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    Abstract 
 Skeletal muscle has the ability to regenerate following injury, and this response 
implicates a specifi c type of resident muscle stem cell, the satellite cell. Three 
main phases have been identifi ed in the process of muscle regeneration, includ-
ing (I) a destruction phase with the initial infl ammatory response, (II) a repair 
phase with the activation of satellite cells, and (III) a remodeling phase with the 
maturation of the regenerated myofi bers. Nevertheless, in severe muscle injuries, 
we also observed the formation of fi brosis that impairs muscle function. Various 
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strategies, including the use of growth factors, transplantation of muscle stem 
cells, or antifi brotic therapies, may become therapeutic alternatives to improve 
functional recovery after severe muscle injuries.  

2.1         Introduction 

 Human skeletal muscle is about 40 % of the body mass and is formed by bundle of 
contractile muscle fi bers. Muscle fi bers are multinucleated cells resulting from the 
fusion of myoblast, the muscle progenitor cells. Myofi bers are surrounded by the sar-
colemma, the plasma membrane of muscle fi bers. Located between the plasma mem-
brane and the basal lamina, we fi nd satellite cells, i.e., the reserve adult muscle stem 
cells, which play a key role in the muscle regeneration process [ 19 ,  26 ]. After muscle 
injury, satellite cells are activated and form myoblasts, then fuse into myotubes, and 
mature into new myofi bers that participate in the muscle regeneration process.  

2.2     Muscle Injury 

 Muscle injuries can stem from a variety of events, including direct trauma (i.e., 
muscle lacerations, contusions, or strains) and indirect causes (i.e., ischemia or 
neurological dysfunction) [ 10 ,  15 ,  18 ,  23 ,  31 ]. Muscle injury is one of the most 
common injuries in professional and recreational sports. In fact, muscle injuries 
constitute between 10 and 55 % of all injuries sustained by athletes, depending on 
the type of sport [ 33 ]. Whereas relatively minor muscle injuries, such as strains, can 
heal completely without intervention, severe muscle injuries typically result in the 
formation of dense scar tissue that impairs muscle function and can lead to muscle 
contracture and chronic pain. Injured muscle undergoes a sequential cycle of heal-
ing phases. Three phases have been identifi ed in this process (Fig.  2.1 ):
     I.     Destruction phase, including muscle degeneration/infl ammation: Characterized 

by the rupture and then necrosis of the myofi bers, formation of a hematoma, 
and an important infl ammatory reaction.   

   II.    Repair phase: In this phase, we observed phagocytosis of the damaged tissue, fol-
lowed by regeneration of the myofi bers, leading to activation of the satellite cells.   

   III.    Remodeling phase: A period during which we observed maturation of the 
regenerated myofi bers with recovery of the functional capacity of the muscle 
(III b) but also a period where we can observed fi brosis deposition (III a).    

2.2.1      Muscle Degeneration and Inflammation 

 Active muscle degeneration and infl ammation occur within the fi rst few days after 
injury. In injured muscle, mechanical trauma destroys the integrity of the myofi bers. 
The injured ends of the myofi bers undergo rapid necrosis. Similar to cell necrosis, the 
infl ammation starts with invasion of mononuclear cells, activated macrophages, 
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and lymphocytes at the injury site [ 45 ]. Necrotic debris of the damaged myofi bers are 
phagocytized by macrophages, which simultaneously secrete growth factors that 
enhance muscle regeneration by favoring satellite cells activation and proliferation [ 7 ]. 

 Nonsteroidal anti-infl ammatory drugs (NSAIDs) are often prescribed to relieve 
pain after muscle injury. However, the effect of this group of drugs on the muscle 
healing process remains largely controversial. Human studies are lacking, but some 
studies have been performed in animal models. It appears that short-term use of dif-
ferent NSAIDs had no major adverse effect on muscle healing [ 28 ].  

2.2.2     Muscle Regeneration 

 Muscle regeneration usually starts during the fi rst week after injury, peaks at 
2 weeks, and then gradually diminishes 3–4 weeks after injury. Regeneration is 
linked to the activation of the satellite cells. Satellite cells proliferate, form myo-
blasts, and fuse with each other to form new multinucleated myotubes that will 
participate in the muscle regeneration process.  

2.2.3     Muscle Fibrosis 

 Despite the fact that the majority of skeletal muscle lesions heal without formation of 
an extensive scar tissue, we often observe formation of a dense scar tissue that can 
prevent the skeletal muscle regeneration process in severe muscle injuries or muscle 
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  Fig. 2.1    Sequential cycle of muscle healing phases       
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re-ruptures. Fibrosis usually starts between the second and third week after muscle 
injury. The amount of scar tissue increases in size over time due to excessive fi bro-
blast proliferation and an increase in production of type I collagen [ 22 ].   

