
Chapter 10
From Data Management to Advanced
Analytical Approaches: Connecting
R to the Database

Bram Van Moorter

Abstract The previous chapters explored the wide set of tools that PostgreSQL and
PostGIS offer to manage tracking data. In this chapter, you will expand database
functionalities with those provided by dedicated software for statistical computing
and graphics: the R programming language and software environment. Specifically,
you will use the advanced graphics available through R and its libraries (especially
‘adehabitat’) to perform exploratory analysis of animal tracking data. This data
exploration is followed with two short ecological analyses. These ecological anal-
yses are discussed in the context of two central concepts in animal space use: geo-
graphic versus environmental space, and the spatiotemporal scale of the research
question. In the first analysis, you investigate the animal’s home range, which is its
use of geographic space. In the second, to explore an animal’s use of environmental
space we introduce briefly the study of both use and selection of environmental
features by animals. For both demonstrations we consider explicitly the temporal
scale of the study through the seasonal changes introduced by seasonal migration.

Introduction: From Data Management to Data Analysis

In previous chapters, you explored the wide set of tools that PostgreSQL and PostGIS
offer to process and analyse tracking data. Nevertheless, a database is not specifically
designed to perform advanced statistical analysis or to implement complex analytical
algorithms, which are key elements to extract scientific knowledge from the data for
both fundamental and applied research. In fact, these functionalities must be part of
an information system that aims at a proper handling of wildlife tracking data. The
possibility of a tighter integration of analytical functions with the database is
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particularly interesting because the availability of large amounts of information from
the new generation sensors blurs the boundary between data analysis and data
management. Tasks like outlier filtering, real-time detection of specific events (e.g.
virtual fencing), or meta-analysis (analysis of results of a first analytical step,
e.g. variation in home range size in the different months of a year) are clearly in the
overlapping area between data analysis and management.

Background for the Analysis of Animal Space Use Data

Two questions need to be answered to move from an ecological question on animal
space use to the analysis of those data: first, which is the relevant space (geo-
graphic versus environmental space), and second, which is the relevant spatio-
temporal scale? Animals occupy a position in space at a given time t, which is
called geographic space, and many ecological questions are related to this space:
e.g. ‘How large of an area is used by an animal during a year’? or ‘How fast can an
animal travel?’. Notably, the question on the area traversed by the animal has
received much research interest, and this area is often called a ‘home range’. The
home range has been defined by Burt (1943) as ‘the area traversed by the indi-
vidual in its normal activities of food gathering, mating, and caring for young’.
Many statistical approaches have been developed to use sets of location ‘points’ to
estimate a home range area, from convex polygons to kernel density estimators
(and many variants; for a review, see Kie et al. 2010).

On the other hand, by being in a certain geographic location, the animal
encounters a set of environmental conditions, which are called environmental
space, and questions related to the animal’s ecological relationships are to be
answered in this space: e.g. ‘Which environmental characteristics does the animal
prefer’? or ‘How does human land use affect the animal’s space use?’. These
questions are the main topic of habitat selection studies. In general, in these
studies, one compares the environmental conditions used by the animal to those
available to the animal. An important challenge is to decide ‘What environmental
conditions were available to the animal’? This issue is tightly linked to the next
question to be answered about scale.

The second important question for animal space use studies is about the rele-
vant scale for the analysis. Small-scale studies can focus on the spatial behaviour
of animals within a day or even an hour, whereas large-scale studies can look at
space use over a year or even an animal’s lifetime. The required scale of the study
leads to certain demands on the data as well: a small-scale study requires high-
resolution collection of precise locations, whereas a large-scale study will require a
sufficient tracking duration to allow inferences over this long period. It seems
obvious that any description of the area traversed by an individual must specify the
time period over which the traversing occurred. Only for stable home ranges is it
so that after a certain amount of time the size of the range no longer increases and
the area becomes no longer time-dependent. Although often assumed, the stability
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of a home range should be tested as often this is not the case. Also the distance
travelled is very sensitive to the scale of the study, see Fig. 10.1.

For habitat selection studies—i.e. studies in environmental space—scale not only
affects the sampling of the animal’s space use, but even more important also the
sampling of the environmental conditions available to the animal to choose from.
Areas available to an animal in the course of several days may not be reachable
within the time span of a few hours. This behavioural limitation has led several
studies to consider availability specific to each used location (e.g. step-selection
functions, Fortin et al. (2005)), instead of considering the same choice set available
for all locations of a single individual (or even population). Thus, how the researcher
defines the available choice set should be informed by the scale of the study.

The Tools: R and Adehabitat

R is an open source programming language and environment for statistical com-
puting and graphics (http://www.r-project.org/). It is a popular choice for data
analysis in academics, with its popularity for ecological research increasing rap-
idly. This popularity is not only the result of R being available for free, but also
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Fig. 10.1 This simulated trajectory clearly illustrates that reducing the number of acquired fixes
within a time period can alter substantially the properties of the trajectory. The dashed line is the
original trajectory, sampling with a ten times coarser resolution leads to a shorter trajectory in
black, and a further reduction results in an even shorter trajectory in gray. Even though the total
length of the trajectory decreases with a reduction in resolution, the distance between the
consecutive points increases. It is thus very important for the researcher to be aware of such
effects of sampling scale on trajectory characteristics
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due to its flexibility and extendibility. The large user base of R has developed an
extensive suite of libraries to extend the basic functionalities provided in the
R-base package. Before going into some of these really fantastic features, it is
good to point out that R’s flexibility comes at a cost: a rather steep-learning curve.
R is not very tolerant to small human mistakes and demands of the first-time user
some initial investment to understand its sometimes cryptic error messages. For-
tunately, there are many resources out there to help the novice on her way (look on
the R website for more options): online tutorials (e.g. ‘R for Beginners’ or
‘Introduction to R’), books (a popular choice is Crawley’s (2005) ‘Statistics: An
Introduction using R’), extensive searchable online help (e.g. http://www.rseek.
org/), and the many statistics courses that include an introduction to R (search the
Internet for a course nearby; some may even be offered online).

One of the main strengths of R is the availability of a large range of packages or
libraries for specific applications; by 2013, more than 4,000 libraries were pub-
lished on CRAN. There are libraries for advanced statistical analysis (e.g. ‘lme4’
for mixed-effects models or ‘mgcv’ for general additive models), advanced
graphics (e.g. ‘ggplot2’), spatial analysis (e.g. ‘sp’), or database connections (e.g.
‘RPostgreSQL’). Many packages have been developed to allow the use of R as a
general interface to interact with databases or GIS. Other packages have gone even
further and increase the performance of R in fields for which it was not originally
developed such as the handling of very large data sets or GIS. Hence, many
different R users have come into existence: from users relying on specific software
for specific tasks who use R exclusively for their statistical analysis and use
different files to push data through their workflow, to the other extreme of users
who use R to control a workflow in which R sometimes calls on external software
to get the job done, but more often with the help of designated libraries, R gets the
job done itself. Instead, the approach advocated in this book is not centred around
software, but places the data in the centre of the workflow. The data are stored in a
spatial database, and all software used interacts with this database. You have seen
several examples in this book using different software (e.g. pgadmin or QGIS); in
this chapter, you will use R as another option to perform some additional specific
tasks with the data stored in the database.

