
Chapter 8
Data Quality: Detection and Management
of Outliers

Ferdinando Urbano, Mathieu Basille and Francesca Cagnacci

Abstract Tracking data can potentially be affected by a large set of errors in
different steps of data acquisition and processing. Erroneous data can heavily affect
analysis, leading to biased inference and misleading wildlife management/
conservation suggestions. Data quality assessment is therefore a key step in data
management. In this chapter, we especially deal with biased locations, or ‘outliers’.
While in some cases incorrect data are evident, in many situations, it is not possible
to clearly identify locations as outliers because although they are suspicious
(e.g. long distances covered by animals in a short time or repeated extreme values),
they might still be correct, leaving a margin of uncertainty. In this chapter, different
potential errors are identified and a general approach to managing outliers is
proposed that tags records rather than deleting them. According to this approach,
practical methods to find and mark errors are illustrated on the database created in
Chaps. 2, 3, 4, 5, 6 and 7.

Keywords Outlier detection � GPS accuracy � Animal movement � Erroneous
data

F. Urbano (&)
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

M. Basille
Fort Lauderdale Research and Education Center, University of Florida,
3205 College Avenue, Fort Lauderdale, FL 33314, USA
e-mail: basille@ase-research.org

F. Cagnacci
Biodiversity and Molecular Ecology Department, Research and Innovation Centre,
Fondazione Edmund Mach, via E. Mach 1, 38010 S.Michele all’Adige, TN, Italy
e-mail: francesca.cagnacci@fmach.it

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_8, � Springer International Publishing Switzerland 2014

115

http://dx.doi.org/10.1007/978-3-319-03743-1_2
http://dx.doi.org/10.1007/978-3-319-03743-1_3
http://dx.doi.org/10.1007/978-3-319-03743-1_4
http://dx.doi.org/10.1007/978-3-319-03743-1_5
http://dx.doi.org/10.1007/978-3-319-03743-1_6
http://dx.doi.org/10.1007/978-3-319-03743-1_7

Introduction

Tracking data can potentially be affected by a large set of errors in different steps
of data acquisition and processing, involving malfunctioning or poor performance
of the sensor device that may affect measurement, acquisition and recording;
failure of transmission hardware or lack of transmission due to network or physical
conditions; and errors in data handling and processing. Erroneous location data can
substantially affect analysis related to ecological or conservation questions, thus
leading to biased inference and misleading wildlife management/conservation
conclusions. The nature of positioning error is variable (see Special Topic), but
whatever the source and type of errors, they have to be taken into account. Indeed,
data quality assessment is a key step in data management.

In this chapter, we especially deal with biased locations or ‘outliers’. While in
some cases incorrect data are evident, in many situations it is not possible to
clearly identify locations as outliers because although they are suspicious (e.g.
long distances covered by animals in a short time or repeated extreme values), they
might still be correct, leaving a margin of uncertainty. For example, it is evident
from Fig. 8.1 that there are at least three points of the GPS data set with clearly
incorrect coordinates.

In the exercise presented in this chapter, different potential errors are identified.
A general approach to managing outliers is proposed that tags records rather than
deleting them. According to this approach, practical methods to find and mark
errors are illustrated.

Review of Errors that Can Affect GPS Tracking Data

The following are some of the main errors that can potentially affect data acquired
from GPS sensors (points 1 to 5), and that can be classified as GPS location bias,
i.e. due to a malfunctioning of the GPS sensor that generates locations with low
accuracy (points 6 to 9):

1. Missing records. This means that no information (not even the acquisition time)
has been received from the sensor, although it was planned by the acquisition
schedule.

2. Records with missing coordinates. In this case, there is a GPS failure probably
due to bad GPS coverage or canopy closure. In this case, the information on
acquisition time is still valid, even if no coordinates are provided. This cor-
responds to ‘fix rate’ error (see Special Topic).

3. Multiple records with the same acquisition time. This has no physical meaning
and is a clear error. The main problem here is to decide which record (if any) is
correct.

4. Records that contain different values when acquired using different data transfer
procedures (e.g. direct download from the sensor through a cable vs. data
transmission through the GSM network).

116 F. Urbano et al.

5. Records erroneously attributed to an animal because of inexact deployment
information. This case is frequent and is usually due to an imprecise definition
of the deployment time range of the sensor on the animal. A typical result is
locations in the scientist’s office followed by a trajectory along the road to the
point of capture.

6. Records located outside the study area. In this case, coordinates are incorrect
(probably due to malfunctioning of the GPS sensor) and outliers appear very far
from the other (valid) locations. This is a special case of impossible movements
where the erroneous location is detected even with a simple visual exploration.
This can be considered an extreme case of location bias, in terms of accuracy
(see Special Topic).

7. Records located in impossible places. This might include (depending on species)
sea, lakes or otherwise inaccessible places. Again, the error can be attributed to
GPS sensor bias.

8. Records that imply impossible movements (e.g. very long displacements,
requiring movement at a speed impossible for the species). In this case, some
assumptions on the movement model must be made (e.g. maximum speed).

9. Records that imply improbable movements. In this case, although the move-
ment is physically possible according to the threshold defined, the likelihood of
the movement is so low that it raises serious doubts about its reliability. Once
the location is tagged as suspicious, analysts can decide whether it should be
considered in specific analyses.

Fig. 8.1 Visualisation of the GPS data set, where three points are evident erroneous positions

8 Data Quality: Detection and Management of Outliers 117

GPS sensors usually record other ancillary information that can vary according
to vendors and models. Detection of errors in the acquisition of these attributes is
not treated here. Examples are the number of satellites used to estimate the
position, the dilution of precision (DOP), the temperatures as measured by the
sensor associated with the GPS and the altitude estimated by the GPS. Temper-
ature is measured close to the body of the animal, while altitude is not measured on
the geoid but as the distance from the centre of the earth: thus in both cases the
measure is affected by large errors.

