
Chapter 3
Extending the Database Data Model:
Animals and Sensors

Ferdinando Urbano

Abstract GPS positions are used to describe animal movements and to derive a
large set of information, for example, about animals’ behaviour, social interactions
and environmental preferences. GPS data are related to (and must be integrated
with) many other sources of information that together can be used to describe the
complexity of movement ecology. This can be achieved through proper database
data modelling, which depends on a clear definition of the biological context of a
study. Particularly, data modelling becomes a key step when database systems
manage many connected data sets that grow in size and complexity: it permits easy
updates of the database structure to accommodate the changing goals, constraints
and spatial scales of studies. In this chapter’s exercise, you will extend your
database (see Chap. 2) with two new tables to integrate ancillary information
useful to interpreting GPS data: one for GPS sensors and the other for animals.

Keywords Data modelling � GPS tracking � Data management � Spatial database

Introduction

GPS positions are used to describe animal movements and to derive a large set of
information, for example, on animals’ behaviour, social interactions and envi-
ronmental preferences. GPS data are related to (and must be integrated with) many
other information that together can be used to describe the complexity of move-
ment ecology. This can be achieved through proper database data modelling.
A data model describes what types of data are stored and how they are organised.

F. Urbano (&)
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_3, � Springer International Publishing Switzerland 2014

25

http://dx.doi.org/10.1007/978-3-319-03743-1_2

It can be seen as the conceptual representation of the real world in the database
structures that include data objects (i.e. tables) and their mutual relationships.
In particular, data modelling becomes a key step when database systems grow in
size and complexity, and user requirements become more sophisticated: it permits
easy updates of the database structure to accommodate the changing goals, con-
straints, and spatial scales of studies and the evolution of wildlife tracking systems.
Without a rigorous data modelling approach, an information system might lose the
flexibility to manage data efficiently in the long term, reducing its utility to a
simple storage device for raw data, and thus failing to address many of the nec-
essary requirements.

To model data properly, you have to clearly state the biological context of your
study. A logical way to proceed is to define (1) very basic questions on the sample
unit, i.e. individual animals and (2) basic questions about data collection.

1. Typically, individuals are the sampling units of an ecological study based on
wildlife tracking. Therefore, the first question to be asked while modelling the
data is: ‘What basic biological information is needed to characterise individuals
as part of a sample?’ Species, sex and age (or age class) at capture are the main
factors which are relevant in all studies. Age classes typically depend on the
species1. Other information used to characterise individuals could be specific to
a study, for example in a study on spatial behaviour of translocated animals,
‘resident’ or ‘translocated’ is an essential piece of information linked to indi-
vidual animals. All these elements should be described in specific tables.

2. A single individual becomes a ‘studied unit’ when it is fitted with a sensor, in
this case to collect position information. First of all, GPS sensors should be
described by a dedicated table containing the technical characteristics of each
device (e.g. vendor, model). Capture time, or ‘device-fitting’ time, together
with the time and a description of the end of the deployment (e.g. drop-off of
the tag, death of the animal), are also essential to the model. The link between
the sensors and the animals should be described in a table that states
unequivocally when the data collected from a sensor ‘become’ (and cease to be)
bio-logged data, i.e. the period during which they refer to an individual’s
behaviour. The start of the deployment usually coincides with the moment of
capture, but it is not the same thing. Indeed, moment of capture can be the ‘end’
of one relationship between a sensor and an animal (i.e. when a device is taken
off an animal) and at the same time the ‘beginning’ of another (i.e. another
device is fitted instead).

1 Age class of an animal is not constant for all the GPS positions. The correct age class at any
given moment can be derived from the age class at capture and by defining rules that specify
when the individual changes from one class to another (for roe deer, you might assume that on 1st
April of every year each individual that was a fawn becomes a yearling, and each yearling
becomes an adult).

