
Chapter 6

Wireless Networks: An Instance of Tandem

Discrete-Time Queues

Nikhil Singh and Ramavarapu S. Sreenivas

Abstract We model end-to-end flows in an ad-hoc wireless network using a

tandem of finite-size, discrete-time queues, located at the nodes along the routes

used by the flows, with appropriate restrictions that capture the first- and second-

order interference constraints. In addition, we assume there are no capture effects,

that is, there is at most one arrival into a queue at any discrete-time instant. The

half-duplex nature of communication also supposes there cannot be a simultaneous

arrival and departure from a discrete-time queue. These queues are characterized

by the channel access probabilities of the node. If the objective is to bound the

buffer overflow probability at each queue along a flow, we show that is not

necessary to maintain separate queues for each flow that is routed through a node.

We present simulation results to support our conclusions. This observation signif-

icantly eases the implementation of the distributed algorithm that enforces end-to-

end proportional fairness subject to constraints on the buffer overflow probabilities

(Singh N, Sreenivas R, Shanbhag U (2008) Enforcing end-to-end proportional

fairness with bounded buffer overflow probabilities. Technical Report UILU-

ENG-08-2211, Aug 2008, Coordinated Science Laboratory, University of Illinois

at Urbana-Champaign, Urbana).

In this paper we consider an ad-hoc wireless network with half-duplex links [1] that

carries several flows between various source-destination pairs under a slotted-time

medium access control (MAC) protocol. We assume that each node in the network

has a finite buffer assigned to each flow routed through it, and it is of interest to keep
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the buffer overflow probabilities at each node below a pre-determined value, in

addition to other objectives. Reference [2] uses a class of queue back-pressure
random access algorithms (QBRA), where the actual queue-lengths of the flows are
used to determine a node’s channel access probabilities. In this distributed algo-

rithm, a node uses the queue-length information in a neighborhood to determine its

channel access probability to achieve proportionally fair rates and queue stability.

This scheme also has the downside that nodes need to maintain separate queues for

each flow routed through it.

For a network of finite-buffer nodes it is of interest to achieve fairness subject to

constraints on the buffer overflow probabilities. In [3], the authors present a

distributed flow-based access scheme for slotted-time protocols, that is proportion-

ally fair while respecting the bounds on buffer overflow probabilities at each node.

The results in this paper imply that packets arriving along different incoming flows

into a node can be stored in a common (finite-size) buffer while they are waiting to

be serviced, without any violation of the buffer overflow constraints. Since nodes

have only a limited amount of available memory to store data packets, maintaining

separate queues for each flow can result in significant loss of performance. Our

main contributions are:

1. We interpret each flow in the above mentioned wireless network as a tandem of

discrete-time queues with constraints that represent primary- and secondary-

interference constraints. We also assume there are no capture effects, which

means there can be at most one packet arrival at any discrete-time instant. The

half-duplex nature of communication prevents the possibility of a simultaneous

arrival and departure of packets into a queue. We present an expression for the

buffer overflow probability for this class of discrete-time queues.

2. We show that if the objective is keep the buffer overflow probability at each

node below a common bound, then it is not necessary to maintain separate

queues for each flow routed through a node.

3. The above observation is used in an ns2 implementation of the procedure

outlined in [3], and we present simulation results showing the satisfactory

performance in terms of fairness and QoS when nodes maintain a single

(merged) instead of separate queue for each flow.

The rest of the paper is organized as follows. Section 6.1 presents the network

and discrete-time queue models used in the paper. In Sect. 6.2, we show that if all

flows in the network have the same bound on the buffer overflow, nodes only need

to maintain a single queue. Section 6.3 contains the details of the experimental

results verifying the observations of Sect. 6.2. Conclusions are provided in

Sect. 6.4.
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6.1 Modeling the Network as a Tandem of Discrete

Time Queues

6.1.1 Wireless Network Model

We assume the following:

1. Time is divided into slots of equal duration.

2. A successful transmission in a time-slot implies collision free data transmission

in that slot.

3. The transmitting nodes always have data packets to transmit (i.e. we do not

consider the arrival rates of packets for different flows, and assume that all flows

have packets to transmit at all times).

4. Nodes cannot transmit and receive packets at the same time.

5. The receipt of more than one packet within the same time-slot will result in a

collision.

6. Nodes in the network have a separate buffer of fixed size assigned to each flow

routed through it.

7. We also assume there is a unique route for each flow within the network (which

would be the case if we used AODV [4] as the routing protocol, for example).

