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    Abstract     Therapeutic options for various lung diseases, especially lung cancer, 
continue to expand with the development of novel therapeutic strategies. RNA inter-
ference (RNAi)-based approaches provide a promising modality for the treatment of 
lung diseases. One of the greatest challenges in RNAi-based therapy continues to 
be the method for delivering the therapeutic small interfering RNAs (siRNAs) and 
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microRNAs (miRNAs) to the target cells. The advance of pulmonary delivery systems 
into the clinic illustrates the notion that RNAi will be a valuable modality for the 
treatment of lung diseases. Currently, the development of miRNA-based therapies 
for lung cancer is rapidly advancing with the aid of new RNAi technologies. Given 
the important role of miRNAs in lung carcinogenesis, increasing effort is being 
dedicated to the research and development of miRNA-based therapies, including the 
restoration of tumor suppressive miRNA function and the inhibition of oncogenic 
miRNAs. In this chapter, we discuss the advantages of a pulmonary drug delivery 
system and the strategies for miRNA-based treatment of lung cancer.  

  Keywords     RNA interference   •   Small interfering RNA   •   MicroRNA   •   Lung cancer    
  Pulmonary delivery  

1         Introduction 

 Lung cancer is the leading cause of cancer mortality worldwide. Lung cancer can 
be classifi ed into two main subtypes: non-small-cell lung cancer (NSCLC) and 
small- cell lung cancer (SCLC). Numerous differences are found between these two 
subtypes, including histological type, biological behavior, prevalence, prognosis 
and response to therapy. NSCLC accounts for more than 80 % of all lung cancer 
cases. Only a small percentage of patients with NSCLC present with early stage 
disease. In this circumstance, surgery remains the best therapeutic option for these 
patients. Approximately 70 % of all newly diagnosed patients present with locally 
advanced or metastatic disease and require systemic chemotherapy (Ramalingam 
et al.  2011 ). However, the commonly administered chemotherapeutics provide little 
benefi t for patients with advanced stage disease and has reached a plateau in 
effi cacy with a median survival of 8–10 months. The poor prognosis is due to late 
stage disease presentation, tumor heterogeneity within histological subtypes, 
and our relatively limited understanding of tumor biology. Furthermore, the high 
frequency of drug resistance is a key contributor to the poor survival rates of lung 
cancer patients; improvements in survival rely on continued elucidation of the 
molecular mechanisms underlying lung cancer tumorigenesis and drug response. 
Acquiring knowledge through genomic medicine raises the possibility of unraveling 
the remaining mysteries of lung cancer oncogenesis and opens the door to molecular 
classifi cation and risk stratifi cation based on gene expression profi les and microRNA 
(miRNA) signatures. 

 MiRNAs are short (19–23 nucleotides in length) non-coding RNAs found in 
multiple organisms that regulate gene expression primarily by decreasing the lev-
els of their target mRNAs, through binding to specifi c target sites in the 3′ untrans-
lated regions (3′UTRs) of these mRNAs (Winter et al.  2009 ). In the human 
genome, transcripts of approximately 60 % of all mRNAs are estimated to be 
targeted by miRNAs. Accumulating evidence shows that miRNAs are grossly 
dysregulated in human cancers, including NSCLC, and may serve as oncogenes 
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or tumor suppressors (Croce  2009 ; Babashah and Soleimani  2011 ). Recent studies 
have not only shown that miRNAs are useful in lung cancer diagnosis but that 
specifi c miRNA profi les may also predict prognosis, drug response and disease 
recurrence (Yanaihara et al.  2006 ; Yu et al.  2008 ). These fi ndings suggest that 
miRNAs are a promising technology for therapeutic development. In fact, given 
the signifi cant role of miRNAs in multiple pathways governing lung carcinogen-
esis, increasing efforts are dedicated to the research and development of miRNA-
based therapies, including the restoration of tumor suppressive miRNA function 
and the inhibition of oncogenic miRNAs (Bader et al.  2010 ). 

