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Abstract. Real-Time Strategy (RTS) games have become an attractive
domain for AI research in recent years, due to their dynamic, multi-agent
and multi-objective environments. Micromanagement, a core component
of many RTS games, involves the control of multiple agents to accomplish
goals that require fast, real time assessment and reaction. In this paper,
we present the application and evaluation of a Neuroevolution technique
in evolving micromanagement agents for the RTS game Starcraft: Brood
War (SC:BW). The NeuroEvolution of Augmented Topologies (NEAT)
algorithm, both in its standard form and its real-time variant (rtNEAT)
is comparatively evaluated in micromanagement tasks. Preliminary re-
sults suggest the general viability of these techniques in comparison to
traditional, non-adaptive AI. Further analysis of each algorithm identi-
fied differences in task performance and learning rate.

Keywords: Real-Time Strategy Games, Neuroevolution, Evolutionary
Computation.

1 Introduction

It was predicted more than a decade ago, that interactive computer games would
emerge as an ideal platform for Artificial Intelligence research [1]. Due to their
increasingly complex and realistic simulations, video games have become fine
approximations of real world environments. AI techniques can be developed and
evaluated in a cost effective and contained manner, before being applied to more
complicated real world problems [1,2]. The popularity of video games as an
entertainment medium has resulted in a consistently growing, multi-billion dollar
software industry [3]. This in turn is a driver of video game technology and
research, of which AI is a vital component [4].

The popularity and ease of access to videogame hardware and software has
increased the accessibility of computing power and simulation environments for
AI research. On the other hand, the contribution of AI research to commercial
game development has been lacking in recent years [5]. This has resulted in
high dependency on deterministic and non-adaptive AI techniques in commercial
games that limit their realism, replayability and challenge [6].

Real Time Strategy (RTS) games are a genre of video games that provide
unique challenges to AI research [7]. Characteristic of the genre is a real-time,
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stochastic environment, with multiple objectives and enormous action and state
space. These features require AI agents with multiple levels of abstraction and
reasoning, fast reaction and expert game knowledge. An example of the genre
is Starcraft: BroodWar (SC:BW)1, an RTS game that is a popular game envi-
ronment for AI research. Using a third party plugin called the Brood War API
(BWAPI)2, it is possible to create complex AI agents to play matches of SC:BW.

In this paper, we aim to evaluate the effectiveness of Neuroevolution (NE)
techniques in developing learning agents for playing SC:BW. The goal is to con-
tribute to the development of a complete AI system capable of learning and
executing human expert level strategy in SC:BW. In particular we focus on ‘mi-
cromanagement’, a crucial level of abstraction in the RTS domain, handling the
fast combat component of the overall game. NE applies evolutionary algorithms
to train artificial neural networks that are known to be effective approximators
of complex, non-linear functions. Meanwhile, RTS games have a large state and
action space that is suitable for neural networks. Furthermore, research on the
NEAT algorithm [8] has shown the effectiveness of NE in reinforcement learning
tasks, of which SC:BW has been successfully modelled [9,10].

We first implemented a micromanagement agent for SC:BW that uses NEAT
and a real time variant rtNEAT for learning behavior. Next, the viability of the
agent was evaluated against the existing SC:BW AI in multiple experiments.
Finally, we analyzed the difference in performance between standard NEAT and
the real-time variant, both in the rate of learning and in match performance. The
rest of the paper is structured as follows: we provide a survey of related work
around SC:BW AI and the NEAT algorithm. Next, we describe an overview of
the implementation of our AI agent and the usage of NEAT, followed by the
evaluation of the agent and a discussion of results. Finally, we give concluding
remarks and highlight areas of future research.

