
Chapter 15
Mathematical Modeling in Problems
of Vibration Acoustics of Shells

A. S. Yudin

Small oscillations of shells in the ideal compressible unlimited linear acoustic
medium (fluid) under the influence of harmonic loads are studied. In such a
statement the acoustics of vibrating constructions are modeled. Different versions
of simulation of an environment influence are discussed. In strict statement the
boundary-value problem of hydroelasticity on joint oscillations of a fluid and an
elastic shell construction contacts with the liquid is considered. Here the integro-
differential problem with using of the integral formula of Helmholtz with inte-
gration on contact surface of the construction and the medium is solved. More
effective method applying the formulae for a dynamic pressure of the fluid,
obtained in simpler problems, is offered also. It is discussed application of some
iterative processes for obtaining numerical results.

15.1 Equations of Linear Acoustics

The equations of linear acoustics follow from the main hydrodynamic equations
including equations of continuity, motion and adiabatic state that leads to wave
equation: DU ¼ c2

f U;tt. Here D = r2 is the operator of Laplace, r is the operator
of Hamilton, U is the velocity potential of medium points: vf ¼ �gradU ¼ �rU,
cf is the sound speed in the medium. Acoustic pressure, p, and relative change of a
liquid density also satisfy the wave equation. The pressure p and potential U are
coupled by dependence: p = qfU,t, where qf is the liquid density in the static state.
This dependence fulfills inside and on field boundary. If the field boundary rep-
resents an impervious shell, we have on the contact surface the condition:
w;t¼ U;no , where w,t is the displacement velocity of shell, W is the displacement
on normal no (exterior to the shell), U;no ¼ no � rU is the normal derivative.
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In stationary (harmonic) version of oscillation process, it is fulfilled a time
dependence: U ¼ Ua � expð�s0ixtÞ, where s0 = -1, +1, x is the circular fre-
quency. Then the wave equation reduces to the equation of Helmholtz relatively of
amplitudes:

DUa þ k2
oUa ¼ 0; k2

o ¼ x
�

cf : ð15:1Þ

Below, for simplification, we shall omit the lower index ‘‘a’’, pointing ampli-
tude, keeping for amplitudes the denotations of considered functions. In this case,
the relations (for amplitudes) accept the following forms: p ¼ �s0ixq f U;
U;no j S ¼ �s0ixw:

At statement of the problem external to the closed surface for obtainment of the
unique solution (taking into account that the waves decrease at infinity), we use

Somerfield conditions of radiation in the form: lim
R!1
ðU;R � s0ikoUÞ ¼ 0; lim

R!1
U ¼ 0;

where R is the radius of spherical coordinate system with the origin of coordinates
in region, bounded by closed surface (shell) Oo. These conditions are equivalent to
the requirement of transformation of the waves radiated from a surface into
spherical dispersing damping waves at infinite propagation along any ray starting
in the restricted field.

Particular solutions of tasks for the Helmholtz equations on propagation of
oscillations into fluid from shells (solids) with the given velocity distribution on
the contact surface are sufficiently simply determined in spherical and cylindrical
coordinate systems for sphere and infinite circular cylinder. More common solu-
tions are constructed in series on effectively computed special functions (of
Legendre, Bessel, Neumann, Hankel). Some approximate solutions are obtained in
spheroid coordinates for the prolate ellipsoids and slightly oblate spheroids.

Complexity of solution of the radiation and dispersion problem increases in the
case of joint oscillations of fluid and shells of sufficiently common form (the shells
of revolution which are distinct from canonical forms, with complex connections
and others). Here, we develop the corresponding methods based on integral
equations and formulae.