 The critical problems impeding the development of RNAi-based therapeutics are 
effective delivery to target sites, therapeutic potency, and elimination of off-target 
effects (Boudreau et al.  2009 ). The success of miRNA-based therapeutic delivery is 
also dependent upon uncovering a delivery route that yields effi cient outcomes, is 
convenient, and promotes patient compliance. For this reason, direct administration 
of miRNA-based therapeutics to target organs is a promising approach to overcome 
the problems of systemic administration. Pulmonary delivery offers a new method 
for the treatment of various lung diseases (Fujita et al.  2013 ). We believe that delivery 
of miRNA-based therapeutics using this approach will potentially be useful in clinical 
practice. Here, we provide an overview of miRNAs as therapeutic targets in lung 
cancer and discuss the promise and limitations of pulmonary delivery strategies for 
miRNA-based therapeutics.  

2     Role of MicroRNAs in Lung Cancer 

 Lung cancer biology has traditionally focused on genomic and epigenomic deregula-
tion of protein-coding genes to identify oncogenes and tumor suppressors that are use-
ful as diagnostic and therapeutic targets. Recently, miRNAs were also shown to 
up-regulate target gene expression by either directly binding to the target mRNA or 
indirectly repressing nonsense-mediated RNA decay (Vasudevan et al.  2007 ; Bruno 
et al.  2011 ). MiRNAs play an essential role in various cellular processes, such 
as  development, proliferation and apoptosis, to ensure the cellular homeostasis of 
human cells. Alterations in miRNA expression are increasingly noted in relation to 
pathophysiological changes in cancer cells, thereby making miRNAs one of the most 
currently analyzed molecule types in cancer research. Numerous miRNAs are dysregu-
lated in lung cancers, and a single miRNA can have multiple targets that are involved 
in different oncogenic pathways. A large body of evidence reveals that the aberrant 
expression of miRNAs in cancer patients can be taken advantage of innumerous ways, 
such as for potential use as diagnostic, clinicopathological, and/or prognostic markers 
and as promising therapeutic targets in lung cancer. Aberrant miRNA expression pro-
fi les provide additional insight into the clinical application of miRNA-directed thera-
pies in lung cancer (Leidinger et al.  2011 ). Here, we focus on reviewing the known 
roles of miRNAs as regulators of cancer cell survival, drug sensitivity and tumorigen-
esis. These miRNAs hold great potential as targets in the treatment of lung cancer. 
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2.1     MiRNAs Function as Oncogenes in Lung Cancer 

 Many oncogenes important in controlling lung cancer tumorigenesis are targets of 
miRNAs. The miRNAs found in the miR-17-92 cluster (miR-17, miR-18a, miR- 
19a, miR-19b-1, miR-20a, miR-92-1) are oncogenic miRNAs (oncomiRs) that reside 
in the amplifi ed chromosomal region 13q31.3 (He et al.  2005 ). These miRNAs 
cooperate with c-Myc to accelerate tumor development and promote tumor angio-
genesis (Dews et al.  2006 ). It has been reported that the miR-17-92 cluster is over-
expressed in SCLC (Hayashita et al.  2005 ). Moreover, Ebi et al. reported that 
miR-17-92 over-expression is associated with retinoblastoma (RB) inactivation 
(Ebi et al.  2009 ). Collectively, these results suggest that this miRNA cluster may 
be a potential therapeutic target in lung cancer. 

 The miR-21 gene is located on chromosome 17 and was one of the fi rst miRNAs 
characterized as oncogenic, with its oncogenic function established in various types 
of cancers (Chan et al.  2005 ). MiR-21 has been suggested to be an independent 
negative prognostic factor for the overall survival of NSCLC patients (Markou 
et al.  2008 ). MiR-21 targets tumor suppressor genes such as programmed cell 
death 4 (PDCD4) and phosphatase and tensin homolog deleted from chromosome 
10 (PTEN) (Lu et al.  2008 ; Zhang et al.  2010 ). Furthermore, miR-21 expression is 
up- regulated by epidermal growth factor receptor (EGFR) signaling in lung cancer. 
Antisense miR-21-enhanced EGFR tyrosine kinase inhibitors induce apoptosis of 
lung cancer cells (Seike et al.  2009 ). The critical function of miR-21 in regulating 
lung cancer tumorigenesis makes it a promising target for developing miRNA-based 
therapeutics and diagnostic tools. However, because miR-21 is also dysregulated in 
various type of cancer, it appears to be a general oncomiR without tissue specifi city 
(Volinia et al.  2006 ). 

