered as 
a control problem in this correspondence. The elevation of the helicopter nose is 
controlled by front propeller about pitch axis. The side to side motions can be 
controlled by back propeller about yaw axis. 2-DOF helicopter is similar to helicopter 
in certain aspects of behavior. The significant applications of helicopter and its 
technical importance for the development of unmanned air vehicle leads to the 
interest of research in the control of helicopter. Many literatures are reported in the 
trajectory control and it is an active research area [1-3]. Fuzzy supervisory controller 
is designed for a small quadrotor helicopter in [4]. The control task of helicopter is 
very tedious and challenging task due to its high-order nonlinearity. However, 
helicopter possesses great advantage because of its hovering capability and is used 
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extensively in accessing hard to reach places during search and rescues operations, 
damage assessment and control in case of natural calamities and accidents involving 
hazardous environments. Research work is still going on in the quick, versatile 
control, agility and stability of helicopters [5]. Since high requirement of 
sophistication is needed in all of the applications, control of helicopter has to be 
developed efficiently. The control technique is based on the PID control algorithm. 
Mostly PID controller strategy is used in all industries for process control due to its 
simplicity [6,7]. PID method of strategic control is the technique currently preferred 
by most researchers and mentioned in a many literatures [8,9]. Research works are 
going on to find the key methodologies to tune the gain parameters of the PID 
controller to have perfect feedback control.  

AI is extensively used by many researchers to tune gain parameters of PID 
controller [10,11]. The PSO is used for the tuning of  decentralized typical fuzzy PI 
controller for the stability of the helicopter model in [12]. The optimal pole locations 
in state feedback control is searched using PSO to satisfy transient and steady state 
performance specifications for the rationalized helicopter model in [13]. Recently 
many research focus is on the design of PID controller by evolutionary algorithms to 
examine the best optimal value of gain parameters by minimizing the objective 
function iteratively [14]. These methods are used when aiming for high efficiency in 
reaching the global optimal solution in the problem search space. GA has more 
potential for global optimization and is preferred over other methods for most control 
system problems [15]. Even then the computational time and resources create more 
overhead than the results obtained. GA was further enhanced by removing the need 
for binary coding and using real valued parameters in numerical function 
optimization. New research has exposed the drawbacks in the GA efficiency in spite 
of the prevalent success that GA has achieved over the past years in solving highly 
nonlinear optimization problems. GA is especially inefficient when trying to converge 
closely related parameters. Mutation and crossover operators fail miserably to create a 
different strain of chromosome from inter related parents. 

Kennedy and Eberhart introduced the PSO which is one of the heuristic algorithm 
[16,17]. The mathematical model is constructed based on the social behavior of birds 
flocking and fish schooling. Many researchers are working on PSO to enhance its 
performance to reach global optimum solution by introducing variants and new 
concepts to improve the searching direction [18]. PSO is extensively used to control 
highly non-linear systems and achieve stability with very low steady state error. In 
this paper, statistical measurement and convergence analysis is evaluated for the 
optimization of gain parameters of the PID controlller for the position control of 2-
DOF helicopter using PSO, MPSO and GA by iteratively minimizing ISE , ITSE .  

2 2-DOF Helicopter System 

The 2-DOF Helicopter shown in Fig. 1 manufactured by Quanser was used for the 
experimental test. The helicopter model consists of two propellers which controls the 
rotational movement about pitch and yaw axis on a fixed base. The two propellers are 
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Fig. 1. 2-DOF Helicopter system 
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Fig. 2. 2-DOF Helicopter system dynamics 
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where pmV , and ymV ,  are the pitch and yaw motor voltage. 

Table 1.  Actuator specifications and model parameters 

Symbol Description Value Unit 

pmJ ,  Moment of inertia of pitch motor rotor 1.91 X 10-6 kg.m2 

ymJ ,  Moment of inertia of yaw motor rotor 1.37 X 10-4 kg.m2 

ppK  Thurst  torque constant acting on pitch axis from 
pitch motor/propeller 

0.204 N.m/V 

yyK  Thurst  torque constant acting on yaw axis from 
yaw motor/propeller 

0.072 N.m/V 

pyK  Thurst  torque constant acting on pitch axis from 
yaw motor/propeller 

0.0068 N.m/V 

ypK  Thurst  torque constant acting on yaw axis from 
pitch motor/propeller 

0.0219 N.m/V 

Table 2.  2-DOF Helicopter specifications and model parameters 

Symbol Description Value Unit 

pB  Equivalent viscous damping about pitch axis 0.800 N/V 

yB  Equivalent viscous damping about yaw axis 0.318 N/V 

helim  Total moving mass of the helicopter 1.3872 kg 

cml  Center of mass length along helicopter body from pitch 
axis 

0.186 m 
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Table 2. (continued) 
 

pbodyJ ,  Moment of inertia of helicopter body about pitch axis 0.0123 kg.m2 

ybodyJ ,  Moment of inertia of helicopter body about yaw axis 0.0129 kg.m2 

shaftJ  Moment of inertia of metal shaft about yaw axis at end 
point 

0.0039 kg.m2 

pJ  Moment of inertia of front motor/shield assembly about 
pitch pivot 

0.0178 kg.m2 

yJ  Moment of inertia of back motor/shield assembly about 
yaw pivot 

0.0084 kg.m2 

peqJ ,  Total moment of inertia about pitch pivot 0.0384 kg.m2 

yeqJ ,  Total moment of inertia about pitch pivot 0.0432 kg.m2 

g  
Gravitational constant 9.81 m/s2 

 

The equivalent moment of inertia about the center of mass in Eq. (1) and (2) equals 

yppbodypmpeq JJJJJ +++= ,,,  
(3)

 

shaftypybodyymyeq JJJJJJ ++++= ,,,  
(4) 

where pmJ , and ymJ ,  are the moment of inertias of the motor rotor [20]. 

See Table 1 and Table 2 for the values. 

3 PSO Features Overview 

Edward and Kennedy designed the framework of PSO in 1995.  The basic idea of the 
algorithm is social behavior of animals, such as bird flocking or fish schooling [17]. 
PSO starts with an initial set of random population matrix. Each row of population 
matrix is called particles. The dimension of variable differs according to the problem. 
Each particle updates its velocity to move to the new position in the cost surface.  
The particle changes its position based on the velocity and position update equations 
according to the knowledge of the local and global best solutions as given in  
Eqs. (5)-(6).  

)(*)(* 2211
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nivxx t
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t
id ...,2,1,11 =+= ++   (6) 

where 1c
 and 2c  are the cognitive and social component. 1r  and 2r  , the random 

numbers in the range of [0,1] are generated to improve the acceleration of particle's 
direction to attain the minimum of objective function based on cognitive and social 
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parameters. t
idv  is the particle's velocity along dimension d  in t th iteration number 

which is to be calculated for every generation to move the particle position from 

existing to new position. t
idpbest is the best solution of that particular particle for a 

dimension associated with the low cost. t
idgbest  is the best solution among all 

particles in a generation. t
idx is the particle position.  

The original PSO is improved by modifying Eq. (5) to 
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t
id xgbestrcxpbestrcvv −+−+=+ ω  (7) 

 

In Eq. (7), ω  is the inertia factor which balances the exploration and exploitation 
capability of the PSO search algorithm. To accomplish this, value of ω  is iteratively 
reduced from the start to the end of generation. 

4 Modified PSO 

The standard PSO is modified in such a way that the cognitive component is divided 
into two factors. The first factor is the previously visited best position of the particle 

called t
idpbest  and the second factor is previously visited worst position of the 

particle called t
idpworst . This modified PSO improves the local exploration of the 

particle by introducing the t
idpworst  to the velocity equation to find its optimal value. 
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where, bc1 is the acceleration constant which drives the particle toward its best 

position and wc1  is the acceleration constant which drives the particle away from its 

worst position, 1r  , 2r  and 3r  , the random numbers generated in the range of [0,1]. 

The particle position is updated using Eq. (6). The exploration capacity of each 
particle in the swarm is improved locally by Modified PSO.  

5 PID Controller Design of 2-DOF Helicopter Using PSO and 
MPSO 

The general PID control law is of the form, 

)()()(.)(
0

te
dt

d
KdtteKteKtu

t

dip  ++=   (9) 

To control the vertical and horizontal position of highly nonlinear MIMO system like 
2-DOF helicopter, cross-coupled PID control scheme is employed as shown in Fig. 3. 
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It consists of four PID controllers vvPID , vhPID , hvPID  and hhPID . These four 

PID controllers are used to compensate the existence of coupling effect between pitch 

and yaw actuators [19]. ve  and he are the horizontal and vertical position error which 

is the difference between the setpoint ( vr  and hr ) and system response. vu  and hu
are the pitch and yaw motor controlled voltage signal. For the position control of      
2-DOF helicopter, the PID controller structure is given as 
 

hvvvv PIDPIDu +=  (10) 

vhhhh PIDPIDu +=  (11) 

 
The design variables for this system are 

],,,,,,,,,,,[ dhhihhphhdhvihvphvdvhivhpvhdvvivvpvv KKKKKKKKKKKKK =  (12) 

    ]20,20[−=  
Two objective functions given in Eqs. (13) to (14) is minimized iteratively to tune the 
gain parameters K of the cross-coupled PID controller for 2-DOF helicopter using 
PSO.  

dttedttytrISE
TT

= −=
0

2

0
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TT
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0

22

0
 ×=−×=  (14) 

where T is total time of integration.  

The design of cross-coupled PID controller for 2-DOF helicopter using PSO is 
summarized as follows: 

Data given to the PSO based 2-DOF helicopter system are: Nonlinear 2-DOF 

helicopter system Eqs. (1) and (2), particle size, dimension, constants 1c , 2c  are both 

assigned the value 2 , ω of  Eq. (7) which is linearly decreased from 0.9 to 0.4 during 
the course of  a run, number of iterations. 

The gain parameter of cross-coupled PID controller structure for the 2-DOF 
helicopter system of Eqs. (1) and (2) is tuned using PSO algorithm such that the 
objective function of Eqs. (13) and (14) are minimized individually. 

 
Step 1: Randomly generate the particles K . 
Step 2:  Check for maximum generation to stop function evaluation. 
Step 3:  Evaluate the objective function Eqs. (13) and (14) for all particles, store 
 previous best position of each  particle and global best position among all 
 particles. 
Step 4:  Find particle’s new velocity by Eq. (7). Update the particle position Eq. (6) 

by updating the particle velocity equation. 
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under two performance criteria. The convergence analysis of  PSO,MPSO and GA 
algorithm for helicopter in 2-DOF by minimizing ISE , ITSE  for 500 generations, 25 
trials is shown in Fig. 4. The sine input, of 11.46 degree and, 0.05 Hz and the sine 
input of 28.65 degree and, 0.05Hz is given as the reference signal to test the output 
position response pα  and yα of helicopter. The simulation is run from 0 to 50 

seconds with the sampling time of 0.02 seconds. The Fig. 5 shows the simulated pitch 
sine response, yaw sine response for the best optimal result which is obtained out of 
25 trials by minimizing ITSE . The convergence and statistical analysis of all three 
algorithms are summarized in Table 3. The simulated pitch and yaw response shows 
consistent tracking in set point with less steady state error. The experimental 
observation is analyzed by applying the gain parameters to the gain block of cross-
coupled PID controller. The obtained simulation results are compared with the 
experimental results to analyze the performance of 2-DOF helicopter.  The pitch angle 
and yaw angle are observed in this closed-loop implementation. The actual response 
shows tracking of simulated response with deviations. This is due to the existence of 
coupling effect between pitch and yaw actuators and uncertainty in the actuators and 
model parameter specifications of 2-DOF helicopter. 

 
 

 

Table 3. Statistical analysis Objective 
function 

Algorithms Number of 
generations 

Results 
Best 
value 

Worst 
value 

Mean 
value 

Standard 
deviation 

ITSE MPSO 
PSO 

500 
500 

0.0222 
0.1076 

0.0623  
0.5184 

0.0364 
0.1705 

0.0114 
0.0841 

GA 500 0.1457 0.9267 0.3695 0.3090 
ISE MPSO 

PSO 
500 
500 

0.1995 
0.3281 

0.2304 
0.8634 

0.2116 
0.4074 

0.0089 
0.1108 

GA 500 0.3665 1.0611 0.5881 0.2068 

(a) (b) 

Fig. 4.   Convergence analysis for different cost function (a) ISE (b) ITSE 
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                                (a)                                                                 (b)  

Fig. 5. Sine response for pitch motor and yaw motor  

7 Conclusion  

In this paper, cross-coupled PID controller is designed by minimization of ISE , ITSE  
using PSO for a highly nonlinear dynamic system like 2-DOF helicopter. The 
performance of MPSO, PSO, GA is compared in terms of statistical measure and 
convergence behavior over same number of function evaluations. The convergence 
analysis of the two algorithms show the effectiveness of MPSO in searching best 
optimal value to tune gain parameters K and to track the desired reference signal. The 
search behavior of PSO is examined by performing statistical analysis and the 
numerical gain parameters of the cross-coupled PID controller are calculated 
corresponding to best optimal value for two performance criteria. The simulation 
results show the effectiveness of MPSO in tuning the nonlinear system like 2-DOF 
helicopter with less steady state error and good tracking of command signal. The 
position control of 2-DOF helicopter is experimentally done and observed using 
cross-coupled PID controller.  

PSO is a powerful technique in tuning the parameters for the PID controller. 
However, in a nonlinear system like 2-DOF helicopter maintaining control is very 
tedious. So in future to improve control, design of robust PID controller using PSO 
can be considered to improve the performance of the nonlinear system in the presence 
of uncertainty and external disturbances. 
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Abstract . This paper proposes the optimal location of Thyristor Controlled 
Series Capacitor (TCSC) to reduce the active power loss in radial distribution 
system using Particle Swarm Optimization (PSO) algorithm. Also in this 
work, reactance characteristics curve of a TCSC device is drawn between 
effective reactance of TCSC (XTCSC) and firing angle ‘α’ from the optimal 
output obtained from the PSO algorithm. This gives the effective value of the 
firing angle ‘α’ and the main parameters of TCSC (such as XC and XL) are 
also designed. This analysis is done by degree of series compensation ‘k’. The 
feasibility and effectiveness of the optimization methods proposed have been 
demonstrated on 12, 34 and 69 bus radial distribution system consisting of 11, 
33 and 68 sections respectively. MATLAB, Version 7.10 software is used for 
simulation.  

Keywords: Particle Swarm Optimization (PSO), Direct Load Flow (DLF) 
Method, Radial Distribution System (RDS), Thyristor Controlled Series 
Capacitor (TCSC), Degree of Series Compensation ‘k’, Flexible AC 
Transmission systems (FACTS). 

1 Introduction  

From the generating station the power is distributed to the consumers by the use of 
transmission and sub transmission units through the distribution lines. The voltage 
profile improvement and system losses reduction depends on the placement of 
capacitors [1]. The power transfer parameters like transmission voltage, line 
impedance and phase angle, are dynamically controlled with FACTS devices that play 
the major role in power electronics based technology [2]. FACTS devices facilitate an 
increase in flexibility, lower operation and maintenance costs with less environment 
externalities [3]. The voltage profile improvement and the energy losses are reduced 
in the radial distribution system by the installation of capacitors at suitable locations. 
The active power (I2R) losses are reduced by 13 % in the distribution networks from 
the total power generation [4]. 
                                                           
* Corresponding author. 
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To solve optimization problems, Evolutionary Algorithms proposed Differential 
Evolution (DE) [5]. As traditional EAs, DE solved many optimization problems 
successfully [6]. Genetic Algorithm (GA) is also used to optimize, plan reactive 
power, evaluate system losses and also to find the optimal location of FACTS devices 
[7]. For FACTS based controller design, the application and performance comparison 
of PSO and GA optimization techniques are discussed [8]. Particle Swarm 
Optimization (PSO) which is one more evolutionary computation method could be 
used for solving the problem of FACTS devices sizing and allocation. In recent days, 
the application of PSO is suitable for the optimal placement of FACTS devices in 
power system [9].  

From this literature survey it is known that, the optimum placement of FACTS 
device is efficiently done by the Evolutionary Algorithms. For this work PSO 
algorithm is considered to find the optimal allocation and sizing of a Thyristor 
Controlled Series Capacitor (TCSC) for series compensation in a power system. The 
criterion should be set in such a way to find the to optimize the voltage profile of the 
system and the TCSC size such that the real power, voltage deviations at each bus, 
current and effective reactance of the line do not exceed a predefined set value.  

Also in this work, from the optimal XTCSC value obtained from the PSO algorithm, 
the reactance characteristics curve of a TCSC device is drawn between effective 
reactance of TCSC and firing angle ‘α’. This gives the effective value of the firing 
angle ‘α’ and the main parameters of TCSC (such as XC and XL) are also designed.  
Therefore this work consists of two parts. 
Part-1 (Using PSO) 

• Optimum location of TCSC 
• Sizing of TCSC (XTCSC) 

 

Part-2 (Using Degree of Series 
Compensation ‘k’)  

• Selection of firing angle ‘α’ 

• Design of parameters XC and XL 

2 Flexible AC Transmission System (FACTS)  

In 1986 N. G. Hingorani invented FACTS Technology for the amendments of usual 
electrical characteristics of ac power system. FACTS controllers are classified as 
series and shunt controllers. Using series compensation, transmission or distribution 
system parameters are customized. Series controllers increase the power handling 
capacity. The power transmission capability of the lines can be improved by the series 
compensation which is an economic method [10, 11].  By shunt compensation 
technique the equivalent impedance of the load can be changed. Shunt controllers 
improve the voltage at a particular location.  

2.1 Thyristor Controlled Series Compensator (TCSC)  

Many benefits for a power system including controlling power flow in the line, 
damping power oscillations, and mitigating sub synchronous resonance can be 
provided by the Thyristor-Controlled Series Capacitors (TCSC). It is also a type of 
series compensator. TCSC is able to modify the line impedance and thereby control 
the power flow.  The capacitor is inserted directly in series with the transmission line 
and the thyristor-controlled inductor is mounted in parallel with the capacitor.  
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Thus no interfacing equipment like high voltage transformers are required. This 
makes TCSC much more economical simple with ease of operation than some 
competing FACTS technologies. World’s first 3 phase [12], 2 X 165 MVAR, TCSC 
was installed in 1992 in Kayenta substation, Arizona. TCSC consists of series 
compensating capacitor shunted by thyristor controlled reactor. It is modeled as a 
controllable reactance, inserted in series with the transmission line to adjust the line 
impedance and thereby control the power flow [13].  

2.2 Basic Concepts 

The basic operation of TCSC device can be easily explained from a schematic 
diagram shown in Fig. 1. It consists of a series compensating capacitor shunted by a 
Thyristor controlled reactor (TCR). TCR is a variable inductive reactor XL controlled 
by firing angle ‘α’. Fig. 2 shows the reactance characteristics curve of a TCSC device 
drawn between effective reactance of TCSC and firing angle ‘α’ . The effective 
reactance ‘XTCSC (α)’ of TCSC operates in three regions: inductive region, capacitive 
region and resonance region. Inductive region starts increasing from inductive 
reactance XL||XC value to infinity (parallel resonance condition, ‘XL (α) = XC’), and 
decreasing from infinity to capacitive reactance XC for capacitive region. Resonance 
occurs between the two regions. The reactance characteristics of TCSC operation in 
both capacitive and inductive regions [14] through variation of firing angle ‘α’ is as 
shown below: 

a) Region 90° to αLlim -  Inductive region 
b) Region αClim to 180° - Capacitive region 
c) αLlim to αClim   - Resonance region 

The resonance region is avoided by installing limits in the firing angle. At the 
resonant point, the TCSC exhibits very large impedance and results in a significant 
voltage drop. It is clear that the vernier operation of TCSC can only enhance the 
apparent reactance in both capacitive and inductive domain. Also firing angles close 
to the resonant point would lead to high reactance operation which is not practical. To 
avoid high reactance region, maximum and minimum control angles in the inductive 
and capacitive regions should be established.  

2.3 Mathematical Modeling of TCSC 

A TCSC is a series type FACTS device inserted for line reactance compensation in 
the line between ‘i’ and ‘j’ as shown in Fig. 3. TCSC can operate either in inductive 
mode or in capacitive mode. (+) Sign is for inductive reactance and (-) sign is for 
capacitive reactance. So the net reactance of the transmission line becomes [11, 12], 

)( αTCSCijTOTAL XXX ±=
       (1) 

where ‘α’, the firing angle of TCSC varies from 90° to 180°. Effective TCSC 
reactance (XTCSC) with respect to firing angle (α) can be given as: 

)2())tan())(tan()((cos)))(2sin()(2()( 2
21 απαπωωαπαπαπα −−−−−−+−+−= CCXX CTCSC  
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Fig. 1. Schematic diagram of TCSC device  

 

Fig. 2. TCSC’s Reactance characteristic curve 
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where ‘k’ is the degree of series compensation and Xij is the line reactance between 
bus-i and bus-j. 

 
Fig. 3. Line with TCSC  

3 Problem Formulation  

The objective of the optimal placement and sizing of TCSC is to minimize the active 
power loss in the distribution network.  

The objective function:  

                           
)min(min , LOSSTPf =

                        
(8)

 
where, 
T Loss is the total power loss of the radial distribution system. 

Constraints: 
Inequality constraints: 
Real power generation constraint 

                           
maxmin

gigigi PPP ≤≤
                  

(9) 

Reactive power generation constraint 

                           
maxmin

gigigi QQQ ≤≤
                    

(10) 

Voltage constraints:  

                              
maxmin

iii VVV ≤≤                        (11) 
Current constraints:  

                             
maxmin

iii III ≤≤                          (12) 

Reactance limit of TCSC:  

                   
*9.0*9.0 ijTCSCij XXX ≤≤−

             (13)
 

where Pg
min and Pg

max—minimum and maximum limits of real power generation, 
Qg

min and Qg
max —minimum and maximum limits of reactive power generation, |Vi

min| 
and |Vi

max|—minimum and maximum limits of magnitude of bus voltage, |V|—
magnitude of bus voltage. 

Xij 
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XTCSC (α) 
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4 Development of Test System 

4.1 Load Flow Analysis  

Distribution load flow is important for distribution automation systems, and 
distribution management systems. Network optimization, VAR planning, switching, 
state estimation etc. need the support of vigorous and efficient load flow solution. 
Conventional load flow studies like Gauss-seidal and fast decoupled load flow and 
Newton-Raphson methods are not suitable for distribution system load flows because 
of high R/X ratio. A Direct Approach for Distribution System Load Flow which 
offers better solution was proposed in [15]. Using two developed matrices, the bus-
injection to branch-current matrix and the bus-current to bus-voltage matrix load flow 
solutions were obtained with simple matrix multiplication.  

4.2 Bus Building Algorithm  

For distribution networks, the complex load Si is expressed as,  

                            ,...2,1, NiQPS iii =+=        (14) 

where N is the total no of buses, Pi is the real power at ith bus and Qi is the reactive 
power at the i th bus. Current injection is given as,  

                                 *)/( iii VSI =                        (15) 

The relationship between bus current injections and bus voltages are expressed as  

                           ]][][[][ IBIBCBCBVV =Δ                      (16) 

                                     ]][[ IDLF=                     (17) 

where,  
BCBV is the branch-current to bus-voltage matrix. 
BIBC is the bus-injections to branch-currents matrix. 
The solution for radial distribution load flow can be obtained by solving the equations 
(28-30) iteratively.  

