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Abstract. Subspace learning is most traditional and important in multimedia 
analysis. Numerous researches have focused on how to introduce machine 
learning and statistical methods to multimedia subspace learning for semantic 
understanding and denoising, and have gained remarkable achievement in 
different multimedia applications, such as content-based retrieval, data 
clustering, face recognition, etc. However, most of these researches are based 
on multimedia data of single modality. Nowadays, with the rapid development 
of multimedia and information technology, multimedia data of different 
modalities often coexist, and the presence of one has a complementary effect on 
the other to some extent. Because different multimedia data are usually 
represented with heterogeneous low-level features and there exists the well-
known semantic gap, it is interesting and challenging to learn multimedia 
semantics by multi-feature subspace learning of different modalities. In this 
paper, we analyze sparse canonical correlation between feature matrices of 
different multimedia data, construct an isomorphic sparse multi-feature 
subspace; moreover, we propose subspace optimization strategy with 
correlation fusion, which explores both geometrical-based content correlation 
and graph-based semantic correlation. Our algorithm has been applied to 
content-based multimodal retrieval and data classification. Comprehensive 
experiments have demonstrated the superiority of our method over several 
existing algorithms. 
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1 Introduction 

Subspace learning plays an important role in many machine learning tasks and 
applications, such as CBMR (Content-based Multimedia Retrieval) [1][2][3][7][8], 
data clustering [4][5], face recognition [14][15] and cartoon generation [6][13]. Most 
of these researches focus on how to analyze low-level multimedia features and find a 
low-dimensional semantic subspace with minimum noise and underlying semantic 
correlation discovered. So far considerable subspace learning methods are based on 
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multimedia data of single modality, such as image subspace learning for retrieval and 
recognition [19][20][21][22][29], audio subspace learning for semantic understanding 
[23], etc. 

Recently, with the rapid development of multimedia and information technology, 
multimedia data of different modalities usually coexist and the presence of one has a 
complementary effect on the other to some extent [16]. Some researches have shown 
that underlying correlations among different modalities help improve the efficiency of 
multimedia analysis [1][9][10][17][18][24]. It is important and interesting to utilize 
multi-feature correlation mining of different modalities in the process of subspace 
learning. However, most of traditional subspace learning methods, which are based on 
multimedia data of single modality, are hardly usable for different modalities.  

In this paper we propose a novel multi-feature subspace learning method via sparse 
correlation detection and fusion for multimedia analysis. Our method is formulated 
based on two typical modalities, i.e., image and audio. First, we analyze visual-
auditory multi-feature correlation and build the Sparse Multi-feature Subspace (SMFS) 
based on sparse canonical correlation analysis. Secondly, we further explore 
underlying content and semantic correlation in the SMFS: the content correlation is 
explored with geometrical motivated local linear regression model, and semantic 
correlation is analyzed with graph-based nonlinear learning to bridge the semantic gap. 
Thirdly, both of above content and semantic learning results are fused into an objective 
function to calculate a global optimized solution. The efficiency and superiority of our 
approach is tested and demonstrated with several multimedia applications: content-
based multimodal retrieval and data classification. 

The rest of this paper is organized as follows. Section 2 describes sparse multi-
feature subspace construction for image and audio data. Section 3 gives details of the 
subspace optimization with correlation fusion. Section 4 presents experimental results 
and comparisons. Concluding remarks are in section 5. 

2 Sparse Multi-feature Subspace 

Since multimedia data of different modalities are initially represented with 
heterogeneous low-level features, in this section we construct a Sparse Multi-feature 
Subspace (SMFS) where different multimedia data all reside and canonical correlation 
among original features are furthest preserved.  

In our previous work, Canonical Correlation Analysis (CCA) was used to find a 
map to the isomorphic subspace [10]. CCA is a classical method to explore statistical 
correlation between two sets of variables. The underlying ideas of CCA are as follows: 
it looks for two basis vectors for two sets of variables such that the correlation between 
the projections onto the basis vectors is mutually maximized. However, when the 
dimension of low-level features is very high it is important to preserve meaningful 
correlations instead of all of them. Therefore, in this section, we focus on how to find 
sparse mapping vectors during feature correlation analysis. In the following description 
our method is formulated based on two typical modalities: image and audio. 

