
Chapter 13
Study of Piezo-Excited Lamb Waves
in Laminated Composite Plates

A. Karmazin, E. Kirillova, P. Syromyatnikov and E. Gorshkova

The solution of the wave propagation problem in plate-like composites in the case
of excitation by piezoelectric actuators modelled using a pin-force model is
obtained as a sum of propagating Lamb wave modes. It is calculated in the fre-
quency-wavenumber domain and then transformed into the time–space domain.
The harmonic wave responses of composite plates and corresponding energy flows
are analyzed for various excitation sources at the surface of some composites.

13.1 Introduction

In recent years composites become to be widely used in civil, mechanical, and
aerospace engineering due to their high strength and lightness in comparison with
metals. Due to the sensitivity of composites to impact actions small damages in the
form of cracks or delaminations are practically unavoidable. These small damages
could potentially result in the destruction of the construction. In the field of
structural health monitoring (SHM) [1] there has been a growing interest in the
recent decade in developing computer-aided systems for the detection of
mechanical defects and the forecasting of destruction [2] in composite structures.
It is hoped that SHM systems will be able to regularly scan high-duty structural
components (e.g. wind power rotor blades, aircraft panels and wings) and issue
warnings concerning the formation of defects as well as provide an estimate of the
remaining useful life. The use of SHM systems can increase safety and can allow
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for a change of the maintenance procedure for aircraft from schedule-driven to
condition-based, can reduce the fuel costs and the costs of maintenance signifi-
cantly, and decrease the time required for the structure to be off-line [3].

One of the promising approaches for SHM consists of applying guided elastic
waves since the waves excited or reflected by damages provide significant infor-
mation on the nature and properties of the defect. An improved inspection potential
of guided waves over other ultrasonic methods is due to their sensitivity to different
type of flaws, their propagation over long distances and their capability to follow
curvature and to reach hidden and/or buried parts. The level of understanding which
has been reached in an application of elastic waves for NDT (non-destructive test-
ing) and SHM is documented in review works [2] and [4], respectively. A clear
understanding of quantitative connections between the waves and their sources is
essential for the development of algorithms to detect defects. Moreover, information
about the structure in its undamaged state is required since by relating the measured
response with one in the same but undamaged structure allows the considerable
improvements in the precision of quantitative damage detection. This is shown in
case of the application of an approach based on damage influence maps in [5].

Due to the finite dimensions of structural components the waves reflect from the
structural boundaries, i.e. the waves guide through the structure. Such structures in
many cases can be considered as infinite layers (beams) or plates. The first numerical
results which relate to the characteristics of normal waves in a layer can be found in
Lamb’s work [6]. He was the first to obtain a dispersion equation linking frequencies
and wave numbers. Hence, the waves in layer-like and plate-like structures are
usually called (guided) Lamb waves. Theoretical principles of wave propagation in
isotropic, anisotropic and layered materials, as well as principles of wave excitation
with standard ultrasonic transducers for nondestructive evaluation, are described in
many works, e.g. in [7, 8]. The application of elastic waves for NDT was first studied
by Viktorov [9]. However, in these works the waveguides are modelled in two
dimensions (plane strain problem), i.e. it is assumed that waves are excited by
sources whose distribution is infinitely expanded in the direction perpendicular to the
cross-section. To accurately model finite source induced wave propagation in
anisotropic composite plates, a 3D formulation is required [10]. Dispersion relations
for waves in multilayered media with an arbitrary number of flat layers were derived
for a plain strain (2D) problem using a transfer [11] and a global [12] matrix method
and then extended by Nayfeh [13] to the case of 3D-models of composites in which
the layers can have as low as monoclinic symmetry. Up to date, there are many
methods for the computation of dispersion properties of laminated composites [14].
Analysis of dispersion properties of Lamb waves in anisotropic composites shows
that in addition to the frequency dispersion the angular dispersion of waves should be
taken into account. Moreover, some directions are privileged for the transport of
energy of the guided waves, i.e. the waves are focussed [15].

