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    Abstract     MicroRNAs (miRNAs) constitute an evolutionarily conserved class of 
small, noncoding RNA molecules that regulate gene expression by targeting specifi c 
mRNAs for degradation and/or translational repression. MiRNAs have been widely 
investigated due to their potential role in regulating a variety of cellular processes, 
including proliferation, differentiation, and apoptosis. Many miRNAs are implicated 
in various human cancers. Functional analysis of cancer-related miRNAs has 
proposed that they might act as either oncogenes or tumor suppressors. In fact, the 
link between aberrant miRNA expression and cancer development and progression 
can be observed either through the loss of tumor suppressor miRNAs or the 
over-expression of oncogenic miRNAs. This chapter aims to provide a succinct 
framework to gain insight into miRNA function in cancer.  
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1         MicroRNAs: Biogenesis, Processing and Mode of Action 

 MicroRNAs (miRNAs or miRs) are a class of non-coding small RNAs of ~22 nucleotides 
that regulate gene expression by targeting specifi c mRNAs bearing partially 
complementary target sequences for degradation and/or translational repression 
(Liu et al.  2008 ; Babashah and Soleimani  2011 ). The fi rst discovery of a small non- 
coding RNA dates back to 1993, when Victor Ambros and collaborators identifi ed 
lin-4 in  Caenorhabditis elegans  (Lee et al.  1993 ). Lin-4 was believed to be a unique 
species until year 2000 when another small non-coding RNA, let-7, was reported in 
C. elegans (Reinhart et al.  2000 ) and in a variety of other organisms (Pasquinelli 
et al.  2000 ). Since then, hundreds of small non-coding RNA sequences (now known 
to be miRNAs) have been identifi ed in a wide range of organisms from nematodes 
to vertebrates, plants and human. Currently, the offi cial miRNA database miRBase 
lists 1,872 human miRNA gene loci, generating 2,578 mature miRNA sequences 
(  http://www.mirbase.org    , Release 20.0, June 2013). Precise attribution of miRNA effects 
on gene expression can be complicated by the fact that often each miRNA may 
control several hundred target genes directly or indirectly, whereas a single protein 
coding gene target could be regulated by more than one miRNA. In fact, miRNAs 
are predicted to target up to one-third of human transcripts (Zhong et al.  2012 ; 
Friedman et al.  2009 ). 

 The biogenesis of miRNAs begins in the nucleus with the synthesis of a rela-
tively long double-stranded RNA molecule, known as primary (pri)-miRNA, by 
RNA polymerase II or III. The resultant pri-miRNA transcript is often more longer 
than 1 kb in length and includes a stable stem-loop hairpin structure that contains 
the sequence for the mature miRNA. The hairpin structure is excised in the nucleus 
from pri-miRNA as a ~70-nucleotide long precursor (pre)-miRNA by the nuclear 
RNase III endonuclease Drosha and DGCR8 (the “microprocessor complex”) 
(Lee et al.  2003 ; Denli et al.  2004 ; Gregory et al.  2004 ). DGCR8 is essential as a 
molecular anchor for Drosha’s activity on pri-mRNAs, as it recognizes the pri-
miRNA at double-stranded RNA – single-stranded RNA junction and directs 
Drosha to cleave approximately 11 nucleotides from the base of the stem to free 
the hairpin from the primary transcript (Han et al.  2006 ). Members of the micropro-
cessor complex have additional cellular functions, as Drosha is also involved in 
the processing of ribosomal RNA (Wu et al.  2000 ) and DGCR8 also acts as a 
heme-binding protein (Faller et al.  2007 ). The resultant pre-miRNA contains a 5′ 
phosphate and a distinctive 3′ two-nucleotide overhang which is signal to transport 
into the cytoplasm by a protein complex consisting of Exportin-5 and Ran-GTPase 
(Yi et al.  2003 ; Lund et al.  2004 ; Bohnsack et al.  2004 ) (Fig.  1.1 ). In cytoplasm, 
further processing facilitated by the second RNase III endonuclease Dicer, cuts off 
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the terminal loop and generates an imperfect double-stranded RNA with about 
17-26-nucleotide in length. This duplex molecule contains the mature miRNA 
(often designated miR) and its complementary miRNA*. The duplex binds to one 
of four proteins of the Argonaute (Ago) family, which are part of the RNA-induced 
silencing complex (RISC). After unwinding the double-stranded RNA and discard-
ing and degrading the passenger strand (miRNA*), the mature miRNA is loaded 
onto the RISC and interacts with the complementary sequences that are mostly 
located in the 3′ untranslated region (3′ UTR) of the targeted mRNAs (Cullen 
 2004 ; Liu et al.  2008 ; Ikeda et al.  2007 ). Subsequent mechanisms by which miR-
NAs regulate gene expression depend on the degree of complementarity between 