For the analysis of animal tracking data, we often use functions from adehabitat
(Calenge 2006), which today consists of ‘adehabitatLT’ (for the analysis of tra-
jectories), ‘adehabitatHR’ (for home range estimation), ‘adehabitatHS’ (for hab-
itat-selection analysis), and ‘adehabitatMA’ (for the management of raster maps).
For the general management of spatial data, we rely on the ‘sp’- and ‘rgdal’-
libraries, for the advanced management of raster data; the ‘raster’-library is
becoming the standard. We recommend as a general introduction to the use of
spatial data in R the book by Bivand et al. (2008). To install a package with a
library in R, you use the install.packages command, as illustrated here for the
‘adehabitat’-libraries:
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# comments in R start with a '#', and what follows will be ignored by R
# to install the adehabitat packages:
install.packages("adehabitatLT")
install.packages("adehabitatHR")
install.packages("adehabitatHS")
install.packages("adehabitatMA")

The different adehabitat packages come with extensive tutorials, which are
accessible in R through

vignette("adehabitatLT")
vignette("adehabitatHR")
vignette("adehabitatHS")
vignette("adehabitatMA")

Before using the database to analyse your animal tracking data with R, you can
use adehabitat to replicate Fig. 10.1:

library(adehabitatLT)
set.seed(0) #this allows you to replicate
# the exact same 'random' numbers as we did for the figure
simdat <- simm.crw(c(1:501))[[1]]
plot(simdat$x, simdat$y, type = "l", lty = "dashed", xlab = "x", ylab = "y",

asp = T)
lines(simdat$x[seq(1, 501, by = 10)], simdat$y[seq(1, 501, by = 10)], lwd = 2)
lines(simdat$x[seq(1, 501, by = 100)], simdat$y[seq(1, 501, by = 100)], lwd = 4,

col = "grey")

The simm.crw function simulates a random walk. A random walk is a move-
ment where the direction and the distance of each consecutive location are ran-
domised; it is therefore also referred to as a ‘drunkard’s walk’. It is beyond the
scope of this chapter to give an introduction to random walks (see e.g. Turchin
1998 for more on random walks to model movement of organisms).

You can find more information on a function with a ‘?’ in front of the function;
this will access its associated help pages with explanation and working examples
of the function’s uses:

`?`(simm.crw)

You can see in these help pages that there are several parameters that can be
altered to make the random walk behave differently.
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Connecting R to the Database

To use R for the analysis of the data stored and managed within the database, there
are two approaches: first, connect from R to the database, and second, connect
from the database to R with the Pl/R-interface. We will start by demonstrating the
first approach and using it for some exercises. In the next chapter, you will see how
this approach can be extended to connect from within the database to R with the
PostgreSQL procedural language Pl/R (www.joeconway.com/plr/doc/).

First, to connect from R to the database, we make use of the ‘RPostgreSQL’
library. It is possible with ‘rgdal’ to read spatial features from PostGIS directly in
R into ‘sp’’s spatial classes. However, using ‘rgdal’, it is no longer possible to
perform SQL operations (such as SELECT) on these data. One solution could be to
create in the database a temporary table with the selected spatial features and then
use ‘rgdal’ to read the spatial features into R. However, the performance of ‘rgdal’
is considerably lower—it can be 100 times slower for certain operations—than for
the database libraries, such as ‘RPostgreSQL’. Unfortunately, to date, there is no
straightforward way for Windows users to read spatial data into R using SQL
statements from a PostgreSQL-database. Thus, when you want to include an SQL
statement, you will have to convert the data to non-spatial classes and then sub-
sequently convert them back to spatial features in R. In the next chapter, we will
discuss the pros and cons of the use of R within the database through Pl/R.

To connect to a PostgreSQL-database, we use the ‘RPostgreSQL’ library. The
driver is ‘PostgreSQL’ for a PostgreSQL-database as yours. The connection
requires information on the driver, database name, host, port, user, and password.
Except from the driver, all other parameters may have to be adjusted for your own
specific case. If you have the database on your own machine, then the host and port
will likely be ‘localhost’ and 5432, respectively, as shown here. You can see the
tables in the database with the dbListTables command:

library(RPostgreSQL)
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname="gps_tracking_db", host="localhost",

port="5432", user="postgres", password="********")
dbListTables(con)
## Loading required package: DBI

## [1] "lu_species" "lu_age_class"
## [3] "gps_data_animals" "gps_sensors"
## [5] "gps_data" "gps_sensors_animals"
## [7] "spatial_ref_sys" "meteo_stations"
## [9] "study_area" "roads"
## [11] "adm_boundaries" "srtm_dem"
## [13] "corine_land_cover" "corine_land_cover_legend"
## [15] "lu_gps_validity" "ndvi_modis"
## [17] "trajectories" "animals"
## [19] "home_ranges_mcp" "test_randompoints"
## [21] "activity_sensors_animals" "activity_data"
## [23] "activity_sensors" "activity_data_animals"
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The following code retrieves the first five lines from the gps_data_animals
table:

fetch(dbSendQuery(con, "SELECT * FROM main.gps_data_animals LIMIT 5;"), -1)

## gps_data_animals_id gps_sensors_id animals_id acquisition_time
## 1 28250 6 6 2005-04-08 10:01:24
## 2 28344 6 6 2005-04-18 14:00:47
## 3 28396 6 6 2005-04-27 06:01:54
## 4 26109 1 2 2005-08-01 21:00:30
## 5 26684 1 2 2005-10-15 20:32:17
## longitude latitude insert_timestamp update_timestamp
## 1 10.95 45.97 2013-09-12 18:45:17 2013-10-10 16:08:23
## 2 11.04 46.06 2013-09-12 18:45:17 2013-10-10 16:08:44
## 3 11.10 46.07 2013-09-12 18:45:17 2013-10-10 16:08:44
## 4 11.03 46.03 2013-09-12 09:56:38 2013-10-10 16:08:44
## 5 11.02 46.02 2013-09-12 09:56:38 2013-10-10 16:08:44
## geom pro_com
## 1 0101000020E6100000C054D8B1B6E62540169C6626BDFB4640 NA
## 2 0101000020E6100000D9EBDD1FEF15264043812D65CF074740 22205
## 3 0101000020E610000099BDC7F4DF3226409FD9BFFC5F094740 22205
## 4 0101000020E6100000CA6E66F4A30D2640CA0E3B9D75034740 22101
## 5 0101000020E61000000C186E0A750A2640AF04F7A864024740 22101
## corine_land_cover_code altitude_srtm station_id roads_dist ndvi_modis
## 1 21 411 1 119 NA
## 2 25 884 3 2167 NA
## 3 25 357 3 1243 NA
## 4 24 1681 5 372 NA
## 5 24 1666 5 1173 NA
## gps_validity_code
## 1 12
## 2 2
## 3 2
## 4 2
## 5 2

