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Abstract. To support large-scale visual recognition, it is critical to train
a large number of classifiers with high discrimination power. To achieve
this task, in this paper a hierarchical visual tree is constructed for orga-
nizing a large number of object classes and image concepts according to
their inter-concept visual correlations. Based on the hierarchical visual
tree, a novel approach is proposed for learning multi-scale group-based
dictionary to support discriminative bag-of-visual-words (BoW-based)
image representation. In addition, a structural learning approach is de-
veloped to enable large-scale classifier training over such hierarchical vi-
sual tree. We have also compared the performance of our hierarchical
visual tree with traditional label tree over large-scale image collections.

Keywords: Hierarchical Visual Tree, Dictionary Learning, Discrimina-
tive Image Representation, Structural Learning, Image Classification.

1 Introduction

Image classification becomes increasingly important and necessary to support
automatic image annotation, so that large-scale image retrieval can be made
more intuitively by using the adequate keywords [23]. However, the performance
of image classification largely depends on two inter-related issues: (a) discrim-
inative representation for visual content of images, and (b) effective algorithm
for multi-class classifier training.

For the first issue, bag-of-visual-words (BoW) has become one of popular
methods for visual content representation of images due to its effectiveness and
flexibility. BoW-based approach represents an image as a histogram based on the
frequencies of a set of “visual words”, which is known as visual dictionary [4].
Learning effective visual dictionary is a crucial issue for supporting discrim-
inative BoW-based image content representation. For the second issue, when
large-scale image categories come into view, large amount of classifiers should
be effectively learnt for bridging the semantic gap successfully by mapping the
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low-level visual features onto high-level image concept (human interpretation of
image semantics).

In addition, when a large number of object classes (i.e., image semantics are
interpreted by the visual content of object regions) and image concepts (i.e.,
image semantics are interpreted by the visual content of entire images) come
into view, some of them are strongly inter-related (visually similar) because their
relevant images may share some similar or even common visual properties (i.e.,
strong inter-concept visual correlations) [8,9]. In view of huge inter-concept visual
correlations, to address the above two issues, robust techniques should leverage
the inter-concept visual correlations for discriminative dictionary learning and
effective large amount of classifiers training.

In this paper, a hierarchical visual tree has been constructed to organize a large
number of object classes and image concepts according to their inter-concept
visual correlations. We construct the hierarchical visual tree directly in the visual
feature space rather than in the label space, because image representation and
classifier training indeed happen in the visual feature space. On the one hand,
we use the hierarchical visual tree to determine the groups of visual similar
object classes and image concepts at different levels, and then jointly learn a
discriminative dictionary for each group at different levels. On the other hand,
we take advantage of the hierarchical visual tree to discover the inter-related
classifiers for different object classes and image concepts, and develop a novel
structural learning algorithm for effectively training the inter-related classifiers.

2 Related Work

In this section, we briefly review some related work on dictionary learning for
BoW-based image representation and multi-class classifier training for image
classification.

Most of prevailing algorithmshave learnt a universal visual dictionary [17,21,27]
for BoW-based image representation, where the same bases (the same set of vi-
sual words in the universal dictionary) are used to obtain the BoW histograms for
all the images in the database. It is worth noting that the images from different
object classes and image concepts may have diverse visual properties, thus such
universal dictionary may not be optimum for all the object classes and image con-
cepts. To improve the performance, Nistér et al. [18] developed a vocabulary tree
to allow a larger and more discriminatory vocabulary, [14,28,30] learned the uni-
versal dictionary combined with the classifier training. However, these existing al-
gorithms only considered intra-class (category) or intra-image visual correlations,
while completely ignored inter-concept (category) visual correlations. Pioneering
work proposed by Zhou et al. [31] have leveraged the inter-concept (category) vi-
sual correlations to learn multiple inter-related dictionaries jointly for the visually
similar object classes and image concepts, where a common dictionary (which is
shared amongmultiple visually similar object classes and image concepts) andmul-
tiple individual dictionaries (which are class-specific for each object class or image
concept) are learnt jointly.
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For multi-class classifier training, rather than providing an exhaustive and
comprehensive review of all related works on image classification, we focus on
giving a brief overview of the work on hierarchical image classification. In order
to support hierarchical image classification, Barnard et al. [1], Vasconcelos et
al. [24], and Fan et al. [8,9] have incorporated hierarchical mixture models and
concept ontology to leverage the hierarchical inter-concept semantic similarity
contexts for training multiple inter-related classifiers jointly. Fei-Fei et al. [12]
have also incorporated prior knowledge of object parts and their locations to im-
prove hierarchical image classification. The major problem with the hierarchical
approach is that the classification errors may be propagated among the classifiers
for the relevant image concepts (i.e., inter-concept error propagation) [10].