Formally, let 1n pX R ×∈  denote image feature matrix, and 2n pY R ×∈  denote audio 
feature matrix. We assume that the columns of X  and Y  have been standardized to 
have mean zero and standard deviation one. CCA calculates linear combinations of the 
variables in X  and Y   that are maximally correlated with each other.  
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Let 1pu R∈  and 2pv R∈  denote canonical vectors which maximize the correlation 
between Xu  and Yv , CCA is to solve the following extremum problem: 

max  

. .  1,   1

T T

T T T T

u X Yv

s t u X Xu v Y Yv= =  
  (1) 

The main challenging issue of CCA is that it is not appropriate when 1 2,p p n≈  or 
1 2,p p n . Then Sparse Canonical Correlation Analysis (SCCA) was proposed to 

address the problem [12], and its objective function takes the following form: 

1 1 2 2
2 2

max  

. .  1,  1,  ( ) ,  ( )

T Tu X Yv

s t u v P u c P v c≤ ≤ ≤ ≤
 

(2) 

where 1 2,P P  are convex and non-smooth sparsity-inducing penalty functions that 
yield sparse ,u v . And the constraints 

2 2
1,  1u v≤ ≤  are convex relaxations of the 

quality constraints. Paper [12] studied two specific forms of the penalty 1P , 2P  with 
structure of L1-norm penalty and the chain-structured fused lasso penalty, which 
resulted in unique canonical vectors, even when 1 2,p p n . With u  fixed, the 
criterion is convex in v , and with v  fixed, it is convex in u . 

To solve image canonical vector u  and audio canonical vector v , the objective 
function is used the same as function (2). Here canonical vectors u  and v  define a 
linear combination of visual features in X  that is correlated with a linear combination 
of audio features in Y . Elements of u  and that equal zero indicate features in X  
and Y  that are not involved in the linear combinations. In this paper we impose 
sparsity on v . For the ease of illustration, we assume:  

1
1

( )P u u=
 

(3) 

2 1( ) j j jj j
P v v v v −= + −   

(4) 

where 1( )P u  is an 1L  penalty and 2( )P v  is a fused lasso penalty. To substitute Eq.(3) 
and Eq.(4) for 1( )P u  and 2( )P v  in the objective function (2), the optimized sparse 
canonical vectors u  and v  can be calculated with the algorithm proposed in paper 
[12]. Accordingly, image feature matrix and audio feature matrix can be mapped to the 
Sparse Multi-feature Subspace (SMFS). 

3 Subspace Optimization by Correlation Fusion 

Although image and audio samples are represented with isomorphic dimensionality in 
the SMFS where sparse canonical correlation is preserved, the SMFS isn’t well 
consistent with high-level semantics because of the well-known semantic gap. Thus, in 
this section, we propose subspace optimization strategy by correlation fusion, which 
explores content correlation with local linear regression and utilizes semantic 
correlation based on a weighted k-nearest neighbor graph. Moreover, both content and 
semantic correlation we learned are fused into an overall objective function; the 
optimum solution of this function is therefore the Optimized Sparse Multi-feature 
Subspace (OSMFS) 
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In the following descriptions, , ( [1,2 ])iz i n∈ denote a sample (which could be image 

or audio) in the SMFS, and , ( [1, 2 ])im i n∈  denote the corresponding coordinate vector 

in the OSMFS after optimization, 1 2 2{ , ,..., }nZ z z z=   denote all of the samples in the 
SMFS. 

3.1 Content Correlation Analysis with Local Linear Regression 

To predict the value of im , we use a local linear regression model of T
i ii zψ ξ+  

where iψ  is a matrix and iξ  is a vector of bias term. The definition of local means 

k-nearest neighbors of iz  (including iz  itself), denoted as ( )k
iz . The regression 

parameters iψ  and iξ  are common for all the samples in ( )k
iz . Based on the 

local linear regression model, we define a prediction error for each iz  as: 

2
( ) T

i i i ii F
z z mσ ψ ξ= + −

 
(5) 

Then, by summing up all prediction errors for samples in ( )k
iz  we obtain the 

local prediction error as below: 

2 2

( )

( )
k

j i

T
j i j iL i FF

z z

z mσ ψ ξ α ψ
∈

= + − +
  

(6) 

where the second term is added as a regularizer to avoid overfitting. We minimize 
the local error and get the objective function 

2 2

, ,
arg min ( )T

i i i

T
i i i i ii FFm

Z M
ψ ξ

ψ ξ ξ α ψ+ − +  
(7) 

where 1 2[ , , ,..., ]k
i i i i iZ z z z z=  is a feature matrix of samples in ( )k

iz , and 
1 2[ , , ,..., ]k

i i i i iM m m m m=  is a matrix of the coordinate vectors for the samples in 

( )k
iz .  It is easy to find that the global projection error is to sum (7) on all the 

samples in training set. Therefore the objective function can be rewritten as: 

2 2

1

arg min ( )T
n

T
i i i i ii FF

i

Z Mψ ξ ξ α ψ
=

+ − +
 

(8) 

By setting the derivatives to be zero with respect to iψ  and iξ , we have: 

1
1 ( 1) ( 1)

1 11
1 1

( )
, ( 1)

( 1) ( )