Under the above assumptions, nodes in the wireless network can be seen as

discrete time queues with certain arrival and departure rates and a flow in the

network passes through a tandem of discrete time queues.

6.1.2 Buffer Overflow Probability of a Tandem
of Discrete-Time Queues

The analysis of Ref. [5] for discrete-time queues that permits simultaneous arrivals

and departures of multiple packets at a discrete time instant can be modified to the

case of a discrete-time queue where (1) at most one packet arrives at any discrete-

time instant, and (2) the simultaneous arrival and departure of packets into/from a

queue is not permitted, would result in the following – for a discrete-time queue of

capacityM, with a packet arrival probability pa, and a probability pd ( pd > pa) of a
packet departure from a non-empty buffer, the probability of seeing i-many packets

at any time-instant in the buffer in steady state is given by the expression

1� ρ

1�ρMþ1

� �
ρi; where ρ ¼ pa

pd
(6.1)

For the unrestricted discrete-time queue, Ref. [5] also shows that the joint station-

ary state probability of a tandem of discrete-time queues is the product of the
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distributions of each queue taken independently with an arrival probability of pa,
which is the probability of packet arrival into the first queue. This result uses the

time-reversibility of the underlying Markov-chain and the mutual independence of

the simultaneous states of the buffers, That is, the results in [5] can be thought of as

the discrete-time analog of Jackson’s result [6] involving tandems of M=M=1
queues.

As mentioned earlier, there are restrictions that one would have to enforce for a

discrete-time queue to represent a node in a wireless network. For instance, as a

node cannot transmit and receive information at the same time, the simultaneous

occurrence of an arrival and a departure from the discrete-time queue at the node

cannot be permitted. Secondary interference constraints place additional restric-

tions on the set of simultaneous events that can occur among neighboring nodes.

Reference [7] notes that even for the unrestricted version of the discrete-time queue

of Ref. [5], it is intractable to use balance equations to get an expression for the

joint stationary probability for tandems of discrete-time queues. The restrictions we

impose on the queues are only going to make it harder to use balance equations to

arrive at an expression for the joint stationary probability for tandems of queues. It

is not hard to construct examples of tandems of restricted, discrete-time queues

where it can be shown that the joint stationary probability does not have a product

form. In spite of this, it is possible to characterize the marginal probability distri-

bution of each queue in the tandem.

In the restricted, discrete-time queue at most one packet is permitted to arrive,

or depart from a single queue of size M. Additionally, there cannot be a simulta-

neous arrival and departure of a packet from the queue. For such a queue, the

analysis of Ref. [5], with appropriate changes, results in the same expression as

Eq. 6.1 for the probability of seeing i packets in the buffer at any time-instant.

The probability of the queue of size M is non-empty is given by the expression

1�ρM

1�ρMþ1 � ρ where ρ ¼ pa
pd

and since the probability of a packet departure from a

non-empty queue is pd, the probability of a packet-departure from the discrete-time

queue is given by
1�ρM

1�ρMþ1|fflfflfflffl{zfflfflfflffl}
�1

� ρ|{z}
¼pa

pd

�pd < pa: That is, the output process of the

queue is geometrically distributed with a parameter that is no greater than the input

parameter pa. This observation holds for a tandem of discrete-time queues. That is,

the output process of each queue is geometrically distributed with a parameter that

is no greater than that of the input to the first queue (i.e. pa). This observation is used
in establishing a bound on the buffer-overflow probabilities at each queue in a

tandem of discrete-time queues in the following theorem.

Theorem 6.1.1 Consider a tandem of n discrete-time queues, each with buffer-
size M, where at any discrete-time instant the probability of a packet-arrival into
the first queue is pa, and the probability of a packet-departure from the i-th,

non-empty queue is pdi, (i ¼ 1,2,. . .,n). If pdj ¼ mini¼1;...;n fpdig, and ρmax ¼ pa
pdj

� �
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< M
Mþ1

, then, the probability of seeing M packets in the i-th queue (i ¼ 1. . .n) is no

greater than 1�ρmax
1�ρMþ1

max

� �
ρMmax.

Proof We first note that 1�ρ
1�ρMþ1

� �
ρM , increases monotonically with respect to ρ if

ρ � M
Mþ1

. Let pai be the probability of a packet arrival into the i-th queue, we know

pai � pa. If ρi ¼ pai
pdi
, since pdi � pdj, it follows that ρi � ρmax <

M
Mþ1

. The observa-

tion follows directly from the monotonicity property mentioned above.