Some previous work have recently been proposed to characterize the inter-
concept correlations for image classifier training. Marszalek et al. [15] and Fei-Fei
et al. [5] have used WordNet [16] to find the semantic relationships between the
labels and combined discriminative classifiers through the semantic hierarchies.
Wang et al. [26] have utilized the normalized Google distance (NGD) [3] as
the inter-word contextual potential for multi-label image annotation. However,
these previous work measure the inter-concept correlations by using semantic
information in the label space, it is not quite reasonable for determining the
inter-related classifiers. Because classifier training and image classification are
performed in the feature space rather than in the label space. Pioneering work
proposed by Dong et al. [7] and Fan et al. [11] have utilized the inter-concept
visual network for determining the inter-related classifiers and training them
jointly.

3 Automatic Construction of Hierarchical Visual Tree

The images from the inter-related object classes and image concepts may share
some similar or even common visual properties (e.g., visual features), i.e., these
inter-related object classes and image concepts may have huge inter-concept
visual correlations. In this paper, a hierarchical visual tree is constructed to
organize the object classes and image concepts from multi-levels and determine
the inter-related (visually similar) object classes and image concepts directly in
the visual feature space.

To construct the hierarchical visual tree, we first propose a new method to
characterize the inter-concept (category) visual correlations explicitly. We ex-
tract dense SIFT features at multi-scales for each image instance in the database,
and then use spatial pyramid histograms [13] to represent each image instance.
Let Hx and Hy respectively denote the spatial histogram descriptors of a pair of
image instances x and y. A kernel function k(x, y) is then defined to characterize
their visual similarity relationship as follows

k(x, y) =

L∑

l=0

αlIl(H
l
x, H

l
y) (1)
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Table 1. Inter-concept visual correlations

Concept pair ϕ Concept pair ϕ Concept pair ϕ

crab & box turtle 0.96 monitor & microwave 0.62 canoe & shoji 0.38
deerhound & lynx 0.82 sky & cloud 0.62 bookcase & dune 0.37
go-kart & horse cart 0.78 clog & accordion 0.57 flat bench & sky 0.36
bookcase & cabinet 0.78 tiger cat & wave 0.51 microwave & crab 0.35
limousine & cab 0.74 cab & oilskin 0.44 lynx & website 0.33

where Il(H
l
x, H

l
y) is the histogram intersection of Hx and Hy at pyramid level l,

l = 1, ..., L is the pyramid level, and αl is the weight at level l, which is 2−L for
l = 0 and 2l−L−1 for others.

According to the image visual similarity relationship, for two given concep-
tual image sets Ci and Cj , we characterize their inter-concept visual correlation
ϕ(Ci, Cj) as follows:

ϕ(Ci, Cj) =
1

|Ci||Cj |
∑

x∈Ci

∑

y∈Cj

k(x, y) (2)

where |Ci| and |Cj | are the total numbers of image instances in the conceptual
image sets Ci and Cj respectively, k(x, y) is the visual similarity between two
image instances x and y from conceptual image sets Ci and Cj . If relevant
image instances from Ci and Cj share more similar visual properties (i.e., they
are visually similar), their inter-concept visual correlation ϕ(., .) should have
larger value. Table 1 gives some experimental results for the inter-concept visual
correlations ϕ(., .) in our test dataset. It can be seen that our proposed method
can well characterize the inter-concept visual correlations, e.g., relevant images
from the image classes “bookcase” and “cabinet” look visually similar, and thus
their inter-concept visual correlation has lager value in Table 1.

In the following, we use the top-down method to construct the hierarchical
visual tree according to the inter-concept visual correlations. At the first level,
we construct a visual concept network for all the object classes and image con-
cepts in the database, where each object class or image concept is linked with
multiple visually similar (inter-related) object classes and image concepts with
larger values of the inter-concept visual correlations ϕ(., .). To determine the
groups of visually similar object classes and image concepts at the first level, the
visual concept network is treated as a weighted undirected graph, where each
object class or image concept is treated as a node of the graph and the value
of the inter-concept visual correlation ϕ(., .) is taken as the weight of the corre-
sponding edge. And then, we partition this graph (visual concept network) into
a set of disjoint subgraphs (visual concept sub-networks), and the Normalized
cut (Ncut) [22] algorithm is employed to address this partition problem. These
sub-networks constitute the second level of the hierarchical visual tree. Subse-
quently, we recursively do the above steps until reaching the maximum level L.
Consequently, the hierarchical visual tree with L levels is constructed, which de-
termines the multi-scale sub-networks of inter-related object classes and image
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Fig. 1. Some visual concept networks at different levels of the hierarchical visual tree
for our test dataset

concepts at different levels. Fig. 1 demonstrates some visual concept networks
at different levels of the hierarchical visual tree for our test dataset (100 most
popular object classes and image concepts from ImageNet [6] image set).