T
i i i i i

T k k
k kT

i i i ik K

Z HZ I Z HM
H I k

k M Z

ψ α
θ θ

ξ θ ψ θ

−
− + × +

+ +−
+ +

 = + = − + ∈
= + −

  (9) 



602 H. Zhang and Y. Zhang 

 

where 1
1

k
kθ +

+ ∈  is a column vector with all ones, and H is the centering 

matrix. With (8)(9), the objective function becomes: 

1

arg min
i

n
T

i i i
M

i

M L M
=
  (10) 

1 ( 1) ( )   ,    T T n k
i i i i i iL H HZ Z HZ I Z H Lα − × += − + ∈  

(11) 

We define i iM MS=  where matrix M  consists of all coordinate vectors in the 

OSMFS and ( 1)n k
iS × +∈  is a selecting matrix made up of 1 and 0. To be specific, 

the cell value of ( , ) 1iS r t =  when both rz  and tz  are in the k-nearest neighbor set 

of ( )k
iz , and otherwise ( , ) 0iS r t = . Therefore, the objective function can finally 

be written as: 

arg min ( )T

M
tr MLM  (12) 

where 

1

1 2 1 2[ , ,..., ]       ... [ , ,..., ]

            

T
n n

n

L

L S S S S S S

L

 
 =  
  

 is name as content correlation 

Laplacian matrix.  

3.2 Semantic Correlation Analysis Based on Graph Model 

When the query example r is inside training set, the system finds its k-nearest 
neighbors in the MSS, ranks them by distance in ascending order, and returns to the 
user as query results. On the other hand, when the query example r is out of training set 
it needs to be mapped into the MS, then the retrieval process is the same as before. 
Moreover, we use weighted k-nearest neighbor graph to explore underlying semantic 
correlation. Since it is difficult to find large amount of labeled image and audio 
samples for supervised analysis, we utilize both labeled and unlabeled datasets for 
semantic exploration. Formally, let ( , )sG V E  denote a weighted k-nearest neighbor 

graph with its vertex set V being the set of Z , and the corresponding semantic weight 
matrix [ ]ijA a=  is defined by 

1,    ( )  ( )

0,   

k k
i j j i

ij
if z z or z z

a
otherwise

 ∈ ∈
= 


 

 

(13) 

where ( )k
jz  denotes the set of k-nearest neighbors of jz . Note that: if iz  and 

jz  are both labeled and belong to the same class then definitely there is 
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( ),  ( )k k
i j j iz z z z∈ ∈  ; if one of them is unlabeled or both of them are unlabeled we 

use the Euclidean distance in the SMFS to calculate whether they are k-nearest 
neighbors to each other. The normalized semantic correlation Laplacian matrix is then 
defined as 

1/ 2 1/ 2
sL I B AB−= −  

(14) 

where I  is a n n×  identity matrix and B  is an n n×  diagonal matrix with its i-th 
diagonal element being the sum of the i-th row of A . Then, similar to above 
subsection, we have the following objective function according to graph-based 
semantic learning result of sL : 

arg min ( )
T

T
s

M M I
tr ML M

=  
(15) 

So far, we obtain two objective functions (12) and (15). Therefore, the overall 
objective function to calculate a good map to the OSMFS is defined as: 

arg min ( ( ) )
T

T
s

M M I
tr M L L M

=
+

 
(16) 

Therefore, the optimum solution of (16) can be obtained by eigen-decomposition of 
( )sL L+ . In summary, the construction of SMFS and its optimization via content and 

semantic correlation fusion are stated below: 

Step 1. Extract low-level features of images and audio clips, and formulate  visual feature 
matrix 1n pX R ×∈  and auditory feature matrix 2n pY R ×∈ ; 

Step 2. Analyze sparse canonical correlation between matrices X  and Y , compute SMFS 
where the correlation learned is furthest preserved, and map all samples into the 
SMFS; 

Step 3. Compute k-nearest neighbors ( )k
iz  for each sample iz  in the SMFS, calculate 

sub-matrices  , ( [1, ])i iS L i n∈  in (11), then get content correlation Laplacian matrix 

L  in (12); 

Step 4. Construct the k-nearest neighbor graph ( , )sG V E  with labeled and unlabeled data, 

calculate corresponding semantic weight matrix [ ]ijA a=  in (13), then get the 

normalized semantic correlation Laplacian matrix sL  in (14); 

Step 5. Compute 1 2[ , ,... ]cV v v v= in which 1 2, ,... cv v v  are eigenvectors obtained from c  
minimum non-zero eigenvalues of (16), then for sample iz  its coordinate vector in 

the OSMFS is calculated by 1 2( , ,..., )c
i i i im v v v=  where j

iv  is the ith entry of 

eigenvector jv . 