Let the surface Oo divides space into the internal finite area O+ and external one
O-. The following fundamental solution satisfies Helmholtz equation and radia-
tion conditions:

kðx; nÞ ¼ expðs0iko�RÞ=ð4p�RÞ; �R ¼ x� nj j ¼
X3

j¼1

ðxj � njÞ2; ð15:2Þ

where �R is the distance between two points of space. By using solution (15.2) and
Green’s formula the integrated formula for pressure is deduced [1]:

ZZ

Oo

½pðnÞkðx; nÞ;no � kðx; nÞpðnÞ;no � dS ¼ Kpp: ð15:3Þ
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Here n 2 Oo; ð::Þ;no ¼ oð::Þ=ono is the derivative on normal to the surface. For
point x in exterior field Kp = 1 and integral (15.3) is usually named by an integral
of Helmholtz. It can be applied to sound field calculation by using known pressure
profile and gradient of pressure (displacements, velocities) on surface Oo. At
x 2 Oo, coefficient Kp = 0.5 and the relationship (15.3) becomes an integral
equation of Fredholm of the second kind respectively of pressure p. When x 2 Oo,
coefficient Kp = 0. Thus in strict statement, the task of calculation of shell oscil-
lations and sound field in the medium is integro-differential (ID) one.

15.2 Equations for Vibrating Shells

The main equations of shell oscillations could be found in [2, 3] and other ref-
erences. In the case of shell with main surface in the form of closed rotationally
symmetric form, the effective algorithms are methods of solution of the boundary-
value problem into framework of the Cauchy problem. In this case, trigonometric
Fourier series on the peripheral coordinate are applied to two-dimensional equa-
tion set. As a result, the prototype set of the two-dimensional equations reduces to
one-dimensional one, depending on the remained longitudinal coordinate and
number of the peripheral mode as on parameter. Then the equations are led to a
normal form of ordinary differential equations sets of the first order, each of which
respectively of the mixed group of solving functions. One half of these functions
represent power components, other half define the kinematic ones. These com-
ponents are included into natural boundary conditions following from variational
principles of Lagrange (in statics) or Hamilton (in dynamics). From these prin-
ciples, the matching conditions on lines of breaking meridian and reinforcing
discrete ring ridges also are derived. The boundary-value problems for number of
resolving sets of equations, including matching and boundary conditions, are
solved by using the method of differential sweep with orthogonalization on
Godunov at the intermediate points of integrating range. Variability of mechanical
characteristics of shells along the meridian is thus admitted. The shells can be
multi-connected and preliminary statically stress-strained. In principle, the equa-
tions can lead to base functions as displacement components. For compactness of
further presentation, it will be assumed.

Symbolically the equations of simple harmonic motions of the reinforced shells
we will write respectively of displacement amplitudes by using the compact
operator form:

CðUÞ þ x2AðUÞ þ q� p ¼ 0; ð15:4Þ

where C, A are the elastic and inertial operators of the shell reinforced by ribs,
U ¼ fu; v; wg is the displacement amplitude vector, q ¼ fq1; q2; q3g is the
amplitude of loading, p ¼ f0; 0; pg is the amplitude of dynamic pressure of
liquid. We consider, that the operator equation (15.1) includes matching conditions
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at discrete ribs and boundary conditions through area of definition of the operators
C and A.

Further we shall use the equations with dimensionless quantities, pass to which
is conducted by using the following formulae:

fUgL ¼ fUgD

�
ðxR2

�Þ; fDgL ¼ fDgDR2
�; frgL ¼ frgDR�;

fno; RgL ¼ fno; RgD

�
R�; fu; v; wgL ¼ fu; v; wgD

�
h�;

fp; qjgL ¼ f::gDR2
��m�
�
ðE�h2

�Þ; fqf gL ¼ fqf gD

�
q�;

fcf gL ¼ fccgD

�
c�; c� ¼ ½E�=ðq��m�Þ�

1=2; �m� ¼ 1� m2
�;

e1 ¼ h�=R�; X ¼ xR�=c�:

ð15:5Þ

Here the subscript ‘‘L’’ corresponds to dimensionless quantities; the index ‘‘D’’
defines the dimensional ones; h*, R*, q*, c* are the proper small and large scales,
material density, and sound velocity in the shell; e1, X are the parameters of thin-
wallness and frequency, respectively.