4 Multi-scale Group-Based Dictionary Learning

In Section 3, we have developed a new method for constructing the hierarchical
visual tree directly in the visual feature space. The hierarchical visual tree is
composed of a set of multi-scale visual concept sub-networks at the different
levels, and each sub-network consists of a set of visually similar object classes
and image concepts. We refer to such sub-network as a visually similar group.
The feature vectors for such visually similar object classes and image concepts
may overlap in the visual feature space, thus it is harder to distinguish them
effectively. In this paper, we develop a group-based approach for leveraging the
inter-concept visual correlations to jointly learn discriminative dictionary for
all the object classes and image concepts in the same group. Our motivation
is to learn a discriminative group-based dictionary for each group at different
levels in order to enhance its discrimination power on distinguishing the visually
similar object classes and image concepts in the same group, while different
groups with weak inter-concept visual correlations will have different group-
based dictionaries. In addition, because of different diversities of visual properties
for different-level sub-networks, we learn different-scale dictionaries (i.e., multi-
scale dictionaries) for different sub-networks (groups).

In the following, we discuss our algorithm for learning multi-scale group-based
dictionary in details. We use the bottom-up approach to learn the dictionary for
the visually similar groups at every level over the hierarchical visual tree. Be-
cause the inter-group visual correlations are weaker than the inner-group visual
correlations at each level, so we can use the hypothesis that different groups
at the same level are independent (i.e., ignoring weak inter-group correlations)
in our algorithm. For legible expression, we first define some notations. Denote
l = 1, ..., L is the level of the hierarchical visual tree (first level is the top level
and L-th level is the bottom level). Let Gl

i is the i-th (i = 1, ..., M l)group at
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the l-th level, Dl
i is the dictionary corresponding to the group Gl

i, and the size
of Dl

i is all K l. First, we learn the dictionary for the groups at the L-th level
(bottom level). Let Xi is the set of training samples from the object classes and
image concepts in the group GL

i , xj , j = 1, ..., Ni is a training sample from the
set Xi, and wk, k = 1, ..., KL be a visual word in the group dictionary DL

i . We
learn the {DL

i } by solving the following optimization problem:

arg
{DL

i }
min

ML∑

i=1

Ni∑

j=1
xj∈Xi

||xj − V(xj , D
L
i )||2 (3)

where V(xj , D
L
i ) is the representation of the training sample xj by using the

group dictionary DL
i . Here we utilize the vector quantization to accomplish the

representation. Then V(xj , D
L
i ) is formulated as

V(xj , D
L
i ) = arg

wk

min
wk∈DL

i
k=1,...,KL

||xj − wk||2 (4)

We apply the iterative scheme to optimize the formula (3). At the begin-
ning, we randomly select KL training samples from each Xi to initialize the
corresponding group dictionary DL

i , and then we separately optimize each DL
i

iteratively. After we have learned the dictionary {DL
i } for the L-th level (bot-

tom level), we then treat {DL
i } as the training samples and recursively learn the

dictionary for other higher levels. It is worth noting that the parent groups from
the high level only use the training samples from their children groups of the
adjacent lower level. Because the more visual diversities for the group at higher
level (such group consists of large amount of object classes and image concepts),
we learn larger-scale dictionary for the group at higher level to enhance the dis-
crimination power, while we choose the same scale for the the groups at the same
level. As a result, the size of dictionary for the group at the l-th level is set to
2(L−l) × KL. Once multi-scale group-based dictionaries have been learned, we
can use the BoW-based method to represent the images. It is worth noting that
the children groups at low level are represented only by using the dictionary
belong to their parent group at adjacent higher level, and images at different
levels have different-scale representations.

