
Chapter 2
Storing Tracking Data in an Advanced
Database Platform (PostgreSQL)

Ferdinando Urbano and Holger Dettki

Abstract The state-of-the-art technical tool for effectively and efficiently managing
tracking data is the spatial relational database. Using databases to manage tracking
data implies a considerable effort for those who are not already familiar with these
tools, but this is necessary to be able to deal with the data coming from the new
sensors. Moreover, the time spent to learn databases will be largely paid back with the
time saved for the management and processing of the data. In this chapter, you are
guided through how to set up a new database in which you will create a table to
accommodate the test GPS data sets. You create a new table in a dedicated schema.
We describe how to upload the raw GPS data coming from five sensors deployed on
roe deer in the Italian Alps into the database and provide further insight into time-
related database data types and into the creation of additional database users. The
reference software platform used is the open source PostgreSQL with its spatial
extension PostGIS. This tool is introduced with its graphical interface pgAdmin. All
the examples provided (SQL code) and technical solutions proposed are tuned on this
software, although most of the code can be easily adapted for other platforms. The
book is focused on the applications of spatial databases to the specific domain of
movement ecology: to properly understand the content of this guide and to replicate
the proposed database structure and tools, you will need a general familiarity with
GIS, wildlife tracking and database programming.

Keywords PostgreSQL � GPS tracking � Data management � Spatial database

F. Urbano (&)
Università Iuav di Venezia, Santa Croce 191 Tolentini, 30135 Venice, Italy
e-mail: ferdi.urbano@gmail.com

H. Dettki
Umeå Center for Wireless Remote Animal Monitoring (UC-WRAM),
Department of Wildlife, Fish, and Environmental Studies,
Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd,
SE-901 83 Umeå, Sweden
e-mail: holger.dettki@slu.se

F. Urbano and F. Cagnacci (eds.), Spatial Database for GPS Wildlife Tracking Data,
DOI: 10.1007/978-3-319-03743-1_2, � Springer International Publishing Switzerland 2014

9

Introduction

The first step in the data management process is the acquisition of data recorded by
GPS sensors deployed on animals. This can be a complex process that can also
change depending on the GPS sensor provider and exceeds the scope of this book.
The procedure presented in this chapter assumes that the raw information recorded
by the GPS sensors is already available in the form of plain text (*.txt) or comma
delimited (*.csv) files. In the Special Topic below, we give some insight on how
this can be accomplished.

Special Topic: Data acquisition from GPS sensors

Depending on the GPS sensor provider and the technical solutions for data telemetry
present in the GPS sensor units deployed on the animals, the data can be obtained in
different ways. For near real-time applications it is important to automate the acquisition
process as much as possible to fully exploit the information that the continuous data flow
potentially provides and to avoid delay or even data loss. Other applications may be
satisfied by eventual downloads, which can be handled manually, as long as not too many
sensors are involved over a longer period. Most GPS sensor providers offer a so-called
‘Push’1 solution in combination with proprietary communication software to parse the
incoming data from an encrypted format into a text format. For this, some providers allow
the users to set up their own receiving stations to receive, e.g. data-SMS or data through a
mobile data link, using a local GSM- or UMTS-modem together with the proprietary
software to decode and export the data into a text file, while other providers use a company-
based receiving system and forward the data by simply sending emails with the data in the
email body or as email attachment to the user. The same routine is often chosen by
providers when the original raw data are received through satellite systems (e.g. ARGOS,
Iridium, Globalstar). Many of these communication software tools can be configured easily
to automatically receive data in regular intervals and export it as text files into a pre-defined
directory, without any user intervention. The procedure is slightly more complicated when
emails are used. However, using simple programming languages like Python or Visual-
Basic, any IT programmer can quickly write a program to extract data from an email body
or extract an email attachment containing the data. There are also a number of free pro-
grams on the Internet which can accomplish this task. One of the most elegant ways to push
data from the provider’s database into the tracking database is to enable a direct link
between the two databases and use triggers to move or copy new data. Although this is
rarely a technical problem, unfortunately it often fails due to security considerations on the
provider or user side. Other tracking applications do not need near real-time access to the
data and may therefore handle the data download manually in regular or irregular intervals.
The classical situation is the use of ‘store-on-board’ GPS units, where all data are stored in
internal memory on-board the GPS devices until they are removed from the animal after a
pre-defined period. The user then downloads the stored data using a cable connection
between the GPS unit and the providers’ proprietary communication software to parse and
export a text file for each unit. This is called a typical ‘Pull’2 solution, which is offered by
nearly every GPS unit provider. When the GPS sensor units are equipped with short-range
radio signal telemetry transmitters (UHF/VHF), the user can pull the data manually from

1 The information is ‘pushed’ from the unit or the provider to the user without user intervention.
2 The user ‘Pulls’ the information manually from the unit or the providers’ database without
provider intervention.

