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    Abstract     The clinical use of microRNAs (miRNAs) as diagnostic tools for example 
for tumor classifi cation or as prognostic markers is becoming increasingly established. 
In addition, recent studies demonstrated that miRNAs could be used as new therapeutic 
approach in anticancer treatment including the highly interesting aspect that is 
regulated by miRNAs: resistance to chemo- and radiotherapy. This chapter aims to 
elucidate the impact of miRNAs on drug resistance from a clinical point of view, 
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and to highlight their potential role as predictors or modifi ers of resistance towards 
chemotherapeutics and radiotherapy. Therefore, we selected exemplary two different 
tumor types that present either high or low resistance to chemotherapeutic treatment: 
esophageal cancer (highly therapy resistant tumor) and ovarian cancer (quite therapy 
sensitive tumor).  

  Keywords     MicroRNA   •   Drug resistance   •   Esophageal cancer   •   Ovarian cancer   • 
  Predictor   •   Modifi er  

1         Introduction 

 MicroRNAs (miRNAs) are a novel class of regulatory molecules that control trans-
lation and stability of mRNAs on a post-transcriptional level. MiRNAs are involved 
in almost all physiological processes such as cell development or differentiation. 
So far, more over 1,000 human miRNAs have been identifi ed (Kozomara and 
Griffith- Jones  2011 ), and each single miRNA can target hundreds of mRNAs 
(Li and Yang  2013 ). However, most importantly from a clinical point of view, miRNAs 
are highly involved in the initiation and progression of cancer by regulating for 
example metastasis and angiogenesis amongst others. Interesting in this context is 
that hundreds of miRNAs map to regions of the human genome that are known to 
be altered in cancer (Calin et al.  2004 ). Esquela-Kerschner et al. even established 
the term “oncomiRs” for miRNAs with oncogenic function, implying that abnormalities 
in miRNA expression might directly result in the de-differentiation of cells, allowing 
tumor formation to occur (Esquela-Kerschner and Slack  2006 ). 

1.1     General Considerations: miRNAs and Their Clinical 
Use in Cancer Diagnostics and Treatment 

 Most oncological studies in the recent past investigated miRNA expression pattern 
in fresh frozen samples such as tumor biopsies or resection specimens, but miRNAs 
can also be detected and extracted from other sample types such as paraffi n- 
embedded tissues (Iorio and Croce  2012 ). Most interestingly for clinicians, miRNAs 
can further be found as so called “Circulating miRNA” in a variety of human body 
fl uids in healthy volunteers and cancer patients (Fang et al.  2012 ; Weber et al.  2010 ; 
Xiao et al.  2013 ; Allegra et al.  2012 ; Iorio and Croce  2012 ). These circulating 
miRNAs, which are surprisingly stable (Mo et al.  2012 ; Kim and Reitmair  2013 ) 
and can be detected even in 10-year-old human serum samples or in un-refrigerated 
dried serum blots (Cortez et al.  2011 ), are tissue-specifi c, stable, reproducible and 
consistent among individuals in the same species (Fang et al.  2012 ). In cancer 
patients, circulating miRNAs are thought to be mainly related to apoptosis and 
necrosis of cancer cells in the tumor microenvironment (Kim and Reitmaier  2013 ), 
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and miRNA expression profi les of primary tumors and metastases seem very similar 
(Rosenwald et al.  2010 ). 

 With this in mind, the clinical use of miRNAs as diagnostic tools for example 
for tumor classifi cation or as prognostic markers seems logical and feasible. In addi-
tion, latest research provides fi rst very promising data that miRNAs could be used 
as new therapeutic approach in the fi ght against cancer as for example knockdown 
of oncomirs can affect tumor growth. In this context, only recently the focus has 
been turned on another highly interesting aspect that is regulated by miRNAs: resistance 
to chemo- and radiotherapy. 

 This chapter aims to elucidate the impact of miRNAs on drug resistance from a 
clinical point of view, and to highlight their potential role as predictors or modifi ers 
of resistance towards chemotherapeutics and radiotherapy. Therefore, we selected 
exemplary two different tumor types that present either high or low resistance 
to chemotherapeutic treatment: (a) esophageal cancer, as a highly therapy resistant 
tumor with a complete response to neoadjuvant therapy in only about 13–25 % of 
all patients (Courrech Staal et al.  2010 ) and (b) ovarian cancer, as a quite therapy 
sensitive tumor with complete response to adjuvant therapy in about 80–90 % of the 
patients (Ozols  2005    ).  