 MiR-31 is another miRNA with oncogenic properties in lung cancer. The host 
gene encoding miR-31 is located on chromosome 9. Liu et al. showed that miR-31 
functions as an oncomiR by directly repressing large tumor suppressor 2 (LATS2) 
and Protein phosphatase 2, regulatory subunit B, Alpha isoform (PPP2R2A) and 
that knockdown of miR-31 represses lung cancer cell clonal growth and  in vivo  
tumorigenicity (Liu et al.  2010 ).  

2.2     MiRNAs Function as Tumor Suppressors in Lung Cancer 

 Among the numerous miRNAs that function as tumor suppressors, the let-7 family 
is one of the most studied. Let-7 was fi rst identifi ed in  C. elegans  as a regulator of 
the timing of cell fate determination (Reinhart et al.  2000 ). In humans, the let-7 
family is a cluster of miRNAs whose encoding genes map to various chromosomal 
regions that are frequently deleted in lung cancer (Calin et al.  2004 ). Johnson et al. 
( 2007 ) showed that let-7 over-expression in the A549 cell line inhibits cell growth 
and reduces cell-cycle progression. In mouse models of lung cancer, over- expression 
of let-7g reduces tumor growth (Kumar et al.  2008 ), and let-7a inhibits tumor growth 
via suppression of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) 

Y. Fujita et al.



417

and c-Myc (He et al.  2010 ). Furthermore, reduced let-7 gene expression in NSCLC 
patients correlates with poor prognosis (Yanaihara et al.  2006 ; Takamizawa et al. 
 2004 ). The 3′ UTR of members of the RAS GTPase family such as v-Ha-ras Harvey 
rat sarcoma viral oncogene homolog (HRAS), KRAS and neuroblastoma RAS viral 
oncogene homolog (NRAS) contains multiple putative let-7 binding sites. It has 
also been revealed that let-7 miRNAs negatively regulate multiple oncogenes, 
including MYC (Kumar et al.  2007 ), high mobility group AT-hook 2 (HMGA2) 
(Lee and Dutta  2007 ), B-cell leukemia/lymphoma 2 (BCL-2) (Xiong et al.  2011 ) 
and cell cycle proto-oncogenes such as cell division cycle 25A (CDC25A), 
cyclin-dependent kinase 6 (CDK6) and cyclin D2 (Johnson et al.  2007 ). These data 
show that let-7 miRNAs act as key tumor suppressors in regulating cell survival and 
proliferation in lung cancers. 

 The miR-34 family is another important group of miRNAs that function as tumor 
suppressors in many types of cancers (Hermeking  2010 ; Wong et al.  2011 ). The 
miR-34a gene is located on chromosome 1p36.22, and miR-34b/c are expressed 
from a polycistronic transcript encoded on chromosome 11q23.1. These genes are 
in chromosomal regions associated with fragile sites of the genome that are fre-
quently altered in cancer (Calin et al.  2004 ). Structurally, miR-34 family members 
possess p53-binding sites, refl ecting their function as tumor suppressors down-
stream of the p53 pathway. MiR-34a and miR-34b/c were found to be directly regu-
lated by p53 to control apoptosis and cell cycle arrest in cancer cell lines, including 
lung cancer (Raver-Shapira et al.  2007 ; Wiggins et al.  2010 ). Subsequent studies 
demonstrated that the apoptotic function of miR-34a is mediated by the direct 
down-regulation of the expression of BCL-2 and sirtuin 1 (SIRT1) (Yamakuchi 
et al.  2008 ; Bommer et al.  2007 ). In addition, AXL (Mudduluru et al.  2011 ) and 
SNAIL1 (Kim et al.  2011 ) were identifi ed as miR-34 direct targets in lung cancer 
cells; it is plausible that miR-34 expression inhibits lung cancer cell invasion and 
migration via repression of these genes. In various solid and hematological malig-
nancies, including lung cancer, miR-34 antagonizes processes necessary for basic 
cancer cell viability as well as cancer stemness, metastasis and chemoresistance 
(Bader  2012 ). In the future, the utility of miR-34-directed therapeutics in the treat-
ment of lung cancer will expand dramatically. 

