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Abstract. In this paper, we describe a method named visibility-aware part mod-
el for facial point detection in static images based on the pictorial structure 
model. A binary part visibility term is introduced to describe the occlusion state 
of each part, which can determine which facial points are occluded. The intro-
duction of the term enhances the representation power of the model especially 
for the occlusions. The combining of the structure constrains and the powerful 
appearance model makes the model more robust and reduces the possibility of 
model crashing in some extent. Experimental results show that our proposed 
model can detect facial feature points accurately and robustly under occlusions. 

1 Introduction 

The facial feature points are the prominent landmarks around facial component such 
as eyebrows, eyes, nose, mouth and face contour. Facial feature point detection plays 
foundational roles in many face analysis tasks, such as face recognition, pose estima-
tion and 3D face reconstruction, etc. In these tasks, Accurate and efficient facial fea-
ture point detection is desirable to make automated face analysis systems more  
effective.  

Existing methods for facial feature point detection can be categorized into three 
categories: texture-based, shape-based and methods combining texture and shape.  

Texture-based methods model the local texture around a given feature point, for 
example the pixel values in a small region around an eye corner. Typical texture-
based methods include Eigenfaces [1], Elastic Bunch Graph Matching (EBGM) [2], 
and Local Feature Analysis (LFA) [3], etc. Shape-based methods regard all facial 
feature points as an holistic shape, which is learned from a set of labeled faces, and 
try to find the proper shape for any known face. Typical shape-based methods include 
Active Shape Models (ASM) [4], Active Appearance Models (AAM) [5] and 3D 
Morpharable Model [6]. The researchers also proposed methods combining texture 
and shape information. For example, [7] uses principal component analysis (PCA) on 
the grey level images combined with ASM, [8] extends the AAM with Constrained 
Local Models, and [9] applies a boosting algorithm to determine facial feature point 
candidates for each pixel in an input image and then uses a shape model as a filter to 
select the most probable position of five points. 
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Fig. 1. Illustration of typical occlusion conditions (images from the LFW database [10]) 

Overall, most of the existing methods are only feasible under conditions without 
occlusion, and few previous works have reported to be able to robustly handle large 
occlusions such as glasses, beards, and hair which partially cover the eyes or the 
mouth. As illustrated in Figure 1, occlusion is a common phenomenon in the real 
world. However, it is very challenging for facial feature point detection, and makes 
many face processing tasks based on feature point detection cumbersome, such as 
face recognition. On one hand, even the most sophisticated feature point detection 
model will crash under the condition of partial occlusions. Consequently the points 
without occlusion cannot be precisely detected, which seriously affects the robustness 
of the detection model. On the other hand, assuming the points without occlusion are 
detected accurately, location prediction of the occluded points is also a tough prob-
lem, although it is usually useful to many face processing tasks. Given these issues, 
accurate and efficient detection of facial feature points under partial occlusions  
remains challenging.  

Pictorial structure model is an influential approach in object recognition, which de-
composes the appearance of an object into local part templates, together with  
geometric constraints on pairs of parts [11]. Inspired by the pictorial structure mod-
el, we introduce a novel representation for modelling part-occluded faces, Visibility-
aware Part Model (VPM), to address the occlusion problem. Unlike traditional models 
for object recognition using parts parameterized solely by location, we introduce a 
visibility state for each part to describe the occlusion state of the part, which can de-
termine which of the facial points are occluded. Firstly, the introduction of the visibil-
ity state makes the appearance model more powerful to represent the occlusions, 
which allows our proposed model to predict the occluded points more reliable. Se-
condly, since our model is motivated by the pictorial structure, in our model the fea-
ture point is defined to be a spatial relation between two facial feature points rather 
than being a facial feature point itself. The model combining of the structural con-
strain and the appearance model of powerful representation ability will automatically 
produce corrected point configurations that preserve well-estimated points.  Exten-
sive experiments on facial point detection show that the proposed model can localize 
facial feature points accurately even under severe occlusions. 
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The paper is structured as follows. Section 2 proposes our visibility-aware part 
model. Section 3 presents the algorithm for learning model parameters and the me-
thod for fitting the learned model to test images. Section 4 discusses the experimental 
results. The paper concludes in Section 5. 