5 Structural Classifier Training for Image Classification

In this section, we proposed a novel structural learning approach for effectively
training multi-class classifiers over the hierarchical visual tree. We use support
vector machine (SVM) with χ2-based kernel [29] as the basic classifier to design
our structural classifiers. Our structural classifiers consist of two components:
intra-group classifiers for distinguishing the visually similar object classes and
image concepts in the same group, and inter-group classifiers for discriminating
those from different groups. For the intra-group, we only consider the groups at
L-th level (bottom level), because the object classes and image concepts in such
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groups are most visually similar. We use the pairwise method to train the intra-
group classifiers for these visually similar object classes and image concepts. For
the inter-group, we treat the visually similar object classes and image concepts
in the same group as a whole group concept at different levels. We learn inter-
related classifiers for group concepts (image concepts for L-th level) in the same
parent group at different levels, and only consider the adjacent high level groups
from the same ancestry. Subsequently, we combine the intra-group and inter-
group classifiers according to the hierarchical visual tree.

For a given object class or image concept Cj , X denotes the input test sample.
We use f(C+, C−, X) to denote the basic pairwise discriminant function, where
C+ denote the positive training concept(s) and C− denote the negative training
concept(s). The value of f(C+, C−, X) is designed to 1 for the positive samples
and 0 for the negative samples. Then our structural classifier F (Cj , X) respect
to Cj(Cj ∈ GL

i ) can be defined as follows:

F (Cj , X) =

intra−group︷ ︸︸ ︷
β0

∑

Ck∈GL
i ,k �=j

f(Cj , Ck, X)+

bottom level inter−group︷ ︸︸ ︷
β1

∑

GL
k ��GL

i ,k �=i

f(Cj , G
L
k , X)

+

high level inter−group︷ ︸︸ ︷
L∑

l=2

βl

∑

Gl
k�Gl−1

n

f(Gl
k, G

l−1
n , X)

(5)

where GL
k �� GL

i denote the group GL
k is inter-related with the group GL

i ; G
l
k

and Gl−1
n respectively denote the group at l and l−1 level both including object

class or image concept Cj . And β are the weighted coefficients, which determine
the contribution ratio of the intra-group and inter-group classifiers to the final

decision, and they are subjected to
L∑

l=0

βl = 1. Once the structural classifiers

have been trained, the automatic image classification is achieved by computing

C(X) = argmax
Cj

F (Cj , X) (6)

where C(X) is the predicted label for X . Fig. 2 demonstrates a simple example
with 3 levels for our structural learning approach, where the intra-group, bottom
level inter-group and high level inter-group are indicated expressly.

In the following, we discuss the computational complexity of our structural
learning approach. Let N is the number of total object classes and image con-
cepts. Without loss of generality, we suppose each group has M (M � N)
children groups (ML

i is the number of object classes and image concepts in the
i-th group at level L). Therefore, the total number of binary classifiers for our
structural approach is determined as follows

ML∑

i=1

ML
i (M

L
i − 1)

2
+N(M − 1) +

L−1∑

l=2

M l(M − 1) (7)
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Fig. 2. A simple example for our structural learning approach

where the first item is the total number of intra-group classifiers, the second item
is the total number of inter-group classifiers for the bottom level, and the third
item is the total number of high level inter-group classifiers. Typically, M l � N ,
M � N and ML

i � N , therefore our structural classifier training algorithm can
achieve sub-quadratic complexity with the number of object classes and image
concepts N , much less than the traditional pairwise method with the quadratic
complexity of O(N2). Especially for large scale classification task (N is large),
our structural learning algorithm is more efficient.

6 Algorithm Evaluation

6.1 Experimental Setup

Test Dataset: We chose the ImageNet [6] image set as our test dataset, because
ImageNet is widely used for large scale image classification task and the images
in ImageNet are more complex and have more inter-concept visual correlations.
In our experiments, we selected 100 image concepts (most popular real-world
object classes and scene categories) from different semantic levels and randomly
selected 200 images for each image concept, which were used as the test bench
for evaluating our algorithms. The selected subset from ImageNet image set
is referred to as ImageNet100 in the following experiments. For ImageNet100
dataset, we randomly selected 100 images from each image concept as training
data and the rest images as testing data.
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Features Extraction: The images used in the evaluations are all preprocessed
into gray scale, and we resize all the training and testing images to a max side
length of 300 pixels (width or height) without changing their aspect ratios. SIFT
descriptors are then computed at the points on a regular grid with spacing of
3 pixels for each image. In addition, in order to allow scale variation between
images, multiple descriptors over supporting regions with different sizes (4, 6, 8,
and 10 pixels) are computed at each grid point. We use the publicly available
VLFeat toolbox (version 0.9.14) [25] to compute these SIFT descriptors.