2 Related Work

In many RTS games, the game strategy can be roughly divided into two levels
of abstraction. Macromanagement is the level that is concerned with high level
strategic decision making such as resource planning and opponent modeling.
Techniques dealing with macromanagement must choose and adapt
sequences of strategic actions to meet goals of varied hierarchy. Example of
techniques applied to this domain include Case Based Reasoning[11] and Goal
Driven Autonomy[12]. Micromanagement is the level concerned with direct com-
bat tactics and unit control. Traditionally, micromanagement is accomplished
via static AI techniques such as scripts based on simple metrics [13]. More com-
plicated techniques in the literature include Reinforcement Learning (RL) and
Evolutionary Algorithm approaches.

RL combined with neural networks has been applied to SC:BW micromanage-
ment [10]. Agent learning was accomplished using the online Sarsa RL algorithm,

1 Starcraft: Brood War: http://us.blizzard.com/en-us/games/sc/
2 Brood War API: http://code.google.com/p/bwapi/
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with neural-networks to approximate the state-action value function. Results
showed a significant winning advantage against standard Starcraft AI, but re-
quired thousands of training rounds and are limited in the type and number of
units represented. In [9], a comparative evaluation of RL techniques applied to
SC:BW was presented. Four variants of RL algorithms were applied to a spe-
cific micromanagement task, involving a long ranged unit with high mobility
against numerous melee (close ranged) enemies. Evaluations identified strengths
and weaknesses of the different algorithms, and showed a high win rate against
the default SC:BW AI. However, the results are derived from a very limited sce-
nario, and the author acknowledges it is only the first part of a larger RL based
SC:BW agent.

Work that is most related to ours is from [14], in which rtNEAT was applied to
SC:BW micromanagement. Units were controlled by separate neural networks,
specifying actions to take in real time. The network typology is evolved over gen-
erations of 12 vs 12 unit combat. Evaluations showed a significant win rate within
300 training generations and also claimed the rtNEAT algorithm allowed fast,
real-time strategy adaptation. A limitation of the study is the use of a custom
SC:BW map that replenishes unit numbers with up to 100 unit reserves. This is
an unrealistic depiction of real SC:BW combat where units are not replenished
immediately to replace dead units. Furthermore, real-time fitness improvement
occurs only over unit combat time that is minimal in a full SC:BW match. How-
ever, the work showcased the potential of applying NEAT based algorithms to
SC:BW micromanagement that our work analyzes further.

2.1 Neuroevolution and NEAT

Neuroevolution (NE) has shown effectiveness compared to standard RL, in prob-
lems with continuous and high-dimensional state spaces [8]. Traditional NE
worked on pre-defined topologies, and searched over the space of connection
weights. Topology and Weight Evolving Artificial Neural Networks (TWEANNs)
attempts to also evolve the topology of the network, and has the potential to
improve training speed and accuracy of solutions [15]. Furthermore, it reduces
the uncertainty and effort of deciding on network topology by researchers [16].

However, TWEANN techniques face numerous challenges, such as complica-
tions with network structure in crossover and problems with genetic encoding.
Work by [16] developed the NEAT algorithm to address these challenges. The
classic NEAT algorithm was expanded to a real-time variant[17], in which evolu-
tion occured over a real time environment. The rtNEAT algorithm was demon-
strated in a game called NERO, where agents are evolved and adapted in real
time to tackle changing objectives. Regular NEAT has been successfully applied
to RTS by [18], where neural networks are evolved to become AI players in an
ensemble process. In [6] both NEAT and rtNEAT were used to automatically
balance the challenge of the AI player in an RTS game. A novel challenge metric
coupled with a fitness function guided the evolution of neural networks. The AI
was continuously evolved to converge to the same challenge level as the human
player, thus creating a more balanced gaming experience.
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3 Implementation

We use the BWAPI open source framework for creating and executing AI mod-
ules. It exposes functionality to retrieve information about the game state and
to issue commands to game units. Units are encapsulated as BWNEAT units,
with an accompanying neural network for decision making. The SC:BW game
state is updated once per frame, i.e. every 56 milliseconds on normal game speed.
BWAPI triggers an event on every game state update, allowing AI code to react.
During this event, each BWNEAT unit feeds internal and external percepts from
the AI Module as inputs to its neural network, and interprets the network output
as the next action to be performed. The NEAT Manager module is responsible
for instantiating the BWNEAT Units and is an interface to the NEAT and rt-
NEAT algorithms. It receives evaluated fitness from each unit, performs NEAT
evolution and reassigns neural networks to BWNEAT units. Fig. 1 summarizes
the agent architecture.