Let β be an acceptable upper-bound on the buffer overflow probability. A direct

consequence of Theorem 6.1.1 is that if we are able to pick a pa such that

pa
pdj

ð¼ ρmaxÞ <
β

1þ β

� �1=M
; (6.2)

then the buffer overflow probability at the i-th queue in the tandem of discrete-time

queues will be no higher than β at all queues.

In [3], this observation is used in a convex programming solution to the problem

of enforcing proportional fairness in the presence of constraints on the buffer

overflow probabilities, in ad hoc wireless networks. Typically optimization prob-

lems for slotted-time protocols involve selecting the optimal access probabilities for

each node such that some performance function is maximized, subject to relevant

constraints (for example, [2, 3]).

If a flow is routed through nodes i ! j ! k, then the probability of packet

arrival into (departure from) the discrete-time queue at node j is the single attempt

success probability of link (i, j) (link ( j, k)). Generalizing this observation, each

flow in the network can be modeled as a tandem of restricted, discrete-time queues,

where the idiosyncratic constraints of ad-hoc wireless networks are embedded in

the expressions for these single attempt link success probabilities (cf. Eq. 6.3,

Sect. 6.2). For the present,
1 each node through which a flow is routed, maintains a restricted, discrete-time

queue for that flow.

6.2 Single Queue vs Multiple Queues

In this section we show that if all the flows in the network have the same

requirement on the bound of buffer overflow probability, the nodes in the network

do not need to maintain separate queues for each flow.

1 This can be changed with impunity following the justification in Sect. 6.2.

6 Wireless Networks: An Instance of Tandem Discrete-Time Queues 73



6.2.1 Link Success Probability Expression

An ad-hoc wireless network carrying a collection of flows, is represented as an

undirected graph G ¼ (V, E), where V represents the set of nodes, and E � V �
V is a symmetric relationship (i.e., ði; jÞ 2 E , ðj; iÞ 2 E), that represents the set of
bi-directional links. We assume all links of the network have the same capacity,

which is normalized to unity. The 1-hop neighborhood of node i 2 V is represented

by the symbol Ni). When a node i communicates with a node j 2 Ni), we can

represent it as an appropriate orientation of the link (i, j) in E, where i is the

origin and j is the terminus. The context in which (i, j) 2 E is used should indicate

if it is to be interpreted as a directed edge with i as origin and j as terminus.

The set of flows, using a link (i, j) 2 E with i ( j) as origin (terminus), is denoted by

Fði; jÞ.
When node i intends to transmit data to node j 2 Ni) for the l-th flow (l 2 Fði; jÞ),

it would transmit data in the appropriate time-slot with probability ~pi;j;l. ~Pi;j ¼P
l2Fði;jÞ ~pi;j;l , denotes the probability that node i transmits data to node j, and

~Pi ¼
P

j2V ~Pi;j , denotes the probability that node i will be transmitting to some

node in its 1-hop neighborhood for some flow. The probabilities ~pi;j;l ’s should

be chosen such that ~Pi is not greater than unity for any node i 2 V.
The probability of successful data transmission over link (i, j) 2 E for flow l

2 Fði; jÞ, denoted by Si;j;l, is given by the expression

Si;j;l ¼ ~pi;j;l � 1�
X

ðj;mÞ2E;n2Fðj;mÞ
~pj;m;n

0
@

1
A�

Y
o2NðjÞ�fig

1�
X

ðo;pÞ2E;q2Fðo;pÞ
~po;p;q

0
@

1
A

8<
:

9=
;:

(6.3)

Assuming there are separate queues for each flow at each node, the probability of a

departure, pdi
l , from the discrete-time queue for the l-th flow in node i (assuming it

has a packet to send) is given by the above expression. If i is the source of the l-th flow
(i.e. there is always a packet to send at node i) the above expression is the probability
of arrival, pa1

l , into the first queue in the tandem (which is located at node j).

The above equation also ensures the service-constraint
P

j2NðiÞ;l2Fði;jÞ p
l
di � 1.

6.2.2 Merging Queues

Consider a wireless network where all flows in the network have the same require-

ment on the bound of the buffer overflow probability stated in the context of
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Theorem 6.1.1. That is, for any flow l, ρlmax � ρmax, where ρlmax ¼ pla1
pl
dj

,

pldj ¼ mini¼1;...;n fpldig, and pai
l ( pdi

l) is the probability of a packet arrival (packet

departure, conditioned on the queue at node i, that the l-th flow is routed through, is

non-empty).