1.2     High Versus Low Resistant Tumors: On Overview 
About the Clinical Background 

1.2.1     Esophageal Cancer 

 Esophageal cancer (EC) is characterized by a poor overall prognosis. Because of 
the high incidence of advanced disease at the time of diagnosis, the 5-year sur-
vival rate remains below 15 % and only about 15–20 % of patients fi nally qualify 
for curative surgical resection. In an attempt to improve outcome of patients after 
surgery and to potentially increase the number of patients who qualify for surgery 
by downstaging of the tumor, neoadjuvant therapy including chemotherapy and 
radiotherapy has been demonstrated to potentially advance overall survival for 
both histological subtypes adenocarcinoma (AdenoCA) and squamous cell carci-
noma (SCC) (Urschel and Vasan  2003 ; Fiorica et al.  2004 ; Sjoquist et al.  2011 ). 
However, a complete pathologic response as determined by the “tumor regression 
grade TRG” can only be achieved in about 13–25 % of all patients (Courrech 
Staal et al.  2010 ). 

 There are several miRNAs that have been reported to be differentially expressed 
in esophageal cancer, with (prognostic and diagnostic) associations to tumor stage 
(Lin et al.  2012 ), histological differentiation (Hummel    et al.  2011a ; Lin et al.  2012 ), 
distant lymph node metastasis (Hummel et al.  2011a ; Liu et al.  2012a ), vascular 
invasion (Komatsu et al.  2011 ), overall and disease-free survival (Komatsu et al. 
 2012 ; Takeshita et al.  2013 ; Zhang et al.  2011 ) and tumor recurrence (Komatsu et al. 
 2011 ; Hummel et al.  2011a ). Additionally, a number of serum miRNAs were 
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described as potential diagnostic biomarkers (Komatsu et al.  2011 ; Takeshita et al. 
 2013 ; Zhang et al.  2011 ; Liu et al.  2012a ; Cai et al.  2012 ; Wang and Zhang  2012 ; 
Zhang et al.  2010 ,  2012 ; Revilla-Nuin et al.  2013 ).  

1.2.2     Ovarian Cancer 

 Ovarian cancer is one of the most aggressive female reproductive tract tumors. 
The prognosis depends on the stage of the disease and on histological and molecular 
characteristics. Platinum based chemotherapy agents, namely cisplatin and carbo-
platin, are widely used for the treatment of ovarian cancer. For advanced-stage 
disease, taxanes (e.g. paclitaxel, docetaxel) are often supplemented (van Jaarsveld 
et al.  2010 ). Despite the fact that a complete clinical response can be achieved in 
80–90 and 50 % of patients with early-stage or advanced-stage disease, respec-
tively, (Ozols  2005 ), ovarian cancer patients frequently develop resistance to 
chemotherapy, often resulting in a poor overall 5-year survival of only 30 % 
(Moss and Kaye  2002 ). 

 Several studies showed aberrantly expressed miRNAs in ovarian cancer and 
established a connection to histological subtypes (Lee et al.  2012 ; Zaman et al. 
 2012 ; Iorio et al.  2007 ), tumor stage or grade (Yang et al.  2012 ), primary or recurrent 
tumors (Hu et al.  2009 ), and survival (Hong et al.  2013 ; Peng et al.  2012 ; 
Lee et al.  2012 ; Marchini et al.  2011 ; Nam et al.  2008 ). Again, miRNAs could also 
be identifi ed as diagnostic and prognostic biomarkers in serum (Xu et al.  2013 ; 
Resnick et al.  2009 ; Chang et al.  2012 ; Peng et al.  2012 ).    