10 F. Urbano and H. Dettki

the units using a custom receiver in the field after approaching the animals. Again, the
providers’ proprietary communication software can then be used to manually download,
parse and export a text file for each unit from the custom receiver. When the GPS units are
equipped for automatic data transfer via telemetry into the provider’s database, some
providers offer a manual download option from their database through, e.g. the Telnet
protocol, or from their website. Here usually a manual login is required, after which data for
some or all animals can be downloaded as a text file. While any of the ‘Pull’ options are fine
as long as few GPS units are deployed for a relatively short time period, it is advisable to try
in any tracking application to use ‘Push’ services and automation from the beginning, as
building solutions around manual ‘Pull’ services can become very costly in human
resources when the amount of deployed units increases over time.

As discussed in the previous chapter, the state-of-the-art technical tool to effec-
tively and efficiently manage tracking data is the spatial relational database (Urbano
et al. 2010). In this chapter’s exercise, you will be guided through how to set up a
new database in which you will create a table to accommodate the test GPS data sets.
You will see how to upload data from source files using specific database tools.

The reference software platform used in this guide is PostgreSQL, along with
its spatial extension PostGIS. All the examples provided and the technical solu-
tions proposed are tuned on this software, although most of the code can be easily
adapted for other platforms. There are many reasons that support the choice of
PostgreSQL/PostGIS:

• both are free and open source, so any available financial resources can be used
for customisation instead of software licences, and they can be used by research
groups working with limited funds;

• PostgreSQL is an advanced and widely used database system and offers many
features useful for animal movement data management;

• PostGIS is currently one of the most, if not the most, advanced database spatial
extensions available and its development by the IT community is very fast;

• PostGIS includes support for raster data, a dedicated geography spatial data
type, topology and networks, and has a very large library of spatial functions;

• there is a wide, active and very collaborative community for both PostgreSQL
and PostGIS;

• there is very good documentation for both PostgreSQL and PostGIS (manuals,
tutorials, books, wiki, blogs);

• PostgreSQL and PostGIS widely implement standards, which make them highly
interoperable with a large set of other tools for data management, analysis,
visualisation and dissemination;

• they are available for all the most common operating systems and CPU archi-
tectures, notably x86 and x86_64.

Although we recommend using PostgreSQL/PostGIS to develop your data
management system, a valid open source alternative is SpatiaLite3 if the number of
sensors and researchers involved is small and basic functionality is needed.

3 http://ww.gaia-gis.it/spatialite/.

2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL) 11

http://ww.gaia-gis.it/spatialite/

SpatiaLite has a more limited set of functions compared with PostgreSQL/PostGIS
and is not designed for concurrent access for multiple users, but it has the
advantage of being a single and portable file with no need for any software
installation. Another option is to use existing e-infrastructures dedicated to wildlife
tracking data, such as WRAM4 or Movebank5. These have the advantage of
offering a Web-based ‘ready to use’ management system, with a lot of additional
features for data sharing. Data are hosted in an external server managed by these
projects, so no database maintenance is needed. Movebank offers also a large set of
tools to support collaborations among scientists with both local and global per-
spectives. On the other hand, these systems are designed for large numbers of users
and have limited support for specific customisation. It is also easy to foresee that in
the future data management will be increasingly provided by GPS sensor vendors
as a basic service.

As mentioned earlier, technical explanations about the basics of GIS, database
programming and wildlife tracking are not covered in these exercises. When
needed, references to specific documentation (e.g. Web pages, books, articles,
tutorials) are given. We recommend that readers become familiar with PostgreSQL
and PostGIS before reading this text. In particular, whenever you need any
information on these two software tools, we suggest you begin by consulting the
official documentation6.