You can see that R did not understand the geom column correctly.
Now, you want to retrieve all the necessary information for your analyses of roe

deer space use. You first send a query to the database:

rs <- dbSendQuery(con, "SELECT animals_id, acquisition_time,longitude, latitude,
ST_X(ST_Transform(geom, 32632)) as x32,
ST_Y(ST_Transform(geom, 32632)) as y32, roads_dist,
ndvi_modis, corine_land_cover_code, altitude_srtm
FROM main.gps_data_animals where gps_validity_code = 1;" )

locs <- fetch(rs,-1)
dbClearResult(rs)
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You then need to fetch those data (with the -1, you indicate that you want all
data), and then ‘clear’ the result set. Virtually all spatial operations (such as
projection) could also be done in R; however, it is faster and easier to have the
database project the data to UTM32 (which has the SRID code 32632).

head(locs)

## animals_id acquisition_time longitude latitude x32 y32
## 1 2 2005-03-21 01:03:06 11.07 45.99 660151 5095008
## 2 2 2005-03-21 13:02:19 11.07 46.00 660004 5095733
## 3 2 2005-03-21 21:01:49 11.07 46.00 659954 5095673
## 4 2 2005-03-21 05:01:45 11.07 45.99 660104 5095155
## 5 6 2005-04-05 20:02:48 11.06 46.07 659592 5103359
## 6 6 2005-04-06 04:01:46 11.06 46.07 659631 5103352
## roads_dist ndvi_modis corine_land_cover_code altitude_srtm
## 1 682 5048 23 1085
## 2 1139 4314 25 1378
## 3 1214 4797 25 1401
## 4 834 5048 23 1201
## 5 1205 5793 19 740
## 6 1168 5793 19 740

The head function allows us to inspect the first lines (by default six) of a
dataframe. You see that you have successfully imported your data into R.

For dates, you should always carefully inspect their time zone. Due to the
different time zones in the world, it is easy to get errors and make mistakes in the
treatment of dates:

head(locs$acquisition_time)

## [1] "2005-03-21 01:03:06 CET" "2005-03-21 13:02:19 CET"
## [3] "2005-03-21 21:01:49 CET" "2005-03-21 05:01:45 CET"
## [5] "2005-04-05 20:02:48 CEST" "2005-04-06 04:01:46 CEST"

The time zone is said to be CEST and CET (i.e. Central European Summer
Time and Central European Winter Time), note that the time zone will depend
upon the local settings of your computer. However, we know that the actual time
zone of these data is UTC (i.e. Universal Time or Greenwich Mean Time).

Let us then inspect whether the issue is an automatic transformation of the time
zone, or whether the time zone was not correctly imported. With the library
‘lubridate’, you can easily access the hour or month of a POSIXct-object:
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library(lubridate)
table(month(locs$acquisition_time), hour(locs$acquisition_time))

##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 1 0 152 0 0 36 118 0 35 0 126 33 0 0 149 0 0 35
## 2 0 121 0 0 33 97 0 31 0 95 34 0 0 116 0 0 42
## 3 0 129 21 0 0 122 23 0 0 127 24 0 0 114 20 0 0
## 4 9 0 168 0 10 0 171 0 11 0 164 0 11 0 156 0 11
## 5 5 1 158 1 6 1 147 1 6 1 122 0 5 1 149 0 5
## 6 0 0 125 0 0 0 107 0 0 0 100 0 0 0 107 0 0
## 7 2 2 144 2 2 2 114 1 1 2 128 2 2 2 110 2 2
## 8 10 8 137 7 8 8 131 7 9 8 126 7 8 8 112 9 9
## 9 10 10 136 7 10 9 142 8 8 7 112 8 6 7 99 4 7
## 10 8 16 161 8 8 23 154 8 8 20 132 8 8 18 128 7 7
## 11 0 181 0 0 0 182 0 0 0 167 0 0 0 166 0 0 0
## 12 4 196 6 6 6 193 5 5 6 178 5 6 5 183 6 5 6
##
## 17 18 19 20 21 22 23
## 1 118 0 33 0 118 35 0
## 2 95 0 31 0 103 33 0
## 3 130 27 0 0 123 30 0
## 4 0 175 0 12 0 180 0
## 5 1 128 1 5 1 151 1
## 6 0 102 0 0 0 125 0
## 7 2 103 2 0 0 131 1
## 8 7 104 6 8 8 139 9
## 9 10 117 8 9 7 145 10
## 10 17 138 8 7 20 161 8
## 11 179 0 0 0 184 0 0
## 12 197 5 5 6 198 6 5

The table shows us that there is a clear change in the frequency of the daily
hours between March–April and October–November, which indicates the presence
of daylight saving time. You can therefore safely assume that the UTC time in the
database was converted to CEST/CET time.

To prevent mistakes due to daylight saving time, it is much easier to work with
UTC time (UTC does not have daylight saving). Thus, you have to convert the
dates back to UTC time. With the aforementioned‘lubridate’ library, you can do
this easily: The function with_tz allows you to convert the local back to the UTC
zone:

locs$UTC_time <- with_tz(locs$acquisition_time, tz = "UTC")
head(locs$acquisition_time)

## [1] "2005-03-21 01:03:06 CET" "2005-03-21 13:02:19 CET"
## [3] "2005-03-21 21:01:49 CET" "2005-03-21 05:01:45 CET"
## [5] "2005-04-05 20:02:48 CEST" "2005-04-06 04:01:46 CEST"

head(locs$UTC_time)

## [1] "2005-03-21 00:03:06 UTC" "2005-03-21 12:02:19 UTC"
## [3] "2005-03-21 20:01:49 UTC" "2005-03-21 04:01:45 UTC"
## [5] "2005-04-05 18:02:48 UTC" "2005-04-06 02:01:46 UTC"
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Indeed, the UTC_time-column now contains the time zone: ‘UTC’. You can run
the command ‘table(month(locs$UTC_time), hour(locs$UTC_time))’ to verify that
no obvious shift in sampling occurred in the data. From personal experience, we
know that many mistakes happen with time zones and daylight saving time, and
we therefore recommend that you use UTC and carefully inspect your dates and
ensure that they were correctly imported into R.

Data Inspection and Exploration

Before you dive into the analysis to answer your ecological question, it is crucial to
perform a preliminary inspection of the data to verify data properties and ensure
the quality of your data. Several of the following functionalities that are imple-
mented in R can also easily (and more quickly) be implemented into the database
itself. The main strength of R, however, lies in its visualisation capabilities. The
visualisation of different aspects of the data is one of the major tasks during an
exploratory analysis.

