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Abstract.  Sensors and actuators embedded in physical objects being linked 
through wired/wireless networks known as “internet of things” are churning out 
huge volumes of data (McKinsey Quarterly report, 2010).  This phenomenon 
has led to the archiving of mammoth amounts of data from scientific simula-
tions in the physical sciences and bioinformatics, to social media and a plethora 
of other areas.  It is predicted that over 30 billion devices with 200 billion in-
termittent connections will be connected by 2020.  The creation and archival of 
the massive amounts of data spawned a multitude of industries. Data manage-
ment and up-stream analytics is aided by data compression and dimensionality 
reduction. This review paper will focus on some foundational methods of di-
mensionality reduction by examining in extensive detail some of the main algo-
rithms, and points the reader to emerging next generation methods that seek  
to identify structure within high dimensional data not captured by 2nd order  
statistics.   

Keywords: Multivariate Analysis, Dimensionality Reduction, Projections, 
Principal Component Analysis, Factor Analysis, Canonical correlation Analy-
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1 Introduction 

Needless to say, “Big Data” is the next frontier in scientific exploration and ad-
vancement.  A recent report by a National Academy of Sciences commissioned study 
examines the challenges and opportunities [1].  The range of problems includes back-
end systems for the ingestion and storing of large volumes of structured, semi-
structured, and unstructured data (static and time-aware) in various formats and 
sources, to query engines, and analytics operations in the front-end.  The volume to be 
processed at the speed of business requires parallel computing by distributed 
processing, a common set of analytical methods for repeatable analyses and rewriting 
existing algorithms to adapt to scale.   

As the number of variables which purportedly describe a phenomenon, as well as 
frequency of sampling keeps increasing, it has become a challenge to tease out that 
subset of variables which indeed capture the dynamics and structure of the underlying 
phenomenon.  Towards that end, data reduction techniques have become the mainstay 
of statistical data pre-processing.  So we provide a tutorial review of some of the 
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foundational methods in dimensionality reduction in detail and point the reader to the 
next generation of algorithms.  The field of dimensionality reduction is vast, and so 
we limit the scope of the paper to popular dimensionality reduction techniques such as 
principal component analysis (PCA), Factor Analysis (FA), Canonical Correlation 
Analysis (CCA) Independent Component Analysis (ICA), and Exploratory projection 
Pursuit (PP).  We have chosen these methods because the vast majority of practition-
ers utilize them in daily applications.  In this tutorial, we will study PCA, FA, CCA, 
ICA, and PP and relationships among them in some detail.   

Since dimension reduction is not only desirable, but paramount, how should we go 
about it? Perhaps, a simple approach is to find a lower-dimensional embedding in 
which the data truly resides, while eliminating extraneous variance.  This can be 
achieved by projecting the data by linear transformations into lower dimensional sub-
spaces by maximizing a suitable objective function.  This genre of algorithms is 
known as projective methods [13].  In the transformed domain the data is more inter-
pretable as non-informative sources of variation can be eliminated, while retaining 
principal directions of variance.  The other approach to dimensionality reduction is to 
exploit polynomial moments to unravel the hidden structure in the data.  Well known 
projective methods are based on the covariance (2nd order cross moments) which only 
capture the linear structure in the data.  Methods that go beyond 2nd order moments 
are exploratory projection pursuit, independent component analysis, and principal 
curves and surfaces [7,8].  A class of methods known as manifold learning, extract 
low-dimensional structure from high dimensional data in an unsupervised manner. 
These techniques typically try to unfold the underlying manifold  into a lower 
dimensional space so that Euclidean distance in the new space is a meaningful meas-
ure of distance between pairs of points [16].  These methods have implications in 
making clustering methods more effective in the transformed space.  In the following 
sub-sections, we will briefly introduce the techniques presented in this paper.  The 
contents of the paper assume that the reader is familiar with elementary linear algebra, 
elementary probability theory, mathematical statistics, and multivariate analysis. 