26 F. Urbano

Thanks to the tables ‘animals’, ‘sensors’, and ‘sensors to animals’, and the
relationships built among them, GPS data can be linked unequivocally to indi-
viduals, i.e. the sampling units.

Some information related to animals can change over time. Therefore, they
must be marked with the reference time that they refer to. Examples of typical
parameters assessed at capture are age and positivity of association to a disease.
Translocation may also coincide with the capture/release time. If this information
changes over time according to well-defined rules (e.g. transition from age clas-
ses), their value can be dynamically calculated in the database at different
moments in time (e.g. using database functions). You will see an example of a
function to calculate age class from the information on the age class at capture and
the acquisition time of GPS positions for roe deer in Chap. 9.

The basic structure ‘animals’, ‘sensors’, ‘sensors to animals’, and, of course,
‘position data’, can be extended to take into account the specific goals of each
project, the complexity of the real-world problems faced, the technical environment
and the available data. Examples of data that can be integrated are capture meth-
odology, handling procedure, use of tranquilizers and so forth, that should be
described in a ‘captures’ table linked to the specific individual (in the table ‘ani-
mals’). Finally, data referring to individuals may come from several sources, e.g.
several sensors or visual observations. In all these cases, the link between data and
sample units (individuals) should also be clearly stated by appropriate relationships.

At the moment, there is a single table in the test database that represents raw
data from GPS sensors. Now, you can start including more information in new
tables to represent other important elements involved in wildlife tracking. This
process will continue throughout all the following chapters.

In this chapter’s exercise, you will include two new tables: one for GPS sensors
and one for animals, with some ancillary tables (age classes, species).

Import Information on GPS Sensors and Add Constraints
to the Table

In the subfolder \tracking_db\data\animals and \tracking_db\data\sensors of the
test data set2, you will find two files: animals.csv and gps_sensors.csv. Let us start
with data on GPS sensors. First, you have to create a table in the database with the
same attributes as the .csv file and then import the data into it. Here is the code of
the table structure:

2 The file with the test data set trackingDB_datasets.zip is part of the Extra Material of the book
available at http://extras.springer.com.

3 Extending the Database Data Model: Animals and Sensors 27

http://dx.doi.org/10.1007/978-3-319-03743-1_9
http://extras.springer.com

The only field that is not present in the original file is gps_sensors_id. This is an
integer3 used as primary key. You could also use gps_sensors_code as primary
key, but in many practical situations it is handy to use an integer field.

You add a field to keep track of the timestamp of record insertion:

Now, you can import data using the COPY command:

At this stage, you have defined the list of GPS sensors that exist in your
database. To be sure that you will never have GPS data that come from a GPS
sensor that does not exist in the database, you apply a foreign key4 between
main.gps_data and main.gps_sensors. Foreign keys physically translate the con-
cept of relations among tables.

CREATE TABLE main.gps_sensors(

 gps_sensors_id integer,

 gps_sensors_code character varying NOT NULL,

 purchase_date date,

 frequency double precision,

 vendor character varying,

 model character varying,

 sim character varying,

 CONSTRAINT gps_sensors_pkey

 PRIMARY KEY (gps_sensors_id),

 CONSTRAINT gps_sensor_code_unique

 UNIQUE (gps_sensors_code)

);

COMMENT ON TABLE main.gps_sensors

IS 'GPS sensors catalog.';

COPY main.gps_sensors(

 gps_sensors_id, gps_sensors_code, purchase_date, frequency, vendor, model,

sim)

FROM

 'C:\tracking_db\data\sensors\gps_sensors.csv'

 WITH (FORMAT csv, DELIMITER ';');

3 In some cases, a good recommendation is to use a ‘serial’ number as primary key to let the
database generate a unique code (integer) every time that a new record is inserted. In this
exercise, we use an integer data type because the values of the gps_sensors_id field are defined in
order to be correctly referenced in the exercises of the next chapters.
4 http://www.postgresql.org/docs/9.2/static/tutorial-fk.html.