 The anti-tumor activity of miR-143 and miR-145 in lung cancer is also well char-
acterized. They are co-transcribed from a bicistronic gene cluster on chromosome 5 
(Xin et al.  2009 ). MiR-143/145 have been identifi ed as tumor suppressor in various 
types of cancer, including lung cancer. The restoration of miR-145 has been shown to 
inhibit cell growth in mouse and human lung cancer cells (Liu et al.  2009 ; Cho et al. 
 2009 ). It has also been reported that c-MYC, EGFR and nucleoside diphosphate 
linked moiety X-type motif 1 (NUDT1) are direct targets of miR-145 that regulate cell 
proliferation in lung cancer (Chen et al.  2010 ; Cho et al.  2011 ). Furthermore, miR-
145 has also been shown to inhibit lung adenocarcinoma stem- like cell proliferation 
by targeting octamer-binding transcription factor 4 (OCT4) (Feng et al.  2011 ). 
Similarly, the expression of miR-143 was down-regulated in human lung tumor 
samples compared with normal tissues (Gao et al.  2010 ; Vosa et al.  2013 ). 

 Finally, miR-192 also might serve as a promising therapeutic target for lung 
cancer treatment. Retinoblastoma 1 (RB1) is a direct target of miR-192, and 

17 Challenges and Strategies for Pulmonary Delivery…



418

over- expression of miR-192 results in decreased expression of RB1 mRNA and 
protein. Caspase-7 and poly ADP-ribose polymerase (PARP) protein were activated 
by miR-192 over-expression, suggesting that miR-192 induces cell apoptosis 
through the caspase pathway. In addition, the analysis of miRNA expression in 
clinical samples has revealed that miR-192 is signifi cantly down-regulated in lung 
cancer tissues compared with adjacent, normal lung tissues (Feng et al.  2011 ).   

3     MicroRNA-Based Therapies for Lung Cancer 

 The development of miRNA-based therapeutics represents a new strategy in cancer 
treatment and is growing rapidly with the help of new RNAi technologies. Compared 
to siRNA-based therapies, which are already in clinical trials, miRNAs are less toxic 
and have the potential to target multiple genes. As presented above, miRNAs are gener-
ally classifi ed as oncomiRs or tumor suppressors, with different therapeutic approaches 
developed for each class. Generally, the up-regulation of miRNA expression is achieved 
through administration of synthetic miRNA mimics or miRNA-expressing vectors. 
The down-regulation of miRNA expression is achieved through administration of 
 antisense nucleotides, often chemically modifi ed to ensure stability and specifi city. 
Although each approach shares similarities with other therapies, each is suffi ciently 
distinct such that miRNA-inhibitory and replacement approaches should be viewed as 
separate therapeutic modalities. In view of cancer as a heterogenic disease that cannot 
be successfully treated via single gene targeting, miRNA-based strategies may hold the 
key to therapeutic success. Table  17.1  shows a summary of miRNA-based therapeutic 
strategies for  in vivo  models of lung cancer.

3.1       MiRNA Inhibitor-Based Therapeutics 

 To reduce endogenous miRNA levels, anti-miRs are typically employed. 
Targeting miRNAs for suppression through the use of anti-miRs is possibly the 
best-studied modality to date. This approach is conceptually similar to other 

    Table 17.1    MicroRNA-based therapeutic strategies for  in vivo  models of lung cancer   