Special Topic: Dealing with localisation errors associated with the GPS sensor

A source of uncertainty associated with GPS data is the positioning error of the sensor. GPS
error can be classified as bias (i.e. average distance between the ‘true location’ and the
estimated location, where the average value represents the accuracy while the measure of
dispersion of repeated measures represents the precision) and fix rate, or the proportion of
expected fixes (i.e. those expected according to the schedule of positioning that is pro-
grammed on the GPS unit) compared to the number of fixes actually obtained. Both these
types of errors are related to several factors, including tag brand, orientation, fix interval (e.g.
cold/warm or hot start), and topography and canopy closure. Unfortunately, the relationship
between animals and the latter two factors is the subject of a fundamental branch of spatial
ecology: habitat selection studies. In extreme synthesis, habitat selection models establish a
relationship between the habitat used by animals (estimated by acquired locations) versus
available proportion of habitat (e.g. random locations throughout study area or home range).
Therefore, a habitat-biased proportion of fixes due to instrumental error may hamper the
inferential powers of habitat selection models. A series of solutions have been proposed. For
a comprehensive review see Frair et al. (2010). Among others, a robust methodology is the
use of spatial predictive models for the probability of GPS acquisition, usually based on
dedicated local tests, the so-called Pfix. Data can then be weighted by the inverse of Pfix, so
that positions taken in difficult-to-estimate locations are weighted more. In general, it is
extremely important to account for GPS bias, especially in resource selection models.

A General Approach to the Management of Erroneous
Locations

Once erroneous records are detected, the suggested approach is to keep a copy of
all the information as it comes from the sensors (in gps_data table), and then mark
records affected by each of the possible errors using different tags in the table
where locations are associated with animals (gps_data_animals). Removing data
seems often not so much a problem with GPS data sets, since you probably have
thousands of locations anyway. Although keeping incorrect data as valid could be
much more of a problem and bias further analyses, suspicious locations, if correct,
might be exactly the information needed for a specific analysis (e.g. rutting
excursions). The use of a tag to identify the reliability of each record can solve
these problems. Records should never be deleted from the data set even when they
are completely wrong, for the following reasons:

118 F. Urbano et al.

• If you detect errors with automatic procedures, it is always a good idea to be
able to manually check the results to be sure that the method performed as
expected, which is not possible if you delete the records.

• If you delete a record, whenever you have to resynchronise your data set with
the original source, you will reintroduce the outlier, particularly for erroneous
locations that cannot be automatically detected.

• A record can have some values that are wrong (e.g. coordinates), but others that
are valid and useful (e.g. timestamp).

• The fact that the record is an outlier is valuable information that you do not want
to lose (e.g. you might want to know the success rate of the sensor according to
the different types of errors).

• It is important to differentiate missing locations (no data from sensor) from data
that were received but erroneous for another reason (incorrect coordinates). As
underlined in the Special Topic, the difference between these two types of error
is substantial.

• It is often difficult to determine unequivocally that a record is wrong, because
this decision is related to assumptions about the species’ biology. If all original
data are kept, criteria to identify outliers can be changed at any time.

• What looks useless in most cases (e.g. records without coordinates) might be
very useful in other studies that were not planned when data were acquired and
screened.

• Repeated erroneous data are a fairly reliable clue that a sensor is not working
properly, and you might use this information to decide whether and when to
replace it.

In the following examples, you will explore the location data set hunting for
possible errors. First, you will create a field in the GPS data table where you can
store a tag associated with each erroneous or suspicious record. Then, you will
define a list of codes, one for each possible type of error. In general, a preliminary
visual exploration of the spatial distribution of the entire set of locations can be
useful for detecting the general spatial patterns of the animals’ movements and
evident outlier locations.

To tag locations as errors or unreliable data, you first create a new field
(sensor_validity_code) in the gps_data_animals table. At the same time, a list of
codes corresponding to all possible errors must be created using a lookup table
gps_validity, linked to the sensor_validity_code field with a foreign key. When an
outlier detection process identifies an error, the record is marked with the corre-
sponding tag code. In the analytical stage, users can decide to exclude all or part of the
records tagged as erroneous. The evident errors (e.g. points outside the study area) can
be automatically marked in the import procedure, while some other detection algo-
rithms are better run by users when required because they imply a long processing
time or might need a fine tuning of the parameters. First, add the new field to the table:

ALTER TABLE main.gps_data_animals

 ADD COLUMN gps_validity_code integer;

8 Data Quality: Detection and Management of Outliers 119

Now create a table to store the validity codes, create the external key and insert
the admitted values:

CREATE TABLE lu_tables.lu_gps_validity(

 gps_validity_code integer,

 gps_validity_description character varying,

 CONSTRAINT lu_gps_validity_pkey

 PRIMARY KEY (gps_validity_code));

COMMENT ON TABLE lu_tables.lu_gps_validity

IS 'Look up table for GPS positions validity codes.';

ALTER TABLE main.gps_data_animals

 ADD CONSTRAINT animals_lu_gps_validity

 FOREIGN KEY (gps_validity_code)

 REFERENCES lu_tables.lu_gps_validity (gps_validity_code)

 MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

INSERT INTO lu_tables.lu_gps_validity

 VALUES (0, 'Position with no coordinate');

INSERT INTO lu_tables.lu_gps_validity

 VALUES (1, 'Valid Position');

INSERT INTO lu_tables.lu_gps_validity

 VALUES (2, 'Position with a low degree of reliability');

INSERT INTO lu_tables.lu_gps_validity

 VALUES (11, 'Position wrong: out of the study area');

INSERT INTO lu_tables.lu_gps_validity

 VALUES (12, 'Position wrong: impossible spike');

INSERT INTO lu_tables.lu_gps_validity

 VALUES (13, 'Position wrong: impossible place (e.g. lake or sea)');

INSERT INTO lu_tables.lu_gps_validity

 VALUES (21, 'Position wrong: duplicated timestamp');

Some errors are already contained in the five GPS data sets previously loaded
into the database, but a new (fake) data set can be imported to verify a wider range
of errors. To do this, insert a new animal, a new GPS sensor, a new deployment
record and finally import the data from the .csv file provided in the test data set.