Further in Sect. 15.3, we shall work with dimensionless quantities, but we shall
omit subscript ‘‘L’’ with aim of simplification. Then in the dimensionless form
above relationships reduce to the following ones:

DUþ �k2U ¼ 0; �k ¼ X
�

cf ; p ¼ �s0iqcðX=e1Þ2U;

no � rUjSo
¼ s0ie1w; lim

R!1
RðU;R � s0i�kUÞ ¼ 0; lim

R!1
U ¼ 0;

pðr 2Þ ¼ ð2pÞ�1
ZZ

Oo

p r 1ð Þf ðRÞ;no �f ðRÞpðr 1Þ;no½ � dr 1;

ð15:6Þ

CðUÞ þ X2AðUÞ þ q� p ¼ 0: ð15:7Þ

The integral (15.6) is written for the surface of contact, f ðRÞ ¼ expði�kRÞ=R,
where r1, r2 are the radius-vectors of points on the shell surface, R ¼ jr 1 � r 2j is
the distance between them.

If necessary to take into account intrinsic losses in fluid, its sound velocity is
given as a complex variable [4]. For simulation of intrinsic losses of vibrational
energy in construction, the method of complex elastic moduli (or complex stiff-
nesses) based on Sorokin’s hypothesis [5] is used.

15.3 Method of Eigenforms

Method of eigenforms (EF-method) uses integral equation (15.6) and differential
equation (15.7) (ID-formulation) and in the case of rotationally symmetric shells
contains three stages [6, 7]: (i) calculation of base functions which are eigenforms of
shell oscillations in vacuum, (ii) obtainment of pressure and displacement
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distributions (forms of forced oscillations) on the shell-medium interface, (i) cal-
culation of acoustic field in the medium.

Basic functions are defined in the process of the solution of eigenvalue problem
for the shell equations in which the circumferential coordinate is separated by
application of trigonometrical Fourier serieses. Further factors for shell displace-
ments and pressure in liquids on the contact surface further are represented in the
form of series on longitudinal eigen-oscillation modes of shell in vacuum. By
using the eigenmodes for normal displacement of shell, the set of orthogonal basic
functions is found on the base of Gramm-Shmidt’s process of orthogonalization.
With its help, it is possible to express Fourier factors of pressure through factors of
displacements. On the base of boundary integral equation and application of
Bubnov-Galerkin’s procedure for each n-th circumferential mode, the set of the
linear algebraic equations of M-order is formed, where M is the number of the
retained longitudinal modes. By this, the orthogonality of vectors of eigenforms is
used in power spaces of elastic and inertial operators of the equations for shell
oscillations. The equation set solution gives distribution of pressure and pressure
gradient at the boundary-contact surface.

Demonstrating a correctness in the solution of the coupled problem for ‘‘shell—
liquid’’ system, EF-method is difficult for applications. It also does not possess
flexibility to changes of parametres of construction. At multiple calculations, it is
necessary to recalculate eigenfunctions (which are required some tens) for
ensuring good convergence. A practical applicability of the EF-method is limited
by sufficiently average frequencies since natural obstacle for expension EF-method
to higher frequencies is the dense spectrum of eigenfrequencies mainly of bending
normal forms with zerous circumferential mode of the shell (after frequency of the
first radial resonance).

15.4 Method of Local Impedance Modeling

Due to above reason the method of local impedance modelling (LIM-method) is
more effective, when a priori the dependence of the dynamic pressure on velocity
(or amplitudes of displacements) is given on the shell surface. Attractiveness of
this method consists in that the fluid account only insignificantly complicates
algorithm for ‘‘dry’’ shells with intrinsic vibrational energy dissipation.

The solution of the acoustics equations in cylindrical coordinate system may be
deduced by method of variables separation. After that, it is possible to obtain for n-
th circumferential mode the impedance linking amplitudes of dynamic pressure
and velocities of partticles of the ideal infinite liquid on surface of infinitely long
cylindrical shell of radius Rc [4]:

pnðsÞ ¼ ZcncnðsÞ; Zcn ¼ ½soiqf cf coHðsoÞ
n ðcÞ�

.
½cHðsoÞ

0

n ðcÞ�; ð15:8Þ
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where co ¼ kRy; c ¼ krRy; kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

z

q
; ko ¼ x=cf ; kz ¼ mp=L; so ¼ �1; ko; kr; kz

are the wave numbers; Hðs0Þ
n ; Hðs0Þ

0

n are Hankel functions and their derivatives on
argument.