 MicroRNA  Administration 
 Modulation 
strategy  Delivery technology  Reference 

 let-7a  Intranasal  Replacement  Adenoviruses  Esquela- Kerscher 
et al. ( 2008 ) 

 let-7b  Systemic  Replacement  Neutral liposomes  Trang et al. ( 2011 ) 
 let-7g  Intratracheal  Replacement  Lentiviruses  Kumar et al. ( 2008 ) 
 miR-7  Intratumoral  Replacement  Cationic liposomes  Rai et al. ( 2011 ) 
 miR-29b  Systemic  Replacement  Cationic liposomes  Wu et al. ( 2013 ) 
 miR-34a  Intratumoral  Replacement  Neutral liposomes  Wiggins et al. ( 2010 ) 
 miR-145  Intratumoral  Replacement  Polyethyleneimines  Chiou et al. ( 2012 ) 
 miR-150  Intratumoral  Inhibition  Cationic liposomes  Li et al. ( 2012 ) 

Y. Fujita et al.



419

inhibitory therapeutics that target a single gene product, such as small molecule 
inhibitors and siRNAs. Various methods have been employed to render anti-miR 
constructs more stable  in vivo  and ensure adequate tissue availability and speci-
fi city (Krutzfeldt et al.  2005 ). Constructs can be modifi ed with a cholesterol-
conjugated 2′- O -methyl group to inhibit degradation and hence improve stability. 
Locked nucleic acid (LNA) is an  additional method of antisense oligonucleotide 
modifi cation whereby the 2′ oxygen and 4′ carbon of the nucleotide is bridged 
with methylene to form a cyclic structure. LNA is more resistant to endogenous 
nucleases, less toxic, and possess a stronger affi nity for the target nucleotide 
(Elmen et al.  2008 ; Wahlestedt et al.  2000 ). Relative to studies on miRNA mim-
ics, studies with antisense oligonucleotides have demonstrated greater effi cacy 
using naked oligonucleotides. Furthermore, the  LNA-anti- miR compound was 
well tolerated in both mice and primates, as no acute or subchronic toxicities in 
the treated animals were detected (Elmen et al.  2008 ). Recent data from the fi rst 
Phase IIa study in patients with chronic HCV infection treated with the LNA-
modifi ed anti-miR-122 revealed that this compound was well tolerated and pro-
vided continuing viral suppression (Janssen et al.  2013 ). With regard to lung 
cancer, anti-miR-150 delivered to lung tumor xenografts in mice caused tumor 
growth inhibition (Li et al.  2012 ). Although there are few reports using LNA-
anti-miR therapeutics in lung cancer mouse models, their inhibition of miRNA 
function is an important and widely used approach. Currently, miRNA sponges 
are a novel approach to miRNA inhibition, and this technology works with mul-
tiple complementary 3′-UTR mRNA sites of a specifi c miRNA (Ebert et al. 
 2007 ). MiRNA sponges specifi cally inhibit miRNAs with a complementary hep-
tameric seed; thus, a single sponge can inhibit an entire miRNA seed family. In 
fact, the development of lung metastasis in a murine breast cancer model was 
signifi cantly reduced via inhibition of the MYC driven miR-9 using a miRNA 
sponge (Ma et al.  2010 ). Furthermore, the use of miRNA sponges to inhibit miR-
31 in a breast cancer model resulted in a signifi cant induction of lung metastasis 
(Valastyan et al.  2009 ). Of potential concern is the possibility that the antagonist 
might also non- specifi cally bind to other RNAs, resulting in unwanted side 
effects. Therefore, adequate assessment of the functional effects of miRNA inhi-
bition is of key importance for miRNA inhibitor-based loss-of-function studies 
and development of miRNA therapeutics. The high potency and metabolic stabil-
ity of chemically modifi ed anti- miRs highlights the utility of anti-miRs in the 
development of novel RNAi therapeutic modalities based on lung cancer associ-
ated miRNAs.  

