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Preface

This volume contains the papers presented at the 26th Australasian Joint
Conference on Artificial Intelligence (AI 2013). The conference was held from
3-6 December 2013 in Dunedin, home to the University of Otago in the South
Island of New Zealand. This annual conference remains the premier event for
artificial intelligence researchers in the Australasian region, and it is only the
second time in its 26-year history that it was held outside Australia. It was
co-located with the 16th International Conference on Principles and Practice of
Multi-Agent Systems (PRIMA 2013).

AI 2013 received 120 submissions with authors from 34 countries. Each sub-
mission was reviewed by at least three Program Committee members or external
referees. Subsequent to a thorough discussion and rigorous scrutiny by the re-
viewers and the dedicated members of the Senior Program Committee, 54 sub-
missions were accepted for publication: 35 as full papers and 19 as short papers.
The acceptance rate was 29% for full papers and 45% overall (including short
papers).

AI 2013 featured keynote speeches by two eminent scientists. Fangzhen Lin
(Hong Kong University of Science and Technology) talked about the connection
between satisfiability and linear algebra. Pascal Van Hentenryck (NICTA), on
the other hand, spoke of the role that optimisation has to play in effective disaster
management.

Four workshops with their own proceedings were held on the first day of the
conference:

– The Third Australasian Workshop on Artificial Intelligence in Health (AIH
2013)

– The Workshop on Machine Learning for Sensory Data Analysis (MLSDA’13)
– The 4th International Workshop on Collaborative Agents — Research and

Development (CARE 2013)
– The 16th International Workshop on Coordination, Organisations, Institu-

tions and Norms in Agent Systems (COIN@PRIMA2013)

These workshops were complemented by a tutorial on “Theory and Applica-
tions of State Space Models for Time Series Data”, presented by Peter Tino
(University of Birmingham).

AI 2013 would not have been successful without the support of authors, re-
viewers, and organisers.We thank the many authors for submitting their research
papers to the conference, and are grateful to the successful authors whose pa-
pers are published in this volume for their collaboration during the preparation
of final submissions. We thank the members of the Program Committee and the
external referees for their expertise and timeliness in assessing the papers. We
also thank the organisers of the workshops and the tutorial for their commit-
ment and dedication. We are very grateful to the members of the Organising
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Committee for their efforts in the preparation, promotion, and organisation of
the conference. We acknowledge the assistance provided by EasyChair for con-
ference management, and we appreciate the professional service provided by the
Springer LNCS editorial and publishing teams.

September 2013 Stephen Cranefield
Abhaya Nayak
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From Satisfiability to Linear Algebra

Fangzhen Lin

Hong Kong University of Science and Technology

Satisfiability of boolean formulas (SAT) is an interesting problem for
many reasons. It was the first problem proved to be NP-complete by
Cook. Efficient SAT solvers have many applications. In fact, there is
a huge literature on SAT, and its connections with other optimisation
problems have been explored. In this talk, I discuss a way to map clauses
to linear combinations, and sets of clauses to matrices. Through this
mapping, satisfiability is related to linear programming, and resolution
to matrix operations.



Computational Disaster Management

Pascal Van Hentenryck

NICTA

The frequency and intensity of natural disasters have significantly in-
creased over the past decades and this trend is predicted to continue.
Natural disasters have dramatic impacts on human lives and on the
socio-economic welfare of entire regions; they are identified as one of the
major risks of the East Asia and Pacific region. Dramatic events such
as Hurricane Katrina and the Tohoku tsunami have also highlighted the
need for decision-support tools in preparing, mitigating, responding, and
recovering from disasters.

In this talk, I will present an overview of some recent progress in
using optimisation for disaster management and, in particular, in re-
lief distribution, power system restoration, and evacuation planning and
scheduling. I will argue that optimisation has a significant role to play in
all aspects of disaster management, from policy formulation to mitiga-
tion, operational response, and recovery, using examples of systems de-
ployed duting hurricanes Irene and Sandy. Moreover, I will indicate that
disaster management raises significant computational challenges for AI
technologies, which must optimize over complex infrastructures in un-
certain environments. Finally, I will conclude by identifying a number of
fundamental research issues for AI in this space.
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Javad Safaei, Ján Maňuch, and Ladislav Stacho



Table of Contents XXI

Natural Language Processing and Information
Retrieval

Enhanced N-Gram Extraction Using Relevance Feature Discovery . . . . . . 453
Mubarak Albathan, Yuefeng Li, and Abdulmohsen Algarni

Generating Context Templates for Word Sense Disambiguation . . . . . . . . 466
Samuel W.K. Chan

Planning and Scheduling

Evolving Stochastic Dispatching Rules for Order Acceptance and
Scheduling via Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

John Park, Su Nguyen, Mark Johnston, and Mengjie Zhang

Detecting Mutex Pairs in State Spaces by Sampling . . . . . . . . . . . . . . . . . . 490
Mehdi Sadeqi, Robert C. Holte, and Sandra Zilles

Scheduling for Optimal Response Times in Queues of Stochastic
Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Michal Wosko, Irene Moser, and Khalid Mansour

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515



A Logical Framework of Bargaining

with Integrity Constraints�

Xiaoxin Jing1, Dongmo Zhang2,��, and Xudong Luo1,��

1 Institute of Logic and Cognition, Sun Yat-sen University, China
2 Intelligent System Lab, University of Western Sydney, Australia

d.zhang@uws.edu.au, luoxd3@mail.sysu.edu.cn

Abstract. This paper proposes a logical framework for bargaining with
integrity constraints (IC) in multi-agent and multi-issue bargaining envi-
ronments. We construct a simultaneous concession solution for bargain-
ing games under IC, and show that the solution is uniquely characterised
by a set of logical properties. In addition, we prove that the solution also
satisfies the most fundamental game theoretic properties such as symme-
try and Pareto optimality. Finally, we discuss the relationship between
merging operators and bargaining solutions under integrity constraints.

1 Introduction

Bargaining is a process to settle disputes and reach mutually agreements. It
has been investigated from many perspectives, including economics, social sci-
ence, political science and computer science [1–7]. Different from other disciplines
where quantitative approaches dominate bargaining analysis, studies of bargain-
ing in computer science, especially in artificial intelligence, pay more attention to
logical reasoning behind bargaining processes. Thus, a number of logical frame-
works were proposed for specifying reasoning procedures of bargaining [7–12].
In particular, similar to Nash’s axiomatic model of bargaining, in [7] Zhang pro-
posed an axiomatic model of bargaining in propositional logic. With his model,
bargainers’ demands are represented in propositional formulae and the outcome
of bargaining is viewed as a mutual acceptance of the demands after necessary
concessions from each bargainer.

Although Zhang’s model provides a purely qualitative approach for bargaining
analysis, there is a difficulty to apply his approach to the real-life bargaining.
As mentioned in [7], the demands of a player are not necessarily the player’s
real demands but could be the player’s beliefs, goals, desired constraints or com-
monsense. For example, a couple bargains over where to go for dinner: either
a French restaurant (denoted by f) or an Italian restaurant (denoted by i).
The husband prefers Italian food to French food but his wife likes more the ro-
mantic environment in French restaurants than Italian ones, even though they
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have some favourite dishes in common, which may or may not be offered in both
restaurants. Obviously, each player can express his/her demands in propositional
language by writing down their favourite restaurant and dishes, say {i, pizza}.
However, if we use Zhang’s model, all the domain constraints, such as ¬f ∨ ¬i,
pizza → i, have to be included in the demand set of each player, which does not
seem intuitive. Thus, this paper is devoted to providing a solution to this issue.

Similar to belief merging [13], specifying domain constraints (or called integrity
constraints) in a bargaining model gives a number of challenges to the modelling
of bargaining reasoning. First, simply assuming logical consistency of individual
demand sets is not enough because new constraints may be generated after com-
bining all constraints from individual bargainers as logical consequences. Second,
preference ordering relies on constraints, so a logical requirement for the ratio-
nality of preference ordering has to be applied. Finally, constraints and demands
from individuals may be described in different forms. It is crucial that a bargain-
ing solution does not rely on the syntax of description, which is actually the case
for Zhang’s system. As we will see, our model of bargaining is syntax-irrelevant,
which in fact reshapes the whole axiomatic system.

The rest of the paper is organised as follows. Section 2 defines our bargaining
model. Sections 3 and 4 introduce its solution concept and some of its properties.
Finally Section 5 discusses the related work and concludes the paper.

2 Bargaining Model with Integrity Constraints

This section presents our bargaining model. We consider a propositional language
L built from a finite set P of propositional letters and the standard propositional
connectives {¬,∨,∧,→,↔}. Propositional sentences are denoted by φ, ψ, · · · . We
use � to denote the logical deduction relation in classical propositional logic. Cn
represents the corresponded local consequence closure. Furthermore, we say that
a set Φ of formulae in L is consistent if there is no formula φ such that Φ � φ and
Φ � ¬φ. A set K of sentences in L is logically closed if and only if K = Cn(K),
where Cn(K) = {φ ∈ L, K � φ}. Let Φ be a finite set of propositional formulae.
A binary relation ≥ over Φ is a pre-order if and only if it is a reflexive and
transitive relation over Φ. A pre-order is total if for all φ, ψ ∈ Φ, φ ≥ ψ or ψ ≥ φ.
Given a pre-order ≥ over Φ, we define φ > ψ as φ ≥ ψ and ψ � φ, and φ 	 ψ as
φ ≥ ψ and ψ ≥ φ. Moreover, if φ ≥ ψ then ψ ≤ φ and if φ > ψ then ψ < φ.

2.1 Bargaining Games

Following [7], we assume that each bargainer has a set of demands and a prefer-
ence order over the demand set. As we will show later, the domain constraints,
common sense knowledge, and other integrity constraints will be specified sepa-
rately and so need not to be included in the individual demand set.

Definition 1. A demand structure D is a pair (X,≥), where X is a finite,
logically consistent set of demands that are represented by a set of sentences in
L, and ≥ is a total pre-order on X, which satisfies:
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(LC) If φ1, ..., φn � ψ, then there exists at least one k ∈ {1, · · · , n} such that
ψ ≥ φk.

Intuitively, a demand structure represents the statements a bargainer wants to
put into the agreement, and the total pre-order over the demands is the descrip-
tion for bargainer’s preference over the demands, i.e., φ ≥ ψ means the bargainer
holds demand φ more firmly than demand ψ. In addition, the logical constraint
LC, introduced by Zhang and Foo in [14], places a rationality requirement on
the preference ordering, which says that if a demand of ψ is a logic consequence
of demands φ1, ..., φn then the firmness to keep ψ should not be less than at least
one formula in φ1, ..., φn.

In a bargaining scenario, an integrity constraint means a rule that all partici-
pants in the bargaining must follow. Such a rule could be something like domain
restrictions, generic settings, commonsense knowledge and so on. As we will see
below, we assume that any integrity constraint can be represented by a propo-
sitional formula and all integrity constraints for each bargaining situation are
logically consistent. The following definition extends [7]’s bargaining model to
allow integrity constraints.

Definition 2. A bargaining game is a tuple of 〈(Xi,≥i)i∈N , IC〉, where
(i) N = {1, 2, ..., n} is a set of bargainers;

(ii) each (Xi,≥i) is the demand structures of a bargainer; and
(iii) IC is a consistent set of sentences (i.e., integrity constraints).
The set of all bargaining games in language L is denoted by GIC

n,L.

A bargaining game specifies a snapshot of a bargaining procedure. As we
will demonstrate, we model a bargaining procedure as a sequence of bargaining
games. Normally a bargaining starts with a situation in which the demands of
the bargainers conflict each other. With the proceeding of negotiation, bargainers
may make concessions in order to reach an agreement. Eventually, the bargaining
terminates with either an agreement or a disagreement. The terminal situations
can be specified in the following two specific games.

Definition 3. A bargaining game 〈(Xi,≥i)i∈N , IC〉 is non-conflictive if
⋃n

i=1

Xi ∪ IC is logically consistent. It is a disagreement if there is k ∈ N such that
Xk = ∅.

Note that a disagreement means that there is a bargainer who has nothing to
give up.1

2.2 Demand Hierarchy and Comprehensiveness

In order to develop a solution concept for our bargaining model, we need to
introduce a set of concepts based on single player’s demand structure.

1 In the real-life bargaining, a bargainer may declare a disagreement when he finds
that an agreement would not be reached without giving up all his reservation
demands.
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Definition 4. Give a demand structure D = (X,≥) where X �= ∅, P = (X1,
· · · , XL) is the partition of D if it satisfies:

(i) X =
⋃L

l=1 X l;
(ii) X l ⊆ X and X l �= ∅ for all l (1 ≤ l ≤ L);

(iii) Xk ∩ X l = ∅ for any k �= l; and
(iv) ∀φ ∈ Xk ψ ∈ X l, φ > ψ if and only if k < l.

We define the demand hierarchy under IC using the partition above.

Definition 5. Given a demand structure D = (X,≥) and a set of integrity
constraints IC, let P = (X1, .., XL) be a partition of D. Then the hierarchy of
D under IC is defined as follows:

(i) H1 = Cn(X1 ∪ IC), and

(ii) Hk+1 = Cn(
⋃k+1

i=1 X i ∪ IC)\
⋃k

i=1 Hi.

∀φ ∈ Cn(X ∪ IC), we define h(φ) = k if and only if φ ∈ Hk, where k is φ’s
hierarchy level in D. And we write hD = max{h(φ) | φ ∈ Cn(X ∪ IC)} as the
height of D. In addition, ∀φ, ψ ∈ X, suppose φ ∈ Hk and ψ ∈ Hj, we write

φ ≥IC ψ iff k ≤ j.

For simplicity, we assume that Hi �= ∅ for all i. In fact, if there is k ∈ N+ such
that Hk is ∅, we can remove all empty levels and let the remaining hierarchy as
the hierarchy of D. Since ≥ is a total pre-order on X , it is easy to see that ≥IC

is also a total pre-order on Cn(X ∪ IC).

Definition 6. Given a demand structure D = (X,≥) and a set of integrity
constraints IC, Ω is an IC-comprehensive set of D if:

(i) Ω ⊆ Cn(X ∪ IC);
(ii) Ω = Cn(Ω); and

(iii) For any φ ∈ Ω and ψ ∈ Cn(X ∪ IC), ψ ≥IC φ implies ψ ∈ Ω.
In other words, a subset of Cn(X ∪ IC) is IC-comprehensive if it is logically

and ordinally closed under ≥IC . We denote the set of all IC-comprehensive sets
of D by Γ IC(D), or Γ (D) if IC is obvious from the context.

The following theorem is important to our bargaining solution.

Theorem 1. Given a demand structure D = (X,≥) and a set of integrity con-
straints IC, a set Ω is an IC-comprehensive set of D if and only if there exists
k ∈ {1, · · · , hD} such that Ω =

⋃k
i=1 Hi.

Proof. (⇒) We first prove that if Ω ∈ Γ (D) then there exists k ∈ {1, · · · , hD}
such that Ω = T k, where T k =

⋃k
i=1 Hi. Let k0 = min{k | Ω ⊆ T k}. Obviously,

1 ≤ k0 ≤ hD. We aim to prove Ω = T k0

. By the definition of k0, Ω ⊆ T k0

. So,
we just need to prove T k0 ⊆ Ω. Suppose it is not the case. Then there must
exist ψ such that ψ ∈ T k0

but ψ /∈ Ω. Since Ω ∈ Γ (D), ∀φ ∈ Ω, we have
ψ ∈ Cn(X ∪ IC) and ψ /∈ Ω, and then ψ <IC φ. So, h(ψ) > h(φ). ∀φ ∈ Ω, we
have 1 ≤ h(φ) ≤ k0. In addition, k0 = min{k | Ω ⊆ T k}. Therefore, h(ψ) > k0.

However, ψ ∈ T k0

, and then 1 ≤ h(ψ) ≤ k0, which is contradicting. Therefore,
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the assumption is false, i.e., we have T k0 ⊆ Ω. As a result, if Ω ∈ Γ (D), we can

find k = k0 such that Ω = T k0

.
(⇐) ∀k ∈ {1, · · · , hD}, we need to prove T k ∈ Γ (D). Because T k =

⋃k
i=1 Hi =

Cn(
⋃k

i=1 X i ∪ IC), then T k is closed. In addition, ∀k ∈ {1, · · · , hD},
⋃k

i=1 X i ⊆
X , and then T k = Cn(

⋃k
i=1 X i∪IC) ⊆ Cn(X∪IC). ∀k ∈ {1, · · · , hD}, ∀φ ∈ T k,

and ψ ∈ Cn(X∪IC), if ψ ≥IC φ, we need to prove ψ ∈ T k. Suppose it is not this

case, i.e., ψ /∈ T k. Because T k = Cn(X ∪ IC)\
⋃hD

i=k+1 Hi, then ψ ∈
⋃hD

i=k+1 Hi,

and so k+1 ≤ h(ψ) ≤ hD. In addition, since φ ∈ T k, T k =
⋃k

i=1 Hi, 1 ≤ h(φ) ≤
k. So, we can get h(ψ) > h(φ), and then φ >IC ψ, which contradicts premise
ψ ≥IC φ. Therefore, the assumption is false. ��

In the following, we define the equivalence of demand structures under an
integrity constraints, which plays an important role for describing syntax inde-
pendency:

Definition 7. Let D = (X,≥) and D′ = (X ′,≥′) be two demand structures,
where X �= ∅ and X ′ �= ∅, IC is a set of integrity constraints. We say D and
D′ are equivalent under IC, denoted as D ⇔IC D′, if and only if there is
Γ (D) = Γ ′(D′).

3 Bargaining Solution

In this section, we will develop our solution concept for the bargaining model we
introduced in the previous section.

Definition 8. A bargaining solution s is a function from GIC
n,L to

∏n
i=1 Γ (Di),

i.e., ∀G ∈ GIC
n,L, s(G) = (s1(G), · · · , sn(G)), where si(G) ∈ Γ (Di) for all i. si(G)

denotes the i-th component of s(G). Cn(
⋃n

i=1 si(G)) is called the agreement of the
bargaining game, denoted by A(G).

Intuitively, the agreement of a bargaining is a set of demands mutually ac-
cepted by all the bargainers. A bargaining solution is then to specify which
demands from each bargainer should be put into the finial agreement.

In the following, we will construct a concrete bargaining solution that satisfies
a set of desirable properties. The intuition behind the construction can be stated
as follows: assume a bargaining situation where all bargainers agree on a set of
integrity constraints IC. Firstly, all the bargainers submit their demands to an ar-
bitrator who also knows IC. The arbitrator then judges if the current bargaining
situation forms a non-conflictive game or a disagreement game. If so, the bargain-
ing ends with either an agreement, which is the collection of all the demands, or a
disagreement, which is an empty set. Otherwise, the arbitrator requests each bar-
gainer to make a concession by withdrawing their least preferred demands.We call
such a solution simultaneous a concession solution. Formally, we have:

Definition 9. Given a bargaining game G = 〈(Xi,≤i)i∈N , IC〉, simultaneous
concession solution S(G) is constructed as follows:
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S(G) =

{
(H

≤hD1−ρ
1 , · · · , H

≤hDn−ρ
n ) if ρ < L;

(∅, · · · , ∅) otherwise.

where ∀i ∈ N , H≤j
i =

⋃j
k=1 Hk

i (Hk is defined in Definition 5), hDi is the height

of Di, ρ = min{k |
⋃n

i=1 H
≤hDi

−k

i is consistent}, and L = min{hDi | i ∈ N}.

For a better understanding of the above definition, let us consider the restau-
rant example we show in the introduction section again.

Example 1. A couple bargains over which restaurant to go to celebrate their
wedding anniversary: either Italian (i) or French (f). The husband (h) likes
to eat pizza (p). Alternatively, he is also fine with beefsteak (b) and vegetable
salads (v). In fact, he does not mind to go to the French restaurant but cannot
stand people eating snails (s) . The wife (w) leans towards the romantic French
restaurant and particular likes the vegetable salads. She would like to try snails
once as all her friends recommend it. Both know that pizza is only offered in
the Italian restaurant (p → i) and snails only offered in the French restaurant
(s → f). Obviously they can only choose one restaurant for the dinner (¬i∨¬f).

Putting all the information together, the husband’s demands can be written
as Xh = {¬s, p, v, b} with the preference: ¬s ≥h p ≥h v ≥h b; the wife’s de-
mands are Xw = {v, f, s} with the preference: v ≥w f ≥w s; and the integrity
constraints can be represented by IC = {¬i ∨ ¬f, p → i, s → f}. Thus, we can
model the game as G = 〈(Xh,≥h), (Xw,≥w), IC〉.

Table 1. Player’s hierarchies from high (top) to low (bottom)

Husband Wife

¬s, ¬i ∨ ¬f , p → i, s → f

p, i, ¬f v, ¬i ∨ ¬f , p → i, s → f

v f , ¬i, ¬p
b s

To solve the problem, we first calculate the normalised hierarchy for each
player according to Definition 5 as shown in Table 1. According to the table, it
is easy to see that h(Dh) = 4, h(Dw) = 3, ρ = 2 and L = 3. Then the solution
of the bargaining game is:

sh(G) = H≤2
h = {¬s,¬i ∨ ¬f, p → i, s → f, p, i,¬f},

sw(G) = H≤1
w = {v,¬i ∨ ¬f, p → i, s → f}.

As a result, the agreement of the bargaining is:

A(G) = Cn(H≤2
h ∪ H≤1

w ) = {¬s,¬i ∨ ¬f, p → i, s → f, p, i,¬f, v}.

4 Properties of the Solution

In this section, we investigate the properties of the solution that we construct in
the previous section. To this end, we need to introduce a few concepts first.
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Definition 10. Given two bargaining games G = 〈(Di)i∈N , IC〉 and G′ =
〈(D′

i)i∈N , IC′〉, we say G and G′ are equivalent, denoted by G ≡ G′, if and
only if

(i) Both G and G′ are disagreement games; or
(ii) None of G and G′ is a disagreement game, � IC ↔ IC′ and Di ⇔IC D′

i

∀i ∈ N .

Definition 11. Given a bargaining game G = 〈(Di)i∈N , IC〉, a bargaining game
G′ = 〈(D′

i)i∈N , IC′〉, where D′
i=(X

′
i,≥i), is a subgame of G, denoted by G′ ⊆

G, if and only if for all i ∈ N ,

(i) IC � IC′ and IC′ � IC, and we write it simply as � IC ↔ IC′;
(ii) Cn(X ′

i ∪ IC′) is an IC-comprehensive set of Di; and

(iii) ≥′IC′
i =≥IC

i ∩(Cn(X ′
i ∪ IC′)× Cn(X ′

i ∪ IC′)).

Furthermore, G′ is a proper subgame of G, denoted by G′ ⊂ G, if Cn(X ′
i ∪

IC′) ⊂ Cn(Xi ∪ IC) for all i ∈ N . Specially, given a bargaining game G =
〈(Di)i∈N , IC〉, and hDi = 1 for any Di in G, then G does not have any proper
subgame. Moreover, the following concept follows Zhang’s idea in [7].

Definition 12. A proper subgame G′ of G is a maximal proper subgame of
G, denoted by G′ ⊂max G, if for any G′′ ⊂ G, G′′ ⊆ G′.

4.1 Logical Characterisation

We first consider the logical properties of our bargaining solution. In general, we
expect any bargaining solution (refer to Definition 8) satisfies:

(i) Consistency: If IC is consistent, then A(G) is consistent.
(ii) Non-conflictive: If G is non-conflictive, then si(G) = Cn(Xi ∪ IC) for all i.
(iii) Disagreement: If G is a disagreement, then A(G) = ∅.
(iv) Equivalence: If G ≡ G′, then si(G) = si(G

′) for all i.
(v) Contraction independence: If G′ ⊂max G then si(G) = si(G

′) for all i
unless G is non-conflictive.

Intuitively the above properties are basic requirements for bargaining solutions.
Property 1 states that if the integrity constraints are consistent, then the out-
come of the bargaining, i.e., the agreement should also be consistent. Property
2 says that if there are no conflict among all the bargainers’ demands and the
integrity constraints, then nobody has to make any concession to reach an agree-
ment. Property 3 indicates that a disagreement means that no agreements are
reached. Property 4 is the principle of irrelevancy of syntax, i.e., if two bargain-
ing games are equivalent, then the solutions of bargaining are the same. This
property is crucial for the bargaining, while as we can see, it is not satisfied in
[7]. The last property requires that a bargaining solution should be independent
of any minimal simultaneous concession of the bargaining game.

In the following, we will show that our simultaneous concession solution sat-
isfies all the five properties. To this end, we need the following lemma first:
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Lemma 1 Given two bargaining games G( h(Di) > 1 for any Di in G) and G′,
G′ is a maximal proper subgame of G if and only if ∀i,

(i) � IC ↔ IC′;
(ii) Cn(X ′

i ∪ IC′) = H
≤hDi

−1

i ; and

(iii) ≥′IC′
i =≥IC

i ∩(Cn(X ′
i ∪ IC′)× Cn(X ′

i ∪ IC′)).

Proof. (⇐) We will prove that if G′ satisfies properties (i)-(iii), G′ is a maximal
proper subgame of G. Because property (ii) is satisfied, G is not a disagreement.
Thus, we need to prove G′ ⊂ G first. Since we find properties (i) and (iii)
are the same as (i) and (iii) in Definition 11, we just need to prove (ii), i.e.,

Cn(X ′
i∪IC′) = H

≤hDi
−1

i is an IC comprehensive set of Di and Cn(X ′
i∪IC′) ⊂

Cn(Xi ∪ IC). Because hDi > 1 for any Di in G, by Theorem 1, H
≤hDi

−1

i =⋃hDi
−1

j=1 Hj
i is an IC comprehensive set of Di. In addition, since H

h(Di)
i �= ∅,

T
hDi

−1

i = Cn(Xi ∪ IC)\H
h(Di)
i ⊂ Cn(Xi ∪ IC).