The basic trajectory format in adehabitat is ltraj, which is a list used to store
trajectories from different animals. For more details on the ltraj-format, you refer
to the vignettes (remember: vignette(adehabitatLT)) and the help pages for the
‘adehabitatLT’-library. An ltraj-object requires projected coordinates, a date for
each location, and an animal identifier:

library(adehabitatLT)
ltrj <- as.ltraj(locs[, c("x32", "y32")], locs$UTC_time, locs$animals_id)
class(ltrj)

## [1] "ltraj" "list"

class(ltrj[[1]])

## [1] "data.frame"

The class-function shows us that ltraj is an object from the class ltraj and list.
Each element of an ltraj-object is a data.frame with the trajectory information for
each burst of each animal. A burst is a more or less intense monitoring of the
animal followed by a gap in the data. For instance, animals that are only tracked
during the day and not during the night will have for each day period a burst of
data. The automatic schedule used for the GPS tracking of the roe deer in your
database did not contain any intentional gaps; we therefore consider all data from
an animal as belonging to a single burst.
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head(ltrj[[1]])

## x y date dx dy dist dt
## 1549 658249 5097296 2005-10-18 20:00:54 29.89 92.04 96.77 14429
## 1720 658279 5097388 2005-10-19 00:01:23 57.87 -426.16 430.07 14459
## 1025 658337 5096962 2005-10-19 04:02:22 46.07 -213.36 218.27 14446
## 1402 658383 5096749 2005-10-19 08:03:08 -229.96 454.70 509.55 129465
## 1298 658153 5097204 2005-10-20 20:00:53 -88.91 38.42 96.86 14395
## 1839 658064 5097242 2005-10-21 00:00:48 -63.56 -27.02 69.06 14405
## R2n abs.angle rel.angle
## 1549 0 1.257 NA
## 1720 9365 -1.436 -2.6927
## 1025 119334 -1.358 0.0777
## 1402 317634 2.039 -2.8860
## 1298 17847 2.734 0.6947
## 1839 37195 -2.740 0.8099

The head function shows us that the data.frames within an ltraj object have ten
columns. The first three columns define the location of the animal: the x and y
coordinate and its date. The following columns describe the step (or change in
location) toward the next location: the change in the x and y coordinates, the
distance, the time interval between both locations, the direction of the movement,
and the change in movement direction. The R2n is the squared displacement from
the start point (or the net squared displacement [NSD]); we will discuss this metric
in more detail later (see Calenge et al. 2009, and Fig. 10.2 for more explanation on
these movement metrics).

Note that the animal’s identifier is not in the table. As all locations belong to the
same animal, there is no need to provide this information here. To obtain the
identifiers of all the data.frames in an ltraj, you use the id function:

id(ltrj)

## [1] "1" "2" "3" "4" "5" "6"

Or, to obtain the id of only one animal,

id(ltrj[1])

## [1] "1"

The summary function gives some basic information on the ltraj-object:

(sumy <- summary(ltrj))

## id burst nb.reloc NAs date.begin date.end
## 1 1 1 1647 0 2005-10-18 20:00:54 2006-10-29 12:00:49
## 2 2 2 2194 0 2005-03-20 16:03:14 2006-05-27 16:02:25
## 3 3 3 1826 0 2005-10-23 20:00:53 2006-10-28 12:01:18
## 4 4 4 2641 0 2005-10-21 20:00:47 2007-02-09 08:11:24
## 5 5 5 2695 0 2006-11-13 00:02:24 2008-03-15 08:01:37
## 6 6 6 278 0 2005-04-04 06:01:41 2005-05-05 23:01:47
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Note that it marks 0 for missing values (i.e. NAs). However, this is not correct;
you will see below how to tell R that there are missing observations in the data.

You see also that the total tracking duration is highly variable among indi-
viduals; notably Animal 6 was tracked for a much shorter time than the other
animals. To ensure homogeneous data for the following analyses, you will only
keep animals that have a complete year of data (i.e. number of days C365):

(duration <- difftime(sumy$date.end, sumy$date.begin, units = "days"))

## Time differences in days
## [1] 375.67 433.00 369.67 475.51 488.33 31.71
## attr(,"tzone")
## [1] "UTC"

ltrj <- ltrj[duration >= 365]

Moreover, for animals that were tracked for a longer period than one year, you
remove locations in excess. Of course, if your ecological question is addressing
space use during another period (e.g. spring) than you would want to keep all
animals that provide this information, and Animal 6 may be retained for analysis,
while removing all locations that are not required for this analysis.

ltrj <- cutltraj(ltrj,"difftime(date, date[1], units='days')>365")

summary (ltrj)

## id burst nb.reloc NAs date.begin date.end
## 1 1 1.01 1603 0 2005-10-18 20:00:54 2006-10-19 00:00:49
## 2 2 2.001 1894 0 2005-03-20 16:03:14 2006-03-20 20:02:06
## 3 3 3.01 1804 0 2005-10-23 20:00:53 2006-10-23 20:00:54
## 4 4 4.001 2009 0 2005-10-21 20:00:47 2006-10-21 20:00:54
## 5 5 5.001 1990 0 2006-11-13 00:02:24 2007-11-13 04:00:56
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Fig. 10.2 The common trajectory characteristics stored in an ltraj. Panel a Shows the properties
of one step from t to t ? 1, and panel b the NSD of a series of locations (t = 1–5). The relative
(rA) and absolute (aA) angles are also called the turning angle and direction of a step, respectively
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Now, all animals are tracked for a whole year.
With the plot function, you can show the different trajectories (see the result in

Fig. 10.3):

par(mfrow = c(1, 2))
plot(ltrj[1])
plot(ltrj[2])

The plotltr function allows us to show other characteristics than the spatial
representation of the trajectory. For instance, it is very useful to get an overview of
the sampling interval of the data. We discussed before how the sampling interval
has a large effect on the patterns that you can observe in the data.

plotltr(ltrj[1], which = "dt/60/60", ylim = c(0, 24))
abline(h = seq(4, 24, by = 4), col = "grey")

Figure 10.4 shows that the time gap (dt) is not always constant between con-
secutive locations. Most often there is a gap of 4 h; however, there are several
times that data are missing, and the gap is larger. Surprisingly, there are also
locations where the gap is smaller than 4 h. We wrote a function to remove
locations that are not part of a predefined sampling regime:
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Fig. 10.3 Plot of the trajectories for the two first animals. You could have plotted all animals by
simply running plot(ltrj)
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removeOutside <- function(x, date.ref, dt_hours = 1, tol_mins = 5)
require(adehabitatLT)
x <- ld(x)
tmp <- x$date + tol_mins * 60
tmp_h <- as.POSIXlt(tmp)$hour
tmp_m <- as.POSIXlt(tmp)$min
hrs <- as.POSIXlt(date.ref)$hour
hrs <- seq(hrs, 24, by = dt_hours)
x <- x[tmp_h %in% hrs & tmp_m < (2 * tol_mins), ]
x <- dl(x)
return(x)

}
}

You now use this function on the ltraj; you specify a reference date at midnight,
and the expected time lags in hours (dt_hours) is 4, and you set a tolerance of
±3 min (tol_mins):

ltrj <- removeOutside(ltrj, dt_hours = 4, tol_mins = 3,
date.ref=as.POSIXct("2005-01-01 00:00:00", tz="UTC"))

You can now inspect the time lag for each animal again:

plotltr(ltrj[1], which = "dt/60/60", ylim = c(0, 24))
abline(h = seq(4, 24, by = 4), col = "grey")

You see in Fig. 10.5 that there are no longer observations that deviate from the
4-hour schedule we programmed in our GPS sensors, i.e. all time lags between
consecutive locations are a multiple of four. You still see gaps in the data, i.e. some
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Fig. 10.4 The time interval
between locations for animal 1
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gaps are larger than 4 h. Thus, there are missing values. The summary did not
show the presence of missing data in the trajectory; you therefore have to specify
the occurrence of missing locations.