2 Model 

In the Pictorial Structure an object is first decomposed into parts and then the best part 
candidates are searched subject to some spatial constraints such that the likelihood of 
generating the concerned image is maximized. The pictorial structure model can 
usually be expressed as an N -node relational but undirected graph ( , )G Pt E= , 

where 1 2{ , ,..., }NPt Pt Pt Pt=  corresponds to the N parts and the edges 

{( , ), }i jE Pt Pt i j= ≠  specify which pairs of parts have consistent relations. Let θ 

to be a set of parameters that define an object model, I  denote an image, and 

1 2( , ,..., )NL l l l=  denote a configuration of the object, where each il  specifies the 

location of each part iPt  on the image plane. To infer the locations of the parts of an 

object from this model, we can search for the maximum a posterior ( | , )p L I θ , i.e., 

the probability that a face configuration is L  given the model θ  and an image I . 
Using Bayes rule, the posterior can be written as  

 ( | , ) ( | , ) ( | )P L I p I L p Lθ θ θ∝  (1) 

where ( | , )p I L θ is the generative model of the appearance and ( | )p L θ  meas-

ures the prior probability that a face appears at the location L . In general, the model 

parameter is denoted by ( , )u cθ = , where u  expresses the appearance while c  

expresses structural constraints on edges. This provides the opportunity to predict the 
location of occluded points by reconstructing new model. Many objects, including 
faces and people can be represented by such multi-part models in its simplicity and 
generality, thus, the pictorial structure formulation is appealing in many object recog-
nition fields [12-15]. 

Specially in our facial feature point detection task, we model every facial feature 

point as a part iPt . For the purpose of precise detection of feature points under oc-

clusions, we introduce a binary visibility state term 1 2{ , , , ,}Ns s s s=  , 

{0,1}is ∈  to present whether the part is occluded or not, where 1is =  denotes the 

part is visible while 0is =  denotes the part is not visible or occluded. Thus, the 

posterior can be written as ( , | , )P L s I θ  in our model,  

 ( , | , ) ( | , , ) ( , | )P L s I p I L s p L sθ θ θ∝  (2) 
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Our visibility-aware part model is parameterized by ( , )u cθ = , where

1 2{ , , , }Nu u u u∈   are appearance parameters, and { | ( , ) }ij i jc c Pt Pt E= ∈  

are connection parameters which denote the spatial relationships between parts. Ob-
viously, the first term in Eq. (2) depends only on the appearance of the parts, while 
the second term depends only on the connection parameters. Assuming that the parts 
are statistically independent for appearance, we have 

 
1

( | , , ) ( | , , ) ( | , , )
N

i i i
i

p I L s p I L s u p I l s uθ
=

= = ∏  (3) 

The appearance of each part can be modelled by unimodal Gaussian distribution

( )( )( | , ) α , ,i i i iip l lI u μ∝ Σ , where ( , )i i iu μ= Σ  and ( )α il  is a high-

dimensional feature vector of an image patch centered at the position il  in [13], 

which collects all the responses of a set of filters of different scales at the point il . 

Then we have 

( )( ) ( ) ( )
1

' '

1

( α , , 1 (α , ,| ), , )( ) i

NN

i i i i i i i i
i

i i
i

p I l s u s l s lμ μ
= =

⋅= Σ + − ⋅ Σ∏∏    (4) 

And in our model, ' '( , , , )i i i i iu μ μ= Σ Σ , ( , )i iμ Σ  is the appearance parameter 

of unoccluded point and 
' '( , )i iμ Σ  denotes the appearance parameter of point under 

occluded state. The value of is  determines which distribution is used as the detecting 

model. The appearance parameters 
' '( , )i iμ Σ  can be learned from the information 

provided by occluded example images. Obviously, the introduction of is  enhances 

the representation ability of the appearance model and makes the model more robust 
to occlusions. 