  Fig. 1.1    Schematic representation of biogenesis, processing and function of microRNA. The bio-
genesis of miRNAs begins in the nucleus and is completed in the cytoplasm. For more details, see 
the text.  Pri-miRNA  primary miRNA,  Pre-miRNA  precursor miRNA,  Drosha  RNase III endonucle-
ase,  DGCR8  DiGeorge syndrome critical region 8,  Dicer  RNase III endonuclease,  RISC  RNA- 
induced silencing complex       
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  Table 1.1    MicroRNA 
databases  

 Name  Website 

 miRBase    http://mirbase.org/     
 miRanda    http://www.microrna.org/     
 miRNA map    http://mirnamap.mbc.nctu.edu.tw/     
 coGemiR    http://cogemir.tigem.it/     
 miRGen    http://www.diana.pcbi.upenn.edu/

miRGen.html     
 deepBase    http://deepbase.sysu.edu.cn/     
 RNAhybrid    http://bibiserv.techfak.uni-bielefeld.

de/rnahybrid     
 TargetScan    http://genes.mit.edu/targetscan     
 PicTar    http://pictar.mdc-berlin.de     
 EIMMo    http://www.mirz.unibas.ch/ElMMo3/     
 DIANA-microT    http://diana.pcbi.upenn.edu/cgi-bin/

micro_t.cgi     

mRNA target sites and the nucleotide sequence from position 2–8 at the 5′ end of 
miRNAs (the seed region). The rare occasion of perfect (or near perfect) Watson-
Crick complementarity leads to Ago-catalysed cleavage of the targeted mRNA. 
More commonly, imperfect complementarity leads to translational inhibition, 
although the precise mechanisms and the players involved are still under debate 
(reviewed in Fabian and Sonenberg ( 2012 ); Pasquinelli ( 2012 )) (Fig.  1.1 ).

   Owing to the imperfect complementarity between miRNAs and their target 
mRNAs almost observed in mammals, direct prediction of relevant downstream 
targets of a miRNA is particularly diffi cult. Several bioinformatic approaches and 
various algorithms have been developed to predict miRNA-controlled target mRNAs 
 in silico  (Lewis et al.  2003 ; Krek et al.  2005 ; Paraskevopoulou et al.  2013 ). A list of 
computational tools for miRNA target prediction is summarized in Table  1.1 . 
However, as the bioinformatic approach focuses on identifying conserved targets in 
the 3′-UTR of an mRNA, many non-conserved targets are missed. In addition, 
there are several lines of evidence indicating that miRNAs can also regulate gene 
expression through binding to “seedless” 3′-UTR miRNA recognition elements 
(Lal et al.  2009 ) or to sites located within the coding regions of transcript (Lee et al. 
 2009 ). Therefore, the efficacy of such a bioinformatic approach needs to be 
validated by  in vitro  or  in vivo  experiments.

   MiRNAs are involved in the control of a variety of biological processes, including 
cellular proliferation, tissue differentiation, organ development, maintenance of 
stem cell potency and apoptosis (Babashah and Soleimani  2011 ; Cheng et al.  2005 ; 
Chen et al.  2004 ; Ambros  2004 ). Given this wide variety of functions, it is not 
surprising that miRNAs are affected in many diseases such as cancer. In fact, 
dysregulation of miRNAs has been widely observed in different types and stages of 
cancer and mounting evidence points to their important roles in the development 
of a variety of human cancers (Bandyopadhyay et al.  2010 ; Esquela-Kerscher and 
Slack  2006 ; Lu et al.  2005 ; Volinia et al.  2006 ).  
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2     The Oncogenic and Tumor Suppressive Roles 
of MicroRNAs in Cancer 