Next, for G′′ = 〈D′′
i∈N ,≥′′〉, if G′′ ⊂ G, we need to prove G′′ ⊆ G′. Because

G′′ ⊂ G and G′ ⊂ G, (i) IC′′ ↔ IC ↔ IC′; (ii) Cn(X ′′
i ∪IC′′) and Cn(X ′

i∪IC′)
are IC comprehensive sets of Di for all i; and (iii) ≥′′IC

i =≥IC
i ∩(Cn(X ′′

i ∪
IC′′)×Cn(X ′′

i∪IC′′)) = ≥′IC
i ∩ (Cn(X ′′

i ∪IC′′)×Cn(X ′′
i ∪IC′′)). In addition,

Cn(X ′′
i ∪ IC′′) ⊂ Cn(Xi ∪ IC) and Cn(X ′

i ∪ IC′′) ⊂ Cn(Xi ∪ IC) for all i. So,
we just need to prove Cn(X ′′

i ∪ IC′′) is an IC comprehensive set of D′
i for all i.

We prove Cn(X ′′
i ∪ IC′′) ⊆ Cn(X ′

i ∪ IC′) first. Suppose not. Then there is

φ ∈ Cn(X ′′
i ∪ IC′′) but φ /∈ Cn(X ′

i ∪ IC′). From Cn(X ′
i ∪ IC′) = H

≤hDi
−1

i =

Cn(Xi∪IC)\H
hDi

i and Cn(X ′′
i ∪IC′′) ⊂ Cn(Xi∪IC), we derive that φ ∈ H

hDi

i .
Therefore, h(φ) = hDi . Because ∀ψ ∈ Cn(Xi ∪ IC), h(ψ) ≤ hDi , ψ ≥IC φ, and
Cn(X ′′

i ∪ IC′′) is an IC-comprehensive set of Di, ψ ∈ Cn(X ′′
i ∪ IC′′), which

implies Cn(Xi ∪ IC) ⊆ Cn(X ′′
i ∪ IC′′). However, this contradicts Cn(X ′′

i ∪
IC′′) ⊂ Cn(Xi ∪ IC). So, the assumption cannot hold. Thus, Cn(X ′′

i ∪ IC′′) ⊆
Cn(X ′

i ∪ IC′).
Because G′ ⊂ G and G′′ ⊂ G, for all i, Cn(X ′

i ∪ IC′) and Cn(X ′′
i ∪ IC′′) are

both IC-comprehensive sets of Di. Thus, ∀φ ∈ Cn(X ′′
i ∪IC′′), ∀ψ ∈ Cn(X ′

i∪IC′)
(thus we have ψ ∈ Cn(Xi∪IC)), if ψ ≥IC φ then ψ ∈ Cn(X ′′

i ∪IC′′). Therefore,
Cn(X ′′

i ∪ IC′′) is an IC comprehensive set of D′
i. Furthermore, G′′ ⊆ G′.

(⇒) If G′ is a maximal proper subgame of G, then properties (i), (ii), and
(iii) in this lemma are satisfied.

Firstly, because G has at least one proper subgame G′, ∀i ∈ N , Xi �= ∅
and Cn(X ′

i ∪ IC′) ⊂ Cn(Xi ∪ IC). If G′ is a maximal proper subgame of G, by
Definitions 11 and 12, properties (i) and (iii) of this lemma are satisfied, and so we

just need to prove its property (ii). Suppose not, i.e., Cn(X ′
i∪IC′) �= H

≤hDi
−1

i .
Because G′ is a proper subgame of G, Cn(X ′

i ∪ IC′) is an IC comprehensive set
of Di. Thus, by Theorem 1, there is a k ∈ [1, h(Di)], such that Cn(X ′

i ∪ IC′) =⋃k
j=1 Hj

i . So, because Cn(X ′
i ∪ IC′) ⊂ Cn(Xi ∪ IC) and Cn(X ′

i ∪ IC′) �=
H

≤hDi
−1

i , we have k < hDi − 1.



A Logical Framework of Bargaining with Integrity Constraints 9

Here we can find a subgame of G′′ as proved above such that: (i) � IC ↔ IC′′;
(ii) Cn(X ′′

i ∪ IC′′) = H
≤hDi

−1

i ; and (iii) ≥′′IC′′
i =≥IC

i ∩(Cn(X ′′
i ∪ IC′′) ×

Cn(X ′′
i ∪ IC′′)). Then G′′ ⊂ G. Then, because k < hDi − 1,

⋃k
j=1 Xj

i ⊂⋃hDi
−1

j=1 Xj
i ,

⋃k
j=1 Hj

i = Cn(
⋃k

j=1 Xj
i ∪ IC) ⊂ Cn(

⋃hDi
−1

i=1 Xj
i ∪ IC) = H

≤hDi
−1

i

and thus G′′ ⊃ G′. This contradicts that G′ is a maximal proper subgame of G.

So, the assumption is false. Thus, Cn(X ′
i ∪ IC′) = H

≤hDi
−1

i . ��
Now we are ready to prove the following theorem:

Theorem 2. The simultaneous concession solution satisfies all the five proper-
ties listed in the beginning of this subsection.

Proof. (i) Suppose IC is consistent. Given an IC bargaining game G, if ρ ≥ L then
S(G) = {∅, ..., ∅}. So, A(G) = ∅. Obviously, it is consistent. If ρ < L, then S(G) =

(H
≤hD1−ρ
1 , ..., H

≤hDn−ρ
n ), because ρ = min{k |

⋃n
i=1 H

≤hDi
−k

i is consistent} as

defined in Definition 9. So, A(G) = Cn(
⋃n

i=1 H
≤hDi

−ρ

i ) is consistent. That is, the
consistency property holds.

(ii) If G is non-conflictive, by Definition 3,
⋃n

i=1 Xi ∪ IC is consistent. Then

we can easily get ρ = 0 and L ≥ 1. Thus, ∀i ∈ N , Si(G) = H
≤hDi

−0

i = H
≤hDi

i .

Then, noticing hDi = max{h(φ) | ∀φ ∈ Cn(Xi ∪ IC)}, We have H
≤hDi

i =

Cn(
⋃hDi

j=1 Xj
i ∪ IC) = Cn(Xi ∪ IC). So, Si(G) = Cn(Xi ∪ IC).

(iii) If G is a disagreement, by Definition 3, there exists k such that Xk = ∅,
and then L = 0; but ρ ≥ 0. So ρ ≥ L, and thus Si(G) = ∅ for any i. Furthermore,
A(G) = Cn(

⋃n
i=1 Si(G)) = ∅.

(iv) Given two bargaining games G = 〈(Xi,≥i)i∈N , IC〉 and G′ = 〈(X ′
i ,≥′

i

)i∈N , IC′〉 such that G ≡ G′. By Definitions 10 and 7, if G is a disagreement,
so is G′; otherwise, IC ↔ IC and Γ (D) = Γ ′(D′). Therefore, if G is non-
conflictive, it is easy to see that G′ is non-conflictive. So, Si(G) = Si(G′) for all
i. Otherwise, we can easily have hDi = hD′

i
, ρ = ρ′ and L = L′. In addition,

noticing H
≤hDi

−ρ

i = H ′≤hD′
i
−ρ′

i , we have Si(G) = Si(G′) for all i. That is, the
equivalence property holds.

(v) Consider a bargaining game G = 〈(Xi,≥i)i∈N , IC〉. (a) If L = 0, then
∃k, Xk

i = ∅, which means G has no proper subgames. Then S(G) satisfies the
contraction independence property trivially. (b) If L > 0 then because G is not
non-conflictive, ρ > 0. Assume G′ = 〈(X ′

i,≥′
i)i∈N , IC′〉 is a maximal proper sub-

game of G. Let ρ′ = min{k′ |
⋃n

i=1 H ′≤hD′
i
−k′

i is consistent} and L′ = min{h′
Di |

i ∈ N}. By Lemma 1, ∀i, � IC ↔ IC′; Cn(X ′
i ∪ IC′) = H

≤hDi
−1

i ; and

≥′IC′
i =≥IC

i ∩(Cn(X ′
i ∪ IC′) × Cn(X ′

i ∪ IC′)). Obviously, L′ = L − 1 and
ρ′ = ρ− 1, and hD′

i
= hDi − 1. Therefore, ρ′ < L′ if and only if ρ < L. If ρ ≥ L,

S(G) = S(G′) = {∅, ..., ∅}. Otherwise, when ρ < L, ∀i ∈ N , we have
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Si(G) = H
≤hDi

−ρ

i = Cn(Xi ∪ IC)\ ∪hDi

j=hDi
−ρ+1 Hj

i

= (Cn(Xi ∪ IC)\H
hDi

i )\ ∪hDi
−1

j=hDi
−ρ+1 Hj

i

= H
≤hDi

−1

i \ ∪
hD′

i

j=hD′
i
−ρ′+1 Hj

i

= Cn(X ′
i ∪ IC′)\ ∪

hD′
i

j=hD′
i
−ρ′+1 Hj

i

= H
≤hD′

i
−ρ′

i

= Si(G
′). (1)

Therefore, the contraction independence property holds. ��

The following theorem shows that the five properties exactly characterise the
simultaneous concession solution (therefore putting these two theorems together
forms a representation theorem of our solution):

Theorem 3. If a bargaining solution s satisfies the properties of consistency,
non-conflictive, disagreement, equivalence, and contraction independence, it is
the simultaneous concession solution.

Proof. We prove that if a bargaining solution satisfies the five properties, s(G) =
S(G) for any G by induction on ρ.

For the base case that ρ = 0, there are two situations. (i) If G is non-conflictive,
according to the non-conflictive property, ∀i, si(G) = Cn(Xi ∪ IC). Because

ρ = 0 and L ≥ 1, ρ < L. Thus, by Definition 9, Si(G) = H
≤hDi

−0

i = H
≤hDi

i =

Cn(
⋃hDi

j=1 Xj
i ∪ IC) = Cn(Xi ∪ IC). So, si(G) = Si(G) for any i. (ii) If G is a

disagreement, by the disagreement property, ∀i, si(G) = ∅, and there must exist
a k such that Xk = ∅ and so L = 0. Since ρ = 0, ρ = L. Thus, by Definition 9,
Si(G) = ∅. So, si(G) = Si(G).

Now we assume that for any game G′ such that ρ′ = k, s(G′) = S(G′). Now
for a game G in which ρ = k+1, we aim to prove si(G) = Si(G) for all i. Because
ρ = k+1 ≥ 1 in G, G is not a disagreement game nor a non-conflictive game. Let

G′ = 〈(X ′
i,≥′

i)i∈N , IC′〉, where: (a) � IC ↔ IC′; (b) Cn(X ′
i∪IC′) = H

≤hDi
−1

i ;

and (c) ≥′IC′
i =≥IC

i ∩(Cn(X ′
i ∪ IC′) × Cn(X ′

i ∪ IC′)) for any i. So, G′ is a
maximal proper game of G. Here ρ′ = ρ− 1 = k, so by inductive assumption, we

have si(G′) = Si(G′) = H
≤hD′

i
−ρ′

i . In addition, by the contraction independence

property, si(G
′) = si(G) for any i. So, we just need to prove Si(G) = H

≤hDi
−ρ

i =

H
≤hD′

i
−ρ′

i , which is similar to formula (1). ��

4.2 Game-Theoretic Properties

In this subsection, we show that our solution satisfies two fundamental game
theoretical properties: Pareto efficiency and symmetry. Because game-theoretical
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bargaining model is based on utility functions but our bargaining model is de-
fined on bargainers’ demands, we need to restate Pareto efficiency and symmetry
for our model. Firstly we need two relevant definitions.

Definition 13. Given bargaining game G=〈(Di)i∈N , IC〉, where Di=(Xi,≥i),
an outcome of G is a tuple of O = (o1, ..., on), where ∀oi ∈ Γ (Di),

⋃n
i=1 oi is

consistent.

Definition 14. Given two bargaining games G = 〈D, IC〉 and G′ = 〈D′, IC′〉,
where D = (Xi,≥i)i∈N and D′ = (X ′

i,≥′
i)i∈N . We say G and G′ are symmetric

if and only if there is a bijection g from D to D′ such that ∀i ∈ N, g(Di) ⇔IC Di,
and � IC ↔ IC′.

Theorem 4. The simultaneous concession solution satisfies:

(i) Pareto Efficiency: Given bargaining game G = 〈(Xi,≥i)i∈N , IC〉 satisfying
s(G) �= (∅, ..., ∅), let O and O′ be two possible outcomes of G. If o′i ⊃ oi for
all i ∈ N , then s(G) �= O.

(ii) Symmetry: Suppose that two bargaining games G and G′ are symmetric
with bijection g. Then A(G) = A(G′). Moreover, for any i, j ∈ N , if
g(Di) = D′

j, then si(G) = sj(G
′).

Proof. Firstly, we prove our simultaneous concession solution S satisfies the
Pareto efficiency by the contradiction proof method. Suppose S(G) = O, then by

Definition 9, O = (H
≤hD1−ρ
1 , · · · , H

≤hDn−ρ
n ), where ρ = min{k |

⋃n
i=1 H

≤hDi
−k

i

is consistent}. Because o′i ⊃ oi for all i ∈ N , o′i = H
≤hDi

−ρ′

i , where hDn − ρ′ >

hDn − ρ. Then ρ′ < ρ. By the definition of ρ,
⋃n

i=1 H
≤hDi

−ρ′

i is inconsistent,
which means that

⋃n
i=1 o′i is inconsistent, and then O′ is not an outcome of G.

This conclusion is conflict with the premise. So, S(G) �= O.
Then we prove the simultaneous concession solution satisfies the symmetry.
(i) If G is a disagreement, there exist at least Xk(k ∈ N) in Dk such that

Xk = ∅, and so L = 0 for bargaining game G. Because G and G′ are symmetric,
there must be a D′

k′ in G′ such that D′
k ⇔IC D′

k′ , X ′
k′ (k′ ∈ N) = ∅, and

so L′ = 0 for bargaining game G′. Thus, ρ ≥ L and ρ′ ≥ L′ in G and G′,
respectively. Therefore, by Definition 9, S(G) = S(G′) = ∅.

(ii) In the case that G and G′ are not disagreements, since G and G′ are
symmetric, and g(Di) = D′

j , by Definition 14, Di ⇔IC D′
j for any i, j ∈ N , and

� IC ↔ IC′. Then for any Di in G and D′
j in G′, ∀Ω ∈ Γ (Di), ∃Ω′ ∈ Γ ′(D′

j)
such that Ω = Ω′; and vice visa. It is easy to see that ρ = ρ′, hDi = hD′

j
and L =

L′ for G and G′, respectively. Then ∀i, j ∈ N , Si(G) = H
≤hDi

−ρ

i = H ′≤hD′
i
−ρ′

j =

sj(G′). In this case, A(G) = Cn(
⋃n

i=1 si(G)) = Cn(
⋃n

j=1 sj(G′)) = A(G′). ��

5 Conclusion and Related Work

This paper proposes a logical framework for bargaining with integrity con-
straints. More specifically, we construct a simultaneous concession solution to
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the bargaining game, which satisfies five logical and two game theoretical prop-
erties. Moreover, we prove that our solution can be characterised uniquely by
the five logical properties.

This work is built up on Zhang’s framework on the logical axiomatic model of
bargaining in [7] but extends his work in several aspects. Firstly, our model solves
the problem of mixing integrity constraints with players’ demands. Secondly, we
add a logical requirement to ensure the rationality of the preference ordering over
the bargainers’ demands. Most importantly, our solution is syntax independent,
which makes more sense for constraint integration.

This work has also related to belief merging or database merging with con-
straints [13, 15]. Following Lin and Mendelzon’s work [15] on database merging,
Konieczny and Pérez extended the framework of belief merging [16] by adding
integrity constraints, which leaded to a new framework of belief merging [13].
Although both bargaining and belief merging require to incorporate informa-
tion from different sources (thus share some similar properties, for instance, the
integrity constraints should be consistent with the outcomes of bargaining or
merging), their ways of treating information sources are totally different. In be-
lief merging, sometimes, an item is included in the merging outcome relies on
how many sources contains this item, say the majority rule, while in bargaining,
the outcome of a bargaining relies on how firmly the bargainers insist on their
demands. In addition, with belief merging, each data source normally does not
have a preference over the items in the belief base, while in a bargaining, play-
ers’ preferences over their demands are essential. All these differences have been
reflected in the frameworks of belief merging and logical based bargaining.
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Abstract. There has been significant recent interest in security games,
which are used to solve the problems of limited security resource allo-
cation. In particular, the research focus is on the Bayesian Stackelberg
game model with incomplete information about players’ types. However,
in real life, the information in such a game is often not only incomplete
but also ambiguous for lack of sufficient evidence, i.e., the defender could
not precisely have the probability of each type of the attacker. To ad-
dress this issue, we define a new kind of security games with ambiguous
information about the attacker’s types. In this paper, we also propose
an algorithm to find the optimal mixed strategy for the defender and
analyse the computational complexity of the algorithm. Finally, we do
lots of experiments to evaluate that our model.

1 Introduction

Nowadays the study of security games is a very active topic [1–6]. For example,
the security game solving algorithm of DOBSS [1] is the heart of the ARMOR
system [2, 4], which has been successfully utilised in security patrol schedule at
the Los Angeles International Airport [2, 4]. In a security game, the defender
has to protect the people and critical infrastructure from the attacker. However,
security resources that can be allocated are usually limited. And the attacker can
observe the defender, for a period of time, to understand his security strategy
and then attack a target accordingly. So, the defender has to take a random
strategy to provide a security cover for everything. That is, the defender should
find an optimal mixed strategy to maximise his expected utility.

Lots of work (e.g., [1, 3, 5]) on the topic of security games is to find the
strong Stackelberg equilibrium [4]. That is, the attacker has perfect knowledge
of the defender’s optimal strategy and accordingly chooses an optimal response
strategy to maximise his expected utility. The defender and the attacker have
no incentive to change their strategies of the optimal response. However, in
real life, there are different types of terrorist, e.g., ideological, ethno-separatist,
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S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 14–25, 2013.
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religious-cultural, and single issue terrorist [7]. Attackers with diverse types use
different ways (e.g., kidnapping, bombing, and so on) to attack targets and so
gain different payoffs [8]. If the defender just knows they will be attacked by the
attacker with several possible types and the probability distribution over these
types, we can use Bayesian Stackelberg game models [1–4] to solve the problem.
Nevertheless, sometimes they are unclear about the probability of each type for
lack of sufficient evidence. For example, the intelligence shows that an attacker,
who wants to attack the airport, often attends the meeting with ideological and
religious-cultural property or the meeting with religious-cultural and ideological
property. However, the available evidence only shows the probability that this
attacker is one of the types ideological terrorist and religious-cultural terrorist
is 0.4, and the probability that this man is one of the types religious-cultural
terrorist and ideological terrorist is 0.6. So, in this case, the problem cannot be
solved using the Bayesian game model because it assumes every player knows
clearly the probability of each type of other players.

On the other hand, the evidence theory of Dempster and Shafer (D-S theory)
[9, 10] is a powerful tool to handle the ambiguous information (i.e., imprecise
probabilities) in terms of mass function. Based on D-S theory, Strat [11] intro-
duces the concept of interval-valued expected utility and gives the method for
calculating it from a mass function [9, 10]. Ma et al. [6] extend the model of
Strat [11] to form a framework of security games with ambiguous payoffs. Its
key point is that a point-valued preference degree for a choice of strategy can
be calculated from an interval-valued expected utility that Strat [11] defines.
However, Ma et al. [6] do not deal with ambiguous types of the attacker.

Based on the ambiguity decision framework [11–13], this paper proposes our
ambiguous games model to handle ambiguous information in security games.
More specifically, in our model, the belief about the attacker’ types is ambiguous
and modeled by mass functions [9, 10]. That is, the probability could be of not
only one type but also many types together for lack of evidence for the defender.
Thus, the expected utility of a strategy becomes an interval value by Strat’s
method [11]. Then, in our model, the player can get a point-valued preference
degree over a strategy from its interval-valued utility according to the model of
Ma et al. [6, 12]. Finally, the defender can find the optimal strategies according
to the preference ordering.

The main contributions of this paper are as follows. (i) We deal with the
defender’s ambiguous belief about the attacker’s types in security games. (ii) We
propose an algorithm for solving security games with such ambiguous attacker
types and analyse its computing complexity. And (iii) we evaluate our model
by lots of experiments and find that our model is efficient and safe for handling
security games with ambiguous attacker types.

The rest of this paper is organised as follows. Section 2 recaps the ambiguity
decision framework. Section 3 proposes our security games with ambiguous at-
tacker types and algorithm for solving our security games. Section 4 does lots of
experiments to evaluate our game model. Section 5 discusses the related work.
Finally, Section 6 concludes our paper with future work.
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2 Preliminaries

This section will recap an ambiguity decision framework based on D-S theory
[9–12, 14]. D-S theory [9, 10] can model the ambiguous belief when the evidence
is insufficient (even missing). Formally, we have:

Definition 1. Let Θ be a finite set of mutually disjoint atomic elements, called
a frame of discernment and 2Θ be the set of all the subsets of Θ. Then a
basic probability assignment, or called a mass function, is a mapping of
m : 2Θ → [0, 1], which satisfies m(∅) = 0 and

∑
A⊆Θ m(A) = 1. Subset A (⊂ Θ)

satisfying m(A) > 0 is called a focal element of mass function m.

The more elements in focal elements of a mass function and the bigger the
mass function values of focal elements, the more ambiguous the belief is. This
can be captured by the ambiguity degree of the mass function, which is defined
as follows [12–15]:

Definition 2. The ambiguity degree of a mass function m over discernment
frame Θ, denoted as δ, is given by

δ(m) =
∑

A⊆Θ m(A) log2 |A|
log2 |Θ| , (1)

where |A| and |Θ| are the cardinality of sets A and Θ, respectively.

Formula (1) reflects well that the more ambiguous the belief, the higher the
ambiguity degree. In particular, ∀A ⊆ Θ, if |A| = 1 when m(A) > 0, then
δ(m) = 0, which represents the precise belief; and if m(Θ) = 1, then δ(m) = 1,
which represents the most ambiguous belief.

Strat [11] defines the expected utility interval as follows:

Definition 3. Given a choice of c corresponding to mass function m over the
possible consequence set, denoted as Θ, of all the choices, let u(ai, c) be the
utility of choice c corresponding to element ai in the focal element A. Then the
expected utility interval of choice c is EUI(c) = [E(c), E(c)], where

E(c) =
∑

A⊆Θ min{u(ai, c) | ai ∈ A}m(A), (2)

E(c) =
∑

A⊆Θ max{u(ai, c) | ai ∈ A}m(A). (3)

Here E(c) and E(c) are called the lower and high boundaries of choice c,
respectively.

If two choices’ expected utility intervals do not overlap, people can make
a choice easily (i.e., choose the one which lower boundary is higher than the
other’s upper boundary); otherwise, the choice is unclear [11, 12]. In this case,
more evidence is required in order to make the expected utility intervals no
longer overlap. However, what should we do if we cannot have more evidence?
To handle this issue, the work of [12] presents a reasonable way to get a point-
valued preference degree of a choice with the expected utility interval as follows:
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Definition 4. Given mass function m over discernment frame Θ corresponding
to choice c, the preference degree of choice c is defined as:

ρ(c) = 2E(c)+(1−δ(m))(E(c)−E(c))
2 , (4)

where [E(c), E(c)] is the expected utility interval of choice c and δ(m) is the
ambiguity degree of mass function m.

In the ambiguous environment, first we can get the expected utility interval
by formulas (2) and (3), and then we can get the point-valued preference degree
of each choice by formula (4).

3 Ambiguous Security Games

This section presents our security game model with ambiguous types of the
attacker.

Definition 5. An ambiguous security game is a tuple of (N, Ta, md, S, X, U),
where:

(i) N = {d,a} is the set of players, where d stands for the defender and a
stands for the attacker;

(ii) Ta = {t1, · · · , tm} is the attacker’s disjoint type set.
(iii) md is the defender’s mass function over the frame of discernment Ta;
(iv) S = Sd × Sa, where Sd = Sa = {s1, · · · , sn} is the pure strategy set of

the attacker and the defender, representing attacking or defending targets,
and n is the target number;

(v) X = {Xi | i = 1, · · · , n}, where Xi = {pi,1, · · · , pi,n} is one mixed strategy
of the defender, pi,j is the probability distribution for the pure strategy si
(satisfying pi,j ∈ (0, 1] and

∑
pi,j∈Xi

pi,j = 1), and given the defender’s

mixed strategy Xi, sa(t, Xi)(∈ Sa) is the strategy taken by each type t of
the attacker and sa(Ta, Xi) =

∏
t∈Ta

sa(t, Xi) is the strategy profile chosen
by all the types of the attacker; and

(vi) U = {ud(s, t), ua(s, t) | s ∈ S, t ∈ Ta}, where ud(s) is the defender’s payoff
function from strategy profile s to R given the attacker of type t, ua(s, t) is
the payoff function of the attacker of type t over strategy profile s to R.

From the above definition, we know that in security games with ambigu-
ous attacker types first the defender commits an optimal mixed strategy to the
attacker, and then the attacker tries to find the optimal strategy for himself.
However, the information about the attacker’s types for the defender is am-
biguous, i.e., the defender is unclear about the probability of each type of the
attacker, but only knows a probability over a set of types for lack of sufficient
evidence. Moreover, our security games with ambiguous attacker types are dif-
ferent from the Bayesian Stackelberg games because Bayesian Stackelberg games
only consider the precise probability of the attacker’s types.

Given a target of si, the attacker of type t receives reward U+
a (si, t) if the at-

tacker attacks target si, which is not covered by the defender; otherwise, the at-
tacker receives penalty U−

a (si, t). Correspondingly, the defender receives penalty
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U−
d (si, t) in the former case and receives reward U+

d (si, t) in the latter case. The
outcomes of a security game is only relevant to whether or not the attack is
successful [3, 5]. So, the payoffs of a pure strategy profile with respect to the
attacker and the defender can be calculated, respectively, by:

ud(s, t) = x × U−
d (si, t) + (1− x) × U+

d (si, t); (5)

ua(s, t) = x × U+
a (si, t) + (1− x) × U−

a (si, t), (6)

where x ∈ {0, 1} and x = 0 means fail while x = 1 means success. In a security
game, the payoff could be non-zero-sum [3–5] and so we can suppose U+

a (si, t) >
U−
a (si, t) and U+

d (si, t) > U−
d (si, t) without loss of generality.

Now we will design an algorithm to find an optimal mixed strategy for the
defender. In our model, we deal with the security games with ambiguous attacker
types, which are only for the defender. That is, the attacker knows the defender’s
strategy with perfect information.

