
Chapter 12
Determination of Elastic and Dissipative
Properties of Material Using Combination
of FEM and Complex Artificial Neural
Networks

A. N. Soloviev, N. D. T. Giang and S.-H. Chang

This paper describes the application of complex artificial neural networks (CANN)
in the inverse identification problem of the elastic and dissipative properties of
solids. Additional information for the inverse problem serves the components of
the displacement vector measured on the body boundary, which performs har-
monic oscillations at the first resonant frequency. The process of displacement
measurement in this paper is simulated using calculation of finite element (FE)
software ANSYS. In the shown numerical example, we focus on the accurate
identification of elastic modulus and quality of material depending on the number
of measurement points and their locations as well as on the architecture of neural
network and time of the training process, which is conducted by using algorithms
RProp, QuickProp.
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12.1 Introduction

The artificial neural networks (ANN) [1] are widely used in different regions of
science and industry. One of their applications in mechanics is solving the coef-
ficient inverse problem of identifying elastic [2–6] and dissipative properties of
solids [7–11]. In the early 1990s, the complex artificial neural networks (CANN)
were proposed in the works of T. Nitta [12, 13], which then have been widely used
for various applications [14–16]. The CANN parameters (weights, threshold val-
ues, inputs and outputs) are complex numbers, which used in various fields of
modern technology, such as optoelectronics, filtering, imaging, speech synthesis,
computer vision, remote sensing, quantum devices, spatial–temporal analysis of
physiological neural devices and systems. Application of CANN in mechanics is a
new research area, which has been developed over the last few years.

This paper describes the application of CANN in solving coefficient inverse
problem of identifying elastic (Young’s modulus) and dissipative (quality factor)
properties of solids. Additional information for solving this inverse problem serves
the components of the displacement vector measured at the boundary of the body
(in a discrete set of points), which performs harmonic oscillations in the vicinity of
the first resonant frequency. The process of displacement measurement in this
paper is simulated using calculation of finite element (FE) software ANSYS. In the
numerical example shown below, the accuracy of identifying mechanical prop-
erties of the material depends on the number of measurement points and their
locations, as well as on the architecture of neural network and time of the training
process (which is conducted by using algorithms CBP)

12.2 Formulation of Identification Inverse Problems
for Mechanical Properties

In the plane problem of elasticity theory, the steady-state harmonic oscillations of
a rectangular area (a 9 b) with the angular frequency x are considered (Fig. 12.1).
The rectangle is fixed on the left side boundary Su, the vertical force F0 is applied
to the lower right corner, the rest of the right boundary St is free from mechanical
stresses. The mechanical properties of the material are described by Young’s
elastic modulus, E, Poisson’s ratio, m, and quality factor, Q.

The vibration equations of the solid have the form [18]:

rkj;j ¼ �qðx2 � ixaÞuk; k; j ¼ 1; 2;

rkk ¼ ckj 1þ ixbð Þejj; r12 ¼ c44 1þ ixbð Þe12; ekj ¼
1
2

uk;j þ uj;k

� �
: ð12:1Þ

The boundary conditions suppose the presence of a force at the point 2
(Fig. 12.1) and similar conditions in the rest of the boundary:
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uk Su ¼ 0; rkjnj

�� ��
St
¼ 0: ð12:2Þ

The additional information to solve the inverse problem are the displacements,
measured at the points 2–5 (Fig. 12.1):

u1 ¼ Umr þ iUmi; u2 ¼ Vmr þ iVmi; m ¼ 2; 3; 4; 5: ð12:3Þ

Here rkj, ekj are the stress and strain tensor components, respectively, q is the
density. The elastic coefficients correspond to the isotropic body: c11 = c22 = k + 2l,
c12 = c21 = k, c44 = l, k, l are the Lamé coefficients. The applied vibration
frequency x is matched with proper first resonance frequency, which does not take
into account the dissipation of mechanical energy. Coefficients a, b characterize
dissipation calculated according to the method [17].