3.2     MiRNA Mimic-Based Therapeutics 

 Tumor suppressor miRNAs are responsible for down-regulating oncogenes and are 
primarily expressed in cancer (Croce  2009 ). In this context, miRNA replacement 
strategies have been developed to restore normal cellular expression levels via 
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administration of tumor suppressor miRNA mimics (Bader et al.  2010 ). MiRNA 
mimics are synthetic RNA duplexes designed to imitate the endogenous functions 
of miRNAs. In addition, miRNAs may be unstable as a result of rapid degradation 
by endogenous nucleases or rapid elimination through renal and hepatic metabolism 
and extraction upon systemic administration (Bader et al.  2011 ). Local administration 
of RNAi-based therapeutics to the target cells is a promising approach to overcome 
the problems of systemic administration (see next section for details). Similarly, 
chemical modifi cations at specifi c positions or formulations with delivery vectors 
have been shown to improve stability. Lipid-based and polymer-based nanoparticles 
reduce the negative electrical charge of RNA nucleotides to promote cell uptake 
(Wu et al.  2011 ). Another strategy for effi cient delivery of miRNA- based therapeutics 
is the use of viral vectors (Bonci et al.  2008 ). Indeed, adenoviral (Esquela-Kerscher 
et al.  2008 ) or lentiviral vectors (Kumar et al.  2008 ) can be used to transfer miRNAs 
to lung cancer cells. Successful delivery of miRNA-based therapeutics requires 
patient compliance with the intended delivery route and effi cient delivery vectors. 
This approach has attracted much interest as it provides a novel opportunity to 
exploit tumor suppressors. The concept of miRNA replacement therapy is best 
exemplifi ed by let-7 miRNA. Intranasal administration of a let-7 mimic into mouse 
models of lung cancer signifi cantly reduced tumor growth, suggesting that miRNA 
replacement therapy is indeed promising (Trang et al.  2010 ). Based on these 
successful results, a clinical trial in non-small cell lung cancer using a let-7 based 
therapy will begin in the near future. As an additional example of the value of 
miRNA replacement strategies, miR-34a-based cancer therapies have powerful 
potential for clinical use. Both local and systemic delivery of a synthetic miR-34a 
mimic resulted in accumulation of miR-34a in the tumor tissue and inhibition of 
lung tumor growth. MiRNA therapeutics will initiate clinical trials of miR-34a 
mimics in 2013, making these mimics some of the fi rst miRNA mimics to reach 
the clinic. Thus, the pharmacological delivery of miRNA mimics effectively inhibits 
tumor growth by targeting multiple genes. However, it is necessary to pay attention 
to any potential toxicities in normal tissues, given that therapeutic delivery of miRNA 
mimics can lead to an accumulation of exogenous miRNAs in normal cells. It will 
be important to investigate miRNA mimic-induced effects in normal cells and care-
fully assess the resultant toxicity before using such therapies in clinical practice.   

4     Pulmonary Delivery of RNAi-Based Therapeutics 

 Despite the promise of miRNAs in cancer therapy, there are still hurdles to clear 
before clinical use, including safety, stability and successful delivery of therapeutic 
miRNAs to the appropriate tissue and into the appropriate cells. In general, the 
delivery of miRNAs can be achieved through systemic administration (via intrave-
nous injection) or local administration (via a direct route). Conceptually, systemic 
delivery is an attractive option because it provides a simple route for miRNA admin-
istration  to all tissues via the blood stream (Liu et al.  2007 ). Indeed, there have been 
some successful reports using systemic delivery of miRNAs in lung cancer models. 
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Nevertheless, this approach has more  in vivo  barriers to overcome, in addition to 
nuclease degradation. The delivery barriers are (i) renal clearance of molecules 
(<50 kDa), (ii) uptake by phagocytic immune cells, (iii) failure of molecules >5 nm 
in diameter to cross the capillary endothelium, (iv) limited passage through the 
extra-cellular matrix (polysaccharides and fi brous proteins), (v) ineffi cient endocy-
tosis by target tumor cells, and (vi) ineffi cient endosomal release (Bader et al.  2011 ). 
Chemical modifi cation and formulation with delivery vectors have been shown to 
improve stability and delivery to target tumor cells, but these alterations may attenu-
ate the suppressive activity of oligonucleotides (Chernolovskaya and Zenkova 
 2010 ). In addition, systemic delivery of miRNAs may induce adverse events similar 
to those reported for other oligonucleotide-based therapies, such as aggregation and 
complement activation, liver toxicity and stimulation of the immune response 
(Kleinman et al.  2008 ). For these reasons, local administration of miRNAs to the 
target cancer cells is a promising approach to overcome the problems of systemic 
administration. Translation of locally administered modalities to the clinical setting 
is dependent upon the development of an effi cient delivery system that is able to 
improve the pharmacokinetic and biodistribution properties of miRNAs. Thus far, 
locally administered modalities are available for ocular, transdermal, rectal and pul-
monary delivery. 