ALTER TABLE main.gps_sensors

 ADD COLUMN insert_timestamp timestamp with time zone DEFAULT now();

28 F. Urbano

http://www.postgresql.org/docs/9.2/static/tutorial-fk.html

This setting says that in order to delete a record in main.gps_sensors, you first
have to delete all the associated records in main.gps_data. From now on, before
importing GPS data from a sensor, you have to create the sensor’s record in the
main.gps_sensors table.

You can add other kinds of constraints to control the consistency of your
database. As an example, you check that the date of purchase is after 2000-01-01.
If this condition is not met, the database will refuse to insert (or modify) the record
and will return an error message.

Import Information on Animals and Add Constraints
to the Table

Now, you repeat the same process for data on animals. Analysing the animals’
source file (animals.csv), you can derive the fields of the new main.animals table:

As for main.gps_sensors, in your operational database, you can use the serial
data type for the animals_id field. Age class (at capture) and species are attributes
that can only have defined values. To enforce consistency in the database, in these
cases, you can use lookup tables. Lookup tables store the list and the description of
all possible values referenced by specific fields in different tables and constitute the

ALTER TABLE main.gps_data

 ADD CONSTRAINT gps_data_gps_sensors_fkey

 FOREIGN KEY (gps_sensors_code)

 REFERENCES main.gps_sensors (gps_sensors_code)

 MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

ALTER TABLE main.gps_sensors

 ADD CONSTRAINT purchase_date_check

 CHECK (purchase_date > '2000-01-01'::date);

CREATE TABLE main.animals(

 animals_id integer,

 animals_code character varying(20) NOT NULL,

 name character varying(40),

 sex character(1),

 age_class_code integer,

 species_code integer,

 note character varying,

 CONSTRAINT animals_pkey PRIMARY KEY (animals_id)

);

COMMENT ON TABLE main.animals

IS 'Animals catalog with the main information on individuals.';

3 Extending the Database Data Model: Animals and Sensors 29

definition of the valid domain. It is recommended to keep them in a separated
schema to give the database a more readable and clear data structure. Therefore,
you create a lu_tables schema:

You set as default that the user basic_user will be able to run SELECT queries
on all the tables that will be created in this schema:

Now, you create a lookup table for species:

You populate it with some values (just roe deer code will be used in our test
data set):

You can do the same for age classes:

CREATE SCHEMA lu_tables;

 GRANT USAGE ON SCHEMA lu_tables TO basic_user;

COMMENT ON SCHEMA lu_tables

IS 'Schema that stores look up tables.';

ALTER DEFAULT PRIVILEGES

 IN SCHEMA lu_tables

 GRANT SELECT ON TABLES

 TO basic_user;

CREATE TABLE lu_tables.lu_species(

 species_code integer,

 species_description character varying,

 CONSTRAINT lu_species_pkey

 PRIMARY KEY (species_code)

);

COMMENT ON TABLE lu_tables.lu_species

IS 'Look up table for species.';

INSERT INTO lu_tables.lu_species

 VALUES (1, 'roe deer');

INSERT INTO lu_tables.lu_species

 VALUES (2, 'rein deer');

INSERT INTO lu_tables.lu_species

 VALUES (3, 'moose');

CREATE TABLE lu_tables.lu_age_class(

 age_class_code integer,

 age_class_description character varying,

 CONSTRAINT lage_class_pkey

 PRIMARY KEY (age_class_code)

);

COMMENT ON TABLE lu_tables.lu_age_class

IS 'Look up table for age classes.';

30 F. Urbano

You populate it with some values5:

At this stage, you can create the foreign keys between the main.animals table
and the two lookup tables:

For sex class of deer, you do not expect to have more than the two possible
values: female and male (stored in the database as ‘f’ and ‘m’ to simplify data
input). In this case, instead of a lookup table you can set a check on the field:

Whether it is better to use a lookup table or a check must be evaluated case by
case, mainly according to the number of admitted values and the possibility that
you will want to add new values in the future.