1.1 Principal Component Analysis 

Principal components analysis (PCA) is one member of a family of methods for di-
mensionality reduction. It is a technique that involves transformations of set of va-
riables into a smaller set of uncorrelated variables, while retaining intrinsic informa-
tion in the original data set by exploiting correlations among the variables [2,3,15].  
PCA is merely a linear projection of a set of observed variables on to basis vectors 
which turn out to be Eigen vectors under the average mean square error (MSE) objec-
tive function.  PCA is one of the simplest and most common ways of doing dimensio-
nality reduction. It is also one of the oldest, and has been variously alluded to in many 
fields as the Karhunen-Loève transformation (KLT) in communications, the Hotelling 
transformation, and latent semantic indexing (LSI) in text mining. But the moniker 
principal component analysis is the most popular.   
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1.2 Factor Analysis 

Factor Analysis (FA) is a technique to find relationships between a set of observed 
variables and set of latent factors.  The Factor analytic model is based entirely on the 
covariance matrix of the observed variables like the PCA models we studied in an 
earlier section.  The key idea behind factor analysis is that multiple observed variables 
have similar patterns of responses because of their association with an underlying set 
of latent variables; the factors, which cannot be easily measured.  For example, res-
ponses to questions about occupation, education, and income, are all associated with 
the latent variable socioeconomic stratum.  In a factor analysis model, the number of 
factors always equal to the number of variables. Each factor contributes to a certain 
amount of the overall variance in the observed variables. The factors are then ar-
ranged in the decreasing order of variance explained.  In a factor analytic model, each 
observed variable is expressed as a sum of latent factors , known as 
common factors, and an error term , known as specific variance. The specific 
variance accounts for the unexplained variance in the observed variable.  Mathemati-

cally, the observed variables are projected onto a set of basis vectors ℓ , known 

as loadings in the FA literature.  Under some assumptions on the latent factors, the 
loadings are the Eigen vectors obtained by decomposing the covariance matrix Σ.  
Typically spectral decomposition [2] is applied to Σ to obtain Eigen value, Eigen vec-

tor pairs , . The Eigen value is a measure of how much of the variance in the 

observed variables a factor explains. Any factor with an Eigen value ≥1 explains more 
variance than any single observed variable.  In the exploratory mode, FA can be used 
to subset similar variables by examining the factor loadings on the original observed 
variables.   

1.3 Canonical Correlation Analysis (CCA) 

Canonical correlation analysis (CCA) proposed by Professor Harold Hotelling in 
1936 is a method for exploring linear relationships between two sets of multivariate 
variables (vectors), measured on the same object/entity.   It finds two bases, one for 
each variable set such that the correlation between the inner products (linear projec-
tions) between the two bases and the two variable sets is maximized.  The dimensio-
nality of these new bases is less than or equal to the smallest dimensionality of the 
two variables.  Succinctly, CCA reduces pairs of high dimensional variables into a 
smaller set of linear combinations which are more amenable for interpretation.   

1.4 Independent Component Analysis (ICA) 

All the methods introduced are based on 2nd order statistics (correlation structure). 
Independent component analysis (ICA) [9] in contrast attempts to reduce dependen-
cies among higher order moments thereby increasing statistical independence among 
the original variables.  It is a technique for identifying an underlying set of hidden 
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factors from a multivariate set of random variables.  It is among one of the popular 
techniques used in blind source separation [9].  An observed set of observations are 
assumed to be linear mixtures of hidden latent factors, and the mixing coefficients are 
unknown.  ICA departs from previously known projective methods in that it assumes 
that it exploits higher order moments beyond the 2nd order for identifying unknown 
factors (components) of the hidden mixture, besides assuming  non-Gaussian distribu-
tions generating the data.  In one version of the ICA, the latent sources are assumed to 
be non-Gaussian and independent.  The objective function to estimate the unknown 
coefficients is parametrized by a likelihood function.  The non-linear log-likelihood is 
then used to estimate the unknown coefficients by any of the stochastic gradient me-
thods [11].  