 Dozens of RNAi-based therapeutics are being assessed in preclinical and clinical 
trials, and these studies provide further opportunities for successful results (Davidson 
and McCray  2011 ). Many of these studies are conducted using local administration to 
specifi c tissues. The lung is anatomically accessible to therapeutic drugs via the pul-
monary route. Accessibility is a key requirement for successful RNAi-based  in vivo  
and clinical studies, and this anatomical characteristic offers several important bene-
fi ts over systemic delivery, including the use of lower doses of miRNAs, the reduction 
of undesirable systemic side effects, and improved miRNA stability due to reduced 
nuclease activity in the airways compared to serum. The local approach could poten-
tially enhance the retention of RNAi-based therapeutics in the lungs. Because the 
delivery of siRNAs to the lungs is well studied using different routes and delivery 
strategies (Lam et al.  2012 ), many technologies developed for siRNAs may also be 
applicable to miRNAs. In most of the pulmonary RNAi-based therapy studies  in vivo , 
agents were delivered intratracheally or intranasally. This approach has allowed 
remarkable progress in miRNA modulation in preclinical cancer models, bringing us 
closer to delivering on the promise of miRNAs as cancer therapeutics.  

5     Strategies for Pulmonary Delivery of MicroRNA-Based 
Therapeutics 

 Pulmonary delivery approaches are very attractive because they tend to be non- 
invasive, locally restricted, and administered by the patient. With regard to siRNA- 
based therapeutics, Phase II clinical trials are underway for the treatment of 
respiratory syncytial virus (RSV) infection using an intranasal application of naked, 
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chemically modifi ed siRNA molecules that target viral gene products (DeVincenzo 
et al.  2008 ,  2010 ). To date, two successful studies of pulmonary delivery of miRNA- 
based therapeutics for lung cancer mouse models have been reported (Kumar et al. 
 2008 ; Esquela-Kerscher et al.  2008 ). These studies show that pulmonary delivery of 
miRNA from the let-7 family reduces lung tumor formation in an orthotopic lung 
cancer mouse model without systemic side effects (Table  17.1 ). These data suggest 
that intranasal or intratracheal administration of miRNAs may be a potent strategy 
for treating lung cancer. Although there are no reports of pulmonary delivery of 
miRNA-inhibitors in lung cancer at present, we predict that this delivery strategy 
will become a valuable resource for implementing miRNA-based therapies  in vivo  
and in humans. 