Insert a new animal, called ‘test’:

INSERT INTO main.animals

 (animals_id, animals_code, name, sex, age_class_code, species_code, note)

 VALUES (6, 'test', 'test-ina', 'm', 3, 1, 'This is a fake animal, used to

test outliers detection processes.');

Insert a new sensor, called ‘GSM_test’:

INSERT INTO main.gps_sensors

 (gps_sensors_id, gps_sensors_code, purchase_date, frequency, vendor, model,

 sim)

 VALUES (6, 'GSM_test', '2005-01-01', 1000, 'TNT', 'top', '+391441414');

120 F. Urbano et al.

Insert the time interval of the deployment of the test sensor on the test animal:

INSERT INTO main.gps_sensors_animals

 (animals_id, gps_sensors_id, start_time, end_time, notes)

 VALUES (6, 6, '2005-04-04 08:00:00+02', '2005-05-06 02:00:00+02', 'test

deployment');

The last step is importing the data set from the .csv file:

COPY main.gps_data(

 gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,
ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id,
ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr,

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id,
ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr,

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol, temp,
easting, northing, remarks)

FROM
 'C:\tracking_db\data\sensors_data\GSM_test.csv'

 WITH (FORMAT csv, HEADER, DELIMITER ';');

Now you can proceed with outlier detection, having a large set of errors to hunt
for. You can start by assuming that all the GPS positions are correct (value ‘1’):

UPDATE main.gps_data_animals

 SET gps_validity_code = 1;

Missing Records

You might have a missing record when the device was programmed to acquire the
position but no information (not even the acquisition time) is recorded. In this
case, you can use specific functions (see Chap. 9) to create ‘virtual’ records and, if
needed, compute and interpolate values for the coordinates. The ‘virtual’ records
should be created just in the analytical stage and not stored in the reference data set
(table gps_data_animals).

Records with Missing Coordinates

When the GPS is unable to receive sufficient satellite signal, the record has no
coordinates associated. The rate of GPS failure can vary substantially, mainly
according to sensor quality, terrain morphology and vegetation cover. Missing
coordinates cannot be managed as location bias, but have to be properly treated in
the analytical stage depending on the specific objective, since they result in an

8 Data Quality: Detection and Management of Outliers 121

http://dx.doi.org/10.1007/978-3-319-03743-1_9

erroneous ‘fix rate’ (see Special Topic—how to deal with erroneous fix rates is
beyond the scope of this chapter). Technically, they can be filtered from the data set,
or an estimated value can be calculated by interpolating the previous and next GPS
positions. This is a very important issue, since several analytical methods require
regular time intervals. Note that with no longitude/latitude, the spatial attribute (i.e.
the geom field) cannot be created, which makes it easy to identify this type of error.
You can mark all the GPS positions with no coordinates with the code ‘0’:

UPDATE main.gps_data_animals

 SET gps_validity_code = 0

 WHERE geom IS NULL;

Multiple Records with the Same Acquisition Time

In some (rare) cases, you might have a repeated acquisition time (from the same
acquisition source). You can detect these errors by grouping your data set by
animal and acquisition time and asking for multiple occurrences. Here is an
example of an SQL query to get this result:

SELECT

 x.gps_data_animals_id, x.animals_id, x.acquisition_time

FROM

 main.gps_data_animals x,

 (SELECT animals_id, acquisition_time

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1

 GROUP BY animals_id, acquisition_time

 HAVING count(animals_id) > 1) a

WHERE

 a.animals_id = x.animals_id AND

 a.acquisition_time = x.acquisition_time

ORDER BY

 x.animals_id, x.acquisition_time;

This query returns the id of the records with duplicated timestamps (having
count(animals_id) [1). In this case, it retrieves two records with the same
acquisition time (‘2005-05-04 22:01:24+00’):

 gps_data_animals_id | animals_id | acquisition_time

---------------------+------------+------------------------

 28177 | 6 | 2005-05-05 00:01:24+02

 28176 | 6 | 2005-05-05 00:01:24+02

At this point, the data manager has to decide what to do. You can keep one of the
two (or more) GPS positions with repeated acquisition time, or tag both (all) as

122 F. Urbano et al.

unreliable. The first possibility would imply a detailed inspection of the locations at
fault, in order to possibly identify (with no guarantee of success) which one is correct.
On the other hand, the second case is more conservative and can be automated as the
user does not have to take any decision that could lead to erroneous conclusions. As
for the other type of errors, a specific gps_validity_code is suggested. Here is an
example:

UPDATE main.gps_data_animals

 SET gps_validity_code = 21

 WHERE

 gps_data_animals_id in

 (SELECT x.gps_data_animals_id

 FROM

 main.gps_data_animals x,

 (SELECT animals_id, acquisition_time

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1

 GROUP BY animals_id, acquisition_time

 HAVING count(animals_id) > 1) a

 WHERE

 a.animals_id = x.animals_id AND

 a.acquisition_time = x.acquisition_time);

If you rerun the above query to identify locations with the same timestamps, it
will now return an empty output.

Records with Different Values When Acquired Using
Different Acquisition Sources

It may happen that data are obtained from sensors through different data transfer
processes. A typical example is data received in near real time through a GSM
network and later downloaded directly via cable from the sensor when it is phys-
ically removed from the animal. If the information is different, it probably means
that an error occurred during data transmission. In this case, it is necessary to define
a hierarchy of reliability for the different sources (e.g. data obtained via cable
download are better than those obtained via the GSM network). This information
should be stored when data are imported into the database into gps_data table.
Then, when valid data are to be identified, the ‘best’ code should be selected,
paying attention to properly synchronise gps_data and gps_data _animals. Which
specific tools will be used to manage different acquisition sources largely depends
on the number of sensors, frequency of updates and desired level of automation of
the process. No specific examples are provided here.