                              )/( *k
ii

k
i VSI =                      (18) 

                           ][][][ 1 kk IDLFV =Δ +
                (19) 

                          ][][][ 11 ++ Δ= kk VVoV                (20) 

5 Power Flow Calculation 

The power flows are computed by the following set of simplified recursive equations 
(16-22). 
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Where Pi and Qi are the real and reactive powers flowing out of bus i, and PLi and 
QLi are the real and reactive load powers at bus i. The resistance and reactance of the 
line section between buses i and i + 1 are denoted by Ri,i+1, and Xi,i+1, respectively. 
The power loss of the line section connecting buses i and i + 1 may be computed as: 
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The total active power loss of the feeder, PT,Loss, may then be determined by 
summing up the losses of all line sections of the feeder, which is given as: 

                  
)1,(*][, += iiPBIBCP LOSSLOSST                

(25) 

6 Particle Swarm Optimization (PSO) Algorithm  

Particle swarm optimization (PSO) is an evolutionary computation optimization 
technique (a search method based on a natural system) developed by Kennedy and 
Eberhart [16]. It is a multiagent search technique and it uses a number of particles that 
constitute a swarm. Each particle traverses the search space looking for the global 
minimum (or maximum). The particles fly around in a multidimensional search space 
and each particle adjusts its position according to its own experience and the experience 
of neighboring particles making use of the best position encountered by itself and its 
neighbours. Here the concept of velocity is used to represent the modifications in each 
particle. Velocity of each particle can be modified by using equation (24).  

       )(*2)(*1 21
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maxω  Initial value of the inertia weight 

minω  Final value of the inertia weight 

 Using equation (24), a certain velocity, which gradually gets close to Pbest and 
Gbest can be calculated. The current position can be modified by using equation (28).  
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where Sk is current searching point, S k +1 is modified searching point, vk is current 
velocity, v k +1 is modified velocity of agent i, ω is weight function for velocity of the 
agent ,C1 and C2 are weight coefficients for each term and rand1, rand2 are the 
random value generated between [0,1]. Φ is a random number. In this paper, the 
evolutionary optimization is used to address the X TCSC placement and sizing problem. 
The particle in the PSO algorithm, as applicable to this problem, consists of randomly 
initialized X TCSC sizing.  

6.1 Implementation of PSO Algorithm  

The PSO-based approach for solving the optimal placement and sizing of TCSC 
problem to minimize the real power loss takes the following steps:  

Step 1: Get the Input. The input data are line (Line Impedance) and bus data (Load 
Power i.e., Real Power and Reactive Power) and bus voltage limits. 
Step 2: Calculate the real power loss using distribution load flow based on Direct 
Load Flow Method.  
Step 3: Set the generation counter j = 0.  
Step4: With random positions and velocities, randomly generates an initial population.  
Step 5: Set the bus count C=2.  
Step 6: For each particle calculate the real power loss using equation (13).  
Step 7: Check the bus voltage lies in the limits or not. If it is not lies in the limit that 
particle is infeasible.  
Step 8: For each particle, compare its objective value with the individual best. If the 
objective value is lower than Pbest, set this value as the current Pbest, and record the 
corresponding particle position.  
Step 9: Choose the particle associated with the minimum individual best Pbest of all 
particles, and set the value of this Pbest as the current overall best Gbest.  
Step 10: Update the velocity and position of particle using equation (16) and (17) 
respectively.  
Step 11: If the bus count reaches the maximum limit, go to step12. Otherwise, set bus 
count C=C+1, and go back to step 6.  
Step 12: If the generation number reaches the maximum limit, go to Step 13. 
Otherwise, set generation index j= j + 1, and go back to Step 4.  
Step 13: Print out the optimal solutions.  

The solutions include the optimal location and size of TCSC in radial distribution 
systems. The corresponding fitness values to these solutions indicate the minimum 
total real power loss. 

7 Calculation of Firing Angle (α) and Parameter Selection of 
TCSC 

After finding the optimum place and sizing of TCSC using PSO with real power loss 
as the objective function, the value of firing angle is calculated as follows. 

i) Using the equation (2-5), reactance characteristics curve of a TCSC device is 
drawn between effective reactance of TCSC and firing angle α for various k. 

ii) From the best value of k the firing angle for the required XTCSC is obtained. 
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iii) Using XTCSC obtained from PSO algorithm, for various values of degree of 
series compensation ‘k’, XL and XC are calculated using equation (6, 7). 

8 Implementation of the Proposed Method 

The complete structure of this work to solve the optimal TCSC placement and sizing 
of the test systems using PSO algorithm is shown in fig.4. At first the power loss is 
calculated from direct load flow method. After placing the TCSC, the active power 
loss is calculated using PSO algorithm. The real power loss is minimized, by placing 
the TCSC in optimum place. The procedure is repeated until no further minimum 
losses from the TCSC placement are achieved. From XTCSC obtained from PSO 
algorithm, for various values of ‘k’, reactance characteristics curve of a TCSC device 
is drawn between effective reactance of TCSC (XTCSC) and firing angle ‘α’.  From the 
best value of ‘α’ the main parameters of TCSC such as ‘k’, XL and XC are designed. 

 

Fig. 4. Flow chart of the entire work 

9 Case Studies  

9.1 Simulation Results and Analysis  

In order to evaluate the proposed work, 12 bus, 34 bus and 69 bus test systems [17] 
are considered. The total power loss for the 12 bus, 34 bus and 69 bus test systems 
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obtained from the DLF are 0.0145 MW, 0.1638 MW and 0.24479 MW respectively. 
The simulated results are tabulated and analyzed using MATLAB 2010. 

9.2 PSO Result Analysis 

The parameters used to evaluate PSO algorithm are listed in table 1. From table 2, 
after placement of TCSC, the real power loss is 0.0138, 0.0411 and 0.1990 MW for 
12 bus, 34 bus and 69 bus respectively. The optimum branch number for 12 bus, 34 
bus and 69 bus is 7, 21 and 56 respectively. It is shown in fig.5 to fig.7. The voltage 
profile is also improved. The size of the TCSC and the line reactance for the test 
systems are given in table 2. 

Table 1. Selection of parameters for various algorithms used 

Test system Parameters 

 
 

Population 
 

Iteation 21 , CC ωmax ωmin Φmax Φmin 

12 bus 25 100 1.8 0.8 0.1 0.42 0.41 

34 bus 30 80 1.8 0.8 0.1 0.42 0.41 

69 bus 30 80 1.8 0.8 0.1 0.42 0.41 

Table 2. Results from PSO algorithm 

 Without TCSC With TCSC 

 12 bus 34 bus 69 bus 12 bus 34 bus 69 bus 

 
Active Power Loss 

(MW) 

 
0.0145 

 
0.1638 

 
0.2254 

 
0.0138 

 
0.0411 

 
0.1990 

Voltage (p.u) 0.9613 0.9663 0.9625 0.9791 1.008 1.0062 

Branch - - -  
6-7 

 
20-21 

 
56-57 

Size of TCSC (XTCSC) 
(ohm) 

 
- - -  

26.7433 
 

44.0259 
 

9.8377 

Branch Reactance 
(ohm) 0.4170 

 
0.043 

 
0.5337 26.3211 44.0695 9.3040 
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Fig. 5. Iteration number Vs real power loss at 
20th branch for 12 bus system 

Fig. 6. Iteration number Vs real power loss at 
20th branch for 34 bus system 

 

Fig. 7. Iteration number Vs real power loss at 56th branch for 69 bus system 

Table 3. Firing Angle and Resonance region for various k 

Test 
System 

k 
Starting of 
Resonance 

Region (deg) 

Ending of 
Resonance 

Region 
(deg) 

Resonance 
Region (deg)

Firing 
Angle 
(deg) 

Distance between 
resonance region 
and firing angle 

(deg) 
12-Bus k=2 112.9 121.5 8.6 103.7 9.2 

k=3 124.4 133.2 8.8 111.3 13.1 
k=4 130.5 138.7 8.2 117.7 12.8 
k=5 136 144.7 8.7 123.7 12.3 
k=6 139 147.3 8.3 128.8 10.2 

 
34-Bus k=2 113.1 122.5 9.4 103.4 9.7 

k=3 124.4 133.3 8.9 109.8 14.6 
k=4 129.9 138.8 8.9 116.8 13.1 
k=5 135.9 144.4 8.5 123.1 12.8 
k=6 138.8 147.3 8.5 128 10.8 

 
69-Bus k=2 113 122.6 9.6 103.1 9.9 

k=3 124.4 133.3 8.9 109.8 14.6 
k=4 129.9 138.8 8.9 116.8 13.1 
k=5 135.9 144.4 8.5 123.1 12.8 
k=6 138.8 147.3 8.5 128 10.8 
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9.3 Reactance Curve Analysis 

The reactance curve between the firing angle ‘α’ and the XTCSC for various values of 
‘k’ is shown in fig.8 to fig.10. Corresponding to the optimal XTCSC obtained from the 
PSO, the firing angle and the resonance region for different test systems with different 
‘k’ values are tabulated in table 3. Table 4 shows the maximum variation in capacitive 
and inductive reactance region for various values of ‘k’. 

From table 3 and 4, the best value of k is chosen to be 3 because it has the 
maximum distance between the resonance region and the firing angle which means 
the firing angle is far away from the resonance region. Always it is not preferable to 
operate the firing angle nearer to the resonance region. 

 
Table 4. Maximum variation of XL and XC Table 5. Parameters of TCSC with k=3 

k Maximum variation in 
Capacitive Reactance 

Region (ohm) 
 

Maximum variation in 
Inductive Reactance 

Region (ohm) 

12 Bus 
 

34 Bus 69 Bus 12 Bus 34 
Bus 

69 Bus

2 266 418.8 98.1 1069 1769 399.6 
3 420 682.9 150.7 1088 1800 406.7 
4 1144 1873 423.3 457.1 758.8 171.5 
5 620.5 1004 228.1 1015 1680 379.6 
6 991.2 1618 366.7 623.3 1032 233.3 
7 1209 1530 348.5 983.5 1160 144.4 
       

 

Test 
System

XL  
(ohm) 

XC  
(ohm) 

Firing 
Angle (deg) 

 
12-Bus

 
17.82887

 
53.4866 

 
111.3 

 
34-Bus 29.3506 88.0518 109.8 

 
69-Bus 6.55847 19.6754 109.8 

 

 

 

 

 

Fig. 8. Reactance curve between firing angle and XTCSC for 12 bus system with various values 
of ‘k’ 
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From table 3 and 4, it is inferred that the maximum value of capacitive reactance 
corresponding to ‘k’ equal to 3 is high compared to ‘k’ equal to 2. Even then, k=3 is 
chosen to be the best because it has the maximum distance between the firing angle 
and resonance region which is mostly preferred. The maximum value of capacitive 
reactance in k=3 can be overlooked when compared to other values of capacitive 
reactance obtained from the remaining values of ‘k’.  

Also from the table 3, it is observed that for each value of ‘k’ the tabulated values 
show the similarities within the test system. It shows the superlative of this work. 
From table 4, it is inferred that the maximum variation of capacitance increases with 
k. The XL and XC values with k equal 3 are listed in table 5. 

 

 

 

Fig. 9. Reactance curve between firing angle and XTCSC for 34 bus system with various values of ‘k’ 

 

 

Fig. 10. Reactance curve between firing angle and XTCSC for 69 bus system with various  
values of ‘k’ 
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10 Conclusion 

The objective of this work, which is presented in this paper, is to reduce the active 
power loss of the radial distribution system with voltage profile improvement via 
optimal location and sizing of TCSC. Also in this work the main parameters of TCSC 
such as firing angle ‘α’, XL and XC values are selected from the sizing of TCSC 
obtained from the PSO algorithm. This selection is done by the degree of series 
compensation ‘k’. From the distance between the firing angle and the resonance 
region the best value of ‘k’ is chosen. The proposed work has been tested using three 
different radial distribution systems and the results are tabulated. The firing angle 
obtained for various test systems shows the similarities for each value of ‘k’.Thus the 
results demonstrate the effectiveness of the proposed work for placement, sizing and 
parameter selection of TCSC in FACTS compensated distribution systems. 
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Abstract. In view of the low convergence speed in traditional single
population particle swarm optimization (PSO) when dealing with com-
plicated optimization problems, this paper proposed a population re-
structuring based multiple population strategy, and combined this
strategy with a comparatively new PSO variant (Dynamic Probabilistic
Particle Swarm Optimization, DPPSO). With this strategy, more than
one subpopulations are maintained during the evolution, and particles of
each subpopulation evolve by a specific DPPSO variant independently.
After a certain generations, restructure the present population stochas-
tically to new subpopulations, and these restructured subpopulations
will carry on to further evolution according to their previous DPPSO
variant. Stochastic restructuring of population guarantees the diversity
inside each subpopulation and even the whole population, which gives
particles less chance to get plunging into local optima. Experiment on
the classical benchmark functions demonstrates that DPPSO algorithms
with the proposed strategy could efficiently avoid local optima with a
considerable convergence speed.

Keywords: Particle Swarm Optimization, Multiple Population
Strategy, Population Restructuring.

1 Introduction

Particle Swarm Optimization (PSO for short) is a type of optimization tool that
is widely used for various of optimization problems in engineering fields [1][2][3].

There are a mass of applications for optimization problems, some of which are
rather complex, like those with high dimension or multiple minima. Such prob-
lems are usually time-consuming to solve and hard to find satisfying solutions
that’s acceptable in engineering implement. When adopting PSO to such kind
of problems, it is necessary to think about how to improve the solving efficiency
and performance. Parallelization of PSO is an available method to improve solv-
ing performance of the algorithm. Under the conditions of the current hardware
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capabilities, multiple population strategy is an important expression form of par-
allelization, and population based algorithm adopting the multiple population
strategy usually possesses two or more subpopulations during implementing.

In fact, multiple population strategy is not only an important realization form
of parallelization, meanwhile, it is an important method to improve the solving
performance. Zhao et al. combined PSO with Harmony Search algorithm, di-
vided the whole population into several subpopulations, and got good results
on some benchmark functions [4]. Marinakis et al. adopted multiple population
strategy and combined PSO with greedy algorithm to solve the probabilistic
traveling salesman problem [5]. Liang et al. employed PSO to optimize multi-
objective problems based on multiple population strategy [6]. Yu et al. pro-
posed an ensemble of niching algorithms, which used several different parallel
populations [7].

The previous researches demonstrate that, it has significant meaning to the
performance of PSO in reality applications by the adoption of multiple pop-
ulation strategy, and these exploration about multiple population strategy will
provide new thought and method in applying PSO to solve complex optimization
problems.

However, researches about multiple population strategy of PSO is still not
deep enough, for example, those subpopulations of multiple population strategy
usually use the same evolutionary pattern. In this paper, combining the char-
acteristics of the relatively new dynamic probabilistic particle swarm optimiza-
tion(DPPSO for short)[8] [9], we proposed a new multiple population strategy
based on population restructuring. And taking double populations for instance,
we discussed and analyzed the effect that the strategy has on the performance
of DPPSO with a couple of experiments. The rest of this paper is organized
as follows. Section 2 gives an introduction to DPPSO, section 3 presents a de-
tail analysis to the population restructuring based multiple population strategy
which is proposed in this paper, section 4 discusses the results of the experiments,
and section 5 draws a conclusion.

2 The Dynamic Probabilistic Particle Swarm
Optimization

2.1 The Basic Concept of DPPSO

Since the particle swarm optimization has been invented, many variants of PSO
have been proposed, and the more commonly used PSO variants include the PSO
with constriction coefficient [10] and the PSO with inertia weight [11]. In these
PSO variants, particles are used as candidate solutions in the solution space,
with the position and explicit velocity attribute. Particles in the solution space
evolve their positions with a certain speed, in order to find the optimal solution.

Based on the analysis of particle swarm evolutionary mechanism, Kennedy
first designed a new variant of PSO [8] where there is no velocity attribute of
particles. Ni launched in-depth research on this kind of PSO variant [9] [12]. Such
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variants of PSO are generally known as Dynamic Probabilistic Particle Swarm
Optimization (DPPSO). Unlike the usual PSO algorithms, particles have no ve-
locities in the DPPSO algorithms, and the particles’ position update are accord-
ing to equation 1. Different from the traditional PSO algorithms, in the variant
of DPPSO, particle has no velocity attribute and evolves to a new position in
the form of probability which is also depending on the previous experience and
position. The position update of DPPSO is according to equation 1.

Xi(t+ 1) = Xi(t) + α ∗ (Xi(t)−Xi(t− 1))

+β ∗ CTi(t) + γ ∗Gen() ∗OTi(t)
(1)

CTid(t) =

K∑
k=1

Pkd/K −Xid(t) (2)

OTid(t) =
K∑

k=1

|Pid − Pkd/K (3)

In the position update equation 1, 2 and 3 of DPPSO, the meanings of symbols
are shown in Table 1. CTi(t) and OTi(t) are D-dimensional vectors and will be
determined by the particle’s position and the experiences of its neighborhood
ones. Gen() is a random number generator, and usually the Gen() should satisfy
a distribution such as a Gaussian distribution.

Table 1. The meanings of the symbols in the position update equation of DPPSO

Symbol in DPPSO Meaning

i The number of particle
t The generation’s number of evolution
Xi(t) The particle i’s position vector in the tth generation
k The number of particle’s neighborhood individual
d The dimension’s number of the particle’s position vector
Pk The optimum position vector of the particle k’s neighborhood ones
K The quantity of particle’s neighborhood
α, β, γ The factor which is a positive constant
Gen() The dynamic probabilistic evolutionary operator
OTi(t) A vector which is an abbreviation of Outlier Trend
CTi(t) A vector which is an abbreviation of Centralized Tendency

As can be seen from equation 1, the evolution of a particle is determined by
the four aspects. The first aspect is the memory of particle’s own position. The
second aspect indicates the particle’s movement trend along the former direction.
The third aspect could be understood as the influence from the experiences of
particle’s neighborhoods. The forth aspect considers the affect of the differences
between a particle and its neighborhood ones’ experiences.



Population Recombinant Based Multiple Population Strategy on DPPSO 691

2.2 The Variants of DPPSO

The flow of DPPSO is shown in algorithm 1.

Algorithm 1. The flow of Dynamic Probabilistic Particle Swarm Optimization

1 Randomly initialize the positions of particles in the whole population;
2 Initialization of important parameters of DPPSO;
3 while The termination condition is not satisfied do
4 Evaluate fitness values of all the particle in the population;
5 Update the optimal positions for each particle;
6 For each particle, compute the CT values according to the formula 2;
7 For each particle, compute the OT values according to the formula 3;
8 For each particle, generate the new positions according to the formula 1;

Research about DPPSO conclude that different variant of DPPSO has its own
superiority when adopting various dynamic probabilistic evolutionary operator
Gen() [9]. DPPSO-Gaussian (also known as GDPS) has a faster convergence
speed in the early stage of evolution. DPPSO-Logistic (also known as LDPSO)
and DPPSO-Hyperbolic Secant still have an excellent capacity of exploration in
the later period of evolution, which ensures that the particles will have a stronger
ability to escape from local optima. DPPSO-Cauchy performs remarkably deal-
ing with a few benchmark functions, which shows that it would be suitable to
apply DPPSO-Cauchy to problems with some special features. These character-
istics of DPPSO concluded from existing research will be conducive to solve real
engineering problems.

3 Population Restructuring Based Multiple Population
Strategy

In this paper, we presents an population restructuring based multiple popula-
tion strategy according to the characteristics of DPPSO. This strategy could
be expressed as follows. At the beginning of the algorithm, a population of N
particles is generated, which is then divided into M subpopulations. Particles of
each subpopulation will evolve independently on the basis of a specific DPPSO.
After a certain number of generations of the evolution, restructure the popula-
tion stochastically at this moment, and sent the restructured particles to each
subpopulation. Then each subpopulation will carry on evolving with its previ-
ous DPPSO algorithm. In this strategy, different subpopulation applies different
versions of DPPSO, thus, every subpopulation places particular emphasis on ex-
ploration and exploitation. And because of the stochastic restructuring at the
certain moments, the diversity of subpopulations and the whole population is
guaranteed, which makes it difficult for those particles to get trapped in local
best solution. As a consequence, restructuring ensures the diversity of popula-
tion; meanwhile, with different versions of DPPSO, a fast convergence is reached
as well.



692 Q. Ni, C. Cao, and H. Du

When the population restructuring based multiple population strategy is
taken into use, the schematic diagram of the stochastic restructuring among
particles at a certain moment is described in Figure 1 .

1 2 3 ... ... ... j-1 j j+1 ... ... ... N-2 N-1 N

Subpopulation 1 Subpopulation M

Subpopulation i

1 2 3 ... ... ... j-1 j j+1 ... ... ... N-2 N-1 N

Subpopulation 1 Subpopulation M

Subpopulation i

Particle
Index

Particle
Index

At a particular time, perform 
population restructuring

Fig. 1. Schematic diagram at a time of population restructuring

When adopting the population restructuring based multiple population strat-
egy incorporated with DPPSO, the procedure is explained as Algorithm 2.

Population restructuring based multiple population strategy takes different
DPPSO variants in the subpopulations, and particles among subpopulations
exchange information through the stochastic restructuring operation, which im-
proves the diversity of population. Hence, the capacity of global searching is
enhanced. And eventually, the optimization ability of the whole population is
boosted.

4 Experiments and Analysis

4.1 Experiment Settings

There are totally M subpopulations maintained during the implementation of
algorithm, and different variants of DPPSO are chosen for each subpopulation.
When dealing with practical problems, we could choose several suitable vari-
ants of DPPSO based on the problem’s scale and other characteristics. Combine
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Algorithm 2. The Procedure of DPPSO with the population restructuring based
multiple population strategy

1 Initialize the master process and relevant parameters of DPPSO algorithm;
2 Initialize the whole population in the solution space, and divide the population

into M subpopulations, send the particles of those subpopulations to
corresponding process;

3 for each subpopulation i (the sequence number of subpopulation, 1 ≤ i ≤ M) do
4 Calculate the fitness value of particles in subpopulation i, and update the

position of best individual of i;
5 Calculate the CT and OT values of particles in subpopulation i;
6 Generate the new positions of particles in subpopulation i;
7 if The population restructuring is in need then
8 Send the information of particles in i to the master process;
9 perform step 12;

10 if The termination condition is satisfied then
11 Send the information obtained by subpopulation i to the master process;

12 Restructure the particles of the whole population stochastically, then divide
particles into M groups, send the information of restructured particles to the
corresponding subgenerations and take step 3;

13 The master process analyzes and synthesizes the data from subpopulations,
outputs the solution to the optimization problem.

with the analysis of various versions of DPPSO [9], DPPSO-Gaussian, DPPSO-
Cauchy, DPPSO-Logistic, DPPSO-Hyperbolic Secant could all be available for
the evolution of subpopulations. In this paper, we choose DPPSO-Logistic and
DPPSO-Gaussian as the evolutionary method of subpopulations, and the biggest
difference between DPPSO-Logistic and DPPSO-Gaussian is that these two vari-
ants are using different Gen(). The number of subpopulations could be equal to
or more than 2 according to the actual scale and difficulty of the problem. Of
course, it will cost less for controlling and maintaining and be easier to implement
with less subpopulations.