2     Clinical Application of miRNAs as Diagnostic 
Tools: MicroRNAs as Predictors of Response 
to Conventional Treatments 

 As outlined above, one highly promising clinical application of miRNAs as diagnostic 
tools involves their potential to predict response to conventional treatment such as 
chemotherapy and radiotherapy. If it might be possible to identify responders 
and non-responders before the start of neoadjuvant or adjuvant treatment, cancer 
therapy could be tailored more individually. Patients who do not benefi t from 
chemotherapy or irradiation would not have to undergo this toxic treatment, and 
could be referred immediately to curative surgical resection. The use of miRNAs as 
predictors of therapy response implicates however that chemotherapy or radiotherapy 
resistant tumors exhibit distinct miRNA expression pattern that distinguishes them 
from sensitive tumors. These differences in miRNA expression would be necessary 
to allocate patients into the responder and non-responder groups. And indeed, there 
is growing evidence that chemo- and radiotherapy resistant tumors show specifi c 
pattern of miRNA deregulation, both  in vitro  and  in vivo . 

K. Lindner et al.



373

2.1     Experimental  In Vitro  Data 

 We found only one study that investigated the direct effect of chemotherapy 
treatment on miRNA expression in one adenocarcinoma and one squamous cell 
carcinoma cell lines after treatment with either cisplatin or 5-fl uorouracil for 
24/72 h. The authors could show that 13 miRNAs (miR-199a-5p, miR-302f, 
miR-320a, miR-342-3p, miR-425, miR-455-3p, miR-486-3p, miR-519c-5p, 
miR-548d-5p, miR-617, miR-758, miR-766, miR-1286) were deregulated after 
short-term or long- term treatment in either of the cell lines (Hummel et al.  2011b ). 
However, a number of studies were published that report different miRNA 
expression pattern between drug resistant and sensitive cells. For example, com-
paring two cisplatin resistant human esophageal squamous cell lines (that were 
generated via exposure of sensitive cells to the chemotherapeutic drug) with con-
trols, Sugimura et al. identifi ed a total of 365 miRNAs to be differentially 
expressed between resistant and sensitive cells, with more than 1.7-fold changes 
in expression of 128 respectively 177 miRNAs. Most interestingly, 15 miRNAs 
showed an overlap between the two resistant cell lines with regards to their 
deregulation: miR-135a, miR-96, miR-141, miR-101, miR-146a, miR-489 and 
miR-545 were up-regulated, whereas miR-99a, let-7b, miR-204, let-7c, miR-
202, miR-10a, miR-136 and miR-145 were down- regulated in both cisplatin-
resistant cell limes (Sugimura et al.  2012 ). Another study reported that miR-141, 
miR-21, miR-19b, miR-200a, miR-19a, miR-27a, miR-20a and miR-20b were 
expressed at signifi cantly higher levels, and miR-205 and miR- 224 at signifi -
cantly lower levels in cells with increasing resistance towards cisplatin. In this 
context, most profound deregulation was found for miR-141 (Imanaka et al. 
 2011 ). Concerning altered miRNA profi les in radioresistant cells, Zheng et al. 
compared a radioresistant squamous cell carcinoma cell line with controls and 
found 35 miRNAs to be deregulated: 10 miRNAs (miR-1539, miR-1237, miR-
92b, etc.) were up-regulated, and 25 miRNAs (miR-185, miR-18b, miR-17, etc.) 
were down- regulated (Zheng et al.  2011 ). 

 For ovarian cancer, there are a number of reports published on deregulated 
miRNAs in chemotherapy resistant cell lines. For example, Kumar et al. com-
pared sensitive human ovarian cancer cells and their cisplatin-resistant counter-
parts and found changes in the expression of 11 miRNAs out of 1,500 miRNAs, 
with miRplus- F1064, miR-300, miR-193b, miR-642 and miR-1299 being up-
regulated and miR-625, miR-20b, miRPlus-F1147, let-7c, miRPlus-F1231 and 
miR-542-3p being down-regulated (Kumar et al.  2011 ). Van Jaarsveld reported 
27 miRNAs to be differentially expressed in cells with increasing resistance 
towards cisplatin: miR-214, miR-412, miR-645, miR-17, miR-106a, miR-
199a-5p, miR-215, miR-199a/b-3p, miR-335, miR-338-5p, miR-493, miR-
135b, miR-130a, miR-186, miR-942, miR- 18b, miR-20b, miR-196a, miR-10b, 
miR-19a, miR-421, miR-19b, miR-518e, miR- 631, miR-222, miR-141 and 
miR-200c (van Jaarsveld et al.  2012 ). Another study identifi ed diversely 
expressed miRNAs in resistant cell lines using one cisplatin- resistant and three 
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paclitaxel-resistant cell lines: let-7e, miR-30c, miR-125b, miR- 130a and miR-
335. Interestingly, let-7e was up-regulated in one of the paclitaxel resistant cell 
line, while it was down-regulated in the other resistant cell lines. The opposite 
phenomenon was described for miR-125b, which was down-regulated in one 
paclitaxel resistant cell line and up-regulated in the other ones. MiR-30c, miR- 
130a and miR-335 were down-regulated in all the resistant cell lines (Sorrentino 
et al.  2008 ). Yang et al. detected 79 differently expressed miRNAs in a cisplatin- 
resistant cell line, including miR-130a associated with MDR1/P-gp-mediated 
drug resistance (Yang et al.  2012 ). 