Fig. 1. An overview of the agent architecture

3.1 Neural Network Architecture

The basic neural network architecture is fully connected and feed forward, with
randomized starting weights (Fig. 2). It begins with 0 hidden nodes and gradually
allows nodes and connections to be added via the NEAT and rtNEAT algorithms.
The inputs were chosen as important percepts to induce learning behavior that
would allow a unit to inflict as much damage to the enemy units, while taking as
little damage as possible. For example, when the unit’s weapon is on cooldown
(a pause between consecutive attacks), it should do its best to avoid damage.
Another aspect is the range of unit weapons. If for example, the unit has a
longer weapon range than the enemy units, it is possible to perform a hit-and-
run strategy. These percepts are based on domain knowledge of SC:BW and is
common in many RTS games.
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Fig. 2. Initial network architecture. Nodes A to G (Bias, WeaponCooldown, Re-
mainingHealth, WeaponRange, EnemyWeaponRange, NumAlliesInRange and NumEn-
emiesInRange) denote a mixture of agent internal and external percepts as input to the
network, while nodes H and I (Fight and Retreat) denote the outputs as two possible
unit actions.

The output of the neural network corresponds to two unit actions: fight or
retreat. The action with the largest corresponding output is chosen by the unit. If
the fight action is taken, the unit executes a simple routine that targets the enemy
unit with the lowest hit points (health) within its weapon range. The retreat
action makes the unit move a small distance away from enemies and obstacles,
via a weighted vector. These actions are based on similar implementations in [9]
and [10], as they are simple to implement, but complicated enough to produce
sophisticated behavior when performed in varying sequences.

3.2 Fitness Function

The NEAT and rtNEAT algorithms are guided by a fitness metric. In the context
of SC:BW unit micromanagement, the fitness should reflect the performance of
an individual unit. For both NEAT and RTNEAT, we define the fitness Fi for a
unit i as:

Fi =
TDDi −HPLi

IHPi
+ 1 (1)

The function takes in the total damage dealt by the unit (TDD), its hit point
loss (HPL) accrued over the match and its initial hit point (IHP). In theory,
the fitness is only upperbound by the total hit points of enemy units. However
in practise, the average fitness of each unit falls under [0, 2] where at its lowest
the unit has produced no damage and dies, and at its highest value it has dealt
twice as much damage than it has taken.

3.3 NEAT Evolution

Training via the classic NEAT algorithm occurs over generations of SC:BW
matches. After a match, regardless of win or loss, the population of neural
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networks go through an evolutionary process. First the fitness of each network
is evaluated based on the units performance during the match. Next, some of
the worst performing networks are replaced by the offspring of some of the best
performing networks. This simple process is guided by three principles: track-
ing evolution via historical markers, protecting innovation via speciation and
minimizing search via ‘complexification’ [8].

NEAT uses historical markings to efficiently evaluate similarity between net-
work topologies. Networks are then speciated using a similarity metric formed
via the number of disjoint genes D (genes that exist in one network and not the
other), excess genes E (genes that appear in one network later in evolution than
any genes on the other network) and the mean weight difference of matching
genes W[8]:

S =
c1E

N
+

c2D

N
+ c3W (2)

c1, c2 and c3 are adjustible weighting coefficients, and E andD are normalized
by dividing N , the number of genes in the larger network. Networks are grouped
into species via this similarity metric, and a compatibility threshold that can be
modified to specify species bounds. A network shares its evaluated fitness with
other members of its species, in order to encourage diversification of solutions and
prevent single species dominance. NEAT adjusts each network’s fitness based on
its similarity metric against all other organisms in the population. The number of
offsprings spawned by a species after each generation is based on the proportion
of its average species fitness to the total of all average species fitness [8].