Methods and moments of population restructuring could also influence the
solving performance. If the restructuring operation took place too frequently dur-
ing implementing, costs for calculating and communication would be increased
obviously. In this paper, The group recombinant method adapted in this paper
are: the whole population are restructured every 10 generations.

To measure the efficiency of the proposed strategy, experiments settings are as
follows: the number of subpopulations (i.e. M) is set to 2, DPPSO-Logistic and
DPPSO-Gaussian are selected as evolutionary algorithms adapted by subpopula-
tions, and the classical fully connected topology(i.e. Gbest model) is used inside
each subpopulation. Four benchmark functions are tested, which are described
in Table 2.

In the algorithm using the proposed strategy, the total population size is 50,
size of each subpopulation is 25. And DPPSO-Logistic and DPPSO-Gaussian
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with the single population size of 50 are used for comparing. Thus, even the
algorithm of multiple population strategy is operated in one machine system, the
calculating costs for fitness evaluation would be the same. The three algorithms
are repeated 100 times during the experiment. The key performance indicators
are investigated which include the optimal value, the median value, the mean
value, the standard deviation, the worst value and the success rate, etc.

Table 2. The Instructions of the Four Benchmark Functions

Sphere
Formula f(x) =

n∑
i=1

x2
i

Dimension Optimal Solution Optimal Value Value Range Accepted Error

30 (0, 0, 0..., 0) 0 |xi| < 100 0.01

Rastrigin
Formula f(x) =

n∑
i=1

[x2
i − 10cos(2πxi) + 10]

Dimension Optimal Solution Optimal Value Value Range Accepted Error

30 (0, 0, 0..., 0) 0 |xi| < 5.12 100

Rosenbrock
Formula f(x) =

n−1∑
i=1

[(1− xi)
2 + 100(xi+1 − x2

i )
2]

Dimension Optimal Solution Optimal Value Value Range Accepted Error

30 (1, 1, 1..., 1) 0 |xi| ≤ 30 100

Schaffer F6
Formula f(x) =

sin2
√

x2
1+x2

2−0.5

[1+0.001(x2
1+x2

2)]
2 − 0.5

Dimension Optimal Solution Optimal Value Value Range Accepted Error

2 (0, 0) 0 |xi| < 100 0.00001

4.2 Results and Analysis

After 100 times’ repeat of experiment, data from three algorithms are presented
in Table 3, 4, 5 and 6, which include the optimal value, the median value, the
mean value, the standard deviation, the worst value and the success rate. Figure 2
and Figure 3 show evolutionary trend of optimal fitness for benchmark functions.

(1) Sphere Function
Data in Table 3 shows that, the proposed strategy performs better and is

more stable for the 65 dimensional Sphere function combining with the indexes

Table 3. Comparison of Results in Sphere Function

Algorithm Optimal Median Mean SD Worst Success rate

DPPSO-Gaussian 2.20E-97 9.00E-41 0.003215 0.031148 0.31151 99%
DPPSO-Logistic 6.29E-66 2.98E-65 3.42E-65 2.31E-65 1.32E-64 100%
Multiple Population 2.20E-80 3.96E-79 2.49E-08 2.49E-07 2.49E-06 100%
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Fig. 2. Comparison of evolutionary trendbetween four topologies (Sphere andRastrigin)
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Fig. 3. Comparison of evolutionary trend between four topologies (Rosenbrock and
Schaffer F6)

of the median value and the success rate. Figure 2 also indicates that during the
evolution, especially in the middle and later period, the proposed strategy retains
the tendency to get close to theoretical optima and is quite leading. Relatively,
DPPSO-Gaussian performs better on the optimal value only, but the order of
magnitudes in the optimal value and the median value have a huge interval.
This illustrates that the proposed strategy functions more steady than DPPSO-
Gaussian. That is to say, combining experimental data of these algorithms, the
proposed strategy is particular dominant in handling Sphere function.

(2) Rastrigin Function
Data in Table 4 shows that, for the Rastrigin function of 60 dimension, the so-

lutions of each algorithm from repeatedly testing do not differ much in the order
of magnitudes. On such occasion, functions of algorithms could be distinguished
by the mean value and the standard deviation. The proposed strategy precedes
DPPSO-Logistic and DPPSO-Gaussian on the mean value, and its success rate
reaches 100%, which reflects its better stability. Combining with Figure 2, the
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proposed strategy takes over the lead in the middle and the later evolution, and
still keeps the tendency to get closer to theoretical optimal solution.

Table 4. Comparison of Results in Rastrigin Function

Algorithm Optimal Median Mean SD Worst Success rate

DPPSO-Gaussian 11.962 24.874 25.148 5.2583 39.798 100%
DPPSO-Logistic 9.9496 20.894 49.356 90.573 402.23 90%
Multiple Population 12.934 22.884 23.314 4.4902 31.839 100%

(3) Rosenbrock Function
Data in Table 5 shows that, for the 30 dimensional Rosenbrock function, the

solutions of each algorithm from repeatedly testing have no much difference in
the order of magnitudes. And the index of the mean value and the standard
deviation would be more convincing. The proposed strategy keeps ahead not
only on the mean value and the standard deviation, but even on all other indices,
which fully embodies its superiority in solving the problem. Meanwhile, Figure 3
also indicates that, though the proposed strategy does not stand out at the early
stage, but its dominant position becomes clear in the middle and later period,
and is keeping the tendency towards theoretical optimal solution.

Table 5. Comparison of Results in Rosenbrock Function

Algorithm Optimal Median Mean SD Worst Success rate

DPPSO-Gaussian 27.15 27.514 33.139 23.078 191.88 97%
DPPSO-Logistic 26.832 27.173 28.382 8.5202 87.852 100%
Multiple Population 19.305 19.866 20.478 5.7068 76.922 100%

(4) Schaffer F6 Function
Data in Table 6 shows that, compared with DPPSO-Logistic and DPPSO-

Gaussian, the proposed strategy performs overwhelmingly on all the indices.
Furthermore, its success rate in this experiment reached 100%. This fully demon-
strates the excellent ability of the proposed strategy. As can be seen in Figure
3, the proposed strategy keeps ahead consistently and finds solution quickly.

Table 6. Comparison of Results in Schaffer F6 Function

Algorithm Optimal Median Mean SD Worst Success rate

DPPSO-Gaussian 0[87%] 0 5.57E-05 0.00034 0.003167 94%
DPPSO-Logistic 0[76%] 0 5.16E-07 4.71E-06 4.71E-05 99%
Multiple Population 0[100%] 0 0 0 0 100%
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Results from the above experiments demonstrate that the population re-
structuring based multiple population strategy has ideal performance in experi-
ments and is particular dominant compared with DPPSO-Logistic and DPPSO-
Gaussian of single population. Also, it is particularly worth noting that, the
proposed strategy achieved excellent results for solving problems that is hard to
optimize, such as Schaffer F6 and Rosenbrock. That means the proposed strategy
could be quite useful to solve problems with similar characteristics.

5 Conclusion

This paper proposed a multiple population strategy based on the population re-
structuring. When adopting this strategy, subpopulations select different variant
of DPPSO for evolution, particles in different subpopulations focus on different
emphasis between exploration and exploitation, and information communication
among the whole population is realized through the population restructuring.
From another point of view, single particle does not evolve according to a unique
evolutionary way. This helps particles improve their abilities to escape from local
optimal.

In conclusion, the proposed strategy took advantage of the diversities of dif-
ferent DPPSO, and applied different DPPSO variant to divided subpopulations,
and this type of approach showed its excellence in dealing with complicated
optimization problems according to the results and analysis of the experiments.
Hence, when utilize DPPSO to real-world problems, the proposed strategy could
be strongly available. Further studies would include the settings of size and scale
about subpopulations, and the variant of DPPSO adopting in this strategy is
also worthy of discussion.
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Abstract. This paper presents a simple and efficient Particle Swam 
Optimization (PSO) based algorithm for solving Small Signal Stability 
Constrained Optimal Power Flow (SSSCOPF) problem. The proposed 
methodology is based on an Optimal Power Flow (OPF) problem that explicitly 
considers small signal stability security limits, hence appropriately termed as 
SSSCOPF. The SSSCOPF problem is solved using PSO based algorithm. The 
Eigen value analysis is performed to assess the system stability for the normal 
operating condition and subsequently for stressed operating condition by 
considering single line outage. The proposed PSO based algorithm for solving 
OPF and SSSCOPF problems is tested on an adapted IEEE 30-bus system. The 
optimal solutions obtained for the OPF problem with and without small signal 
stability security constraints are compared and analyzed. The comparative 
analysis reveals that the proposed PSO based algorithm converges to the 
optimal solution without any constraint violations. 

1 Introduction 

The main task of power system operator is to adjust certain controllable system 
variables like active power generation from power plants, generator terminal voltage, 
reactive power compensation and on-load tap changers of transformers etc., so that 
the best operating point can be achieved. Optimal power flow (OPF) is an important 
tool used by the power system operators both in planning and operating stages to 
minimize the total fuel cost of thermal generating units while satisfying certain 
constraints like bus voltage magnitude limits, line flow limits, reactive power 
generation limits etc., [1-3].The OPF problem can also include constraints that 
represent operation of the system after certain contingency outages. These “security 
constraints” allow the OPF to dispatch the generation to the system in a defensive 
manner. That is, the OPF now forces the system to operate so that if a contingency 
occurs, then the resulting bus voltages and line flows would still be within their limits 
ensuring a secure operation of the entire power system. Therefore this special type of 
OPF is termed as “Security Constrained Optimal Power Flow” (SCOPF). 
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The optimal power flow solution has one primary limitation that it does not cater 
for system security constraints like small signal stability pertaining to increase of load 
or outage case states. Hence OPF with security constrains is to be developed which 
allows re-dispatching with an appropriate security level in terms of small signal 
stability [11-12]. It can be observed that stability has become an important 
consideration in OPF. Though some have investigated including transient stability 
limits [8][10][12-14][16-17][20], but only a few authors have considered small signal 
stability [15-18].This paper proposes an OPF method taking into account small signal 
stability as additional constraint and hence termed as Small Signal Stability 
Constrained Optimal Power Flow (SSSCOPF). 

Several optimization techniques, such as Linear Programming, Non-Linear 
Programming (NLP), quadratic programming and interior point methods are used for 
solving the security constrained generation scheduling problems [1-3]. Dommel and 
Tinney [1] presented a penalty function based NLP technique to solve optimal power 
flow problem. Alsac and Stott [2] extended the penalty function method to security 
constrained optimal power flow problem in which all the contingency case constraints 
are augmented to the optimal power flow problem. In this method the functional 
inequality constraints are handled as soft constraints using penalty function technique. 
The drawback of this approach is the difficulty involved in choosing proper penalty 
weights for different systems and different operating conditions which if not properly 
selected may lead to excessive oscillatory convergence.  

Linear programming and dynamic programming techniques, for example, often fail 
(or reach local optimum) in solving large scale NP problems with large number of 
variables and non-linear objective functions. To overcome these problems researchers 
have proposed stochastic approaches like Evolutionary Programming (EP) and 
Particle Swam Optimization (PSO) techniques [9][15][18-19][21-29]. Somasundaram 
et al [3] presents an algorithm for solving security constrained optimal power flow 
problem through the application of EP. PSO is a heuristic global optimization method, 
which is based on swarm intelligence [24-28]. Compared to other stochastic approach 
PSO has the advantage that it is easy to implement and there are few parameters to 
adjust [29]. Hence in this paper PSO based algorithm is adopted to realize the 
SSSCOPF methodology. 

2 SSSCOPF Problem Formulation 

The SSSCOPF is formulated as a mathematical optimization problem with various 
constraints as follows, 

 
Objective: 

( )2 2
T

1

 F
ng

Gi Gi Gi Gi Gi GS GS GS GS GS
i

Min a P b P c a P b P c
=

= + + + + +
                                       (1) 

where ‘ng’ is the total number of generators except slack bus generator. 
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Subject to: 
 
Constraints on control variables, 
 
PGj,min≤ PGj≤ PGj,max; j ∈ng                          (2) 
VCl,min≤ VCl≤ VCl,max; l ∈αNVC            (3) 
 
Base-case power flow equations, 
 
F(X,U,C) = 0                (4) 
 
The state vector X comprises of the bus voltage phase angles and magnitudes, the 

control vector U comprises of all the controllable system variables and the parameter 
vector C includes all the uncontrollable system parameters such as line parameters, 
loads, etc.  

 
Slack bus generator constraint, 
 
PGs,min≤ PGs≤ PGs,max             (5) 
 
Constraints on dependent variables, 
 
QGq,min≤ QGq≤ QGq,max; q ∈αNVC                        (6) 
VLr,min≤ VLr≤ VLr,max; r ∈αNVL            (7) 
LFk≤ LFk,max; k = 1, 2, . . . , NL               (8) 
 
Contingency case power flow equations, 
 
F*(X*,U,C*) = 0             (9) 
 
The triplet (X*, U, C*) characterize stressed state. The state vector X *comprises 

of the bus voltage phase angles and magnitudes, the control vector U comprises of all 
the controllable system variables and the parameter vector C* includes all the 
uncontrollable system parameters such as line parameters, loads, etc. for the stressed 
state (like increase in load or transmission line outages). 

 
Other limits of contingency case are reactive power generation, load bus voltage 

magnitude and line flow security constraints 
 
PGs,min≤ P*

Gs≤ PGs,max             (10) 
PGj,min≤ P*

Gj≤ PGj,max           (11) 
QGq,min≤ Q*

Gq≤ QGq,max           (12) 
VLr,min≤ V*

Lr≤ VLr,max           (13) 
LF*

k ≤ LFk,max                         (14) 
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Small signal stability constraints, 

and  ;                                                                                       (15) 
 

Where =   , and   is the kth Eigen value for both normal and 
contingency condition using Eigen value analysis. 

3 PSO Based Algorithm for Solving SSSCOPF 

The SSSCOPF problem is solved in two phases. In the first phase, the base-case OPF 
problem is formulated and solved using the PSO technique [19-22] and [3]. In the 
next phase, the SSSCOPF problem is formulated and solved using PSO based 
technique by taking the optimal solution obtained in phase I as initial feasible solution 
for SSSCOPF problem. The flow chart of SSCOPF methodology is shown in Fig.1. 

 

 

Fig. 1. Flow chart of SSSCOPF 
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The various sequential steps for solving SSSCOPF using PSO based algorithm is as 
follows, 

For the SSSCOPF initially ‘Np’ swarm of particles are obtained by selecting the 
initial single particlefrom the optimum solution obtained in the base case OPF 
problem as, 

Ii= [VG1i,.…..VG1m,……VG1cnv;PG1i,…..PG1j,…..PG1ng]                                            (16) 
The remaining (Np−1) particle of initial swam is generated from this initial particle 

as, 
PGij=PGij+ rand() β  (PGj,max-PGj,min) ; VGij=VGij+ rand() β   (VCl,max-VCl,min) ; (17)
     

Where i=2………..Np,PGj,max and PGj,min are the maximum and minimum MW 
generation for the jth generation unit and β is the scaling factor (random number 
between -1 to 1). For each initial particle Ii power flow is conducted using eqn. (4) 
and eqn. (9) for both normal and contingency conditions. And their corresponding 
slack bus generations, load bus voltage magnitudes, phase angles of all buses 
(excluding slack bus) and all line flows are computed. For each particle, real parts of 
Eigen values are computed under normal and contingency case using small signal 
stability analysis as in [4-7].  Subsequently evaluate the fitness function value of each 
particle Ii using eqn. (18). 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )*

10
*

9

*
8

*
7

*
65

4321

VEGNkVLBk

VLFkVSQkVSGkVEGNk

VLBkVLFkVSQkVSGkFfMin Ti

×+×+

×+×+×+×+

×+×+×+×+=

    (18) 

Where, 
VSG = Slack bus real power violation 

min max
GS GS P P ,   VSG=0GSiif P≤ ≤  

min min
GS GS  P ,    VSG= PGSi GSielse if P P≤ −

   
max max
GS GS  P ,    VSG= PGSi GSielse if P P≥ −

         (19) 
VSQ = Total generator bus reactive power violation 

min max
GS GS Q ,   VSQ=0GSiif Q Q≤ ≤  

min min
Gs GS  Q ,    VSQ=GSi Gsielse if Q Q Q≤ −

 
max max
GS GS  Q ,    VSQ=GSi GSielse if Q Q Q≥ −

        (20) 
VLF = Total Line flow violation 

max max

1

 ,  -
nl

iz z z iz
z

if LF LF VLF LF LF
=

≥ = 
 

  0else if VLF =                                                                                                       (21) 
 
VLB = Total load bus voltage violation 

min min ,  Lj Lj j Lj Ljif V V VLB V V≤ = −
 

max max  ,  Lj Lj j Lj Ljelse if V V VLB V V≤ = −
                      (22) 
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VEGN =Small signal stability violation 

If   or ,  

else ;                         (23) 
 
and VSG *, VSQ*, VLF*, VLB*, VEGN* corresponds to violation in contingency 

cases. 
Pbest is initialized with particle having minimum fitness function and Gbest the 

best of Pbest is found. Velocity of particle is updated and the member position of each 
particle is modified and new Gbest is found [24][25][26][27].When maximum 
iteration is reached the Gbest gives the optimum solution. 

4 Sample System Studies and Results 

The PSO based algorithm discussed in the previous section is tested on an adapted 
IEEE 30-bus [1-2] to assess the performance of the proposed algorithm. The adapted 
IEEE 30-bus system consists of six generators41 lines and a total demand of 
189.2MW and 106.6 MVAR [23]. The bus data, line data and MVA line flow limits 
and generation cost data for the system are taken from [1-2] and the machine data 
from [4-7]. The objective function is the total fuel cost and the fuel cost curve of the 
units is represented by quadratic cost functions [2]. The lower voltage-magnitude 
limits at all buses are 0.95 p.u., and the upper limits are 1.1 p.u. for generator buses 1, 
2, 5, 8, 11 and 13 the upper limits are 1.05 p.u.. For PSO based algorithm the 
following parameters are chosen as, tmax=200, Np=10, c1=1, c2=1, IWmin=0.1 and 
IWmax=0.9.  The penalty factors for the constraint violations  k1, k2 , k3 , k4,k5 ,k6 , k7 

,k8,k9 , k10 are 1000, 10000, 10000 , 1000 ,1000, 1000, 10000, 10000 , 1000 and 1000  

respectively. The Small signal Stability violation limit is chosen as . 

4.1 Conventional OPF without Security Constraints Results (Phase I) 

The OPF problem is solved using the proposed PSO based algorithm and the optimum 
schedule, total fuel cost and transmission loss are given in Table 1. 

Table 1. Optimal Solution for OPF without Security Constraints 

PARAMETERS REAL 
POWER 
(MW) 

REACTIVE 
POWER 
(MVAr) 

BUS 
VOLTAGES   
(in pu) 

G1 113.990 8.66 1.010 
G2 33.721 18.827 0.996 
G5 15.000 3.100 0.987 
G8 10.000 29.791 0.966 
G11 10.000 21.844 1.044 
G13 12.000 -14.137 0.950 
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Table 2. (continued.) 

Total thermal 
generation (MW) 

194.7104 

Total load (MW) 189.20 

Losses (MW) 5.5547 

Total fuel cost ($/hr) 490.11 
 
The important point is that there is no limit violation in the base case 

corresponding to the optimum schedule. This fact demonstrates that the proposed 
algorithm is very robust and reliable in eliminating the limit violations. Eigen value 
analysis for normal loading and contingency case (transmission line outage of line 
connecting buses 3 and 4) is performed with the normal OPF result and is given in 
Table 2.  From the Eigen value analysis it is inferred that real parts of all the Eigen 
values corresponding to the normal operating conditions are negative, thereby the 
system is small signal stable. But for a transmission line outage (connecting buses 3 
and 4) real parts of two Eigen values are positive, hence the optimal solution of OPF 
problem without security constraints tends to suffer small signal instability issues. 
Hence there is a need for SSSCOPF methodology. 

Table 3. Eigen Values for the Optimal Solution of OPF without Security Constraints 

Sl.No. For normal loading For contingency case 
1 -0.0006 +33.5440i -0.0006 +33.6651i 
2 -0.0006 -33.5440i -0.0006 -33.6651i 
3 -0.0004 +26.3767i 0.0001 +26.3434i 
4 -0.0004 -26.3767i 0.0001 -26.3434i 
5 -0.0036 +12.8132i -0.0036 +13.2598i 
6 -0.0036 -12.8132i -0.0036 -13.2598i 
7 -0.0002 + 8.7760i 0.0001 + 8.9820i 
8 -0.0002 - 8.7760i 0.0001 - 8.9820i 
9 -0.0079 + 6.0491i -0.0110 + 5.8130i 
10 -0.0079 - 6.0491i -0.0110 - 5.8130i 
11 -0.0000 -0.0000 
12 -0.1529 -0.1578 
13 -0.3374 -0.3109 
14 -0.4085 -0.4082 
15 -0.4609 -0.4602 
16 -0.4522 -0.4525 
17 -0.4402 -0.4401 
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4.2 SSSCOPF Results (Phase II) 

Single-line outage of line between buses numbered 3 and 4 is considered. The 
optimum solution of the conventional OPF without security constraints (phase I) is 
used to generate the initial swam for SCOPF.  

The convergence characteristic of fitness function is shown in Fig. 2. The fitness 
function convergence characteristic is drawn by taking the particle with minimum 
fitness value at the end of every iteration. It is observed that from Fig. 2 the fitness 
function converges smoothly to the optimum value without any abrupt oscillations. 
This shows the convergence reliability of the proposed SSSCOPF algorithm with 
single line outage as a constraint. 

 

Fig. 2. Convergence characteristic of fitness function for base-case OPF 

The optimum schedule, total fuel cost and transmission loss for SSSCOPF problem 
are given in Table 3. 

Table 3. Optimal Solution for SSSCOPF 

PARAMETERS REAL 
POWER 

(MW) 

REACTIVE 
POWER 
(MVAr) 

BUS 
VOLTAGES   

(in pu) 
G1 100.325 18.713 1.010 

G2 38.729 -1.346 0.992 

G5 19.082 1.052 0.986 

G8 10.000 40.893 0.974 

G11 14.072 21.945 1.047 

G13 12.000 -15.083 0.950 

Total thermal 
generation (MW)

194.206 

Total load (MW) 189.20 

Losses (MW) 5.043 

Total fuel cost ($/hr) 494.35 



 SSSCOPF Using Swarm Based Algorithm 707 

 

From Table 3., it is inferred that the generators active and reactive power and 
voltage limits are not violated. Moreover from Table 1 and Table 3 it is inferred that 
there is an increase in total fuel cost with the inclusion of security constraint. For the 
optimal solution presented in Table 3, Eigen value analysis for two operating 
conditions namely the normal loading and a transmission line outage (between buses 
3 and 4) is performed and is presented in Table 4. 