Taking into account the dispersion properties of waves the problem of wave
propagation excited by surface sources can be studied. For in situ monitoring of
structures low-cost surface-coupled [1] or embedded piezoelectric actuators [5] are
used. Due to the piezoelectric effect the wafers can be used not only as actuators
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but also as sensors. The corresponding forced wave propagation problem can be
resolved by applying direct numerical methods: conventional FEM [16], spectral
FEM [5], strip element method (SEM) [14] and finite difference technique (FD)
[17]. A good review of all these direct numerical approaches is given in [18]. The
application of direct numerical methods for the modelling of constructions made
of composites is the most universal approach, as these yield approximate solution
for objects of any form. However, they are also the most expensive with regard to
computational resources and do not take into account the wave structure of the
solution. An increase in the number of elements is unavoidable in regions of rapid
changes of the solutions or characteristics of the medium (angular points, inter-
faces between contrast layers etc.) and especially in the case of high frequencies.
In some papers the FEM is used only for that part of a construction which has a
complex form and comparable sizes in all directions, whereas for the part of the
construction which is a typical waveguide the solution is constructed as a sum of
propagating waves using the mode expansion technique (NME) [19].

The most time-efficient approach for the simulation of piezo-excited wave
propagation is the semi-analytical integral approach. The corresponding solutions of
wave propagation problem are obtained for 2D-models for isotropic and anisotropic
laminates [20] and 3D-models for isotropic laminates under excitation by axis-
symmetric sources [21]. The solution of the general 3D-problem for anisotropic
laminates is obtained for the far-field area of the excitation source [22] and well
approximated for the middle field to the source [23] by applying the integral
approach.

In this work the integral approach is used for time-efficient simulations of steady-
state piezo-excited Lamb wave propagation in composites and for the investigation
of the anisotropy-induced properties of guided waves by computing the peak-to-
peak amplitude curves and the power flow corresponding to each Lamb wave mode.

13.2 Mathematical Background

13.2.1 Modeling of the Wave Propagation Problem

In the absence of body forces the harmonic steady-state motions in each layer of
composite plate (Fig. 13.1) after omitting the factor exp(ixt) are expressed in
terms of stress and displacement components:

orij

oxj
¼ �qx2ui: ð13:1Þ

The stresses in (13.1) are found using Hooke’s law:

rij ¼ Cijklekl; eij ¼
1
2

ui;j þ uj;i

� �
; ð13:2Þ

where Cijkl are the components of the stiffness tensor.
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The waves are excited in a laminated plate by the force q(x, y) applied in the
domain X at the upper surface of the plate, whereas the lower boundary is traction-
free:

ri3jz¼0¼ q x; yð Þ; ri3jz¼�h¼ 0: ð13:3Þ

As surface excitation sources, a circular piezoelectric actuator (Fig. 13.2a), a
CLoVER sector (Fig. 13.2b) and MFC actuator (Fig. 13.2c) are considered. A
nearly ideal bonding of the actuators to the composite plate is assumed, i.e. the
thickness of the glue layer is supposed to satisfy hb ? 0 (see Fig. 13.3). The force
is transferred over an infinitesimal region at the edges of the patch. The induced
strain is assumed to be given by concentrated forces applied at the region ends.
This model is also called the pin-force model [24] and was originally derived for
isotropic structures under excitation by piezoelectric patches. However, this model
proved itself applicable also in 3D-models of piezo-structure interaction and is
therefore used in this work.

Then, the corresponding surface load vectors for the first two piezoactuators
considered (Fig. 13.2a and b) are given as follows

qx ¼ s0 � qr � cos u; qy ¼ s0 � qr � sin u; qz ¼ 0; ð13:4Þ

where for a circular actuator (Fig. 13.2a) qr is represented by

qr ¼ d r � Aoð Þ; 8 r;uð Þ; ð13:5Þ

and for a CLoVER sector (Fig. 13.2b) by

qr ¼ d r � Aoð Þ � d r � Aið Þ; 8r;u 2 uR;uL½ �; ð13:6Þ

respectively.
For MFC actuator (Fig. 13.2c) the load vector is given by

qx ¼ s0 d x� a1ð Þ � d xþ a1ð Þ½ �; qy ¼ 0; qz ¼ 0; y 2 �a2; a2½ � ð13:7Þ

Fig. 13.1 N-layered plate
under an excitation by a ring-
shaped source (inner radius
Ai, outer radius Ao)
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The value of s0 is obtained as [24]