This book is focused on the applications of these technical tools to the specific
domain of movement ecology. We also encourage you to use the database man-
agement interface pgAdmin7 to build and manage PostgreSQL databases. It is
installed automatically with PostgreSQL. It has a user-friendly graphical interface
and a set of tools to facilitate interaction with the database. On the pgAdmin
website, you can find the necessary documentation. In addition, the Web-based
tool phpPgAdmin8 can be used to manage a PostgreSQL database and retrieve data
remotely without installing any software on the client side.

Create a New Database

The first step to create the database is the installation of PostgreSQL. Once you
have downloaded9 and installed10 the software (the release used to test the code in
this guide is 9.2), you can use the ‘Application Stack Builder’ (included with

4 http://www.slu.se/wram/.
5 http://www.movebank.org/.
6 http://www.postgresql.org/docs/, http://postgis.refractions.net/documentation/.
7 http://www.pgadmin.org/.
8 http://phppgadmin.sourceforge.net/.
9 http://www.postgresql.org/download/.
10 http://wiki.postgresql.org/wiki/Detailed_installation_guide/.

12 F. Urbano and H. Dettki

http://www.slu.se/wram/
http://www.movebank.org/
http://www.postgresql.org/docs/
http://postgis.refractions.net/documentation/
http://www.pgadmin.org/
http://phppgadmin.sourceforge.net/
http://www.postgresql.org/download/
http://wiki.postgresql.org/wiki/Detailed_installation_guide/

PostgreSQL) to get other useful tools, in particular the spatial extension PostGIS
(the release used as reference here is 2.0).

During the installation process, you will be able to create the database super-
user (the default ‘postgres’ will be used throughout this guide; don’t forget the
password!) and set the value for the port (default ‘5432’). You will need this
information together with the IP address of your computer to connect to the
database. In case you work directly on the computer where the database is
installed, the IP address is also aliased as ‘localhost’. If you want your database to
be remotely accessible, you must verify that the port is open for external con-
nections. The exercises in this guide use a test data set that includes information
from five GPS Vectronic Aerospace GmbH sensors deployed on five roe deer
monitored in the Italian Alps (Monte Bondone, Trento), kindly provided by
Fondazione Edmund Mach, Trento, Italy. This information is complemented with
a variety of (free) environmental layers (locations of meteorological stations, road
networks, administrative units, land cover, DEM and NDVI time series). The test
data set is available at http://extras.springer.com.

Once you have your PostgreSQL system up and running, you can start using it
with the help of SQL queries. Note that you can run SQL code from a PSQL
command-line interface11 or from a graphical SQL interface. The PostgreSQL
graphical user interface pgAdmin makes it possible to create all the database
objects with user-friendly tools that drive users to define all the required infor-
mation. Figure 2.1 shows an example of the pgAdmin graphical interface.

Fig. 2.1 pgAdmin GUI to PostgreSQL. On the left is the interface to introduce the connection
parameters, and on the right is the SQL editor window

11 http://www.postgresql.org/docs/9.2/static/app-psql.html.

2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL) 13

http://extras.springer.com
http://www.postgresql.org/docs/9.2/static/app-psql.html

The very first thing to do, even before importing the raw sensor data, is to create
a new database with the SQL code12

You could create the database using just the first line of the code13. The other lines
are added just to be sure that the database will use UTF8 as encoding system and will
not be based on any local setting regarding, e.g. alphabets, sorting, or number for-
matting. This is very important when you work in an international environment
where different languages (and therefore characters) can potentially be used.

Create a New Table and Import Raw GPS Data

Now you connect to the database (in pgAdmin you have to double-click on the
icon of your database) in order to create a schema (a kind of ‘folder’ where you
store a set of information14). By default, a database comes with the ‘public’
schema; it is good practice, however, to use different schemas to store user data.
Here, you create a new schema called main:

And then you can add a comment to describe the schema:

Comments are stored into the database. They are not strictly needed, but adding
a description to every object that you create is a good practice and an important
element of effective documentation for your system.