 Aberrant expression of miRNAs has been frequently noted in almost all types of 
cancer (Croce  2009 ; Farazi et al.  2011 ). Functional analysis of these aberrantly 
expressed miRNAs indicates that they might function as either oncogenes or tumor 
suppressors. The oncogenic miRNAs, called as “oncomiRs”, are up-regulated in 
cancer and usually promote tumor development by inhibiting tumor suppressor 
genes and/or genes that control cell differentiation or apoptosis. On the contrary, 
there are many down-regulated miRNAs which may be considered as tumor 
suppressors in cancer. These miRNAs are called as “TSmiRs” and may function by 
inhibiting oncogenes and/or genes that inhibit cell differentiation or apoptosis 
(Bandyopadhyay et al.  2010 ; Esquela-Kerscher and Slack  2006 ; Lu et al.  2005 ; 
Babashah and Soleimani  2011 ). Deregulation of miRNA expression frequently 
results from genetic mutations and/or epigenetic alterations, represented by deletions, 
amplifi cations, point mutations and aberrant DNA methylation events. Indeed, about 
half of the cancer-related miRNA genes are located at fragile sites of the genome 
as well as in minimal regions with loss of heterozygosity, minimal regions of 
amplifi cation or common breakpoint regions (Calin et al.  2002 ,  2004b ). 

 The fi rst evidence for the involvement of miRNAs in tumorigenesis was reported 
by Calin et al. ( 2002 ) in describing a chromosome region containing the miR-15a/
miR-16-1 cluster, which is frequently lost or down-regulated in B-cell chronic 
lymphocytic leukemia (B-CLL). Down-regulation of the miR-15a/miR-16-1 cluster 
in CLL and several solid tumors raised the question whether they might function as 
tumor suppressors (Calin et al.  2002 ). Cimmino et al. ( 2005 ) demonstrated that both 
miR-15a and miR-16-1 promote the normal apoptotic response by directly targeting 
the anti-apoptotic gene BCL-2, indicating the possible tumor suppressive role of 
these two miRNAs in tumorigenesis. 

 A common tumor suppressive role for the let-7 family of miRNAs has been 
described in different types of human tissues, particularly in lung. It has been shown 
that let-7 is able to negatively regulate the expression of various oncogenes such as 
RAS and MYC as well as other cell cycle progression genes (Johnson et al.  2005 ; 
Bhat-Nakshatri et al.  2009 ). Reduced expression of Let-7 has been observed in 
different types of cancers, including lung, breast and prostate cancers. It has been 
shown that down-regulation of let-7 correlates with increased lymph node metastasis 
and proliferation capacity, suggesting a potential tumor suppressive role for this 
family of miRNAs in cancer progression (Lynam-Lennon et al.  2009 ; Liu et al. 
 2012 ). Although it has been demonstrated that induction of let-7 reduces tumor 
growth in a murine model of lung cancer (Esquela-Kerscher et al.  2008 ; Kumar 
et al.  2008 ), the regulation of individual let-7 targets on tumorigenesis needs to be 
further investigated in more  in vivo  models of human cancers. 

 The miR-17-92 cluster (containing seven homologous miRNAs: miR-17-3p, 
miR-17-5p, miR-18a, miR-20a, miR-19a, miR-19b-1 and miR-92a-1; with genomic 
positions on chromosomes X, 7 and 13) is the fi rst and well-studied miRNA cluster 
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with oncogenic activity. He et al. ( 2005 ) investigated the potential oncogenic role of 
the miR-17-92 cluster. They demonstrated that over-expression of the miR-17-92 
cluster in the hematopoietic system acted with c-myc expression to accelerate tumor 
development and progression in a transgenic mouse model of B-cell lymphoma. 
Importantly, tumors resulting from combined c-Myc and miR-17-92 expression 
were able to evade from normal apoptotic responses that were otherwise prevalent 
in tumors lacking the cluster. O’Donnell et al. ( 2005 ) found that c-Myc activates 
expression of a set of six miRNAs on human chromosome 13 that was tied to the 
development of human lymphoma. They also found that expression of E2F1 was 
negatively regulated by two miRNAs in this cluster, miR-17-5p and miR-20a. These 
fi ndings reveal a mechanism through which the c-Myc simultaneously promotes 
E2F1 transcription and represses following translation, indicating a tightly controlled 
proliferative signal. Woods et al. ( 2007 ) proposed a model in which the miR-17- 92 
cluster promotes cell proliferation by shifting the E2F transcriptional balance away 
from the pro-apoptotic E2F1 and toward the proliferative E2F3 transcriptional 
network. The miR-17-92 cluster might also inhibit apoptosis by negatively regulating 
the tumor suppressor PTEN and the pro-apoptotic protein Bim (Xiao et al.  2008 ; 
Mendell  2008 ). Bim is induced by Myc in B-cells and is able to antagonize anti-
apoptotic proteins such as Bcl-2. Therefore, down-regulation of Bim by the miR-
17-92 cluster may contribute to the ability of these miRNAs to exacerbate disease 
progression in a mouse model of B-cell leukemia (Egle et al.  2004 ). 