s0 ¼ GbeISA

�
hbC

2a2; ð13:8Þ

here

C2 ¼ Gb

Ea

1
hahb

aþ w
w

; w ¼ Eh

EAha
; eISA ¼ d31

V tð Þ
ha

; ð13:9Þ

where d31 is the piezoelectric strain coefficient (in m/V) describing the coupling
between the vertically polarized electric field and the in-plane induced strains, ha is
the thickness of the piezoactuator, Ea is its Young’s modulus, Gb is the shear
modulus of the bonding (adhesive) layer, hb is the thickness of the adhesive layer,
h is the thickness of the structure under excitation, E is the Young’s modulus of the
structure. Outside of the interval |x| \ a, the surface stresses are zero. The modal
repartition number a in (13.8) depends on the stress, strain, and displacement
distributions across the plate thickness [24] and at low frequencies a = 1 for wave
mode S0, a = 3 for wave mode A0 and a = 4 in case of simultaneous excitation of
both modes. For the accurate calculation of this parameter at high frequencies the
readers are referred to the work [3].

13.2.2 Solution of the Wave Propagation Problem

The problem (13.1–13.3) can be relatively easy solved in the wavenumber-fre-
quency domain [26]. In cylindrical coordinates the displacement vector of the

Fig. 13.2 a Circular piezoactuator, b CLoVER sector, c MFC actuator

Fig. 13.3 2D-Model of
piezoactuator bonded by a
layer of glue to the plate
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corresponding steady-state problem can be found as the inverse Fourier transform
of the product of the Green’s matrix k(r, u, z, x) and the load vector q(r, u) in
wavenumber-frequency domain K(a, c, z, x) and Q(a, c), respectively:

u r;u; z;xð Þ ¼ 1
4p2

Z2p

0

Z

Cþ

K a; c; z;xð ÞQ a; cð Þe�iar cos c�uð Þadadc: ð13:10Þ

where the contour C+ is chosen so that it encloses all the real poles of the integrand in
accordance with the principle of limiting absorption. There are two possible time-
efficient approaches for the evaluation of the double integral (13.10): the far-field
residue integration technique (FFRIT) and the asymptotic expansion (AE). The
FFRIT gives an approximate solution in the middle field and an exact solution in the
far-field of the excitation source for all types of sources in the following form [23]:

u r;u; z;xð Þ ¼
X1

m¼1

uþm þ u�m
� �

� d r;u; z;xð Þ; ð13:11Þ

u�m r;u; z;xð Þ ¼ � i

2p

Zuþp�p=2

u�p=2

b�m c; z;xð Þe�ik�m cð Þr cos c�uð Þdc; ð13:12Þ

d r;u; z;xð Þ ¼ 1
2pr

X1

m¼1

b�m c; z;xð Þ
k�m cð Þ

����
c¼uþ3p

2

þb�m c; z;xð Þ
k�m cð Þ

����
c¼uþp

2

" #

þ O r�2
� �

;

ð13:13Þ

b�m c; z;xð Þ ¼ res K a; c; z;xð Þja¼k�m cð ÞQ k�m cð Þ; c
� �

k�m cð Þ; ð13:14Þ

where km
±(c) are the dependencies of the wave numbers on the angle c for the fixed

frequency x.
The asymptotic expansion (AE) represents the solution of the wave propagation

problem for the far-field points to the excitation source as follows [22]

u r;u; z;xð Þ ¼
XNr

m¼1

XN
þ
mp uð Þ

p¼1

Gmp r;u; z;xð Þ þ O r�3=2
� 	

; ð13:15Þ

Gmp r;u; z;xð Þ ¼ � i

2p

ffiffiffiffiffiffi
2p
r

r
b�m c�mp uð Þ; z;x
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i � P00�m;cc c�mp uð Þ;u