Before importing the GPS data sets into the database, it is recommended that you
examine the source data (usually .dbf, .csv, or .txt files) with a spreadsheet or a text
editor to see what information is contained. Every GPS brand/model can produce

CREATE DATABASE gps_tracking_db

 ENCODING = 'UTF8'

 TEMPLATE = template0

 LC_COLLATE = 'C'

 LC_CTYPE = 'C';

12 You can also find a plain text file with the SQL code proposed in the book in the
trackingDB_code.zip file available at http://extras.springer.com.
13 http://www.postgresql.org/docs/9.2/static/sql-createdatabase.html.
14 http://www.postgresql.org/docs/9.2/static/ddl-schemas.html.

CREATE SCHEMA main;

COMMENT ON SCHEMA main IS 'Schema that stores all the GPS tracking core

data.';

14 F. Urbano and H. Dettki

http://extras.springer.com
http://www.postgresql.org/docs/9.2/static/sql-createdatabase.html
http://www.postgresql.org/docs/9.2/static/ddl-schemas.html

different information, or at least organise this information in a different way, as
unfortunately no consolidated standards exist yet (see Chap. 13). The idea is to
import raw data (as they are when received from the sensors) into the database and
then process them to transform data into information. Once you identify which
attributes are stored in the original files, you can create the structure of a table with the
same columns, with the correct data types. The list of the main data types available in
PostgreSQL/PostGIS is available in the official PostgreSQL documentation15. You
can find the GPS data sets in .csv files included in the trackingDB_datasets.zip file
with test data in the sub-folder \tracking_db\data\sensors_data.

The SQL code that generates the same table structure of the source files within
the database, which is called here main.gps_data16, is

CREATE TABLE main.gps_data(

 gps_data_id serial,

 gps_sensors_code character varying,

 line_no integer,

 utc_date date,

 utc_time time without time zone,

 lmt_date date,
 lmt_time time without time zone,

 ecef_x integer,

 ecef_y integer,

 ecef_z integer,

 latitude double precision,

 longitude double precision,

 height double precision,

 dop double precision,

 nav character varying(2),

 validated character varying(3),

 sats_used integer,

 ch01_sat_id integer,

 ch01_sat_cnr integer,

 ch02_sat_id integer,

 ch02_sat_cnr integer,

 ch03_sat_id integer,

 ch03_sat_cnr integer,

 ch04_sat_id integer,

 ch04_sat_cnr integer,

 ch05_sat_id integer,

 ch05_sat_cnr integer,

 ch06_sat_id integer,

 ch06_sat_cnr integer,

 ch07_sat_id integer,

 ch07_sat_cnr integer,

 ch08_sat_id integer,

 ch08_sat_cnr integer,

15 http://www.postgresql.org/docs/9.2/static/datatype.html.
16 ‘Main’ is the name of the schema where the table will be created, while ‘gps_data’ is the name
of the table. Any object in the database is referred by combining the name of the schema and the
name of the object (e.g. table) separated by a dot (‘.’).

2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL) 15

http://dx.doi.org/10.1007/978-3-319-03743-1_13
http://www.postgresql.org/docs/9.2/static/datatype.html

In a relational database, each table should have a primary key: a field (or
combination of fields) that uniquely identifies each record. In this case, you added
a serial17 field (gps_data_id) not present in the original file. As a serial data type, it
is managed by the database and will be unique for each record. You set this field as
the primary key of the table:

To keep track of database changes, it is useful to add another field to store the
time when each record was inserted in the table. The default for this field can be
automatically set using the current time using the function now()18:

If you want to prevent the same record from being imported twice, you can add
a unique constraint on the combination of the fields gps_sensors_code and line_no:

 ch09_sat_id integer,

 ch09_sat_cnr integer,

 ch10_sat_id integer,

 ch10_sat_cnr integer,

 ch11_sat_id integer,

 ch11_sat_cnr integer,

 ch12_sat_id integer,

 ch12_sat_cnr integer,

 main_vol double precision,

 bu_vol double precision,

 temp double precision,

 easting integer,

 northing integer,

 remarks character varying

);

COMMENT ON TABLE main.gps_data

IS 'Table that stores raw data as they come from the sensors (plus the ID of

the sensor).';

ALTER TABLE main.gps_data

 ADD CONSTRAINT gps_data_pkey

 PRIMARY KEY(gps_data_id);

ALTER TABLE main.gps_data

 ADD COLUMN insert_timestamp timestamp with time zone

 DEFAULT now();

ALTER TABLE main.gps_data

 ADD CONSTRAINT unique_gps_data_record

 UNIQUE(gps_sensors_code, line_no);

17 http://www.postgresql.org/docs/9.2/static/datatype-numeric.html#DATATYPE-SERIAL.
18 http://www.postgresql.org/docs/9.2/static/functions-datetime.html.