Table 4. Eigen Values for the Optimal Solution of SSSCOPF 

Slno. For normal loading For contingency case 

1 -0.0011 +33.6240i -0.0011 +33.7347i

2 -0.0011 -33.6240i -0.0011 -33.7347i

3 -0.0005 +26.3097i -0.0001 +26.2744i

4 -0.0005 -26.3097i -0.0001 -26.2744i

5 -0.0054 +12.2496i -0.0050 +12.6967i

6 -0.0054 -12.2496i -0.0050 -12.6967i

7 -0.0007 + 8.9882i -0.0005 + 9.1542i

8 -0.0007 - 8.9882i -0.0005 - 9.1542i

9 -0.0054 + 6.1258i -0.0070 + 5.8985i

10 -0.0054 - 6.1258i -0.0070 - 5.8985i

11 -0.0000 -0.0000

12 -0.1516 -0.1566

13 -0.3440 -0.3207

14 -0.4068 -0.4067

15 -0.4601 -0.4595

16 -0.4488 -0.4495

17 -0.4396 -0.4395

 
From Table 4 it is inferred that real parts of all the Eigen values corresponding to 

the normal operating conditions as well as for a transmission line outage (between 
buses 3 and 4) are negative, thereby the system is small signal stable. Thus the 
effectiveness of the PSO based algorithm for solving SSSCOPF problem is 
reinforced. 

5 Conclusion 

This paper presents an efficient and simple approach for solving the SSSCOPF 
problem. This paper demonstrates the general OPF problem formulation and 
subsequently the SSSCOPF problem formulation are presented along with the various 
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sequential steps for solving them using a PSO based algorithm. The applicability and 
effectiveness of the proposed PSO based technique is assessed using the adapted 
IEEE 30-bus system. The optimal solutions for OPF and SSSCOPF are analyzed. The 
analysis reports that there are no constraint violations including the small signal 
stability constraint for the optimal solution obtained by the PSO based algorithm and 
the fitness value converges to the optimum without any abrupt oscillations. Thereby 
the effectiveness of the PSO based algorithm is reinforced. 
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Abstract. Nowadays the modern power systems are large complex systems and 
widely distributed geographically. The increase in demand, generator reaching 
reactive power limits and line/generator outages may operate the power system 
in stressed conditions leads to voltage instability or voltage collapse. Voltage 
stability has become of major concern among the power utilities, because of 
several events of voltage collapse occurred in the past decade. Thus the real 
time voltage stability assessment is essential by estimating the loadability 
margin of the power system. Voltage stability analysis was studied on IEEE 30 
and IEEE 118 bus systems using many voltage stability indices based on 
line/nodal and the results are compared with the proposed new index based on 
SVM and ELM. 

Keywords: voltage stability assessment, voltage stability index, support vector 
machine, extreme learning machine. 

1 Introduction  

Problems related to voltage stability have recently been considered as the major 
concerns in the planning and operation of power systems. The rapid increase in load 
demand in electric power system motivates the researchers to protect the power 
system to restrain voltage collapse. Voltage stability is concerned with the ability of 
power systems to maintain acceptable voltages at all buses in the system under normal 
conditions and after being subjected to a disturbance[1-3].  Voltage instability has 
been attributed to the lack of adequate reactive  support and the difficulty in the flow 
of required reactive power on the transmission  network.  

In most of the cases, voltage profiles show no abnormality prior to undergoing 
voltage collapse because of the load variation. Voltage stability margin (VSM) is a 
static voltage stability index which is used to quantify how “close” a particular 
operating point is to the point of voltage collapse [4]. Thus, VSM may be used to 
estimate the steady-state voltage stability limit of a power system. Knowledge of the 
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voltage stability margin is of vital importance to utilities in order to operate their 
system with appropriate security and reliability. The system operator must be 
provided with an accurate and fast method to predict the voltage stability margin so as 
to initiate the necessary control actions. 

During the last few years, several methodologies for detecting the voltage collapse 
points (saddle-node bifurcations) in power systems using steady-state analysis 
techniques have been modified and applied for the determination of analyzing voltage 
stability of power systems for example PV and QV curves, sensitivity-based indices 
and continuation power flow methods [5,6]. Other methods, such as bifurcation 
theory[7], energy function, singular value decomposition and so forth, have been also 
reported in the literature. 

Several static voltage stability methods are also available in the literature for the 
quick assessment of voltage stability. In literature [8-16] several methods have been 
proposed to identify critical bus bars, critical line, and stability margins of the power 
system.  

Some of the indices are: 

 1.  Line Stability Index (Lmn). 
 2.  Fast Voltage Stability Index (FVSI). 
 3.  Line Stability Factor (LQP). 
 4.  Voltage Collapse Proximity Indices (VCPI). 
 5.  L-Index (L). 
 6.  Three Diagonal Element dependent Index (Ipi, Iqi, Ii). 

This paper compares the performance of the above said voltage stability indices for 
different loading scenarios like real power load increase, reactive power load increase 
and both real and reactive power load increase of IEEE 30 and IEEE 118 bus test 
systems [17]. In addition a new index is proposed based on Extreme Learning 
Machine (ELM). The proposed index takes real and reactive power load as input 
parameters and gives a voltage stability margin called ELM-VSI.  

The Extreme learning machine (ELM) was proposed recently 
as an efficient learning algorithm for single-hidden layer  feed forward neural 

network (SLFN) [19]. The Extreme learning machine (ELM) [20-23] studies a much 
wider type of “generalized” SLFNs whose hidden layer need not be tuned. ELM was 
originally developed for the single-hidden-layer feed forward neural networks and 
then extended to the “generalized” SLFNs which may not be neuron alike and 
compared with the index based on SVM [18]. 

Organization of the paper is as follows: Section 2 describes various VSI used to 
examine the voltage stability of the system. Section 3 presents the ELM and the test 
systems and analysis tools used are presented in section 4. Results and discussions are 
presented in section 5. Finally conclusions are summarized in section 6. 
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2 Voltage Stability Margin 

Voltage stability margin is defined as difference between maximum transferring 
power that system can be tolerated and power of normal operation. In this paper, this 
voltage stability margin is referred to as the loadability margin and used as 
performance index for voltage stability analysis.  The purpose of VSI is to determine 
the point of voltage instability, the weakest bus in the system and the critical line 
referred to a bus. Indices proposed based on bus are known as Nodal Indices and that 
of transmission lines are Line Indices. The Nodal Indices and Line Indices are briefly 
discussed in the following section.  

2.1 Line Voltage Stability Indices 

The line indices are based on the bus power (real and reactive), voltage magnitude, 
phase angle and impedance of the transmission line as shown in the Fig.1. The factor 
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Fig. 1. Typical one line diagram of transmission line 
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The Voltage Collapse Proximity Index VCPI investigates the stability of each line 
of the system and they are based on the concept of maximum power transferred 
through a line. 

                       (max)
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P
VCPI =                     (4) 
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j
Q Q
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VCPI =                          (5) 

Where the values Pj and Qj are obtained from conventional power flows 
calculations, and Pj(max) and Qj(max) are the maximum active and reactive power that 
can be transferred through the line. The line indices varies from 0(no load) to 1 
(maximum loadability). The value of indices that is evaluated close to 1.00 indicates 
that the particular line is closed to its instability that may lead to voltage collapse. To 
maintain system security the value of indices should be maintained well below the 
value of 1.00. 

2.2 Nodal Indices 

The L-Index is a quantitative measure for the estimation of the distance from the 
actual state of the system to the stability limit. The index can be computed as 
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Lj is a local indicator that determinates the busbars from where collapse may 
originate. The L index varies in a range between 0 (no load) and 1 (maximum 
loadability). 

Diagonal element dependent indices I, Ip, Iq 
These indices are observed that with increase in load at the load bus, the value of 

diagonal elements of the Jacobian ii VQ ∂∂ /  and iiP δ∂∂ /  gets reduced. Thus, 
the deviation in value of ii VQ ∂∂ /  and iiP δ∂∂ /  from its no-load value to the 
value at any particular loading condition can be used as index of voltage stability for 
the load bus i. Using this criteria two voltage stability indices are proposed: 
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The threshold value of the VSI are proposed as 
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Where Bii is the susceptance of the line connected to ith load bus 

3 Extreme Learning Machine 

The ELM algorithm was originally proposed by Huang et al. in [20] and it makes use 
of the SLFN. The main concept behind the ELM lies in the random initialization of 
the SLFN weights and biases 

                            f(x) = h(x)                           (10) 

where h(x) is the hidden-layer output corresponding to the input sample x and   is 
the output weight vector between the hidden layer and the output layer. One of the 
salient features of ELM is that the hidden layer need not be tuned. Essentially, ELM 
originally proposes to apply random computational nodes in the hidden layer, which 
are independent of the training data. Different from traditional learning algorithms for 
a neural type of SLFNs [24], ELM aims to reach not only the smallest training error 
but also the smallest norm of output weights. ELM [25,26] and its variants [27,28] 
mainly focus on the regression applications. Latest development of ELM has shown 
some relationships between ELM and SVM [29,30]. 

4 Test System and Analytical Tool 

For the analysis of voltage stability, the test systems – IEEE 30 and IEEE 118 bus 
systems are considered. All the results are produced with the help of a program 
developed in PSAT. PSAT is MATLAB software for electric power system analysis 
and control [32]. Though several loading pattern are tested for two test systems, due 
to space limitations only some scenarios are presented. In scenario 1, real power 
load at the weakest load bus alone increased. In scenario 2, reactive power load at 
the weakest load bus alone increased. In scenario 3, both real and reactive power 
load at the all load buses are increased simultaneously. The above procedure is 
illustrated in Fig. 3 
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Fig. 2. Flow Chart for the estimation of loadability margin using VSI 
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5 Results and Discussions 

5.1 Estimation of Loading Margin Using VSI and CPF of IEEE 30 Bus System 

In order to compare the VSI, the loadability margin of IEEE 30 bus system is 
calculated for three scenarios. Scenario 1, the real power demand at weakest load bus 
is increased gradually. In scenario 2, the reactive power demand at the weakest load 
bus is increased gradually. Finally in scenario 3, both the real and reactive power 
demand at the weakest load bus is increased gradually.  

In Scenario 1: The real power demand at bus 24 is 10% increased from its base 
value. Continuation Power Flow (CPF) available in PSAT is used to trace the PV 
curve for the above case. The real and reactive power load obtained in each iteration 
of the CPF is used to calculate the voltage stability indices (Lmn, LQP, FVSI, VCPI (p), 
VCPI (q), L, I, Ip, and Iq). Fig.4. (a) to (d) shows the variation of line voltage stability 
indices and Fig.4.(e) to (g) shows the variation of nodal voltage stability indices with 
respect to real power demand at bus 24.  The following observations are made from 
the figures 4. (a) to (d). 

Line Voltage Stability Indices: 

• Maximum loadability limit at bus 24 obtained from CPF is Pmax = 0.055 p.u. 
• As real power load increases the FVSI, Lmn, LQP are also increases as 

expected.  
• However FVSI, Lmn, LQP are unable to detect the Pmax. Because FVSI, Lmn, 

LQP are less than ‘1(p.u)’ at Pmax. This clearly indicates that FVSI, Lmn, and LQP gives 
higher loadability limit than the actual value from CPF.  

• VCPI (p) increases gradually to Pmax. Hence, VCPI (p), exactly determines the 
loadability limit for this scenario. 

Nodal Voltage Stability Indices: 

Inspection of Fig. 4 (e) to (g reveals the following observation.  
• As real power load increases, L, ‘I’ and Ip indices are also increases. 
• But the L index is unable to detect the Pmax exactly. Because it gives a value 

greater than 1.00 value at Pmax. 
• The ‘I’ and Ip indices threshold value is 0.5 at the maximum loading point. 

This clearly indicates that ‘I’ and Ip indices gives higher loadability limit than the 
actual value from CPF. 

In Scenario 2 : The reactive power at bus 24 is 10% increased from its base case 
value. Continuation Power Flow available in PSAT is used to trace the QV curve. For 
the same real and reactive power load obtained in each iteration of the CPF, the 
voltage stability indices (Lmn, LQP, FVSI, VCPI (p), VCPI (q), L, I, Ip, Iq) are 
determined. The results are compared in the following table. Qmax is the maximum 
loadability limit at bus 24. First row in Table 1 presents the value of VSI 
corresponding to maximum loadability limit and the Second row indicate the value of 
loadability limit corresponding to each index at its threshold.  
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Line Voltage Stability Indices: 

As reactive load power increases the FVSI, Lmn, LQP are also increases as expected. 
However FVSI, Lmn, LQP are unable to detect the Qmax. Because FVSI, Lmn, LQP are less 
than 1 at Qmax. This clearly indicates that FVSI, Lmn, LQP give higher loadability limit 
than the actual. VCPI (VCPI (p) & VCPI (q)) increases gradually at Qmax, VCPI becomes 
1.Hence VCPI, exactly determines the loadability limit for this load scenario 2.   

Table 1. Loadability margin from VSI and CPF for scenario 2 and scenario 3 

Load at 24th bus 
                      Scenario 2        LM=0.067 (p.u) Scenario 3        LM= 0.095 (p.u) 

 VSI CPF VSI CPF 
LMN(P.U) 1.5894 0.5876 1.009 0.8790 
LQP (P.U) 1.0780 0.7971 1.089 0.7792 
FVSI (P.U) 0.9923 0.4002 1.047 0.6602 
VCPI

(P)
(P.U) 1.0001 0.9534 0.9323 0.9156 

VCPI
(Q)

(P.U) 0.9899 0.9221 0.9329 0.9166 
L (P.U) 2.5673 0.8794 1.304 0.8999 
I

P
(P.U) 0.6932 0.3602 0.7930 0.4537 

I
Q
(P.U) 0.6934 0.3554 0.7291 0.3777 

I (P.U) 0.4534 0.1955 0.6665 0.3471 

Nodal Voltage Stability Indices: 

Generally L index increases with the reactive load increase. But it is unable to detect the 
Qmax exactly. Because L index gives a greater value than the actual load at Qmax. The ‘I’, Iq 
and Ip indices are also increase with the reactive load. Its threshold value is 0.5 at the 
maximum loading point. So the indices values are always greater than its actual Qmax value.  

 

Fig. 3. (From clockwise) (a) Real power Vs voltage and FVSI, (b) Real power Vs voltage and 
LQP, (c) Real power Vs voltage and VCPI, (d) Real power Vs voltage and Lmn, (e) Real power 
Vs , voltage and L, (f) Real power Vs voltage and Ip, (g) Real power Vs voltage and I 



718 M.V. Suganyadevi and C.K. Babulal 

 

In Scenario 3:  In this scenario, both real and reactive power load is incremented 
by 10%. In this type of loading also, LQP, Lmn, FVSI, I, Ip, Iq indices unable to detect 
the maximum loadability limit exactly except VCPI (VCPI (p) & VCPI (q)) index. The 
results are presented in Table 1. 

5.2 Estimation of  Loading Margin Using VSI and CPF of IEEE 118 Bus System 

The loadability margin of IEEE 118 bus system is calculated for all the three 
scenarios namely increase in  the real power demand, reactive power demand and 
both real and reactive power.  

In Scenario 1, The real power demand at bus 88 is 10% increased from its base 
value. Continuation Power Flow (CPF) available in PSAT is used to trace the PV 
curve for the above case. The real and reactive power load obtained in each iteration 
of the CPF is used to calculate the voltage stability indices (Lmn, LQP, FVSI, VCPI (p), 
VCPI (q), L, I, Ip, and Iq). From the Table 2, the following observations are made. 

• The maximum loadability limit at bus 88 obtained from CPF is Pmax = 2.05 p.u. 
• As real power load increases the Line Voltage Stability Indices FVSI, Lmn, 

LQP are also increases as expected.  
• However FVSI, Lmn, LQP are unable to detect the Pmax. Because FVSI, Lmn, 

LQP are less than ‘1’ at Pmax. This clearly indicates that FVSI, Lmn, and LQP gives 
higher loadability limit than the actual value from CPF.  

• VCPI (p) increases gradually to Pmax. Hence, VCPI (p) exactly determines the 
loadability limit for this scenario 1.  

• As real power load increases, Nodal Voltage Stability Indices L, ‘I’, Iq and Ip 
indices are also increases. 

• But the L index is unable to detect the Pmax exactly. Because L index gives a 
value greater than 1.00 value at Pmax. 

• The ‘I’, Iq and Ip indices threshold value is 0.5 at the maximum loading point. 
This clearly indicates that the indices give higher loadability limit than the actual 
value from CPF. 

 
In Scenario 2 
The reactive power at bus 88 is 10% increased from its base case value. 

Continuation Power Flow available in PSAT is used to trace the QV curve. For the 
same real and reactive power load obtained in each iteration of the CPF, the voltage 
stability indices (Lmn, LQP, FVSI, VCPI (p), VCPI (q), L, I, Ip, Iq) are determined. The 
results are compared in the following table. Qmax is the maximum loadability limit at 
bus 24. From the table results, As reactive load power increases the Line VSI FVSI, 
Lmn, LQP are also increases as expected. However FVSI, Lmn, LQP are unable to 
detect the Qmax. Because FVSI, Lmn, LQP are less than 1 at Qmax. This clearly 
indicates that FVSI, Lmn, LQP give higher loadability limit than the actual. VCPI 
(VCPI (p) & VCPI (q)) increases gradually at Qmax, VCPI becomes 1.Hence VCPI, 
exactly determines the loadability limit for this load scenario 2. And the Nodal 
Voltage 
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Stability Indices L,’I’, Iq, Ip indices also increases with the reactive load increase. But 
the indices are unable to detect the Qmax exactly. Because the indices give a greater 
value than the actual maximum loadability limit Qmax. ‘I’, Iq and Ip index’s threshold 
value is 0.5 at the maximum loading point. So the indices values are greater than its 
actual maximum loadability margin.  

In Scenario 3, both real and reactive power load is incremented by 10%. In this 
type of loading also, LQP, Lmn, FVSI, I, Ip, Iq indices unable to detect the maximum 
loadability limit exactly except VCPI (VCPI (p) & VCPI (q)) index. The results are 
presented in the following Table 2 . 

Table 2. Loadability Margin from VSI and CPF of IEEE 118 Bus Systems 

Load at 88th bus 
                      Scenario 1    

LM=2.05 (P.U) 
Scenario 2   LM=2.99 (P.U) Scenario 3   LM=3.04 (P.U) 

 VSI CPF 
VSI CPF VSI CPF 

LMN
 
(P.U) 

1.400 0.886 
1.009 0.8790 1.138 0.879 

LQP (P.U) 
1.086 0.945 

1.089 0.7792 1.084 0.778 

FVSI (P.U) 
1.289 0.876 

1.047 0.6602 1.146 0.854 

VCPI
(P) 

(P.U) 
1.112 0.995 

0.9323 0.9156 1.118 0.998 

VCPI
(Q) 

(P.U) 
1.114 0.996 

0.9329 0.9166 1.115 0.993 

L (P.U) 
1.776 0.453 

1.304 0.8999 1.096 0.755 

I
P 
(P.U) 

0.999 0.339 
0.7930 0.4537 0.559 0.344 

I
Q 
(P.U) 

0.997 0.337 
0.7291 0.3777 0.641 0.398 

I (P.U) 
0.664 0.442 

0.6665 0.3471 0.663 0.345 

5.3 Estimation of Loading Margin by SVM and ELM 

Generation of Data 
The required data is generated using CPF method available in PSAT. In IEEE 30 bus 
test system, As many as 597 patterns were generated by changing the load at each bus 
and generation randomly in wide range (± 50% of base case). Thus 35820 (597x60) 
load samples were generated. Power factor at all load buses are maintained constant. 
Out of 35820 data samples in IEEE 30 bus system, 80% of total samples (28656) 
were selected arbitrarily for training, while 20% (7184) were used for testing. The 
data samples used for testing the SVM model and ELM model are unseen values that 
are not used in training. In IEEE 118 Bus Test System, As many as 300 patterns were 
generated by changing the demand and generation at each bus randomly in wide range 
(± 50% of base case). Totally 35400 data samples were generated. Out of 300 
patterns, 80% load scenarios (28320 samples) were arbitrarily selected for training 
while, 20% load scenarios (7080 samples) were used for testing the performance of 
the estimation of loadability margin.  
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Algorithm 

 

Fig. 4. Flow Chart for the estimation of LM using SVM and ELM 

Table 3. LM comparisons among ELM, CPF, and SVM  

No 
IEEE 30 bus system IEEE 118 bus system 

CPF SVM ELM CPF SVM ELM 

1 1.18906 1.0148 1.01484 1.066508 1.07684 1.076811 

2 1.00116 1.3205 1.32049 1.168095 1.06470 1.064689 

3 1.60025 1.6073 1.60731 1.264029 1.24729 1.247270 

4 2.14578 1.8738 1.87386 1.354573 1.32478 1.324782 

5 2.09961 2.1188 2.11875 1.439952 1.42737 1.427375 

6 2.47358 2.3406 2.34065 1.906011 1.89737 1.897375 

7 2.86492 2.5376 2.537659 1.954922 1.96516 1.965166 

8 2.57753 2.7067 2.706636 1.999516 2.02815 2.028154 

9 3.05481 2.8395 2.839433 2.039769 2.08643 2.086434 

10 3.01280 2.8809 2.880869 2.075612 2.14008 2.140087 

 
The voltage stability margin by CPF, SVM model and ELM  are compared in 

Table 3 respectively for few testing patterns due to limited space. But the  CPF is 
unable to detect the loading margin exactly, because it gives a value greater than 1.00 
value at Pmax when compared to ELM and SVM. The tables show clearly that the 
proposed ELM model estimate the same loadability margin as obtained by the 
conventional techniques with greater accuracy. The MSE values of IEEE test systems 
were simulated for SVM and ELM for two different activation functions namely 
sigmoid and RBF are tabulated in Table 4. The training computational time of  

Data Generation 
Run the CPF using PSAT 

Create a data base for the input vector in the form of real and reactive power load. The 
target or output vector is in the form of lambda (loading margin). 

ELM Regression 
select hidden node neurons, activation 

f ti

SVM Regression 
Select C and γ parameter, kernel 

t

Loadability Margin

Regression Scheme 

Power System Network 



 Online Voltage Stability Assessment of Power System 721 

 

SVM-sigmoid is slightly higher than the SVM-RBF. The ELM-RBF the training and 
testing time are faster and accurate when compared to its sigmoid activation function. 
The SVM and ELM MSE are also tabulated in order to show the accuracy of the 
regression types.  However the results show that the RBF types predicts the result 
quickly when compared to sigmoid type and the computational time also less for the 
estimation of loadability margin of a power system. The results show that the ELM 
network is able to produce the output with good accuracy(10-3). The MSE and the 
computational time for the system obtained are also very less in the order of 10-4 and 
in few seconds respectively.  