 As stated above, miRNAs can function either as oncogenes or tumor suppressors. 
However, it has been demonstrated that a miRNA can exploit both functions 
according to the cellular context of their target genes. For instance, there is a body 
of evidence pointing to the tumor suppressive activity of the miR-17-92 cluster, 
which contrasts with the hypothesized oncogenic role observed in other cancers 
(Yu et al.  2008 ). This implies that the tissue- and developmental-stage-specifi c 
expression decisively controls appropriate function of a miRNA.  

3     MicroRNAs and Tumor Metastasis 

 Tumor invasion and metastasis are major characteristics of aggressive phenotypes 
observed in human cancers (Steeg  2003 ). During the “invasion-metastasis cascade”, 
cancer cells (a) are detached and migrate out of the primary tumor site; (b) invade 
the basement membrane to enter the circulatory system (intravasation); (c) are 
translocated through the vasculature; (d) exit circulatory vessels at the metastatic 
site (extravasation); (e) survive within the foreign microenvironment; and fi nally 
(f) re-initiate their proliferative machinery to establish macroscopic secondary 
tumors (colonization) (Fig.  1.2 ) (Harquail et al.  2012 ; Fidler  2003 ). Despite the 
clinical signifi cance of metastasis for determining disease outcome in human cancers, 
our current understanding on how cancer cells actually migrate out of primary tumors, 
adapt to distant tissues and organs, and form a secondary tumor are still not 
completely understood (Gupta and Massague  2006 ).
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   MiRNAs have recently been more widely investigated due to their potential role 
as critical regulators of tumor metastasis in cancer development. The link between 
altered expression levels of miRNAs and cancer development and metastasis can be 
observed either through the loss of tumor suppressor miRNAs or the over- expression 
of oncogenic miRNAs in different cancer cells. Some miRNAs involved in 
metastasis are summarized in Table  1.2 , most of which will be discussed in more 
detail in the sections below.

3.1       Pro-metastatic miRNAs 

 Multiple lines of evidence highlight the contribution of certain miRNAs to promoting 
tumor metastasis. MiR-10b is the fi rst miRNA identifi ed to positively regulate the 
metastatic potential of human cancer cell. Ma et al ( 2007 ) showed that miR-10b 
over-expression endowed otherwise non-metastatic breast cancer cells with the capacity 
to acquire invasive and metastatic behavior. MiR-10b is able to induce migration 
and invasion capacities in breast cancer cells through direct targeting of homeobox 
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  Fig. 1.2    Schematic representation of multistep metastatic process by which primary tumor cells 
are detached from the primary tumor site, consequently adapt into distant tissues and organs, and 
form a secondary tumor       
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D10 (HOXD10), a receptor of genes involved in cell migration and extracellular 
matrix remodeling. Notably, systemic treatment of breast tumor- bearing mice with 
miR-10b antagomirs decreased the metastatic tumor burden, providing promising 
evidence that antagomirs can be effi ciently delivered to rapidly growing tumor cells 
 in vivo , preventing metastasis (Ma et al.  2010 ). To identify miRNAs that have the 
capacity to promote metastasis, Huang et al. ( 2008 ) set up a genetic screen involving 
over-expression of approximately 450 miRNAs in non- metastatic, human breast 
tumor cell line. They found that miR-373 and miR-520c (both belonging to a 
miRNA family that shares similar seed sequence) can induce tumor cell migration 
and invasion  in vitro  and  in vivo , and that the migratory phenotype of certain cancer 
cell lines depends on endogenous miR-373 expression. They proposed that suppression 
of cell migration by an anti-miR-373 oligonucleotide may be a potential strategy for 
developing effi cient therapies against tumor metastasis. After that, two independent 
studies indicated that apart from the oncogenic role of miR-21 in tumorigenesis, this 
miRNA also plays a critical role in invasion and metastasis of human breast and 
colorectal carcinoma cells (Asangani et al.  2008 ; Zhu et al.  2008 ). These studies 
suggest that suppression of miR-21 might offer another promising therapeutic 
approach against advanced cancers (Table  1.2 ).  