The setNA function allows us to place the missing values into the trajectory at
places where the GPS was expected to obtain a fix but failed to do so. You have to
indicate a GPS schedule, which is in your case 4 h:

ltrj <- setNA(ltrj, as.POSIXct("2004-01-01 00:00:00", tz="UTC"),
dt=4*60*60)

summary(ltrj)

## id burst nb.reloc NAs date.begin date.end
## 1 1 1.01 2192 942 2005-10-18 20:00:54 2006-10-19 00:00:49
## 2 2 2.001 2189 758 2005-03-21 04:01:45 2006-03-20 20:02:06
## 3 3 3.01 2191 726 2005-10-23 20:00:53 2006-10-23 20:00:54
## 4 4 4.001 2191 492 2005-10-21 20:00:47 2006-10-21 20:00:54
## 5 5 5.001 2192 325 2006-11-13 00:02:24 2007-11-13 04:00:56

Indeed, now you see that the trajectories do contain a fair number of missing
locations.

If locations are missing randomly, it will not bias the results of an analysis.
However, when missing values occur in runs, this may affect your results. In
adehabitat, there are two figures to inspect patterns in the missing data. The
function plotNAltraj shows for a trajectory where the missing values occur and can
be very instructive to show important gaps in the data:

da <- ltrj[[1]]$date
# the vector with dates allows us to zoom in on a range of dates in the plot
plotNAltraj(ltrj[1], xlim = c(da[1], da[500]))
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Figure 10.6 reveals that the missing values in November and December are not
likely to occur independent of each other (you can verify this yourself for other
periods by changing the limits of the x-axis with the xlim argument). You can test
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Fig. 10.7 Testing the
temporal independence
among missing locations. The
histogram represents the
expected distribution of
missing values if they
occurred independently. The
pin on the left shows the
observed distribution, which
shows that missing values did
not occur independently from
each other
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with the runsNAltraj function whether there is statistical significant clustering of
the missing values:

runsNAltraj(ltrj[1]) #indeed, as the figures showed, it is not random

Indeed, Fig. 10.7 shows that for this trajectory, there is significant clustering of
the missing fixes (you can test yourself whether this is also the case for the other
animals). Thus, when you have one missing location, it is more likely that the next
location will be missing too. Such temporal dependence in the probability to obtain
fixes is not surprising, because the conditions affecting this probability are likely
temporally autocorrelated. For instance, it is known that for a GPS receiver, it is
more difficult to contact the satellites within dense forests, and so when an animal
is in such a forest at time t, it is more likely to be still in this forest at time t ? 1
than at time t ? 2, thus causing temporal dependence in the fix-acquisition
probability. Unfortunately, as said, this temporal dependence in the ‘missingness’
of locations holds the risk of introducing biases in the results of your analysis.

Visual inspection of figures like Fig. 10.6 can help the assessment of whether
the temporal dependence in missing locations will have large effects on the
analysis. Other figures can also help this assessment. For instance, you can plot the
number of missing locations for each hour of the day, or for periods of the year
(e.g. each week or month):

par(mfrow=c(1,2))
plot(c(0, 4, 8, 12, 16, 20),

tapply(ltrj[[1]]$x, as.POSIXlt(ltrj[[1]]$date)$hour,
function(x)mean(is.na(x))),
xlab="hour", ylab="prop. missing", type="o", ylim=c(0,1), main="a")

periods <- trunc(as.POSIXlt(ltrj[[1]]$date)$yday/10)
plot(tapply(ltrj[[1]]$x, periods, function(x)mean(is.na(x))),

xlab="period", ylab="prop. missing", type="o", ylim=c(0,1), main="b")
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Fig. 10.8 Plot with the proportion missing locations for each hour of the day (panel a) and for
each period of 10 days (panel b)
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Figure 10.8 shows that there is no strong bias in the time of the day; you can
therefore be fairly confident that additional results will not be biased regarding the
diurnal cycle. However, there are four consecutive blocks of 10 days with low fix-
acquisition rate, which could be an issue. Fortunately, the other periods during the
winter are providing us with enough data. You therefore expect bias on your
results to be minimal. In cases when there are longer periods with missing data, it
can be necessary to balance the data. It is obviously not straightforward to create
new data; however, you can remove random locations in periods when you have
‘too many’ observations. In our demonstration, we will proceed without further
balancing the data.

The NSD is a commonly used metric for animal space use; it is the squared
straight-line distance between each point and the first point of the trajectory (see
Fig. 10.2b). It is a very useful metric to assess, for instance, the occurrence of
seasonal migration patterns. An animal that migrates between summer and winter
ranges will often show a characteristic hump shape in the NSD, as exemplified
clearly in Fig. 10.9:
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plotltr(ltrj, which = "R2n")

The NSD profiles in Fig. 10.9 strongly suggest the occurrence of seasonal
migration in all five animals. During the summer (from May till November), the
animals seem to be in one area and during the winter (from December till April) in
another. The NSD is a one-dimensional representation of the animal’s space use,
which facilitates the inspection of it against the second dimension of time. On the
other hand, it removes information present in the two-dimensional locations pro-
vided by the GPS. Relying exclusively on the NSD can in certain situations give
rise to wrong inferences; we therefore highly recommend also inspecting the
locations in two dimensions. One of the disadvantages of the NSD is that the
starting point is often somewhat arbitrary. It can help to use a biological criterion
such as the fawning period to start the year.

As an alternative for (or in addition to) the NSD, you can plot both spatial
dimensions against time as in Fig. 10.10:

par(mfrow=c(1,2))
plot(ltrj[[1]]$date, ltrj[[1]]$x, pch=19, type="o", xlab="Time",

ylab="x", main="a")
plot(ltrj[[1]]$date, ltrj[[1]]$y, pch=19, type="o", xlab="Time",

ylab="y", main="b")

To avoid the intrinsic reduction of information by collapsing two dimensions
into one single dimension, you also plot both spatial dimensions and use colour to
depict the temporal dimension:
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Fig. 10.10 The x- and y-axis against time in panel a and b, respectively, for the first individual

10 From Data Management to Advanced Analytical Approaches 199



ltrj2

{

}

<- na.omit.ltraj(ltrj)
par(mfrow=c(3,2))
for (i in c(1:5))
plot(ltrj2[[i]][c("x","y")], col=rainbow(12)[as.POSIXlt(ltrj2[[i]]$date)$mon+1],

pch=19, asp=T)
segments(ltrj2[[i]]$x[-nrow(ltrj[[i]])], ltrj2[[i]]$y[-nrow(ltrj2[[i]])],

ltrj2[[i]]$x[-1],ltrj2[[i]]$y[-1],
col=rainbow(12)[as.POSIXlt(ltrj2[[i]]$date[-1])$mon+1])

title(c("a", "b", "c", "d", "e")[i])

plot(c(0:100),c(0:100), type="n", xaxt="n", yaxt="n", xlab="", ylab="", bty="n")
mon <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",

"Oct", "Nov", "Dec")
legend(x=20, y=90, legend=mon[c(0:5)+1], pch=19, col=rainbow(12)[1:6], bty="n")
legend(x=60, y=90, legend=mon[c(6:11)+1], pch=19, col=rainbow(12)[7:12], bty="n")

Figure 10.11 confirms our interpretation of Fig. 10.9. All five animals have at
least two seasonal centres of activity: winter versus summer. The movement
between these centres occurs around November and around April. The comparison
of Figs. 10.9 and 10.11 reveals easily the respective strengths of both figures. It is
easier to read from Fig. 10.9 the timing of events, but it is easier to read from
Fig. 10.11 the geographic position of these events. This demonstrates the impor-
tance of making several figures to explore the data.