8 Data Quality: Detection and Management of Outliers 123

Records Erroneously Attributed to Animals

This situation usually occurs for the first and/or last GPS positions because the
start and end date and time of the sensor deployment are not correct. The con-
sequence is that the movements of the sensor before and after the deployment are
attributed to the animal. It may be difficult to trap this error with automatic
methods because incorrect records can be organised in spatial clusters with a
(theoretically) meaningful pattern (the set of erroneous GPS positions has a high
degree of spatial autocorrelation as it contains ‘real’ GPS positions of ‘real’
movements, although they are not animal’s movements). It is important to stress
that this kind of pattern, e.g. GPS positions repeated in a small area where the
sensor is stored before the deployment (e.g. the researcher’s office) and then a long
movement to where the sensor is deployed on the animal, can closely resemble the
sequence of GPS positions for animals just released in a new area.

To identify this type of error, the suggested approach is to visually explore the
data set in a GIS desktop interface. Once you detect this situation, you should
check the source of information on the date of capture and sensor deployment and,
if needed, correct the information in the table gps_sensors_animals (this will
automatically update the table gps_data_animals). In general, a visual exploration
of your GPS data sets, using as representation both points and trajectories, is
always useful to help identify unusual spatial patterns. For this kind of error, no
gps_validity_code are used because, once detected, they are automatically
excluded from the table gps_data_animals.

The best method to avoid this type of error is to get accurate and complete
information about the deployment of the sensors on the animals, for example,
verifying not just the starting and ending date, but also the time of the day and time
zone.

Special attention must be paid to the end of the deployment. For active
deployments, no end is defined. In this case, the procedure can make use of the
function now() to define a dynamic upper limit when checking the timestamp of
recorded locations (i.e. the record is not valid if acquisition_time [now()).

The next types of error can all be connected to GPS sensor malfunctioning or
poor performance, leading to biased locations with low accuracy, or a true ‘out-
lier’, i.e. coordinates that are distant or very distant from the ‘true location’.

Records Located Outside the Study Area

When the error of coordinates is due to reasons not related to general GPS
accuracy (which will almost always be within a few dozen metres), the incorrect
positions are often quite evident as they are usually very far from the others
(a typical example is the inversion of longitude and latitude). At the same time, this
error is random, so erroneous GPS positions are hardly grouped in spatial clusters.

124 F. Urbano et al.

When a study area has defined limits (e.g. fencing or natural boundaries), the
simplest way to identify incorrect GPS positions is to run a query that looks for
those that are located outside these boundaries (optionally, with an extra buffer
area). Though animals have no constraints to their movements, they are still
limited to a specific area (e.g. an island), so you can delineate a very large
boundary so that at least GPS positions very far outside this area are captured. In
this case, it is better to be conservative and enlarge the study area as much as
possible to exclude all the valid GPS positions. Other, more fine-tuned methods
can be used at a later stage to detect the remaining erroneous GPS positions. This
approach has the risk of tagging correct locations if the boundaries are not properly
set, as the criteria are very subjective. It is important to note that erroneous
locations will be identified in any case as impossible movements (see next sec-
tions). This step can be useful in cases where you don’t have access to movement
properties (e.g. VHF data with only one location a week). Another element to keep
in mind, especially in the case of automatic procedures to be run in real time on the
data flow, is that very complex geometries (e.g. a coastline drawn at high spatial
resolution) can slow down the intersection queries. In this case, you can exploit the
power of spatial indexes and/or simplify your geometry, which can be done using
the PostGIS commands ST_Simplify1 and ST_SimplifyPreserveTopology2. Here is
an example of an SQL query that detects outliers outside the boundaries of the
study_area layer, returning the IDs of outlying records:

SELECT

 gps_data_animals_id

FROM

 main.gps_data_animals

LEFT JOIN

 env_data.study_area

ON

 ST_Intersects(gps_data_animals.geom, study_area.geom)

WHERE

 study_area IS NULL AND

 gps_data_animals.geom IS NOT NULL;

There result is the list of the six GPS positions that fall outside the study area:

 gps_data_animals_id

 15810

 27945

 28094

 28111

 20540

 23030

1 http://www.postgis.org/docs/ST_Simplify.html.
2 http://www.postgis.org/docs/ST_SimplifyPreserveTopology.html.

8 Data Quality: Detection and Management of Outliers 125

http://www.postgis.org/docs/ST_Simplify.html
http://www.postgis.org/docs/ST_SimplifyPreserveTopology.html

The same query could be made using ST_Disjoint, i.e. the opposite of
ST_Intersects (note, however, that the former does not work on multiple poly-
gons). Here is an example where a small buffer (ST_Buffer) is added (using
Common Table Expressions3):

WITH area_buffer_simplified AS

 (SELECT

 ST_Simplify(

 ST_Buffer(study_area.geom, 0.1), 0.1) AS geom

 FROM

 env_data.study_area)

SELECT

 animals_id, gps_data_animals_id

FROM

 main.gps_data_animals

WHERE

 ST_Disjoint(

 gps_data_animals.geom, (SELECT geom FROM area_buffer_simplified));

The use of the syntax with WITH is optional, but in some cases can be a useful
way to simplify your queries, and it might be interesting for you to know how it
works.