16 F. Urbano and H. Dettki

http://www.postgresql.org/docs/9.2/static/datatype-numeric.html#DATATYPE-SERIAL
http://www.postgresql.org/docs/9.2/static/functions-datetime.html

In case a duplicated record is imported, the whole import procedure fails. You
must verify if the above condition on the two fields is reasonable in your case (e.g.
the GPS sensor might produce two records with the same values for GPS sensor code
and line number). This check also implies some additional time in the import stage.

You are now ready to import the GPS data sets. There are many ways to do it.
The main one is to use the COPY19 (FROM) command setting the appropriate
parameters (COPY plus the name of the target table, with the list of column names
in the same order as they are in the source file, then FROM with the path to the file
and WITH followed by additional parameters; in this case, ‘csv’ specifies the
format of the source file, HEADER means that the first line in the source file is a
header and not a record and DELIMITER ‘;’ defines the field separator in the
source file). Do not forget to change the FROM argument to match the actual
location of the file on your computer:

If PostgreSQL complains that date is out of range, check the standard date
format used by your database:

If it is not ‘ISO, DMY’ (Day, Month, Year), then you have to set the date
format in the same session of the COPY statement:

If the original files are in .dbf format, you can use the pgAdmin tool ‘Shapefile
and .dbf importer’. In this case, you do not have to create the structure of the table
before importing because it is done automatically by the tool, that tries to guess the

COPY main.gps_data(

 gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id,

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr,

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id,

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr,

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol,

temp, easting, northing, remarks)

FROM

 'C:\tracking_db\data\sensors_data\GSM01438.csv'

 WITH (FORMAT csv, HEADER, DELIMITER ';')

SHOW datestyle;

SET SESSION datestyle = "ISO, DMY";

19 See http://www.postgresql.org/docs/9.2/static/sql-copy.html or http://wiki.postgresql.org/
wiki/COPY. If you want to upload on a server a file that is located in another machine, you
have to use the command ‘\COPY’; see http://www.postgresql.org/docs/9.2/static/app-psql.html
for more information. pgAdmin offers a user-friendly interface for data upload from text files.

2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL) 17

http://www.postgresql.org/docs/9.2/static/sql-copy.html
http://wiki.postgresql.org/wiki/COPY
http://wiki.postgresql.org/wiki/COPY
http://www.postgresql.org/docs/9.2/static/app-psql.html

right data type for each attribute. This might save some time but you lose control
over the definition of data types (e.g. time can be stored as a text value).

Let us also import three other (sensor GSM02927 will be imported in Chap. 4)
GPS data sets using the same COPY command:

Special Topic: Time and date data type in PostgreSQL

The management of time and date is more complicated that it may seem. Often, time and
date are recorded and stored by the sensors as two separate elements, but the information

COPY main.gps_data(

 gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id,

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr,

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id,

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr,

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol,

temp, easting, northing, remarks)

FROM

 'C:\tracking_db\data\sensors_data\GSM01508.csv'

 WITH (FORMAT csv, HEADER, DELIMITER ';');

COPY main.gps_data(

 gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id,

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr,

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id,

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr,

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol,

temp, easting, northing, remarks)

FROM

 'C:\tracking_db\data\sensors_data\GSM01511.csv'

 WITH (FORMAT csv, HEADER, DELIMITER ';');

COPY main.gps_data(

 gps_sensors_code, line_no, utc_date, utc_time, lmt_date, lmt_time, ecef_x,

ecef_y, ecef_z, latitude, longitude, height, dop, nav, validated, sats_used,

ch01_sat_id, ch01_sat_cnr, ch02_sat_id, ch02_sat_cnr, ch03_sat_id,

ch03_sat_cnr, ch04_sat_id, ch04_sat_cnr, ch05_sat_id, ch05_sat_cnr,

ch06_sat_id, ch06_sat_cnr, ch07_sat_id, ch07_sat_cnr, ch08_sat_id,

ch08_sat_cnr, ch09_sat_id, ch09_sat_cnr, ch10_sat_id, ch10_sat_cnr,

ch11_sat_id, ch11_sat_cnr, ch12_sat_id, ch12_sat_cnr, main_vol, bu_vol,

temp, easting, northing, remarks)