1.5 Projection Pursuit (PP) 

Projection pursuit seeks to identify hidden structure in high dimensional data by using 
projections in lower dimensions that capture interesting features.  The interestingness 
is determined by a numerical index known as the projection index. Techniques such 
as PCA, FA, and CCA depend on rotation, and scaling, to obtain linear projections.  If 
the data vector  observes a certain probability law, their sum  would fol-
low a Gaussian distribution by the central limit theorem [5].  And it is well known 
that the Gaussian is fully specified when the first two moments (mean, and cova-
riance) are known.  So, these methods capture only the linear structure in the data.  
Projection pursuit seeks to unravel the non-linear hidden structure by leveraging po-
lynomial moments, and it is in this sense that PP departs from other projective  
methods.   

2 Projective Methods and Dimensionality Reduction 

2.1 Principal Component Analysis 

Principal Component Analysis involves linear combinations of the p features x1, 
x2,….,xp of an input pattern vector that are mean-centered. Geometrically, the linear 
combinations are obtained by rotating the original system with features x1, x2,….,xp as 
the coordinate axes, thereby resulting in a new rotated coordinate system.  The axes of 
the rotated coordinate system represent the directions with maximum variability.  This 
lets elimination of low-variability coordinate axes to reduce the dimensionality of the 
original data.  Although p principal components are required to account for the total 
system variability, majority of the variation is captured by a smaller number m.  The 
m principal components can then replace the original p features.  Thus, the original 
data set consisting of p features with n measurements each is replaced by p principal 
components with n measurements each.  Thus principal components are vectors that 
span a lower m dimensional subspace.   Material for this section has been adapted 
from [2,3,6,15] and the reader is encouraged to refer to these references. 
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Consider the random vector , , ,  with covariance matrix Σ whose 
Eigen values are , where each  is  0.  Let , be a set of vectors ob-
tained by composing linear combinations of the original features.  Mathematically 
they are given as: 

  ,  ,  
   ,  , ,   

 , ,
 

Where , , ,  is the ith linear combination.  
What we notice above is that each feature vector, say , , ,  is 

projected onto a vector , , ,  given by;  which is a simple 
inner product.  The vector   is such that 1.  It is clear that the mean of the 
vectors is 0 since the ,s are mean-centered.   Consider for example, the vector 

.  The mean  
∑ ∑ ∑ ∑

 =0 as the s are mean-centered. 

In matrix form, the linear combinations can be written as  

The variance of  can be expressed in matrix form as: 
 

                (1) 

 
To derive principal components from linear combinations (projections), we invoke 

the notion of average mean square error (MSE).  That is; we are searching for those 
projections that have the smallest mean square distance between the original feature 
vectors and their projections.  Mathematically, we want to choose the vector  such 
that the variance  is minimized.  To find the  that maximizes the variance ( , 
we utilize constrained optimization by Lagrange multipliers [17].  Maximize  sub-
ject to 1 

  
       , 1                   (2) 

  

          
, 2 2                           (3) 

  

               
, 1                                    (4) 
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Let  and setting 
, 0 implies S = , the characteristic equation 

that links Eigen values and Eigen vectors.  Therefore, the desired vector (  is the 
Eigen vector of the covariance matrix (S).  These maximizing Eigen vectors will be 
associated with the largest Eigen values .  Since S is a covariance matrix, it is 
symmetric and positive definite. A matrix is said to be positive definite, if 0 
for any .  It is well known that a symmetric, positive definite matrix has positive 
Eigen values and the corresponding Eigen vectors are orthogonal.  The first principal 
component is the axis along which the data has the most variance, and corresponds to 
a projection on the Eigen vector with the largest Eigen value.  Similarly, the 2nd prin-
cipal component is the axis with the 2nd largest variance and is associated with the 
with the Eigen vector with 2nd largest Eigen value, and so on.  And we obtain p prin-
cipal components as the covariance matrix is of order (pxp).  Since the Eigen vectors 
are orthogonal, the projections (principal components) are all uncorrelated with each 
other.  As each principal component captures proportion of variance in the data  along 
its axis; those components corresponding to low variance may be dropped.  Thus a set 
of  fewer components may be chosen, resulting in dimensionality reduction.  In 
a practical setting, the Eigen values obtained by solving, S = , are given by; 

are ordered.  The ordered set of Eigen values, from the smallest to the largest 
are , , , .  The variance explained by each successive principal compo-
nent is obtained by calculating the ratio;  