2.3     Improving Muscle Healing 

2.3.1     Growth Factors 

 Many reports have shown that growth factors play a variety of roles during muscle 
regeneration [ 16 ,  30 ]. Although hepatocyte growth factor (HGF), fi broblast 
growth factor (FGF), and platelet-derived growth factor (PDGF) are of interest 
because of their capacity to stimulate satellite cells [ 1 ,  39 ,  47 ], insulin-like growth 
factor-1 (IGF-1) appears to be of particular importance for the muscle regenera-
tion process notably because IGF-1 stimulates myoblasts proliferation and dif-
ferentiation [ 13 ]. IGF-1 is implicated in the regulation of muscle growth [ 38 ]. In 
a mouse model, direct injections of human recombinant IGF-1 at 2, 5, and 7 days 
after injury have enhanced muscle healing in lacerated, contused, and strain-
injured muscle [ 20 ,  30 ]. However, the effi cacy of direct injection of recombinant 
proteins (growth factors) is limited by the high concentration of the factor typi-
cally required to elicit a measurable effect. This is mainly due to the bloodstream’s 
rapid clearance of these molecules and their relatively short biological half-lives. 
Gene therapy may prove to be an effective method by which to deliver high, main-
tainable concentrations of growth factor to injured muscle [ 2 ,  3 ,  32 ]. Although we 
observed improved muscle healing, histology of the injected muscle revealed 
muscle fi brosis within the lacerated site, despite the production of a high level of 
IGF-1 [ 21 ]. Some studies suggest that the stimulatory action of IGF-1 on myofi -
broblast proliferation and the deposition of extracellular matrix (ECM-scar tissue) 
might interfere with the ability of this growth factor to improve muscle healing 
after injury, even at high concentrations [ 11 ].  

2.3.2     Stem Cell Therapy 

 Transplantation of myogenic precursor cells represents a promising therapeutic 
strategy for treatment of extensive skeletal muscle destruction. Myogenic precursor 
cells can participate directly in the muscle regeneration process but also create a 
reservoir of secreting molecules that may impact the different stages of muscle heal-
ing. Despite encouraging results obtained in animal models [ 36 ], the subsequent 
clinical trials of myoblast transfer in human patients have been disappointing due to 
rapid death, limited spread of the injected cells, and rejection of transplanted myo-
blasts [ 17 ,  29 ,  40 ]. Although the use of myoblasts for cell therapy applications is 
prevalent, concerns associated with myoblast proliferation, cell migration, and the 
limited life span of these cells have brought the usage of stem cells to the forefront 
of such applications. Stem cells are defi ned as cells that can both self-renew and 
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give rise to clonal progeny with the ability to differentiate [ 46 ]. Isolation of muscle 
stem cells that can overcome these limitations would enhance the success of muscle 
cell transplantation signifi cantly. 

 A population of murine muscle-derived stem cells (MDSC) displayed a high 
transplantation capacity in both skeletal and cardiac muscles [ 34 ,  37 ]. The MDSCs’ 
ability to proliferate in vivo for an extended period of time combined with their 
capacity for long-term proliferation, strong capacity for self-renewal, resistance to 
stress, ability to undergo multilineage differentiation, and ability to induce neovas-
cularization at least partially explains the high regenerative capacity of these cells 
in various musculoskeletal tissues including skeletal muscle [ 12 ,  34 ,  37 ]. Recently, 
it has been demonstrated that blood vessel progenitors (including myo-endothelial 
cells and pericytes) share a number of features with MDSC [ 9 ,  42 ]. In particular, 
they share cell-type marker profi les and have high myogenic potentials in vitro and 
in vivo. The use of such myogenic progenitors cells for improving muscle healing 
may become an interesting therapeutic alternative [ 8 ,  43 ,  44 ].  