 These experimental  in vitro  data clearly support the hypothesis that chemotherapy 
or radiotherapy resistant tumors present unique miRNA expression pattern that 
might allow identifi cation of therapy responders based on profi ling information in 
tumor cells. With regard to either high or low resistant tumors, 53 miRNAs were 
described in esophageal cancer to correlate with resistance, and 124 miRNAs were 
associated with response to therapy in ovarian cancer cells. Most interestingly, 18 
miRNAs were identifi ed in more than one study to present altered expression 
between resistant and sensitive tumors  in vitro , with a few of them even presenting 
similar deregulation pattern when comparing esophageal (high resistant) and 
ovarian (low resistant) cancer. Table  15.1  provides an overview about these 18 
miRNAs that seem to highly impact on drug resistance   .

Imanaka
et al.
(2011)

Sugimur
a et al.
(2012)

Kumar et 
al. (2011) 

Sorrentino
et al. (2008)

Yang et al.
(2012)

van
Jaarsveld

et al. (2012)

van
Jaarsveld

et al. (2012)

SCC SCC OvarianCA OvarianCA OvarianCA OvarianCA OvarianCA

Cisplatin Cisplatin Cisplatin Cisplatin Cisplatin Cisplatin Paclitaxel

miR-19a
miR-20a
miR-20b
miR-21
miR-27a
miR-30c
miR-99a
miR-101
miR-106a
miR-125b
miR-130a
miR-141
miR-193b
miR-205
miR-222
miR-335
Let-7c
Let-7e

        a  To provide a better overview only 18 out of 177 miRNAs, which were found more than once were 
cited. Red cell: up-regulation of miRNA; green cell: down- regulation of miRNA. SCC: esophageal 
squamous cell carcinoma  

  Table 15.1    Summary of microRNA profi les in drug resistance cells for two types of tumor 
(esophageal cancer vs. ovarian cancer) a   
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2.2        First Clinical Data 

 Odenthal et al. examined 80 patients with esophageal cancer (AdenoCA and SCC), 
who underwent multimodal therapy. Comprehensive miRNA profi ling identifi ed a 
number of miRNAs in pretherapeutic biopsies that were signifi cantly differently 
expressed between major and minor responders. The pretherapeutic intratumoral 
expression of miR-192 and miR-194 was signifi cantly associated with the histo-
pathologic response of esophageal squamous cell carcinoma to neoadjuvant 
treatment (Odenthal et al.  2013 ). Also using pretreatment biopsy specimen of 25 
patients who underwent irinotecan/cisplatin based chemotherapy and radiotherapy 
followed by surgical treatment, 71 miRNAs were found to be signifi cantly differently 
expressed between pathologic complete responders and non-responders. Five of 
these miRNAs had a greater than two-fold difference in expression: HAS-240, 
miR-296, miR-141, miR-31 and miR-217. Comparison of post-treatment biopsies 
of responders versus non-responder patients further revealed that 52 miRNAs were 
signifi cantly up-regulated or down-regulated after induction therapy, and nine of 
these had a greater than two-fold change in expression: miR-1238, miR-938, 
HS_228.1, HS_282, miR-200a, miR-200b, miR-429 and miR-141 amongst others. 
Patients with high levels of miR-135b or miR-145 in the posttreatment biopsy 
specimens had a signifi cantly shorter median disease-free survival compared to 
patients with low levels (11.5 versus 5.1 months; p = 0.04; 11.5 versus 2.8 months; 
p = 0.03) (Ko et al.  2012 ). Furthermore, miR-31 expression was found to be signifi cantly 
reduced in patients presenting a poor histomorphologic response to neoadjuvant 
therapy. In addition, Lynam-Lennon et al. could demonstrate an infl uence of miR- 31 
on the modulation of radioresistance (Lynam-Lennon et al.  2012 ). Other studies 
evaluated the impact of miRNA expression on therapy response by defi ning therapy 
response as longer survival. Hamano et al. investigated the expression of 9 miRNAs 
(let-7a, let-7 g, miR-21, miR-134, miR-145, miR-155, miR-200c, miR-203 and miR-296) 
in esophageal cancer patients who had received preoperative chemotherapy with 
cisplatin and 5-FU followed by surgery. The expression of miR-200c correlated 
inversely and signifi cantly with the response to chemotherapy. Furthermore, the 
overexpression of miR-200c and miR-21 respectively the underexpression of 
miR-145 correlated signifi cantly with shorter overall survival (Hamano et al.  2011 ). 
Additionally and highly interesting regarding a potential clinical use of miRNAs as 
response predictors, miRNA-21 levels in serum were shown to be signifi cantly 
reduced in esophageal squamous cell carcinoma patients who responded to chemo-
therapy (Kurashige et al.  2012 ). Another study demonstrated an inverse correlation 
between expression levels of miR-483 and miR-214 and overall survival (Zhou 
et al.  2013 ). Finally, low expression of let-7c correlated with poor prognosis and 
was able to predict response to cisplatin-based chemotherapy (Sugimura et al.  2012 ). 