We assume that all the nodes in the network are accessing the channel with floor

access probabilities so as to satisfy the buffer overflow bounds. If ρmax meets the

requirement of Eq. 6.2, following Theorem 6.1.1, we have the fact that the prob-

ability of a buffer overflow at any node, for any flow, is bounded above by β.
Let us consider a node A, with a total of n flows routed through it, which

maintains separate queues for each flow. Additionally, at node A,

1. Let ~plð~pi;j;l in Eq. 6.3) be the optimal floor access probability used by node A to

transmit packets of flow l in any time slot.

2. P̂l denotes the probability that the receiving node for flow l and all the one hop

neighbors of the receiving node (except transmitting node) are silent in any

time slot.

3. l 2 A implies that flow l routes through node A. The access intensity for any flow

l 2 A is given by ρl ¼ plaA=p
l
dA � ρmax, where p

l
dA ¼ ~plP̂l (cf. Eq. 6.3).

4. The overall access probability for node is ~PA ¼P
l2A

~pl.

Now if n queues are merged into a single queue and for each packet in the queue,

node A uses ~PA to access the channel, then,

1. The effective arrival rate of the single merged queue is given by ∑l 2 Ap
l
aA.

2. The effective departure rate of the single combined queue is given by the

expression ~PA

P
l2A P̂lp

l
aAP

l2A p
l
aA

� �
:

Theorem 6.2.1 The traffic intensity of the merged queue is at most ρmax.

Proof Let us compute the ρ̂ for the merged queue at node A.

ρ̂ ¼
P

l2A p
l
aA

~PA

P
l2A P̂lp

l
aAP

l2A p
l
aA

� � ¼
P

l2A p
l
aA

	 
2P
l2A ~pl

	 
 P
l2A P̂lp

l
aA

	 


¼
P

l2A p
l
aA

	 
2P
l2A plaA

	 
2
=ρl

� �
þPl2A ~pl

P
j2A;j6¼l P̂jp

j
aA

� � :
(6.4)

Now, let us look at one term in the second summand in the denominator,

~pl
X

j2A;j 6¼l

P̂jp
j
aA ¼ ~pl

X
j2A;j 6¼l

pjdAp
j
aA

~pj
¼ plaA

X
j2A;j 6¼l

pjaA~pl
ρ

l

~pj
pjdA
pldA

Using this in (6.4), along with the observation that ρl < ρmax we have,
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ρ̂ � ρmaxð
P

l2A p
l
aAÞ2

ðPl2A ðplaAÞ2 þ
P

l2A
P

j2A;j 6¼l p
l
aAp

j
aA

~pl
~pj

pj
dA

pl
dA

Þ

� ρmaxð
P

l2A p
l
aAÞ2

ðPl2A ðplaAÞ2 þ
P

l2A
P

j2A;j p
l
aAp

j
aAð~pl~pj

pj
dA

pl
dA

þ ~pj
~pl

pl
dA

pj
dA

ÞÞ
:

(6.5)

Letx ¼ ~pl
~pj
andy ¼ pl

dA

pj
dA

, using the fact thatx=yþ y=x � 2, we have, ~pl
~pj

pj
dA

pl
dA

þ ~pj
~pl

pl
dA

pj
dA

� �
� 2: Therefore,

X
l2A

plaA

 !2

�
X
l2A

ðplaAÞ
2 þ

X
l2A

X
j2A;j

plaAp
j
aA

~pl
~pj

pjdA
pldA

þ ~pj
~pl

pldA
pjdA

 ! !
:

Hence, from (6.5), we get, ρ̂ � ρmax.
Using a single queue instead of multiple queue at each node has the advantage

that nodes in the network do not need to maintain separate queue for each flow

routed through it, to respect the buffer overflow bound for each flow.

6.3 Preliminary Results

In this section, we describe the experiments that show how ST-MAC protocol [8]

performs when the RTS-signal in the corresponding RTS-slot is transmitted with a

probability as determined by the optimization algorithm discussed in [3]. For this,

we compare the performance of the ST-MAC protocol using different bounds on

the flow’s buffer overflow probabilities (i.e. different traffic intensities). These

experiments involved the implementation of the optimization algorithm within

the ns2 network simulator [9]. A detailed implementation of the 802.11-MAC

protocol already exists as a part of the simulation model.