 

                           
∑∑ , 1,2, , .          (5) 

 
When  exceeds 0.8 (say), then the number of principal components is equal to i

for which 0.8 is attained.  The number 0.8 corresponds to 80% of variance in the data.  
The experimenter is at liberty to choose the cut-off value appropriate for the applica-
tion % .  Many times, a graph known as the scree plot is drawn to select the appro-
priate number of principal components.  The scree plot is merely a graph, where the 
X-axis represents the numbers ( )p,,2,1  -which are the indexes of the Eigen values 

and the Y-axis is the cumulative variance .  The number of principal components 
is chosen by locating the elbow in the curve beyond which the additional variance is 
negligible.   Fig. 1 is an illustration of a scree plot.  The vertical arrow marks the point 
when the cumulative variance stabilizes (flattens). 

In conclusion, while PCA is a useful data reduction technique, care should be  
exercised in extracting meaning out of the components, which are simply linear  
projections of the original data. If the end goal is to classify high dimensional  
objects/entities to one of a several classes (as in a classification problem), using PCA 
for data reduction is fair game and perhaps required.  
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Fig. 1. Graph of Cumulative Variance versus Number of Eigen Values 

2.2 Canonical Component Analysis 

Canonical Correlation Analysis (CCA) proposed by Professor Harold Hotelling in 
1936 is a method to correlate two different set of variables by projective transforma-
tions [4, 14].  It seeks to reduce pairs of high dimensional vectors into a few pairs of 
highly-correlated linear combinations of vectors known as canonical variables.  Thus 
CCA can be construed as a feature reduction technique, while its origins was in being 
able to find relationships between manifestly different sets of variables, such as those 
related to government policies and economic impact.  Operationally, CCA involves 
projecting each set of multi-dimensional variables , onto basis vectors ,  
such that the correlation measure  between the projected vectors is maximized. 
The projections are given by  and .  The idea is to find pairs of linear pro-
jections that are maximally correlated.  The next iteration, we find those projections 
that are maximally correlated, but uncorrelated with the first pair, and the procedure 
continues until we find correlated projections that are uncorrelated with the predeces-
sor pairs. Fig. 2 is a pictorial representation of Canonical Correlation Analysis.  Two 
 

 

Fig. 2. A Pictorial representation of Canonical Correlation Analysis  
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sets of variables ,  are projected on to two basis vectors ,  to yield linear 
projections, , .  We then determine the optimal values of the basis vec-
tors; ,  that maximizes the correlation  between the projections.  

 
Operationally, we are seeking vectors  and  such that: 
 

         max,  
              (6) 

 
The above expression can be further simplified for simplicity of expression by 

simple algebraic manipulations.   
         max,   max,  

    (7) 

 

                    max,                (8) 

where Σ , Σ , Σ  are respectively, the variances and covariance between the ran-
dom variables .   

The maximum of  is the canonical correlation obtained by maximizing over , .  We note that the canonical correlation is invariant to scaling the basis by a 
constant .  This can easily seen by re-scaling to ,  and substituting in (8).  

Thus we maximize the canonical correlation subject to the constraints Σ 1 

and 1.  Since we are seeking an optimization solution under constraints 
above, the Lagrangian formulation is as follows: 

 

    , , Σ Σ 1 Σ 1       (9) 

 
Finding the derivatives of · with respect to , and setting them equal to zero 

yields; 

     
, , , Σ Σ 0                       (10)

    

   
, , , Σ Σ 0                        (11)    

      
To solve this system of linear equations, we multiply, (10) by  and the (11) by 
 yielding,  

                Σ Σ 0                      (12) 
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                      Σ Σ   = 0                                  (13) 
 

Subtracting, the (13) from the (12), gives: 
 
   Σ Σ 0       (14) 
 
Applying the constraints, Σ 1 and Σ 1, we obtain, . 
 