FROM

 'C:\tracking_db\data\sensors_data\GSM01512.csv'

 WITH (FORMAT csv, HEADER, DELIMITER ';');

18 F. Urbano and H. Dettki

http://dx.doi.org/10.1007/978-3-319-03743-1_4

that identifies the moment when the GPS position is registered is made of the combination
of the two (a so-called ‘timestamp’). Moreover, when you have a timestamp, it always
refers to a specific time zone. The same moment has a different local time according to the
place where you are located. If you do not specify the correct time zone, the database
assumes that it is the same as the database setting (usually derived from the local computer
setting). This can potentially generate ambiguities and errors. PostgreSQL offers a lot of
tools to manage time and date20. We strongly suggest using the data type timestamp with
time zone instead of the simpler but more prone to errors timestamp without time zone.

To determine the time zone set in your database you can run

You can run the following SQL codes to explore how the database manages different
specifications of the time and date types:

In the result below, the data type returned by PostgreSQL are respectively date, time
without time zone and text.

Here you have some examples of how to create a timestamp data type in PostgreSQL:

In this case, the data type of the first two fields returned is timestamp without time zone,
while the third one is timestamp with time zone (the output can vary according to the
default time zone of your database server):

SHOW time zone;

SELECT

 '2012-09-01'::DATE AS date1,

 '12:30:29'::TIME AS time1,

 ('2012-09-01' || ' ' || '12:30:29') AS timetext;

SELECT

 '2012-09-01'::DATE + '12:30:29'::TIME AS timestamp1,

 ('2012-09-01' || ' ' || '12:30:29')::TIMESTAMP WITHOUT TIME ZONE AS

timestamp2,

 '2012-09-01 12:30:29+00'::TIMESTAMP WITH TIME ZONE AS timestamp3;

 timestamp1 | timestamp2 | timestamp3

---------------------+---------------------+------------------------

 2012-09-01 12:30:29 | 2012-09-01 12:30:29 | 2012-09-01 12:30:29+00

20 http://www.postgresql.org/docs/9.2/static/datatype-datetime.html, http://www.postgresql.org/
docs/9.2/static/functions-datetime.html.

 date1 | time1 | timetext

------------+----------+---------------------

 2012-09-01 | 12:30:29 | 2012-09-01 12:30:29

2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL) 19

http://www.postgresql.org/docs/9.2/static/datatype-datetime.html
http://www.postgresql.org/docs/9.2/static/functions-datetime.html
http://www.postgresql.org/docs/9.2/static/functions-datetime.html

You can see what happens when you specify the time zone and when you ask for the
timestamp with time zone from a timestamp without time zone (the result will depend on
the default time zone of your database server):

The result for a server located in Italy (time zone +02 in summer time) is

You can easily extract part of the timestamp, including epoch (number of seconds from
1st January 1970, a format that in some cases can be convenient as it expresses a time-
stamp as an integer):

The expected result is

In this last example, you set a specific time zone (EST—Eastern Standard Time, which
has an offset of -5 h compared to UTC21) for the current session:

Here you do the same using UTC as reference zone:

SELECT

 '2012-09-01 12:30:29 +0'::TIMESTAMP WITH TIME ZONE AS timestamp1,

 ('2012-09-01'::DATE + '12:30:29'::TIME) AT TIME ZONE 'utc' AS timestamp2,

 ('2012-09-01 12:30:29'::TIMESTAMP WITHOUT TIME ZONE)::TIMESTAMP WITH TIME

ZONE AS timestamp3;

 timestamp1 | timestamp2 | timestamp3

------------------------+------------------------+------------------------

 2012-09-01 14:30:29+02 | 2012-09-01 14:30:29+02 | 2012-09-01 12:30:29+02

SELECT

 EXTRACT (MONTH FROM '2012-09-01 12:30:29 +0'::TIMESTAMP WITH TIME ZONE) AS

month1,

 EXTRACT (EPOCH FROM '2012-09-01 12:30:29 +0'::TIMESTAMP WITH TIME ZONE) AS

epoch1;

 month1 | epoch1

--------+------------

 9 | 1346502629

SET timezone TO 'EST';

SELECT now() AS time_in_EST_zone;

SET timezone TO 'UTC';

SELECT now() AS time_in_UTC_zone;

21 Coordinated Universal Time (UTC) is the primary time standard by which the world regulates
clocks and time. For most purposes, UTC is synonymous with GMT, but GMT is no longer
precisely defined by the scientific community.