Table 4. Comparison of SVM and ELM 

 Regression 

Scheme 

Training data

samples 

Testing data 

samples 

Activation 

Function 

Training 

Time 

(sec) 

Testing 

Time 

(sec) 

MSE 

IEEE 30 Bus 

System 

SVM 28656 7184 Sigmoid 9.812 0.0998 3.255e-005 

RBF 7.956 0.0447 2.192e-006 

ELM 28656 7184 Sigmoid 7.462 0.0863 1.881e-005 

RBF 5.578 0.0274 1.005e-006 

IEEE 118 Bus 

System 

SVM 28320 7080 Sigmoid 25.665 0.134 3.234e-005 

RBF 18.830 0.116 2.784e-006 

ELM 28320 7080 Sigmoid 23.436 0.129 1.925e-005 

RBF 16.991 0.109 1.028e-006 

 
The Fig.6 and Fig 7 shows the prediction of loadability margin for IEEE 30 and 

IEEE 118 test bus systems respectively by comparing the two regression scheme  
models: SVM and ELM in terms of MSE for some testing patterns. The ELM-RBF 
predicts the loadability margin more quickly and accurately when compared to  
SVM-RBF.  
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Fig. 5. Comparison of MSE among SVM and ELM of IEEE 30 bus system 
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Fig. 6. Comparison of MSE among SVM and ELM of IEEE 118 bus system 

6 Conclusion 

In this paper, a new voltage stability index based on extreme learning machine 
technique is proposed which is used to evaluate the power system voltage stability. 
The performance of proposed ELM-VSI and all Voltage stability indices (Lmn, LQP, 
FVSI, VCPI (p), VCPI (q), L, I, Ip, Iq) has been tested on IEEE 30 bus and IEEE 118 bus 
systems to evaluate the loadability margin of power systems. The already proposed 
voltage stability indices (Lmn, LQP, FVSI, VCPI (p), VCPI (q), L, I, Ip,IQ) in the literature 
are unable to predict the exact loadability margin (LM) as that of CPF. The VSI based 
on ELM technique could able to identify the expected LM value with an error 
occurrence of 10-4. A comparison of the propose index with other indices indicates 
that the ELM-VSI is a much more reliable indicator of the relative closeness to the 
voltage stability limit of a heavily loaded power systems. The proposed ELM-VSI can 
be implemented for on-line security assessment in Energy Management System 

Acknowledgement. The first author sincerely acknowledges the financial assistance 
received from Department of Science and Technology, New Delhi, India under 
Women Scientist Scheme-A vide letter number SR/WOS-A/ET-139/2011, dated 05-
03-2012 and the authors are sincerely thanks the Management and Principal of 
Thiagarajar College of Engineering, Madurai, India to carry out this research work. 

References 

[1] Voltage Stability of Power Systems: Concepts, Analytical Tools and Industry 
Experience, IEEE Committee, vol. IEEE/PES 93TH0358-2- PWR (1990) 

[2] Canizares, C.A. (ed.): Voltage Stability Assessment: Concepts, practices and tools. 
IEEE/PES Power System Stability Subcommittee Special Publication, Final Document 
(August 2002) 

[3] Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994) 



 Online Voltage Stability Assessment of Power System 723 

 

[4] Srivastava, L., Singh, S.N., Sharma, J.: Estimation of loadability margin using parallel 
self-organizing hierarchical neural network. Computers and Electrical Engg. 26(2), 
151–167 (2000) 

[5] Ajjarapu, V., Christy, C.: The continuation power flow: a tool for steady state voltage 
stability analysis. IEEE Trans. Power Systems 7, 416–423 (1992) 

[6] Canizares, C.A., Alvarado, F.L.: Point of collapse and continuation methods for large 
AC/DC systems. IEEE Trans. Power systems 8, 1–8 (1993) 

[7] Canizares, C.A.: On bifurcation, voltage collapse and load modeling. IEEE Trans. 
Power Systems 10, 512–518 (1995) 

[8] Sode-Yome, A., Mithulananthan, N., Lee, K.Y.: A maximum Loadability Margin 
Method for static voltage stability in Power Systems. IEEE Transaction on Power 
Systems 21, 799–808 (2006) 

[9] Ioannis, K., Konstantinos, O.: An Analysis of Blackouts for Electric Power 
Transmission Systems. Transmission on Engineering, Computing and Technology 12, 
289–292 (2006) 

[10] Kwatny, H.G., Fischl, R.F., Nwankpa, C.O.: Local Bifurcation in Power Systems: 
Theory, computation, and applications. Proc. IEEE 83(11), 1456–1483 (1995) 

[11] Bian, J., Rastgoufard, P.: Power System Voltage Stability and Security Assessment. 
Electr. Power Syst. Res. 30(3), 197–200 (1994) 

[12] Gubina, F., Strmcnik, B.: Voltage Collapse Proximity Index determination using 
Voltage Phasors Approach. IEEE Transaction on Power System 10(2), 778–794 (1995) 

[13] Moghavvemi, M., Omar, F.M.: Technique for Contingency Monitoring and Voltage 
Collapse Prediction. IEEE Proceeding on Generation, Transmission and 
Distribution 145(6), 634–640 (1998) 

[14] Mohamed, A., Jasmon, G.B., Yusoff, S.: A Static Voltage Collapse Indicator using Line 
Stability Factors. Journal of Industrial Technology 7(1), 73–85 (1989) 

[15] Moghavvemi, M., Faruque, O.: Real-Time Contingency Evaluation and Ranking 
Technique. IEEE Proceeding on Generation, Transmission and Distribution 145(5) 
(September 1998) 

[16] Chebbo, A.M., Irving, M.R., Sterling, M.J.H.: Voltage Collapse Proximity Indicator: 
behaviour and implications. IEEE Proc.-C 139(3) (May 1992) 

[17] Kessel, P., Glavitsch, H.: Estimating the Voltage Stability of a Power System. IEEE 
Transactions on Power Delivery, vol.PWRD-1(3) (July 1986) 

[18] Sinha, A.K., Hazarika, D.: A Comparative study of Voltage Stability Indices in a Power 
System. Electrical Power and Energy System 22, 589–596 (2000) 

[19] Suganyadevi, M.V., Babulal, C.K.: Estimating of Loadability Margin of a Power 
System by comparing Voltage Stability Indices. In: Proceeding of IEEE International 
Conference on Control, Automation, Communication And Energy Conservation, June 
4-6 (2009) 

[20] Suganyadevi, M.V., Babulal, C.K.: Prediction of Loadability Margin of a Power System 
using Support Vector Machine. In: Proceeding of IEEE International Conference on 
Energy Efficient Technologies for Sustainability (ICEETS 2013), April 10-12 (2013) 

[21] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: A new learning 
scheme of feedforward neural networks. In: Proc. IJCNN, Budapest, Hungary, July 25-
29, vol. 2, pp. 985–990 (2004) 

[22] Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and 
applications. Neurocomputing 70(1-3), 489–501 (2006) 



724 M.V. Suganyadevi and C.K. Babulal 

 

[23] Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental 
constructive feedforward networks with random hidden nodes. IEEE Trans. Neural 
Netw. 17(4), 879–892 (2006) 

[24] Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. 
Neurocomputing 70(16-18), 3056–3062 (2007) 

[25] Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning 
machine. Neurocomputing 71(16-18), 3460–3468 (2008) 

[26] Smola, A.J., Scholkopf, B.: On a Kernel-Based Method for Pattern Recognition, 
Regression, Approximation And Operator Inversion. Algorithmica 22, 211–231 (1998) 

[27] Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression 
and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, 
Part B: Cybernetics, 1–17 (2010) 

[28] Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: 
Optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 
(2010) 

[29] Tang, X., Han, M.: Partial Lanczos extreme learning machine for single-output 
regression problems. Neurocomputing 72(13-15), 3066–3076 (2009) 

[30] Liu, Q., He, Q., Shi, Z.-Z.: Extreme support vector machine classifier. In: Washio, T., 
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, 
pp. 222–233. Springer, Heidelberg (2008) 

[31] Frénay, B., Verleysen, M.: Using SVMs with randomised feature spaces: An extreme 
learning approach. In: Proc. 18th ESANN, Bruges, Belgium, April 28-30, pp. 315–320 
(2010) 

[32] Power System Test Archive-UWEE (University of Washington),  
http://www.ee.washington.edu/research/pstca 

[33] PSAT, Power System Analysis Toolbox Version 2.1.1,  
http://www.power.uwaterloo.ca/fmilano/downloads.html 



A Peer-to-Peer Particle Swarm Optimizer

for Multi-objective Functions

Hrishikesh Dewan1,2, Raksha B. Nayak2, and V. Susheela Devi1

1 Department of Computer Science & Automation
Indian Institute of Science, Bangalore
hrishikesh.dewan@csa.iisc.ernet.in

susheela@csa.iisc.ernet.in
2 Knowledge & Innovation

Siemens Corporate Technology & Development Center, Bangalore,
raksha.nayak@siemens.com

Abstract. Particle Swarm Optimization (PSO) is a well-known tech-
nique that has been used for a wide range of optimization problems.
The method is inherently parallel, wherein a group of particles wander
in the solution space; communicate with one another to find the best
solution. Though parallel, this method has not been much experimented
in peer-to-peer computing frameworks. A peer-to-peer network brings a
new set of challenges but has a number of distinct properties; for exam-
ple they are prone to various types of failure but can harness the unused
computing cycle of a set of systems. In this paper, we illustrate such a
framework, wherein the PSO method is being implemented on top of a
custom peer-to-peer network. Our framework includes novel algorithms
that effectively skip overwork, finds Pareto optimal solutions that are di-
versified and includes both load balance and fault tolerance techniques.
We demonstrate the use of this new distributed optimization framework
using some well-known multi-objective benchmark functions and explain
its effectiveness when compared to other systems of such types.

1 Introduction

Particle Swarm Optimization (PSO) [1] is a well-known technique that has been
used for a wide range of optimization problems. PSO is being modeled on the
self-adaptive behavior of flocks of birds and schools of fish to identify optimal
locations. The method is inherently parallel wherein a group of particles wander
in the solution space; communicate with one another to find the most optimal
solution. Because of being parallel and its ability to avoid local minima, PSO
is being widely used to solve a large number of optimization problems. Initially,
each of the particles starts with its own position and updates its neighbors of
the best solution found so far. The neighbors on seeing relatively best updates,
modify their position and velocity in the solution space and move towards the
position of the best particle seen so far. As evident from equation 1, a position of
a particle is determined collectively by its own best position and the overall global
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best. To aid in propagation of each particles best position seen so far, the particles
in the solution space connect among themselves. The network connectivity so
created can either be of mesh topology, random, ring etc. It is important to note
that in the most basic formulation of PSO method, there are three essential
steps. The first step is the spread of the candidate solutions across the entire
search space, the second is the step wise evaluation of the best solution found so
far and the third is the modification of the velocity of each particle towards the
global best solution in the previous iteration. The algorithm is parallel in step 1
and step 3 but requires a distinct synchronization point at the second step. Due
to this simplicity in design, a lot of parallel approaches exploiting the steps 1
and 2 have been designed. Most of the designs [2], [3] and [4] are however based
on master-slave architectures where the master solicits replies from each of the
slaves for its best update, assumes the responsibility of evaluating the global
best in each iteration and forwards the best result to all of the slaves. While
these type of designs facilitate the use of a large number of computing machines
to participate in the optimization problem, it is less efficient. The central master
component is usually the point of failure and uneven load distribution may lead
some slave swarms to remain idle for a large period during certain iterations. A
few asynchronous update-based solutions [5] have been proposed but they are
still based on master slave architecture. On the other hand, pure distributed
systems such as peer-to-peer distributed systems do not have problems of this
sort. There is no central authority to administer other nodes and each node is
independent and acts both as a server and a client at the same time. We propose
in this paper, a complete peer-to-peer particle swarm optimizer with a number
of novel techniques that further reduces the convergence time for reaching the
global minimum or maximum. Our distributed system is partly based on [6],
and includes modifications to support multiple objective functions that have a
large number of variables. The peer-to-peer system that is being exhibited in
this paper also handles fault-tolerance and uniformly distributes loads across a
set of machines. We evaluated our system using a simulated test bed of several
dozens of machines and used the test functions as defined in [7], [8] [9] and [10]
for evaluating the system.

The rest of the paper is organized as follows. Section 2 describes the re-
lated work and also shows how the work defined in the paper is different from
other contemporary papers. Section 3 introduces the algorithms and the network
model of our proposed system. Section 4 details the simulated environment and
the experiments that were performed. It also includes the results of the experi-
ment. Finally in Section 5, we conclude the paper alongside a note on the future
extensions of the same.

2 Related Work

The closest match related to our work is defined in [11] . In [11], the authors
have solved a peer-to-peer particle swarm optimizer that finds the Pareto op-
timal front of a set of multi-objective functions. However, it is not clear which
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method is being used to find the set of solutions. In a true multi-objective func-
tion optimization, a set of dominated and non-dominated solutions are identified.
In [11] no such procedures are explicitly defined. Moreover, neither is there any
mention on how fault-tolerance is being achieved nor on how the load balanc-
ing of the swarm agents are carried out although it is being clearly laid out that
fault-tolerance and load balancing algorithms are one of the prime problems that
need to be tackled in any peer-peer application. Also, the underlying network
layer as used in [11] is based on FreePastry [12], which is a prefix tree based
distributed hash table implementation. Our peer-to-peer network uses an over-
lay network which is largely inspired from Chord [6], but we have modified the
basic routing strategy to include nodes which are logically nearer in the objec-
tive space in addition to the lexicographic neighbor nodes as in Chord. Due to
this, the propagation of the individual non-dominated collection of nodes among
the nearby nodes is faster. In [13], a distributed particle swarm optimization is
used to create the most efficient Bayesian Network directed acyclic gragh(DAG).
However, the allocation of work across the distributed agents follows master slave
architecture and hence they are almost the same as noted in [2], [3] and [4]. In
[5], a distributed PSO based approach is used to solve search problems by small
robots. The technique as mentioned in [5] uses broadcasts to notify the neigh-
boring nodes of the gbest. The search function is essentially a single objective
function and there is no mention of failure or load balancing of search space. In
fact in [5], it is clearly mentioned that the robots are miniature and hence should
have minimum load in terms of processing and messaging. There are however,
related works in the areas of distributed optimization techniques such as [14]
and [15] but they are mainly focused towards other evolutionary algorithms. We
skip them as they are of no direct relation to us.

3 Architecture and Algorithm

Our work can broadly be divided into four different sections. The first section
relates to the design and algorithms for maintaining the network. We use an
overlay network for application level messaging between the peer nodes with
a precise semantics which is related to the optimization function. The second
section relates to the protocols for joining and leaving the network. The third
section relates to the protocols that ensure information propagation across the
network and the fourth section includes the algorithms that help in maintaining
a uniform load balance across the nodes and ensures fault tolerance. In each of
these sub-sections, we define the different protocols/algorithms used. However,
before we start describing the different algorithms and approaches, we describe
first the modification of the basic algorithm to support multi-objective functions.

3.1 Modifications to Support True Multi-Objective Function
Optimization

A multi-dimensional objective function can be solved in two different ways. First,
convert the multiple objective functions into a single objective function and
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second, solve the objective functions concurrently and collectively. Clearly, us-
ing the first approach only a single optimal solution can be found and the single
solution may not be the best solution from the purview of all the objective
functions. Essentially it is equivalent to solving a single objective function. We
have earlier defined in [16] ways of finding optimal solutions to a single objective
optimization function and hence we ignore it in this paper. In this paper, we
concentrate on finding solutions when multiple objective functions are collec-
tively used to find optimal solutions. Formally, a multi-objective function can be
defined as follows [9].

Minimize/Maximize fi (x) , wherex = (x1, x2, x3 · · ·xM )
gj (x) ≤ 0, j = 1, 2, 3 · · ·J
hk(x) = 0, k = 1, 2, 3, · · ·K

xi = [lowi, highi]
(1)

We have N objective functions and M variables (noted as x). Each variable has
a lower and upper bound. A number of equality and inequality constraints are
also defined that restricts the variable space to a certain decision boundary.
The decision boundary is therefore a multi-dimensional one and satisfies all the
constraints. Since, there are multiple objective functions (of cardinality N) and
variable space (of cardinality M), the decision space is mapped to an objective
space. The goal in this multi-objective optimization is to find optimal solutions
in this objective space. Also, since there are multiple solutions that exist, a multi-
objective solution provides a number of solutions instead of just one. This set of
solutions that define all the optimal solutions given a certain set of constraints
and bounds constitute what is known as Pareto optimal solutions. Although
finding solutions for such a set of objective functions seems straightforward, the
traditional PSO algorithm does not lend itself to it. There are subtle problems
and the main issue is that a PSO is inherently a single function optimizer.
Therefore certain modifications are needed to handle problem statements of this
kind. We illustrate the problems and consequent modification of the traditional
PSO next. Unlike a single objective PSO, a multi-objective function has no single
solution and hence there is no such gbest for a particular particle. Instead, gbest
is the set of non-dominated solutions that are produced due to execution of the
swarm. Since the number of solutions in the non-dominated set is quite large,
we need efficient mechanisms to select a single solution from this set. Further,
as per our goal, the Pareto optimal front that we seek to discover should be
diversified in the solution space. To accommodate both of these facts, we divide
the solution space in equal partitions and we tend to select the best particle from
the space which is less crowded. This allows us to guide the particle towards the
region which is not being explored enough and thereby find newer solutions in
the process if at all there is any. Further, to reduce the overhead of storage of the
non-dominated solutions, we periodically remove elements from the hyperspace.
Such removals are however random.
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3.2 Network Model

We use an overlay network of nodes for communication of systems as well as
application level messages. The overlay network is a circular ring and is formed
by applying consistent hashing functions. When a node joins the network, it is
provided with a unique 160 bit identifier. The identifier is derived by concate-
nating time and MAC address of the node as an input to SHA-1 hash function.
Based on the output, the ring is organized lexicographically. Figure 1 is an il-
lustration of the same. For routing messages from one node to the other, each
node maintains a routing table. The routing table entries are of three different
types. Lexicographic neighbors (bi-directional) in both the clockwise and anti
clock wise directions , unidirectional random links (based on the number of 1s
in the identifier) and objective space neighbors. Objective space neighbors are
the areas in function space which are adjacent to the node that is currently
being computed. For 2D space, the number of neighbors is 4 and in general
for l-dimensional space there are 2L neighbors. The reason for maintaining the
objective space neighbors is to refer to it during the strategic re-work nega-
tion algorithm defined in the subsequent sections. When a node needs to send
a message to another node, the routing table for the node is consulted to find
the nearest node. Nearest node distance is the lexicographic distance. The algo-
rithm then forwards the message to the nearest node and the same procedure is
repeated till either the destination node is reached or there is no node of that
identifier. In case of the former, the message is consumed by the destination
node whereas in case of the latter, the message is either consumed by the most
preceding node or an error is returned to the user. Due to non-uniformity of node
links, the reverse path can be different from the source node. It can be proved
that on an average the maximum number of hops required to transfer a message
is not more than log K, where K is the number of nodes in the network. Also, due
to non-uniformity of processing capability, each node may compute widely dis-
parate function spaces. As such, therefore, the objective neighbor space changes
from time to time and is not bound to be static during the entire life cycle of
a node. Our network differs from other DHT-based networks such as Chord [6],
Pastry [12] etc. by including extra neighbor node information related to our ob-
jective function. This modification is done to decrease the message overload and
also for fast convergence. When a node completes its job of finding the pareto
front, it does not seek to enter into some other nodes dimensional space. Instead,
the completed or the lightly loaded node simply skips the region of space and
moves to the space which is slowly progressing or not yet processed. Thus, un-
like the traditional PSO algorithms where there is a large amount of duplication
of work, this design ensures very little duplication of work. Hence, compared
to other algorithms, the relative time to convergence is faster. However, due to
large number of dimensions, the effective neighbors is roughly around 2N. This
is a large number even for moderately size dimensions. To reduce the effect of
introducing a large number of such neighbor nodes, we include a tree base direc-
tory structure . Every node maintains a single indirection to its parent and each
parent includes the list of siblings. The number of siblings is not more than the
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Table 1. Figure 1-2 An overlay network of nodes. and Peer-Peer PSO Architecture

number of dimensions that is being used to divide the hyper-plane. Thus, the
maximum number of neighbors that a node has to store is dependent upon the
problem statement and also on the factors of division. For example, for three
dimensional vectors, we may first divide the function space in one of its axis.
The second level includes the divisions of the second and so on. This increases
the time to propagation but it prohibits the overcrowding of the routing table
entries of the node.

3.3 Node Management

In a peer-to-peer network all nodes are symmetric and equal. Whenever a node
has to participate in the function optimization computation, the first operation is
the join operation. Upon completion of join, a node acquires a membership to the
network and participates in all its activities, which includes function optimiza-
tion, message passing, load balancing and fault-tolerance. Since each peer-node
is responsible for atleast a certain chunk of work, there must be well-defined node
leaving protocols. In this section, we define the node join and leave protocols.
It is important to note that in an ad-hoc network with no central administra-
tive unit, nodes can join and leave at any moment. Such abrupt changes in the
network topology could be due to malfunctioning of hardware, software or the
network. Hence, the join and the leave protocol must handle these extreme but
major use cases as well.

As noted in section A, whenever a node joins, it first creates a new pseudo-
random ID of 160 bits. After the ID is created, it then searches for an existing
node in the network to communicate with. The list of existing nodes must be
supplied to the new node before it starts its operation and is, by and large, a
manual process. Once, the node is connected to any of the existing nodes, the
first message it composes is to find duplication of its own calculated node ID.
Such a message is routed to the network using the newly connected existing node.
If there are no such nodes, then the node can safely join the network. On the
other hand, if such a node exists, the new node creates a new ID and recursively
follows the same process. Joining the network involves creating the routing table
entries. After the routing table entries are successfully created, the node connects
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to any node in the network for work units. Since a node already existent in the
network is completely participating in the optimization process, the new node
requests work from the already existent nodes. In our present protocol, we allow
a new node to acquire work from a number of existing nodes and selects the
work that seems appropriate. Upon selection of the work unit, the neighbors
nodes are identified and the objective neighbor node work is filled. At this stage
the routing table entries are complete and also the necessary code and work unit
is with the new node. The new node starts executing its own sequential PSO
from this point. Note that this type of work selection is completely deterministic
and may take some time if the already existing nodes do not have work to
allocate to a new node. The other joining protocol that we have investigated
is to randomly select a portion of work from it’s search space. Once the new
node acquires the necessary code for the functions, its solution space and work
division technique, it randomly selects a work unit from the entire available work
units. Since the routing table entries maintain neighbor node information based
on the decision space neighbors, a message is sent from the new node to the node
which is responsible for the work chunk. If the work chunk is available, then it
is allocated to the new node or the node recursively continues the random work
unit selection process again until it receives the desired work load. It is important
to note that if the number of nodes are larger than the available work units, then
neighbor nodes can further partition its work space and allocate a few to the
newly joined node.