3.2     Anti-metastatic miRNAs 

 Multiple lines of evidence highlight the contribution of certain miRNAs to 
suppressing tumor metastasis. MiR-31 expression levels correlate inversely with 
metastasis in human breast cancer patients. By deploying gain- and loss-of-function 
strategies, Valastyan et al. ( 2009 ) demonstrated that miR-31 is capable of suppressing 
the metastatic potential of human breast tumor cells. They also successfully showed 
that miR-31 is involved during the multiple step metastatic process  in vivo , including 
local invasion, extravasation or initial survival at a distant site, and metastatic 
colonization. MiR-126 and miR-335 have been identifi ed as human breast cancer 
metastasis suppressor miRNAs that exert their unique effects on distinct steps of the 
invasion-metastasis cascade. By performing array-based miRNA profi ling, Tavazoie 
et al. ( 2008 ) revealed that the expression of both miRNAs is lost in the majority of 
primary breast tumors with metastatic relapse, and the loss of expression of either 
miRNA is associated with poor distal metastasis-free survival. Importantly,  in vivo  
experiments showed that miR-126 restoration reduced overall tumor growth and 
proliferation (at both primary site and distant organs), whereas miR-335 caused a 
signifi cant reduction in cell motility and invasive capacity. The strong association 
of the loss of miR-335 and miR-126 expression with clinical metastatic relapse 
suggests the potential for the use of these miRNAs in prognostic assessment of 
breast cancer patients in addition to conventional clinical and pathological staging 
markers. Moreover, another study identifi ed that miR-193b signifi cantly inhibited 
the growth and dissemination of xenograft breast tumors in an immunodefi cient 
mouse model. This study showed that the loss of miR-193b confers the metastatic 
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colonization ability to the cells. As the loss of miR-193b expression is strongly 
correlated with metastasis, the use of this miRNA in addition to conventional clinical 
and pathological staging markers could be an attractive option for the prognostic 
stratifi cation of patients with breast cancer (Li et al.  2009 ) (Table  1.2 ).  

3.3     MiRNAs and Epithelial to Mesenchymal Transition 

 Epithelial to mesenchymal transition (EMT), in which polarized epithelial cells are 
converted into motile cells, plays an important role in tumor invasion and metastasis 
(Thiery  2002 ; Yang and Weinberg  2008 ; Togawa et al.  2011 ). The effect of miR- 
125b on metastatic activities of breast cancer cells was studied by Tang et al. They 
reported that miR-125b signifi cantly up-regulates the expression of two EMT markers 
(i.e. vimentin and α-SMA expression) but another EMT marker (E-Cadherin) shows 
no signifi cant change. Elevating vimentin and α-SMA expression results in a high 
metastasis potentiality and some mesenchymal cell characteristics in breast cancer 
cells (Tang et al.  2012 ). A large body of evidence indicates that the miR-200 family 
inhibits EMT and cancer cell migration by enhancing E-cadherin expression through 
direct targeting of the EMT-promoting transcription factors Zeb1 and Zeb2 (Korpal 
et al.  2008 ; Gregory et al.  2008 ; Park et al.  2008 ; Burk et al.  2008 ; Bracken et al. 
 2008 ). However, a study reported that over-expressing miR-200 in Murine breast 
cancer cell line 4TO7 enhances the ability of these cells to metastasize to lung and 
liver. This study reported that miR-200 expression leads to promote a mesenchymal 
to epithelial cell transition (MET) by suppressing Zeb2 expression. This fi nding 
contrasts with the EMT hypothesis of cancer metastasis that implies that the 
induction of epithelial characteristics would inhibit the formation of metastasis. 
This apparent contradiction could be explained on the basis that for some tumors, a 
reversion of the mesenchymal phenotype of malignant cells may facilitate tumor 
colonization at metastatic sites. This suggests that the epithelial nature of a tumor 
does not predict metastatic outcome. Moreover, these results imply that the cellular 
context of miRNA expression decisively controls the function of a miRNA 
(Dykxhoorn et al.  2009 ).   

4     MicroRNAs and Tumor Angiogenesis 

 Angiogenesis is characterized by growth of new blood vessels from pre-existing vascu-
lature in response to physiological or pathophysiological stimuli. This process, which 
involves proliferation, migration, and maturation of endothelial cells, plays an impor-
tant role during tumor growth and metastasis (Urbich et al.  2008 ; Chung et al.  2010 ). 