Fig. 1. The construction and optimization of SMFS 
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4 Experiments 

4.1 Dataset 

To evaluate the effectiveness of the proposed approach, we experimented with an 
image-audio dataset consisting of 12 semantic categories, including dog, car, bird, 
explosion, tiger, train, dolphin, drum, piano, plane, zither, lightning. There are 2000 
images and 1200 audio clips in total, which are divided equally into the 20 categories. 
85% of the image-audio dataset are used as labeled data and the rest 15% are used as 
unlabeled. We test our proposed algorithm with content-based multimodal retrieval and 
data classification. 

The extracted visual features include Color Histogram, CCV, and Tamura Texture. 
Auditory features are made up of Centroid, Rolloff, Spectral Flux and Root Mean 
Square. Since audio is a kind of time series data, the dimensionalities of combined 
auditory feature vectors are inconsistent. We require collected audio clips not exceed 7 
seconds and employ Fuzzy Clustering [10] on auditory features in preprocessing to get 
index vectors.  

4.2 Performance Comparison 

Content-based multimodal retrieval is performed based on the Euclidean distance in 
the subspace. In our experiments, if a returned result and the query example are in the 
same semantic category, it is regarded as a correct result. Precision is defined as the 
percentage of correctly retrieved samples in the top-k-returned results. 

To evaluate the efficiency of our method, k-nearest neighbors, which could be 
image and audio, are calculated for each query example according to the Euclidean 
distance in the SMFS and in the OSMFS respectively. The SMFS is obtained with 
SCCA which explores original multi-feature canonical correlation, while the OSMFS 
is obtained with further optimization of the SMFS. Therefore, our experiments 
compare the retrieval performance before and after subspace optimization, together 
with the correlation ranking algorithm in [11]. In all the following figures, the 
precision is the averaged precision values from all the query samples.  

Figure 2 shows the comparison results. From Figure 2 we have the following 
observations: after subspace optimization the retrieval performance is improved, and 
the SMFS slightly outperform the correlation ranking method in [11]. The 
phenomenon is attributed to the following reasons:  

(1) Sparse correlation is explored from a global perspective and preserved in the 
SMFS, while in the OSMFS the knowledge learned from both content correlation 
analysis and semantic correlation analysis further helps bridge the semantics gap.  

(2) Paper [11] estimated multimodal similarity based on correlation ranking in the 
text-image-audio graph, in which text data worked as a bridge to propagate ranking 
scores among image and audio; when text data is not included the correlation ranking 
method in [11] doesn’t work well, while our multi-feature subspace learning method 
are based on intrinsic sparse canonical correlation learned from low-level visual and 
auditory features. 
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Fig. 2. Comparison of before and after subspace optimization and the correlation ranking 
algorithm in [11] for multimodal retrieval 

To further evaluate the efficiency of our algorithm, data classification is performed 
in the OSMFS. We use images and audio clips from all 12 categories for performance 
evaluation respectively. Table1 shows ACC (Accuracy) and AUC(Area Under Curve) 
results for image classification and audio classification. 

Table 1. ACC & AUC performance for image clustering and audio clustering 

 
Image clustering Audio clustering 

ACC AUC ACC AUC 
Dog 0.412 0.512 0.397 0.503 
Car 0.426 0.533 0.422 0.522 
Bird 0.453 0.549 0.389 0.512 
Explosio

n 
0.445 0.538 0.431 0.534 

Tiger  0.493 0.563 0.418 0.518 

Train 0.408 0.522 0.392 0.508 

Dolphin 0.447 0.557 0.442 0.537 

Drum 0.398 0.515 0.429 0.521 

Piano 0.456 0.573 0.425 0.528 

Plane 0.461 0.562 0.413 0.514 

Zither 0.458 0.519 0.399 0.509 

Lightnin
g 

0.418 0.487 0.408 0.503 
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In our experiments KNN (k-nearest neighbor) method is used to execute 
classification process on image and audio data located in the OSMFS space. We 
observe that our algorithm works well on the whole. This demonstrates that the 
OSMFS space learns underlying correlation among image and audio data, and is 
basically in accordance with high-level semantics. 

5 Conclusions 

Different from most existing subspace learning methods which focus on single 
modality feature analysis and denoising, this paper proposes a novel multi-feature 
subspace learning method, which not only maps multimedia data of different 
modalities into the sparse multi-feature subspace where original canonical correlation 
is furthest preserved, but also optimizes the subspace with correlation fusion which 
explores content correlation with local linear regression and utilizes semantic 
correlation based on a weighted k-nearest neighbor graph. The experimental results are 
promising and advantageous; also show that our approach is effective on several 
multimedia applications. To the best of our knowledge, it is hard to find a public 
multimodal database as a benchmark. The collected image-audio database is relatively 
small. Therefore, future work includes further study on large-scale multimodal data 
analysis and semantic understanding. 
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