 A similar situation regarding miRNA expression and its correlation to response 
to treatment can be observed in ovarian cancer patients. Eitan et al. compared the 
miRNA profi le of surgically treated ovarian cancer patients that received either 
solely platinum based chemotherapy (n = 21), or paclitaxel with carboplatin (n = 34) 
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and cyclophosphamid with cisplatin as fi rst line treatment. Based on outcome, the 
authors divided the patients into platinum-sensitive vs. platinum-resistant patients. 
Seven miRNAs were identifi ed to be signifi cantly differently expressed between the 
two groups: miR-27a, miR-23a, miR-30c miR-7 g and miR-199-3p were increased 
in platinum-resistant patients, and miR-378 and miR-625 were increased in platinum- 
sensitive patients (Eitan et al.  2009 ). Lu et al. investigated let-7a expression in ovarian 
cancer patients receiving an adjuvant platinum based chemotherapy with or without 
paclitaxel in addition to surgical debulking. The let-7a expression did not correlate 
with disease stage, tumor grade, histology or debulking results. However, the 
authors could demonstrate that patients who responded well to platinum based 
chemotherapy combined with paclitaxel presented signifi cantly lower let-7a levels. 
Conversely, survival analyses showed that patients with high let-7a levels presented 
a better survival compared to those with low levels (Lu et al.  2011 ). In another 
study, let-7i expression was found to be signifi cantly reduced in chemotherapy 
resistant patients treated with paclitaxel and platinum (Yang et al.  2008 ). Most 
interestingly, patients who experienced a relapse of the disease showed a down-
regulation of let-7 in samples collected after chemotherapy compared to prethera-
peutic samples. Furthermore, a decrease in the expression of let-7 after chemotherapy 
negatively correlated with disease-free time before recurrence (Boyerinas et al.  2012 ). 
In this context, low levels of miR-199a may be another predictor for chemoresistance 
in recurrent tumors (Nam et al.  2008 ). Several studies further looked at different 
histological subtypes (serous versus non-serous) of ovarian cancer. For example, a 
signature of 23 miRNAs was associated with chemoresistance in patients with 
serous ovarian cancer treated with carboplatin and taxol, and PCR- based validation 
confi rmed that three miRNAs were able to predict chemoresistance of these tumors: 
miR-484, miR-642 and miR-217 (Vecchione et al.  2013 ). Van Jaarsveld found 
higher miR-141 expression in patients with serous ovarian tumors who did not 
response to platinum-based chemotherapy (van Jaarsveld et al.  2012 ). Furthermore, 
low miR-376c expression was detected in patients with serous ovarian tumors who 
responded well to cisplatin based chemotherapy (Ye et al.  2011 ). Finally, another 
clinical study compared the expression of miR-21 and miR-214 in ascites and 
omental metastasis of patients with ovarian cancer treated with carboplatin. 
Malignant cells in ascites showed greater cell viability when treated with carboplatin 
compared to omental metastasis. Additionally, there was a signifi cant up-regulation of 
miRNA-21 and miRNA-214 in tumor cells from ascites (Frederick et al.  2013 ). 