12.3 Structure of CANN

Structure of CANN in solving coefficient inverse problem of identification of the
elastic (Young’s modulus) and dissipative (quality factor) properties of solids
(Fig. 12.2).

This CANN is formed in three layers, called the input layer, hidden layer, and
output layer. Each of layers consists of one or more nodes, represented in the
diagram by the small circles, as shown in Fig. 12.2. The lines between the nodes

indicate the flow of information from one node to the next (with weights W, W
^

).
When neural networks are trained, they works basically in the following way.

(1) The first step in training a network is to initialize the network connection
weights by small random values (-1.0, 1.0).

(2) The input pattern (X1 = X1r + iX1i, X2 = X2r + iX2i, Xn = Xnr + iXni) on the base
of which the network will be trained are presented at the input layer of the net
and the net is run normally to see what output pattern it actually produces.

(3) The actual output pattern are compared to the desired output pattern for cor-
responding input pattern. The differences between actual and desired patterns
form the error pattern:

Yn ¼
X

m

WnmXm ¼ X þ iY ¼ Z; ð12:4Þ

Fig. 12.1 Statement of the
problem, the designations are
interpreted into text
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On ¼ Fc zð Þ ¼ F xð Þ þ iF yð Þ ¼ 1
1þ expð�XÞ þ i

1
1þ expð�YÞ ; ð12:5Þ

Ep ¼ 1
N

� �XN

n¼1
Tn � Onj j2

¼ 1
2

XN

n¼1
ð Re Tnð Þ � Re Onð Þj j2 þ Im Tnð Þ � Im Onð Þj j2

�
; ð12:6Þ

where Wnm is the (complex-valued) weight connecting neuron n and m, Xm is
the (complex-valued) input signal from neuron m, F is the sigmoid function,
Ep is the square error for the pattern p, On are the output values of the input
neuron, Tn is the target pattern.

(4) The error pattern is used to adjust the weights on the output layer so that the error
pattern reduced the next time if the same pattern was presented at the inputs:

Wnm ¼ Wnm þ DWnm ¼ Wnm þ HmDkn; ð12:7Þ

Dkn ¼ e Re dn½ � 1� Re On½ �ð ÞRe On½ � þ iIm dn½ � 1� Im On½ �ð ÞIm On½ �f g; ð12:8Þ

where kn is the threshold value of the output neuron n, dn ¼ Tn � On is the
difference (error) between the actual pattern and the target pattern, Hm are the
output values of the hidden neuron.

(5) Then the weights of the hidden layer are adjusted similarly, it is stated in this
time what they actually produce the neurons in the output layer to form the
error pattern for the hidden layer:

W
^

lm ¼ W
^

lm þ DW
^

lm ¼ W
^

lm ¼ llDhm; ð12:9Þ

Dhm ¼ ef 1� Re Hm½ �ð ÞRe Hm½ �
X

n
Re dn½ � 1� Re on½ �ð Þð Re Wnm½ �

þ Im dn½ � 1� Im on½ �ð ÞIm on½ �Im Wnm½ �Þg � iefð1
� Im Hm½ �ÞIm Hm½ �

X
n

Re dn½ �ð 1� Re on½ �ð ÞRe on½ �Im Wnm½ �
� Im dn½ � 1� Im on½ �ð ÞIm on½ �Re Wnm½ �Þg

ð12:10Þ

Input layer Hidden layer Output layer

Fig. 12.2 Structure of CANN
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where W
^

lm is the weight between input neuron l and hidden neuron m, Il are
the output values of the input neuron l, hm is the threshold value of the hidden
neuron m.

(6) The network is trained by presenting each input pattern in turn at the inputs
and propagating forward and backward, followed by the next input pattern.
Then this cycle is repeated many times. The training stops when any of these
conditions occurs: the maximum number of epochs (repetitions) is reached or
the error has an acceptable training error threshold.

After network training, a stable network structure is established. The network
then can be used to predict output values from new input values, i.e. to solving
coefficient inverse problem of identifying elastic and dissipative properties of solids.