Now that you have familiarised yourselves with the structure of the data and
have ensured that your data are appropriate for the analysis, you can proceed with
answering your ecological questions in the following sections.

Home Range Estimation

A home range is the area in which an animal lives. In addition to Burt’s (1943)
aforementioned definition of the home range as ‘the area an animal utilizes in its
normal activities’, Cooper (1978) pointed out that a central characteristic of the
home range is that it is temporally stable. Our previous exploration of the data has
shown that the space use of our roe deer is not stable. Instead, it seems to consist of
a migration between two seasonal home ranges. Figures 10.9 and 10.10 suggest
that space use within these seasonal ranges is fairly stable. It is thus clear that the
concept of a home range is inherently tied to a time frame over which space use
was fairly stable, in our case two seasons.

An animal’s home range has been quantified by the concept of the ‘utilization
distribution (UD)’. Van Winkle (1975) used the term UD to refer to ‘the relative
frequency distribution for the points of location of an animal over a period of
time’. The most common estimator for the UD is the kernel density estimator. In
Fig. 10.12, we remind the reader of the general principle underlying such analysis.
Several methods for home range computation are implemented in the

200 B. Van Moorter



‘adehabitatHR’ library; the kernelUD function calculates the kernel utilization
density from 2D locations:

library(adehabitatHR)
library(sp)
trj <- ld(ltrj)
trj <- trj[!is.na(trj$x),]
(kUD <- kernelUD(SpatialPointsDataFrame(trj[c("x","y")],

data=data.frame(id=trj$id)),h=100,grid=200,kern="epa"))

image(kUD[[1]])

The function kernelUD requires a SpatialPoints object or a SpatialPointsDa-
taFrame, and it returns a SpatialPixel object, adehabitat relies on the spatial
classes from the ‘sp’ library. A familiarity with the spatial classes from ‘sp’ will

656000 657000 658000 659000 660000 661000

50
96

00
0

50
97

00
0

50
98

00
0

x

y
(a) (b)

(c)

(e)

(d)

650000 655000 660000 665000

50
96

00
0

51
00

00
0

x

y

654000 656000 658000 660000 662000 664000 666000

50
97

00
0

51
00

00
0

x

y

650000 654000 658000 662000
50

95
00

0
50

98
00

0

x

y

654000 655000 656000 657000 658000 659000

50
96

00
0

50
97

00
0

50
98

00
0

x

y

Jan
Feb
Mar
Apr
May
Jun

Jul
Aug
Sep
Oct
Nov
Dec

Fig. 10.11 Coloured trajectories for all individuals, locations from each month are coloured
differently
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therefore be helpful for your analysis of animal space use data in R (see Bivand
et al. 2008, or the vignettes available for ‘sp’). You create the SpatialPointsDa-
taFrame from a dataframe, which you obtained from the ltrj using the ld function
(i.e. list to dataframe). Note: ‘SpatialPoints’ cannot contain missing coordinates;
therefore, you keep only those rows where you have no missing values for the x
coordinate (i.e. !is.na(trj$x), the ‘!’ means ‘not’ in R). The resulting pixel map in
Fig. 10.13 shows the areas that are most intensely used by this individual.

During our data exploration, we found that our roe deer occupy a separate
summer and winter range: Are both ranges of similar size? For this, you have to
compute the home range separately for summer and winter. In Fig. 10.9, you can
see that the summer range is occupied at least from day 150 (beginning of June) to
day 300 (end of October) and that the winter range is occupied from days 350
(mid-December) till 100 (end of March). You can use these dates to split compute
the kernel for summer and winter separately; the function kernel.area computes
the area within a percentage contour. We demonstrate the computation for the 50,
75 and 95 %:
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Fig. 10.12 A one-dimensional example of a kernel density estimator for three points. For each of
the observations (i.e. 3, 4 and 7), a distribution (e.g. Gaussian curve) is placed over them (the
dashed lines); these distributions are aggregated to obtain the cumulative curve (the full black
line). This cumulative curve is the kernel density estimator of these points. The width of initial
distributions used is the smoothing factor and is a parameter the researcher has to select. Kernel
home range estimation works in a similar way in 2D with for instance a bivariate normal
distribution to smooth the locations
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trj$yday <- yday(trj$date)
trj$season <- ifelse(trj$yday>150 & trj$yday<300, "summer", NA)
trj$season <- ifelse(trj$yday>350 | trj$yday<100, "winter", trj$season)

trj <- trj[!is.na(trj$season),]
(kUD <- kernelUD(SpatialPointsDataFrame(trj[c("x","y")],

data=data.frame(id=paste(trj$id, trj$season))),
h =100, grid=200, kern = "epa"))

## ********** Utilization distribution of several Animals ************
##
## Type: probability density
## Smoothing parameter estimated with a specified smoothing parameter
## This object is a list with one component per animal.
## Each component is an object of class estUD
## See estUD-class for more information

area <- kernel.area(kUD, percent = c(50, 75, 95), unin = "m", unout = "ha")
(areas <- data.frame(A50=unlist(area[1,]), A75=unlist(area[2,]),

A95=unlist(area[3,]), id=rep(c(1:5), each=2),
seas=rep(c("S", "W"), 5)))

## A50 A75 A95 id seas
## X1.summer 9.931 22.51 52.30 1 S
## X1.winter 6.902 14.19 33.06 1 W
## X2.summer 10.915 21.92 40.47 2 S
## X2.winter 11.277 27.07 62.65 2 W
## X3.summer 12.977 30.24 62.96 3 S
## X3.winter 7.873 19.79 50.84 3 W
## X4.summer 10.230 24.25 83.17 4 S
## X4.winter 5.747 11.14 28.43 4 W
## X5.summer 12.498 24.31 49.14 5 S
## X5.winter 18.344 41.74 112.72 5 W

You can visualise these results clearly with boxplots:

par(mfrow = c(1, 3))
boxplot(areas$A50 ~ areas$seas, cex = 2, main = "a")
boxplot(areas$A75 ~ areas$seas, cex = 2, main = "b")
boxplot(areas$A95 ~ areas$seas, cex = 2, main = "c")

Figure 10.14 shows that more than a change in the mean range size, there seems
to be a marked change in the individual variation between seasons. During the
winter season, there seems to be much larger individual variation in range size than
there is in summer; however, more data will be required to further investigate this
seasonal variation in range sizes.