You should also add a field to keep track of the timestamp of record insertion:

INSERT INTO lu_tables.lu_age_class

 VALUES (1, 'fawn');

INSERT INTO lu_tables.lu_age_class

 VALUES (2, 'yearling');

INSERT INTO lu_tables.lu_age_class

 VALUES (3, 'adult');

ALTER TABLE main.animals

 ADD CONSTRAINT animals_lu_species

 FOREIGN KEY (species_code)

 REFERENCES lu_tables.lu_species (species_code)

 MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

ALTER TABLE main.animals

 ADD CONSTRAINT animals_lu_age_class

 FOREIGN KEY (age_class_code)

 REFERENCES lu_tables.lu_age_class (age_class_code)

 MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

ALTER TABLE main.animals

 ADD CONSTRAINT sex_check

 CHECK (sex = 'm' OR sex = 'f');

ALTER TABLE main.animals

 ADD COLUMN insert_timestamp timestamp with time zone DEFAULT now();

5 These categories are based on roe deer; other species might need a different approach.

3 Extending the Database Data Model: Animals and Sensors 31

As a last step, you import the values from the file:

To test the result, you can retrieve the animals’ data with the extended species
and age class description:

The result of the query is:

You can also create this query with the pgAdmin tool ‘Graphical Query
Builder’ (Fig. 3.1).

First Elements of the Database Data Model

In Fig. 3.2, you have a schematic representation of the tables created so far in
the database, and their relationships. As you can see, the table animals is linked
with foreign keys to two tables in the schema where the lookup tables are stored.
In fact, the tables lu_species and lu_age_class contain the admitted values for the
related fields in the animals table. The table gps_data, which contains the raw data

COPY main.animals(

 animals_id,animals_code, name, sex, age_class_code, species_code)

FROM

 'C:\tracking_db\data\animals\animals.csv'

 WITH (FORMAT csv, DELIMITER ';');

 id | code | name | sex | age_class | species

----+------+------------+-----+-----------+----------

 1 | F09 | Daniela | f | adult | roe deer

 2 | M03 | Agostino | m | adult | roe deer

 3 | M06 | Sandro | m | adult | roe deer

 4 | F10 | Alessandra | f | adult | roe deer

 5 | M10 | Decimo | m | adult | roe deer

SELECT

 animals.animals_id AS id,

 animals.animals_code AS code,

 animals.name,

 animals.sex,

 lu_age_class.age_class_description AS age_class,

 lu_species.species_description AS species

FROM

 lu_tables.lu_age_class,

 lu_tables.lu_species,

 main.animals

WHERE

 lu_age_class.age_class_code = animals.age_class_code

 AND

 lu_species.species_code = animals.species_code;

32 F. Urbano

coming from GPS sensors, is linked to the table gps_sensors, where all the existing
GPS sensors are stored with a set of ancillary information. A foreign key creates a
dependency, for example, the table gps_data cannot store data from a GPS sensor
if the sensor is not included in the gps_sensors table.

Note that, at this point, there is no relation between animals and the GPS data.
In other words, it is impossible to retrieve positions of a given animal, but only of a
given collar. Moreover, you cannot distinguish between GPS positions recorded
when the sensors were deployed on the animals and those that were recorded for
example, in the researcher’s office before the deployment. You will see in the
following chapter how to associate GPS positions with animals.

Fig. 3.1 pgAdmin GUI interface to create queries

Fig. 3.2 Tables stored in the database at the end of the exercise for this chapter. The arrows
identify links between tables connected by foreign keys

3 Extending the Database Data Model: Animals and Sensors 33

	3 Extending the Database Data Model: Animals and Sensors
	Abstract
	Introduction
	Import Information on GPS Sensors and Add Constraints to the Table
	Import Information on Animals and Add Constraints to the Table
	First Elements of the Database Data Model