� 	r eirP�m;cc c�mp uð Þ;uð Þ; ð13:16Þ

P�m c;uð Þ ¼ �k�m cð Þ cos c� uð Þ; P00�m;cc c�m uð Þ;u
� �

6¼ 0; ð13:17Þ

where cmp
± (u) are the stationary points of the phase function (13.16) for the

wavenumber curve km
±(c).
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13.2.3 Energy Fluxes Corresponding to Lamb Waves

The energy brought into the structure by a surface source and its radiation through
the structure to infinity is studied using the definitions of values of power flow and
the vector of its power density usually called Poynting (or frequently called Umov-
Poynting) vector. The energy brought into a composite plate by the surface source
q(x*, y) acting in the domain X is obtained as

Ex
0 ¼ �

x
2

Im
Z2p

0

Z

Cþ

K a; c; z;xð ÞQ a; cð Þ;Q a�; cð Þð Þadadc: ð13:18Þ

The density of energy flux through the surface S in the direction of its normal
n at a point x 2 S is given by the scalar product of the displacement vector and the
complex stress vector calculated in direction of normal n

E R;u; z;xð Þ ¼ u R;u; z;xð Þ; rn R;u; z;xð Þð Þwith rn;i R;u; z;xð Þ ¼
X3

j¼1

rij � nj:

ð13:19Þ

The energy propagating from the source to infinity can be evaluated in the same
way. A cylinder is taken outside of the source, which is located inside the circle
with a minimum radius Ao, i.e. the radius of the cylinder satisfies R[Ao while its
center is located at the origin. The height of the cylinder is equal to the thickness of
the laminated plate h. The total through-thickness power flow for r = R is given by

Ex
R;u R;u;xð Þ ¼ �xR

2
Im
Z0

�h

E R;u; z;xð Þdz: ð13:20Þ

While computing the energy flow for different values of R, u and z using both
approaches (13.11–13.13) and (13.15–13.17) the total power density of the energy
propagating from the source to infinity can be obtained as

E R;u; z;xð Þ ¼
X

j

uj R;u; z;xð Þ;
X

k

rn;k R;u; z;xð Þ
 !

¼
X

j

uj R;u; z;xð Þ; rn;j R;u; z;xð Þ
� �

þ
X

j;k;j6¼k

uj R;u; z;xð Þ; rn;k R;u; z;xð Þ
� �

þ uk R;u; z;xð Þ; rn;j R;u; z;xð Þ
� �� �

;

ð13:21Þ

i.e. as the sum of contributions to the power density corresponding to wave modes
solely and some mixed values of power density.
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13.3 Numerical Results and Discussion

In this section some results of numerical computations of piezo-excited Lamb
wave propagation and the corresponding power flows in composite plates are
presented. As waveguides three composite specimens are considered. The first one
is a cross-ply composite with stacking sequence [0/90]s and all plies manufactured
of fiber-reinforced polymer (CFRP-T700GC/M21), whose elastic moduli and
density are given in Table 13.1. The second plate is a hybrid plate with stacking
sequence [I90/C45/C-45]s, where ‘‘I’’ stands for layers made of IM7-Cycom-977-3
(see Table 13.1) and ‘‘C’’ stands for layers manufactured of CFRP-T700GC/M21.
The third plate is a quasi-isotropic plate [0/45/-45/90]2s with layers manufactured
of CFRP-T700GC/M21. All values of stiffness for both materials CFRP-T700GC/
M21 and IM7-Cycom-977-3 given in Table 13.1 correspond to the well-known
Voigt notation for the stiffness tensor Cijkl (13.2). All of the composite plates
considered have a total thickness of 1 mm.