In this case, just five outliers are detected because one of the previous six is
very close to the boundaries of the study area:

 animals_id | gps_data_animals_id

------------+---------------------

 3 | 15810

 6 | 27945

 6 | 28111

 1 | 20540

 5 | 23030

This GPS position deserves a more accurate analysis to determine whether it is
really an outlier. Now tag the other five GPS positions as erroneous (validity code
‘11’, i.e. ‘Position wrong: out of the study area’):

UPDATE main.gps_data_animals

 SET gps_validity_code = 11

 WHERE

 gps_data_animals_id in

 (SELECT gps_data_animals_id

 FROM main.gps_data_animals, env_data.study_area

 WHERE ST_Disjoint(

 gps_data_animals.geom,

 ST_Simplify(ST_Buffer(study_area.geom, 0.1), 0.1)));

3 http://www.postgresql.org/docs/9.2/static/queries-with.html.

126 F. Urbano et al.

http://www.postgresql.org/docs/9.2/static/queries-with.html

Using a simpler approach, another quick way to detect these errors is to order
GPS positions according to their longitude and latitude coordinates. The outliers
are immediately visible as their values are completely different from the others and
they pop up at the beginning of the list. An example of this kind of query is:

SELECT

 gps_data_animals_id, ST_X(geom)

FROM

 main.gps_data_animals

WHERE

 geom IS NOT NULL

ORDER BY

 ST_X(geom)

LIMIT 10;

The resulting data set is limited to ten records, as just a few GPS positions are
expected to be affected by this type of error. From the result of the query, it is clear
that the first two locations are outliers, while the third is a strong candidate:

 gps_data_animals_id | st_x

---------------------+------------

 15810 | 5.0300699

 23030 | 10.7061637

 27948 | 10.9506126

 17836 | 10.9872122

 17835 | 10.9875451

 17837 | 10.9876942

 17609 | 10.9884574

 18098 | 10.9898182

 18020 | 10.9899461

 20154 | 10.9900441

The same query can then be repeated in reverse order, and then doing the same
for latitude:

SELECT gps_data_animals_id, ST_X(geom)

FROM main.gps_data_animals

WHERE geom IS NOT NULL

ORDER BY ST_X(geom)

DESC LIMIT 10;

SELECT gps_data_animals_id, ST_Y(geom)

FROM main.gps_data_animals

WHERE geom IS NOT NULL

ORDER BY ST_Y(geom)

LIMIT 10;

SELECT gps_data_animals_id, ST_Y(geom)

FROM main.gps_data_animals

WHERE geom IS NOT NULL

ORDER BY ST_Y(geom) DESC

LIMIT 10;

8 Data Quality: Detection and Management of Outliers 127

Records Located in Impossible Places

When there are areas not accessible to animals because of physical constraints
(e.g. fencing, natural barriers) or environments not compatible with the studied
species (lakes and sea, or land, according to the species), you can detect GPS
positions that are located in those areas where it is impossible for the animal to be.
Therefore, the decision whether or not to mark the locations as incorrect is based
on ecological assumptions (i.e. non-habitat). In this example, you mark, using
validity code ‘13’, all the GPS positions that fall inside a water body according to
Corine land cover layer (Corine codes ‘40’, ‘41’, ‘42’, ‘43’ and ‘44’):

UPDATE main.gps_data_animals

 SET gps_validity_code = 13

 FROM

 env_data.corine_land_cover

 WHERE

 ST_Intersects(

 corine_land_cover.rast,

 ST_Transform(gps_data_animals.geom, 3035)) AND

 ST_Value(

 corine_land_cover.rast,

 ST_Transform(gps_data_animals.geom, 3035))

 in (40,41,42,43,44) AND

 gps_validity_code = 1 AND

 ST_Value(

 corine_land_cover.rast,

 ST_Transform(gps_data_animals.geom, 3035)) != 'NaN';

For this kind of control, you must also consider that the result depends on the
accuracy of the land cover layer and of the GPS positions. Thus, at a minimum, a
further visual check in a GIS environment is recommended.

Records that Would Imply Impossible Movements

To detect records with incorrect coordinates that cannot be identified using clear
boundaries, such as the study area or land cover type, a more sophisticated outlier
filtering procedure must be applied. To do so, some kind of assumption about the
animals’ movement model has to be made, for example, a speed limit. It is
important to remember that animal movements can be modelled in different ways
at different temporal scales: an average speed that is impossible over a period of 4
h could be perfectly feasible for movements in a shorter time (e.g. 5 minutes).
Which algorithm to apply depends largely on the species and the environment in
which the animal is moving and the duty cycle of the tag. In general, PostgreSQL
window functions can help.

128 F. Urbano et al.

Special Topic: PostgreSQL window functions

A window function4 performs a calculation across a set of rows that are somehow related
to the current row. This is similar to an aggregate function, but unlike regular aggregate
functions, window functions do not group rows into a single output row, hence they are
still able to access more than just the current row of the query result. In particular, it
enables you to access previous and next rows (according to a user-defined ordering cri-
teria) while calculating values for the current row. This is very useful, as a tracking data
set has a predetermined temporal order, where many properties (e.g. geometric parameters
of the trajectory, such as turning angle and speed) involve a sequence of GPS positions. It
is important to remember that the order of records in a database is irrelevant. The ordering
criteria must be set in the query that retrieves data.

In the next example, you will make use of window functions to convert the
series of locations into steps (i.e. the straight-line segment connecting two suc-
cessive locations), and compute geometric characteristics of each step: the time
interval, the step length, and the speed during the step as the ratio of the previous
two. It is important to note that while a step is the movement between two points,
in many cases, its attributes are associated with the starting or the ending point. In
this book, we use the ending point as reference. In some software, particularly the
adehabitat5 package for R (see Chap. 10), the step is associated with the starting
point. If needed, the queries and functions presented in this book can be modified
to follow this convention.

SELECT

 animals_id AS id,

 acquisition_time,

 LEAD(acquisition_time,-1)

 OVER (

 PARTITION BY animals_id

 ORDER BY acquisition_time) AS acquisition_time_1,

 (EXTRACT(epoch FROM acquisition_time) -

 LEAD(EXTRACT(epoch FROM acquisition_time), -1)

 OVER (

 PARTITION BY animals_id

 ORDER BY acquisition_time))::integer AS deltat,

 (ST_Distance_Spheroid(

 geom,

 LEAD(geom, -1)

 OVER (

 PARTITION BY animals_id

 ORDER BY acquisition_time),

4 http://www.postgresql.org/docs/9.2/static/tutorial-window.html.
5 http://cran.r-project.org/web/packages/adehabitat/index.html.