The node leaving protocol is opposite of what is defined in the node joining
protocol. The leaving node broadcast leave messages to all its neighbors and
waits for a few seconds before it leaves the network. Upon leaving the network,
a hole is created in the overlay network and routing table entries of the neighbor
nodes are modified. Dynamic node churns are described in more detail in a later
section.

3.4 Information Propagation

Information Propagation is done using the routing table entries of each node.
Thus each node in the network works as a router and is responsible for forwarding
messages to the closest (lexicographically) destination node for transmission. In
our system, there are two types of information. The first type is the information
related to swarm optimization and second type is the information for maintaining
the network. Since in a multi-objective PSO, there is no individual gbest but a
set of non-dominated solutions, the only information that is shared across peer
swarm agents is the non-dominated set. We represent a non-dominated data set
using a KD Tree and hence this data structure is transferred across the set of
nodes. However, unlike gbest transfer in a PSO, we need not transfer the set of
non-dominated solutions to all of the nodes. As noted earlier, our objective space
is divided into distinct hyper-planes and we maintain a hierarchy of neighbors.
The non-dominated solution is only passed to the neighbors. The receiving node
takes the responsibility of finding dominated solutions, if any, from this set. The
other information that is passed in the network is related to the maintenance of
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the network. Node join and leave, heartbeat messages and that of load balancing
information are some of them. More details of these messages are mentioned in
their respective subsections.

3.5 Load Balancing and Fault Tolerance

A peer-to-peer ad-hoc network is always a mix of diversified components: di-
versified in terms of hardware resources and software components available for
computation. Therefore, there is no uniformity in the completion time of a so-
lution space. Some nodes may take a long time to compute a work unit whereas
some nodes may complete the same in 1/10th of the time taken by the other
node. As a result, load balancing of nodes is an important requirement in such
a diversified peer-to-peer network. We balance loads not instantaneously, but
after repeated step intervals. A step interval is a finite number of iterations. Af-
ter completion of each step, the node propagates its load to the neighbors using
a broadcast. Nodes that are lagging behind comparatively are further propa-
gated. For broadcasting, there are two specific rules. For each node we maintain
a least and utmost load, which are respectively 20% and 80 % of load capac-
ity. If the CPU utilization falls below or above this limit, the node broadcasts
this information to the neighbors. Every node therefore maintains the load of
its neighbors. If, however, the load is not below or above this threshold limit,
there is no message sent. Hence, load information table is not as populated as
the routing table entries. Once a node receives such information, it compares the
load with all the entries and tries to achieve equilibrium by matching low ca-
pacity nodes with the high capacity ones. If, on the other hand, there are nodes
that are still not yet matched, then the information is passed on to the nodes
neighbors. The process is repeated until either there is a match or there are no
nodes to match. When a node completes its allocated work unit and there are
no more pending works, the computational utilization decreases by 10%. Under
these circumstances, the broadcast is sent from the node to all its neighbors till
it receives new chunk of data. It is not difficult to prove that lowest utilized
node is always eventually matched with a highly loaded node and the maximum
number of steps required to match such a node is no more than log P, where P
is the number of nodes in the network. Thus the network tries to balance load
at the neighborhood first and if unsuccessful, propagates the information to the
next level. With this, there are no central co-coordinators required and also the
number of messages required for balancing the load is less. As in the case of load
balancing, fault tolerance is also handled co-operatively. Each node upon join-
ing the network maintains three fault tolerant connections to three other nodes.
These nodes need not be entries in the routing table and selected by generating
three random identifiers by the node. After every successful time interval, which
is configurable, the node sends the best positions and work unit in allocation
information to each of these nodes. Failure to receive updates by the majority,
either due to its software/hardware or network partition, signals the node as
dead and a new node is selected for execution of the work.
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4 Experiments and Results

For the sake of experimention and evaluation of our proposed framework, we
have created a cluster of several dozen nodes. Our main focus of the experi-
ments is to perfectly observe the convergence achieved for functions as defined
in[7], [8], [17], [9] and [10]. The entire code base is written in C# and executes
in both Windows and Linux environment. We show below the graphs under nor-
mal operation for each of these functions for different nodes. We also simulate
the load and fault-tolerance by artificially injecting extra time for computation
and by killing processes that represent nodes. The graphs for the same together
with their analysis are explained as below. The results were analyzed and sev-
eral metrics as mentioned in [18] are used to evaluate the result. Apart from the
test functions shown here, we have also conducted an equal number of experi-
ments for other test functions as mentioned in [8] and [17]. For lack of space, we
are omitting the results of those experiments The experiments were run in five
different modes. In the first mode, we selected 4 nodes with each node having
10 particles. Subsequently the number of machines were increased but with the
same number of particles. The machines used were all commodity off-the-shelf
(COTS) machines but with heterogeneous hardware configuration and software.
The machine with smallest capacity is a 2 GB machine with 2 cores and the
highest capacity machine has 4 cores with 4 GB of RAM. The machines were
allowed to fail randomly by explicit killing of the PSO process executing in its
memory. The result set is forwarded to a single machine which hosts a REST
based service. The communication among the machines uses HTTP and formats
the updates in JSON (Java Script Object Notation). HTTP and JSON are used
for its ubiquity and acceptance in wide range of network software. Table 2 shows
the results of each of the functions. The graphs as shown in Table 3 shows the
convergence plots. The convergence plot is currently shown only for 50 particles.
For lack of space, we have omitted the convergence plots for the other parti-
cles. For obtaining the statistical properties of average, best, worst etc, each
experiment was run for 25 runs.

In table 3 we have shown the convergence graph for each of these particles.
For each function, we have shown results with FES/particles as 25,000/50 and
1,00,000/100. Each experiment is executed for twenty five runs and the results
of the twenty five runs are tabulated in Table 2. Further, each function changes
its internal representation after every five iterations. Apart from these results,
we have also experimented with the affect of convergence graphs for node churns
and stimulated increased load. The results for the node churns are not included
in this paper for lack of space.

As evident from the tables and graphs, the performance of the algorithm
is acceptable and comparable with all other single process or parallel (master-
slave, asynchronous) or other distributed based peer-to-peer optimizers. For the
sake of experiments and due to non availability of actual test functions for large
decision/objective space, we have introduced intended process sleep in between.
This is done to observe the convergence of the swarm and in real practical
applications such intended sleeping of threads may be entirely avoided.
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Table 2. Metrics for FES: 75000, 100 particles

KUR

Metric S ER GD CM HV Spread Max Spread SC WM

Best 0.0088 0.0000 10.77E-05 0.0047 32.4944 1.0390 8.8548 0.0135 0.7273

Worst 0.0549 0.0033 17.89E-05 0.0068 36.8696 1.5750 13.0153 0.0790 1.1025

Average 0.0212 0.0012 14.43E-05 0.0052 35.7881 1.3767 12.6105 0.0337 0.9637

Variance 95.15E-06 63.37E-08 43.44E-11 28.99E-08 0.8147 0.0276 0.6500 38.74E-05 0.0135

Std dev 0.0098 79.60E-05 20.84E-06 53.84E-05 0.9026 0.1661 0.8062 0.0197 0.1163

ZDT 1

Best 0.0012 0.0000 28.57E-05 0.0085 118.4877 0.5290 1.4098 0.9559 0.3704

Worst 0.1931 0.8541 0.0537 0.1809 120.5662 1.1173 4.1323 1.0000 0.7844

Average 0.0250 0.0544 0.0046 0.0349 120.3121 0.8448 2.3849 0.9982 0.5927

Variance 0.0013 0.0304 10.56E-05 0.0022 0.2728 0.0225 0.4521 74.74E-06 0.0113

Std dev 0.0366 0.1743 0.0103 0.0467 0.5223 0.1499 0.6724 0.0086 0.1061

ZDT 2

Best 0.0038 1.0000 0.0936 1.3880 81.3383 0.9415 0.1174 1.0000 0.6983

Worst 0.0760 1.0000 0.8185 2.6489 98.3533 1.0379 1.5729 1.0000 0.9423

Average 0.0311 1.0000 0.5249 2.0686 89.0527 0.9957 0.5875 1.0000 0.8545

Variance 43.59E-05 0.0000 0.0292 0.1117 18.3653 43.59E-05 0.1166 0.0000 0.0035

Std dev 0.0209 0.0000 0.1709 0.3343 4.2855 0.0209 0.3414 0.0000 0.0590

ZDT 3

Best 0.0088 0.5000 0.0124 0.1003 120.7375 0.8396 2.3519 1.0000 0.5969

Worst 0.1335 1.0000 0.0640 0.4795 126.7290 1.0591 4.3535 1.0000 0.7489

Average 0.0520 0.9788 0.0314 0.2837 123.8138 0.9485 3.2204 1.0000 0.6734

Variance 0.0010 0.0096 13.14E-05 0.0136 2.9523 0.0032 0.2962 0.0000 0.0016

Std dev 0.0323 0.0979 0.0115 0.1166 1.7182 0.0568 0.5443 0.0000 0.0403

ZDT 4

Best 53.02E-05 1.0000 0.0324 2.0053 95.1063 0.8456 1.3934 1.0000 0.6051

Worst 0.5888 1.0000 0.0742 2.9886 106.4861 1.4304 40.5834 1.0000 1.0138

Average 0.0483 1.0000 0.0451 2.4303 102.9683 1.0386 5.3675 1.0000 0.7406

Variance 0.0135 0.0000 12.14E-05 0.0663 9.8740 0.0256 60.4043 0.0000 0.0126

Std dev 0.1164 0.0000 0.0110 0.2574 3.1423 0.1599 7.7720 0.0000 0.1124

ZDT 6

Best 0.0027 1.0000 0.2552 2.2657 49.0858 0.9151 0.0303 1.0000 0.7710

Worst 0.2628 1.0000 1.4519 5.2836 90.3917 1.0300 3.1662 1.0000 1.1326

Average 0.0730 1.0000 0.6993 3.6662 70.2634 0.9885 1.1165 1.0000 0.9018

Variance 0.0046 0.0000 0.0910 0.6700 109.3330 70.75E-05 0.6970 0.0000 0.0091

Std dev 0.0677 0.0000 0.3016 0.8185 10.4562 0.0266 0.8349 0.0000 0.0952

Fonseca

Best 50.28E-05 0.0100 88.52E-05 0.0559 120.0506 0.8505 1.3555 1.0000 0.5956

Worst 92.84E-05 0.0472 92.76E-05 0.0576 120.3048 0.9807 1.3880 1.0000 0.6868

Average 68.86E-05 0.0239 90.43E-05 0.0568 120.2429 0.9041 1.3780 1.0000 0.6331

Variance 14.82E-09 77.02E-06 12.87E-11 18.28E-08 0.0036 0.0013 46.61E-06 0.0000 64.03E-05

Std dev 12.18E-05 0.0088 11.34E-06 42.75E-05 0.0599 0.0362 0.0068 0.0000 0.0253
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Table 3. Convergence Graph for FES - 75,000, 100 particles

FON KUR ZDT 1

ZDT 2 ZDT 3 ZDT 4

ZDT 6
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5 Conclusion

As noted in this paper and proved by simulation, distribution of particle swarm
optimizations can be effectively used to solve large scale multi-objective func-
tions. The time to converge is little more than that of stand-alone or dedicated
parallel clusters but none-the-less the use of peer-to-peer ad-hoc network clearly
outweighs the benefits of clusters. This increase in time is due to the delay in
message transmission of the network. However, this framework can be used in
internet and such other loose structures much like the other peer-to-peer applica-
tions such as file/object storage and distributed tasks execution. Moving ahead,
we forsee the following extensions to our model : creating a more efficient overlay
network for fast message transmission, reducing the current delay of transmis-
sion and including security measures for protecting messages related to swarm
optimization such as non-dominated solution updates and byzantine faults. We
also intend to publish more elaborate results along with several parameters for
these set of functions and more as mentioned in [8] and [17].
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Abstract. Remanufacturing technique is a widely used approach in modern  
industries. But the very first step of this technique is disassembling. This  
 disassembling operation requires an efficient employee pool and their alloca-
tion to several steps of disassembling. In this paper, we have proposed a im-
proved ABC algorithm that can be used to solve the manpower scheduling 
problem for the disassembling operation in remanufacturing industry. We test 
this algorithm on several instances along with some existing state-of-art algo-
rithms. The results prove the efficiency of this algorithm to solve manpower 
scheduling problem in remanufacturing. 

Keywords: Remanufacturing, Man-power scheduling, Artificial Bee Colony 
algorithm, ID-ABC.  

1 Introduction 

Remanufacturing is a process of product recovery used in industries [1]. In this      
process, used products or modules are disassembled to its basic components among 
which the faulty components are cleaned, repaired and replaced with new ones. After 
this process of disassembling and repairing these new sets of basic components are 
reassembled to produce the main product or module which will be in sound working 
condition.  

In this point of time when humanity is facing the problem of global warming and 
the lack of renewable energy and resources remanufacturing is an important process. 
Remanufacturing can help us to use the resources again and again without any degra-
dation of product quality and performance. Thus, remanufacturing is considered as the 
ultimate form of recycling and now-a-days it is an interesting topic for researchers [2]. 
Even remanufacturing is practically used in several countries across the globe for 
remanufacturing of several products like aerospace, air-conditioning units, bakery 
equipments, computer and telecommunication equipment, defence equipments,    
robots, vending machines, motor vehicles and many more.  This environmental edge 
of remanufacturing process [3] has inspired us to deal with this problem. 
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But efficient disassembling of these products or modules require an efficient     
employee pool who will have a knowledge of these equipments and the knowledge of 
steps through which the product or the module can be disassembled to its basic com-
ponents from which it can be reassembled to build up the actual product which can 
work as efficient as a new one. Here comes the problem of scheduling man force in 
disassembling process of remanufacturing industry. Because after one product or its 
part is divided into sub-components then disassembling of those sub-components 
become independent of each other. Besides this, every employee cannot do every 
operation of the disassembling. Rather there exists a certain set of employees with 
certain skill sets for each of the operations involved in disassembling. Thus, the    
parallelism and presence of constraints make this problem a challenging               
combinatorial optimization problem which can hardly be solved by hands for large or 
real time cases. 

There are several heuristics and meta-heuristics which have already been devel-
oped to produce efficient solutions for several combinatorial problems like job shop 
scheduling problems, man power scheduling problem[4]-[6] etc. Shifting Bottleneck 
Procedure [7] has proved to be the most successful heuristic for scheduling problems. 
But the shortcoming of these algorithms is they are too much problem specific. But 
due to       robustness and exceptional performance of several bio-inspired algorithms,           
now-a-days new meta-heuristic approaches are invented and used for solving these 
scheduling problems. Goldberg [8] first used Genetic Algorithm to solve the         
scheduling problems. Ho et al [9] used modified Tabu Search technique to solve man 
power scheduling problem for airline catering. But there is hardly any significant 
work in solving the manpower scheduling for disassembling industry where the    
problem follows a parallel tree pattern rather than two ended graphical pattern fol-
lowed by other scheduling problems. 

Here, we have proposed a novel meta-heuristic approach, named as Improved     
Discrete ABC (ID-ABC) based on ABC algorithm to solve this problem. Artificial 
Bee Colony (ABC) algorithm [10] is an efficient global optimization tool which was 
first developed by Karaboga et al. Though it was first proposed as a continuous    
optimizer, later researchers have developed several modifications of it and even   
developed discrete versions of it to solve several combinatorial optimization problems 
like job shop scheduling problem [11]-[12], travelling salesman problem [13] etc. 

Rest of the article is presented as follows: in the next section, we have described 
the mathematical formulation of the man power scheduling problem for disassem-
bling process using integer programming. After that in section 3, the basics of ABC 
algorithms is described in brief and in section 4, the improved discrete ABC algo-
rithm (ID-ABC) is proposed with its pseudo code. In the very next section, this algo-
rithm is tested on several problem instances and the result is compared with several 
state-of-art algorithms, which proves the efficiency of this algorithm to solve the 
scheduling problem. In section 6 we have stated the conclusion of our paper where we 
have   explored the efficiency of our algorithm and the possible future works that can 
be done using this model and algorithm. 
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2 Mathematical Modeling of Scheduling Problem 

Let us consider the following tree structure for the arrangement of operations in the 
disassembling process where a single product or module has to be divided in n basic 
components through a set of operations . Here, we may consider each of the opera-
tions as the nodes of the tree where the main product will be the root of the tree and 
the final components will be the leaves. Now, there is a set of m employees  work-

ing on this process where every node i  has its own set of eligible employees iE such 

that, iE ⊆ Ε and 
i

iE
∈O
 =Ε. The time required for the 

thj employee to perform the 

thi operation is given by ijt , where ij E∈ . To clarify the problem statement let us 

consider the following example: there are 4 employees and a product has to be disas-
sembled into 4 basic components, where the disassembling process will follow the 
tree as shown in fig 1. Where 5 leaves represent 5 basic components that has to be 
derived from the original one and the root node or operation 0 represents the basic 
module.  

 
Fig. 1. The disassembly operation tree for 5components, 4employee problem 

Now, the tree shown above contains 7 nodes representing 7 disassembled modules 
where each of them have their own eligible employee list and processing time list for 
each of them. As shown in table 1 below: 

Table 1. List of eligible employees and corresponding processing times for each operation 

Operations  Employee(Processing_time)  
1 4(10) 3(15)  
2 1(5) 3(10)  
3 1(6) 2(9) 4(8) 
4 3(7) 4(10)  
5 2(5) 3(6)  
6 2(4) 4(7)  
7 1(11) 3(8) 4(10) 
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Before presenting the problem statement let us state the basic problem statements 
and assumptions of this problem: 

1. Each employee is ready to perform the operation at the time t=0 and there is no 
time they need to take between the two successive operations. 

2. Two operations belonging to two different subtrees are independent of each other 
but the operations belonging to the same subtree are not independent because it 
cannot be fulfilled until its parent unit (node) is disassembled. 

3. No interruption of an operation is allowed-each must be scheduled into a single 
contiguous time interval. 

4. The processing times, the employee list and the operation division tree are known 
previously, as shown in fig. 1. and table 1. 

5. There is a certain non-zero waiting time for the employees working on the nodes 

after the level 1 of the tree. We can represent the waiting time for thj employee to 

perform the thi operation is given by ijw , where ij E∈ and 

, , ,max th

ij ij

th th

ij
i i

p p where setof all nodes fromi operationtotheroot node

setof all nodes fromwhere j employeeisassigned beforei operation

w
∈ ∈
  =

=

 =  
  





(1) 

   Now, if  is a possible and valid permutation of the operations and corresponding 
employee list, then the makespan of the disassembling process can be described as: 

 ( ) ij,               C i p  = if the operation i is in the level 1  (2) 

 ( ) ij ijC i p  w= + ,         if the operation i is not in the level 1 (3) 

 ( ) { }( )max  C C i=S ,    if the operation i is a leaf i.e., basic component (4) 

The objective of our problem is to find such a permutation of operations and em-
ployees , such that the makespan ( )C S will be minimum. 
3 Artificial Bee Colony Algorithm (ABC) 

Artificial bee colony algorithm (ABC) is one of the most popular and efficient swarm 
algorithm developed in recent times [10]. In this algorithm three bee phases are re-
peated iteratively until the termination condition is reached. The employed bees are 
responsible for exploiting the food sources, and they share food sources information 
with onlooker bees which are waiting in the hive to make the decision to choose food 
sources. This phase acts as a positive feedback mechanism; whereas scout bees carry 
out a random search near the hive for new food sources, which activates the negative  
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feedback mechanism.  Each food sources are represented by n-dimensional real-
valued vectors which denote solutions to the problem under consideration, whereas 
the nectar amount of the food resource is evaluated by the fitness value. 

Now, movement of onlookers is controlled by probability of selecting the source, 
which is given by the following equation, 

 

1

SN

k
k

k
k

f

f
p

=


=  (5) 

where, kp : probability of selecting the kth employed bee, SN: no. of employed bees, 

and, kf : the fitness value of the position where kth employed bee is placed. 

Again, depending on the nectar densities as shown above the new positions are cal-
culated as follows,  

 ( ) ( ) ( ) ( )1 * ( )ij ij ij ij kjx t x t x t x tφ+ + −=  (6) 

ix : Position of the onlooker bee, t: iteration number, kx :randomly chosen employed 

bee, j : dimension of the solution, ijφ : series of random variables in the range [-1,1]. 

This step is known as greedy selection strategy. 
But, to activate the negative feedback mechanism and to keep the exploration 

property of ABC intact movement of scout bees is conducted according to, 

 ( )min rand 0,1 * (max min )ij j j jx + −=   (7) 

4 Improved Discrete ABC (ID-ABC) 

ABC algorithm is actually not formulated for discrete domains. It works in the conti-
nuous domain with its unique positive and negative feedback mechanism which 
makes it a strong optimization tool. But here our problem is mainly a combinatorial 
optimization problem. To adapt ABC algorithm in this discrete domain and to work 
effectively on this problem we have used some novel techniques with the state of art 
ABC algorithm which evolves this Improved Discrete ABC (IDABC) algorithm. The 
key processes of IDABC are discretization of ABC algorithm for the problem de-
scribed in section (2), destruction and construction based iterative greedy (IG) heuris-
tic [14] and the RIS local search algorithm with priority rules, which are discussed 
elaborately in the next subsections.  

4.1 Intitialization 

In this algorithm, we have considered each food source kS as a job vector Jk


consist-

ing of a sequence of jobs which has correspondence with another employee vector 
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Wk


, where corresponding employees are selected for the jobs are sequenced. We can 

express it mathematically as follows: 

               (J , W ) 1, 2,...k k where k NP= =kS
 

                     (7) 

where,                1 2( , ,......, ) ,k n iJ j j j where j= ∈Ο


 

and,                  1 2( , ,......, ) ,
i

k n i jW e e e where e E= ∈


 

The solution space which includes NP such food sources is generated randomly. 

Here, each of the food sources is also   randomly assigned with a destruction size kd . 

This destructor size is allocated on the food sources as they will generate their neigh-
bors depending on the destruction and construction process of iteratively greedy (IG) 
heuristic which is discussed in the section (4.5). 

4.2 Employeed Bee Phase 

The employed bees generate food sources in the neighbourhood of their current posi-
tions. It is basically the search phase of ABC algorithm where the swarm explores the 
search space. For neighbour generation, we have taken three different methods: insert, 

swap and construction destruction with size kd . In case of every employed bee of the 

population any one of the above perturbation methods are adopted in a random man-
ner. It enriches the neighbourhood structure and diversifies the population. The swap 
operator randomly selects two positions on the corresponding food sources and inter-
changes their corresponding positions.  The insert operator takes any random position 
of the food source and inserts it somewhere else in the food source randomly. The 
destruction and construction method is as shown below,  

Pseudocode 1. Destruction and Construction Process 

1  //Destruction Process// 
   for iter = 1to dk 

      SDk = remove one job and the corresponding employee 
           from the sequence Sk and insert it into the 
           sequence SRk 
   end 
2  //Construction Process// 
   for iter = 1to dk 

       S = best permutation obtained by inserting ith job 
           and the corresponding employee pair from the 
           sequence SRk and insert it into the sequence SD 

   end 
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After generating a pool of such food sources, RIS local search along with the 
priority rules of scheduling is applied to further improve the solution quality. 