12.4 Application of CANN to Solve Coefficient Inverse
Problem for Identification of Elastic (Young’s
Modulus) and Dissipative (Quality Factor) Properties
of Solids

In order to identify Young’s modulus and quality factor as it was described above
used CANN, in which they were output data. As input data, we used displacement
amplitudes (12.3), measured on solid surfaces. By training the CANN with a set of
input and output data, the first step of the computation process was calculation of
natural resonance frequencies, and following definition of steady oscillations of the
solid at these frequencies or in their neighborhood with the mechanical energy
dissipation.

Figure 12.1 shows four points 2, 3, 4, 5, where displacement amplitudes were
measured. The process of the displacement measurements is simulated using

Table 12.1 Data from problem of modal and harmonic analysis using ANSYS

No Input data x Output data (m)

E (Pa) Q U2r U2i V2r V2i

1 5 9 109 10 206.35 4.82 9 10-7 -5.2 9 10-6 1.09 9 10-6 -7.3 9 10-5

2 10 9 109 20 291.83 2.41 9 10-7 -2.6 9 10-6 5.46 9 10-7 -3.6 9 10-5

3 15 9 109 30 357.41 1.60 9 10-7 -1.7 9 10-6 3.64 9 10-7 -2.4 9 10-5

4 20 9 109 40 412.7 1.20 9 10-7 -1.3 9 10-6 2.73 9 10-7 -1.8 9 10-5

5 25 9 109 50 461.42 9.64 9 10-8 -1 9 10-6 2.18 9 10-7 -1.5 9 10-5

6 30 9 109 60 505.46 8.03 9 10-8 -8.6 9 10-7 1.82 9 10-7 -1.2 9 10-5

7 35 9 109 70 545.96 6.89 9 10-8 -7.4 9 10-7 1.56 9 10-7 -1 9 10-5

8 40 9 109 80 583.65 6.02 9 10-8 -6.5 9 10-7 1.36 9 10-7 -9.1 9 10-6

9 45 9 109 90 619.06 5.35 9 10-8 -5.8 9 10-7 1.21 9 10-7 -8.1 9 10-6

Etc.
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Table 12.2 The results of training and testing for CANN with two and six input values at the
different points (with the same number of epochs)

No Number of
data

CANN
architecture

Epoch Error Accuracy
(%)

Notes

1 2000 2-4-1 5000 0.01918 91.18 at the point 2
2 2000 2-4-1 5000 0.01856 93.52 at the point 3
3 2000 2-4-1 5000 0.01853 93.88 at the point 4
4 2000 2-4-1 5000 0.01872 92.95 at the point 5
5 2000 6-4-1 5000 0.01870 92.97 at the three points (x1, y1), (x2, y2),

(x3, y3)
6 2000 6-4-1 5000 0.01883 93.64 for three frequencies (xr-k, xr,

xr+k) at the point 2

Table 12.3 The results of training and testing for CANN with two input values at the point 4
(with different epochs)

No Number of
data

CANN
Architecture

Epoch Error Accuracy
(%)

Notes Time
(second)

1 2000 2-4-1 1000 0.02953 91.85 at the point 4 365.5
2 2000 2-4-1 5000 0.01853 93.88 at the point 4 1949.3
3 2000 2-4-1 20000 0.01390 94.89 at the point

4
13735.5

Table 12.4 The results of training and testing for CANN with two input values at the point 5
(with different numbers of hidden layers)

No Number of
data

CANN
Architecture

Epoch Error Accuracy
(%)

Notes Time
(second)

1 2000 2-2-1 1000 0.03012 89.72 at the point 5 269.5
2 2000 2-4-1 1000 0.02653 91.85 at the point

5
365.5

3 2000 2-6-1 1000 0.02955 89.50 at the point 5 476.5
4 2000 2-8-1 1000 0.02683 91.52 at the point 5 629.8
5 2000 2-10-1 1000 0.02761 91.20 at the point 5 739.1

Table 12.5 The results of training and testing for CANN with six input values at the points 3, 4,
5 (with different numbers of hidden layers)

No Number of
data

CANN
architecture

Epoch Error Accuracy
(%)

Notes Time
(second)

1 2000 6-2-1 1000 0.02485 91.17 at three points 364.6
2 2000 6-4-1 1000 0.02163 90.32 at three points 495.8
3 2000 6-6-1 1000 0.02056 93.83 at three

points
659.3

4 2000 6-8-1 1000 0.02283 91.52 at three points 830.0
5 2000 6-10-1 1000 0.03763 85.89 at three points 3912.0
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calculation of finite element software ANSYS. Table 12.1 presents the input and
output data for the ‘‘measurement’’ at the point 2.