Also from 10  we get .  Substituting this value of  in   in (11) we have: 
        Σ ,Σ Σ Σ  

 Σ Σ Σ = Σ Σ            (15) 
 

since .  Note that I use Σ ,  instead of Σ  in (15) as it is a symmetric 
matrix. Σ Σ Σ = Σ  in (15) is reminiscent of an Eigen equation.  It is 
known as a generalized Eigen equation.  This can be reduced to the form , by 
noting that the matrix Σ  is symmetric and positive definite and can be expressed as 
the product  (Cholesky Decomposition) [11].  Also, let   and re-
writing (15), we have:                                    Σ Σ Σ        (16) 

 
Clearly, this of the form   is the Eigen equation seen in standard linear al-

gebra!  The Eigen equation can be used to find the ,  to find the co-ordinate 
system that optimizes the correlation between the linear combinations of the two sets 
of vectors , .    To apply the theory developed above in a practical setting, the 
unknown population quantities, Σ , Σ , and Σ are replaced by their sample coun-
terparts, S , S , and S  respectively.  Alternatively, one may use the correlation 
matrices, R , R , and R  as the roots/solutions derived from the application of the 
two representationss is the same.   

In conclusion, CCA can be applied to large data sets where the correlations among 
the linear combinations of two sets of variables may reveal latent structures in the 
data that may not be captured by pair-wise correlations among the original variables.  
An added advantage of CCA is that it can identify relationships among observed va-
riables and underlying latent factors/motivations.  For example, it is applied in mar-
keting analytics to understand the relationship between pricing (observed variable) 
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and attributes such as form factor, ease of using, appeal, and other features (latent 
factors) attractive to a target segment of the market. 

2.3 Factor Analysis 

Consider a random vector  with p components with mean vector  and covariance 
matrix Σ .  The factor analysis model is given by 

 
                                                           (17) 

 
 

 
Where , , ,  are the p observed variables, unknown means of the ob-

served variables, the hidden latent factors called the common factors and are 

the specific variances respectively.  And , are the factor loadings.  Fig. 3. is a 

graphical illustration of the FA model, where subsets of the observed variables are 
captured by the factors, and the specific variances (  are associated with the indi-
vidual variables ( .  Clearly from the set of equations (17), the observed variable 
resolves into a factor component  and a specific variance component (error) shown 
in Fig. 4.    

 

 

Fig. 3. A graphical representation of the factor analysis model 
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Fig. 4. Resolution of an observation vector (x), into a common factor (F) and error components ,  

The FA model postulates that a vector  is decomposable into a set of common 
factors , 1,2, ,  and specific factors .  In matrix terms, the FA model 
in (17) can be written as; 

 
                                      ( 18) 

 
We make the following assumptions.  0, Σ , ,0, Ψ. The matrix Ψ is given as: 
 Ψ ψ 00 ψ  

 
Also, it is assumed that 0.  Note that   means that the cova-

riance of F is an identity matrix.  The Factor model can be more elaborately expressed 
as: 

 
                      (19) 

 
 The covariance matrix of  is given by;  

Ψ.  The cross-products vanish due to our assumptions following (17) 
 
        Thus, Σ  Ψ                                                    (20) 

 
Simple algebraic calculations yield the following identities; 

 
              (21) 
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and 
              ,         (22) 

and , .   
It is clear from the model formulation that factor analysis attempts to reproduce the 

p + p(p+1)/2 variances and covariance  using  pm factor loadings and specific va-
riances.  So the choice of the number of factors (m) is mighty important.   

Heretofore, our discussion focused on what is known as the population model in 
the statistics literature.  Since Σ Ψ is unknown, it is estimated by the sample 
covariance .  We use the sample covariance matrix (  to estimate the factor load-
ings.  The loadings estimated from the sample are called sample loadings.  And the 
specific variances may be construed as the unexplained sample variance.   