8 Data Quality: Detection and Management of Outliers 129

http://dx.doi.org/10.1007/978-3-319-03743-1_10
http://www.postgresql.org/docs/9.2/static/tutorial-window.html
http://cran.r-project.org/web/packages/adehabitat/index.html

 'SPHEROID["WGS 84",6378137,298.257223563]'))::integer AS dist,

 (ST_Distance_Spheroid(

 geom,

 LEAD(geom, -1)

 OVER (

 PARTITION BY animals_id

 ORDER BY acquisition_time),

 'SPHEROID["WGS 84",6378137,298.257223563]')/

 ((EXTRACT(epoch FROM acquisition_time) -

 LEAD(

 EXTRACT(epoch FROM acquisition_time), -1)

 OVER (

 PARTITION BY animals_id

 ORDER BY acquisition_time))+1)*60*60)::numeric(8,2) AS speed

FROM main.gps_data_animals

WHERE gps_validity_code = 1

LIMIT 10;

The result of this query is

 id | acquisition_time | acquisition_time_1 | deltat | dist | speed

----+------------------------+------------------------+--------+------+--------

 1 | 2005-10-18 22:00:54+02 | | | |

 1 | 2005-10-19 02:01:23+02 | 2005-10-18 22:00:54+02 | 14429 | 97 | 24.15

 1 | 2005-10-19 06:02:22+02 | 2005-10-19 02:01:23+02 | 14459 | 430 | 107.08

 1 | 2005-10-19 10:03:08+02 | 2005-10-19 06:02:22+02 | 14446 | 218 | 54.40

 1 | 2005-10-20 22:00:53+02 | 2005-10-19 10:03:08+02 | 129465 | 510 | 14.17

 1 | 2005-10-21 02:00:48+02 | 2005-10-20 22:00:53+02 | 14395 | 97 | 24.22

 1 | 2005-10-21 06:00:53+02 | 2005-10-21 02:00:48+02 | 14405 | 69 | 17.26

 1 | 2005-10-21 10:01:42+02 | 2005-10-21 06:00:53+02 | 14449 | 478 | 119.20

 1 | 2005-10-21 18:01:16+02 | 2005-10-21 10:01:42+02 | 28774 | 150 | 18.77

 1 | 2005-10-21 22:01:23+02 | 2005-10-21 18:01:16+02 | 14407 | 688 | 172.02

As a demonstration of a possible approach to detecting ‘impossible move-
ments’, here is an adapted function that implements the algorithm presented in
Bjorneraas et al. (2010). In the first step, you compute the distance from each GPS
position to the average of the previous and next ten GPS positions, and extract
records that have values bigger than a defined threshold (in this case, arbitrarily set
to 10,000 m):

SELECT gps_data_animals_id

FROM

 (SELECT

 gps_data_animals_id,

 ST_Distance_Spheroid(geom,

 ST_setsrid(ST_makepoint(

 avg(ST_X(geom))

 OVER (

130 F. Urbano et al.

 PARTITION BY animals_id

 ORDER BY acquisition_time rows

 BETWEEN 10 PRECEDING and 10 FOLLOWING),

 avg(ST_Y(geom))

 OVER (

 PARTITION BY animals_id

 ORDER BY acquisition_time rows

 BETWEEN 10 PRECEDING and 10 FOLLOWING)), 4326),'SPHEROID["WGS

 6378137,298.257223563]') AS dist_to_avg
 FROM

 main.gps_data_animals

 WHERE

 gps_validity_code = 1) a

WHERE

 dist_to_avg > 10000;

84",

The result is the list of IDs of all the GPS positions that match the defined
conditions (and thus can be considered outliers). In this case, just one record is
returned:

 gps_data_animals_id

 27948

This code can be improved in many ways. For example, it is possible to con-
sider the median instead of the average. It is also possible to take into consider-
ation that the first and last ten GPS positions have incomplete windows of 10 ? 10
GPS positions. Moreover, this method works fine for GPS positions at regular time
intervals, but in the case of a change in acquisition schedule might lead to
unexpected results. In these cases, you should create a query with a temporal
window instead of a fixed number of GPS positions.

In the second step, the angle and speed based on the previous and next GPS
position are calculated (both the previous and next location are used to determine
whether the location under consideration shows a spike in speed or turning angle),
and then GPS positions below the defined thresholds (in this case, arbitrarily set as
cosine of the relative angle \-0.99 and speed [2,500 m per hour) are extracted:

SELECT

 gps_data_animals_id

FROM

 (SELECT gps_data_animals_id,

 ST_Distance_Spheroid(

 geom,

'SPHEROID["WGS 84",6378137,298.257223563]') /

 (EXTRACT(epoch FROM acquisition_time) - EXTRACT (epoch FROM

(lag(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY

 LAG(geom, 1) OVER (PARTITION BY animals_id ORDER BY acquisition_time),

8 Data Quality: Detection and Management of Outliers 131

acquisition_time))))*3600 AS speed_FROM,

 ST_Distance_Spheroid(

geom,LEAD(geom, 1) OVER (PARTITION BY animals_id ORDER BY acquisition_time),

'SPHEROID["WGS 84",6378137,298.257223563]') /

 (- EXTRACT(epoch FROM acquisition_time) + EXTRACT (epoch FROM

(lead(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))))*3600 AS speed_to,

 cos(ST_Azimuth((

 LAG(geom, 1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))::geography,

 geom::geography) -

 ST_Azimuth(

 geom::geography,

 (LEAD(geom, 1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))::geography)) AS rel_angle

 FROM main.gps_data_animals

 WHERE gps_validity_code = 1) a

WHERE

 rel_angle < -0.99 AND

 speed_from > 2500 AND

 speed_to > 2500;

The result returns the list of IDs of all the GPS positions that match the defined
conditions. The same record detected in the previous query is returned. These
examples can be used as templates to create other filtering procedures based on the
temporal sequence of GPS positions and the users’ defined movement constraints.