With a similar independent assumption on the edge constraints between compo-
nents, we have the structure model  

 
( , )

( , | ) ( , | ) ( , , , | )
i j

i j i j ij
Pt Pt E

p L s p L s c p l l s s cθ
∈

= = ∏  (5) 

Similarly, the spatial relationships between pairs of parts can also be  

modelled by Gaussian distribution ( )( , | ) , ,i j ijj ij ji ip l l lc l μ∝ Σ−  [13], where 

( ),ij ijijc μ= Σ . The spatial relationships between pairs of parts will not change no 

matter if the points are occluded or not. Therefore, the structure model has nothing 

relationship with is  and js , and can then be rewritten as 
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Plugging Eq. (3), Eq. (4), Eq. (5) and Eq. (6) into Eq. (2), we get the global  
objective function 
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 (7) 

Facial feature points are frequently occluded by beard, hair, glasses and other ob-
jects such as tennis ball. Since occlusions often do not happen at random, the  
locations of occluded points (parts) may have consistent appearance. We model oc-

clusions by learning separate appearance parameters ' '( , )i iμ Σ  for occluded points. 

3 Learning and Inference 

3.1 Learning Model Parameters 

Suppose we have a set of M  example images 1 2{ , , , }MI I I  including images 

with various face-partial occlusions and also images without any occlusion on the 

face. The corresponding feature point locations 1 2{ , , , }ML L L  and visibility 

states 1 2{ , , , }Ms s s  are also labeled for these training images. By definition, the 

maximum likelihood estimate of θ  is the value 
*θ  that maximizes 

1 1 1( , , , , , | , , )M M Mp L L s s I I θ   . Assuming each example is generated in-

dependently, it can be rewritten as 

 

*

1

1 1

arg max ( , | , )

arg max ( | , , ) ( , | )

M
k k k

k

M M
k k k k k

k k

p L s I

p I L s p L s

θ

θ

θ θ

θ θ

=

= =

=

=

∏
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 (8) 
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The first term in this equation depends only on the appearance of the parts, while 
the second term depends only on the connection parameters. As a consequence, we 
can use this framework as long as there is a maximum likelihood (ML) estimation 
procedure for learning the model parameters for a single part from training images. 

For the appearance parameters u , we have 

 *

1

arg max ( | , , )
M

k k k

u k

u p I L s u
=

= ∏  (9) 

From Eq. (3) and Eq. (4), we get 
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 (10) 

This is exactly the ML estimation of the appearance parameters for part iPt , giv-

en independent examples 1 1 1 2 2 2{( , , ), ( , , ), , ( , , )}M M M
i i i i i iI l s I l s I l s . Similarly 

for the connection parameters c , we have 

 *

1

arg max ( , | )
M

k k

c k

c p L s c
=

= ∏  (11) 

From Eq. (5) and Eq. (6), we get 

 ( )*

, 1

arg max ( , , , | ) arg max , ,
ij ijij

k k k k k k
ij i j i j ij i j ij ij

c

M

k

c p l l s s c l l
μ

μ
Σ =

= −= Σ∏  (12) 

This is the ML estimation for the joint distribution of il  and jl , given indepen-

dent training examples 1 1 1 2 2 2{( , , ), ( , , ), , ( , , )}M M M
i i i i i iI l s I l s I l s . Learning our 

model involves picking labeled landmarks on a number of human face. Then using 
the ML estimation procedure, the appearance models for each part and spatial rela-
tionships between parts are automatically estimated from these training examples.  