4.3 Onlooker Bee Phase 

In this phase, the greedy selection process is applied on the food sources to select out 
the best set of food sources. Generally, systems like roulette wheel are used here to 
select the best set of food sources. The onlooker bees utilize the same method as used 
by the employed bee to produce a new neighbouring solution Snew in the neighbour of 
the selected food sources. Then among the final pool of food sources the selection is 
done on the basis of tournament selection. Here, 2 of the food sources will be chosen 
randomly and the source with minimum makespan will be retained for the next step. 
Again, RIS search with priority is used on them to give legal and good quality  
solutions. 

4.4 Scout Bee Phase 

In the basic ABC algorithm, a scout bee produces a food source randomly in the pre-
defined search space. This will decrease the search efficacy, since the best food 
source in the population often carries better information than others during the search 
process, and the search space around it could be the most promising region. There-
fore, in the DABC algorithm, a tournament selection with the size of two is again 
used to discard a solution in such a way that two random food sources are picked up 
from the population and the worst one is selected. Then the scout generates a food 
source by performing a DC with the best destruction size dbest to the best solution in 
the population and replaced with the food source determined by tournament selection. 

4.5 IG Algorithm 

In the IG algorithm used here, the destruction phase is concerned with removing ran-

domly d number of jobs and corresponding employee components from a previously 
constructed solution S to generate two partial solutions SR and SD, whereas construc-
tion phase is related to the reconstruction of a complete solution Snew, by using a gree-
dy constructive heuristic. Here, we have employed NEH heuristic as described in 
[15]. An acceptance criterion is then used to decide whether or not the reconstructed 
solution will replace the incumbent solution. 
 

Pseudocode 2. Iterative Greedy algorithm 

1 S0 = initially generated solution 
2 S = Local Search (S0) 
3 While (termination condition is not met) 
           SD = Destruction (S) 
           Snew = Construction (SD, SR) 
           Snew

* = Local Search (Snew) 
           S = Aceeptance_criterion (S, Snew) 
  end while 



 A Novel Improved Discrete ABC Algorithm for Manpower Scheduling Problem 745 

 

4.6 Reference Insertion Search With Priority Rules for Constraint Handling 

The main purpose of the local search is to generate a better solution or food source 
from the neighbourhood of a given solution or food source. In this paper we have 
adopted a reference insert neighbourhood based local search, which has been regarded 
as superior to the swap or exchange neighbourhood [16]. 
  

Pseudocode 3. RIS Local search algorithm with priority rule 

1 Set  i =1 

2 Set 1 2( , , ......, )nJ j j j=


, 1 2( , ,......, )nW e e e=


and (J, W)=S
 

 

3 Extract a certain job ji randomly without repetition 

from J


 and remove it from permutation. In a similar 
manner the corresponding employee will be extracted 

from the employee vector W


. 

4 For k = 1 to n 

a Re-insert ji in another different position of the 

  permutation and adjust permutation accordingly by 

  not changing the relative positions of the other 

  jobs to get 
*S  

b If 
*S  is better than S, then 

  let 
*S S=  

end for 

5  i = i+1.  

6  If i ≤ n, then go to step 2 
 else stop. 

 

Here, we have to decide whether *S is better than S or not. For that we have used 
the superiority of feasible (SF) approach [17] for constrained optimization, where the 
priority of a certain solution, here permutation or food source, is decided based on 
lexicographic ordering and constraint violation and objective function value are dis-
tinguished. The aim of this approach is to optimize constraint optimization problems 
by a lexicographic order where constraint violation gets higher priority over objective 
function value.  

According to superiority of feasible (SF) approach the thumb-rules to decide the 

superiority of a certain solution S over *S can be given as follows: 
 

1) *S is feasible and  S is not. 

2)  

*S and S  are both feasible and *S  has a smaller objective function value 

than S . 
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Thus, finally we can summarize the total MoDABC algorithm as follows: 
 

Pseudocode 4. IDABC algorithm 

1 Set parameters 

2 //Initialization// 

  Establish initial populations randomly with NP food 

  sources where each food source S contains two n dimen- 
  sional vectors, J presenting a sequence of jobs and E  

  a sequence of employee for the corresponding jobs.  

3 Assign a destruction size di to each food source in the 

  population which is assigned randomly in the range 

  [1, n-1]. 

4 Evaluate population and find Sbest and dbest. 
5 //Employed Bee Phase// 

  Repeat the following for each employed bee Si 
  a Generate a new food source by Snew = DCi(Si,di) 

  b Apply local search algorithm to Snew 
  c if f(Snew)<f(Si),Si = Snew 
    else di = rand() % (n-1) 

  d if f(Snew)<f(Sbest),Sbest = Snew and dbest = di 
6 //Onlooker Bee Phase// 

  Repeat the following for each onlooker bee Sk 

  a Select a food source Sk = Tournament Selection(Sk  ) 
  b Generate a new food source by Snew = DCk(Sk,dk) 

  c Apply RIS local search to Snew 
  d if f(Snew)< f(Sk), Sk= Snew 
    else dk= rand()%(n-1) 

  e if f(Snew)<f(Sbest),Sbest = Snew and dbest = di 
7 //Scout Bee Phase// 

  Repeat the following steps for each scout bee πk 
  a Select a food source Sk = Tournament Selection(Sk  ) 
  b Generate a new food source by Snew = DCk(Sk,dbest) 

  c Apply VNS local search to Snew 
  d if f(Snew)< f(Sk), Sk= Snew 
    else dk= rand()%(n-1) 

  e if f(Snew)<f(Sbest),Sbest = Snew 
  f if the stopping criterion is not met, got to Step 5, 

    else stop and return Sbest. 
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5 Experimental Results and Discussions 

We have tested our proposed algorithm on 10 different problem instances generated 
in accordance with real time circumstances each with different employee numbers and 
different final components. Four are relatively easy scheduling problems where num-
ber of operators is limited to a maximum of 6 and depth of disassembling is at most 4. 
Four cases require assignment of medium level of difficulty where depth of tree is at 
most 7 and number of operators involved is at most 10.  The remaining two cases 
pose a difficult assignment challenge with involvement of 15 operators and a depth 
level of 10. 

Table 2. Comparison of results of MoDABC and other algorithms for several instances 

Instance 

No. 

Makespan obtained and algorithmic run time 

GA ABC ID-ABC 

Makespan RunTime(sec) Makespan RunTime(sec) Makespan 
RunTime 

(sec) 

1 20 0.59634 20 0.54972 20 0.50070 

2 45 0.63181 35 0.52531 35 0.50090 

3 45 0.75019 36 0.50924 30 0.50281 

4 41 0.80111 41 0.73677 41 0.68710 

5 135 1.33270 101 1.17296 100 0.99364 

6 110 1.23306 83 1.23467 83 1.06776 

7 116 1.10739 85 0.97186 85 0.82784 

8 114 1.11338 83 0.96689 83 0.92827 

9 198 1.76803 128 1.57978 125 1.66963 

10 189 1.89628 157 1.87293 157 1.74956 

 

Fig. 1. Gantt chart obtained using ID-ABC for a 5components, 4 employee problem 
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The efficiency of ID-ABC is shown in table 2 by comparing its results with state-
of-art algorithms like ABC and GA. Besides this, the gnat-chart [18] for instance 
number 1 with 5 employee and 4 components generated by ID-ABC is shown in the 
fig 2.  

The parameters used in the MoDABC algorithm vary over a wide range depending 
on the problem dimensions.  But we have generally taken the dimension of each food 
source as the number of operations in the problem, total number of food sources NP 
as the product of total number of components and the number of employee. But there 
is no restriction like that but it gives kind of thumb rule for the population size. Again, 
the number of onlooker bee is twice of NP and the size of the scout population is 
0.25*NP. The other two algorithms are also run with the same population sizes for 
each problem. 

6 Conclusions and Future Possibilities 

In this paper, we have proposed the manpower scheduling for disassembling process 
which is one of the foremost and basic step of remanufacturing industry. We have 
also presented a tree type structure and a mathematical formulation of makespan for 
this problem. This formulation opens a scope of application of several algorithms in 
this problem and using this model we can also develop many efficient heuristics and 
meta-heuristics in future which can solve the problem efficiently. Here, we have pro-
posed a meta-heuristic ID-ABC which proves itself very efficient to solve this sche-
duling problem when compared with other state-of-art algorithms. But still there is 
scope of improvements in this algorithm which will make it more robust and applica-
ble for even other discrete problems too. We can mold this algorithm with some effi-
cient local search heuristic to make it more efficient for other combinatorial optimiza-
tion problems. So, both the problem and the algorithm can be considered as future 
topics for research. 
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Abstract. In the recent past Metahuristic algorithms are most widely used in 
process industries for providing optimum outputs under certain constraints. 
Almost all the industrial processes are multivariable in nature with strong 
interactions and nonlinearities. For such processes producing optimum response 
is cumbersome with conventional optimization algorithms while metahuristic 
algorithms provide better solution. In this paper BAT algorithm, a recently 
developed metahuristic algorithm is used to obtain optimum response of coal 
gasifier which is a highly nonlinear multivariable process having strong 
interactions among the control loops. The existing controller along with its 
tuned parameters does not able to satisfy the constraints at 0% load for 
sinusoidal pressure disturbance otherwise this seems to be fine. The parameter 
of pressure loop PI controller is retuned using BAT algorithm and the 
performance tests are conducted. Test results shows that the retuned controller 
provides better response, meeting all the constraints at all load conditions.  

Keywords: Bat Algorithm, Coal gasifier, Coal quality, Integrated Gasification 
Combined Cycle, Metahuristic algorithm, Optimization.  

1 Introduction 

Integrated Gasification Combined Cycle (IGCC) is an efficient method of clean 
power and energy generation. Here Coal reacts with air and steam, converted into coal 
gas (syngas or producer gas) under certain pressure and temperature. Purified Coal 
gas runs the gas turbine to generate power and exhaust gas from the gas turbine enters 
Heat Recovery Steam Generator (HRSG) to produce steam which in turn runs the 
steam turbine. And thus the efficiency of IGCC based power plant has increased 
efficiency compared to coal fired thermal power plants. Coal gasifier, an important 
and primary element in IGCC, which converts coal into coal gas, is a highly non-
linear, multivariable process, having five controllable inputs few non-control inputs 
and four outputs with a high degree of cross coupling between them. The process is a 
four-input, four output regulatory problem for the control design (keeping limestone 
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at constant value). It exhibits a complex dynamic behaviour with mixed fast and slow 
dynamics and it is highly difficult to control. The full model of coal gasifier has 25 
states and the ultimate requirement is to find the controller constants (Kp, Ki) of 
decentralized PI controller such that all the constraints are met for all the specified 
loads as given in the challenge problem [1]. Control specification includes sink 
pressure step and sinusoidal disturbance tests (at the three different operating points), 
ramp change in load from 50% to 100%, and coal quality (±18%) test. Input-output 
constraints and performance specifications are detailed [1]. A group of researchers 
have attempted to analyze and designed controllers and retuned the baseline controller 
to meet the performance objectives at all the load conditions [2-10] in the recent past. 
Apart from the conventional techniques, soft computing approaches such as MOGA 
[11] and NSGA II [12] are also used to design the controller. But still there is a scope 
for new metahuristic algorithms to be used to get the optimum response.   

2 Mathematical Representation of Coal Gasifier 

The nonlinear model of coal gasifier can be transformed into linear model and the 
linearized transfer function model of the gasifier can be represented as; 
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Where, 
Gij=transfer function from ith input to jth output 
y1= fuel gas caloric value (J/kg);  y2=bed mass (kg) 
y3=fuel gas pressure (N/m2);   y4=fuel gas temperature (K) 
u1 =char extraction flow (kg/s);  u2=air mass flow (kg/s) 
u3=coal flow (kg/s);    u4=steam mass flow (kg/s) 
u5=limestone mass flow (kg/s);  d =sink pressure (N/m2) 

 
Limestone flow rate is fixed at 1/10th of coal flow rate and thus the process can be 

reduced to 4X4 MIMO process for control purpose. For a multivariable process 
decentralised control schemes are usually preferred. Equation 2 shows the structure of 
decentralised controller used in gasifier control [1]. It employs three PI controllers 
and one feedforward+feedback controller for coal flow rate.  
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Where, Kp=proportional gain; τi=Integral time and Kf=feedforward gain  
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The given controller structure with provided controller parameters satisfies the 
performance requirements at 50% and 100% operating points but fails to satisfy the 
constraints at 0% load for sinusoidal pressure disturbance( i.e. PGAS exceeds the 
limit of ±0.1bar). The decentralised controller may be re-tuned to meet the desired 
performance requirement at all load conditions and for all pressure disturbance tests.  
The input and outputs should be maintained under certain limits for the proper 
operation of gasifier. The input actuator flow limits and rate of change of limit are 
associated with the physical properties of the actuator, should not exceed as shown in 
table 1. 

Table 1. Input limits 

Input variable Max(kg s-1) Min(kg s-1) Rate(kg s-2) 

Coal inlet flow (WCOL) 10 0 0.2 
Air inlet flow (WAIR) 20 0 1.0 
Steam inlet flow (WSTM) 6.0 0 1.0 
Char extraction (WCHR) 3.5 0 0.2 

 
Gasifier outputs should be regulated within the limits (table 2) for sink pressure 

(PSink) disturbance test, load change test and other tests. The desired objective is the 
outputs should be regulated as closely as possible to the demand. 

Table 2. Output limits 

Output variable Objective Limits 

Fuel Gas Calorific vale (CVGAS)  
Minimize 

fluctuations 

± 10KJ kg-1 
Bed mass (MASS)  ± 500 kg 
Fuel Gas Pressure (PGAS) ± 0.1 bar 
Fuel Gas Temperature (TGAS) ± 1 K 

3 Bat Algorithm 

BAT algorithm, developed by Xin-She Yang[13], is a population based metahuristic 
approach based on hunting behavior of bat. The following idealized rules are assumed 
for developing code for BAT algorithm [13] [14]. 

1. All the bats have the ability to identify and locate the prey by echolocation. 
2. Bats flies with a frequency ƒmin from the current position xi at a velocity vi 

but with varying loudness and frequency.  
3. The loudness varies from a minimum value(Amin) to maximum value(A0) 

Figure 1 shows the flow chart for Bat algorithm for the proposed tuning method. 
The wavelength (λ) and loudness (A0) of bats varies to search for prey.  

The frequency ƒi and velocity vi of ith bat is updated by using the relation 
( )δminmaxmin ffffi −+=     (3) 

( ) i
t
gbest

t
i

t
i

t
i fXXvv −+= −1     (4) 
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Fig. 1. Flow chart for BAT algorithm  
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The new solutions can be found by 

t
i

t
i

t
i vXX += −1     (5) 

Where,   
δ[0,1] =random vector from a uniform distribution. 
ƒmin and ƒmax = function of domain size 

Each bat is randomly assigned a frequency between ƒmax and ƒmin. Each bat takes a 
random walk creating a new solution for itself based on the best current solution 
given by, 

t
oldnew AXX ρ+=     (6) 

Where,  
ρ ɛ [-1,1], a random number and  
At = average loudness.  

Loudness decreases as a bat move closer to its prey and pulse emission rate 
increases. 

t
i

t
i AA α=+1     (7) 

[ ]t
i

t
i err γ−+ −= 101         (8) 

Where α and γ are constants. 

4 Problem Formulation and Implementation 

Figure 2 shows the implementation of BAT algorithm based optimization technique 
used for tuning the parameters of PI controller of coal gasifier. Maximum of Absolute 
Error (AE) for PGAS at 0% load and 0% change in coal quality is the objective 
function for BAT algorithm while controller parameters of pressure loop PI controller 
is the decision variables.  

 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Block diagram of Optimization scheme 
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Input constraints are associated with the given Simulink model and it is not 
included in the specifications. Minimization of the desired performance specifications 
is the objective function. The controller should respond quickly than the process and 
hence sampling time is selected as 0.5 seconds.   

The procedure is as follows; 

1) At 0% load and 0% coal quality apply a sinusoidal pressure disturbance 
(amplitude 0.2bar and frequency of 0.04Hz). 

2) Run the simulation over 300seconds.  
3) Calculate maximum Absolute Error (AE).  
4) Run BAT algorithm (Matlab code).  
5) Best optimal controller parameters are obtained. These controller parameters 

of PI controller are the best tuned values for pressure loop PI controller. 

Parameters of optimal PI controller and existing PI controller are listed in Table 3. 
These parameters are used to evaluate the performance of Optimal PI controller. 

Table 3. Comparison of PI Controller parameters 

Parameter Dixon-PI[1] BAT-PI 

Pr_Kp 0.00020189 0.00032142 
Pr_Ki 2.64565668e-05 1.56782164e-7 

5 Performance Tests 

Performance of the gasifier system along with its controller constants is accessed by 
conducting the following performance tests which include pressure disturbance test, 
load change test and coal quality test. The optimum controller settings (Pr_Kp and 
Pr_Ki) for the pressure loop PI controller replace the existing parameters and the 
following tests are conducted. The gasifier input-outputs should satisfy the constraints 
(table 1 and table 2) for all performance tests.  

5.1 Pressure Disturbance Tests 

Change in grid frequency and change in load are the two disturbances that are 
commonly occurring in a gasifier system. Change in grid frequency causes the inlet 
valve to move at a low frequency and is represented by sinusoidal pressure 
disturbance with amplitude of 0.2 bar and a frequency of 0.04Hz. A step disturbance 
of 0.2 bar represents change in gas turbine valve position due to change in load. 
Sinusoidal pressure disturbance is applied to gasifier and input-output response is 
obtained for 300 seconds. Figure 3 shows the input-output response of the gasifier 
along with its limits. Similar experiment is conducted for step change in pressure and 
is shown in figure 4. It is clear that input-output response does not violate the 
constraints as given in table 1 and 2. More particularly at 0% load condition PGAS is 
well below the limits but with [1] PGAS violates the constraints.  
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                    (a) Outputs and Limits                                           (b) Inputs and Limits 

Fig. 3. Response to sinusoidal disturbance at 0%, 50% and 100% load 

   
                   (a) Outputs and Limits                                        (b) Inputs and Limits 

Fig. 4. Response to step disturbance at 0%, 50% and 100% load 

The numerical values of above pressure disturbance test are consolidated and are 
listed in table 4.  Test data shows the Integral of Absolute Error (IAE) and maximum 
Absolute Error (AE) for all the four outputs at all loads and for all pressure 
disturbances. It is observed that  improved response in PGAS while for the other 
outputs a marginal increase in magnitude is obtained. This is due to the existence of 
strong interactions among the control loops. The response meets all the performance 
requirements at all the load conditions (0%, 50% and 100%) and for all the pressure 
disturbances. 
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Table 4. Summary of test output results 

Test 
Description 

Output Maximum Absolute Error IAE 

BAT-PI Dixon-PI[1] BAT-PI Dixon-PI[1] 

100% Load, 
Step 
Disturbance 

CVGAS 
MASS 
PGAS 
TGAS 

5727.86 
6.94 
4279.01 
 0.27 

4885.23 
6.94 
5018.94 
0.24 

66381.33 
1543.32 
158284.93 
63.25 

60989.48 
1597.03 
78475.47 
65.09 

50% Load, 
Step 
Disturbance 

CVGAS 
MASS 
PGAS 
TGAS 

6283.71 
8.45 
5250.58 
0.31 

5102.16 
8.45 
5790.93 
0.27 

71139.19 
883.41 
208911.31 
74.09 

64766.48 
840.04 
94310.73 
77.13 

0% Load, 
Step 
Disturbance 

CVGAS 
MASS 
PGAS 
TGAS 

7651.99 
11.05 
7597.58 
 0.38 

5875.95 
11.05 
7714.53 
0.32 

89188.03 
1133.53 
469446.96 
71.12 

86561.16 
1330.92 
120167.73 
77.05 

100% Load, 
Sinusoidal 
Disturbance 

CVGAS 
MASS 
PGAS 
TGAS 

3723.43 
10.73 
3178.29 
0.35 

4101.30 
10.89 
4981.41 
0.38 

1392918.53 
4153.92 
1188780.64 
 123.21 

1545471.04 
4154.65 
1857629.38 
134.44 

50% Load, 
Sinusoidal 
Disturbance 

CVGAS 
MASS 
PGAS 
TGAS 

4298.12 
12.67 
3965.51 
0.39 

4715.68 
12.87 
6209.91 
0.42 

1589982.28 
5035.52 
1473884.83 
136.99 

1759740.23 
5041.36 
2307614.42 
149.47 

0% Load, 
Sinusoidal 
Disturbance 

CVGAS 
MASS 
PGAS 
TGAS 

6205.03 
16.26 
9948.60 
0.48 

5869.69 
16.35 
11960.42 
0.48 

2050043.67 
6131.33 
2726992.62 
159.54 

2074977.65 
6016.65 
3845931.81 
159.09 

5.2 Load Change Test 

Load change test is conducted to verify the stability of the gasifier and controller 
function across the working range of the plant. The gasifier process is started at 50% 
load in steady state and ramped it to 100% over a period of 600 seconds (5% per 
minute). The actual load, CVGAS and PGAS track their demands quickly to setpoint 
while Bedmass takes more time to reach its steady state, though manipulated inputs 
coal flow and char flow have reached their steady state immediately (figure 5).  

5.3 Coal Quality Test 

Carbon content and moisture content of the coal decides the quality of coal gas. 
Usually the coal quality is not constant over a period of time and may vary to a 
considerable amount. In this test, the quality of coal increased and decreased by 18% 
(the maximum possible change in coal quality), and the above pressure disturbance 
test are conducted to verify the robustness of the controller. Input-output responses  
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(shown in figure 6-11) for sinusoidal and step change in PSink are verified for 300 
seconds.  Table 5 shows the violation of the variables under positive (+18%) and 
negative change(-18%) in coal quality. Since input constraints are inbuilt in the 
actuator limits, output constraints are considered to be the actual violation. TGAS and 
PGAS violate the limits under change in coal in coal quality for sinusoidal pressure 
disturbance and no output variable is found for step pressure disturbance.  