To select an optimal mixed strategy from all the mixed strategies, the defender
should consider the optimal strategy of the attacker against every mixed strategy
of the defender because the attacker can observe the defender’s strategy and thus
knows the probability of each target defended by the defender. The attacker of
different types may have different preference degrees on the same strategy. So,
the defender should consider all the optimal strategies of all the attacker’s types.
Formally, we have:

Definition 6. Given defender’s mixed strategy Xi = {pi,1, · · · , pi,n}, s∗a(t, Xi) ∈
Sa is an optimal response strategy taken by every type t of the attacker if

∀sa(t, Xi) ∈ Sa, Ua(Xi, s∗a(t, Xi), t) ≥ Ua(Xi, sa(t, Xi), t), (7)

and satisfies that if there is some strategy sa(t, Xi) such that

Ua(Xi, s∗a(t, Xi), t) = Ua(Xi, sa(t, Xi), t), (8)
then ∑n

l=1 pi,lud(sl, s∗a(t, Xi), t) >
∑n

l=1 pi,lud(sl, sa(t, Xi), t), (9)

where ud(sl, sa(t, Xi), t) is calculated by formula (5) and

Ua(Xi, sa(t, Xi), t) =
∑n

l=1 pi,lua(sl, sa(t, Xi), t), (10)

where ua(sl, sa(t, Xi), t) is calculated by formula (6). All types’ optimal response
strategies form an optimal response strategy profile, i.e.,∏

t∈Ta

s∗a(t, Xi) = s∗a(Ta, Xi) (11)

That is, the attacker of every type will take the strategy that can maximise not
only the attacker’s payoff but also the defender’s payoff in order to implement his
payoff as the assumption in Stackelberg games [1, 16]. Actually, the attacker’s
optimal strategy is corresponding to the mixed strategy of the defender. So, to
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implement his maximised payoff, he should ensure that the defender selects that
strategy by maximising the defender’s payoff.

Similarly, given the attacker’s strategy, if the defender has two indifferent
mixed strategies, the defender should consider the attacker’s preference ordering
for the strategies based on his belief about the attacker’s types.

Definition 7. In ambiguous security game (N, Ta, md, S, X, U), the attacker’s
total preference degree over mixed strategy Xi is defined as:

ρa(Xi) =
2Ea(Xi)+(1−δ(md))(Ea(Xi)−Ea(Xi))

2 , (12)

where δ(md) is the ambiguity degree of mass function md and

Ea(Xi) =
∑

τ⊆Ta
min{Ua(Xi, s∗a(t, Xi), t) | t ∈ τ}md(τ), (13)

Ea(Xi) =
∑

τ⊆Ta
max{Ua(Xi, s∗a(t, Xi), t) | t ∈ τ}md(τ), (14)

where Ua(Xi, s∗a(t), t) is calculated by formula (10).

In the above definition, formula (12) is the variant of formula (4). And for-
mulas (13) and (14) are the variants of formulas (2) and (3), respectively.

After the attacker observes the defender’s mixed strategy, he can have an
optimal response strategy against the defender’s mixed strategy. The attacker
of every type may have different optimal strategies, which should be considered
by the defender. For the ambiguous information about the attacker’s types, we
should use the ambiguous game model to handle. Then, the defender can find
his optimal strategy from his all mixed strategies. Formally, we have:

Definition 8. In ambiguous security game (N, Ta, md, S, X, U), given the de-
fender’s mixed strategy Xi = {pi,1, · · · , pi,n}, suppose optimal response strate-
gies of all the types of the attacker form an optimal response strategy profile
s∗a(Ta, X∗

i ). Then X∗
i is the defender’s optimal mixed strategy if:

∀Xi ∈ X,
∑

pi,l∈X∗
i

pi,lρd(sl, s∗a(Ta, X∗
i )) ≥

∑
pi,l∈Xi

pi,lρd(sl, s∗a(Ta, Xi)),(15)

and satisfies if there is some strategy Xi such that∑
pi,l∈X∗

i
pi,lρd(sl, s∗a(Ta, X∗

i )) =
∑

pi,l∈Xi
pi,lρd(sl, s∗a(Ta, Xi)), (16)

then for the attacker’s total payoff:

ρa(X
∗
i ) < ρa(Xi), (17)

where ρa(Xi) is calculated by formula (12) and

ρd(sl,s
∗
a(Ta, Xi))=

2Ed(sl,s
∗
a(Ta,Xi))+(1−δ(m))(Ed(sl,s

∗
a(Ta,Xi))−Ed(sl,s

∗
a(Ta,Xi)))

2 , (18)

where l ∈ {1, · · · , n}, Ed(sl, s∗a(Ta, Xi)) and Ed(sl, s∗a(Ta, Xi)) are calculated
by formulas (13) and (14), respectively, by replacing Ua(Xi, s∗a(t, Xi), t) with
ud(sl, s∗a(t, Xi), t) (which is calculated by formula (5)).
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Algorithm 1. D-S Theory Based Solution Algorithm of SGAAT

Input: Strategy: The strategy set;
Type: The type set of the attacker;
X: The mixed strategy set;
U+

d , U−
d , U+

a , U−
a : The reward and penalty for the defender and the attacker over

each pure strategy profile;
md: Defender’s mass function over the set Type ;

Output: X∗
i ;

1: for all t ∈ Ta do
2: for all s ∈ S do
3: Use formulas (5) and (6) to get both players’ payoffs of every pure strategy

profile s when the attacker is the type of t;
4: end for
5: end for
6: for all Xi ∈ X do
7: for all t ∈ Ta do
8: Use formulas (7)–(9) to find the optimal strategy, s∗a(t,Xi), of the attacker

with type t;
9: end for
10: Let s∗a(Ta, Xi) (i.e.,

∏
t∈Ta

s∗a(t,Xi)) be the optimal strategy profile of the at-
tacker.

11: for all sl ∈ Sd do
12: Use formula (18) to get the defender’s payoff of the optimal strategy profile

s∗a(Ta, Xi) of the attacker;
13: end for
14: end for
15: Use formulas (15)–(17) to find the defender’s optimal mixed strategy X∗

i ;

In the above definition, formula (18) is the variant of formula (4). The defender
should also take the strategy that can maximise his payoff when minimising the
attacker’s total payoff. This is because the defender commits a mixed strategy
to the attacker first and thus determines the attacker’s payoff.

Then we have our D-S theory based solution algorithm for security games with
ambiguous attacker types (SGAAT) as shown in Algorithm 1. In our algorithm,
the attacker’s type and the reward and the penalty of the defender and the
attacker are determined by domain experts [4]. For every mixed strategy of the
defender, the attacker will have an optimal strategy profile formed by every
type’s optimal strategy. Then, the defender has a preference degree for every
mixed strategy. Finally, the defender can find his optimal mixed strategy.

Clearly, our ambiguous security game can cover a Bayesian Stackelberg game
[4] as a special case when the defender has a precise belief about the attacker
types and then commits a mixed strategy to the attacker. Conitzer et al. [16]
show that finding an optimal mixed strategy to commit in a Bayesian Stackelberg
game is NP-hard. The computing complexity of our algorithm is similar as proved
in the following theorem:

Theorem 1. In security games with ambiguous attacker types, it is NP-hard to
find an optimal mixed strategy to commit to.



Security Games with Ambiguous Information about Attacker Types 21

Proof. In the ambiguous security game, the defender commits a mixed strategy
to the attacker, which means that the ambiguous security game is a Stackelberg
game. Now, given τ ⊆ Ta, if md(τ) > 0 then |τ | = 1. So, the probabilities of the
attacker’s types are precise. So, Bayesian Stackelberg games are special cases of
our security gameswith ambiguous attacker types. In security gameswith ambigu-
ous attacker types, we have to handle the ambiguous information about the at-
tacker type using the ambiguity decision framework. So, finding an optimal mixed
strategy to commit to in security games with ambiguous attacker types is not eas-
ier than finding an optimal mixed strategy to commit to in Bayesian Stackelberg
games. However, by [16], it is NP-hard to find an optimal mixed strategy to com-
mit to in Bayesian Stackelberg games. Then, all NP-complete problems, which can
be reduced to Bayesian Stackelberg games with two players to find the optimal
mixed strategy, can also be reduced to security games with ambiguous attacker
types to find the optimal mixed strategy. So, in security games with ambiguous
attacker types, it is NP-hard to find an optimal mixed strategy to commit to. ��

4 Evaluation

In this section, we are going to evaluate our model by lots of experiments.
In the field of security games [1, 4, 5], most investigations could not handle the

ambiguous information. In their models, they need the precise probability of the
attacker’ types. So, if we use their models to handle the ambiguous information,
we have to transfer imprecise probabilities to precise probabilities using, for
example, the transferable belief method [17] as follows:

Definition 9. In a security game (N, Ta, md, S, X, U), let md be mass function
over Ta and τ ⊂ Ta. Then the uniform random probability (URP) of every

element t ∈ τ is P (t) =
∑

t∈τ
md(τ)
|τ | .

In a security game, the defender must find the optimal mixed strategy to
avoid the attacking [4]. If there is an attack, when we cannot prevent from it,
we hope that the less the loss the better because nobody wants to see the sad
event. So, to be safe, we should make the loss as little as possible.

Observation 1. Our model can guarantee more safety than the model based on
uniform random probability in the ambiguous environment.

Now we use experiments to show that, the worst case in our model is better
than the one in the model based on uniform random probability (URP). In our
experiment, the defender and attacker’s rewards range from 1 to 10 and the
penalties range from -1 to -10 randomly. There are two subsets of the attacker’s
type set for the defender: one contains only one element, denoted as A, the other
one contains the rest elements, denoted as B, of type set Ta. In the D-S theory
based solution algorithm of SGAAT, the belief for only one element set is 1

|Ta| ,
called md(A), and the belief for the other part of Ta is 1 − 1

|Ta| , called md(B).

Then, by formula (1), the more types the attacker has, the higher the ambiguity
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Fig. 1. The defender’s worst penalty in security games with ambiguous attacker types
for the defender

degree of the mass function. In the URP based solution algorithm of SGAAT,
the belief for only one element set is md(A) and the belief for every element in

the other part of Ta is md(B)
|Ta|−1 . In our experiments, we find the optimal strategies

for two models, and continue to find the worst penalty that the defender may
get when the defender takes an optimal strategy. That is the worst penalty for
the defender when the attacker attacks the target successfully. For every type
and every strategy, we run 100 experiments and get the average value about the
worst penalties that the defender may get in all experiments. For example, in
every experiment, by Algorithm 1, X∗

i is the defender’s optimal mixed strategy
and s∗a(t, X∗

i ) is the optimal strategy of every type t of the attacker, then the
worst penalty at the j-th experiment is U−

j = min{U−
d (s∗a(t, X∗

i ), t) | t ∈ Ta},
and thus the average worst penalty of 100 experiments is:

Ũ− =
∑

1≤j≤100 U−
j

100 . (19)

The results of our experiments are shown in Figure 1. The cases of two, three,
four, and five strategies (targets) are shown in Figure 1 (a), (b), (c), and (d), re-
spectively. When there are four or more types of the attacker in the D-S theory
based solution algorithm of SGAAT, the probability md(B) contains more than
one type, which makes the belief ambiguous by formula (1), (i.e., δ(md) > 0).
However, in the URP based solution algorithm of SGAAT, the probability is still

precise by md(B)
|Ta|−1 . Then, when there are three or more types, the games with the

URP based solution algorithm of SGAAT are still Bayesian games, but the games
with the D-S theory based solution algorithm of SGAAT are not. In these cases, as
shown in Figure 1, the worst penalties obtained by the D-S theory based solution
algorithm of SGAAT are strictly bigger than the worst penalties obtained by the
URP based solution algorithm of SGAAT.1 For example, by formula (19), when

1 In the D-S theory based solution algorithm of SGAAT, the types have imprecise prob-
ability except the first type. However, in the URPbased solution algorithm of SGAAT,
the types have precise probability.
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(a) The distance of worst penalties when
the strategy number changes over each
type number (from 4 to 16)

(b) The distance of worst penalties
when the type number changes over
each strategy number (from 2 to 4)

Fig. 2. Comparing the worst penalties of D-S theory based solution with URP based one

there are six types of the attacker, the worst penalties obtained by the D-S the-
ory based solution algorithm of SGAAT are -7.75, -7.13, and -6.93 with respect to
three, four, and five strategies respectively, whereas the worst penalties obtained
by the URP based solution algorithm of SGAAT are -8.3, -7.83, and -7.89 with
respect to three, four, and five strategies, respectively.

Figure 2(a) shows that themore strategies, the larger distance of theworstpenal-
ties between the D-S theory based solution algorithm of SGAAT and the URP
based solution algorithm of SGAAT. For example, when the attacker has 16 types,
thedistances are 0.12, 0.63, and0.82 for two, three, and four strategies, respectively.
In the cases of three strategies and four strategies, as shown inFigure 2(b), themore
types the attacker has, the larger distance of the worst penalties on the whole. For
example, when there are three strategies, the distances are 0.36, 0.49, and 0.63 for
four, eight, and sixteen types, respectively. So, the higher the ambiguity degree of
the mass function is, the safer our model. Thus, we have:

Observation 2. The more ambiguous the available information about the types
of the attacker, the safer our model than the uniform random probability model.

5 Related Work

Recently, many researchers have tried to improve the algorithms for solving se-
curity games [1, 4, 5], but most of them can only deal with the defender’s precise
probabilities of the attacker’s types when they try to handle the uncertainty in
the real world [3, 5]. For the ambiguous information, to use their model, the
imprecise probabilities have to be transferred to precise ones. However, we have
shown that our model can guarantee the safer result than the model based on
uniform random probability in ambiguous environment.

In the field of games under ambiguity, Eichberger and Kelsey [18] define a
notion of equilibrium under ambiguity to explain the hypothesis that the result,
from changing an apparently irrelevant parameter, contradicts Nash equilibrium.
In their two-person games, they view their opponents’ behavior as ambiguous
based on non-additive beliefs. And Marco and Romaniello [19] try to use an am-
biguity model to remedy some defects of Nash equilibrium. In their model, the
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belief depends on the strategy profile and then affects the equilibrium. Moreover,
Xiong et al. [13] considers the ambiguous payoff in game theory. However, all
of these models do not deal with the dynamic games (e.g., Stackelberg games)
nor ambiguous information about the player’s types. In our model, we consider
a security game, which is a dynamic one with the ambiguous information about
players’ types. Furthermore, Ma et al. [6] extend the ambiguity decision frame-
work [12, 13] to deal with ambiguous payoffs rather than ambiguous attacker
types in security games. At the same time, in their work, they only transfer the
interval-valued payoff to point-valued one before players play the game and treat
security games as static games. That is, the ambiguous information is not re-
flected in the procedure of security games in their model. However, we consider
the defender’s optimal strategy influenced by the imprecise probability of the
attacker’ types. We also propose an algorithm to find the optimal strategy for
the defender in security games, but they do not.

In addition, Wang et al. [20] deal with fuzzy types of players, but this model
only considers static Bayesian games, while our model is dynamic. Meanwhile,
this model cannot model the types with imprecise probability, but ours does.

6 Conclusion and Future work

This paper proposes a model to handle the ambiguous information about the
attacker’s types in security games. Moreover, we develop a D-S theory based
algorithm to find the defender’s optimal mixed strategy and discuss their com-
puting complexity. Furthermore, we evaluate our model by lots of experiments.
From the experiments, we find: (i) our model can guarantee more safety than the
model based on uniform random probability in the ambiguous environment; and
(ii) the more ambiguous the available information about the types of the attacker,
the safer our model is than the model based on uniform random probability. So,
our model can well handle security games in the ambiguous environment, In the
future, we will develop more efficient algorithms to solve our ambiguous security
game and apply it to real life to protect critical public targets.
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Abstract. Classic results in bargaining theory state that private in-
formation necessarily prevents the bargainers from reaping all possible
gains from trade. In this paper we propose a mechanism for improving
efficiency of negotiation outcome for multilateral negotiations with in-
complete information. This objective is achieved by introducing biased
distribution of resulting gains from trade to prevent bargainers from
misrepresenting their valuations of the negotiation outcomes. Our mech-
anism is based on rewarding concession-making agents with larger shares
of the obtainable surplus. We show that the likelihood for the negotiators
to reach agreement is accordingly increased and the negotiation efficiency
is improved.

1 Introduction

Conducted experiments have shown that more often than not negotiations reach
inefficient compromises [1, 2]. In relation to this phenomenon, a central question
in research in economics and political science is to understand the difficulties
the parties have in reaching mutually beneficial agreements. The classic result
discovered by Myerson and Satterthwaite ([3]) indicates that uncertainty about
whether gains from trade are possible necessarily prevents full efficiency. More
precisely, their result states that, given two parties with independent private
valuations, ex post efficiency is attainable if and only if it is common knowledge
that gains from trade exist. Inefficiencies are a consequence of the incentives to
misrepresent a bargainers’ valuations between those with private information.
The mechanism propose in this paper aims to remove such incentives by devising
ways to distribute the resulting gains from trade in such a way that the bargainer
who can still make a concession becomes more willing to actually make that
concession.

Most games with incomplete information are modeled using some particular
information structures and strategic devices to allow agents with private infor-
mation to perform some action to send out a signal indicating their types.1

1 The “type” of a player embodies any private information that is relevant to the
player’s decision making.

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 26–31, 2013.
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Upon observing the action by the agent with private information, other agents
can decide their own best course of actions. In various models of the bargaining
problem, several mechanisms have been used to allow negotiators to communi-
cate their private valuations to other parties.2 These mechanisms include the
use of costly delays (i.e., time delays when there are discount factors) [4, 5],
transaction costs [6], or bargaining deadlines [7, 8]. Our approach, on the other
hand, applies a mechanism of biased distribution of the observable gains from
trade to encourage the parties with private information to truthfully reveal their
types. To facilitate this mechanism we employ a negotiation protocol to allow
the bargainers to concurrently submit their proposals.

The paper is organised as follows. Section 2 gives an overview of the negotia-
tion model, including the negotiation protocol. In Section 3, we describe the use
of biased surplus division as a strategic device for negotiation with incomplete
information, focussing on the case of bilateral negotiation. Our results are ex-
tended for the case of multilateral negotiation in Section 4 before we conclude
the paper with a discussion.

2 A Multilateral Negotiation Model

Consider the multilateral negotiation as an allocation problem with n agents.
Given the set of all possible allocations A, agent i has a valuation vi(a, ti) for
the allocation a ∈ A when its type is ti. Assume that the status quo allocation
ã ∈ A defines the agents’ reservation utilities. We will normalise each valuation
function vi such that vi(ã, ti) = 0. Assume also that the maximum amount of
resource available for this allocation is R. Thus, an allocation (a1, . . . , an) is
feasible iff

∑n
i=1 ai ≤ R.

If the status quo allocation ã = (ã1, . . . , ãn) is feasible then gains from trade
are possible: G̃ = R−

∑n
i=1 ãi. Because each agent’s status quo allocation ãi is her

private information, whether or not gains from trade are possible is not common
knowledge. According to Myerson and Satterthwaite’s ([3]) result, this source
of uncertainty is the cause for negotiation inefficiency. Throughout this paper,
we assume that each agent’s utility is independent of the allocations received by
other agents, and that ãi < R; otherwise, agent i would not participate in the
negotiation in the first place.

2.1 The Negotiation Protocol

The negotiation protocol used in our model is similar to the Monotonic Conces-
sion Protocol [9, 10] which proceeds in rounds. In each round, all agents make
simultaneous allocation claims for themselves, i.e. they each claims an allocation
ai (0 ≤ ai ≤ R). The combination of all claims makes up a potential allocation
a = (a1, . . . , an). If a is a feasible allocation, i.e.

∑n
i=1 ai ≤ R, then an agree-

ment is reached with each agent being allocated what it claims during this

2 The literature of automated negotiation usually uses the agents’ reserve prices to
indicate their valuations.
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round and the observable surplus σ = R −
∑n

i=1 ai will be divided between
the agents.

Remark: The surplus to be distributed once an agreement is reached is the ob-
servable gains from trade based on the agreement which could be smaller than
the actual gains from trade G̃.

Definition 1. Let a tuple Δ = (δ1, . . . , δn) be such that ∀i = 1 . . . n.δi ≥ 0
and

∑n
i=0 δi = 1. Given the agreed allocation a = (a1, . . . , an) and the resulting

surplus σ ≥ 0, the Δ-surplus division provides agent i the allocation ai + δiσ.

The negotiation protocol can now be described as follows:

(1) In the first round, each agent i makes an initial claim a0
i ;

(2) In each subsequent round t > 0, an agent i either makes a concession at
i <

at−1
i , or stays with its previous claim at

i = at−1
i ;

(3) Step (2) is iterated until either an agreement is reached or a conflict situa-
tion arises in which no agent makes a concession. When a conflict situation
concludes the negotiation, all agents leave the negotiation with the status
quo allocation ã.

It’s straightforward to see that the above negotiation protocol terminates after
a finite number of rounds. In particular, the well-known seller-buyer bargaining
problem can be straightforwardly rendered in our negotiation model as shown
in the next section.

3 Surplus Division as a Strategic Device

Research from various disciplines as well as experimental and empirical stud-
ies has shown that cooperation is the key to achieving optimality in most in-
teractions between a group of individuals, particularly in negotiations [11–13].
However, given the competitive nature of negotiation, not all negotiators behave
cooperatively. The main purpose of our approach is to devise mechanisms that
encourage the negotiators to behave cooperatively rather than competitively. We
implement this via a mechanism of biased distribution of the observable surplus.

3.1 The Bilateral Bargaining Problem

Consider a bargaining between a buyer and a seller of an indivisible good. Each
agent has two possible valuations high (h) and low (l) of the good that defines
her types:

Valuation
Type Seller Buyer
weak al

1 ah
2

strong ah
1 al

2

where al
1 ≤ al

2 < ah
1 ≤ ah

2 .
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Notice that gains from trade are possible unless both agents are of type strong.
That is, when the buyer has a low valuation of the item al

2 while the seller values
the item high ah

1 and because al
2 < ah

1 , mutually beneficial trade is not possible.
We let π1 (resp. π2) denote the initial probability that the seller (resp. the buyer)
of unknown type is strong. These probabilities are exogenously given, and are
common knowledge.

Note that the above bargaining problem has the same information setting
as the problem considered by Chatterjee and Samuelson ([14]). Chatterjee and
Samuelson establish a (unique) Nash equilibrium for their negotiation setting by
using time as a strategic variable and imposing costly delays during negotiation.
While the use of impatience, via costly delays, as the strategic information device
has been a common practice in the literature of bargaining, this is certainly
not applicable in every negotiation. Some researchers even claim that in some
negotiations some parties may prefer a later agreement to an early one [15]. Also,
a necessary consequence of costly delays is that they prevent full efficiency. Our
proposed approach employs biased distribution of the resulting surplus which
is costless, and thus, improve the efficiency of the negotiation and allow full
efficiency to be achieved under certain conditions.

In this problem setting, an agent i ∈ {1, 2} can either “play tough” (denoted
by the action P T ) by claiming that she is of type strong, or “play soft” (denoted
by the action P S) by stating that she is of type weak. Since a strong-type agent
has only one strategy of playing tough all the way, most of the analysis below
will be on the weak-type agents. Without loss of generality, we assume that the
default surplus division scheme Δd distributes the surplus equally among the
agents, i.e., δdi = 1

n where n is the number of negotiators. This assumption does
not affect the results of this paper.

To motivate our approach, we’ll consider a simple bargaining example.

Example 1. Consider a buyer B and a seller S who negotiate over the price of
an item. Assume that it’s common knowledge that S’s cost for the item can be
either $50 or $53 with equal probability 0.5, and it’s common knowledge that
the item is available for anyone at the price $55 but B might know someone
who is willing to sell him the same item for $52. It’s common knowledge that B
knows the other person with probability 0.5.

Under the default surplus division which awards half of the obtainable surplus
to each of the agents, this bargaining has a Nash equilibrium. In the first round
of the negotiation, both agents play tough with probability 1, regardless of their
types. In the second round, while a strong-type agent continues to play P T , a
weak-type agent will play P T with probability 0.2 and play P S with probability
0.8. This equilibrium gives the weak-type agents an expected utility of 1.6. Note
that, as the weak-type agents do not play P S with probability 1, full efficiency
is not achieved.

On the other hand, consider a biased surplus division scheme in which the
agent who makes a concession in the second round of the negotiation will be
rewarded by getting more than half of the obtainable surplus. In particular, by
giving the agent who makes a concession in the second round of the negotiation
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62.5% of the surplus, we could get the equilibrium strategy of the weak-type
agent to play soft (P S) with probability 1 in the second round. In other words,
through biased surplus division, the full efficiency of the negotiation in this
example can be achieved.

We now provide a number of formal results for the simple bargaining problem
described at the beginning of this section. We first introduce the some notations:

– The default surplus division, denoted by Δd, is applicable when the two
agents make the same number of concessions. When the seller, agent 1,
makes one concession more than the buyer, the surplus division is (δ′1, 1−δ′1)
and when the buyer makes one concession more than the seller, the surplus
division is (1− δ′2, δ′2).

– σ1 = al
2 − al

1 is the surplus obtainable when the seller plays soft (P S) and
the buyer plays tough (P T ).

– σ2 = ah
2 −ah

1 is the surplus obtainable when the seller plays tough (P T ) and
the buyer plays soft (P S).

– σ3 = ah
2 − al

2 is the surplus obtainable when both agents play P S.
– γ = ah

1 −al
2 is the gap between the valuations of the strong-type agents. Note

that, because of the assumption that al
2 < ah

1 , γ > 0.

The following theorem introduces the main result of the paper. The first part
states that by increasing the share of the observable surplus for the concession
making agents, we increase the chance that, in equilibrium, the weak-type agents
will play soft in the second stage of the negotiation, and thus improve the ef-
ficiency of the negotiation outcome. Note that it suffices to state the result for
the buyer (i.e. agent 2) since the same result and analysis apply to agent 1.

Theorem 1. (i) By increasing the surplus share to the concession-making agent
(i.e., δ′1 and δ′2), the probability of a weak-type agent playing P S in the second
stage is increased.

(ii) Agent 2 plays P S with probability 1 in the second stage if
σ1 + γ − δd1σ3 + (1− δ′1)σ2

σ1 + γ − δd1σ3 + (1− δ′1)σ2 + δ′1σ1
≤ π2.