20 F. Urbano and H. Dettki

You can compare the results of the two queries to see the difference. To permanently
change the reference time zone to UTC, you have to edit the file postgresql.conf22. In most
of the applications related to movement ecology, this is probably the best option as GPS
uses this reference.

Finalise the Database: Defining GPS Acquisition
Timestamps, Indexes and Permissions

In the original GPS data file, no timestamp field is present. Although the table
main.gps_data is designed to store data as they come from the sensors, it is
convenient to have an additional field where date and time are combined and
where the correct time zone is set (in this case UTC). To do so, you first add a field
of timestamp with time zone type. Then, you fill it (with an UPDATE statement)
from the time and date fields. In a later exercise, you will see how to automatise
this step using triggers.

Now, the table is ready. Next you can add some indexes23, which are data
structures that improve the speed of data retrieval operations on a database table at
the cost of slower writes and the use of more storage space. Database indexes work
in a similar way to a book’s table of contents: you have to add an extra page and
update it whenever new content is added, but then searching for specific sections
will be much faster. You have to decide on which fields you create indexes for by
considering what kind of query will be performed most often in the database. Here,
you add indexes on the acquisition_time and the sensor_id fields, which are
probably two key attributes in the retrieval of data from this table:

ALTER TABLE main.gps_data

 ADD COLUMN acquisition_time timestamp with time zone;

UPDATE main.gps_data

 SET acquisition_time = (utc_date + utc_time) AT TIME ZONE 'UTC';

CREATE INDEX acquisition_time_index

 ON main.gps_data

 USING btree (acquisition_time);

CREATE INDEX gps_sensors_code_index

 ON main.gps_data

 USING btree (gps_sensors_code);

22 http://www.postgresql.org/docs/9.2/static/config-setting.html.
23 http://www.postgresql.org/docs/9.2/static/sql-createindex.html.

2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL) 21

http://www.postgresql.org/docs/9.2/static/config-setting.html
http://www.postgresql.org/docs/9.2/static/sql-createindex.html

As a simple example, you can now retrieve data using specific selection criteria
(GPS positions in May from the sensor GSM01438). Let us retrieve data from the
collar ‘GSM01512’ during the month of May (whatever the year), and order them
by their acquisition time:

The first records (LIMIT 10 returns just the first 10 records; you can remove this
condition to have the full list of records) of the result of this query are

One of the main advantages of an advanced database management system like
PostgreSQL is that the database can be accessed by a number of users at the same
time, keeping the data always in a single version with a proper management of
concurrency. This ensures that the database maintains the ACID (atomicity,
consistency, isolation, durability) principles in an efficient manner. Users can be
different, with different permissions. Most commonly, you have a single admin-
istrator that can change the database, and a set of users that can just read the data.
As an example, you create here a user24 (login basic_user, password basic_user)
and grant read permission for the main.gps_data table and all the objects that will
be created in the main schema in the future:

SELECT

 gps_data_id AS id, gps_sensors_code AS sensor_id, latitude, longitude,

acquisition_time

FROM

 main.gps_data

WHERE

 gps_sensors_code = 'GSM01512' and EXTRACT(MONTH FROM acquisition_time) = 5

ORDER BY

 acquisition_time

LIMIT 10;

24 http://www.postgresql.org/docs/9.2/static/sql-createrole.html.