3.4 rtNEAT Evolution

The real-time variant of the NEAT algorithm is designed specifically to operate
in a continuous, real-time domain. In particular when adapted to video games,
the performance of AI agents is able to improve gradually as the game is played,
without abrupt changes over a whole generation of evolution. In the context of
SC:BW, rtNEAT applies evaluation and replacement on game units every n ticks
of game time. The number of game ticks between replacement is an important
factor that affects evolution. If new organisms are replaced too quickly, then they
cannot be evaluated accurately and new innovations may be needlessly thrown
away. A law of eligibility is formed by [17], stating the number of ticks between
replacements, with respect to the fraction of the population that is too young
to be replaced I, the minimum time alive m and the population size P :

n =
m

|P |I (3)

In our experiments we empirically define m as 300 game frames, to offset the
delay between the start of a match and the first enemy encounter. We follow
[17] in defining 50% of the population as eligible for replacement, and p = 12
the number of units which is constant. This gives us n = 50, the number of
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games frames between replacement in rtNEAT experiments. In the next sec-
tion we describe in more detail, evaluations that incorporate these algorithms
and principles to analyse the effectiveness of NEAT and rtNEAT for SC:BW
micromanagement.

4 Experimentation and Results

We devised experiments to gauge the effectiveness of NEAT and rtNEAT evolved
micromanagement agents against the standard SC:BW AI. A variety of unit
setups were used in order to simulate different micromanagement scenarios. From
these experiments, we saw very high fluctuation and variation in the fitness and
win rate of agents over generations. In order to adjust for these fluctuations, we
ran experiments to find the number of generations taken for each algorithm to
converge to a suitable solution, when evolution is halted upon finding a potential
candidate.

4.1 Experiment Setup

SC:BW units vary on attributes such as race, weapon and armour type. In
order to keep the experimental variables constant and to avoid an explosion of
unit type permutations, we based our experimental setup on [14] that compared
4 unit type variations (melee vs. melee, ranged vs. ranged, melee vs. ranged,
ranged vs. melee). The number of units is kept at a constant 12 vs. 12, which
is the maximum selectable number of units for a human controlled squad. The
scenario used throughout experimentation is a flat map, based on those used in
the AIIDE 2010 Starcraft micromanagement tournament3.

4.2 Evolutionary Process Experiment

We first compared the performance of NEAT and rtNEAT algorithms on each of
the 4 unit matchup variations, over 300 generations of evolution. Each matchup
is repeated 25 times to reduce randomness in network starting weights. The
average unit fitness and the match outcome is recorded over 300 generations,
and averaged over the 25 runs.

Fig. 3. Summary statistics for our first experiment. Mean win rate (WR) over 300
generations, standard deviation (SD) and the 95% confidence level (CL) is shown.
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Fig. 4. Plot of the best performing match up (range vs. melee) average win rate

Fig. 5. Plot of the worst performing match up (melee v.s melee) average win rate

The results suggest that there is no single algorithm dominating all match
variations (Fig. 3). Mean win rate is higher for NEAT on range vs. melee (mean
97.59%, SD 7.95% ) and melee vs. range (58.89% mean, 10.79% SD), while rt-
NEAT is higher on range vs. range (60.39% mean, 9.86% SD) and melee vs
melee (49.73% mean, 11.63% SD). If we consider a win rate higher than 50% to
indicate better than baseline performance against the built-in SC:BW AI, then
both NEAT and rtNEAT show effectiveness on range vs. range and range vs.
melee battles. NEAT is also effective in melee vs. range (58.89% mean ± 1.23%
at 95% confidence level). From examining the agent behavior, the effectiveness
of controlling ranged units can be attributed to having learnt the hit-and-run
micromanagement strategies. It is interesting to note the generally poor per-
formance of both algorithms when controlling melee units. We discuss in more
detail the evolved behavior of the agents contributing to the performance in
Section 5.