 Evidence for the signifi cance of miRNAs as regulators of angiogenesis comes 
from observations that Dicer is a critical component for embryonic angiogenesis. 
It has been shown that blood vessel formation/maintenance in Dicer-defi cient mice 
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embryos and their yolk sacs was severely compromised, suggesting a possible role 
for Dicer in angiogenesis through its function in the processing of miRNAs (Yang 
et al.  2005 ). Consistent with this observation, another studies showed that genetic 
silencing of Dicer in endothelial cells leads to down-regulation of several key positive 
regulators of the angiogenic phenotype and impairs tube formation activity  in vitro  
and  in vivo  (Suarez et al.  2007 ; Kuehbacher et al.  2007 ). Mounting studies suggest 
that a number of angiogenesis-related miRNAs affect cancerous phenotype of 
malignant cells. MiRNAs can modulate angiogenesis by targeting positive or negative 
regulators in angiogenic signaling pathways (Hong et al.  2013 ; Landskroner- Eiger 
et al.  2013 ). Some miRNAs involved in tumor angiogenesis are summarized in 
Table  1.3 , most of which will be discussed in more detail in the sections below.

4.1       Pro-angiogenic miRNAs 

 Up-regulation of pro-angiogenic growth factor receptors (such as platelet-derived 
growth factor receptor, “PDGFR” and vascular endothelial growth factor receptor, 
“VEGFR”) on endothelial cells is a common feature of angiogenesis (Batchelor 
et al.  2007 ; Shih and Holland  2006 ).    Wurdinger et al. ( 2008 ) showed that glioma- or 
growth factor-mediated induction of miR-296 in endothelial cells leads to increased 
levels of pro-angiogenic growth factor receptors VEGFR2 and PDGFR-β. Possible role 
of miR-296 in promoting angiogenesis in tumor was further supported when inhibition 
of miR-296 with antagomirs reduced angiogenesis in tumor xenografts  in vivo . 

 Some other miRNAs, such as miR-378 and miR-17-92 cluster, have been also 
implicated in tumor angiogenesis. MiR-378 functions as an oncogene by enhancing 
tumor cell survival, blood vessel expansion, and tumor growth by targeting two 
tumor suppressors, SuFu (suppressor of fused) and Fus-1 (Lee et al.  2007a ). The 
miR-17-92 cluster not only augments angiogenesis in endothelial cells during 
normal development (Suarez et al.  2008 ), but also its upregulation in cancer cells 
can serve to promote angiogenesis during tumor growth in a xenograft model (Dews 
et al.  2006 ). Importantly, this angiogenic effect is exerted through down-regulation 
of anti-angiogenic thrombospondin-1 (TSP-1) and related proteins, such as connective 
tissue growth factor (CTGF) (Dews et al.  2006 ). 

 One study showed that many miRNAs derived from tumor cells are packaged 
into microvesicles and then directly delivered to their microenvironment. These 
tumor-secreted microvesicles are then capable of interacting with proximal endothelial 
cells to transport miRNAs in endothelial cells. Among these miRNAs, it was 
shown that tumor-secreted miR-9 promotes endothelial cell migration and tumor 
angiogenesis by activating JAK-STAT pathway, one of the major oncogenic signaling 
pathways activated in a variety of human malignancies. Importantly, administration 
of miR-9 antagomiRs (anti-miR-9) or JAK inhibitors impaired microvesicles-induced 
cell migration  in vitro  and decreased tumor burden  in vivo . Taken together, these 
observations support a novel intercellular communication in which tumor-secreted 
miRNAs function as pro-angiogenic mediators during tumorigenesis (Zhuang et al. 
 2012 ) (Table  1.3 ).  
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4.2     Anti-angiogenic miRNAs 

 The miR-34 family of miRNAs (miR-34a, b and c) as direct, conserved p53 target 
genes presumably induces apoptosis, cell cycle arrest and senescence (Bommer 
et al.  2007 ; Chang et al.  2007 ). MiR-34a functions as a tumor suppressor that is 

     Table 1.3    Some microRNAs involved in the regulation of tumor angiogenesis   

 MicroRNA  Function 
 Validated 
target(s)  Reference(s) 

 miR-9  Pro-angiogenic: promotes endothelial cell 
migration and tumor angiogenesis by 
activating the JAK-STAT pathway 

 SOCS5  Zhuang et al. ( 2012 ) 

 miR-34a  Anti-angiogenic: its down-regulation 
promotes tumor growth and tumor 
angiogenesis in head and neck 
squamous cell carcinoma 

 E2F3 
(directly), 
Survivin 
(indirectly) 

 Kumar et al. ( 2012 ) 

 miR-17-92  Pro-angiogenic: promotes angiogenesis 
within tumor cells and in dicer- 
depleted endothelial cells 

 TSP-1, CTGF  Suarez et al. ( 2008 ) 
and Dews et al. 
( 2006 ) 

 miR-98  Anti-angiogenic: plays a regulatory role in 
tumor angiogenesis and invasion in a 
highly aggressive breast cancer model 
 in vitro  and  in vitro  

 ALK4, 
MMP11 

 Siragam et al. ( 2012 ) 

 miR-125b  Anti-angiogenic: inhibits tube formation 
of endothelial cells  in vitro  

 VE-cadherin  Muramatsu et al. 
( 2013 ) 

 miR-126  Pro-angiogenic: required for vascular 
integrity and angiogenesis  in vivo.  It 
plays a role in regulating the adhesion 
of leukocytes to the endothelium. 