4 Discussion and Future Work

Bargaining with private information has been a topic of much interest for many
years (see e.g., [16]). It has been established that uncertainty about whether
gains from trade in a negotiation are possible necessarily prevents full efficiency,
resulting in negotiation breakdowns (e.g., [2]) or costly delays (e.g., [4]). In par-
ticular, Chatterjee and Samuelson ([14]) establish a sequential equilibrium for
the bilateral negotiation, albeit full efficiency is not achieved due to costly de-
lays. In our proposed approach, we introduce a mechanism to allow efficiency of
the negotiation to be improved without having to use costly signal devices. That
is, our mechanism is costless.
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However, when the negotiation is over issues with continuous values in which
agents can make as small a concession as they wish, a manipulative agent could
avoid the effects of biased surplus division by making many small concessions.
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Abstract. Protein Fold Recognition (PFR) is considered as a critical
step towards the protein structure prediction problem. PFR has also a
profound impact on protein function determination and drug design.
Despite all the enhancements achieved by using pattern recognition-
based approaches in the protein fold recognition, it still remains un-
solved and its prediction accuracy remains limited. In this study, we
propose a new model based on the concept of mixture of physicochem-
ical and evolutionary features. We then design and develop two novel
overlapping segmented-based feature extraction methods. Our proposed
methods capture more local and global discriminatory information than
previously proposed approaches for this task. We investigate the impact
of our novel approaches using the most promising attributes selected
from a wide range of physicochemical-based attributes (117 attributes)
which is also explored experimentally in this study. By using Support
Vector Machine (SVM) our experimental results demonstrate a signifi-
cant improvement (up to 5.7%) in the protein fold prediction accuracy
compared to previously reported results found in the literature.

Keywords: Mixture of Feature Extraction Model, Overlapping Seg-
mented distribution, Overlapping Segmented Auto Covariance, Support
Vector Machine.

1 Introduction

Prediction of the three dimensional structure (tertiary structure) of a protein
from its amino acid sequence (primary structure) still remains as an unsolved
issue for bioinformatics and biological science. Protein Fold Recognition (PFR)
is considered as an important step towards protein structure prediction prob-
lem. PFR is defined as classifying a given protein to its appropriate fold (among
finite number of folds). It also provides critical information about the function-
ality of proteins and how they are evolutionarily related to each other. Recent
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advancement in the pattern recognition field stimulates enormous interest in this
problem.

During the last two decades, a wide range of classifiers such as, Bayesian-
based learners [1], Artificial Neural Network (ANN) [2], Hidden Markov Model
(HMM) [3], Meta classifiers [4,5], Support Vector Machine (SVM) [6–8] and en-
semble methods [1, 9, 10] have been implemented and applied to this problem.
Despite the crucial impact of the classification techniques used in solving this
problem, the most important enhancements achieved were due to the attributes
being selected and feature extraction methods being used [2, 6, 11–15]. Gener-
ally, features have been extracted to attack this problem can be categorized
into three groups namely, sequential (extracted from the alphabetic sequence of
the proteins (e.g. composition of the amino acids)), physicochemical (extracted
based on different physical, chemical, and structural attributes of the amino acids
and proteins (e.g. hydrophobicity)), and evolutionary (extracted from the scor-
ing matrices generated based on evolutionary information (e.g. Position Specific
Scoring Matrix (PSSM) [16])) feature groups.

The study of [8] and followup works explored the impact of physicochemical-
based features in conjunction with sequential-based features for the PFR and
attained promising results [17]. The main advantage of using physicochemical-
based features is that these features do not rely on sequential similarities. Hence,
they maintain their discriminatory information even when the sequential simi-
larity rate is low. Furthermore, they are able to provide important information
about the impact of physicochemical-based attributes on the folding process.
However, they are unable to provide sufficient information to solve this problem
individually. On the other hand, sequential-based features have the merit that
they are able to provide critical information about the interaction of the amino
acids in proteins based on the sequence similarity. However, they fail to maintain
this information when the sequential similarity rate is low. Thus, relying solely
on these two categories of features did not lead to better results.

More recent studies shifted the focus to evolutionary-based features which
have significantly enhanced the performance of the PFR [6, 12]. Relying on the
PSSM, evolutionary-based features are able to provide important information
about the dynamic substitution score of the amino acids with each other. How-
ever, similar to the sequential-based features, they do not provide any infor-
mation about the impact of different physicochemical-based attributes on the
folding process. Furthermore, they lose their discriminatory information dra-
matically when the sequential similarity rate is low.

In this study, we propose a novel approach to enhance the protein fold pre-
diction accuracy and at the same time to provide more information about the
impact of the physicochemical-based attributes on the folding process. In our
proposed approach, first we transform the protein sequence using evolutionary-
based information. Then, physicochemical-based features are extracted from the
transformed sequence of the proteins using segmentation, density, distribution,
and autocorrelation-based methods in an overlapping style. We explore our pro-
posed feature extraction methods for 15 most promising attributes which are
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selected from 117 experimentally explored physicochemical-based attributes. Fi-
nally, by applying SVM on the combinations of the extracted features, we en-
hance the protein fold prediction accuracy for 5.7% over previously reported
results found in the literature.

2 Benchmarks

To evaluate the performance of our proposed method against previous studies
found in the literature, the EDD (extended version of DD data set introduced
by Ding and Dubchak [8]) and the TG (introduced by Taguchi and Gromiha
[18]) benchmarks are used. In earlier studies, DD was considered as the most
popular benchmark for the PFR. However, it is no longer used [12, 13] due to
its inconsistency with the latest version of Structural Classification of Proteins
(SCOP) [19]. Extracted from the latest version of the SCOP, the EDD has been
widely used as a replacement for the original DD [6, 3, 11, 12]. In this study, we
extract the EDD benchmark from the SCOP 1.75 consisting of 3418 proteins
belonging to the 27 folds that was originally used in the DD with less than 40%
sequential similarities. We also use the TG benchmark [18] consisting of 1612
proteins belonging to 30 folds with less than 25% sequential similarities.

3 Physicochemical-Based Attributes

In this study, we investigate the impact of our proposed approaches using 15
physicochemical-based attributes. These 15 attributes have been selected from
117 physicochemical-based attributes (which are taken from the AAindex [20],
the APDbase [21], and previous studies found in the literature [22]) in the follow-
ing manner. For a given attribute, we extracted six feature groups based on the
overlapped segmented distribution and overlapped segmented autocorrelation
approaches which are the subjects of this study. Then we applied five classi-
fiers namely, Adaboost.M1, Random Forest, Naive Bayes, K-Nearest Neighbor
(KNN), and SVM to each feature group separately. Therefore, 30 prediction ac-
curacies were achieved for each physicochemical-based attribute for each bench-
mark (five classifiers applied to six feature groups separately (5 × 6 = 30)).
Considering this experiment for EDD and TG benchmarks, 60 prediction accu-
racies (2 × 30 = 60) are achieved for each individual attribute ( 60×117 = 7020
prediction accuracies in total for all 117 attributes)1. Then we compared these
results for all 117 attributes and selected 15 attributes that attained the best
results in average for all 60 prediction accuracies2. The feature selection process
was conducted manually. This process was also explored in our previous stud-
ies for the PFR and protein structural class prediction problem [15, 23]. The

1 The experimental results achieved in this step for all five classifiers for EDD and TG
benchmarks are available upon request.

2 Details about the attribute selection process as well as the list and references of all
117 physicochemical-based attributes are available upon request.
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selected attributes are: (1) structure derived hydrophobicity value, (2) polarity
, (3) average long range contact energy, (4) average medium range contact en-
ergy, (5) mean Root Mean Square (RMS) fluctuational displacement, (6) total
non-bounded contact energy, (7) amino acids partition energy, (8) normalized
frequency of alpha-helix, (9) normalized frequency of turns, (10) hydrophobic-
ity scale derived from 3D data, (11) High Performance Liquid Chromatography
(HPLC) retention coefficient to predict hydrophobicity and antigenicity, (12)
average gain ratio of surrounding hydrophobicity, (13) mean fractional area loss,
(14) flexibility, and (15) bulkiness. Note that to the best of our knowledge, most
of the selected attributes (attributes number 3, 4, 5, 6, 7, 10, 11, 12, 13, and
14) have not been adequately (or not at all) explored for the PFR. However, in
our conducted comprehensive experimental study, they have outperformed many
popular attributes that have been widely used for PFR [2, 8, 9, 13].

4 Feature Extraction Method

In the continuation, we first use PSIBLAST for the EDD and TG benchmarks
(using NCBI’s non redundant (NR) database with three iterations and cut off
E-value of 0.001) and extract the PSSM [12]. The PSSM consists of two L × 20
matrices (where L is the length of a protein sequence) namely, PSSM cons and
PSSM prob. PSSM cons contains the log-odds while PSSM prob contains the
normalized probability of the substitution score of an amino acid with other
amino acids depending on their positions along a protein sequence. Then four
main sets of features are extracted (two sets from the transformed protein se-
quences and two sets directly from the PSSM). In continuation, each feature
extraction approach will be explained in detail (overlapped segmented distribu-
tion, overlapped segmented autocorrelation, semi-composition, and evolutionary-
based auto-covariance).

4.1 Physicochemical-Based Feature Extraction

In this study, a new mixture of physicochemical and evolutionary-based feature
extraction method is proposed based on the concepts of overlapped segmented
distribution and autocorrelation. The main idea of our proposed method is to ex-
tract physicochemical-based features from the transformed sequences (so called
consensus sequence) using evolutionary-based information to get benefit of dis-
criminatory information embedded in both of these groups of features, simulta-
neously. In our proposed method, we first extract the consensus sequence and
then, two feature groups namely overlapped segmented distribution and over-
lapped segmented autocorrelation are extracted from it.

Consensus Sequence Extraction Procedure: An amino acid sequence
when transformed using evolutionary-based information embedded in the PSSM
is called a consensus sequence [12]. Previously, to extract this sequence the
PSSM cons have been popularly used [12]. In this method, each amino acid based
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on its position along the protein sequence (O1, O2, ..., OL) is replaced with the
amino acid that has the highest (maximum) substitution score according to the
PSSM cons (C1, C2, ..., CL). Consensus sequence was also effectively used to ex-
tract sequential-based features and attained promising results for the PFR [12].
However, it fails to address an important issue. For the case of unknown proteins
the PSSM cons does not provide any information and simply returns all equal sub-
stitution scores with the other amino acids (equal to -1).

To address this limitation, we use a modified method which relies on the
PSSM prob for feature extraction. In the PSSM prob if a sequence similarity is
found in NR, it returns a substitution probability score for even unknown amino
acids. Using PSSM prob dramatically reduces the number of unknown amino
acids in the consensus sequence while previous approaches. Using PSSM prob,
we have successfully replaced over 360 unknown amino acids (out of 362 unknown
amino acids) for the EDD benchmark while for the TG benchmark, we have
successfully replaced all of the unknown amino acids.

Overlapped Segmented Distribution (OSD): Global density of an specific
attribute is considered as a popular feature for the PFR. However, it does not
properly explore the local discriminatory information available in the sequence
[22]. To address this issue, the distribution of different segments of a specific
density is extracted and added to this feature. In this method, we first replace the
amino acids in the consensus sequence (C1, C2, ..., CL) with the values assigned
to each of them based on a given physicochemical-based (e.g. hydrophobicity)

attribute (S1, S2, ..., SL). Then we calculate the global density Tgd =
∑L

i=1 Si

L .
Next, beginning from each side of the sequence, the given attribute summation
again is calculated until reaching to the first Ks% of the Tgd as follows:

Ik = (Tgd × L × Ks)/100. (1)

Finally, the number of summed amino acids divided by the length of the
protein is returned as the distribution of the first Ks% of global density. For
example, if the summation of the hydrophobicity of m amino acids is equal to
Ik, then the output for Ks% distribution factor is m/L. In this study, K is set
to 5 based on the experimental study conducted by the authors due to similar
performance of using Ks = 5 compared to the larger distribution factors (10 or
25) and trade of between the number extracted features and achieved prediction
accuracy. This process is repeated until reaching to Ks = 75 (5%, 10%, 15%, ...,
75%) of the global density from each side (Figure 1).

The distribution index is calculated from both sides of the proteins due to the
fact that there is no rear or front for proteins. Furthermore, an approach of using
one side calculation produces accumulative distribution in the other side. We also
use the overlapping approach to explore distribution of the amino acids better
with consideration of an specific attribute. 75% overlapping factor is selected
experimentally based on the trade off between the number of features added and
the discriminatory information provided. Therefore, using Ks = 5 distribution
and 75% overlapping factors (in addition to the global density feature in each
group), 31 features are extracted (75/5 = 15 features from each side).
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Fig. 1. Segmented distribution-based feature extraction method

Overlapped Segmented Autocorrelation (OSA): Similar to the density,
autocorrelation-based features have been widely used for the PFR and attained
promising results [17,2]. However, even the most sophisticated approaches failed
to provide adequate local discriminatory information (e.g. pseudo amino acid
composition [9]). Therefore, segmented-base approach is used in this study. In
the proposed approach, we segment the protein sequence using a segmented
distribution approach explained in previous subsection and then calculate the
autocorrelation in each segment accumulatively (in this case, Ks is set to 10,
distance factor (F ) is set to 10 and overlapping factor is set to 70%). The auto-
correlation in each segment is equal to:

Seg-Autoi,a =
1

(L(a/100) − i)

n∑
j=m

SjSj+i , (i = 1, ..., F & a = 10, .., 70), (2)

where L is the length of sequence, a is the segmentation factor, m and n are
respectively the begin and the end of a segment, and Sj is the value of an at-
tribute (normalized) for each amino acid. We also add the global autocorrelation
(where F set to 10) which is calculated as follows:

Global-Autoi,a =
1

L

L−i∑
j=1

SjSj+i (i = 1, ..., F ). (3)

Therefore, based on each attribute the autocorrelation of the 10%, 20%, 30%,
... , 70% from each end (14 segments in total) are accumulatively calculated
(Seg-Auto + Global-Auto = OSA). F=10 is adopted in this study because it was
showed in [6] as the most effective distance factor for the PFR. The overlapping
and the segmentation factors are also adjusted based on the experimental study
conducted by the authors. In results, a feature group based on this approach is
extracted consisting of 150 features (70 + 70 + 10).

4.2 Evolutionary-Based Feature Extraction

We also extract two sequenced-based feature groups namely, semi-composition
and evolutionary-based auto-covariance directly from the PSSM.

Semi-composition (Semi-AAC): This feature group is extracted to provide
more information about the occurrence of each amino acid along a protein se-
quence. However, instead of being extracted from the original protein sequence,
we directly extract that from the PSSM. In this feature group, the composition
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of each amino acid is equal to the summation of its substitution scores divided
by the length of the protein which is calculated as follows:

Semi-AACi =
1

L

L∑
i=1

Pij , (j = 1, ..., 20), (4)

where Pij is the substitution score for the amino acid at position i with the j-th
amino acid in the PSSM. It was shown in [24] that Semi-AAC is able to pro-
vide more discriminatory information compared to the conventional composition
feature group.

Evolutionary-Based Auto Covariance (PSSM-AC): This feature group
provides crucial information about the local interaction of the amino acids from
the PSSM and attained promising results for the PFR [6, 24]. In the PSSM-AC
the auto covariance of the substitution score of each amino acid with another
amino acids with the distance factor of 10 (the distance factor is set to 10 as the
most effective value as the distance factor investigated in [6]) is calculated (from
the PSSM cons). The PSSM-AC can be calculated as follows:

PSSM-ACj,f =
1

(L − f)

L−f∑
i=1

(Pi,j − Pave,j)(Pi+f,j − Pave,j), (j = 1, ...20 & f = 1, ..., 10), (5)

where Pave,j is the average of substitution score for the j-th column of PSSM.
Therefore, 20 × F features calculated in this feature group (20× 10 = 200).

5 Support Vector Machine (SVM)

SVM introduced by [25] aims at finding the Maximal Marginal Hyperplane
(MMH) based on the concept of the support vector theory to minimize the error.
The classification of some known points in input space xi is yi which is defined
to be either -1 or +1. If x′ is a point in input space with unknown classification
then:

y
′
= sign

(
n∑

i=1

aiyiK(xi,x
′
) + b

)
, (6)

where y′ is the predicted class of point x′. The function K() is the kernel function;
n is the number of support vectors and ai are adjustable weights and b is the
bias. This classifier is considered as the state-of-the-art classification techniques
in the pattern recognition and attained the best results for the PFR [6, 12, 11].
Therefore, we will only use SVM to investigate the effectiveness of our proposed
methods here rather than the five classifiers that used earlier in Section 3 for
the feature selection process. In this study, three different SVM-based classi-
fiers are used to reproduce previous results as well as evaluating our proposed
approaches. We use the SVM classifier implemented in the SVMLIB toolbox
using Radial Base Function (RBF) as its kernel [26] (using grid algorithm im-
plemented in SVMLIb to optimize its parameters (width (γ) and regularization
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(C ) parameters)). We also use SVM using Sequential Minimal Optimization
(SMO) as a polynomial kernel which its polynomial degree is set to one (which
is called linear kernel) and three (implemented in WEKA with using its default
parameters [27]).

6 Results and Discussion

In the first step, the performance of the modified consensus sequence extraction
method is explored by extracting occurrence (occurrence of each amino acid in
a protein sequence (20 features)) and composition (percentage of the occurrence
of each amino acid along a protein sequence (20 features)) feature groups. We
extract these feature groups from the original sequence, the consensus sequence
extracted using conventional approach and the modified consensus sequence ex-
traction method used in this study, and applied SVM (with linear kernel). In
this study, 10-fold cross validation is used as the evaluation method as it has
been mainly used for this purpose in the literature [6, 8].

Table 1. Comparison of the achieved results (%) using SVM (linear kernel) to eval-
uate the proposed consensus sequence extraction method compared to use of original
sequence as well as previously used methods for the EDD and the TG benchmarks

Methods Composition Occurrence
EDD TG EDD TG

Original Sequence 32.4 31.6 41.2 33.6
Current consensus sequence extraction method 42.2 34.7 48.2 38.6
Proposed Method in this study 44.4 36.3 48.9 38.8

As shown in Table 1, the modified consensus sequence extraction method used
in this study enhances the PFR performance considering composition and oc-
currence of the amino acids feature groups. Next, we extract features introduced
in the previous stage and combine them to build the input feature vector to
feed the employed SVM classifier. The input feature vector is built by combin-
ing Semi-AAC (20 features), segmented distribution (31 features), segmented
autocorrelation (150 features), and PSSM-AC (200 features) feature groups in
addition to the length of protein sequence feature (as used in [2, 1]). Therefore,
for each attribute, a feature vector consists of 402 features is created and named
Comb ph1 to Comb ph15. The overall architecture of our proposed method is
shown in Figure 2.

We then apply the SVM classifier to our extracted features. We also duplicate
the study of Dong and his co-workers [6] which to the best of our knowledge
attained the best results to tackle PFR. Furthermore, the 49D feature group
extracted by [22] is also extracted from both of the employed benchmarks and
is added to the extracted sequential-based features (Semi-AAC + PSSM-AC
+ length (221 features)). This feature vector consists of global density of 49
different physicochemical-based attributes (49 dimensional feature group) that
has been extracted to provide sufficient physicochemical-based information for
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Fig. 2. The overall architecture of the proposed approach. The number of features
extracted in each feature group is shown in the brackets.

the PFR [18]. In this part, we aim at comparing the impact of using a wide
range of features with exploring the impact of a single attribute considering
our proposed feature extraction method. Note that using SVM classifier with
linear kernel attains similar results to the other two version of SVM classifier
investigated in this study (SVM classifier using SMO kernel function with p
= 3, and SVM classifier using RBF kernel function) which emphasizes on the
effectiveness of the employed features rather than the kernel function used for
SVM. The best results for the EDD and the TG benchmarks compared to the
state-of-the-art results found in the literature are shown in Table 2.

As it is shown in Table 2, we achieve up to 82.9% and 64.6% prediction ac-
curacies for the EDD and the TG benchmarks which are 4.8% and 5.7% better
than the best results reported in the literature for the employed benchmarks
respectively. Considering the small enhancement achieved in previous studies
(using DD benchmark), having over 4% enhancement is considered as a sig-
nificant number for the PFR [1, 4, 14]. We also achieve to over 82% and 63%
prediction accuracies respectively for the EDD and the TG benchmarks using
extracted features from the attributes that have not been adequately explored
(attribute 14), or (to the best of our knowledge) have not been explored at all
for the PFR (attributes number 1, 5, 7, and 13). Also, the significant enhance-
ment achieved for all of the explored attributes (over 80% and 61% prediction
accuracies respectively for the EDD and the TG benchmarks) emphasizes on the
importance of the proposed feature extraction methods in this study. We also
achieve to 41.0% and 22.7% better prediction accuracies for the EDD and the
TG benchmarks respectively compared the best results achieved without using
evolutionary information for feature extraction (relying solely on the original pro-
tein sequence to extract physicochemical-based features [13]). It also emphasizes
on the impact of our mixture of physicochemical-based and evolutionary-based
feature extraction method to enhance the protein fold prediction accuracy.

We also achieve up to 23.2% and 18.7% better prediction performance for the
EDD and TG benchmarks respectively compared to use of 49D (which is ex-
tracted from the consensus sequence and combined with the Semi-AAC, PSSM-
AC and the length of the amino acid sequence (221 features)). In other word,
by extracting features based on a single attribute using our proposed feature
extraction method, we significantly enhance the PFR performance compared to
use of a wide range of physicochemical-based attributes using global density as
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Table 2. The best results (in percentage) achieved in this study compared to the best
results found in the literature for the EDD and the TG benchmarks

Study Attributes (No. of features) Method EDD TG
[18] AAO original sequence (20) LDA 46.9 36.3
[18] AAC original sequence (20) LDA 40.9 32.0
[13] Physicochemical(125) Adaboost.M1 47.2 39.1
[8] Physicochemical(125) SVM 50.1 39.5
[13] Physicochemical(220) SVM(SMO) 52.8 41.9
[22] Threading Naive Bayes 70.3 55.3
[2] Bi-gram (400) SVM 75.2 52.7
[2] Tri-gram (8000) SVM 71.0 49.4
[11] Combination of bi-gram features (2400) SVM 69.9 55.0
[3] PSIPRED and PSSM-based features (242) SVM 77.5 57.1
[6] ACCFold-AAC(200) SVM(RBF) 76.2 56.4
[6] ACCFold-AC(4000) SVM(RBF) 78.1 58.9
This study Comb ph1 (402) SVM(SMO) 82.3 63.3
This study Comb ph5 (402) SVM(SMO) 82.8 64.6
This study Comb ph7 (402) SVM(SMO) 82.9 64.0
This study Comb ph13 (402) SVM(SMO) 82.5 63.7
This study Comb ph14 (402) SVM(SMO) 82.4 63.8
This study Original sequence (49+221) SVM(SMO) 44.7 35.7
This study Consensus sequence (49+221) SVM(SMO) 59.7 45.9

the main feature. These results emphasize on the effectiveness of the overlapped
segmented-based feature extraction method to explore more discriminatory in-
formation. It is important to highlight that these results are achieved using
402 attributes, which is 10 times less than the number of attributes that was
used in the ACCFold-AC model (4000 features). Besides enhancing the pro-
tein fold prediction accuracy, by proposing a mixture of physicochemical and
evolutionary-based information, we introduce a new direction to obtain benefit
from discriminatory power of these two groups of features simultaneously. Fur-
thermore, by exploring physicochemical based features, the proposed method
is able to provide crucial information about the impact of these attributes on
the PFR. Note that our proposed features in this study (overlapped segmented-
based distribution and overlapped segmented-based autocorrelation) have been
investigated for the protein structural class prediction problem (in a different
experiment) and obtained promising results as well [23] which highlights the
generality of these approaches for similar studies.

7 Conclusion

In this study, we proposed a model to enhance the protein fold prediction
accuracy as well as providing better understanding about the impact of the
physicochemical-based attributes on the PFR in the following five steps. In
the first step, a modified consensus sequence extraction method was proposed.
It addressed the issue of unknown proteins using evolutionary-based informa-
tion. Proposed method also improved the protein fold prediction accuracy over
the previous methods that extracted consensus sequence. In the second step,
a comprehensive study on a wide range of physicochemical-based attributes
(117 attributes) were conducted and 15 most promising attributes were selected.
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The selected attributes outperformed other attributes based on the density, dis-
tribution, and autocorrelation feature extraction methods. This comprehensive
experimental study provided important information about the performance of
these 117 physicochemical-based attributes on the PFR. In the third step, we
proposed two novel feature extraction methods based on the concepts of seg-
mented distribution and autocorrelation to provide more local and global dis-
criminatory information for the PFR. In the next step, effective sequentially-
based features that were directly extracted from the PSSM were combined with
the proposed physicochemical-based features. In the final step, by using the SVM
classifier (with linear kernel) to our extracted features, we achieved 82.9% and
64.6% prediction accuracies for the EDD and the TG benchmarks respectively
which are 4.8% and 5.7% over the previously reported results found in the liter-
ature.
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Abstract. Protein structure prediction (PSP) is a very challenging con-
straint optimization problem. Constraint-based local search approaches
have obtained promising results in solving constraint models for PSP.
However, the neighborhood exploration policies adopted in these ap-
proaches either remain exhaustive or are based on random decisions. In
this paper, we propose heuristics to intelligently explore only the promis-
ing areas of the search neighborhood. On face centered cubic lattice using
a realistic 20 × 20 energy model and standard benchmark proteins, we
obtain structures with significantly lower energy and RMSD values than
those obtained by the state-of-the-art algorithms.

1 Introduction

Ab initio methods for protein structure prediction (PSP), without using any
templates or structures of known similar proteins, starts searching from the
scratch for the native structure that has the minimum free energy. Due to the
complexity of all-atomic detailed models and unknown factors of the energy
function, the general paradigm of ab initio PSP has been to begin with the
sampling of a large set of candidate or decoy structures guided by a scoring
function. In the final stage, the refinements [22] are done to achieve the realistic
structure. Given a primary amino acid sequence of a protein, PSP can be defined
as: find a self-avoiding walk on a discrete lattice that minimizes a contact-based
energy function. However, the conformational search space still remains huge and
the problem itself remains a very challenging constraint optimization problem.