 Table  15.2  presents an overview about the data available so far on miRNAs as 
potential clinical predictors of chemotherapy resistance in esophageal and ovarian 
cancers. These fi rst  in vivo  data clearly supports the results from the  in vitro  experi-
ments and prove that, at least in the isolated patient populations of the respective 
publications, miRNAs can help separating responders from non-responders based 
on profi ling information obtained from tumor specimen. However, the fi nal clinical 
impact of miRNAs as potential response predictors remains to be determined, as 
the heterogeneity of the different treatment protocols in the studies, the respective 
experimental setups including the clinical response evaluation, and fi nally the 
obtained results in the different studies does not allow a defi nitive statement yet. For 
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example, miR-31 was reported on the one hand to be up-regulated (Lynam-Lennon 
et al.  2012 ), and on the other hand to be down-regulated in esophageal cancer 
patients that respond to therapy (Ko et al.  2012 ). However, in summary these data 
are highly promising regarding a potential clinical benefi t of miRNAs as response 
predictors in the future.

3         Clinical Application of miRNAs as Therapeutic Tools: 
MicroRNAs as Modifi ers of Response to Conventional 
Treatments 

 Another possibly even more interesting approach for the clinical use of miRNAs 
might be their application as potential modifi ers of chemotherapy. As the resistance 
of tumors to conventional treatment such as chemotherapy or radiotherapy 
represents a major obstacle in the fi ght against cancer, identifi cation of a way to 
reverse drug resistance is one of the most important challenges for researchers all 
over the world. A solution to this problem might be a key breakthrough in the treatment 
of malignant diseases. If resistance to chemo- and radiotherapy can be overcome, 
toxicity of these treatments could be minimized by for example lowering the doses 
of chemotherapeutics, while achieving the same antitumor effects. And in fact, there 
is growing evidence that modulation of miRNA expression can affect resistance of 
various tumors to treatment. However, as this fi eld of research is still very young, 
results are somewhat limited and refer so far only to  in vitro  experiments. But this 
does not affect its promising clinical signifi cance. 

 A number of authors addressed the question whether miRNA modulation affects 
chemotherapy resistance in esophageal cancer. Zhang et al. for example demonstrated 
that down-regulation of miR-27a in esophageal cancer cells could signifi cantly 
decrease the expression of P-glycoprotein [a well known drug effl ux pump that 
infl uences on drug resistance (Wen et al.  2009 )], Bcl-2 (   an anti-apoptotic protein 
which is involved in tumor cell apoptosis and response to chemotherapy) (Kang and 
Reynolds  2009 ; Ballesta et al.  2013 ; Asakura and Ohkawa  2004 ; Ohkawa et al. 
 2004 ), and the transcription of the multidrug resistance gene. This conferred 
sensitivity towards P-glycoprotein related chemotherapeutics such as etoposide, 
doxorubicin and vinblastine (Zhang et al.  2010 ). Hong et al. discovered that decreased 
miR-296 expression improved the response of tumor cells to 5-FU and Ciplatin, 
probably due to changes in Bcl-2 and Bax levels, finally leading to an increase 
in apoptosis and decreased MDR-1 expression (Hong et al.  2010 ). Furthermore, 
miR- 141 was shown to play an important role in the development of cisplatin resis-
tance in esophageal squamous cell carcinoma by down-regulation of YAP1, which 
is known to have a crucial role in apoptosis induced by DNA-damaging agents 
(Imanaka et al.  2011 ). Another group found miR-148a to sensitize esophageal cancer 
cell lines to cisplatin and, to a lesser extent, to 5-fl urouracil, and to attenuate resistance 
in chemotherapy-resistant variants (Hummel et al.  2011b ). In a variety of tumors 
other than esophageal cancer, expression of miR-148a has been shown to negatively 
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affect tumor growth, cell motility, invasion, migration and metastasis. One of the 
targets that can explain the effects of miR-148a modulation might be mitogen- and 
stress-activated kinase 1 (MSK1), which was identifi ed in prostate cancer cells 
(Fujita et al.  2010 ). Other potential resistance-relevant targets of miR- 148a include 
DNA methyltransferase-3B (DNMT3B) and DNA methyltransferase- 1 (DNMT-1) 
(Merkerova et al.  2010 ; Duursma et al.  2009 ). Sugimura and colleagues demonstrated 
that let-7 modulated the chemosensitivity to cisplatin in esophageal cancer through 
the regulation of IL-6/STAT3 pathway (Sugimura et al.  2012 ). IL-6 is an infl ammatory 
cytokine, which is released from macrophages and T-lymphocytes as well as from 
cancer cells. It modulates various cell functions (e.g., infl ammatory reactions), and 
is a major activator of the JAK/STAT3 and PI3K/AKT signaling pathways. Various 
studies already demonstrated an association between IL-6 and resistance to chemo-
therapy for example in ovarian cancer (Wang et al.  2010 ), breast cancer (Iliopoulos 
et al.  2009 ) or gastrointestinal cancer (Chen et al.  2013 ). Additionally, with regards 
to esophageal cancer, one recent study showed that increasing intracellular IL-6 
expression after cisplatin exposure is associated with reduced sensitivity to cisplatin 
treatment, and that knockdown of IL-6 expression restored sensitivity to cisplatin 
treatment (Chen et al.  2013 ). Finally, Wu et al. could show that overexpression of 
miRNA-200b, miR-200c and miR-429 correlated with resistance to cisplatin treat-
ment. Chemotherapeutic drugs such as cisplatin induce expression of endogenous 
AP-2α, which contributes to chemosensitivity by enhancing therapy-induced apoptosis 
(Wu et al.  2011 ). 