It is important to remember that this kind of method is based on the analysis of
the sequence of GPS positions, and therefore results might change when new GPS
positions are uploaded. Moreover, it is not possible to run them in real time
because the calculation requires a subsequent GPS position. The result is that they
have to be run in a specific procedure unlinked with the (near) real-time import
procedure.

Now you run this process on your data sets to mark the detected outliers
(validity code ‘12’):

UPDATE
 main.gps_data_animals
SET
 gps_validity_code = 12
WHERE
 gps_data_animals_id in
 (SELECT gps_data_animals_id
 FROM
 (SELECT

132 F. Urbano et al.

gps_data_animals_id,
ST_Distance_Spheroid(geom, lag(geom, 1) OVER (PARTITION BY animals_id
ORDER BY acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') /

(EXTRACT(epoch FROM acquisition_time) - EXTRACT (epoch FROM
(lag(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY
acquisition_time))))*3600 AS speed_from,
ST_Distance_Spheroid(geom, lead(geom, 1) OVER (PARTITION BY animals_id
order by acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') /

(- EXTRACT(epoch FROM acquisition_time) + EXTRACT (epoch FROM
(lead(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY
acquisition_time))))*3600 AS speed_to,

acquisition_time))::geography, geom::geography) - ST_Azimuth(geom::geography,
(lead(geom, 1) OVER (PARTITION BY animals_id ORDER BY
acquisition_time))::geography)) AS rel_angle

FROM main.gps_data_animals
WHERE gps_validity_code = 1) a

WHERE
rel_angle < -0.99 AND
speed_from > 2500 AND
speed_to > 2500);

cos(ST_Azimuth((lag(geom, 1) OVER (PARTITION BY animals_id ORDER BY

Records that Would Imply Improbable Movements

This is similar to the previous type of error, but in this case, the assumption made
in the animals’ movement model cannot completely exclude that the GPS position
is correct (e.g. same methods as before, but with reduced thresholds: cosine of the
relative angle\-0.98 and speed[300 m per hour). These records should be kept as
valid but marked with a specific validity code that can permit users to exclude
them for analysis as appropriate.

UPDATE

 main.gps_data_animals

SET

 gps_validity_code = 2

WHERE

 gps_data_animals_id IN

 (SELECT gps_data_animals_id

 FROM

 (SELECT

 gps_data_animals_id,

 ST_Distance_Spheroid(geom, lag(geom, 1) OVER (PARTITION BY animals_id
ORDER BY acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') /

(lag(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))))*3600 AS speed_FROM,

(EXTRACT(epoch FROM acquisition_time) -

ST_Distance_Spheroid(geom, lead(geom, 1) OVER (PARTITION BY animals_id

EXTRACT (epoch FROM

ORDER BY acquisition_time), 'SPHEROID["WGS 84",6378137,298.257223563]') /

(lead(acquisition_time, 1) OVER (PARTITION BY animals_id ORDER BY

(- EXTRACT(epoch FROM acquisition_time) + EXTRACT (epoch FROM

8 Data Quality: Detection and Management of Outliers 133

acquisition_time))))*3600 AS speed_to,

acquisition_time))::geography, geom::geography) -
(lead(geom, 1) OVER (PARTITION BY animals_id ORDER BY

acquisition_time))::geography)) AS rel_angle

FROM main.gps_data_animals

WHERE gps_validity_code = 1) a

cos(ST_Azimuth((lag(geom, 1) OVER (PARTITION BY animals_id ORDER BY

WHERE

 rel_angle < -0.98 AND

 speed_from > 300 AND

 speed_to > 300);

ST_Azimuth
::geography,

(geom

The marked GPS positions should then be inspected visually to decide if they
are valid with a direct expert evaluation.

Update of Spatial Views to Exclude Erroneous Locations

As a consequence of the outlier tagging approach illustrated in these pages, views
based on the GPS positions data set should exclude the incorrect points, adding a
gps_validity_code = 1 criteria (corresponding to GPS positions with no errors
and valid geometry) in their WHERE conditions. You can do this for
analysis.view_convex_hulls:

CREATE OR REPLACE VIEW analysis.view_convex_hulls AS

SELECT

 gps_data_animals.animals_id,

 ST_ConvexHull(ST_Collect(gps_data_animals.geom))::geometry(Polygon,4326)

FROM

 main.gps_data_animals

WHERE

 gps_data_animals.gps_validity_code = 1

GROUP BY

 gps_data_animals.animals_id

ORDER BY

 gps_data_animals.animals_id;

AS geom

You do the same for analysis.view_gps_locations:

CREATE OR REPLACE VIEW analysis.view_gps_locations AS

SELECT

 gps_data_animals.gps_data_animals_id,

 gps_data_animals.animals_id,

 animals.name,

134 F. Urbano et al.

 timezone('UTC'::text, gps_data_animals.acquisition_time) AS time_utc,

 animals.sex,

 lu_age_class.age_class_description,

 lu_species.species_description,

 gps_data_animals.geom

FROM

 main.gps_data_animals,

 main.animals,

 lu_tables.lu_age_class,

 lu_tables.lu_species

WHERE

 gps_data_animals.animals_id = animals.animals_id AND

 animals.age_class_code = lu_age_class.age_class_code AND

 animals.species_code = lu_species.species_code AND

 gps_data_animals.gps_validity_code = 1;

Now repeat the same operation for analysis.view_trajectories:

CREATE OR REPLACE VIEW analysis.view_trajectories AS

SELECT

 sel_subquery.animals_id,

 st_MakeLine(sel_subquery.geom)::geometry(LineString,4326) AS geom

FROM

 (SELECT

 gps_data_animals.animals_id,

 gps_data_animals.geom,

 gps_data_animals.acquisition_time

 FROM main.gps_data_animals

 WHERE gps_data_animals.gps_validity_code = 1

 ORDER BY gps_data_animals.animals_id, gps_data_animals.acquisition_time)

sel_subquery

GROUP BY sel_subquery.animals_id;

If you visualise these layers in a GIS desktop, you can verify that outliers are
now excluded. An example for the MCP is illustrated in Fig. 8.2, which can be
compared with Fig. 5.4.