For a plane problem when the solution does not depend from z, kz = 0; kr = ko;
c = co. Hankel functions of the first kind correspond to value of s0 = 1, and Hankel
functions of the second kind relate to s0 = -1:

HðsoÞ
n ðcÞ ¼ JnðcÞ þ soiYnðcÞ; HðsoÞ0

n ðcÞ ¼ nHðsoÞ
n ðcÞ=c� HðsoÞ

nþ1ðcÞ:

Here Jn, Tn are Bessel functions of the first and second kind, respectively.
By passing in (15.8) from velocities cnðsÞ to displacements wnðsÞ, taking into

account cnðsÞ ¼ �soixwnðsÞwe obtain

pnðsÞ ¼ ZwnwnðsÞ; Zwn ¼ ½xqccccoHðSoÞ
n ðcÞ�

.
½cHðsoÞ

0

n ðcÞ�; ð15:9Þ

where Zwn has a sense of the mechanical stiffness coefficient of medium.
After transition to non-dimensional quantities by means of the relationships:

~pnðsÞ ¼ pnðsÞm�=ðE�e2
1Þ; ~qf ¼ qf =q�; ~wnðsÞ ¼ wnðsÞ=h�;

~cc ¼ cc=c�; X ¼ xR�=c�; X1 ¼ X=ð~k2~c2Þ ¼ co;

~Ry ¼ R=R�; ~L ¼ L=R�; ~k2 ¼ 1=~R;

e1 ¼ h�=R�; �m� ¼ 1� m2
�; c� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�=ðq��m�Þ

p
;

c ¼ X1j; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

1

q
; j1 ¼ mpcc=ðxLÞ ¼ mp~cc=ðX~LÞ;

c� ¼ ½E�=ðq��m�Þ�
1=2; �m� ¼ 1� m2

�; e1 ¼ h�=R�; X ¼ xR�=c�

the expression of dynamic rigidity takes the form:

~qnðsÞ ¼ ~Zwn ~wnðsÞ; ~Zwn ¼ ½X~qc~ccHðSoÞ
n ðX1jÞ�

.
½e1jHðSoÞ

0

n ðX1jÞ�: ð15:10Þ

For j1 [ 1, arguments of the Hankel functions becomes purely imaginary, and
they can be presented by McDonald functions, or modified Bessel functions of first
(s0 ¼ 1) and second (s0 ¼ �1) kind. In this case ~Zwn is represented as

~Zwn ¼ ½X~qc~ccKðsoÞ
n ðX1 jj jÞ�

.
½e1 jj jKðsoÞ

0

n ðX1 jj jÞ� � ~Z�n ; ð15:11Þ

where KðsoÞ
n are McDonald functions, real and positive at the real and positive

argument, KðsoÞ
0

n ¼ nKðsoÞ
n ðxÞ

.
x� KðsoÞ

nþ1ðxÞ.
At n 6¼ 0 and small argument x ¼ X1 jj j ! 0, we obtain
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KðsoÞ
n ðxÞ !½ðn� 1Þ!=2� 2=xð Þn; KðsoÞ

0

n ðxÞ ! ½n!=4� 2=xð Þnþ1;

~Z�n ! �ð~qcX
2Þ
�
ðe1n~k2Þ:

At n = 0 and x ? 0, we obtain

KðsoÞ
0 ðxÞ !0:11593 � ln x; KðsoÞ

0

0 ðxÞ ! �KðsoÞ
1 ðxÞ ! 1=x;

~Z�0 ! �½~qcX
2=ðe1

~k2Þ�ðln x� 0:11593Þ:

The presented formulae are obtained for cylinder. At their usage for shells of
revolution there are alternative versions. In one of them, it is possible to substitute
~Rc on ~r being polar radius of shell at the given point on generatrix, and then
~k2 ¼ 1=~Rc. In other version, it is possible to treat ~k2 as curvature of normal cross-
section in circumferential direction, and then ~k2 ¼ ðsin bÞ=~r, where b is the angle
of slope of the generatrix normal to rotation axis.