 SPRED-1, 
PIK3R2, 
VCAM1 

 Fish et al. ( 2008 ), 
Harris et al. 
( 2008 ), and Wang 
et al. ( 2008a ) 

 miR-130a  Pro-angiogenic: its expression antago-
nized the inhibitory effects of GAX or 
HOXA5 on endothelial cell tube 
formation  in vitro . 

 HOXA5, GAX  Chen and Gorski 
( 2008 ) 

 miR- 
221/222 

 Anti-angiogenic: inhibit normal erythro-
poiesis and erythroleukemic cell 
growth and prevent endothelial cell 
migration, proliferation and angiogen-
esis  in vitro . 

 c-KIT  Poliseno et al. 
( 2006 ), Felli et al. 
( 2005 ), and 
Urbich et al. 
( 2008 ) 

 miR-296  Pro-angiogenic: its induction in endothe-
lial cells results in increased levels of 
pro-angiogenic growth factor receptors 
VEGFR2 and PDGFR-β. Its inhibition 
reduces angiogenesis in tumor 
xenografts  in vivo . 

 HGS  Wurdinger et al. 
( 2008 ) 

 miR-378  Pro-angiogenic: promotes tumorigenesis 
and angiogenesis  in vitro  

 SuFu, Fus-1  Lee et al. ( 2007a ) 

  Abbreviations:  SOCS5  suppressor of cytokine signaling 5,  TSP-1  Thrombospondin-1,  CTGF  connective 
tissue growth factor,  GAX  growth arrest homeobox,  HGS  hepatocyte growth factor- regulated 
tyrosine kinase substrate,  SuFu  suppressor of fused,  VE-cadherin  vascular endothelial cadherin, 
 ALK4  activin receptor-like kinase-4,  MMP11  matrix metalloproteinase-11  
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frequently down-regulated in various tumor types. Kumar et al. ( 2012 ) demonstrated 
that miR-34a expression is signifi cantly down-regulated in head and neck squamous 
cell carcinoma tumors and cell lines. Ectopic expression of miR-34a reduced head 
and neck tumor cell proliferation, colony formation and migration and also 
significantly inhibited tumor growth and tumor angiogenesis in a SCID mouse 
xenograft model. This  in vivo  tumor growth study revealed that miR-34a inhibits 
tumor angiogenesis by down-regulating VEGF, a key angiogenic factor. 

 Siragam et al. ( 2012 ) defi ned a regulatory role for miR-98 in tumor angiogen-
esis and invasion using a highly aggressive breast cancer model  in vitro . They 
showed that miR-98 inhibits tumor angiogenesis and invasion by repressing 
activin receptor-like kinase-4 (ALK4) and matrix metalloproteinase-11 (MMP11) 
expression. 

 Another study showed that transient induction of miR-125b inhibits  in vitro  tube 
formation of endothelial cells through suppression of vascular endothelial (VE)-
cadherin. Importantly, induction of miR-125b induced non-functional blood ves-
sels, resulting in inhibition of tumor growth. It seems that prolonged over-expression 
of miR-125b could be an option in cancer therapy by causing collapse of the lumen 
of endothelial cells (Muramatsu et al.  2013 ) (Table  1.3 ).   

5     MicroRNA Profi ling by High-Throughput Technologies 

 Considering the fact that current cancer detection tests have their own limitations, 
the use of miRNAs as promising biomarkers for diagnosis and prognosis of cancer 
has aroused intense research interests. Additionally, distinctive pattern of miRNA 
expression also serves as markers of important histopathologic features such as 
tumor stage, proliferative capacity and vascular invasion (Lynam-Lennon et al. 
 2009 ). 

 Many expression profi ling studies of miRNA genes have been performed on 
different types of cancer. However, the results of analyses of the same type of cancer 
by different groups are not always consistent. The disparity in these results might 
attribute to the different platforms for miRNA profi ling in each case and the use of 
different sample storage methods (Calin and Croce  2009 ). 