 Again, a similar picture is found for ovarian cancer. For example, overexpression 
of miR-200c, miR-200a and miR-141 (the miR-200 family is known as the main 
suppressor of the epithelial-to-mesenchymal transition, EMT) was reported to 
enhance sensitivity to microtubule-targeting drugs (e.g. paclitaxel, vincristine, 
epothilone B) in ovarian cancer lines by repressing the class III β-tubulin TUBB3 
(Cochrane et al.  2009 ; Prislei et al.  2013 ; Leskelä et al.  2010 ; Mateescu et al.  2011 ). 
TUBB3 is well known as a prominent mechanism of drug resistance found in a 
variety of solid tumors, but particularly in lung and ovarian cancer where it is 
associated with a perturbation in microtubule dynamics (Mariani et al.  2011 ). 
Accordingly, up-regulation of miR-200c levels in an ovarian cancer cell line 
increased the sensitivity towards micro-targeting drugs up to 85 % (Cochrane et al. 
 2010 ). Also, the family members miR-141/200c showed a correlation with cisplatin 
sensitivity in the NCI-60 panel. The NCI-60 cancer cell panel consists of 60 cancer 
cell lines of various histological origins, of which miRNA expression and drug 
sensitivity data can be obtained from a public database (Blower et al.  2007 ). 
Overexpression of miR-141 resulted in enhanced resistance to cisplatin in ovarian 
cancer cell lines as it directly targeted KEAP1, and induced cisplatin resistance via 
affection of the NF-κB pathway (van Jaarsveld et al.  2012 ). Another miRNA, miR- 
199a, was demonstrated to signifi cantly increase the chemosensitivity of ovarian 
cancer-initiating cells to cisplatin, paclitaxel and adriamycin, and to reduce mRNA 
expression of the multidrug resistance gene ABCG2 (Chen et al.  2012 ). Further  in 
vitro  assays with knockdown of let-7i led to a decreased cisplatin-induced cell death 
in ovarian cancer cell lines (Yang et al.  2008 ). Let-7 g selectively affected the 
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sensitivity of a drug resistant ovarian cancer cell line towards taxanes by targeting 
IMP- 1, which in turn caused destabilization of MDR1 at the mRNA and protein 
level. This fi nally increased sensitivity of the multidrug resistant ovarian cancer 
cells to taxanes (Boyerinas et al.  2012 ). Furthermore, miR-125b targeted Bak1, a 
gene of the Bcl-2 protein family. Down-regulation of Bak1 resulted in an increased 
resistance to cisplatin by suppressing cisplatin-induced apoptosis (Kong et al. 
 2011 ). Down-regulation of miR-130b promoted the development of multidrug 
resistant ovarian cancer cells partly by targeting CSF-1, and silencing of miR-130b 
was demonstrated to be potentially mediated by DNA methylation. At the same 
time, low levels of miR-130b were associated with FIGO III-IV clinical stages in 
ovarian cancer patients and poor histological differentiation (Yang et al.  2012 ). 
MiR-152 and miR-185, which targets DNMT1 (Xiang et al.  2013 ), were also 
reported to be involved in chemotherapy resistance. DNMT1, the principal DNA 
methyltransferase, controls DNA methylation. In addition, miR-214 was shown to 
target PTEN, a regulator of cell proliferation, via the PI3K-Akt pathway. Knockdown 
of miR-214 reduced cell survival at around 20 % in cisplatin resistant ovarian 
cancer cells (Yang et al.  2008 ). MiR-376c was described to target al.K7 (a member 
of the TGF family that inhibits proliferation and induces apoptosis of epithelial 
ovarian cancer cells), and overexpression of miR-376c was found to block cisplatin-
induced cell death, whereas anti-miR-376c treatment enhanced the effect of cisplatin 
(Ye et al.  2011 ). Another highly promising miRNA that is potentially involved in 
chemosensitivity is miR-21. As Liu et al. ( 2012b ), found that berberine could inhibit 
miR-21 expression in several cancer cell lines. Subsequently, these authors investi-
gated the infl uence of berberine on chemosensitivity of ovarian cancer cells to 
cisplatin. Interestingly, berberine could inhibit miR-21 expression and thereby 
modulate the sensitivity of cisplatin via regulating of the miR-21/PDCD4 axis (Liu 
et al.  2013 ). Other miRNAs involved in therapy resistance were miR-484 (target: 
vascular endothelial growth factor VEGFB and VEGFR2 pathways) (Vecchione 
et al.  2013 ), miR-23b, miR- 27b, miR-424, and miR-503 (target: ALDH1) (Park et al. 
 2013 ), miR-106a (target: BCL10 and caspase-7) (Huh et al.  2013 ), miR-591 (target: 
ZEB1) (Huh et al.  2013 ), miR-31 (target: MET) (Mitamura et al.  2013 ), miR-
130a (target: pro-metastatic and chemoresistance associated M-CSF) (Sorrentino 
et al.  2008 ), miR-484, miR-642 and miR-217 were described to be able to predict 
chemoresistance (Vecchione et al.  2013 ). Figure  15.1  shows a graphic presentation 
of a selection of resistance-relevant miRNAs and their downstream targets.