   

           (a)   Input response to load change                     b) Response to ramped increase in load                                      

Fig. 5. Response to load increase from 50% to 100% load 

   
                        (a) Outputs and Limits                                        (b) Inputs and Limits 

Fig. 6. Response to change in Coal quality at 100 % Load for sinusoidal change in PSink 
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                      (a) Outputs and Limits                                         (b) Inputs and Limits 

Fig. 7. Response to change in Coal quality at 100 % Load for step change in PSink  

   
                         (a) Outputs and Limits                                         (b) Inputs and Limits 

Fig. 8. Response to change in Coal quality at 50% Load for sinusoidal change in PSink  

 

   
                  (a) Outputs and Limits                                          (b) Inputs and Limit 

Fig. 9. Response to change in Coal quality at 50 % Load for step change in PSink 
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                          (a) Outputs and Limits                                       (b) Inputs and Limits 

Fig. 10. Response to change in Coal quality at 0 % Load for sinusoidal change in PSink  

   
                         (a) Outputs and Limits                                         (b) Inputs and Limits 

Fig. 11. Response to change in Coal quality at 0% Load for step change in PSink  

Table 5. Violation in output variables under coal quality change (±18%) (↑ - the variable 
reaches its upper limit, ↓ the variable reaches its lower limit) 

Load 100% 50% 0% 
Disturbance type Sine Step Sine Step Sine Step 

Coal quality increase  
(+18%) 

Tgas↑ Within 
 Limits 

Tgas↑ 
 

Within 
 limits 

Pgas↑ Within 
 limits 

Coal quality decrease  
(-18%) 

Tgas↓ Within 
 Limits 

Within  
limits 

Within 
 limits 

Pgas ↑ 
 

Within 
 limits 

6 Conclusion 

Recent developments in metahuristic algorithm motivate the authors to find optimum 
response of coal gasifier under certain constraints. More specifically metahuristic 
optimization algorithms are most widely used when the performance objective 
involves many constraints. In this work the parameters of decentralised PI controller 
for pressure loop of Coal gasifier is retuned by using BAT algorithm. The existing 
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controller with tuned parameters does not satisfy the performance requirements at 0% 
load for sinusoidal pressure disturbance. Best optimum solution for the controller 
parameters are obtained for the given constraints and these parameters are used to get 
the desired response and also performance tests are conducted. Performance tests are 
conducted with the optimum controller settings and the results meets the performance 
requirements comfortably at 0%, 50% and 100% load conditions.  
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Abstract. In the recent years stochastic optimization techniques have seen a 
remarkable development for many scientific and industrial problems. There has 
been growing interest in the successful use of these techniques for obtaining the 
global optimum of a given optimization problem. Many authors proposed 
different methods of optimization techniques and applied on a variety of 
problems. The difficulty in global optimization increases with the dimension of 
the problem and the presence of multiple local minima. Taboo evolutionary 
programming (TEP) is a novel evolutionary programming technique, which 
found extensive usage in the present decade. TEP is an effective global 
optimization technique which avoids entrapment in local minima and to 
continue the search to give the optimal solution independent of the initial 
conditions. The algorithm can be effectively implemented on any complex 
problem to find the optimum solution with many constraints. Successful use of 
TEP is published in terms of exploring efficiently the solution space by 
providing optimal solutions and good initial estimation.  

In the present study TEP algorithm is used to find the optimum impulsive 
velocity requirements for a complex interplanetary trajectory from Earth to 
Venus mission. The optimization problem is complex due to the presence of the 
multiple local minima exists in a given synodic cycle. TEP algorithm is 
integrated with analytic technique called Lambert conic determination. Two 
types of missions namely flyby and orbiter are considered to explore the 
optimum trajectory opportunities from elliptical Earth parking orbit. To 
demonstrate the superiority of TEP, the results were compared with Genetic 
Algorithm (GA) also. 

Keywords: Taboo Evolutionary Programming, Genetic Algorithm, optimum, 
flyby, orbiter, Lambert conic. 

1 Introduction 

Interplanetary trajectory design has been a major interest for the space scientific 
community due to the growing interest in planetary explorations. It is necessary to 
have the details regarding the impulsive velocity requirements at each maneuver for 
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minimizing the propellant requirements, while planning advanced missions like flyby, 
orbiter, Lander, swing by, powered trajectories, etc. Optimization techniques to find 
best solutions for minimizing the total impulsive velocity requirement (or maximizing 
the payload capabilities) of interplanetary trajectories have been a subject of 
considerable importance for several years. Many authors proposed different methods 
of optimization and implemented on a variety of test cases (Yao et al. (1999), 
Cvijovic and Klinowski (1995)). Recent years have witnessed an enormous increase 
in the successful use of stochastic optimization techniques for practical problems in 
the fields of science, technology, economics, logistics, and travel scheduling etc., 
which involve global optimization.  Many cases the successful use of these techniques 
is published in terms of exploring, efficiently the solution space by providing optimal 
solutions and good initial guess. Difficulty in global optimization increases with the 
dimension of the problem (defined as the number of variable involved in the solution 
space) and the presence of multiple local minima. Further any effective global 
optimization technique must be able to avoid entrapment in local minima and 
continue the search to give the optimal solution independent of the initial conditions. 
Recently, the authors implemented and analyzed Taboo evolutionary programming 
(TEP) for computing the optimum transfer trajectory opportunities from Earth to Mars 
(Mutyalarao et al. (2011)). Numerous unmanned missions between the years 1962 and 
1985 to Venus achieved landing on the surface, but all without return. The Launch 
windows for Venus occur every 19 months (synodic period) and every window was 
utilized to launch reconnaissance probes. Recent orbiter missions include Venus 
Express of ESA, achieved a polar orbit on April 11, 2006, and it has been sending 
back science data. Akatsuki, was launched on May 20, 2010, by JAXA. Some of the 
future mission includes, NASA the Venus In-Situ Explorer, to be launched in 2013. It 
would land and perform experiments on the surface of Venus, including taking a core 
sample and measuring its composition. ESA has proposed the Venus Entry Probe to 
be launched around the same time. Also, the Venera-D spacecraft has been proposed 
by ROSCOSMOS around 2016, and its prime purpose is to map Venus's surface. 
Recently, Mutyalarao et al (2012) used Lambert conic technique alone for computing 
minimum energy Earth departure trajectories to Venus. The study deals with the fly-
by and orbiter missions to Venus from the Earth parking orbit during the year 2013-
14. Grid search with time step of 1 day has been used in their study to compute the 
optimum. However, the approach requires very high computational time to arrive at 
the accurate time epoch which gives the minimum energy opportunity. 

In the present study an analysis is carried out using Taboo evolutionary 
programming (TEP) to a complex interplanetary trajectory problem of direct ballistic 
transfer from Earth to Venus. The methodology is integrated with TEP with Lambert 
conic technique and it has been applied to find the minimum energy opportunity (or 
minimum impulsive velocity requirement) transfer trajectories from Earth to Venus 
for a synodic cycle 2013-2020. The methodology is also integrated with GA and 
compared with TEP results. The comparison revealed that the results obtained with 
TEP are better than GA in terms of identifying the global minima. 
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2 Taboo Evolutionary Programming 

2.1 Taboo Search (TS) 

In 1995, Taboo (or ‘Tabu’ being a different spelling of the same word) search (TS), 
originally developed by Glover (1989, 1990) and extended to continuous valued 
functions, is a stochastic optimization method attracted much attention. A study with 
a number of benchmark test examples covering constrained and unconstrained 
functions was carried out by Rajesh.et al (2000) along with a rigorous comparison of 
the performance of the TS with other methods. The convergence of TS for continuous 
function optimization is studied by Mingjun Ji and Jacek Klinowski (2006). The 
results clearly reveal that TS technique can be a viable alternative to other methods 
such as GA, Simulated annealing based on stochastic differential equations, pure 
random search etc. 

TS is a mathematical optimization method, belonging to the class of local search 
techniques. TS enhances the performance of a local search method by using memory 
structures: once a potential solution has been determined, it is marked as "Taboo" so 
that the algorithm does not visit that possibility repeatedly. TS uses a local or 
neighborhood search procedure to iteratively move from a solution   to another 
solution   in the neighborhood of  , until stopping criterion has been satisfied. 
Here the admitted solutions in the neighborhood of ,  ∗( ), are determined 
through the use of a memory structures, called Taboo list. The Taboo list is a short-
term memory which contains the solutions that have been visited in the recent past. 
The search then progresses by iteratively (using Taboo list) moving from a solution   
to a solution  in ∗( ). A condition that guides the search to get out from the 
local optimum is called the Taboo condition.  

2.2 Evolutionary Programming (EP) 

An important branch of evolutionary algorithms (EA) is evolutionary programming 
(EP) which attracted much attention for the determination of the global optimum of a 
specified function. EP is non-gradient algorithm and it uses primarily search based 
methodology to compute the optimum of a function. Other branches of EAs include 
GA and evolution strategies.  

In 2006, a new method of global optimization technique, Taboo evolutionary 
programming motivated by combining TS and EP was first introduced by Mingjun Ji 
& Jacek Klinowski (2006). TEP essentially combines the features of an EP, called 
single-point mutation (Ji et al. (2004)) with TS. The results were found to be in good 
agreement with that of analytical results.  

2.3 TEP Algorithm 

The objective is to compute the minimum of ( ) , such that  x ∈ Ω where Ω = ∈: ≤ ( ) ≤ , a, b ∈ , = 1,2, … ,  ,  is a real-valued continuous function 
on Ω.  



 Optimal Velocity Requirements for Earth to Venus Mission 765 

The TEP algorithm presented here is closely follows Mingjun Ji & Jacek 
Klinowski (2006): 

1) Generate the initial population of  individuals based on a uniform 
distribution, and set k = 1. Each individual is taken as a vector , ∈ 1,2, … ,  

2) Evaluate the fitness score for each individual,  , ∈ 1,2, … , , of the 
population on the objective function, ( ). 

3) For each parent  , ∈ 1,2, … , , create a single offspring ′  by  

′( ) = ( ) + (0,1),     = ( ), 
where  is randomly chosen from the set 1,2, … ,  and the other components of 

′  are equal to the corresponding ’s. (0,1) denotes a normally distributed one-
dimensional random number with a mean of zero and a standard deviation of one. 

Here, the parameter = 1.01. The initial value of    and whenever  < 10  

then  is set to its initial value. 

4) Calculate the fitness of each offspring ′ , ∈ 1,2, … , . 
5) Perform the search using the following improved paths: 
5.1 Choose an improved path as follows. For each ∈ 1,2, … , , if ′ ≤( ) then = ′ , = ′  is an improved path. Put a pair of vectors ( , ) 

into the set . 
5.2 Choose  best fitness individuals from the set  as the parents with improved 

paths. Note that ( , ), = 1,2, … , , where  is an objective variable and  is 
the corresponding improved path. Set = , where   is a null set. 

5.3 Calculate fitness: for each = 1,2, … , ,  ′ = + ,   = ( ).  
The initial value of  is 1 and whenever < 10 ,  then  is set to its initial value. 

5.4 For each = 1,2, … , , if ( ′ ) ≤ ( ), then set ( ′ , ) as a parent of 
the next generation with improved search paths, and put into the set . 

5.5 Record the number , of members in set . 
6) Choose the parents for the next generation. 
6.1 Perform a comparison over the union of parents  and offspring ′ , ∈1,2, … , . For each individual, q opponents are chosen uniformly at random from all 

the parents and offspring. For each comparison, if the individuals fitness is equal to or 
greater than the opponent’s, it scores a  ′ ′. Select the  individuals out of  
and ′ , ∈ 1,2, … , , which have the most s to be put into the set .  

6.2 Make the individuals , ′ and  from sets  and  the parents of the next 
generation. Set = . 

7) Check the Taboo status as follows: 
7.1 Record the current optimal fitness, ∗, and the current optimal solution, ∗ . 
7.2 When > , and for a specified σ1 and σ2 (sufficiently both are small real 

numbers) compare the optimal fitness of the current generation with the optimal  
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fitness of the previous  generations. Thus, if | ∗ ∗ | ≤ , then ∗ =∗,  ∗ = ∗. Put the pair of vectors ( ∗, ∗) into the taboo table . The length of 
taboo table  is . 
7.3 For any ( ∗, ∗) in , if the current optimal fitness ∗ and the optimal 

solution ∗  satisfies the taboo conditions, | ∗ ∗| ≤  and ∗ ∗ ≤ , then 
generate the initial population of  individuals and set new individuals as the  
generation.  

8) Terminate if  is more than maximum number of generations. Otherwise, set = + 1 and go to Step-3. 

3 Problem Formulation  

The objective function considered here is the total velocity requirements (ΔV) at the 
end of a direct ballistic transfer from Earth to Venus. The optimization includes the 
minimization of ΔV under the constraints of co-orbital plane maneuvers. The search 
space is characterized by three design variables. viz., departures date (DD), transfer 
duration (Δ ), and the orbital inclination (i). 

4 Methodology 

As indicated in Cornelisse (1978) for an interplanetary mission, a spacecraft is 
launched from Earth and it is accelerated to a velocity greater than the local escape 

velocity ( eV ), the spacecraft recedes from Earth along a hyperbolic trajectory 

(planeto-centric). As distance from Earth increases, solar attraction gradually becomes 
more important until finally the spacecraft enters into a helio-centric trajectory. The 
spacecraft fly along this trajectory to reach the neighborhood of the target planet 
Venus, where the latter’s gravitational attraction of Venus gradually overtakes the 
solar gravitational attraction and it enters into a hyperbolic trajectory about the target 
planet Venus. If no orbital maneuver is executed during this phase, the spacecraft will 
pass the target planet Venus and recedes from it again along the outgoing leg of the 
hyperbola. This constitutes a fly-by or swing-by mission. For an orbiter mission, the 
spacecraft is decelerated to enter into a closed orbit about the target planet Venus; for 
a lander mission, the spacecraft’s velocity with respect to the surface of the planet 
must be reduced to almost zero. The Earth to Venus transfer trajectory design 
methodology considered in this study is based on direct ballistic technique, for which 
the input requirements are the date of Earth departure date (DD), time of flight (∆t) 
and inclination (i) of the Earth parking orbit. Earth and Venus are assumed to be point 
masses. The planetary ephemeris in J2000 reference frame is generated using the 
analytical expressions available in Standish et al. (1992) for mean orbital elements  
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relative to the ecliptic plane. The methodology used in this paper is presented in 
Figure 1. The computation of ∆V in Figure 1 is given below: 

• Compute the state vector ( , ) of Earth at the departure date (DD). 
• Compute the state vector ( , ) of Venus at the arrival date (i.e., DD+∆t). 

The planetary ephemerides were modeled using Meeus algorithm [11]. 

• Use Lambert problem solution technique (universal variable method) [12, 
13] for the departure to target phase and determine initial ( ) and final ( ) vectors of 
the transfer hyperbola. 

• Compute the asymptotic relative velocity vector at departure ( ∞ ) and at 
the arrival ( ∞ ) by using the following formulae: 

   ∞ =  , 

 ∞ =  

• Transform ∞  to Earth Centered Inertial frame and calculate the right 
ascension and declination to identify the co-orbital transfer trajectory by using orbital 
inclination (i). 

• Compute the impulsive ∆V as follows: 

A. For Fly-by mission 

For the minimum ∆V requirement, the parking orbit perigee and transfer hyperbola 
perigee should be same. Therefore the hyperbolic orbit perigee velocity is given by                          = + ∞                                                        (1) 

But the velocity at the perigee of the departure orbit is given by                    =                                                        (2) 

Hence the departure velocity required is  

∆V1 =                                                             (3) 

where  is the gravitational constant of Earth,  and  are the perigee altitude and 
apogee altitude of the parking orbit, respectively. For fly-by mission ∆V = ∆V1. 

B. For orbiter mission 

Here the total velocity required ∆V is 

                                       ∆V = ∆V1 +∆V2                                                 (4) 

where, ∆V1 is the departure impulse calculated from equations (1) to (3) and ∆V2 is 
the arrival impulse. ∆V2 can be calculated by replacing  , ∞ ,  and  with the 
suitable constraints at arrival phase of the planet Venus in equations (1) to (3). The 
constants used for the present study is provided in [15]. 
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Fig. 1. Schematic diagram of methodology 

5 Results  

Computation of ∆V mentioned in section 4.1 is validated in Mutyalarao et al.(2012) 
for Earth to Venus transfer with a test case given in Stephen Kemble (2006). In the 
present study, Earth to Venus transfer is considered from an initial Earth parking orbit 
of 250 x 23000 km with 18o and 50o inclinations for all the 5 opportunities during the 
synodic cycle 2013-2020.  In order to find the global minimum energy opportunity for 
fly-by mission to Venus, minimization of departure impulsive ∆V1 is considered as an 
objective function. For orbiter missions, 1000 km circular orbit is considered around 
Venus. The total impulsive ∆V calculated from equation (4) is minimized for orbiter 
mission. Figures 2 and 3 give the contour chats of departure ∆V1 for fly-by and total 
∆V for orbiter missions, respectively for the year 2013-14 with earth parking orbit 
inclination of 18o. The appropriate launch window can be identified from these 
contour plots. 

TEP Simulations are performed for all five opportunities spanning one synodic 
cycle i.e., 2013-2020. To evaluate the performance, the algorithm was run for 50  
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times with 100 generations each. The convergence plots for fly-by and orbiter 
missions for one typical run, executed for the year 2015, are given in Figures 4 and 5, 
respectively. From these figures, it can be seen that the run is converged to identify 
the global optimum within 20 generations. Statistics of velocity dispersions over 50 
simulations for flyby mission in one Synodic cycle for 18o and 50o inclinations are 
tabulated in Tables 1 and 2, respectively. The same details for orbiter mission are 
provided in Tables 3 and 4. From these Tables, it is evident that the standard deviation 
(σ) for all the cases is less than 75 m/s only. Similarly the difference between 
maximum and minimum values of ∆V is also less for all the opportunities. For flyby 
mission opportunities, ∆V requirement during 2013-16 varies between 1.333 km/s and 
1.521 km/s and for orbiter mission it is between 4.741 km/s and 5.607 km/s.  

 

 

Fig. 2. Departure ∆V1 contours for fly-by 
mission in 2013-14 with 18o inclination 

Fig. 3. Total ∆V contours for orbiter mission 
in 2013-14 with 18o inclination  

 

Fig. 4. Flyby mission convergence plot  
(Departure Epoch: 20 /05/2015 11:51:21) 

Fig. 5. Orbiter mission convergence plot 
(Departure Epoch: 07/06/2015 16:27:44) 
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Table 1. Optimum launch opportunity for fly-by mission during a synodic cycle for i=18o 

No Departure Epoch* Δt (days) ΔV (km/s)
Statistics of ΔV (km/s) 

from 50 runs 
Mean σ Min Max 

1 02/11/2013 04:11:09 160.426 1.416028 1.430946  0.020913 1.416028 1.532951 

2 20 /05/2015 11:51:21 158.262 1.332724 1.341879 0.029386 1.332724 1.458983 

3 28 /12/2016 19:48:30 132.712 1.378857 1.410366 0.042688 1.378857 1.495838 
4 31 /07/2018 18:36:16 122.655 1.393994 1.413369 0.023845 1.393994 1.552093 
5 10 /04/2020 21:49:23 173.514 1.520652 1.547792 0.021723 1.520652 1.569358 

                                            * Date/Month/Year  Hours:Minute:Second 

Table 2. Optimum launch opportunity for fly-by mission during a synodic cycle for i=50o 

No 
Departure Epoch* 

 
Δt (days) ΔV (km/s)

Statistics of ΔV (km/s) 
from 50 runs 

Mean σ Min Max 
1 30/ 10/2013 18:34:46 158.811 1.408716 1.408716 1.0E-06 1.408716 1.408719 
2 20/05/2015 12:11:27 158.250 1.332724 1.335355 0.015980 1.332724 1.445945 
3 28/12/2016 19:51:54 132.709 1.378857 1.381391 0.013281 1.378857 1.471657 
4 31/07/2018 18:49:31 122.646 1.393994 1.395464 0.005690 1.393994 1.424096 
5 27/03/2020 13:49:32 171.659 1.462568 1.462568 3.33E-08 1.4625680 1.4625683 

Table 3. Optimum launch opportunity for orbiter mission during a synodic cycle for i=18o 

 

Table 4.Optimum launch opportunity for orbiter mission during a synodic cycle for i=50o 

 
 

            

No Departure Epoch 
 Δt (days) ΔV 

(km/s) 

Statistics of ΔV (km/s) 
from 50 runs 

Mean  Min Max 
1 13/11/ 2013 01 47:30 108.969 5.213998 5.222229  0.032937 5.213998 5.359453 

2 07/06/2015 16:27:44 130.735 4.798104 4.807720   0.015716 4.798104 4.859871 

3 02/12/2016 19:14:40 160.206 4.800831 4.889158  0.050440 4.800831 4.987421 

4 18/05/2018 23:49:59 194.634 5.259231 5.339707  0.044824 5.259231 5.448309 

5 01/04/2020 13:28:51 109.275 5.606557 5.606589  0.000180 5.606557 5.607886 

No Departure Epoch* 
 Δt (days) ΔV 

(km/s) 

Statistics of ΔV (km/s) 
from 50 runs 

Mean  Min Max 
1 13/11/2013 01:47:34 108.969 5.213998 5.247404  0.043118 5.213998 5.308383 

2 07/06/2015 16:27:43 130.735 4.798104 4.803389  0.011160 4.798104 4.846295 

3 06/12/2016 05:21:00 161.593 4.741006 4.747886  0.034051 4.741006 4.916637 

4 10/06/2018 15:33:07 183.917 5.011725 5.025553   0.049337 5.011725 5.357087 

5 08/01/2020 11:51:24 197.981 5.446010 5.518154  0.074642 5.446010 5.606560 
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In order to find out the effectiveness of TEP, the results were compared with GA 
for 18o inclination cases. The population size is selected to be 100. Because all 
optimization parameters have a specified range, a binary coded GA is utilized and all 
parameters are coded in 60 bits. A single point crossover with probability of 0.8, and 
bit-wise mutation with probability of 0.01 are selected. The GA is run for 100 
generations. Table 5 shows the results obtained from 50 runs using TEP and GA. 
From this Table, it is evident that the standard deviation (σ) is less for all cases in 
TEP. Similarly the difference between maximum and minimum values of ∆V is also 
less in TEP. Further, it is noticed that from the numerical results that the 
computational time is significantly less for TEP comparing to GA. 

Table 5. Comparison of ∆V and computational time for 50 simulations 

Optimum ∆V (km/s) 

 
Genetic Algorithm (GA) 

Taboo Evolutionary 
Programming (TEP) 

Case-1 
Fly-by 2016 

Case-2 
Orbiter 2018 

Case-1 
Fly-by 2016 

Case-2 
Orbiter 2018 

Mean 1.497071 5.340347 1.410366 5.339707 
σ 0.049734 0.082486 0.042688 0.044824 
Minimum 1.378911 5.260623 1.378857 5.259231 
Maximum 1.589579 5.587782 1.495838 5.448309 

Computational time (seconds) 

 
Genetic Algorithm (GA) 

Taboo Evolutionary 
Programming (TEP) 

Case-1 
Fly-by 2016 

Case-2 
Orbiter 2018 

Case-1 
Fly-by 2016 

Case-2 
Orbiter 2018 

Mean 6.925891 6.310686 5.2449866 5.4564853 
σ 1.822184 1.410254 0.593859 0.9678942 
Minimum 5.484251 5.360424 3.3467888 3.3568422 
Maximum 10.849716 10.773232 10.45668965 9.4454789 

 

6 Conclusions 

In this paper the detailed algorithm for minimum energy opportunities for direct 
transfer trajectories from Earth to Venus using Taboo Evolutionary Programming is 
presented. The results for fly-by and orbiter missions are generated by integrating the 
Taboo Evolutionary Programming. The results are generated for one synodic cycle 
2013-2020 by minimizing the total ΔV requirement. This algorithm has been 
successful in identifying the global minimum of the total ΔV requirement in all the 
five opportunities in one cycle. The results of TEP are compared with GA and it 
shows a substantial improvement in identifying the global optimum. 
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