 id | sensor_id | latitude | longitude | acquisition_time

-------+-----------+----------+-----------+------------------------

 11906 | GSM01512 | 46.00563 | 11.05291 | 2006-05-01 00:01:01+00

 11907 | GSM01512 | 46.00630 | 11.05352 | 2006-05-01 04:02:54+00

 11908 | GSM01512 | 46.00652 | 11.05326 | 2006-05-01 08:01:03+00

 11909 | GSM01512 | 46.00437 | 11.05536 | 2006-05-01 12:02:40+00

 11910 | GSM01512 | 46.00720 | 11.05297 | 2006-05-01 16:01:23+00

 11911 | GSM01512 | 46.00709 | 11.05339 | 2006-05-01 20:00:53+00

 11912 | GSM01512 | 46.00723 | 11.05346 | 2006-05-02 00:00:54+00

 11913 | GSM01512 | 46.00649 | 11.05251 | 2006-05-02 04:01:54+00

 11914 | GSM01512 | | | 2006-05-02 08:03:06+00

 11915 | GSM01512 | 46.00687 | 11.05386 | 2006-05-02 12:01:24+00

22 F. Urbano and H. Dettki

http://www.postgresql.org/docs/9.2/static/sql-createrole.html

Permissions can also be associated with user groups, in which case new users
can be added to each group and will inherit all the related permissions on database
objects. Setting a permission policy in a complex multi-user environment requires
an appropriate definition of data access at different levels and it is out of the scope
of this guide. You can find more information on the official PostgreSQL
documentation25.

Export Data and Backup

There are different ways to export a table or the results of a query to an external
file. One is to use the command COPY (TO)26. An example is

Another possibility is to use the pgAdmin interface: in the SQL console select
‘Query’/‘Execute to file’. Other database interfaces have similar tools.

A proper backup policy for a database is important to securing all your valuable
data and the information that you have derived through data processing. In general,
it is recommended to have frequent (scheduled) backups (e.g. once a day) for
schemas that change often and less frequent backups (e.g. once a week) for
schemas (if any) that occupy a larger disk size and do not change often. In case of

CREATE ROLE basic_user LOGIN

 PASSWORD 'basic_user'

 NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION;

GRANT SELECT ON ALL TABLES

 IN SCHEMA main

 TO basic_user;

ALTER DEFAULT PRIVILEGES

 IN SCHEMA main

 GRANT SELECT ON TABLES

 TO basic_user;

COPY (
 SELECT gps_data_id, gps_sensors_code, latitude, longitude, acquisition_time,
 insert_timestamp
 FROM main.gps_data)
TO
 'C:\tracking_db\test\export_test1.csv'
 WITH (FORMAT csv, HEADER, DELIMITER ';');

25 http://www.postgresql.org/docs/9.2/static/user-manag.html.
26 http://www.postgresql.org/docs/9.2/static/sql-copy.html, http://wiki.postgresql.org/wiki/COPY.

2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL) 23

http://www.postgresql.org/docs/9.2/static/user-manag.html
http://www.postgresql.org/docs/9.2/static/sql-copy.html
http://wiki.postgresql.org/wiki/COPY

ad hoc updates of the database, you can run specific backups. PostgreSQL offers
very good tools for database backup and recovery27. The two main tools to backup
are as follows:

• pg_dump.exe: extracts a PostgreSQL database or part of the database into a
script file or other archive file (pg_restore.exe is used to restore the database);

• pg_dumpall.exe: extracts a PostgreSQL database cluster (i.e. all the databases
created inside the same installation of PostgreSQL) into a script file (e.g.
including database setting, roles).

These are not SQL commands but executable commands that must run from a
command-line interpreter (with Windows, the default command-line interpreter is
the program cmd.exe, also called Command Prompt). pgAdmin also offers a
graphic interface for backing up and restoring the database. Moreover, it is also
important to keep a copy of the original raw data files, particularly those generated
by sensors.

Reference

Urbano F, Cagnacci F, Calenge C, Dettki H, Cameron A, Neteler M (2010) Wildlife tracking data
management: a new vision. Philos Trans R Soc B 365:2177–2185. doi:10.1098/rstb.2010.
0081

27 http://www.postgresql.org/docs/9.2/static/backup.html.

24 F. Urbano and H. Dettki

http://dx.doi.org/10.1098/rstb.2010.0081
http://dx.doi.org/10.1098/rstb.2010.0081
http://www.postgresql.org/docs/9.2/static/backup.html

	2 Storing Tracking Data in an Advanced Database Platform (PostgreSQL)
	Abstract
	Introduction
	Create a New Database
	Create a New Table and Import Raw GPS Data
	Finalise the Database: Defining GPS Acquisition Timestamps, Indexes and Permissions
	Export Data and Backup
	Reference