 We believe that pulmonary delivery of miRNAs has two primary advantages over 
systemic delivery for clinical use. First, several sophisticated inhalation devices for 
lung diseases are already in clinical use. Inhaled therapeutics are used routinely to 
treat a variety of pulmonary conditions, including asthma, chronic obstructive 
pulmonary disease (COPD) and cystic fi brosis. Metered-dose inhalers (MDIs) and dry 
powder inhalers (DPIs) are the most common modes of inhaled delivery. The use 
of DPIs for the  in vivo  delivery of therapeutic macromolecules such as insulin 
(Mastrandrea and Quattrin  2006 ) and low-molecular-weight heparin (Bai et al.  2010 ) 
has yielded promising results. Currently, the use of spray-drying as a technique for 
engineering dry powder formulations of siRNA nanoparticles, which might allow 
the pulmonary delivery of biologically active siRNAs directly to the lung tissue, 
has been demonstrated (Jensen et al.  2010 ,  2012 ). Although a suitable carrier is also 
needed to protect miRNAs from degradation given the shear force and increased 
temperature of the drying process, these delivery technologies could open new 
avenues for pulmonary delivery of miRNAs and improve patient outcome. To make 
miRNA-based therapy practical in the treatment of lung cancer, we believe that 
the administration of inhaled miRNAs by DPIs is the best of choice of delivery 
strategy. Second, pulmonary delivery also offers the clinical benefi t of a lower 
miRNA dose. The cost related to the development and application of a particular 
RNAi therapeutic delivery technology is undoubtedly an important factor (Dykxhoorn 
et al.  2006 ). Local administration is likely to be a more cost-effi cient strategy for 
miRNA delivery  in vivo  and in the clinic than systemic administration. Furthermore, 
the advantage of pulmonary delivery is that it ensures high delivery effi ciency 
with minimal drug loss. For this reason, pulmonary delivery of miRNAs has 
great potential for clinical use. However, the limitations of pulmonary delivery of 
miRNA-based therapeutics are important to consider. First, the pharmacokinetics of 
inhaled miRNAs in  in vivo  models and humans are estimated inaccurately. It is also 
unknown whether miRNA-based therapeutics delivered via the intrapulmonary route 
could also be delivered to other organs, such as the liver and kidneys. To prevent 
systemic side effects, the precise pharmacokinetics of miRNAs after intrapulmonary 
administration should be measured. Second, we also must pay attention to the 
pulmonary infl ammatory and toxicological responses caused by the delivery vehicle. 
In fact, there are some reports that RNAi-based therapeutics with polyethyleneimine 
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(PEI) frequently cause infl ammatory responses in the lungs (Beyerle et al.  2011 ). 
It has been reported that naked RNAi-therapeutic delivery possesses advantages 
over other delivery vectors, such as reduced toxicity and reduced infl ammatory 
responses, as well as simple formulation (Heidel et al.  2004 ). However, the 
advantage of naked RNAi-therapeutics over delivery vectors in the treatment of 
lung diseases is controversial (Nielsen et al.  2010 ; Akinc et al.  2008 ). Therefore, we 
need to develop safer delivery technology for practical use in  in vivo  mouse 
models and humans.  

6     Conclusions 

 During the past decade, miRNAs have quickly advanced from discovery to therapeutic 
development programs. This rapid progress refl ects the importance of miRNA 
biology in cancer, leaving little doubt about the therapeutic potential of miRNAs in 
cancer treatment. Given the encouraging results of the profi led studies and preclinical 
testing, miRNAs are being integrated into human clinical trials. The fi rst miRNA-
targeted drug LNA-anti-miR-122 is successfully undergoing Phase II trials (Janssen 
et al.  2013 ). Accordingly, several companies are currently developing miRNA 
mimics or inhibitors for the treatment of cancer. The main focus in bringing miRNAs 
to cancer cells is the capacity of pharmacological drug delivery. The success of 
miRNA-based therapeutic delivery requires effi ciency, convenience, and patient 
compliance using the delivery route. In this chapter, we showed that pulmonary 
delivery of miRNA-based therapeutics holds powerful potential for lung cancer 
treatment (Fig.  17.1 ). A realistic therapeutic intervention, such as inhalation, would 
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(miR-17-92, -21, -31 etc)
Tumor suppressive miRNAs

(let-7, miR-34, -143, -145, -192 etc)
↓

Therapeutic targets

microRNA biology 

cell line clinical sample
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Animal model study

A lower dose of miRNA is required
Reduction of undesirable systemic side effects

Improved miRNA stability due to lower 
nuclease

miRNA inhibitor-based therapy
miRNA mimic-based therapy

↓

Pulmonary delivery approach

Inhaled miRNA-based therapy
↓

Limitations: 
i) The pharmacokinetics.
ii) Pulmonary inflammatory     
responses by delivery vehicle.

Clinical application

Dry powder inhalers
Metered dose inhalers

↓  

  Fig. 17.1    Process for translating microRNA biology from bench to bedside in lung cancer       
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enhance drug delivery to the site of action and decrease systemic exposure, thereby 
reducing off-target effects. In the future, combining miRNA-based therapeutics 
with chemotherapy may potentiate the cancer treatment effi cacy. Therefore, continued 
investigation on all fronts will be of equal importance to the eventual clinical 
application of miRNAs.
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