Update Import Procedure with Detection of Erroneous
Positions

Some of the operations to filter outliers can be integrated into the procedure that
automatically uploads GPS positions into the table gps_data_animals. In this
example, you redefine the tools.new_gps_data_animals() function to tag GPS
positions with no coordinates (gps_validity_code = 0) and GPS positions outside
of the study area (gps_validity_code = 11) as soon as they are imported into the
database. All the others are set as valid (gps_validity_code = 1).

8 Data Quality: Detection and Management of Outliers 135

http://dx.doi.org/10.1007/978-3-319-03743-1_5

CREATE OR REPLACE FUNCTION tools.new_gps_data_animals()

RETURNS trigger AS

$BODY$

DECLARE

thegeom geometry;

BEGIN

IF NEW.longitude IS NOT NULL AND NEW.latitude IS NOT NULL THEN

 thegeom = ST_setsrid(ST_MakePoint(NEW.longitude, NEW.latitude), 4326);

 NEW.geom =thegeom;

 NEW.gps_validity_code = 1;

 IF NOT EXISTS (SELECT study_area FROM env_data.study_area WHERE

ST_intersects(ST_Buffer(thegeom,0.1), study_area.geom)) THEN

 NEW.gps_validity_code = 11;

 END IF;

 NEW.pro_com = (SELECT pro_com::integer FROM env_data.adm_boundaries WHERE

ST_intersects(geom,thegeom));

 NEW.corine_land_cover_code = (SELECT ST_Value(rast, ST_Transform(thegeom,

3035)) FROM env_data.corine_land_cover WHERE

ST_Intersects(ST_Transform(thegeom,3035), rast));

 NEW.altitude_srtm = (SELECT ST_Value(rast,thegeom) FROM env_data.srtm_dem

Fig. 8.2 Minimum convex polygons without outliers

136 F. Urbano et al.

WHERE ST_intersects(thegeom, rast));

 NEW.station_id = (SELECT station_id::integer FROM env_data.meteo_stations

ORDER BY ST_Distance_Spheroid(thegeom, geom, 'SPHEROID["WGS

84",6378137,298.257223563]') LIMIT 1);

 NEW.roads_dist = (SELECT ST_Distance(thegeom::geography,

geom::geography)::integer FROM env_data.roads ORDER BY

ST_Distance(thegeom::geography, geom::geography) LIMIT 1);

 NEW.ndvi_modis = (SELECT ST_Value(rast, thegeom)FROM env_data_ts.ndvi_modis

WHERE ST_Intersects(thegeom, rast)

AND EXTRACT(year FROM acquisition_date) = EXTRACT(year FROM

NEW.acquisition_time)

AND EXTRACT(month FROM acquisition_date) = EXTRACT(month FROM

NEW.acquisition_time)

AND EXTRACT(day FROM acquisition_date) = CASE

WHEN EXTRACT(day FROM NEW.acquisition_time) < 11 THEN 1

WHEN EXTRACT(day FROM NEW.acquisition_time) < 21 THEN 11

ELSE 21

END);

ELSE

NEW.gps_validity_code = 0;

END IF;

RETURN NEW;

END;$BODY$

LANGUAGE plpgsql VOLATILE

COST 100;

COMMENT ON FUNCTION tools.new_gps_data_animals()

IS 'When called by the trigger insert_gps_locations (raised whenever a new GPS

position is uploaded into gps_data_animals) this function gets the new

longitude and latitude values and sets the field geom accordingly, computing a

set of derived environmental information calculated intersection the GPS

position with the environmental ancillary layers. GPS positions outside the

study area are tagged as outliers.';

You can test the results by reloading the GPS positions into gps_data_animals
(for example, modifying the gps_sensors_animals table). If you do so, do not
forget to rerun the tool to detect GPS positions in water, impossible spikes, and
duplicated acquisition time, as they are not integrated in the automated upload
procedure.

References

Bjorneraas K, van Moorter B, Rolandsen CM, Herfindal I (2010) Screening GPS location data for
errors using animal movement characteristics. J Wild Manage 74:1361–1366. doi:10.1111/j.
1937-2817.2010.tb01258.x

Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues
of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data.
Philos Trans R Soc B 365:2187–2200. doi:10.1098/rstb.2010.0084

8 Data Quality: Detection and Management of Outliers 137

http://dx.doi.org/10.1111/j.1937-2817.2010.tb01258.x
http://dx.doi.org/10.1111/j.1937-2817.2010.tb01258.x
http://dx.doi.org/10.1098/rstb.2010.0084

	8 Data Quality: Detection and Management of Outliers
	Abstract
	Introduction
	Review of Errors that Can Affect GPS Tracking Data
	A General Approach to the Management of Erroneous Locations
	Missing Records
	Records with Missing Coordinates
	Multiple Records with the Same Acquisition Time
	Records with Different Values When Acquired Using Different Acquisition Sources
	Records Erroneously Attributed to Animals
	Records Located Outside the Study Area
	Records Located in Impossible Places
	Records that Would Imply Impossible Movements
	Records that Would Imply Improbable Movements
	Update of Spatial Views to Exclude Erroneous Locations
	Update Import Procedure with Detection of Erroneous Positions
	References