Fig. 4 and Fig. 5 show plots of some of the best and worst performing match
up variations. The average fitness plot is not shown, but is highly correlated to
the average win rate. From these plots, we see a trend of initial poor perfor-
mance and a quick convergence to some local optima. This is typical of evolu-
tionary algorithms where the initial starting solutions are randomized and are

3 AIIDE 2010 micromanagement tournament: eis.ucsc.edu/starcrafttournament1
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not expected to perform well. On all variations the first convergence to a local
optimal occurs between the 10th to 20th generation. There is significant fluc-
tuation of win rate throughout generations that is further illustrated by high
variance shown by their standard deviations. In general, the standard deviation
is higher on rtNEAT runs, suggesting greater variation in evolutionary success
over generations than standard NEAT. This may be due to the nature of the
rtNEAT algorithm, in introducing real time change. Both algorithms are capable
of producing high performing solutions at various generations, but are also quick
to introduce mutations weakening the solutions. This is partly due to the nature
of the experiment where we allow evolution to continue even after achieving a
winning solution.

4.3 Generational Convergence Experiment

By defining a success criteria, we can halt the evolution of both the NEAT and
rtNEAT algorithms once an acceptable solution is achieved. We defined a suc-
cessful solution to be an agent that achieves 10 consecutive wins (the probability
an agent with 50% win rate can win 10 consecutive games is < 0.1%). This is a
strict criteria as an agent may still be high performing even though it loses 1 game
out of 10 (e.g. due to the stochastic nature of the game state). However, we use
this to simplify the running of the experiment and to show that it is possible to
robustly generate agents of this level of performance. We keep all other variables
the same as in our previous experiment, except that the evolution terminates
when a solution reaches 10 wins, or after 1000 generations. When a solution
achieves a win, evolution is halted until the agent either achieves 10 wins, or a
loss is encountered, where upon evolution continues. After a successful solution
is achieved, or if no solution is found after 1000 generations, the experiment is
reset to an initial population with randomized weights. For each algorithm and
each matchup, we stopped the experiment at 60 runs and analyzed the results.

Fig. 6. Summary statistics for generational convergence experiment. Mean number
of generations (MNG) taken to produce an acceptable solution is shown. Standard
deviation (SD) and the 95% confidence level (CL) for the mean was also calculated.

In all experiments, an acceptable solution was found before 1000 generations,
with most converging under 100 generations (Fig. 6). There was high variability
in the number of generations required to arrive at an acceptable solution, evident
by the high standard deviation in some match ups (e.g. 124.39 SD and 116.03
Mean generations for NEAT range vs range). The mean number of generations
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taken between NEAT and rtNEAT is comparable to the average win rate per-
formance of the previous experiment: NEAT converges faster for range vs. melee
and melee vs. range match ups, while rtNEAT is faster for range vs. range and
melee vs. melee. The range in generations taken between different matchups is
higher for NEAT (4.15 mean for range.vs melee and 116.03 mean for range vs.
range) than for rtNEAT (18.33 mean for range vs. range and 26.78 mean for
melee vs. melee). This suggests the performance of rtNEAT is more stable under
different unit variations.

Overall, the experiment showed that both algorithms were capable of gener-
ating effective solutions for micromanagement against the default SC:BW AI.
However, it was necessary to establish an acceptance criteria for which to halt
evolution and to preserve winning behavior. In the next section, we discuss fur-
ther implications of the experimental results.