3.2 Inference 

Inference corresponds to maximizing ( | , )p L I θ  from Eq. (6) given learned para-

meters 
* *( , )u cθ = . Simply enumerate all locations and all values of s  (0 or 1), 

and find the best configuration of parts. 
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N
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L p L I
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θ
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=

= − + − 
 (13) 

Where log ( | , , )i i ip I l s u−  is a match cost measuring how well part iPt  

matches the image data at location il , and log ( , , , | )i j i j ijp l l s s c−  is a deforma-

tion cost measuring how well the relative locations of the part iPt  and jPt  agree 

with the deformable model. In this work, we use a tree structure to construct the mod-
el. Therefore, the dynamic programming (DP) algorithm [13] can be adopted to find a 
location L  with maximum posterior probability, which is used to detect facial fea-
ture points in novel images. We omit the message passing equations for lack of space. 

4 Experiments 

We firstly test how well the database copes with occlusions. Then, we perform a 
benchmark comparison of our proposed method with the existing state of the art. 

The images are selected from LFW [10] and CIGIT (Chongqing Institute for Green 
and Intelligent Technology) databases to form a new database including images with-
out occlusion and images with many occlusions, such as the mouth area occluded by 
beards and the eye areas occluded by glasses and hair, etc. Then this database is taken 
as the training set of our proposed algorithm. The CIGIT dataset is being collected by 
our team as a continual project, whose goal is to simulate the partially-controlled 
surveillance scenarios, including 91 poses, 6 facial movements, 4 kinds of occlusions, 
and 5 sets of combined indoor, controlled and outdoor, uncontrolled lighting. The 
LFW and CIGIT dataset not only have many occlusions, but also cover almost all the 
complex conditions in the real world. Thus, we select images from these two datasets 
to train our model. 

To evaluate the precision of feature point detection, we adopt the most popular 

measure 17em  proposed by [8], which is a mean error over all internal points (17 

points). And to compare our work with the current state of the art, we evaluated our 
method on the BioID database [16] which is one of the benchmark databases used by 
most facial point detection works. We compare our approach with the traditional pic-
torial structure model (PSM) [13], and the constrained local model (CLM) [8].  

Figure 2 plots the cumulative error distribution curves of the compared methods, 

where the horizontal axis is the normalized Euclidean distance ( 17em ), while the ver-

tical axis is the cumulative localization score, showing the percentage of images that 
have been successfully processed corresponding to the detection error. As expected, 
our proposed method outperforms the traditional PSM and CLM. 
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Fig. 2. Comparing the cumulative error distribution curves 

Figure 3, Figure 4 and Figure 5 illustrate detection results on images with partially 
occluded faces. As shown in Figure 3, Figure 4, and Figure 5, the detection algorithm 
based on our model automatically handles partial occlusion in a robust way. 

 

Fig. 3. Detection results on LFW database 

 

Fig. 4. Detection results on BioID database 
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Fig. 5. Detection results on Yamaha database 

To make this clear, we tabulate the percentage of successful localization subject to 

17 0.05em <  and 17 0.1em <  in Table 1. It can be observed that the successful 

detection rate is promoted from at most 61.79% to 89.5% at 17 0.05em < , and our 

algorithm achieves the best correct localization rate of 98.15% at 17 0.1em < .  Ob-

viously, our method provides substantial performance compared to other methods.  

Table 1. Percentages of successful detection to 17 0.05em <  and 17 0.1em < , 

respectively 

Method 17 0.05em <  17 0.1em <  

Traditional PSM 54.36% 92.91% 
CLM 43.33% 90.89% 

EASM 61.79% 97.32% 
MKL-SVM 45.26% 92.5% 
Our method 89.5% 98.15% 

5 Conclusion 

Aiming at resolving the problem of occlusion, we presented a model for facial point 
detection in this paper, which we refer to as the visibility-aware part model. Instead of 
modelling an object using parts parameterized solely by location, we introduce a “vi-
sibility” for each part to describe the occlusion state of the part. The introduction of 
the “visibility” provides us the accurate detection of facial feature points under occlu-
sion. We show that the proposed visibility-aware part model can obtain better facial 
feature point detection results under partial occlusion. We also show that our pro-
posed method outperforms the traditional PSM and CLM method when applied to the 
BioID data sets. 
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