 

  +
ψ 00 ψ                  (23) 

 
Therefore,  
                     ∑                                (24) 

 
Communality is the sum of the squared factor loadings on the m factors for a given 

variable. It is the variance in that variable accounted for, by the m factors. Another 
way to understand communality is that is a measure of percent of variance in a given 
variable explained by the m factors jointly and may be interpreted as the reliability of 
the indicator (latent factors). 

In order to obtain a sample based solution, we use PCA.  This is achieved by ap-
plying spectral decomposition [3] to the sample covariance matrix .  The PCA 
approach decomposes  in terms of Eigen values and Eigen vector pairs.  Mathemati-
cally, spectral decomposition of a pxp symmetric matrix is given as: 

,where ,1,2, ,  are the Eigen values and  is the  Eigen vector.  This representation of 
the sample covariance matrix is known as the famous spectral decomposition.  For the 
FA model to be useful, only the top m << p Eigen vectors are retained, and the specif-
ic variances (  are assumed to be negligible.  In some cases the specific variances 
are assumed to be non-negligible as well.  Furthermore, the spectral decomposition of 

 can be written as: 

                 | |                           (25) 

 
Let us assume that the specific variances (  are non-negligible.  Then the FA 

model is given by  
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          | | +
ψ 000 0 ψ             (26) 

 
If we assume the 2nd matrix Ψ  to be negligible,   
 

  | |                        (27) 

 
Examining the decomposition equation for the sample covariance matrix , the 

loadings  is the solution to the equation, .  The loadings appearing as 
coefficients in the observed variables  are used to impute meaning to factors and 
also identify sub groupings of observed variables.   

The FA model, while useful for identifying for sub-groupings of original variables, 
is beset with some ambiguities.  The loadings,  are only unique up to rotation.  Con-
sider an orthogonal matrix  such that .  The matrix  is a rotation 
matrix [17]. We saw that the FA model  yields the covariance matrix, Σ Ψ.  Which can be rewritten as: 

 

               Σ  Ψ Ψ                                    (28) 

where .  So, we notice that both  and  yield the same covariance matrix Σ.  
So a rotated version of  leads to a set of loadings with the same covariance leading to 
an obvious ambiguity.  So, in applying FA models, if the initial loadings do not yield 
a satisfactory solution in identifying a reduced set variable sub-groupings or meaning-
ful interpretations, the experimenter can apply rotations such that the loadings  can 
be redistributed among the factors to possibly obtain more meaningful results.  This 
task is often accomplished by such procedures as varimax, and promax rotations.  
Commercial and open source tools such as SAS, MATLAB, and open source program 
R provide this feature.  The material for this section has largely been adapted from 
[3].  The reader is encouraged to consult it for a detailed exposition. 

2.4 Independent Component Analysis 

Independent component analysis (ICA) is a versatile technique that can be used for 
data reduction.  ICA is a tool for discovering underlying latent factors that are statisti-
cally independent and do not observe the Gaussian law of errors to paraphrase [9].  
While PCA and FA depend on the covariance matrix Σ , ICA seeks projective direc-
tions that are statistically independent based on the probability distribution of the data 
and its higher order moments. Graphically, the ICA model given in Fig. 5, depicts the 
latent factors linearly combining to produce an output  at the  node with the edge 
weight equal to  connecting the  latent source . ICA determines the optimal 
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weights .  The weights may be construed as the correlation between the latent factor 
 and the observed output .  More formally, let, X be a  matrix consisting 

of n observed samples of a p-dimensional vector , F is also a  matrix of con-

sisting of n samples of a p-dimensional latent source vector .  And L is a pp × ma-

trix of unknown weights to be determined.  The ICA model in the matrix form is giv-
en below.   

 

          (29) 

 
Concisely, it is given by; .  In this equation, X, L, and F are 

the observed data, the unknown weights, and the unknown latent factors respectively.  
The objective is to estimate the unknown weights and factors optimally.   Notice that 
unlike the FA model, the ICA does not explicitly consider the specific variances .  
In other words, we are trying to seek, , where .  So we can recover 
the latent sources , where  [18]. 