CANN has the following configuration in dependence on number of points and
the frequency ‘‘measurement’’:

(i) at one measurement point and one frequency, this neural network consists of
two neural input values: U2r þ iU2i, V2r þ iV2i and one neural output value:
E + iQ;

(ii) at one measurement point and three frequencies, this neural network consists
of six neural input values: U1r þ iU1i;V1r þ iV1i, U2r þ iU2i;V2r þ iV2i,
U3r þ iU3i;V3r þ iV3i and one neural output value: E + iQ;

Fig. 12.3 Relationship
between time of training and
testing for CANN with
different epochs

Fig. 12.4 Relationship
between time of training and
testing for CANN with
different architecture

Fig. 12.5 Relationship
between time of training and
testing in CANN with
different architecture
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(iii) at three measurement points and one frequency, this neural network consists
of six neural input values: U1r þ iU1i;V1r þ iV1i, U2r þ iU2i;V2r þ iV2i,
U3r þ iU3i;V3r þ iV3i and one neural output value: E + iQ.

Fig. 12.6 Results of testing
E at the threshold error of
20 %

Fig. 12.7 Results of testing
Q at the threshold error of
20 %
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The results of the computer experiments, conducted by using CANN with 2000
patterns, in which, 1800 patterns were used for training and 200 for testing, are
show in Tables 12.2, 12.3, 12.4 and 12.5.

Fig. 12.8 Results of testing
E at the threshold error of
10 %

Fig. 12.9 Results of testing
Q at the threshold error of
10 %
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Time of training for CANN with different epochs (Table 12.3) is shown in
Fig. 12.3. Time of training and testing for CANN with different number of neurons
in hidden layer is shown in Fig. 12.4. The relationship between time of training
and testing for CANN with different architecture is shown in Fig. 12.5 (data from
Table 12.5).

Figures 12.6, 12.7, 12.8 and 12.9 show the results of testing with 200 patterns in
CANN (with architecture 2-4-1, see Table 12.2, the row 3). The circles present the
data of test E, triangles and squares describe the forecast data Ec, obtained by using

Fig. 12.10 Prediction of results obtained by using CANN

Fig. 12.11 Graph of training
error
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CANN. The relative errors dE, dQ are calculated in the forms: dE = |Ec - E|/E,
dQ = |Qc - Q|/Q. In this case, corresponding triangles and squares with the iden-
tification error no exceeding of 20 %, are shown in Figs. 12.6 and 12.7.

The similar results for threshold error of 10 % are shown in Figs. 12.8 and 12.9.
Figure 12.10 demonstrates the results of identification in dependence on number

of test data in the form of two curves, the solid curves correspond to the required
data, and the dashed lines define the forecast data obtained by using CANN. The
graph of training error (12.6) with 20,000 epochs is shown in Fig. 12.11.

12.5 Conclusion

In this paper, we developed a method for determination of material elastic and
dissipative properties by using data for harmonic oscillations on the resonance
frequency based on a combination of the finite element method and CANN. The
results of the experiments showed that CANN with one of the following
architectures:

2 (input neurons)—4 (hidden neurons)—1 (output neuron)
or
6 (input neurons)—6 (hidden neurons)—1 (output neuron)

gives the best result of identification. The time expenses caused by the CANN
training were also estimated in this paper. The developed method and computer
program could be used to determine the dissipative properties on different fre-
quencies (not only on the first one), as well as in anisotropic elastic solids.
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