In the following example (Fig. 13.4a) the total through-thickness power density
of the energy flow is analyzed in dependence of the direction u. Here the power
flow (13.20) is calculated for r = 100 mm and r = 220 mm evaluated using FFRIT
for [0/90]s made of CFRP-T700GC/M21 under excitation by the circular source
(Ao = 10 mm) for f = 300 kHz. In Fig. 13.4a some differences between the dis-
tributions of power flow are observed in directions, in which the power flow has its
maxima. This is explained by the fact that the distribution in the near-field of the
source is mostly formed by the shape of the actuator and the near-field terms,
whereas in the far-field the distribution of power flow is mostly conditioned by the
anisotropy-induced energy focusing in directions u = 0�, u = 7�, etc. [23]. Note
that the asymptotic expansion (AE) by its definition gives a distribution of power
flow with respect to propagation direction independently of the distance to the
excitation source. This means that for a good quantitative description of the wave
phenomena in the middle-field for strong focusing of waves the FFRIT has to be
used. However, for qualitative analysis the AE is usually enough even for the
middle-field area.

The focusing of waves in Fig. 13.4a in directions u = 0�, u = 7� is due to the
focusing of the wave modes S0 and SH0 in these directions. However, the behavior
of the corresponding distribution is frequency-dependent, e.g. for lower frequen-
cies it is mostly influenced by the A0 wave mode. Moreover, as can be observed in
Fig. 13.4b, the distribution of amplitudes and hence of the power flow for S0 and
SH0 wave modes is also frequency-dependent. For frequencies above 150 kHz
these wave modes are strongly focused in directions u = 0� and u = 90�, while at
lower frequencies this effect is negligible.

Another phenomenon occurring in composite plates under excitation by some
types of piezoelectric actuators is the presence of frequency- and direction-
dependent anti-resonances. They occur due to the anti-phase action of the
boundaries of the piezoactuator, where the interface stresses are concentrated.
Since the wavenumbers are frequency- and direction-dependent, resonances and
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anti-resonances occur for the different directions not simultaneously. This phe-
nomenon is well observed in Fig. 13.5a for the logarithmical surface out-of-plane
displacements corresponding to the A0 wave mode, excited in a cross-ply [0/90]s

made of CFRP-T700GC/M21 by a circular actuator of radius Ao = 5 mm. Com-
paring the corresponding logarithmical displacements in the directions of u = 0�, u
= 45� and u = 90� (Fig. 13.5b), it is clearly seen that the difference between the
anti-resonance frequencies is about 45 kHz. This implies that if the waves are
excited for one direction at the anti-resonance, in some other directions no anti-
resonance occurs at the given frequency. Moreover, in the case of strong anisot-
ropy of wavenumbers of wave modes in such directions the amplitudes of observed
waves can be high. It is concluded that for excitation at frequency higher than the
first anti-resonance frequency it is nearly impossible to suppress (or to amplify) the
wave propagation of the wave mode in all directions of the composite simulta-
neously. Note that such a suppression (or amplification) can be easily carried out
for isotropic structures [1].

The anti-resonances observed in Fig. 13.5 for the A0 wave mode for the whole
considered frequency range [0, 500] KHz are not observed in this frequency range
for the two other fundamental wave modes S0 and SH0. The total through-thickness
power flow corresponding to the S0 wave mode is represented in Fig. 13.6a for an

Table 13.1 Properties of materials (elastic constants in 1011 Pa, density in 103 kg/m3)

C11 C12 = C13 C22 = C33 C23 C44 C55 = C66 q

A 1.528 0.11 0.232 0.176 0.028 0.033 1.558
B 1.234 0.055 0.115 0.064 0.026 0.045 1.6

A corresponds to IM7-Cycom-977-3 [25], B corresponds to CFRP-T700GC/M21 [15]

Fig. 13.4 a The total through-thickness power flow in dependence on u for r = 100 mm and r =
220 mm calculated using FFRIT for [0/90]s made of CFRP-T700GC/M21 under excitation by the
circular source (Ao = 10 mm) for 300 kHz. b Out-of-plane amplitudes in dependence on u and f =
x/2p calculated using FFRIT in a cross-ply [0/90]s plate under an excitation by the circular
source (Ao = 5 mm) at r = 46 mm for the sum of S0 and SH0 wave modes
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excitation by the CLoVER sector (Ai = 4 mm, Ao = 5 mm, uR = 22.5�, uL = 67.5�).
The power flow is despite of the use of the CLoVER sector is focussed in the
whole range of frequencies below the 500 kHz in the directions u = 4� and
u = 86�. Comparing Fig. 13.6a with the similar Fig. 13.4b for the circular
piezoactuator lets us conclude that the use of a CLoVER sector slightly shifts the
maxima of amplitudes (and energy too). For a circular piezoactuator they are
u = 0� and u = 90�.