   Despite the limitation of the  in vitro  character of these data, these experiments 
clearly demonstrate that miRNAs affect chemotherapy resistance on a cellular level. 
If these data can be reproduced in  in vivo  animal experiments, this would mean a 
major step towards a miRNA based new therapeutic approach for cancer patients. 
This new treatment option could be used either as additive treatment in conjunction 
with conventional therapies such as chemo- or radiotherapy, or maybe even as fi rst 
line treatment if proven toxic to tumors  in vivo . However, further experiments are 
highly warranted in order to unravel potential systemic side effects of miRNA based 
therapies, and to prove their success in complex organisms.  
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4     Conclusion and Perspectives 

 The presented  in vitro  data and (so far limited)  in vivo  data draw a most promising 
picture of miRNAs as potential clinical predictors and modifi ers of response to 
chemo- and (to a lesser extent) radiotherapy. Overall, these results are highly encour-
aging and outline the enormous clinical impact that might arise from the use of 
miRNAs in the near future. However, as hopeful as these data are, their limitations 
have defi nitively to be considered: as outlined in this chapter, data are still very 
limited and sometimes even somewhat contradictory. Furthermore, conclusive  in 
vivo  data on miRNA based therapies are missing to this very date in general, so that 
information about possible complex interactions of a systemic therapy and potential 
toxic side effects for the patients have to be investigated before bringing these 
molecules into the clinic. However, the data presented in this chapter highlight the 
enormous potential of miRNAs for clinical application, and we are very confi dent 
that soon fi rst reports on the clinical (diagnostic or therapeutic) use of miRNAs in 
the context of chemotherapy resistance will be available.     
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