Given a current partial or complete solution, selection of the neighboring so-
lutions for further exploration is a key factor in the performance of constraint
programming (CP) and local search approaches. Neighborhood selections in-
volves selection of variables and values. Unguided random selection [23,28], costly
exhaustive generation [5] and filtering or ordering techniques for enumeration
[28,19] are not much effective for neighborhood selection in PSP. In other do-
mains, such as propositional satisfiability promising variables are selected using
different variable selection strategies [20,1].

In this paper, we propose several novel component fitness functions for neigh-
borhood selection in PSP. These heuristics are an energy contribution function,
a core-based distance function and a free lattice-neighbor count based function.
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These heuristics are derived from domain knowledge and are used along with a
hint based variable selection strategy. The aggregate of these heuristics are used
in selecting candidate structures. To the best of our knowledge, this is the first
application of intelligent variable selection strategy in PSP. We also propose a
new chain growth initialization for the energy model used. Experimental results
show that our method significantly improves over the state-of-the-art algorithms
and produces structures with lower energy and RMSD values for standard bench-
mark proteins on face centered cubic lattices.

2 Related Work

Simplified models such as Hydrophobic-Polar (HP) energy model [9] and dis-
crete lattices have been studied extensively by many researchers within various
frameworks such as constraint programming [7], genetic algorithms [21], and
memory-based local search approaches [24].

In contrast to HP models, elaborate energy functions derived by using statis-
tical methods [14,2] take into consideration all 20× 20 amino-acid interactions.
Using secondary information and constraint programming techniques, Dal Palu
et al. [19] developed a method to predict tertiary structures of real proteins. They
also proposed several generalized and problem specific heuristics [17]. Later, they
also developed a highly optimized constraint solver named COLA [18].

A two-stage optimization method was proposed in [27] by Ullah et al. It
uses CPSP tool by Backofen et al. [12] to provide initial structure for local
search procedure on FCC lattice and an elaborate energy function. The two-
stage optimization approach was reported to outperform simulated annealing-
based local search procedure [25]. Ullah et al. also used large neighborhood search
techniques on top of the COLA solver [28]. A fragment assembly method was
proposed in [16] to produce low energy structures. Later, a filtering techniques
for loop modeling [4] was proposed using CP techniques. In a recent work, several
effective heuristics were used in a mixed fashion in [23] which produced state-
of-the-art results on real proteins from standard benchmark set for contact-
based energy models. Our work in this paper uses a hint-based variable selection
strategy to generate the neighborhoods to be explored. Our work also uses a new
chain growth initialization method.

Among other approaches in PSP are population based methods [8] and genetic
algorithms [26] and CP techniques for side-chain models [13].

3 The Problem Model and CP Formulation

Proteins are polymers of amino-acid monomers. There are 20 different amino
acids. In a simplified model, all monomers have an equal size and all bonds are
of equal length. In a CP formulation, each monomer is modeled by a point in a
three dimensional lattice (lattice constraint). The given amino acid sequence fits
into the lattice: every pair of consecutive amino acids in the sequence are also
neighbors in the lattice (chain constraint) and two monomers can not occupy the
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same point in the lattice (self avoiding constraint). A simplified energy function
is used in calculating the energy of a structure.

Two lattice points p, q ε L are said to be in contact or neighbors of each
other, if q = p + vi for some vector vi in the basis of L. The Face Centered
Cubic (FCC) lattice is preferred since it provides the densest packing [6] for
spheres of equal size and the highest degree of freedom for placing an amino
acid. The points in FCC lattice are generated by the following basis vectors:
v1 = (1, 1, 0), v2 = (−1,−1, 0), v3 = (−1, 1, 0), v4 = (1,−1, 0), v5 = (0, 1, 1),
v6 = (0, 1,−1), v7 = (0,−1,−1), v8 = (0,−1, 1), v9 = (1, 0, 1), v10 = (−1, 0, 1),
v11 = (−1, 0,−1), v12 = (1, 0,−1). In FCC lattice, each point has 12 neighbors
and distance between two neighbors is

√
2.

In our CP model, we are given a sequence S, where each element si ∈ S is an
amino-acid type. Each amino acid i is associated with a point pi = (xi, yi, zi) ∈
Z3. The decision variables are the x, y and z co-ordinates of a point. For a se-
quence of length n, the domain of the variables is the range [−n, n]. Formally,
∀ixi ∈ [−n, n], ∀iyi ∈ [−n, n] and ∀izi ∈ [−n, n]. The first point is assigned as
(0, 0, 0), which is a valid point in the FCC lattice. The rest of the points follows
the constraint, ∀i<n(ai) ∈ {v1, · · · ,v12}. Here, ai is the absolute vector between
points (xi+1, yi+1, zi+1) and (xi, yi, zi), and {v1, · · · ,v12} are the basis vectors
for FCC lattice. Thus all points satisfy the lattice constraint and chain con-
straint. The self-avoiding constraint is defined using the all-different constraint
all-different(∀ipi). We define sqrdist(i, j) as the square of Euclidean distances
between two points pi and pj . Now, contact(i, j) = 1, if sqrdist(i, j) = 2; and
contact(i, j) = 0, if sqrdist(i, j) �= 2. For any given protein sequence S, the en-
ergy of a structure c is defined as:

E(c) =
n∑

j≥i+1

contact(i, j).energy(si, sj) (1)

where energy(si, sj) is the empirical energy value between two amino-acids of
type si and sj obtained from the energy matrix given in [2]. Given this model,
PSP can be defined as follows: given a sequence S of length n, find a self-avoiding
walk p1, · · · , pn on the lattice that minimizes the energy i.e. obj = E(c).

4 Our Approach

Our approach is based on component heuristic functions that are used with a
hint based variable selection strategy and aggregate functions which are used for
candidate selection. Rest of the section describes necessary details.

4.1 Search Procedure

The search starts with the greedy chain growth initialization procedure that
produces a compact low energy structure. Based on a walk probability wp



Neighborhood Selection in Constraint-Based Local Search for PSP 47

(initially set to 5%), a variable is selected randomly or from a hint based priority
queue with tabu on recently selected variables and the corresponding amino-acid
position is determined. Neighborhood is generated only for the position selected
using a set of operators. Then the generated candidate moves are simulated.
Simulation of a move temporarily calculates the changes in the heuristic func-
tions without committing the move. At each iteration, one of the heuristics are
selected randomly by a uniform random distribution. After simulation, the best
candidate move is selected and executed. The execution updates all cost func-
tions, constraints and propagate hints. Ties are broken using a uniform random
distribution. The search keep tracks of the global minimum found and restarts
from the last found global minimum whenever it gets stuck. Stagnation is deter-
mined by a number of non-improving moves from the last found global minimum.
At stagnation, the stagnation parameter sp (initially set to 500) and the walk
probability wp are multiplied by a factor (set 1.2). Parameters wp and sp are
set to initial values, whenever a new global minimum is found. Pseudo-code of
our algorithm is given in Algorithm 1.

Algorithm 1. localSearch(conformation C)

1 C ← CGInitialize()
2 nonImp ← 0
3 while nonImp ≤ stagnation do
4 evaluateHints()
5 i ← selectPosition()
6 o ← selectOperator()
7 list ← generateMoves(C, i, o)
8 h ← selectHeuristic()
9 simulateMoves(list, h)

10 m ← selectBestMove(list)
11 executeMove(C,m)
12 updateTabulist()
13 if not improving then
14 nonImp++
15 else
16 nonImp ← 0

For a clear outline of our contribution, it is worthwhile to note the differences
of our algorithm from the algorithm in [23]. In Line 1 of Algorithm 1, we call
our new initialization function while the initialization in [23] uses a structure
fully contained within a sphere. In Line 4-5, we compute the hint heuristics and
based on them, we select only one point, where the operators are applied. In
contrast, in [23], points are selected randomly and then operators are applied in
all selected points.
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4.2 Heuristic Functions

The empirical energy model gives an elaborate interaction energy contribution
for the amino-acid types. The points with lower contribution to the total energy
functions are preferred for selection. First, we define the first component fitness
function that calculates the contribution of a point to the total energy of the
structure. Formally,

contr(i) =
∑

0≤k≤n,|i−k|>1

contact(i, k)× energy(si, sk)

The intuition is to select the variables with the maximum contr(i) so that the
corresponding operators can lower the energy contribution. Note that, the lowest
energy contributions are generally negative. However, heuristics designed from
domain knowledge often provide interesting insights. One such properties of pro-
tein folding is due to the solvent type water. This property lets the hydrophobic
residues buried inside the structure and helps form a compact core. Based on this
fact, several methods and heuristics have been developed for HP model [12,7].
However, interactions between two hydrophobic residues in contact in the core
may result in repulsion (positive empirical energy) rather than attraction (nega-
tive empirical energy) and form a non-stable structure. For this reason, we don’t
use those heuristics directly into our model. We divide the 20 different amino-
acids into two groups according to their similarity in interaction energy within
each group. We run a simple k-means clustering algorithm on the empirical en-
ergy matrix to obtain two such groups (Group I: Ala, Phe, Gly, Ile, Leu, Met,
Pro, Val, Trp, Tyr ; Group II: Cys, Asp, Glu, His, Lys, Asn, Gln, Arg, Ser, Thr)
such that interaction within each group minimizes the total energy contribution.
We call these residues, affine residues and define an affine core, ac = (xc, yc, zc),
such that, xc =

1
|A|

∑
k∈A xk, yc =

1
|A|

∑
k∈A yk, zc =

1
|A|

∑
k∈A zk, A is the set of

affine amino acid positions and |A| denotes the total number of affine positions.
Now we expect to move the affine amino acids towards the core. We define, our
next component fitness function:

sqrdist-acore(i) = sqrdist(i, ac)

Naturally, we wish to move the distant affine positions nearer to the affine core,
ac, i.e. we wish to select the variables with maximum sqrdist-acore(i) value.
However, these component fitness functions to select the variable do not work
well if there is not enough free positions in the lattice neighborhood of the
point assigned to the position. Therefore, we define another component fitness
function, free(i). It counts the total number of free neighbors of a point i in a
lattice. Formally,

free-count(i) =
∑

k∈N(i)

free(k)

Here, free(k) = 1, if k is free; and free(k) = 0, if k is occupied and N(i) is set of
neighbors of i in the lattice. We wish to select the variables with the maximum
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free(i) so that the number of possible moves become higher. It is interesting
to note that we wish to select variables that maximizes all three component
functions. Now, we aggregate the component fitness functions for all amino acid
position i and derive heuristic functions for the selection of candidate structures.
We denote the heuristics as follows: the energy heuristic hE =

∑
i≤n contr(i), the

affine core heuristic hA =
∑

i≤n sqrdist-acore(i) and the compactness heuristic
hF =

∑
i≤n free-count(i). We wish to guide our search using these aggregate

heuristic functions. The idea of component heuristics are previously used along
with extremal optimization [11]. However, the heuristics used in this paper for
the given energy model are novel themselves.

4.3 Hint Based Variable Selection

Now, we define two important terms: metric and hint. Each function f(p1, · · · , pn)
has the parameters pjs that are either variables or other functions. A function f
depends on a variable x, denoted by f → x, if x is itself a parameter of f or f
has a parameter p → x. Each function f has a non-negative metric fm denoting
its evaluation. For each x ← f , it also has a non-negative hint fh(x) denoting the
preference of changing x’s value to improve fm. A constraint f is satisfied when
fm = 0 and in that case fh(x) = 0 for any x, which means a constraint’s metric
improves when it is minimized.

In our model, all the component fitness functions are defined as constraints over
the variables. For example, contact(i, j) is defined as a constraint, sqrdist(i, j) = 2,
which is satisfied only when the square of Euclidean distance between i and j is
equal to 2. This function depends on the variables, xi,yi,zi and xj ,yj,zj . The met-
ric of the function is simply the evaluation of the constraint that tests equality
with 2. If this constraint is not satisfied then the violation is added as the hint of
these variables. Thus, variable violations for all the functions which are dependent
on a particular variable is added as hint for that variable. Looking at these hint
values, we decide which variable is to be selected in order to minimize the viola-
tion of the constraints. In our CP model, we take aggregate of all the component
functions and take a summation of those aggregate functions to define another
function on top as the hint provider. The variable violation for that top function
is distributed as hints among the variables corresponding to amino acid positions.
A simple heap or priority queue data structure with hint values is sufficient for us
to decide which variable to select. We also maintain a tabu list to prevent recent
variables to be selected. We use three different heuristics hE , hA and hF , and sum
them to form a top function that provides the hints for all the variables.

4.4 Chain Growth Initialization

The procedure is inspired from chain growth algorithms previously applied to
HP models [3]. The initialization starts by assigning (0, 0, 0) to the first amino
acid position.The rest of the variables are assigned following a greedy strategy.
One of the free neighbors of the last assigned amino acid position i−1 is assigned



50 S. Shatabda, M.A. Hakim Newton, and A. Sattar

to position i, such that the the assignment minimizes the partial objective func-
tion, obji =

∑
k<i contact(i, k)× energy(si, sk) + free-count(i)× EU [i]. Here, k is

iterated over already assigned amino acid positions and EU [i] is the per-contact
expected or average energy contribution of i with possible unassigned amino acid
positions in the chain. This partial objective function, obji is equal to the partial
energy contribution, partial-E(p1, · · · , pi). The tie-breaking is done according to
a pre-defined order. Pseudo-code for variable selection for each step is given in
Algorithm 3. The initialization procedure backtracks whenever, it fails to assign
valid points to an amino acid position. This method guarantees to produce valid
structure with low energy value. Pseudo-code of the chain growth initialization
procedure is given in Algorithm 2.

Algorithm 2. CGInitialize()

1 p1 = (0, 0, 0)
2 for i ← 2 to n do
3 dir=selectDirection(i)
4 if dir = null then
5 backtrack()
6 else
7 pi = pi−1 + dir

8 return p1, · · · , pn

Algorithm 3. selectDirection(i)

1 MinHeap Q = {}
2 for all vk ∈ basis do
3 pk = pi−1 + vk

4 if notOccupied(pk) then
5 Ek=partial-

E(p0, · · · , pi−1, pk)

6 Q.add(vk, Ei)

7 if Q.isEmpty() then
8 return null
9 else

10 return Q.top()

4.5 Operators

After a variable is selected, we can decide which amino acid position it corre-
sponds to and apply the operators to that position. We make use of four types of
operators (see Fig. 1). First two are jump move [23] and pull move [10] which are
also used in the literature. We propose a single point pull move (Fig. 1(c)) sim-
ilar to that of two point pull move and a single point push move which reverses
the action of a single point pull move (Fig. 1(d)).

4.6 Implementation

We implemented our algorithm using C++ on top of the constraint based lo-
cal search (CBLS) system, Kangaroo [15]. The functions and the constraints
are defined using invariants in Kangaroo. Invariants are special constructs that
are defined by using mathematical operators over the variables. Propagation
of hints, simulation of moves, execution and related calculations are performed
incrementally by Kangaroo.
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Fig. 1. Different Operators used: (a) jump moves (k=1,2,3) (b) two point pull move
(c) single point pull move and (d) push move

Table 1. Results obtained by different algorithms for 12 proteins

Our Approach Mixed [23] Hybrid [28]

seq pdb seq energy level avg energy level avg energy level avg

no id len best avg rmsd best avg rmsd best avg rmsd

1 4rxn 54 -168.78 -164.28 5.56 -165.21 -156.32 6.29 -157.70 -140.13 9.99

2 1enh 54 -158.74 -152.43 5.33 -158.75 -146.69 6.61 -154.24 -141.99 10.04

3 4pti 58 -221.59 -205.42 5.86 -219.52 -198.42 7.07 -213.70 -196.23 11.92

4 2igd 61 -187.96 -179.36 6.34 -187.20 -174.19 9.33 -184.29 -157.20 13.30

5 1ypa 64 -257.02 -248.47 6.12 -249.90 -239.98 7.53 -221.11 -208.10 13.42

6 1r69 69 -223.12 -210.15 5.78 -213.04 -204.17 6.47 -180.62 -165.11 14.78

7 1ctf 74 -230.86 -220.04 6.14 -224.29 -213.81 7.23 -204.88 -195.23 12.65

8 3mx7 90 -332.79 -321.58 6.58 -328.12 -311.56 8.18 - - -

9 3nbm 108 -431.90 -415.02 6.28 -418.60 -401.99 8.58 - - -

10 3mqo 120 -476.06 -464.57 6.46 -465.74 -455.27 8.86 - - -

11 3mr0 142 -446.31 -435.69 7.32 -445.33 -430.28 10.02 - - -

12 3pnx 160 -603.78 -585.97 6.84 -601.23 -571.13 9.38 - - -

5 Experiments

We ran our experiments on a cluster of computers with nodes equipped with Intel
Xeon CPU X5650 processors @2.67GHz, QDR 4 x InfiniBand Interconnect. We
compare our results with the mixed heuristic approach in [23] and the hybrid
approach in [28]. All the algorithms are given 1 hour to finish each run, and
the best and average energy levels of 50 runs are reported in Table 1 for 12
benchmark proteins. These proteins are also used in [23]. The blank values in the
table are the cases where hybrid approach failed to produce any valid structure
within the time limit. PDB ids, sequence length and average RMSD values are
also reported in the table. The best values are indicated in bold faced font. For
all the 12 proteins, our approach achieves lower energy levels. The significance
of these values are confirmed from the values reported in the rmsd colmun. For
any given structure produced by an algorithm,

RMSD =

√∑n−1
i=1

∑n
j=i+1(dist(i, j)given − dist(i, j)native)2

n ∗ (n − 1)/2
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Here dist(i, j) is the Euclidean distance between two points pi and pj . In cal-
culating the RMSD values, the distance between two neighbors in the lattice is
considered to be equal to the average distance (3.8Å) between two α-Carbons
on the native structure. From the values reported we see, our approach also sig-
nificantly improves over the other approaches in terms of the RMSD values; the
lower the RMSD score, the better the performance. These values are significant
since backbone reconstruction and addition of side-chain atoms can guarantee
to produce real protein structures within small (1-2Å) deviation [22]. However,
since lattice configurations can only approximate the positions of the amino acids
in the real space, lower RMSD values produced by our algorithm are satisfactory.

Table 2. Average energy level achieved by different variants of our algorithm

seq no ¬hint +hint(hA) +hint(hE) ¬hint(hF) ¬hselect initr all

1 -146.61 -149.61 -151.25 -158 -156.08 -136.23 -164.28

2 -136.35 -137.62 -128.15 -147.03 -142.44 -137.08 -152.43

3 -185.52 -192.15 -189.45 -194.62 -200.6 -197.88 -205.42

4 -165.5 -158.16 -157.64 -171.24 -164.12 -149.74 -179.36

5 -235.75 -235.45 -236.88 -244.44 -244.71 -219.91 -248.47

6 -193.87 -187.64 -180.61 -183.20 -182.85 -178.25 -210.15

7 -197.83 -204.48 -198.45 -210.27 -206.84 -182.46 -220.04

In order to test the effectiveness of different components of our approach, we
ran different variants of our approach on first 7 proteins and report average en-
ergy level of 20 runs for each of them in Table 2. First, we report the performance
of a variant without using the hint based variable selection in column ¬hint. It
shows how the hint based system can improve on this variant to achieve the
final performance shown in ‘all ’ column. The ’all ’ column, for convenience of
the reader, again shows the average energy values obtained by our approach (as
shown in Table 1). Then we ran two variants with hints for hA only (column
+hint(hA)) and with hints for hE only (column +hint(hE)). These two variants
show the effectiveness of using these two heuristics as hint provider individu-
ally. We see that these two heuristics are showing better performance than the
hintless variant for most of the proteins, and +hint(hA) is performing better
than +hint(hE). It reveals that the energy function itself is not enough for pro-
viding hints for the search and heuristic approximations can actually improve
the performance. However, both of them shows effectiveness of hints over the
no-hint variant. Then, we ran another variant with hints for both hE and hA,
but not using hints for hF (column ¬hint(hF )). This particular variant shows
the combined performance of two heuristics as hint provider and also shows the
relative strength of the other hint heuristic hF that is absent. We get a clear
idea of the strength of hF by comparing it with the final results in column ‘all ’
and also strength of the combined variant by comparing the results with the
individual columns of +hint(hA) and +hint(hE). We see that the combination
of hE and hA which is ¬hint(hF ) works better than the individual variants.
However, its only after adding the hints for hF , its possible to achieve the final
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performance. Another variant uses the hint based system but the selection of
candidate structures is guided by hE only (column ¬hselect). This indicates the
effectiveness of the heuristics to select candidate structures. The penultimate
column (initr) shows the results achieved by replacing our chain growth algo-
rithm by a random initialization. From the reported values we see that chain
growth initialization has a greater impact on most of the proteins with respect
to the random initialization methods.

To show how the search makes progress, we plot log of average energy levels
achieved, (for convenience of display in the chart) added by a threshold of 250
for the protein 4pti against iteration count in Fig. 2. We see that the variant
without hint (¬hint) works worst. It improves only at the beginning and then
gets stagnant. Variants with hints for hE and hA works better than this. If
we add hints for all the heuristic functions but guide the search with hE only
(¬hselect), it can further improve. However, the best performance is only after
we use all the heuristics to guide the search. In case of random initialization, we
find that it can gradually improve, but most of the time is spent to achieve the
initial level that is achieved by the chain growth initialization for other variants.

Fig. 2. Search progress of different variants for the protein 4pti

6 Conclusion

In this paper, we have proposed an intelligent variable selection strategy for can-
didate generation in local search methods for protein structure prediction prob-
lem using 20×20 energy model on face centered cubic lattice. In addition to this,
we also have proposed a new chain growth initialization procedure and heuris-
tic functions to select variables and candidates at each iteration. Our method
significantly improves over the state-of-the-art algorithms. In future, we wish
to explore the strength of our proposed scheme on other domains and on other
models of protein structure prediction as well.
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Abstract. In recent years, local graph clustering techniques have been utilized as
devices to unveil the structured hidden of large networks. With the ever growing
size of the data sets generated in domains of applications as diverse as biomedicine
and natural language processing, time-efficiency has become a problem of grow-
ing importance. We address the improvement of the runtime of local graph clus-
tering algorithms by presenting the novel caching approach SGD�. This strategy
combines the Segmented Least Recently Used and Greedy Dual strategies. By
applying different caching strategies to the unprotected and protected segments
of a cache, SGD� displays a superior hitrate and can therewith significantly re-
duce the runtime of clustering algorithms. We evaluate our approach on four real
protein-protein-interaction graphs. Our evaluation shows that SGD� achieves a
considerably higher hitrate than state-of-the-art approaches. In addition, we show
how by combining caching strategies with a simple data reordering approach, we
can significantly improves the hitrate of state-of-the-art caching strategies.

Keywords: caching, local graph clustering, large networks.

1 Introduction

Graphs are a natural representation for a large number of real-world problems and
datasets ranging from protein-protein-interaction networks [1] to external memory
data [2]. Over the last years, a large number of approaches have been developed to
achieve the goal of clustering graphs with high accuracy [3, 4]. While the accuracy of
these approaches is being studied continuously, improving their performance remains
a major challenge [4, 5]. Current approaches to graph clustering can be subdivided
into two main categories: global approaches, which require knowledge about the whole
graph for clustering and local approaches, which find a solution vertex-wise without ne-
cessitating knowledge of the whole graph [2]. Local graph clustering algorithms were
originally conceived to allow the detection of clusters around a small set N of nodes
of interest, especially when dealing with very large graphs. However, local clustering
approaches are nowadays often used to cluster whole graphs [6, 7]. One problem that
then arises is the scalability of these approaches [5]. In this paper, we address the prob-
lem of improving the runtime of local graph clustering algorithms that allow overlap-
ping clusters, especially when the magnitude of the set N of input vertices to process
is close to the magnitude of the set of vertices. We present the novel caching strategy
SGD� (Segmented Greedy Dual). SGD� combines the Segmented Least Recently Used

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 56–67, 2013.
c© Springer International Publishing Switzerland 2013
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(SLRU) [8] and Greedy Dual (GD�) strategies to improve the hitrate during the cluster-
ing process so as to further reduce its runtime. In addition, we show how a simple node
reordering strategy can further improve the hitrate of caching algorithms. We evaluate
our approaches by using the BorderFlow algorithm1 [9] on protein-protein-interaction
(PPI) networks [1]. We chose BorderFlow because of its superior accuracy on PPI net-
works [6] and because it has already been applied in several domains including concept
location in software development [7] and query clustering for benchmarking [10]. Our
experiments show that SGD� outperforms state-of-the-art approaches with respect to its
hit-rate and space requirements. In addition, we can more than quadruple the hitrate of
common caching strategies and of SGD� by combining them with node reordering. By
these means, we can reduce the runtime of BorderFlow to less than 25% of its original.

The rest of this paper is structured as follows: In the next section, we present some
work related to this paper. Then, we present necessary preliminaries. Thereafter, we
present our approaches, SGD� and RP. In the evaluation section, we compare our ap-
proaches with seven state-of-the-art caching approaches. Finally, we present relevant
related work on caching for local graph clustering and conclude.

2 Related Work

A vast amount of literature has been produced to elucidate the problem of graph clus-
tering [3, 4]. Still, with the growth of the size of the dataset at hand, improving the run-
time of graph clustering becomes an increasingly urgent problem. Several approaches
have been developed with the goal of improving the performance of graph clustering
approaches. Overall, most of these approaches fall into one of the following two cate-
gories: sampling (also called graph sparsification) [11, 5] and caching [12]. Sampling is
a generic solution to reducing the runtime of algorithms [13]. The idea here is to reduce
the runtime of clustering approaches by computing a smaller representative subset of
the data at hand and running the computation on this data set. While this approach can
get rid of noise in the data, the alteration of the data set at hand might lead to undesired
side-effects when combined with certain clustering strategies.

Caching follows a different idea and tries to store and reuse as much intermediary
knowledge as possible to improve the runtime of the given algorithm. One of the most
commonly used approaches is the Least Recently Used algorithm [14]. The idea be-
hind this approach is simply to evict the entry that led to the oldest hit when the cache
gets full. One of the main drawbacks of this approach is that the cache is not scan-
resistant. Meanwhile, a large number of scan-resistant extensions of this approach have
been created. For example, SLRU [8] extends LRU by splitting the cache into a pro-
tected and an unprotected area. The Least Frequently Used (LFU) [15] approach relies
on a different intuition. Here, a count of the number of accesses to entries in the cache
is kept. The cache evicts the entries with the smallest frequency count when neces-
sary. This approach is scan-resistant but does not make use of the locality of reference.
Consequently, it was extended by window-based LFU [16], sliding window-based ap-
proaches [17] and dynamic aging (LFUDA) [18] amongst others. Another commonly

1 We used the free version of the algorithm whose code is available at
http://borderflow.sf.net.

http://borderflow.sf.net
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used caching strategy is based on the idea of first-in-first-out (FIFO) lists [19]. When
the cache is full, this approach evicts the entry that have been longest in the cache. The
main drawback of this approach is that it does not make use of locality. Thus, it was
extended in several ways, for example by the “FIFO second chance” approach [19].
Other strategies such as Greedy Dual (GD�) [20] use a cost model to determine which
entries to evict.