The results presented in this section, provide an understanding of the perfor-

mance of the optimization algorithm presented in [3], in terms of fairness and buffer

overflow probabilities. It is important to point out that in ns2 network simulator, in

addition to transmitting data for unicast flows in the network, nodes also perform

additional functions such as route discovery and maintenance using broadcast

packets, for example, the broadcasting of route request queries. The simulation

results demonstrate the performance of ST-MAC protocol in presence of these

additional network traffic.
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6.3.1 Traffic and Mobility Models Used in the Experiments

The pause-time is kept constant and equal to the simulation time (i.e. there is no

mobility) in all our experiments. Lucent’s WaveLAN with 2 Mbps bit rates and

250 m-transmission range is used for the radio model. An omnidirectional antenna

is used by the mobile/wireless nodes. The carrier sense range is the same as the

transmission range in our simulation experiments, i.e. the packets are assumed to

interfere with each other only when a receiver is within the transmission range of

two sources that are transmitting simultaneously. We chose AODV [4] as the ad hoc

routing protocol. Each flow in the network has the same bound on the buffer

overflow probability.

In the simulations the retry limit for data packets is set to 4 for 802.11-MAC,

which is the default 802.11-MAC long-retry limit. In case of ST-MAC protocol,

there is no retry limit, i.e., the nodes keep trying to transmit the packet until its

successful. In simulations, at each node a single Drop Tail Queue of size 50 packets

was selected as an interface queue for both these protocols.

We then choose ten random source-destination pairs in the network shown in

Fig. 6.1a, simulated within a 1,000 � 1,000 m field. Each source generates data

packets of 512 bytes each. We run 20 different simulation instances with this fixed

network layout and source-destination pairs, by varying the start times of each

flow in the network by some milliseconds. Depending on the start time of the flows,

AODV chooses different routes for different simulation instances, which are not

same in all the instances.

For our simulation comparisons, we compared the following for scenarios:

• Nodes using 802.11 as MAC protocol, with TCP connections between the

source-destination pairs. This provides us with the reference frame, for compar-

isons using different performance metrics, among the optimization algorithms

using different bounds on buffer overflow probabilities and step sizes, when

nodes in the network use ST-MAC protocol and CBR traffic.

• ST-MAC protocol with constant-bit-rate (CBR) flows between each source-

destination pair, ρ varying from 0. 86 to 1. 0 for each flow.

The simulation time for each simulation is 620 s. The nodes start using the flow

rates and access probabilities given by optimization algorithm [3] after 120 s from

the start of the simulation and the simulation continues for additional 500 s. The

nodes keep updating the flow rates and access probabilities until the simulation

terminates.

In the case of 802.11-MAC protocol, the TCP connections are started when the

simulation starts. For ST-MAC, however, we wait a total of 120 s before the nodes

start transmitting at optimal rates. During this time, the sources transmit at very low

rates so as to prevent any network congestion.
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6.3.2 Results

Figures 6.1b and 6.2a, b show the plots of the average network throughput, packet-

delivery ratios and end-to-end delays for different simulation runs of the scenarios

mentioned in the earlier section. In case of 802.11-MAC the average packet

delivery ratio and end to end delay is low and the because the packets are dropped

by 802.11-MAC after four retries. This also contributes to lower the throughput in

case of TCP.

In case of ST-MAC protocol, as ρ increases the network throughput increases

but at a cost of larger delays and higher packet loss. As the value of ρ is increased,

the network delay increases because of increase in queuing delays. Also, we can

observe that when ρ ¼ 1, the packet delivery ratio decreases as more packets are

getting dropped because of buffer overflows.
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Fig. 6.1 Simulated network and throughput. (a) Ad hoc wireless network with 100 nodes,

10 connections. (b) Average network throughput
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6.4 Conclusion

Each end-to-end flow in an ad-hoc wireless network of half-duplex nodes using a

slotted time protocol can be viewed as a tandem of discrete-time queues with

restrictions that capture constraints specific to wireless networks. We derive a

bound on the buffer overflow probabilities for each queue in the tandem. We then

suppose that all queues, irrespective of the flows they serve, are subject to a

common buffer overflow bound. We show that for this case there is no need to

maintain separate queues for each flow that is routed through a host. These flows

can all be merged into a single queue and served as if there were just one flow, and

the buffer overflow bounds will still be met. This observation finds use in the

implementation of the distributed algorithm that enforces proportional fairness

subject to buffer overflow constraints outlined in Ref. [3]. We present some sim-

ulation results of this implementation.
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Fig. 6.2 Network packet delivery ratio and average delay. (a) Average network packet delivery

ratio. (b) Average network end to end delay
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