2.3.3     Antifibrotic Therapy 

 Some reports indicate that scar tissue formation precludes complete regeneration of 
muscle tissue. Although various studies have implicated TGF-β1 in the onset of 
fi brosis [ 24 ,  41 ], very few reports have examined the role of this cytokine in skeletal 
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  Fig. 2.2       Four weeks after injury, decorin-treated muscle ( a ,  b ) exhibits a greater number of regen-
erating myofi bers (signifi cantly higher numbers of centronucleated myofi bers) and contained sig-
nifi cantly less fi brosis (less collagen deposition, area in  blue ) than the control muscle ( c ,  d ) 
(Adapted from Li et al. [ 25 ])       
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muscle fi brosis. It has been demonstrated that TGF-β1 is expressed at high levels 
and is associated with fi brosis in the injured skeletal muscle [ 6 ,  24 ]. These results 
support the hypothesis that TGF-β1 expression in skeletal muscle plays an impor-
tant role in the fi brotic cascade that occurs after the onset of muscle injury. Therefore, 
neutralization of TGF-β1 expression in injured muscle could inhibit the formation 
of scar tissue. Indeed, the use of antifi brotic agents (i.e., decorin, relaxin, antibody 
against TGF-β1) that inactivate TGF-β1 appears to reduce muscle fi brosis and, con-
sequently, improves muscle healing, leading to a near-complete recovery of the 
lacerated muscle [ 14 ,  25 ] (Fig.  2.2 ). Losartan, an angiotensin II receptor antagonist, 
has recently been demonstrated to neutralize the effect of TGF-β1 and reduce fi bro-
sis, making it the treatment of choice, since it already has FDA approval to be used 
clinically [ 4 ,  35 ].

2.4         Clinical Implementation After Muscle Injury: 
From the Bench to the Sport Field 

 Muscle injuries constitute one of the most frequent sports lesions. Prevention    of 
muscle strain includes proper conditioning and warm-up and good management of 
fatigue. However, most muscle strains occur in sports competition requiring veloc-
ity and force. Muscle injuries are currently identifi ed as mild, moderate, and severe 
injuries based on muscle impairment (from few muscle fi bers contusion to the entire 
muscle with complete loss of muscle function). In clinical    practice, treatment regi-
mens have been designed based upon empiricism and experience. 

 The objective in the treatment of a muscle strain is to create the best mechanical 
and biological environment to allow rapid and complete healing and thereby pre-
vent a re-tear. 

 Treatment must start within minutes after the injury, following the algorithm 
known as PRICE (Protection, Rest, Ice, Compression, Elevation) to prevent fur-
ther damage and limit hematoma formation. Protection is a crucial step for the fi rst 
2–3 days (crutches or even immobilization) to prevent excessive scar formation and 
re-rupture at the injury site. In the coming years, the use of IGF-1 injection may 
improve and accelerate the healing process. Recently, a new treatment approach 
came from basic science research. From days 3 to 5, the athlete is advised to per-
form a light exercise for 20′ per day (Fig.  2.3 ). Berg and Bang [ 5 ] have demon-
strated a 27 % increase of IGF-1 after 10′ moderate exercise (10–28 μg/l), favoring 
thus the environment of the initial healing. Moreover, such exercise may increase 
satellite cell numbers and, thus, appear as an effi cient strategy to improve muscle 
function and repair after injury [ 27 ].

   After this protective phase, which can extend up to 5 days in severe injuries, 
controlled isometric, isotonic, and isokinetic contractions of the injured muscle 
group are performed with increasing intensity. At the same time, one should begin 
general reconditioning of the athlete, either by activation of the upper extremity in 
the presence of a lesion of the lower extremity or by activation of the contralateral 
limb. Reconditioning of the injured muscle group is mandatory. Gentle, progressive, 
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and pain-free sports-specifi c reprogramming is rapidly begun. The criteria for time 
to return to sports include: (a) the ability to stretch the injured muscle as much as 
the contralateral healthy muscle, (b) pain-free use of the injured muscle in sports- 
specifi c movements, (c) comparable strength between injured and healthy muscles, 
and (d) the recovery of the proprioceptive and coordination capacity in the injured 
segment as well as the reprogramming of the sports movement. There is an obvi-
ous lack of evidence in determining these criteria, and these guidelines are mostly 
empirical. 

 In patients with a true muscle rupture, surgical reinsertion and repair should be 
considered, particularly with lesions in the proximal hamstrings or distal pectoralis 
major. The surgical management of these injuries permits a reduction in the length 
and degree of functional disability. The means to reduce the length of disability in 
athletes with muscle strains are the following: (a) Take them off the sports fi eld; do 
not even permit them to play; (b) apply the proper treatment immediately and pro-
tect    the injured muscle; (c) start controlled motion and general reconditioning; (d) 
recondition the injured muscle and rapidly begin sports-specifi c reprogramming; (e) 
surgically reinsert and repair a muscle rupture (especially hamstrings proximally); 
and (f) consider the use of hyperthermia which appears to be a promising technique 
to reduce the length of disability.     

  Fig. 2.3    From days 3 to 5 post-injury, the athlete performs 15–20 min of light exercises (50 % 
VO 2  max) using the uninjured limbs to enhance circulating IGF-1       
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