Fig. 10.13 Kernel UD of the
first individual, in yellow, is
the intensely used areas
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Habitat Use and Habitat Selection Analysis

In the previous exercise, you saw that roe deer change the location of their
activities from summer to winter. Such seasonal migrations are often triggered by
changes in the environment. You can then wonder which environmental conditions
are changing when the animal moves between its seasonal ranges. For instance,
snowfall is a driver for many migratory ungulates in northern and alpine envi-
ronments, and winter ranges are often characterised by less snow cover than the
summer ranges in winter (e.g. Ball et al. 2001). Thus, you would expect that roe
deer will be moving down in altitude during the winter to escape from the snow
that accumulates at higher altitudes.

If roe deer move to lower altitudes during winter, then they probably also move
closer to roads, which are usually found in valley bottoms. You would not nec-
essarily expect roe deer to show a seasonal response directly toward roads, but you
do expect this as a side effect from the shift in altitude. Such closer proximity to
roads can have substantial effects on road safety, as animals close to roads are at a
higher risk of road crossings and thus traffic accidents. Ungulate vehicle collisions
are an important concern for road safety and animal welfare. From an applied
perspective, it is thus an interesting question to see whether there is a seasonal
movement closer to roads, which could partly explain seasonal patterns often
observed in ungulate vehicle collisions.

You first add the environmental data to your inspected trajectory with the merge
function:

trj <- ld(ltrj)
trj <- merge(trj, locs, by.x=c("id", "date"),

by.y=c("animals_id", "UTC_time"), all.x=T)
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Fig. 10.14 The boxplots of the areas (in ha) of the seasonal ranges from left to right the 50, 75
and 95 % kernel contours. Each panel depicts summer (S) on the left, and winter (W) on the right
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You inspect then whether there is a relationship between the distance to the
roads and the altitude:

library(lattice)
xyplot(roads_dist ~ altitude_srtm| factor(id),

xlab = "altitude", ylab = "dist. road", col = 1,
strip = function(bg = "white", ...) strip.default(bg = "white", ...),
data = trj)

Figure 10.15 shows an interesting relationship between altitude and distance to
roads. Each individual shows two clusters, which are possibly corresponding with
the two seasonal ranges you detected before. Within each cluster, there is a
positive relationship between altitude and distance to roads; i.e. at higher altitudes,
the distance to roads is greater. However, when you compare both clusters, it
seems that the cluster at higher altitude is often also closer to roads (except for
Animal 1). Overall, it seems that in your data, there is no obvious positive rela-
tionship between altitude and distance to roads.

Let us now investigate the hypothesis that there is a seasonal change in roe deer
altitude:

xyplot(altitude_srtm ~ as.POSIXlt(acquisition_time)$yday | factor(id),
xlab = "day of year", ylab = "altitude", col = 1,
strip = function(bg = "white", ...) strip.default(bg = "white", ...),

data = trj)

Figure 10.16 shows that there are marked seasonal changes in the altitude of the
roe deer positions. As you expected, roe deer are at lower altitudes during
the winter than they are during the summer. This pattern explains the occurrence of
the two clusters of points for each individual in Fig. 10.15.

You can now proceed by testing the statistical significance of these results. You
use the same seasonal cutoff points as before:

trj$yday <- yday(trj$date)
trj$season <- ifelse(trj$yday > 150 & trj$yday < 300, "summer", NA)
trj$season <- ifelse(trj$yday > 350 | trj$yday < 100, "winter", trj$season)
trj2 <- trj[!is.na(trj$season), ]
fit <- lm(altitude_srtm ~ as.factor(season), data = trj2)

The function lm is used to fit a linear model to the data (note: for this simple
case a Student’s t test would have been sufficient).

These results show that as expected the roe deer move to lower altitudes during
the winter:

Estimate Std. error t value Pr([|t|)

(Intercept) 1,581.6609 2.6212 603.41 0.0000
as.factor(season)winter -572.3900 4.2519 -134.62 0.0000
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In winter, the roe deer are on average 572 m lower than during the summer,
which is a 33 % decrease.

A treatment on model validation falls outside the scope of this book. We refer
the reader to introductory books in statistics; several such books are available
using examples in R (e.g. Crawley 2005; Zuur et al. 2007).

In this example, you have focused on the habitat use of roe deer. Often
researchers are not only interested in the habitat characteristics used by the ani-
mals, but also in the comparison between use and availability—i.e. habitat
selection. In habitat-selection studies, the used habitat characteristics are compared
against the characteristics the animal could have used or the available habitat.
Thus, to perform habitat-selection analysis, you have to sample from the available
points and obtain the habitat characteristics for these points.
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Fig. 10.15 The changing distance to roads as a function of the altitude for each individual
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The available locations are commonly sampled randomly at two scales: within
the study area to study home range placement, or within the individual home range
to study home range use (respectively, called second- and third-order habitat
selection following Johnson 1980). We will demonstrate third-order habitat
selection and use a minimum convex polygon (MCP) to characterise the area
available for each roe deer, from which we sample 2,000 random locations. The
mcp-function in R requires the use of a SpatialPointsDataFrame when using
multiple animals (for a single animal a SpatialPoints object suffices):

trj2 <- na.omit(trj[,c("id", "x","y")])
sptrj <- SpatialPointsDataFrame(SpatialPoints(trj2[,c("x","y")]),

data=data.frame(id=trj2$id))
ranges <- mcp(sptrj, percent=100)
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Fig. 10.16 The altitude of roe deer locations as a function of the day of the year. You see marked
seasonal changes
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Then, you sample for each individual randomly from its available range, and
you place the coordinates from these sampled locations together with the animal’s
id in a data.frame. Operations like this, in which something needs to be repeated
for a number of individuals, are easily performed using the list format, which is
also the reason that ‘adehabitatLT’ uses a list to store trajectories. However, a
database works with data.frames; therefore, you will have to bind the data.frames
in the list together in one large data.frame.

set.seed(0) #to ensure replication of the same randomly sampled points
rndpts

}

<- lapply(c(1:5),
function(x, ranges) spsample(ranges[ranges@data$id==x,], n=2000,

type="random", iter=100) ,ranges=ranges)
{

rndpts <- lapply(c(1:5),}{function(x,rndpts)data.frame(rndpts[[x]]@coords,id=x),

rndpts=rndpts)
rndpts <- do.call("rbind", rndpts)

Figure 10.17 shows the areas you considered available for each individual roe
deer, from which you sampled the random locations:

plot(ranges)
points(rndpts[c(1:100), c("x", "y")], pch = 16) #shows the first 100 random points