3 Preliminaries and Notation

3.1 Caching

The aim of caching is to reduce the runtime of algorithms by storing intermediate results
of expensive computations. Formally, let O = {o1...on} be a set of results that can be
cached. Let cost : O → R+ be a function that maps each object o with the cost of its
computation. Furthermore, let size : O → R+ be a function that maps each object o
to its size. A cache C of maximal size Cmax (with Cmax ≥ max

o∈O
size(o)) is a subset of

O such that
∑
x∈C

size(x) ≤ Cmax. An algorithm A that relies on caching issues a query

sequence σ : T → O (T ⊆ N) to the cache C. At each time t ∈ T , the query σ(t) for an
object o ∈ O is sent to the cache C. If the cache contains the object o, it simply returns
the corresponding solution to the clustering problem (this is usually called a cache hit).
Else, C returns ∅ (cache miss). In case of a hit, the cost for cost(σ(t)) is a constant c
called the cache latency. In case of a miss, A must compute o with the cost cost(o),
leading to cost(σ(t)) = cost(o). The result of the computation is then forwarded to
C. As cost(o) is usually vastly superior to c, we will assume c = 0 in the remainder
of this paper. Caching algorithms aim to minimize the total cost

∑
t∈T

cost(σ(t)) of the

sequence σ by generating a sequence of cache states Ct for each time t that abide by
|Ct|.

3.2 Local Graph Clustering with Overlapping Clusters

Let G = (V, E, w) be a graph, where V is the set of edges, E ⊆ V ×V is the set of edges
and w : E → R+ the weight function that assign a weight to each edge of the graph G.
A graph clustering algorithm aims to determine a set V = {V1, V2, ..., Vn} of subsets of
V that maximize a certain fitness function [3]. Some local graph clustering algorithms
allow for clusters to share nodes, i.e., |Vi ∩ Vj | > 0 with i �= j. Such algorithms
are called non-partitioning approaches [21]. For the purpose of clustering, local graph
clustering algorithms rely on a set of nodes N ⊆ V as input. For each node of interest
n ∈ N , they aim to discover a nearby cluster2. This is carried out by running iterative
approaches of which most rely on local search [22, 23, 9] and random walks [24–26].
The idea behind these iterative procedures is to carry a simple operation repeatedly until
the fitness function is maximized. For example, search algorithms begin with an initial
solution S0(n) for n ∈ N . At each step t they compute the current solution St(n) by

2 In most cases, n must be an element of this cluster.
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altering the previous solution St−1(n). This is carried out by adding a subset of the
adjacent nodes of St−1(n) to the solution and simultaneously removing a subset of the
nodes of St−1(n) from it until the fitness function is maximized. They then return the
final solution S(n). The insight that makes caching utilizable to reduce the runtime of
local graph clustering algorithms is that if an algorithm generates the same intermediate
solution for two different nodes, then the final solution for these nodes will be the same,
i.e., ∀n, n′ ∈ N St

1(n) = St
2(n

′) → S(n) = S(n′). Thus, by storing some elements
of the sequence of solutions computed for previous nodes n and the solution S(n) to
which they led, it becomes possible to return the right solution of a node n′ without
having to compute the whole sequence of solutions. However, it is impossible to store
all elements of the sequence of solutions generated by local graph clustering algorithms
for large input graphs and large N . The first innovation of this paper is a novel caching
approach for local graph clustering dubbed SGD� that outperforms the state-of-the-art
w.r.t. its hitrate. Note that N is a set, thus the order in which its nodes are processed does
not affect the final solution of the clustering. Consequently, by finding an ordering of
nodes that ensures that the sequence of solutions generated for subsequent nodes share
a common intermediate as early as possible in the computation, we can improve the
hitrate of caching algorithms and therewith also the total runtime of algorithms. This is
the goal of the second innovation of this paper, our node reordering strategy.

4 Segmented Greedy Dual

SGD� combines the ideas of two caching strategies: SLRU and GD�. SLRU is a scan-
resistant extension of LRU [14], one of the most commonly used caching strategies.
Like LRU, it does not take the cost of computing an object into consideration and thus
tends to evict very expensive objects for the sake of less expensive one. GD� on the
other hand is an extension of the Landlord algorithm [27] which takes the costs and the
number hit(o) of cache hit that return o into consideration.

The idea behind SGD� is to combine these strategies to a scan-resistant and cost-
aware caching approach. To achieve this goal, SGD� splits the cache into two parts: a
protected segment and an unprotected segment. The unprotected segment stores all the
St(n) ⊆ V that are generated while computing a solution for the input node n ∈ N .
The protected segment on the other hand stores all the results that have been accessed at
least once and contain at least two nodes. While SLRU uses LRU on both the protected
and unprotected area, SGD� uses the GD� strategy on the unprotected area and the LRU
approach on the protected area. An overview of the resulting caching approach is given
in Algorithm 1. For each node n, we begin by computing the first intermediary result
for n. Then we iterate the following approach. We ask the cache for the head (i.e., the
first element) of the list S. If this element is not in the cache, we compute the next
intermediary solution and add it to the head of the list. The iteration is terminated out in
one of the following two cases. In the first case, the iteration terminates for n, returning
⊥. Then, the result is added to the list S and S is cached. In the second case, a solution
is found in the cache. Then this solution is cached. Note that this approach works for
every caching mechanism. The main difference between caching approaches is how
they implement the storage method cacheP ut and the data fetching method cacheGet.
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Algorithm 1. Caching for local graph clustering
Require: Set of nodes N

List S
Buffer B, id
Result R = ∅
Protected segment P = ∅
Unprotected segment U = ∅
for all n ∈ N do

S =compute(n)
id =cacheGet(S)
while id == −1 do

B =compute(S)
if B == ⊥ then

cachePut(S)
R = R ∪ (n,cacheGet(S))
break

end if
S = append(B, S)
id =cacheGet(S)

end while
R = R ∪ (n, id)

end for
return R

The fetching data algorithm of the SGD� cache has two functions and is summarized
in Algorithm 2. First, it allows checking whether the data that is being required is in the
cache. Concurrently, it reorganizes the data in the cache in case of a cachehit. The SGD�

data fetching approach and works as follows: In case there is no cachehit, the cache
simply returns -1. A cache hit can occur in two ways: First, the current solution can
be contained in the protected segment of the cache. In this case, SGD� simply updates
the credit of the entry o, i.e., of the cached entry that led to finding the cached solution
to the clustering task for the current node. It then computes the id of the answer to the
current caching and returns it. Note that there is then no need to evict data, as no new
data is added. If the cache hit occurs within the unprotected segment U of the cache, the
algorithm moves the entry o that led to the hit from U to the protected segment P of the
cache. Should P exceeds its maximal size, then the elements with the smallest credit
score are evicted to the unprotected segment U of the cache until there is enough space
for o in P . o then gets inserted into P and its credit score is computed. The final step in
case of a cachehit consists of assigning all the steps that led to the solution mapped to
s. For this purpose (see Algorithm 3), each single component oi of the solution of S is
inserted into U . In case the cache would exceed its maximal size when accommodating
oi, the elements of U are evicted in ascending order of credit until enough space is
available for oi.3

3 We implemented the approach and made it freely available at
http://sourceforge.net/projects/cugar-framework.

http://sourceforge.net/projects/cugar-framework
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Algorithm 2. SGD�’s cacheGet

Require: Solution S
s = head(S)
id = −1
if s ∈ P then

credit(s) = min+ (hit(o)cost(o))
1
b

size(o)

id = id(s)
else

if s ∈ U then
id = id(s)
U = U\s
P = P ∪ s
while |P | > Cmax/2 do

o = arg min
o′∈U

credit(o′)

U = U ∪ {o}
P = P\{o}

end while
end if

end if
if id 
= −1 then

for all si ∈ S do
cachePut(si, id)

end for
end if
return id

5 Node Reordering

While SGD� outperforms the state of the art as shown in our experiments, the general
behavior of caching algorithms can be further improved when assuming that the set
N is known at the beginning of the clustering. Note that this condition is not always
given, as many practical clustering approaches process the results for known nodes of
interest to generate novel nodes of interest. Yet, when this condition is given and when
in addition the computation of a cluster for a node n does not affect the set N or the
computation of a cluster for another node n′, the order in which the nodes are drawn
from N does not alter the result of the clustering and can be dynamically changed
during the computation. By choosing the order in which this selection is carried out,
we can drastically improve the locality of caching algorithms. We propose a simple and
time-efficient approach to achieve this goal: the use of a FIFO list. For this purpose, we
extend the cachePut method as shown in Algorithm 4.

The FIFO list L simply stores the elements of N that were part of a solution (note
that the elements of a solution must not all belong to N ). Instead of drawing n from
N as described in Algorithm 1, we draw the node n by taking the first element of L
if is not empty (in which case we draw one at random from N ). The rationale behind
using a FIFO list is that by processing nodes n′ that are closest to the input node n first,
we can reduce the number of iterations necessary for a cache hit to occur. While this
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Algorithm 3. SGD�’s cacheP ut

Require: Solution Si

Require: Set of input nodes N
Require: ID id

min = 0 // minimal credit
while |P |+ |U |+ size(Si) > Cmax do

o = arg min
o′∈U

credit(o′)

min = credit(o)
U = U\{o}

end while

credit(Si) = min+ (hit(o)cost(o))
1
b

size(o)

id(Si) = id
U = U ∪ {Si}

Algorithm 4. SGD�’s cacheP ut with node reordering
Require: Solution Si

Require: Set of input nodes N
Require: ID id

min = 0 // minimal credit
for all x ∈ Si do

if x /∈ L ∧ x ∈ N then
L = append(L,x)

end if
end for
while |P |+ |U |+ size(Si) > Cmax do

o = arg min
o′∈U

credit(o′)

min = credit(o)
U = U\{o}

end while

credit(Si) = min+ (hit(o)cost(o))
1
b

size(o)

id(Si) = id
U = U ∪ {Si}

assumption might appear simplistic, our evaluation shows that it suffices to reduce the
space requirement of caches by a factor up to 40.

6 Evaluation

6.1 Experimental Setup

As experimental data, we used four graphs resulting from high-throughput experiments
utilized in [1]. The high-throughput graphs were computed out of the datasets published
in [28] (Gavin06), [29] (Ho02), [30] (Ito01) and [31] (Krogan06).4 The graphs were

4 All data sets used for this evaluation can be found athttp://rsat.bigre.ulb.ac.be/
˜sylvain/clustering evaluation/

http://rsat.bigre.ulb.ac.be/~sylvain/clustering_evaluation/
http://rsat.bigre.ulb.ac.be/~sylvain/clustering_evaluation/
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undirected and unweighted. We used the BorderFlow algorithm as clustering algorithm
because it has been shown to perform best on these data sets [6]. We compared our
approach against the standard strategies FIFO, FIFO second chance, LRU, LFU, LFU-
DA and SLRU strategies. In addition, we developed the COST strategy, which evicts
the entries with the highest costs. The idea here is that solutions St with high costs
are usually generated after a large number t of iterations. Thus, it is more sensible
to store the entries St′ that are less costly than St, as a corresponding cache hit is
more probable and would reduce the total runtime of the algorithm. We compare these
caching approaches in two series of experiments. In the first series of experiments, we
compared the hitrate of the different caching approaches without node reordering. In the
second series, we clustered exactly the same data with node reordering. In each series

(a) Gavin06 (S1) (b) Ito01 (S1) (c) Krogan06 (S1)

(d) Ho02 (S1) (e) Gavin06 (S2) (f) Ito01 (S2)

(g) Krogan06 (S2) (h) Ho02 (S2)

Fig. 1. Comparison of the hitrate of SGD� against seven other approaches
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Table 1. Comparison of runtimes with cache size 300 in setting S1. The best runtimes are in
bold font. All runtimes are in ms. The columns labeled “Default” contain the runtime of our
approaches without node reordering. The columns labeled “Reordered” contain the runtimes after
the reordering has been applied.

Gavin06 Ho02 Ito01 Krogan06
Default Reordered Default Reordered Default Reordered Default Reordered

Baseline 14944 14944 8938 8938 42775 42775 25630 25630
FIFO 14196 9921 6848 3759 17316 9578 23758 12558
FIFO2ndChance 14071 9937 6692 3790 15303 9594 23868 12604
LRU 14164 9968 6708 3790 13525 9578 23899 12667
LFU 14008 12214 6099 5038 12324 11029 23244 19156
LFU-DA 14102 9984 6645 3790 12745 9609 23821 12698
SLRU 13946 9937 6052 3790 12370 9531 23197 12558
SGD� 13821 9968 5912 3759 12261 9687 22916 12682
COST 13915 11200 6318 3775 12604 9578 21980 14835

of experiment, we used two different settings for N . In the first setting, S1, we used
all nodes of each graph. In the second setting, S2, we only considered the nodes with a
connectivity degree least or equal to the average degree of the graph. All measurements
were carried out at least four times on an Intel Core i3-2100 (3.1GHz) with 4GB DDR3
SDRAM running Windows 7 SP1. In the following, we report the best runtime for
each of the caching strategies. Note that the cache size is measured in the number of
intermediary results it contains.

6.2 Results

The results of the first series of experiments are shown in Fig. 1. The caching strate-
gies display similar behaviors in both settings S1 and S2. In both settings, our results
clearly show that the hitrate of SGD� is superior to that of all other strategies. Espe-
cially, we outperform the other approaches by more than 2% hitrate on the Gavin06
graph. SGD� seems to perform best when faced with graphs such that the baseline (i.e.,
the hitrate with an infinite cache) is low. This can be clearly seen in the experiments
carried out with the graph Gavin06 (see Fig. 1(a) and 1(e))). In the first setting, SGD�

reaches the baseline hitrate of 8% with a cache size of 2800 (see Fig. 1(a)), while all
other approaches require a cache size of at least 4000. Similarly, in the second setting
(see Fig. 1(e)), the maximal hitrate of 7% is reached for a cache size of 1600. An ana-
logical behavior of can be observed when processing the Krogan06 graph (see Fig. 1(c)
and 1(g))). The consequences of this behavior are obviously that our approach requires
significantly less space to achieve better runtime improvements (see Table 1). Note that
COST achieves runtimes similar to that of common strategies such as LRU and FIFO.

The results of the second series of experiments are shown in Fig. 2. The reordering
of nodes significantly improves the runtime of all caching strategies in all settings, al-
lowing all strategies apart from Cost and LFU to reach the baseline with a cache size of
100 on the full Krogan06 and Ho02 graphs (i.e., in setting S1, see Fig 2(c) and 2(d)).
In setting S2, the baseline hitrate is reached with a cache size of 50 on the same graphs
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(see Fig. 2(g) and 2(h)). Therewith, node reordering can make most caching strate-
gies more than 40 times more space-efficient (compare Fig. 1(c) and 2(c)). The COST
and LFU approaches not profiting maximally from the node reordering is simply due
to cache pollution. The cost-based approach deletes those elements, which required a
long processing time, the idea being that they are unlikely that they appear again. Yet,
this approach leads to the content of the cache remaining static early in the computa-
tion. Consequently, reordering the nodes does not improve the hitrate of such caches
as significantly as that of FIFO, SLRU and other strategies, especially when the cache
is small. LFU behaves similarly with respect to the hitrate score of the elements in the
cache. Overall, by combining SGD� and node reordering, we can improve the runtime
of BorderFlow to less than 25% of its original runtime on the Ito01 graph.

(a) Gavin06 (S1) (b) Ito01 (S1) (c) Krogan06 (S1)

(d) Ho02 (S1) (e) Gavin06 (S2) (f) Ito01 (S2)

(g) Krogan06 (S2) (h) Ho02 (S2)

Fig. 2. Comparison of the hitrate of SGD� against seven other approaches with node reordering
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7 Conclusion and Future Work

SGD� addresses the cost-blindness of SLRU by combining it with the GD� caching
strategy. We showed that this combined strategy outperforms state-of-the-art approaches
with respect to its hitrate. We also presented an approach to improve the locality of
caching when dealing with clustering approaches where the order of the input nodes
does not alter the result of the clustering. One interesting results was that once we ap-
ply reordering to the input data (therewith improving the locality of the clustering), we
could boost the results of the FIFO caching approach and make it outperform all others
in most cases. In future work, we will combine our caching approach with other clus-
tering algorithms. Note that our caching approach is not limited to graph clustering and
can be easily applied to any other problem that necessitates caching. Consequently, we
will also apply SGD� to other tasks such as the management of very large graphs.
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Abstract. Provenance information can greatly enhance transparency
and accountability of shared services. In this paper, we introduce a trust
estimation approach which can derive trust information based on the
analysis of provenance data. This approach can utilize the value of prove-
nance data, and enhance trust estimation in open dynamic environments.

Keywords: Trust estimation, provenance, service recommendation.

1 Introduction

Nowadays, with the development of open distributed systems, increasing number
of services and information are shared on open platforms. For many open dis-
tributed systems, trust is a crucial factor that reflects the quality of service (QoS)
and helps manage correlation among interactive service components. Provenance
data, which describes the origins and processes that relate to the generation of
composite services, can provide rich context for trust estimation [1]. Especially
in service-oriented computing, provenance identifies what data is passed between
services, what process involved in the generation of results, who contributed to
the service generation, etc. [4].

In this paper, a provenance-based trust estimation model is proposed. In this
model, provenance information of a composite service is represented as a prove-
nance graph. The similarities of different provenance graphs are analysed ac-
cording to their Same Edge Contributions (SEC). Based on graph similarities
and correlation to trust values, the performance of a future composite service
can be predicted.

The rest of this paper is organized as follows. Section 2 describes the prob-
lems definition and some assumptions in this research. Section 3 presents the
framework of the provenance-based trust evaluation model, and how to derive
trust support values from provenance graph. In Section 4, we setup experiments
and demonstrate the performance of the SEC model. Finally, the conclusion and
future works are presented in Section 5.

2 Problem Definition

When a service consumer submits a service request, workflows which can satisfy
the request will be proposed by different providers. The system will estimate each

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 68–73, 2013.
c© Springer International Publishing Switzerland 2013
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proposed workflow based on the analysis of historical provenance data (graphs).
We suppose that there is a universe of n service components S = {S1, S2, ..., Sn}
which are loosely coupled in a SOC system.Ex(Si, Sj) represents a path leads from
Si to Sj . Firstly, we give the definition for provenance graph in knowledge base.

Definition 1: A provenance graph is a 2-tuple P V G = (VPV G, EPV G), where
VPV G is a finite set of nodes, and EPV G is the finite set of edges. Furthermore,
| GPV G |=| VPV G | + | EPV G | denote the size of GPV G

The requests from service consumers include basic functional requirements,
and then system will receive proposal graph from different providers as following
definition.

Definition 2: A proposal graph P RG is defined as 2-tuple, i.e., P RG =< ID,
P RG = (VPRG, EPRG) >. ID is the unique identifier for each service request.
P RG is the proposal graph from providers that describes a finite set of ser-
vice components VPRG = {S1, S2, S3, ..., Sn} and a finite set of edges EPRG =
{E1(S1, S2), E2(S1, S3), ..., En(Sn−1, Sn)}.

The service components in VPRG are required to achieve the functional require-
ment of the request, andEPRG indicate the process of composite service. After the
completion of the composite service, the system will generate service feedback RF
which contains the proposal graph P RG and quality of composite service.

Definition 3: A service feedback RF is defined as a 2-tuple, RF =< R, Q >.
R is the service request generated by the system which contains both unique
transaction ID and provenance graph P RG. P RG describes the required ser-
vice components and process in detail. Q represents the quality of composite
service.

Definition 4: A sub-service graph g = (Vg, Eg) is a subgraph of a graph
P RG or P V G, denoted by g ⊆ P RG/P V G, where Vg ⊆ VPRG/VPV G and
Eg ⊆ EPRG/EPV G.

3 The Provenance-Based Trust Estimation Approach

3.1 Trust Estimation Protocol

In our approach, trust prediction is conducted by the protocol shown in Fig.1.
Firstly, after the system receives a request, proposal graphs P RG based on the
functional requirements from the service consumer will be generated. Then the
proposal graphs will be sent to the Prediction Retrieval Module. The Predic-
tion Retrieval Module will search Knowledge Base for all possible provenance
graphs P V G which are similar to proposal graph P RG. Then, based on the
previous provenance graphs P V G in the Knowledge Base, the Edge Contribu-
tion Module will update the edge contribution value for total available edges.
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Fig. 1. Trust Estimation Protocol

At the beginning all edge are given the same weight within in the request. General
Similarity Calculation Module calculates the similarity between proposal graphs
P RG and provenance graph P V G based on the same service components and
edges in graphs and then passed the most similar provenance graphs P V G to
Prediction Calculation Module. Comparing the same edges in proposal graph
P RG and provenance graphs P V G, the Prediction Calculation Module will use
edge contribution value to give each provenance graph P V G support value. The
system will return the class value of the provenance graph P V G which obtained
the highest support value to the Reply Module.

3.2 General Similarity Calculation

The general similarity between proposal graph P RG and candidate provenance
graph P V G in knowledge base is decided by an upper bound on the size of the
Maximum Common Edge Subgraph (MCES) [5] [2]. First, according to service
service components S in each graph, the set of vertices is partitioned into l par-
titions. Let gPRG

i and gPVG
i denote the sub-graph in ith partition in graph P RG

and P V G, respectively. An upper-bound on the similarity between provenance
graph P RG and P V G can be calculated as follows:

V (P RG, P V G) =
l∑

i=1

min{|gPRG
i |, |gPVG

i |} (1)

E(P RG, P V G) =  
l∑

i=1

max{|gPRG
i |,|gPV G

i |}∑
j=1

min{d(SPRG
j ), d(SPV G

j )}
2

! (2)

sim(P RG, P V G) =
[V (P RG, P V G) + E(P RG, P V G)]2

[|V (P RG)|+ |E(P RG)|]× [|V (P V G)|+ |E(P V G)|] (3)
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where d(S
PRG/PV G
j ) denotes the number of adjacent service components of Sj

in provenance graph PRG/PVG. Fig.2(a) and Fig.2(b) illustrate two workflow
graphs for composite services. The higher sim(P RG, P V G), the more same edge
and nodes are share between the proposal graph P RG and candidate provenance
graph P V G in knowledge base. It is necessary to specify a minimum acceptable
value simthreshold for the general similarity measure. If sim(P V G, P RG) ≤
simthreshold, the candidate provenance graph P V G will be ignored in following
edit operation cost calculation procedure.

(a) Proposal Graph PRG (b) Provenance Graph PV G

Fig. 2.

3.3 Edge Contribution Calculation

In our approach, we intend to adopt the Edge Contribution which each edge
E(Si, Sj) makes to quantify the edit operation cost. The Quality of Service
(QoS) of a composite service is assumed as a random behavior. The uncertainty
of such a random behavior is related with the required edges Ex

G(Si, Sj) in the
process of service request, and can be reduced with the existence of a particular
edge. Therefore, we firstly calculate the Quality Entropy (H(Q)) to measure
average uncertainty of the QoS value of composite services [3]. Then, mutual
information (i.e., I(Q;Ex

G)) [6] is used to measure how much reduction can a
particular edge Ex

G make to the uncertainty of the QoS value.

CEx
G(Si,Sj) =

I(Q;Ex
G(Si, Sj))

H(Q)
(4)

W CEx
G
=

CEx
G∑

Ex∈EG

CEx
G

(5)

where G represents as P RG or P V G in different situations and where W CEx
G
is

the contribution of edge Ex
G for P RG or P V G. The larger W CEx

G
is, the most

contribution the edge Ex
G makes in the process.

Comparing proposal graph P RG and candidate provenance graph P V G passed
from General Similarity Calculation step, we can get the particular same edge
set between P RG and each P V G, i.e., {Ei

sameSet} = Same(EPRG, EPV G) =
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{Ei, Ej , Ek, ...}, where all edges {Ei, Ej , Ek, ...} in {Ei
sameSet} both occur in

P RG and P V G. For example, according to Fig. 2(a) and 2(b), {EsameSet} =
{E(S1, S3), E(S2, S3)}. Then, we should separately calculate the Same Edge
Contribution rate (SEC) on proposal graph P RG and provenance graph P V G
as follow:

SECPRG/PV G =

∑
Ex∈Ei

sameSet

W CEx
PRG/PV G∑

Ex∈EPRG/PV G

W CEx
PRG/PV G

(6)

The edge contribution (W CEx
G
) in different graphs is different. In order to com-

pare the contribution of same edge set which both occur in P RG and P V G, we
should calculate as follow:

Support = SECPRG ∗ SECPV G (7)

The Support value will range from 0 to 1. In order to get a high Support value for
particular provenance graph P V G, Same Edge Contribution rate for proposal
graph (SECPV G) and provenance graph (SECPV G) should not only as high as
possible, but also as close as possible. The class which the proposal graph P RG
should be classified into is dependent on the support value of each provenance
graph P V G. Finally, the Reply Module generate a feed back RF for the proposal
P RG after the execution, and store the information into the Knowledge Base.

4 Experiments and Analysis

Some experiments are conducted in this research. In the experiments, we in-
cluded 10 service components Si, and 45 kinds of edges E(Si, Sj). There are 2
kinds of class (i.e., Successful and Unsuccessful) are adopted for representing
QoS. We except for two classification metrics: Accuracy and Precision for Suc-
cessful class. We design three different scenarios for the experiment. Firstly, all
training dataset and test dataset share the same set of service components and
edges. Secondly, there appear new service components and edges in test, but
they cannot been found in knowledge base. Thirdly, provenance graphs P V G
with new service components and edges are added into the knowledge base.