5 Discussion

In the first experiment, the fluctuation of fitness and success rate of solutions can
be due to a number of reasons. Firstly, it suggests that any structural innovations
introduced were making significant differences in the performance of the neural
networks. This is probably due to the simplicity of the network design, where only
2 outputs exist, such that any structural change may affect the action selected.
A simple neural network allows faster convergence by reducing the search space
of initial nodes and weights. But it also means it is faster to diverge from the
local optima. On top of this, the stochastic nature of the game environment can
result in the same solution having varied success over different runs.

This also explains the general poor performance of both algorithms on melee
match ups in the first experiment. Melee units do best in direct attack as they
lack the weapon range to perform hit-and-run maneuvers. Any innovation intro-
duced to make melee units run will immediately reduce the success rate of the
solution. In the second experiment, the algorithms have no problem generating a
solution for melee match ups, when no new innovations were introduced after a
solution begins to do well. Another factor is an interesting behavior exhibited by
the units over generations of evolution: some units are evolved to retreat when
enemies are first found, but come back to fight after allied units are engaged in
combat. These units tend to generate more fitness than those directly attacking
from the beginning, as they do not receive as much damage over time. However,
as the population begins to favour this behavior, there is a breaking point in
which no units will stay to fight, leading to a match loss and a return to evolu-
tion favouring units that do not retreat. This cycle is highly correlated with the
fluctuation of the win rate over generations.

Interestingly, the first experiment showed that rtNEAT produced higher vari-
ation in the success of solutions than NEAT over time. However in the second
experiment, the average number of generations for an acceptable solution was
less varied across different match ups than NEAT. This suggests real-time evo-
lution can be quicker in introducing changes that reduce fitness, but also allow a
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more robust convergence to a solution regardless of unit variation (variability in
state and solution space). This is intuitive, since rtNEAT should be faster in re-
acting to changes in the environment in real time, than regular NEAT evolution
between generations.

It is possible to complicate the initial neural network architecture, by incorpo-
rating more percepts as input nodes and providing finer grain output decisions.
For example, the inputs can incorporate a deeper ontology of unit quality and
type variations (armour, weapon and ability types etc) and more precise direc-
tional and distance data. Instead of fight or retreat actions, the decisions can be
to move at specific angles for specific distances, and to explicitly decide which
units to attack. Enemy target selection is itself complicated enough to be a
separate learning task, perhaps requiring the optimization of a separate neural
network that takes into consideration enormous unit type variations and the lo-
cation of units. More complicated neural network designs allow for agents with
more complicated behaviors that are able to perform well under a higher variety
of conditions. The disadvantage is a greater number of dimensions to search and
optimize for, resulting in slower training time.

There are limitations to the evaluation methodology to be addressed. For
example, while the experiments show that the technique is able to learn to
defeat the standard SC AI, the results do not extend to human opponents.
However, testing against the standard SC AI is a baseline measure used in much
of the related work, particularly for micromanagement. It is difficult to evaluate
against human players, due to the number of games required to be played, and
the lack of an objective human skill measure for the micromanagement task
(current measures exist only for full SC games). It is possible to evaluate against
other micromanagement AI, but there is a lack of a standardized evaluation
methodology to do so.

6 Conclusions

Our evaluations confirmed the viability of NEAT and rtNEAT algorithms in
evolving agents for various SC:BW micromanagement scenarios. When the al-
gorithms are allowed to run non-stop, the win rate of agents against the default
SC:BW AI fluctuates highly over generations. However, when evolution is halted
upon reaching an acceptable level of performance, both algorithms are able to
consistently generate winning agents, with most under 100 generations. Each
algorithm differs in the variability of performance over different unit matchups.
Factors contributing to the difference in performance include the complexity of
the network starting topology and the variation in unit types. There is room to
explore network complexity further, and a need to establish standardized evalu-
ation methods for micromanagement agent evaluations. More work is needed to
adapt these techniques for commercial RTS game deployment, but results here
have shown promising performance in a learning AI capable of defeating scripted
AI under short training time.
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