The easiest way to obtain the environmental data for these random points is to
simply upload them into the database and extract the required information from
there. To facilitate the ordering of your random locations, you add a column nb
numbered 1 to the number of random points. The function dbWriteTable writes a
table to the database; you can specify a schema (analysis) in addition to the table
name (rndpts_tmp):

rndpts$nb <- c(1:nrow(rndpts))
dbWriteTable(con, c("analysis", "rndpts_tmp"), rndpts)

## [1] TRUE

Next, you use the database to couple the locations in this table to the envi-
ronmental data stored in the database. The easiest way to do this is by first adding a
geometry column for the random locations:

## <PostgreSQLResult:(6096912,1,8)>

dbSendQuery(con,
"ALTER TABLE analysis.rndpts_tmp ADD COLUMN geom geometry(point, 4326);")

## <PostgreSQLResult:(6096912,1,7)>

dbSendQuery(con,
"UPDATE analysis.rndpts_tmp
SET geom = st_transform((st_setsrid(st_makepoint(x,y),23032)),4326);" )
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You extract the altitude and land cover for the random locations from the rasters
stored in the database with the following queries (the details of these SQL queries
were discussed earlier in this book):

altitude <- fetch(dbSendQuery(con,
"SELECT st_value(srtm_dem.rast, geom) as altitude
FROM env_data.srtm_dem, analysis.rndpts_tmp
WHERE st_intersects(srtm_dem.rast,geom) ORDER BY nb;"), -1)

landcover <- fetch(dbSendQuery(con,
"SELECT st_value(corine_land_cover.rast, st_transform(geom,3035)) as landcover
FROM env_data.corine_land_cover, analysis.rndpts_tmp
WHERE st_intersects(corine_land_cover.rast, st_transform(geom,3035))

ORDER BY nb;"), -1)

You extract the distance to the closest road for the random locations from the roads
stored in the database with the following query (this query can require a few minutes):

mindist <- fetch(dbSendQuery(con,
"SELECT min(distance) as dist_roads

st_distance(roads.geom::geography,
rndpts_tmp.geom::geography)::integer as distance
FROM env_data.roads, analysis.rndpts_tmp) AS a
GROUP BY a.nb ORDER BY nb;"), -1)

FROM (SELECT nb,

You add these environmental data to the randomly sampled available locations:

rndpts <- cbind(rndpts, altitude, landcover, mindist)
head(rndpts)

## x y id nb altitude landcover dist_roads
## 1 660909 5097377 1 1 940 23 30
## 2 657779 5096660 1 2 1650 25 1555
## 3 658739 5096304 1 3 1778 24 1500
## 4 657638 5097232 1 4 1678 25 1135
## 5 658984 5097551 1 5 1510 18 289
## 6 659459 5097810 1 6 1459 18 82

Fig. 10.17 The available
areas for each roe deer
estimated by a MCP. The first
100 locations sampled
randomly from the area of
individual 1 are represented
by black dots

10 From Data Management to Advanced Analytical Approaches 209



Now that you no longer need these locations in the database, you can remove
the table:

dbRemoveTable(con, c("analysis", "rndpts_tmp"))

## [1] TRUE

A discussion on habitat selection falls outside the scope of this chapter. More
information on exploratory habitat selection using R can be found in the
vignette(adehabitatHS); for a general discussion on the use of resource selection
functions on habitat selection, we refer the reader to the book by Manly et al.
(2002). We will merely visualise the difference in the habitat types between the
used and the available locations.

To ensure proper comparison of used and available habitats, you provide the
same levels to both data sets. Moreover, to allow our seasonal comparison, you
also need to allocate the random locations to the summer and winter season:

trj <- na.omit(trj[,c("id", "x", "y", "roads_dist","corine_land_cover_code",
"altitude_srtm", "season")])

names(trj) <- c("id", "x", "y", "dist_roads", "landcover", "altitude", "season")
trj$landcover <- factor(trj$landcover, levels=c(18, 21, 23:27, 29, 31, 32))
#allocate the random locations to each season
rndpts$season <- c("summer", "winter")
rndpts$landcover <- factor(rndpts$landcover, levels=c(18, 21, 23:27, 29, 31, 32))

Now, you will compute for each individual the number of locations inside each
habitat type:

library(adehabitatHS)
sr_win <- widesIII(use_win,ava_win, avknown = FALSE, alpha = 0.05)
sr_sum <- widesIII(use_sum,ava_sum, avknown = FALSE, alpha = 0.05)

use_win <- table(trj$id[trj$season=="winter"],
trj$landcover[trj$season=="winter"])

ava_win <- table(rndpts$id[rndpts$season=="winter"],
rndpts$landcover[rndpts$season=="winter"])

use_sum <- table(trj$id[trj$season=="summer"],
trj$landcover[trj$season=="summer"])

ava_sum <- table(rndpts$id[rndpts$season=="summer"],
rndpts$landcover[rndpts$season=="summer"])

#determine the proportions of each class
calc.prop <- function(x){(x/sum(x))}
use_win <- t(apply(use_win, 1, calc.prop))
ava_win <- t(apply(ava_win, 1, calc.prop))
use_sum <- t(apply(use_sum, 1, calc.prop))
ava_sum <- t(apply(ava_sum, 1, calc.prop))
#to avoid division by zero, we add a small number to each element in the table
use_win <- use_win+0.01
ava_win <- ava_win+0.01
use_sum <- use_sum+0.01
ava_sum <- ava_sum+0.01
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The function widesIII in the ‘adehabitatHS’ library computes the selection
ratios for individually tracked animals; it also provides a number of statistical tests.

plot(c(1:10)-0.1, sr_win$wi, xaxt="n", ylab="Selection Ratio",
xlab="Habitat type", col="blue", ylim=c(0,4))

axis(1, at=c(1:10), labels=c(18, 21, 23:27, 29, 31, 32))
abline(h=1, col="dark grey")
points(c(1:10)+0.1, sr_sum$wi, col="red")
segments(c(1:10)-0.1, sr_win$ICwiupper, c(1:10)-0.1, sr_win$ICwilower,col="blue")
segments(c(1:10)+0.1, sr_sum$ICwiupper, c(1:10)+0.1, sr_sum$ICwilower,col="red")

For a more extensive discussion of selection ratios, we refer you to the
aforementioned references. Here, you limit yourselves to visualising the selection
ratios for both seasons. Figure 10.18 shows that the roe deer seems to select more
for pastures (class 18) during summer, whereas for most roe deer, their use of
broad-leaved forests seem to be higher during the winter months (class 23). Great
care should be taken not to over-interpret the unreliable results from classes that
are hardly present in the study area (e.g. classes 26–31). These types of figures and
tables are highly suitable to inspecting categorical data such as land cover. Con-
tinuous data such as altitude are better represented using histograms.

In the previous demonstrations, you have been using R to visualise and analyse
data stored in the database, and you also used R as an interface to interact with the
database. An alternative approach is to use R from within the database, which we
will demonstrate in the next chapter.
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Fig. 10.18 The ratio of the proportion used and the proportion available (known as the selection
ratio). Values above 1 are used more than their availability and vice versa. Blue points are for
winter and red for summer. You can find the corresponding habitat types in the co-
rine_land_cover_legend table from your database
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