Hierarchical Visual Tree: In the following experiments, we constructed the
hierarchical visual tree with 3 levels according to our proposed inter-concept
visual correlations for ImageNet100 dataset, and each parent group was parti-
tioned into 4 children groups. It is worth noting that some groups at high level
maybe stop growing in advance and become a leaf node of the visual tree.

Binary SVM Classifier: The SVM with χ2-based kernel is used as the basic
classifier, and the LIBSVM software [2] is employed to train the basic SVMs.
For each basic SVM classifier, we use the same penalty parameter determined by
searching over 7 values (1, 22, ..., 212) and the same kernel parameter determined
by searching over 7 values (2−9, 2−7, ..., 23) with five-fold cross validation on the
training data.

6.2 Image Classification Evaluation

Performance evaluation for our algorithms and comparison with other
algorithms: According to the algorithm proposed in Section 4, we have learned
the multi-scale group-based dictionaries, and used the dictionaries to represent
the images in ImageNet100 dataset. In the experiment, we evaluated three dif-
ferent sizes for KL: 256, 512 and 1024. And then we trained the structural
classifiers according to the hierarchical visual tree for multi-class image classi-
fication. We compared our algorithm with the traditional pairwise method and
the hierarchical classification method over traditional label tree, the dictionary
size used in these algorithms is set to 1024. We also compared our algorithm
with some other inter-related classifier training algorithms. Fig. 3 demonstrates
the classification accuracy of our algorithm and the hierarchical classification
method [15] over all the object classes and image concepts on ImageNet100. The
average classification accuracy for ImageNet100 dataset is shown in Table 2.
From the experimental results, it can be seen that our algorithm outperforms all
other compared methods. The reasons for this outcome are: (a) our algorithm
can determine the inter-related object classes and image concepts in the visual
feature space and effectively train the inter-related classifier for them; and (b)
our structural learning approach can restraint the error propagation through the
hierarchical tree.

Performance Comparison under various Measurements for
Inter-concept Correlation Characterization: We have evaluated our cor-
relation characterization approach compared with two popular measurement
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Fig. 3. Classification accuracy for our algorithm and the hierarchical classification
method on ImageNet100 dataset

Table 2. Average classification accuracy comparison on ImageNet100 dataset

Algorithms Average accuracy

Pairwise 0.4037
Hierarchical method [15] 0.3489
Inter-related method [7] 0.3696

Our method (KL = 256) 0.3866
Our method (KL = 512) 0.4031
Our method (KL = 1024) 0.4159

Table 3. Inter-concept correlation measurement methods comparison on ImageNet100
dataset

Correlation Measurement
Dictionary Size (KL)
256 512 1024

WordNet similarity [19] 0.3720 0.3833 0.3863
NGD [3] 0.3693 0.3836 0.3906
Our method 0.3866 0.4031 0.4159

methods which used WordNet distance and Google distance respectively. In our
experiment, we used the method in [19] to compute WordNet distance between
two object classes or image concepts, and the software tool provided by [20]
(based on WordNet 3.0) was employed. Normalized Google distance (NGD) [3]
is computed by incorporating the results of Google search engine to measure the
inter-concept similarity between two object classes or image concepts. For given
two image concept x and y, NGD for x and y is defined as follows

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

logN −min{log f(x), log f(y)} (8)

where NGD(x, y) represents the normalized Google distance between the image
concepts x and y. f(x), f(y) and f(x, y) denotes the number of web pages con-
taining x, y, both x and y, separately reported by Google. N is the total num-
ber of web pages indexed by Google. The experimental results of the average
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classification accuracy for different inter-concept correlation measurement ap-
proaches are shown in Table 3. One can observe that our inter-concept correla-
tion measurement approach performs better than others.

7 Conclusions and Future Work

In this paper, a new method is developed for constructing the hierarchical vi-
sual tree automatically, where the inter-concept visual correlations are precisely
characterized directly in the visual feature space. Based on the hierarchical vi-
sual tree, we propose a group-based approach for leveraging the inter-concept
visual correlations to learn multi-scale dictionaries for discriminative image rep-
resentation. In addition, a novel structural learning approach is also developed
to effectively train inter-related classifiers for image classification. Our experi-
ments over a large number of object classes and image concepts have approved
the effectiveness of our algorithm for image classification task.

In the future, we will focus on how to determine the proper number of levels
and groups at each level (i.e., the structure of the hierarchical visual tree). We
believe that the more proper structure can provide better performance.
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