 

 

Fig. 5. Graphical illustration of an ICA model.  The latent sources Fi are linearly combined to 
produce an output ∑ , where  is the weight connecting the  latent factor  to the 

 output . 

 
Let the probability distribution of each source  be · .  The joint probability 

distribution of the p independent latent sources and n independent samples (28) is 
 

  ∏ ∏ ∏ ∏ | |                (30) 

 

F1 F2 F3

X1 X2 X3
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The above joint probability density of the latent sources in (30) is based on a well- 
known theorem on transformation of random variables from mathematical statistics 
[5].  The quantity | | is known as the Jacobian of transformation which is the 2nd 
term in (30).  It corresponds to the 2nd term in (31) of theorem 2.4.1.  Note that the 
vector  is the  observation and  is the corresponding weight vector in (29). 

Theorem 2.4.1 If a random variable ~ , then the transformed random variable,  
 

      ~                         (31) 

  
Given the observed data , 1,2, , , the log-likelihood function ℓ  relative 

to the joint density  is denoted and written as:       
 

             ℓ ∑ ∑ | |                     (32) 

 
You will notice that the log-likelihood function is written assuming that the ob-

served samples, and therefore the unknown latent sources are independent.  In order 
to determine the weight vector , 1,2, ,  , we invoke the stochastic gradient 
methods to maximize the log-likelihood function, and the iterative sequence is given 
by; 

                       

1 2
1 2                        (33) 

 
In the application ICA to obtain the best results, the probability density function ·  is assumed to be non-Gaussian.  The cumulative distribution function (CDF) 

parametrized by the sigmoid function,  is a candidate CDF. It is well known 

from mathematical statistics that the probability density function (PDF) is simply the 
derivative of the CDF [5].  It can easily be checked that the derivative of the sigmoid 
does not result in the PDF of a Gaussian, which in its general form 

is;√ , where , are the mean and variance respectively.  Equation 

(33) is derived based on the assumption of the sigmoid function.   
In the updating equation above, the parameter  is the learning rate. The 2  

term,  is obtained by finding the derivative of | |.  On finding the optimal 
values of L, the latent factors can be constructed from , where .  It 
is noted en passant that another typical application of ICA is for identifying latent 
sources (these correspond to mixed signals of voice samples captured by microphones 
placed in room-the famous cocktail party problem), our perspective and purpose here 
is different.  We assume that there is a model consisting of a  matrix (X) of ob-
served data which is a linear combination of latent sources. The idea is to identify a 
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smaller set containing linear combinations of latent sources which explain the va-
riance in the observed data.     

In deriving the ICA model, we used a sigmoid function parametrization.  However, 
if the application suggested a certain parametric form for the PDF, one should  
incorporate it into the joint density function, and derive the updating equations  
accordingly. 

2.5 Projection Pursuit 

Pursuant to our effort to discover hidden structure not captured by the covariance 
matrix Σ , we introduce a popular technique called projection pursuit (PP) which is 
somewhat computationally intensive.  Projection pursuit is a technique to reduce 
high-dimensional data by projecting on to a lower-dimensional space to reveal latent 
(hidden) structure in the higher dimensions [7].  Projection pursuit was first invented 
by Krushkal to discover interesting lower-dimensional projections.  The notion of 
“interestingness” is parametrized by an index given by .  If we recall, PCA, the 
goal there was to find axes of an ellipsoid (assuming the data is Gaussian) that corres-
ponded to largest variation.  So, the index  is the projection   of the data 
vector on to an Eigen vector  subject to 1.  The “interestingness” in the 
data is of course the linear projections which are the principal axes parametrized by 
the Eigen vectors. For comprehensive detail and a beautiful exposition of PP, the 
reader is referred to [7].  We alluded to hidden structure in high dimensions.  The 
Gaussian distribution being rotationally symmetric does not produce interesting pro-
jections.  Because a linear projection  where the random vector , being a 
sum of random variables will again observe the Gaussian law by the central limit 
theorem.  Therefore, a preponderance of linear projections do not reveal structure 
beyond the 2nd order moments.  The projection index we seek is based on polynomial 
moments.  The idea is to transform a projection  to  2Φ 1 
whereΦ ·  denotes a Gaussian CDF.  The transformation results in a Uniform distri-
bution.   The transformed projection is then compared against a Uniform random 
variable .  A departure from the uniform distribution measured by  
is an indication of non-Gaussian structure.  The symbols ,  are the distributions of 
the two random variables, , respectively.  Operationally, it is the integral squared 
distance between the densities of ,  that is calculated.  The integral square error 
statistic serves as a projection index.  The reader is again encouraged to refer to [7]. 