 Currently, the most widely used methods for miRNA profi ling are based on 
sequencing, microarray, and real-time quantitative PCR. Microarray platforms have 
been used for miRNA profi ling, but suffer from background and cross-hybridization 
problems and are generally restricted to identifying the relative abundance of 
previously discovered miRNAs (Calin et al.  2004a ; Chen et al.  2009 ). Sequencing-
based applications for identifying and profi ling miRNAs have been hindered by 
laborious cloning techniques and the expense of capillary DNA sequencing (Pfeffer 
et al.  2005 ; Cummins et al.  2006 ). High-throughput sequencing-based approaches 
to generate miRNA profi les, hugely enabled by next-generation technologies, 
provide several advantages over probe-based methodologies, including the ability 
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to discover novel miRNAs and the potential to detect variations in the mature 
miRNA length and miRNA editing (Morozova and Marra  2008 ). Next-generation 
sequencing technologies are able to identify low abundance miRNAs or those 
exhibiting modest expression differences among samples, which may not be detected 
by hybridization-based methods. Real-time quantitative PCR, another highly sensitive 
technique for miRNA quantification, is capable of distinguishing mature and 
precursor miRNA, and produces fewer false-positives and reduced bias when 
compared with microarray or sequencing approaches (Chen et al.  2009 ; Fuller et al. 
 2009 ; Petriv et al.  2010 ). Real-time PCR may be used to validate the expression 
of miRNAs discovered during high throughput arrays and study the expression of 
individual miRNAs. This method provides several important advantages for miRNA 
profi ling studies including low cost, superior detection of low-abundance species 
and high throughput (Schmittgen et al.  2008 ). The emergence of novel high- throughput 
technologies will allow more sensitive and effi cient miRNA detection in patient 
samples, and identifi cation of novel miRNAs. However, standardization of these 
novel methods is necessary to overcome the variability observed when different 
miRNA-expression detection platforms are used.  

6     Potential Use of MicroRNAs in Cancer Therapy 

 Dysregulation of miRNA has been widely observed in different types of human 
cancers (Table  1.4 ), and there is mounting evidence demonstrating their important 
roles during cancer development and progression. Uncovering the possible mechanisms 
underlying the importance of miRNAs in the pathogenesis of human cancers 
may lead to the development of miRNA-based therapeutic strategies or diagnostic/
prognostic biomarkers.

   Since cancer cells often have a distinctive expression pattern of oncogenic and 
tumor suppressive miRNAs (Babashah et al.  2012 ; Babashah and Soleimani  2011 ; 
Calin and Croce  2006 ), approaches that manipulate miRNA expression levels, 
either alone or in combination with currently used therapies, may prove to be thera-
peutically benefi cial. Sequence-specifi c knockdown of oncogenic miRNAs by 
chemically engineered oligonucleotides termed “antagomirs” or locked nucleic acid 
(LNA)-modifi ed oligonucleotides is a plausible therapeutic approach for inhibiting 
expression levels of oncogenic miRNAs in cancer (Orom et al.  2006 ; Krutzfeldt 
et al.  2005 ). In contrast, elevating the expression level of tumor suppressive 
miRNAs that could be achieved by viral or liposomal delivery of mimic miRNAs 
represents a potential therapeutic strategy against cancer (Calin and Croce  2006 ; 
Meng et al.  2006 ). However, many concerns need to be addressed before consideration 
of conducting miRNA-based therapy including dosage, safety, specifi city, stability, 
effi cacy, and problems of delivery to the target (Chen et al.  2010 ; Cho  2010b ; Tong 
and Nemunaitis  2008 ; Wu et al.  2007 ).  
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7     Conclusions and Perspectives 

•     As miRNAs can regulate various target genes, precise attribution of their functions 
on gene expression is very complicated. However, the critical involvement of 
miRNAs in many aspect of cancer biology is irrefutable.  

•   Although miRNAs are postulated to function as either oncogenes or tumor 
 suppressors in human cancers, further studies establishing such roles for 
miRNAs using  in vivo  experimental models are needed to elucidate precise 
mechanisms of miRNAs functions in cancer.  

•   MiRNA expression profi ling of human cancers has identifi ed diagnostic and 
prognostic signatures. Additionally, miRNA signatures could be used for cancer 
classifi cation and prediction of therapeutic effi cacy.  

•   The association of miRNA dysregulation with oncogenesis demonstrates the 
feasibility of manipulating miRNA levels as a potential strategy for therapeutic 
purposes.  

•   Given the potential involvement of candidate miRNAs in the pathogenesis of 
human cancers, it seems that pharmacological modulation of miRNA expression 
will have a brilliant future and become a promising option in cancer therapy.        
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