Finally, following characteristics of the SEC model can be demonstrated.
Firstly, even if there appear new service components and edges in Request prove-
nance graph without in original knowledge base, the SEC model still can work
and perform better in Precision for predicting Successful composite service. Sec-
ondly, according to the result from experiment, the Precision for the SEC model
in three experiments seems to be similar, because they shared the same high con-
tribution edge set. Thirdly, once an new edge is included into knowledge base, if
it highly contribute to the class value, its W Cx

EG
will immediately reflect it and

influence the prediction ability of the SEC model.
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5 Conclusion and Future Work

In this paper, we investigated the possibility of using provenance graphs in trust
estimation, and proposed a trust estimation model, named the SEC model, for
predicting the trustworthiness of a composite service based on related provenance
information. The proposed approach can work effectively to facilitate users to
analyze huge amount of provenance data, and derive trust information from them
automatically for service composition in open systems. The future work of this
research will mainly focus on two aspects. Firstly, we are going to investigate
more advance methods to improve the accuracy of trust estimation. Secondly, we
will investigate more effectively approach for estimating multi-class trust values.
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Abstract. Electroencephalography (EEG) source localisation (a.k.a.
the inverse problem) is a widely researched topic with a large com-
pendium of methods available. It combines the classic EEG signal pro-
cessing techniques with modern methods to estimate the precise location
of the sources of these signals inside the brain. Myriad factors define the
differences in each of these techniques. We present here a previously un-
tried application of the Minimum Message Length (MML) principle to
the inverse problem with strictly preliminary findings. We first discuss
the problem formulation of EEG source localisation and then attempt a
preliminary inclusion of MML in the analysis. In this early stage, tests
were conducted based on a simple head model using only artificial data.

Keywords: Electroencephalography, EEG, source localisation, inverse
problem, Minimum Message Length.

1 Introduction

An Electroencephalography (EEG) is “a record of the oscillations of brain electric
potential recorded from electrodes on the human scalp” [7]. EEG is a non-invasive
routine which is commonly used by clinical neurophysiologists and researchers to
study epilepsy, stroke and other forms of brain abnormalities [1,5,9]. Of interest
to researchers is finding out the exact location of these sources of electrical
activity in the human brain based on recorded electric potentials registered at the
electrodes placed at specified positions on the scalp. This is known as the Inverse
EEG problem – or source localisation. Despite the good temporal resolution that
EEG source localisation provides [1], the latter falls short in terms of producing
images that match the spatial resolutions of other functional imaging techniques.
Active research to find a solution to the inverse EEG problem has consequently
spawned an array of proposed methods – each with respective strengths and
drawbacks.

It is well established that the inverse EEG problem is ill-posed [5,10] because
of the infinite number of acceptable solutions that “fit” the data equally well,
making the solution non-unique. To overcome this problem, domain knowledge
and a priori information can be used to constrain the solution set [10]. Differ-
ent assumptions may include (but are not limited to): the number of sources,
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biological constraints, prior probability, norms, correlation, sparsity, etc. The
underlying assumption(s) that constitute the models used in various techniques
define the differences in each. Some of the well-known methods include those
based on the minimum-norm constraint such as Low Resolution Electromagnetic
Tomography (LORETA) and Weighted Minimum Norm Estimate (WMNE) [5].
There are also other approaches such as beamforming, which are oriented more
towards signal processing.

We make a preliminary attempt here to investigate source localisation using
Minimum Message Length (MML) [14,13,3], see sec. 2.2. Many source locali-
sation techniques have been documented in the literature, but not MML. We
attempt to use MML as part of the EEG models – specifically in regularization.

2 Problem Definition

2.1 The Inverse Problem

The objective of EEG source localisation is to locate the active areas of the
brain responsible for the registered EEG data. This comprises two problems:
the forward problem and the inverse problem. The forward problem is solved by
using a given electrical configuration and determining the electrode potentials at
each of the electrodes on the human scalp. Both problems are integral to source
localisation. This paper follows the commonly used data model for EEG source
localisation; the cortical volume or region is uniformly divided into homogeneous
3-dimensional cuboids or voxels [17]. In this model, current dipoles are assumed
at the active locations in the cortex. The dipole concept is introduced to aid the
mathematical representation of the problem; dipoles are, in fact, hypothetical
entities. The model involves a set of m electrodes (usually tens to hundreds) that
receives signals at a certain time instance as a result of source k at voxel rk. The
signal received at the electrodes can be modelled as G(rk)mk where mk ∈ IR3×1

and G(rk) = [gx(rk) gy(rk) gz(rk)] ∈ IRm×3 represent the dipole moment and
lead field matrix, G, respectively. gx(rk), gy(rk), gz(rk) denote the m × 1 lead
field vectors that represent the unit amplitude sources at voxel rk oriented in the
respective Cartesian planes. These vectors that form the components of the lead
field matrix are easily derived from various head models in the forward problem
calculations [5,17]. The lead field matrix is a vital component of the system and
will be described in later sections. For an in-depth coverage of the forward prob-
lem, see [6]. mk is a product of two components: the dipole moment magnitude
and the orientation for any arbitrary source k. The magnitude is a real-valued
scalar and the orientation for each dipole is a 3× 1 vector whose members cor-
respond to the planes in 3-D space. The cortex is assumed to comprise n voxels,
hence giving rise to a “linear superposition of the contributions” [17] of these
voxels:

x = Gm+N (1)

In (1), N is a noise term and G now becomes [G(r1) ... G(rn)] ∈ IRm×3n, with
m being [mT

1 ... mT
n ]

T ∈ IR3n×1. x refers to the vector of measured electric
potentials at the 14 electrodes.
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The general form described in (1) will be the basis of the inverse problem. There
are also other types of formulations besides (1). The objective, in this case, would
be to find a reasonable estimate m̂ to localise the sources. Having said this, the
problem remains hugely underdetermined due to the number of voxels (n) being far
greater than the number of observation points [or electrodes] (m). This issue can
be addressed to some extent by placing certain regularisation constraints. Some
of the constraints that are assumed will be discussed in the following sections. It is
necessary to understand that the description of the inverse problem in this section
broadly sets the context for the proceeding sections; a comprehensive description
of the problem would warrant a separate piece of literature.

2.2 Minimum Message Length

Recalling sec. 1, Minimum Message Length is a Bayesian inference method which
can be regarded as a quantitative version of Ockham’s razor (see [3, sec. 4]). It is
a useful criterion in the the acceptance, rejection and comparison of hypotheses
based on some given body of data [13,14]. MML relies on the principle that the
best Hypothesis [or explanation] (H) is one that produces the shortest (optimal)
two-part encoding of the observed Data (D). For various desiderata of MML such
as its universality, statistical invariance and general statistical consistency, see,
e.g., [13,3].

3 Data Models and Assumptions

3.1 Head Model and Reducing the Number of Unknowns

The number of voxels required to represent the cortical region is usually 6000
or more [8,9]. This preliminary study focused on reducing the total number of
unknowns to make the problem less underdetermined. Ideally, the more vox-
els there are, the better the representation of the underlying EEG sources. In
this work we use a brain model composed of 4 large voxels with 4 x 3 = 12
dipole components estimated from 14 electrodes, x, hence making the problem
overdetermined (as 14 > 12).

3.2 Initial Experiments

Tests on artificial data were conducted with the aim of finding the estimate, m̂
(of the dipole moment vector), which minimises the following expression:

min{‖Gm− x‖2 + ‖Rm‖2} (2)

The second term, ‖Rm‖2, represents the regularization term, which we attempted
to model using MML. Instead of using common regularizers such as Tikhonov reg-
ularization, a single latent factor model [13, sec. 6.9] was combined with MML
mixture modelling [15,16][13, sec. 6.8] (similarly to [4]) and hierarchical cluster-
ing (cf. [2]) to hierarchically cluster the 4 x 3 = 12 dipole moments. Unfortunately,
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this elaborate regularisation term just described varied only slightly (by about 0.5
bit) across all the data which we considered in this preliminary investigation - and
hence had little impact. An MML linear regressionmodel [13, sec. 6.7] was used as
the first term in (2) (this should be a minor replacement) with the regularisation
term just described as having little effect.

The tests were conducted using artificially generated data for the measured
electric potential vector x (see sec. 2.1). PseudorandomGaussian noise, N(μ, σ2),
was also introduced to x with μ = 0 and σ = 0.1. The lead field matrix, G
was generated under realistic settings for the 4-voxel head model and provides
the link between the physical electrical potentials recorded on the scalp and the
dipole components in each voxel inside the brain. An initial vector, m0, was gen-
erated using the Moore-Penrose pseudoinverse of the lead matrix, G, through
multiplication with the vector of observed electrode readings, x. Doing so should
approximately minimize the first term in (2) (because of our slight modification).
m0 was put through a multi-dimensional search using simulated annealing to find
the optimal estimate, m̂, which effectively minimises the objective function from
(2). Each entry in the dipole component vector m was randomly perturbed with
small increments or decrements and then the objective function was recomputed
upon each perturbation. The role of the MML regularizer was intended to sup-
press any noise and “over-fitting” from the resulting estimates, but (as above
had little effect). At the end of the annealing process, the estimated solution
vector will be found. How well the estimate corresponds to the actual dipole
component vector can then be observed.

4 Results

Simulation 1. A concurrent minimisation of the terms in (2) was carried out
to find the best trade-off that leads to total minimisation rather than optimum
results for each term in isolation. The ideal scenario would be if a certain vector
m̂k results in the minimisation of both the first and second terms in (2) after the
k-th iteration. It was observed that after 10 perturbations to the vector m, the
MML regularization term which we used did not deviate more than ±0.3 nits.
This occurred no matter how large the magnitude of perturbations introduced
to the individual components in m was.

Simulation 2. The first term of (2) was minimized while the regularization
term was kept as a constant to find out if there were any effects on the search.
In Table 1, m denotes the true dipole component vector, m̂0 is the best solution
before optimisation and m̂ is the final estimate after convergence of the multi-
dimensional search on the 12 variables x1 to z4. The estimates do not differ
largely from the true values. However, this simulation was conducted without
considering the effect of regularization. Results for this simulation are in Table
1. The last row of each column is the objective function of (2).

Simulation 3. In an attempt to optimise the search, the same vector (as in
Simulation 2) was used but with different search parameters. The starting tem-
perature, T , for the simulated annealing process was increased from 50 to 80
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Table 1. Simulation 2 results from multi-dimensional search after perturbing variables

Component variables Actual m Initial m̂0 Estimate m̂

x1 1.0000 0.9010 0.9004

y1 0.0000 -0.0253 -0.0118

z1 0.0000 0.0253 0.0150

x2 1.0000 1.1196 1.0980

y2 0.0000 0.0653 0.1208

z2 1.0000 0.9426 0.9019

x3 0.0000 -0.0824 -0.0820

y3 0.0000 0.0761 0.0270

z3 0.0000 -0.1116 -0.1035

x4 0.0000 0.0090 0.0194

y4 1.0000 0.8600 0.8566

z4 1.0000 1.4020 1.3880

Expression 2 2.2361 2.3885 2.3501

and the number of perturbations to the vector per thermal equilibrium was also
increased tenfold – from 10 to 100 perturbations. Despite the longer search du-
ration, only mild improvements were seen. Resulting estimate vector = {0.9122
-0.0124 0.0151 1.0881 -0.0821 0.9091 -0.1820 0.2651 0.1031 -0.03645 0.95656
1.3547}. It was noted that increasing the number of perturbations did not really
justify the increased computational time (3 seconds to complete the search in
simulation 1 and 21 seconds to search in simulation 2).

5 Discussion and Further Work

Our preliminary results do not (yet) provide a clear indication whether the par-
ticular way we have used MML is effective as a regularization term in source
localisation. Other factors that might contribute to these results include the use
of an extremely simple 4-voxel head model. The fact that the problem was trans-
formed from an underdetermined system to an overdetermined one might also
be relevant. We recall the negligible effect that our initial MML regularization
has had. This aspect could be further investigated. We could also investigate
the effects of larger σ and more noise. A better head model that accomodates a
greater number of voxels would assist. Previous works using MML on spatially
correlated data [11,12] might help address whether the voxels might exhibit spa-
tial correlation.

We thank Drs Timur Gureyev and Yakov Nesterets from CSIRO, Australia,
for helpful discussions and for provision of the EEG lead field matrix used in our
numeric experiments.
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Abstract. Variable selection is a common problem in regression mod-
elling with a myriad of applications. This paper proposes a new feature
ranking algorithm (DEPTH) for variable selection in parametric regres-
sion based on permutation statistics and stability selection. DEPTH is:
(i) applicable to any parametric regression task, (ii) designed to be run
in a parallel environment, and (iii) adapts naturally to the correlation
structure of the predictors. DEPTH was applied to a genome-wide asso-
ciation study of breast cancer and found evidence that there are variants
in a pathway of candidate genes that are associated with a common sub-
type of breast cancer, a finding which would not have been discovered
by conventional analyses.

1 Introduction

The problem of selecting predictor variables from a possibly large set of candidate
variables occurs in many areas of science. An important recent example is the
parametric regression model of genome-wide association studies (GWAS). GWA
studies [1] measure thousands of genetic markers, typically single nucleotide
polymorphisms (SNPs), for people affected by the disease of interest (cases) and
people that are not affected by the disease (controls). The aim of a GWAS is to
identify which SNPs, if any, are truly associated with risk of disease.

In the context of a GWAS, selecting potentially interesting variables is chal-
lenging due to: (i) the large number of SNPs measured, (ii) the correlation be-
tween SNPs, and (iii) the fact that the disease causing variants may not have
been measured. The conventional strategy for finding disease associated SNPs
is to test each SNP independently of all other measured SNPs using standard
hypothesis testing methods. This approach yields a frequentist p-value for each
measured SNP which is an indication of the strength of evidence for the asso-
ciation. The p-values are then adjusted for multiple testing [2] using, for exam-
ple, the Bonferonni procedure and all SNPs whose p-values are less than some
pre-specified threshold are in effect considered to be true associations; all the
remaining SNPs are effectively discarded.
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This paper proposes a new algorithm (see Section 2) for discovering predictors
using a regression model based on permutation statistics and stability selection.
The basic idea is to rank each variable in terms of evidence for association and
then measure the stability of the corresponding ranking by re-sampling the data.
Intuitively, one expects the ranking of variables with little or no associations
to be highly unstable under minor perturbations of the data. This is because
their associations are essentially random and practically indistinguishable. In
comparison, the ranking of stronger predictors should remain relatively stable
under data permutation, even when there are groups of predictor variables that
are highly correlated. The algorithm also adds random noise predictors and
ranks these variables alongside the measured variables. Statistics computed for
the noise variables correspond to an empirical null distribution and this is used
to determine the relative importance of all variables as predictors.

In the context of a GWAS, the algorithm can be used for all SNPs in the
genome or for any subset of SNPs. We have found that the algorithm shows good
performance when compared to several established procedures using simulated
data. When applied to a breast cancer GWAS data set, the proposed algorithm
found evidence that there are variants in a pathway of candidate genes that are
associated with a common subtype of breast cancer, a finding which would not
have been discovered by conventional analyses (see Section 3).

2 Stability Selection Algorithm

Consider a data set D = {(x1, z1, y1), (x2, z2, y2), . . . , (xn, zn, yn)}, where xi ∈
Rp, zi ∈ Rq and yi ∈ R (i = 1, 2, . . . , n), assumed to be generated by the
regression model

yi = fi(xi, zi; θ) + εi (1)

parameterised by θ ∈ Rk with disturbances εi ∼ π(·). This setup includes com-
mon linear as well as non-linear classification and regression models. The task
is to rank the p regressor variables x in terms of the evidence for their strength
of association with the target variable y and thus effectively select which of
the p variables constitute signal and which variables are noise. Note that the q
variables z are pre-selected and included in each candidate model.

This paper introduces a novel feature ranking algorithm for parametric re-
gression called DEPTH (DEPendency of Association on the number of Top Hits)
which is based on re-sampling techniques and stability selection. Briefly, the idea
is to first rank all p variables based on their marginal contribution, adjusting
for the fixed regressors z, and then evaluate the stability of the corresponding
ranking by re-sampling the data. The re-sampling is without replacement and
repeated over many iterations. Statistics recorded during each iteration of sam-
pling are then used to automatically select the predictors that are associated
with the target. A detailed description of DEPTH is given in Algorithm 1.
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Algorithm 1. A description of the DEPTH algorithm

Require: Data D = {(x1, z1, y1), (x2, z2, y2), . . . , (xn, zn, yn)}, xi ∈ R
p, zi ∈ R

q,
yi ∈ R, number of iterations T > 0

1: yp ← random permutation of target variable y ∈ R
n

2: r0 ← initial ranking of variables using data D {see Algorithm 2}
3: rp0 ← initial ranking of variables using D with yp instead of y {see Algorithm 2}
4: c ← 0p, c

p ← 0p {measure of variable significance}
5: for t = 1 to T do
6: D∗ ← re-sample data D without replacement
7: Dp

∗ ← D∗ where the target vector is randomly permuted
8: Append an extra p columns of noisy variables to data D∗ and Dp

∗
9: rt ← new ranking based on re-sampled data D∗
10: rpt ← new ranking based on permuted data Dp

∗
11: cj ← cj + 1, ∀x variables in D∗ ranked before the best ranked noise variable
12: cpj ← cpj + 1, ∀x variables in Dp

∗ ranked before the best ranked noise variable
13: ot ← ranking overlap between r0 and rt {see text}
14: op

t ← ranking overlap between rp0 and rpt
15: end for
16: Ranking stability plot based on {o1, . . . ,oT } and {op

1 , . . . ,o
p
T }

17: R ← index of x variables obtained by sorting c in descending order
18: return final ranking of the p x variables R

2.1 DEPTH Algorithm

DEPTH first creates a copy of the data setD where the target vector y is randomly
permuted (Step 1). The new data set is denoted by Dp and corresponds to an
empirical null distribution. Since the target vector in Dp is essentially random,
all DEPTH statistics will be compared to the corresponding statistics obtained
using this random data. DEPTH then calculates statistics from the data which are
compared to the empirical null distribution to minimise false positive findings.

DEPTH ranks the p variables x in D and the x variables in Dp (Steps 2–3).
DEPTH employs marginal variable ranking where each variable is examined inde-
pendently of all other variables to be ranked. The ranking algorithm is described
in Algorithm 2. For each of the p variables (Steps 3–7, Algorithm 2), the rank-
ing function fits a regression model using one x variable at a time (Step 4,
Algorithm 2), adjusting for all the z variables, and computes the corresponding
log-likelihood (Step 5, Algorithm 2). The regression model is fitted using maxi-
mum likelihood estimation, though in principle another estimation technique can
be used. Following maximum likelihood fitting, a ranking statistic is computed
for each of the p x variables (Step 6, Algorithm 2). The ranking statistic is the
difference between the log-likelihood of a model with one regressor xj (and q
regressors z) and the log-likelihood of a model with only the q regressors z. All
p x variables are then ranked in ascending order of the ranking statistic (Step
8, Algorithm 2); the regressor xj that results in the best improvement to the
log-likelihood over the model with z regressors only is ranked first; the second
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Algorithm 2. A description of the marginal feature ranking function

Require: Data D∗ = {(x1, z1, y1), (x2, z2, y2), . . . , (xn∗ , zn∗ , yn∗)}, xi ∈ R
p∗ , zi ∈ R

q,
yi ∈ R

1: Initialise score vector s = (s1, s2, . . . , sp∗)
′ = 0p∗

2: s0 ← log-likelihood of model with regressors zi (i = 1, 2, . . . , n∗)
3: for j = 1 to p∗ do
4: Fit regression model using data (xij , zi, yi) (i = 1, 2, . . . , n∗)
5: lj ← log-likelihood of the fitted model
6: sj ← lj − s0 {difference in log-likelihood}
7: end for
8: r ← sort all variables in descending order of s
9: return r {ranked list of all p∗ variables}

best regressor xj′ (j �= j′) is the one that results in the second best improvement
in log-likelihood, etc.

DEPTH performs T > 0 steps of data re-sampling and re-ranking in order to
assess variable selection stability (Steps 5–15). DEPTH keeps two count vectors
{c ∈ Rp, cp ∈ Rp} for each of the p variables in D and Dp which are used to
measure variable importance. During each sampling iteration, DEPTH creates a
new data sample D∗ by sampling the original data without replacement (Step
6); the new data contains 66% of the original data points. In a similar fashion
to Step 1, a copy of D∗ with the target vector randomly permuted is stored in
Dp

∗ (Step 7). Additional p columns of (noisy) data are then appended to D∗ and
Dp

∗ (Step 8). These extra columns will be used to determine the total number
of significant x variables (a similar idea was mentioned in passing by Miller [3]).
The data sets D∗ and Dp

∗ therefore have n∗ =  2n/3! samples and p∗ = 2p
variables that will be used for ranking. Algorithm 2 is used to compute a new
ranking list rt for the p∗ variables in D∗ (Step 9); the same procedure is also
applied to the permuted data Dp

∗ resulting in rpt (Step 10). The count vector c
is updated in Step 11 as follows: for each x variable j (1 ≤ j ≤ p), if the variable
ranks ahead of the best ranked noisy variable, add one to the count cj , otherwise
proceed to step 12. The counts cp are updated in the same fashion using ranking
list rpt instead of rt (Step 13).

DEPTH uses the percentage of overlap between ranking vectors r0 (based on
data D) and rt (based on re-sampled data D∗) as a metric of variable selection
stability. Further, the percentage of overlap between rp0 and rpt is used to estimate
the empirical null distribution of overlap. The procedure to compute percentage
overlap between two lists of ranks, say r0 and rt, is as follows (Steps 13–14).
First, the p extra (noisy) variables that were added in Step 8 are removed. We
then compute the intersection between the first j components of r0 and rt for
all (j = 1, 2, . . . , p). The number of variables that remain in the intersection
set for each j is stored in ot and is a metric of ranking repeatability. As an
example, consider two lists of rankings {3, 2, 5, 4, 1} and {2,3,4,1,5}. Following
the calculation of overlap percentage, the vector ot for these two lists would
be {0, 1, 0.67, 0.75, 1}. The first entry of ot is 0 as the top ranked variable is
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different in the two lists. Similarly, the second entry of ot is 1 since both lists
rank variables {2, 3} as most significant.

Following T re-sampling iterations, DEPTH produces: (i) an estimate of the
number of significant predictors in the data γ (0 ≤ γ ≤ p), (ii) a plot of variable
selection stability (Step 16), and (3) a ranking of all x variables in terms of
their strength of association with the target y. The total number of significant
predictors is estimated as

γ =
1

T

p∑
j=1

max(cj − cpj , 0), (0 ≤ γ ≤ p) (2)

where γ is the mean number of x variables ranked below the noise variables
over T sampling iterations. Note that the number of significant variables in
the permuted data D∗

p, which is an estimate of the empirical null distribution
under the assumption that all variables are noise, is subtracted from the estimate
obtained using D∗. This ensures that γ controls the type I error rate by recording
the number of significant variables above what would be expected by chance.

The ranking stability plot is obtained from the overlap vectors {o1, . . . ,oT }
and {op

1, . . . ,op
T }. DEPTH overlays the median percentage overlap computed from

data sets D∗ and Dp
∗ in one figure. This gives the experimenter the ability to

compare median replicability between the real data rankings and the random
data rankings over T iterations of re-sampling. The area between the two median
curves is a surrogate statistic for the amount of signal present in the data. If
the area is small (that is, the curves are virtually overlapping), DEPTH may not
able to distinguish between signal and noise variables. In contrast, a large area
between two median curves may indicate presence of strong signal variables.

Finally, DEPTH produces a ranking of all x variables which is used in con-
junction with the estimate of the number of significant predictors (2) for model
selection. The DEPTH ranking is computed from the count vectors c and cp. The
variable j with the largest count (cj − cpj ) is ranked first; the variable j′ with the
second largest count (cj′ − cpj′ ) is ranked second, etc. As the DEPTH ranking is
an average over T re-sampling iterations, it is expected to be more stable than
a single ranking.

3 Application to Breast Cancer GWAS Data

This section examines the application of DEPTH to a real GWAS of 204 women
with breast cancer obtained from the Australian Breast Cancer Family Study [4]
and 287 controls from the Australian Mammographic Density Twins and Sisters
Study [5]. All women were genotyped using a Human610-Quad beadchip array
resulting in over 600, 000 SNPs per woman. Recommended GWAS data cleaning
and quality control procedures (e.g., checks for SNP missingness, duplicate re-
latedness, population outliers [6]) were performed prior to analysis. We selected
SNPs for DEPTH analysis from genes encoding a candidate susceptibility pathway.
All SNPs were validated in the Caucasian population and were downloaded from
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the HapMap Consortium [7]. This particular pathway was chosen due to biolog-
ical considerations and because previous GWAS research in the pathway has
detected potentially interesting SNPs. The final data set consisted of 366 SNPs
selected from a genomic region of approximately two million base pairs. The
correlation structure was approximately block-diagonal where blocks of highly
correlated SNPs are interspersed with regions of low correlation.

DEPTH ranking of the data was done using T = 1, 000 re-sampling iterations
and logistic regression for marginal variable ranking. The difference in area be-
tween two overlap curves showed the possible presence of multiple risk-associated
SNPs. DEPTH selected five SNPs (γ = 5.11) as important. To examine whether
there is any difference in SNP rankings across different types of breast cancer, we
stratified the GWAS data into two groups. Breast cancer type was determined
from the collected cancer pathology data and DEPTH ranking was then performed
for all SNPs in the two subgroups. DEPTH showed that SNPs in the pathway are
only associated with one common type of breast cancer and not the other. This
is an important discovery which we are currently attempting to replicate using
a large, independent breast cancer GWAS data set.

Due to time constraints, initial DEPTH tests have concentrated on subsets of
the human genome, chosen by biological consideration. The DEPTH algorithm is
now being implemented on the IBM BlueGene/Q supercomputer, a Victorian
government initiative in partnership with the University of Melbourne and the
IBM Research Collaboratory for Life Sciences. The BlueGene/Q comprises 4,096
compute nodes with 65,536 user processor cores in four racks. The authors have
been granted a significant amount of compute time on the supercomputer and
have been funded by the National Health and Medical Research Council to
perform DEPTH analyses of GWAS data. A manuscript detailing DEPTH analyses
of a large international breast cancer GWAS data set, obtained through the
Breast Cancer Association Consortium, is currently in preparation.
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Abstract. Izhikevich [6] has proposed that certain strongly connected
groups of neurons known as polychronous neural groups (or PNGs) might
provide the neural basis for representation and memory. Polychronous
groups exist in large numbers within the connection graph of a spiking
neural network, providing a large repertoire of structures that can poten-
tially match an external stimulus [6,8]. In this paper we examine some of
the requirements of a representational system and test the idea of PNGs
as the underlying mechanism against one of these requirements, the re-
quirement for consistency in the neural response to stimuli. The results
provide preliminary evidence for consistency of PNG activation in re-
sponse to known stimuli, although these results are limited by problems
with the current methods for detecting PNG activation.