3 Applications 

In this section, we picked PCA to illustrate the importance of dimensionality reduc-
tion in a semiconductor manufacturing application.  Signature analysis (SA) in  
semiconductor manufacturing is a statistical pattern recognition program designed to 
assign failed parts to one of several pre-determined root cause categories [10].  Engi-
neers invest lots of time tracing back-end electrical parameter test failures to probable 
on-line root causes.  It is desired to have an automated program based on sound  
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statistical theory that enables the classification of a failing signature to a root cause 
category such that the probability of misclassification is minimized.  Linear discrimi-
nant analysis (LDA) is an established parametric procedure that minimizes the proba-
bility of misclassification and allows the failure analysis engineer to state “The prob-
ability that a failing chip with a specific signature belongs to the kth root cause catego-
ry is p %.”  But prior to applying LDA, a database of signatures is created.  A signa-
ture is merely a feature vector of measurements obtained from a chip.  Associated 
with each signature is a label which indexes the failing chip with an associated root 
cause.  In many semiconductor manufacturing settings, the size of the signature vector 
is in excess of 400 features due to the number of tests conducted to ensure the reliabil-
ity of the finished product.  A majority of these tests are electrical measurements that 
are correlated to one another.  So applying of PCA not only reduces the dimensionali-
ty of the signature vector, but also eliminates the collinearity (correlations) among the 
features since the principal components are orthogonal to one another.  In the example 
below, chips are manufactured using the LinBiCMOS technology.  LinBiCMOS is a 
CMOS technology with bipolar components (see Wikipedia for details about the sem-
iconductor technologies).  The chips were tested at 5 locations on a wafer.  A wafer is 
an array of chips laid out as a matrix on a circular disc.  The wafers are processed in 
batches of 20 are known as lots.  The five locations known as test structures are at the 
top, center, bottom, left, and right (T,C,B,L,R) locations on the wafer.  The electrical 
test measurements were approximately 125.  Many of the measured features were 
correlated and thus redundant.  We applied PCA to reduce the feature set to 34 prin-
cipal components, which is a reduction of ~75%.  An example using LDA to deter-
mine root cause of failures is shown in Table 1.   
 

Table 1. Classification by Linear Discriminant Analysis 

 
 
Two lots failing due to missing N+S/D implant were submitted to the automated 

signature analysis program for root cause identification (see the column headed, 
“probability” in Table 1).  A signature of length 34 is applied to the program for pat-
tern classification.  The signature is from a certain device XXXXXXXXX belonging 
to technology YY. Table 1 shows the results of this analysis. The number of electrical 

Lot Number 9745158
Device XXXXXXXXX

technology YY
Number of Wafers 24
Number of Sites 5

Number of Parameters 123
LDA by Site

Wafer Number Site Number MD Root Cause probability
17 2 9.65 Missed N+S/D implant 0.980000
17 2 2.03.84 Missed Nwell Implant 0.000000
17 2 367.48 High Epi Doping 0.000000
17 2 408.77 Sidewall Overetch 0.000000
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test parameters measured for this technology is 123, but a signature of dimension 34 
is applied for classification using PCA.  Wafer 17 which failed some tests was applied 
to the SA program.  The measurements were obtained from site 2 which corresponds 
to one of the locations (T,C,B,L,R).    Clearly, LDA identified the correct root cause, 
and the dimensionality reduction by PCA captured sufficient information to draw the 
correct inference!  
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