Another interesting numerical example is shown in Fig. 13.6b. The distribution
of the total through-thickness power flow for the S0 wave mode in a hybrid [I90/
C45/C - 45]s plate under an excitation by a circular source (Ao = 5 mm) has
focusing directions too, but they vary with the frequency. For example, for a
frequency of 200 kHz the focusing direction is u = 50�, whereas for 500 kHz the
main focusing direction in the first quarter changes to u = 60� and, moreover, the
power flow in the direction of u = 50� for a frequency of 500 kHz is quite low.
Similarly to the case of a cross-ply plate the focusing of the S0 wave mode is not
observed for low frequencies (below 100 kHz).

The effects of energy focusing observed in composite plates with strong
influence of anisotropy are also present in quasi-isotropic composites, however for
high frequencies or for the case of the non-axis-symmetric source. In Fig. 13.7a
and b the total through-thickness power flows are shown for S0 (Fig. 13.7a) and for
SH0 (Fig. 13.7b) excited in a quasi-isotropic [0/45/–45/90]2s plate under an exci-
tation by an MFC source (A1 = 8 mm, A2 = 2 mm). Here an MFC actuator
produces for the S0 wave mode a power flow mostly in fiber direction in MFC
(u = 0�), i.e. the highest values of amplitudes (power flow) are usually between the
directions u = [-atan(2/8), atan(2/8)] & [-15�, 15�]. However, the energy dis-
tribution for S0 has its frequency- and direction-dependent anti-resonances. For a
considerable frequency range [320, 420] KHz the maxima of power flow values

Fig. 13.5 a Surface out-of-plane logarithmic displacements (lg|uz(u, x)|) at r = 46 mm for the
wave mode A0 calculated using AE for the case of wave excitation by a circular actuator (Ao =
5 mm) in a [0/90]s plate with layers made of CFRP-T700GC/M21, b The same displacements in
some fixed directions
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are found to be in the direction u = 60� instead of the normal focusing direction u
= 0�.The focusing properties of power flow for the SH0 wave mode are much more
complicated. The corresponding distribution (Fig. 13.7b) shows that for different
values of frequency-thickness the main focusing direction is different. Its value
changes from u = 50� at 100 kHz to u = 85� at 500 kHz.

Fig. 13.6 Total through-thickness power flow for r = 150 mm calculated using AE in
dependence on u and f, calculated for the S0 wave mode in a cross-ply [0/90]s plate a Under
an excitation by a CLoVER sector (Ai = 4 mm, Ao = 5 mm, uR = 22.5o, uL = 67.5�) and a hybrid
[I90/C45/C–45]s plate b Under an excitation by a circular source (Ao = 5 mm)

Fig. 13.7 Total through-thickness energy flow in dependence of u and f calculated using AE in a
quasi-isotropic [0/45/-45/90]2s plate with layers of IM7-Cycom977-3 under an excitation by an
MFC source (A1 = 8 mm, A2 = 2 mm). Values of energy flow for r = 150 mm for S0 (a) and for
SH0 (b) wave modes
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13.4 Conclusion

In this paper, displacements and the density of power flow excited in composite
plates by harmonic surface-bonded sources of finite size are analyzed with the help
of the residue theorem based on far-field residue integration technique (FFRIT)
and of the asymptotic expansion (AE). Then, the application of these methods is
studied using numerical examples. Results of computations show that these
methods admit an efficient analysis of the directivity of the excitation source at
different excitation frequencies and provide a tool for selective wave mode exci-
tation and for the study of optimal design of the excitation source(s). Due to the
complicated distributions of amplitudes and power flows in composite plates, such
procedures are of great importance for the practical application of elastic waves for
SHM systems and for the understanding of wave phenomena occurring in com-
posites under excitation by piezoelectric sources.
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