When edges of the shell of revolution are enclosed by rigid plates of radius ~r p,
then at longitudinal oscillations on the zero mode (n = 0), the medium response at
the edges could be simulated through the impedance of the rigid piston without
screen [8]. In the dimensionless form

~pðnÞ0 ¼ ~ZðnÞw0
~wðnÞ0 ; ~ZðnÞw0

¼ �e�1
1 ~qc~r nX

2ðX1jÞ 2=pþ soi~r n=ð2~ccÞð Þ: ð15:12Þ

Calculation of dynamic rigidity of environment is conducted in the form of
complex procedure with logic branching. Different formulae are realized on
branching in dependence on that where pressure is calculated on the shell or plate.
We take into account the mode number and behavior of argument x ¼ X1jjj.

After obtainment of the solution on the shell surface, the field pressure in fluid
is determined by Helmholtz integral (15.3) for exterior area O-.

For shells of revolution, numerical experiments on selection of the longitudinal
wave numbers m depending on vibration mode of shell with finite size were
executed. Comparison shows possibility to use the plane problem version (m = 0,
j = 1) in sufficiently broad range of frequencies at construction of external field
characteristics. Acceptability of such model confirms by comparison with
EF-method.

15.5 Iterative Processes

The further development of ID-formulation and LIM-method are iterative methods
where given impedance could be used as initial approach of iterative processes
(IPs) at the solution of the original equations. For simply connected shells of
axisymmetrical geometry (without branching) some variants of IPs, having dif-
ferent areas of convergence, are realized in [9].
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15.6 External Field Calculation

In the briefly presented methods (EF, LIM, itterative ones), the exterior acoustic
field is calculated at the last stage by using Helmholtz integral (15.3), where x 2O-.
The field gives a distribution of dynamic pressure amplitudes (sound) in the fluid.
Obsrvation point coordinates x (radius-vector) are convenient to give in spherical
coordinate system r; u ¼ a2; h ¼ h1 þ c1. Here r is the radius, u 2 [0, 2p] is the
circumferential coordinate (longitude), h1 2 [0, p] is the coordinate calculated along
meridian (latitude). The origin of spherical coordinate system is usually placed at
the center of area O+ (see Fig. 15.1).

Common procedure of calculation allow us to construct the near and far sound
field by using repeated integration of the double integral:

pðr Þ ¼ ð4pÞ�1
ZZ

Oo

p r 1ð Þf ðRÞ;no �f ðRÞpðr 1Þ;no½ � dr 1 ð15:13Þ

on surface Oo with repeated application of Simpson method. Here r, r1 are the
radius-vectors of points into medium and on the shell surface, respectively,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

1 � 2r 1r � cos(c1Þ
p

.
For recalculation of levels jpj in decibels two versions of normalizations were

used:

(i) in relation to a threshold level of audibility p1 ¼ 2 � 10�5 H/M2, or
~p1 ¼ 8:84 � 10�13, where tilde marks non-dimensional value;

(ii) in relation to a maximum level of the field from the force radiating in the
liquid half-space (dipole):

jp2j ¼ XQ=ð2pRcf Þ; LðkÞjpj ¼ 20 lnðj~pj=j~pkjÞ; k ¼ 1; 2: ð15:14Þ

For constructions with sections such as in Fig. 15.2, some of the eigenmodes
are shown in Fig. 15.3. Note that the three-section shell consisted of conical and
two cylindrical parts. The shell sections were divided into plates and rigid rings.
The last scheme well works and allows us to simplify algorithm. So, instead of
using the superelement scheme, it is possible to solve two-dimensional boundary-
value problem. Comparison of the applied methods was executed on multi-section
long shells with additional masses. The amplitude-frequency characteristics of the
field levels in the ‘‘illuminated’’ zones for the same observation points (for these
methods) are shown in Fig. 15.4.
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Fig. 15.1 Coordinate system for external field calculation

Fig. 15.2 Typical section of shell construction

Fig. 15.3 Eigenform of oscillations for three-section shell, divided into plates (P) and rings (R)
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15.7 Conclusions

Application of the EF-method and methods of iterative processes meets significant
challenges for the implementation in algorithms. Therefore, it is expedient to use
the LIM-method. On the basis of the LIM-method, there were analyzed the shells
with no axisymmetrical rigidities and masses [10, 11], multicoupled [12], coaxial
[13, 14] ones, and also the shells with discrete rings of variable stifness [15],
incircular cylindrical shells [16] and others.
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