Keywords: spiking network, polychronous neural group, activation,
representation, memory.

1 Introduction

It is widely assumed that synaptic plasticity provides the neural basis for long-
term memory in the brain [1,2,9] although the precise nature of the underlying
representation is still unclear [3]. Izhikevich [6] has proposed that certain strongly
connected groups of neurons known as polychronous neural groups (or PNGs)
might provide this representational mechanism. An understanding of this under-
lying mechanism is particularly relevant to the developing field of neuromorphic
computing, but is also of interest to researchers in machine learning, or even
information retrieval [5]. In this report we examine some of the requirements of
a representational system and test the idea of PNGs as a mechanism of repre-
sentation against one of these requirements, the requirement for consistency in
the neural response to stimuli.

Polychronous groups arise from an interaction between the precise firing times
of spatio-temporal input patterns and the variability of axonal transmission delays
between neurons. Figure 1 shows a schematic example of such an interaction. The
input stimulus is composed of a sequence of firing events, each representing the
firing of a specific neuron at a precise point in time. The stimulus in this example
forms an ascending spatio-temporal pattern as shown in Fig. 1 (unfilled circles).

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 86–97, 2013.
c© Springer International Publishing Switzerland 2013
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In this model network there exists a polychronous group whose intra-group ax-
onal delays are congruent with the input stimulus (gray-filled circles). As shown
in panels A, B and C, the spatio-temporal arrangement of three of the firing
events that make up the stimulus (filled black circles in Fig. 1) interacts with
the axonal delays, producing convergent input to group neurons. This firing
event triplet acts as a trigger for PNG activation, producing a wave of neural
firing that propagates throughout the polychronous group (only the first step is
shown). Without this convergent input the neurons in the group would fail to
reach the firing threshold and the input stimulus would not propagate.
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Fig. 1. Polychronous group activation following stimulation with an ascending firing
pattern (unfilled circles). The precise timing of three of the firing events in the pattern
(denoted by filled black circles) matches the axonal delays between group neurons,
producing activation of the polychronous group. Other firing event combinations might
produce additional group activations (not shown). Firing events resulting from PNG
activation are shown with gray-filled circles. The first of the three firing events is fired
in panel A, producing spikes that take time to propagate to PNG neurons. In panel
B, the convergence of the propagating spike and the second of the triplet firing events
is sufficient for a PNG neuron to reach the firing threshold (panel C). Further group
firing events are supported by the axonal delays between group neurons (panel D).

This propagation of neural firing across the group is called group activation.
When activated, the neurons in the polychronous group are said to polychro-
nize in a causal chain of firing events that is both precisely timed and repro-
ducible [6,8]. However, not all PNGs are capable of activation. Structural PNGs
are defined purely topologically, as groups of neurons with connection latencies
commensurate with a given input stimulus [10]. For polychronization to occur
the synaptic connections converging on each group neuron must be sufficiently
strong to allow the post-synaptic neuron to reach the firing threshold. Poly-
chronous groups with compatible synaptic weights can activate when presented
with a triggering stimulus at which point they are known as activated PNGs.

Izhikevich [6] observed that the number of structural PNGs in a network
is typically many times larger than the number of neurons. Given this large
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repertoire of structural PNGs, how might we use it to build a representational
system? Several attributes present themselves as necessary for a robust system
and we will refer to these with the terms selectivity, consistency, stability and
capacity. A selective system produces PNG activations in response to a stimulus
that are sufficiently specific to allow the unique identification of the stimulus.
A consistent system is able to dependably produce PNG activations on every
presentation of the stimulus. A stable system is able to maintain long-term rep-
resentations in the form of structural PNGs that are capable of activation, and
a system with good capacity allows a biologically plausible number of these
structural representations.

Activated groups produce distinct spatio-temporal signatures within the flood
of firing events generated by the network and the analysis of the firing response
to stimuli should therefore allow the detection of PNG activation. Izhikevich has
used such a technique to study the selectivity of the neural response to repeated
stimulation [6]. In this experiment he tracked the evolution of polychronous
groups in response to one of two input patterns and found that different groups
were activated for each pattern, suggesting that the underlying structural groups
might provide a unique long-term representation of each pattern.

Although this experiment provided some initial evidence in support of selec-
tive PNG activation, it did not address any of the other attributes necessary
for a representational system based on PNGs. In addition, the method used in
Izhikevich [6] for measuring PNG activation is not described, providing some
hurdles to the reproduction of these results. The experiments described below
employ a template matching technique for detecting PNG activation (methods
outlined below and in more detail in a separate technical report [4]).

In the remainder of this report we will focus on the requirement for a con-
sistent representational system, using the pattern-specific activation of poly-
chronous groups to measure the dependability of the neural response to known
stimuli. Polychronous groups exist in a competitive medium in which the group
affiliation of individual neurons is constantly fought over [8] and this dynamic
environment therefore calls into question the reliability of a representational sys-
tem based on PNG activation. Although PNG activation is often described as
“stereotypical” and “reproducible”, a specific PNG will not necessarily activate
on every presentation of a triggering stimulus [6]. However, other PNG activa-
tions may result from the same stimulus and a stimulus-specific neural response
consisting of some subset of the set of all stimulus-specific PNG activations may
therefore occur with some consistency. In the following experiments we will as-
sess the empirical probability of this stimulus-specific neural response given the
presentation of a known stimulus. Does every stimulus presentation produce a
relevant group activation, or only some presentations?

2 Methods

Twenty independent networks were created for these experiments, each com-
posed of 1000 Izhikevich neurons (800 excitatory and 200 inhibitory) with param-
eters as described in [6]. The networks were matured for two hours by exposure
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to 1 Hz random input generated by a Poisson process. Following maturation, the
networks were trained on one of two input patterns or were left untrained. The
current experiments reproduce the few known details of the repeated stimulation
experiment described in [6], namely a twenty minute training period, and the
use of an ascending or descending input pattern as the stimulus (see Fig. 2).
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(a) Ascending Pattern (b) Descending Pattern

Fig. 2. The ascending and descending patterns: each spatio-temporal input pattern is
composed of 40 firing events. Both patterns share the same neurons, differing only in
the temporal order of their firing events.

The technique used by Izhikevich [6] for detecting PNG activations in the fir-
ing data was not described and therefore needed to be redeveloped for the current
experiments. It was clear that this technique needed to discriminate pattern-
specific PNG activations from unrelated PNG activations, and from other spiking
events generated by the network. The original method was assumed to make use
of the Izhikevich search algorithms [7] (see also [10]) to find structural PNGs in
the network, suggesting the use of a template matching technique for the detec-
tion of PNG activation. The default behavior of these algorithms is to initiate a
PNG search based on all combinations of three neurons in the network. However,
we created a small modification that limits the search to triplet combinations
that occur only in the training patterns. Any polychronous groups found by this
modified algorithm are referred to as pattern-specific PNGs, as the activation of
these groups is initiated by a firing event triplet that occurs in the input pattern.

The assumed template matching technique involves isolating PNGs from a
trained network and using them as templates to probe for group activation. The
technique is reproduced as follows: first, a network is trained with a specified
input pattern and pattern-specific structural PNGs are isolated from the net-
work at regular intervals; the isolated PNGs are then used as spatio-temporal
templates to match the firing data. For convenience, the experiment is split into
two phases: in an initial training phase, the network is repeatedly stimulated
with the ascending or descending pattern at 5 or 25 Hz for twenty minutes; in
the following test phase of the experiment, the network is stimulated with the
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same ascending or descending pattern at 1 Hz, and pattern-specific templates
isolated during the training phase are used to probe for group activation.

At one minute intervals throughout the training phase a search is initiated for
structural PNGs that can act as pattern-specific templates. The search involves
testing all triplet combinations (i.e. combinations of three firing events) from the
input pattern for their ability to discover structural PNGs in the network [4].
However, not all PNGs will be found as the algorithm is limited for performance
reasons to testing combinations of just three firing events.

The test phase involves scanning the stream of firing events generated by
the stimulated network for template matches. For each temporal offset in the
network firing data, each of the templates is matched in sequence and successful
matches are saved to a file. A matching threshold of 50% means that at least
half the firing events in each template must match the the firing time and the
neuron fired in the network event stream (although the firing time is allowed a
jitter of ± 2 milliseconds). Each successful template match provides evidence of
PNG activation in response to the stimulus.

The use of a 1 Hz stimulation frequency in the test phase creates a well-
defined temporal frame for each stimulus and its response. Stimulus onset occurs
at t = 0 in each one second response frame, and the remainder of the frame has
sufficient temporal length to include all of the firing events in the resulting neural
response. A 1 Hz random background pattern is also presented throughout each
test period. For a more detailed description of the methods see the accompanying
technical report [4].

3 Results

Together the training and testing phases of the experiment produce a large set of
data that supports multiple analyses. Training phase data provides a view of the
evolution of structural PNGs in response to the stimulus, while test phase data
provides a snapshot of the process of PNG activation. Figure 3 uses a combina-
tion of both datasets to show a selection of three matching templates following
low-intensity (1 Hz) test stimulation of a network. These matching templates
are sampled from a larger pool of pattern-specific templates that match PNG
activations triggered by some triplet combination from the ascending input pat-
tern. The first few firing events in each of the templates in Fig. 3 are therefore
upward-sloping, reflecting the isolation of the template from a network trained
on the ascending pattern. Each group consists of multiple convergent connec-
tions that support the propagation of neural firing across the members of the
group before terminating at an inhibitory neuron (gray-filled circles).

Temporal alignment of just these first few firing events for all matching tem-
plates (and with all other firing events removed) produces sloping firing patterns
that can be seen in Fig. 4. Recall that the first few firing events in each tem-
plate (the initial triplet) correspond to the stimulus trigger that leads to PNG
activation. The gray-scale intensity in this figure encodes the number of times
the corresponding firing event acted as a trigger for the initiation of PNG ac-
tivation, where activation was measured by the number of matching templates
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Fig. 3. A selection of three templates that match the firing data following stimulation
with the ascending input pattern. The x- and y-axes for each template represent time
in milliseconds and neuron index respectively (the y-axis is ordered so that inhibitory
neurons are at the top of the graph). Nodes depict firing events generated by excitatory
or inhibitory neurons and are drawn using either open circles (excitatory neurons) or
gray-filled circles (inhibitory neurons). Lines between nodes represent causal connec-
tions between firing events.

accumulated across twenty independent networks. The figure therefore provides
a picture of which of the input pattern firing events succeeded or failed at initi-
ating PNG activation. Many of the forty firing events that make up each input
pattern failed to initiate a responding group over the ten minutes (six hundred
response frames) of the testing phase. Significantly, the majority of these fail-
ures are clustered in the later stages of the input pattern, suggesting that group
response is concentrated on the early part of each stimulus presentation.

Nevertheless, the PNG activation response as a whole exhibits a high degree
of consistency. Figure 5 shows the activation response of 40 networks (20 trained
on the ascending pattern and twenty untrained networks) in the first 100 sec-
onds of the 10 minute test run (only the first 100 of 600 response frames are
shown in Fig. 5). The stimulus is presented at the start of each frame and any
templates that match the firing events in the remainder of the frame are taken
as evidence of PNG activation. Each row in Fig. 5 represents a single network
and is divided into one hundred segments representing each of the one hundred
response frames. The presence of a filled circle in each segment indicates the
detection of a PNG activation response in the corresponding response frame. If
there was no response, or the method was unable to detect the response, the
segment is left empty.
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Fig. 4. The initial triplets from all templates that match the ascending input pattern
(left) or the descending input pattern (right). The first three firing events from each
matching template were extracted and aligned in order to show the coverage of the
input pattern firing events. Firing events are represented by filled circles; the intensity
of the fill color for each firing event represents the number of templates that matched
PNG activations triggered by the event. This number, accumulated across twenty in-
dependent networks, is greatest in the early stages of each input pattern (darker fill
color) and decreases in later stages of the input pattern (lighter fill color). The missing
firing events in the later stages correspond to input pattern firing events that failed to
initiate a group response during the test period.

The first 25 frames in this experiment used the ascending pattern, the next
25 used the descending pattern, the third group of 25 frames repeated the use
of the ascending pattern, and in the final 25 frames no input pattern was pro-
vided (the null pattern). Using a combined pool of all templates to measure the
PNG activation response, the twenty trained networks at the top of Fig. 5 show
a consistent response to the ascending pattern but little or no response to the
descending pattern or the null pattern. In contrast, the twenty untrained net-
works at the bottom of Fig. 5 show only sporadic activation and no apparent
correlation with the type of input pattern. Comparing the activation response
of the trained networks with the response of the untrained networks, we see a
high degree of consistency in the response to the ascending pattern only where
the network has been previously trained on the ascending pattern.

The PNG activation response to each stimulus presentation is assumed to
occur in the early portion of each response frame, shortly after stimulus pre-
sentation at t = 0. Over this period, one of more PNG activations triggered by
the stimulus have the opportunity to match the pool of PNG templates. Some
insight into the temporal evolution of PNG activation is provided by computing
the proportion of matches that occur at each temporal offset within the frame
(the template match ratio) to produce an empirical measure of the likelihood of
PNG activation at each offset. Firstly, each one second response frame is sliced
into 1000 consecutive sub-frames and the number of template matches at each
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Fig. 5. The PNG activation response of twenty trained networks and twenty untrained
networks over one hundred response frames. Trained networks were trained on the as-
cending pattern. A filled circle represents a positive response to the stimulus while an
empty space denotes a lack of response. The stimulus for the first and third quarter
of the one hundred frames was the ascending pattern and the stimulus for the second
quarter was the descending pattern. No stimulus was provided in the fourth quarter
(null pattern). The top figure shows the measured response for a network trained on the
ascending pattern at 5 Hz and the bottom figure shows the result using an untrained
network. The trained networks in the top figure were derived from the untrained net-
works in the corresponding row of the bottom figure.

one millisecond sub-frame is counted. The template match ratio for each offset
is then computed by aggregating the number of matches for each offset across all
response frames. Using this procedure we expect to see an isolated peak in the
number of matches at a short delay following the stimulus at time t = 0, reflect-
ing the transient activation of a responding PNG. However, due to limitations in
the template matching method the delay can only be calculated to within half
the length of each template (i.e. ±15 milliseconds), depending on where on each
template the match occurs.

Figure 6 shows the template match ratios for each network distributed over
the first twenty sub-frames of each response frame. As predicted there is an
isolated peak that consistently occurs in the first ten milliseconds following the
stimulus. Within this small temporal window the likelihood of a template match
typically reaches 50% or more, indicating that PNG activation is in full swing.
As PNG activation comes to an end, the likelihood of a template match decreases
to zero and remains at zero for the remainder of the response frame.

Although these positive results support the consistency of PNG activation, it
is worth noting that the majority of templates are ineffective in matching the
firing data. Here, we define an effective template as one that is able to match
the firing data at least once during a ten minute period of stimulation with the
corresponding input pattern. On average, just 32% of ascending templates and
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Fig. 6. Template match ratios distributed over each one second frame for each of
twenty independent networks. The template match ratio was computed for each one
millisecond slot in the response frame, accumulated over multiple frames. The response
for each network is confined to the first ten milliseconds following the stimulus and
therefore only the first twenty milliseconds of the frame are shown.

43% of descending templates were effective at finding a match (averaged across
twenty independent networks). The template matching performance between
networks is also very variable with some networks averaging as few as three
matches in each response frame. In some frames, the evidence for PNG activation
is based on a single template match suggesting that the template matching
method is near to its sensitivity limit for some networks.

4 Discussion

The template matching method attempts to match spatio-temporal templates
derived from the structural PNGs found in a trained network with the sequence
of firing events that are produced when the network is stimulated with the same
pattern. To ensure that template matches were pattern-specific, the selected tem-
plates were restricted to structural PNGs that were triggered by triplet combi-
nations of the input pattern firing events. We can imagine that structural groups
exist in the network that require larger, more complex, triggering patterns al-
though it seems likely that the probability of finding groups with larger triggers
decreases with the size of the triggering pattern. Templates that match the firing
data such as those shown in Fig. 3 provide an impression of the corresponding
PNG activations that occur in the milliseconds following each stimulus. However,
looking at a selection of matching templates creates only a partial picture of the
complex pattern of neural firing in response to spatio-temporal stimuli. Visual-
ization of all of the PNG activations that are initiated by combinations of firing
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events from the input pattern produces a complex graph in which individual
PNGs interact and merge (results not shown).

Izhikevich [8] has proposed that competitive interactions occur between the
polychronous groups in the network, with neurons that are shared by multiple
PNGs synchronising their firing times with different polychronising pathways at
different times. However, cooperative interactions are also possible in which firing
events generated by separate PNG activations together produce the required
spatio-temporal initiators for additional PNG activations. The emerging picture
is one in which the activation response to complex stimuli is a composition of
individual PNG activations that interact and merge in a complex manner.

Interestingly, all of the templates that found a match in the neural response
were initiated by firing event triplets from just the early portion of the input
pattern. This effect was found across all networks and for both the ascending
and descending input patterns. A possible explanation is that competition during
PNG formation for use of shared neurons creates an interference effect between
early PNG activations and those that come later, with the earlier activating
groups forming first and therefore dominating the available neural resources.

This explanation has implications for the maximum number of simultaneous
activations that a network of a given size is able to support, and might in turn im-
pact the maximum number of representations that can simultaneously be “held
in mind” in a representational system based on polychronous groups. However,
note that this explanation does not contradict the extraordinary potential ca-
pacity of a PNG representational system [6] because any potential limitation
in the number of simultaneous activations supported by a representational sys-
tem does not necessarily affect the network capacity i.e. the total number of
representations that can be stored within the network.

Despite any interference caused by interactions between simultaneous activa-
tions, the template matching method provides good support for the consistency
of a PNG-based representational system. Using a combined pool of all tem-
plates, one or more template matches are detected in almost every response
frame, suggesting a consistent PNG activation response following each stimulus
presentation. The best single template for each network is also able to show
quite a high degree of consistency, although most individual templates match
only rarely.

Computing the template match ratio for each one millisecond time-slot in the
response frame shows that all matches are confined to a narrow temporal window
following each stimulus presentation (see Fig. 6). This strong interaction between
the time of the stimulus and the time of template matching supports the view
that template matching reflects the causal relationship between stimulus onset
and subsequent PNG activation. The template match ratio can also be computed
at frame level (i.e. the proportion of matching frames), producing a value that
reflects the empirical likelihood of PNG activation given the stimulus. With
the combined templates, this likelihood value approaches certainty for many
networks, although there is considerable inter-network variation in performance.
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Together these results indicate a high degree of consistency in the PNG acti-
vation response following a stimulus. However, despite this consistent response
there are occasional response frames where no neural response is detected, de-
spite the presence of a known stimulus. The lack of a detectable response does
not mean that PNG activation did not occur and may instead be due to limi-
tations in the template matching method. Examination of the precise timing of
the firing events in consecutive response frames shows considerable jitter in the
spike times of PNG neurons between frames (results not shown). Competition
for neural resources between activating groups may increase this jitter to the
point where the corresponding template fails to match.

The lack of tolerance of the template matching method to temporal jitter
is just one of the flaws of this method for detecting PNG activations. Although
this technique is able to respond selectively to substantially different stimuli (e.g.
discriminating between the ascending and descending patterns, or the ascending
and null patterns in Fig. 5), the lowmatching threshold used in these experiments
potentially allows templates to match unrelated spatio-temporal patterns. The
template matching method may therefore have difficulty in resolving stimuli that
are too closely related.

Another problem with the template matching method is that it treats match-
ing as a local process when it is likely to be a global one. The neural response
to a complex stimulus is a unique set of PNG activations ; it is therefore the set
as a whole and not individual activations that provide a unique signature of the
stimulus. Given a set-oriented view of the neural response, if a single template
happens to match a single PNG activation, does this provide good evidence of the
presence of the stimulus? For example, two stimuli with partial overlap in their
spatio-temporal firing patterns could both match the same template and may
therefore not be individually resolvable. In recognition of a set-oriented view of
the neural response, the template matching method makes use of a pool of tem-
plates that are able to detect multiple PNG activations. However, this method
does not take into account the number of unique matches in each response frame
and is therefore unable to counter the problem of overlapping stimuli.

Each of the templates generated in the training phase contribute to the time
it takes to scan the firing data in the testing phase. It is therefore a problem that
the majority of templates are ineffective, with less than half of the templates ever
able to generate a match. Although the single best template for each network
matches the neural response very consistently, the majority of templates that
match at all do so only rarely. In addition, the number of matches in each
response frame is sometimes very low suggesting that this method is close to the
threshold for maximum sensitivity for some networks.

It is likely that Izhikevich [6] used a similar technique to show selectivity in
the activation response, despite the flaws of the template matching method. The
issues with this method, while limiting the scope and accuracy of the current
results, do not invalidate our overall finding. Here we provide preliminary evi-
dence for the consistency of PNG activation in response to stimuli, suggesting
that polychronous groups may be able to meet at least one of the necessary
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criteria for a representational system. The neural response to complex stimuli
appears to involve multiple interacting PNG activations suggesting that an al-
ternative method for measuring the neural response must treat any single PNG
activation as only partial evidence in favor of a particular stimulus. Work is in
progress on such an alternative technique that will address these limitations.
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Abstract. Humans can attend to and categorise objects individually, but also as
groups. We present a computational model of how visual attention is allocated
to single objects and groups of objects, and how single objects and groups are
classified. We illustrate the model with a novel account of the role of stimulus
similarity in visual search tasks, as identified by Duncan and Humphreys [1].

1 Introduction

Humans can represent objects individually, but also collectively, as groups. We can at-
tend to and categorise individual objects, but we can also attend to several objects as a
group—and if the objects are all of the same type, we can classify them collectively as
being of that type. In fact there is evidence that the visual object classification system is
relatively insensitive to the number of items in a group. In monkeys, Nieder and Miller
[2] showed that neurons in the inferotemporal (IT) cortex are sensitive to the type of
objects in a group but relatively insensitive to their cardinality, while neurons in the
intraparietal sulcus show the opposite pattern. A similar sensitivity to type but not num-
ber has been found in imaging studies of human IT, using a habituation paradigm where
either the type of objects in a group or the size of the group was selectively changed
(e.g. [3]). In previous work [4] we coined the term cardinality blindness to describe
this phenomenon. We showed that a classifier called a convolutional neural network
(CNN) shows cardinality blindness, and argued that this property also characterises the
object classifier in the IT cortex of humans and other primates. Our classifier assigns the
same class (‘X’) to a single visually presented X shape and to a homogeneous group of
X shapes. However, when it is presented with a group of objects with different shapes
(a heterogeneous group), it typically refuses to make a classification at all.

If the classifier in IT is cardinality blind, this may be expected to have consequences
for the design of the attentional system that selects spatial regions to be classified [5,6].
For one thing, attention should be able to deliver homogeneous groups to the classifier
as well as single objects, so that the objects in these groups can be classified in parallel.
There should also be a system that acts in parallel with object classification, to com-
pute the number information which is not provided by the classifier. In this paper we
present a computational model of visual attention and object classification, in which the
attentional system selects individuals and groups for the classifier. We also describe the
performance of this model in a visual search task.

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 98–103, 2013.
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Fig. 1. (a) Our model of the visual attention system (left-hand pathway) and the object classifica-
tion system (right-hand pathway). (b) The shapes used to train the model.

2 The Model of Visual Attention and Object Classification

The structure of our model of visual attention and classification is outlined in Figure
1a. The attentional subsystem (dorsal pathway) determines the salient regions on the
retina, and activates these regions one at a time. The classification subsystem (ventral
pathway) categorises the retinal stimulus in the currently activated region; its output
changes as different regions are selected [7].

In the attentional subsystem in our model, the saliency of a region is determined by
two factors: one is local contrast (how different it is from the surrounding region), the
other is homogeneity (how similar its texture elements are). Salient regions can con-
tain isolated visual features which contrast from their surroundings, but also regions
containing repeated visual features. Computations of saliency are performed at multi-
ple spatial frequencies, so salient regions containing isolated visual features can be of
different sizes. Salient regions containing repeated visual features (i.e. homogeneous
textures) can also be of different sizes.

There are several existing computational models of saliency that detect salient re-
gions of different sizes (e.g. [8]), and numerous models of texture identification that de-
tect regions containing repeated visual features (e.g. [9]). There are also many existing
computational models of classification that allow objects of different sizes to be classi-
fied, by taking as input primitive visual features at a range of different scales (e.g. [10]).
The main innovations in our model are in how the saliency mechanism interacts with
the classifier. Firstly, in our system, classification is influenced not only by the location
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of the currently selected salient region, but also by its size. Our classifier can work with
primitive features of several different scales as input, but at any given point the scale it
uses, called the classification scale, is selected by the attentional system. By default,
the classification scale is a function of the size of the currently selected salient region,
so that large regions are classified using correspondingly large features, and small re-
gions with correspondingly small ones. Our model is novel in proposing that the scale
of the salient region selected by the attentional system determines a default scale for
the classifier to use. Secondly, we envisage that the selected classification scale can be
changed without changing the spatial region to be classified, so that the classifier can
reanalyse the currently selected region at a different spatial frequency. In our model, this
attentional operation is crucial for the classification of homogeneous groups, and for an
account of the difference between single objects and plural groups. We suggest that in
order to classify a group of objects occupying a given salient region, the observer must
attentionally select a new classification scale which is smaller than the scale established
by default. In this account, the distinction between singular and plural can be read from
the current classification scale measured in relation to the default classification scale for
the currently attended region. It is well known that observers can selectively attend to
the global or local features of visual stimuli (e.g. [11]), and there is good evidence that
this attention involves selective activation of particular spatial frequency channels (e.g.
[12]). It has recently been found that the spatial frequencies associated with local and
global features of an object are defined in relative not absolute terms ([13]). Our model
makes use of this notion of relative classification scale to support an account of group
classification and of the distinction between singular and plural in the visual system.

2.1 The Classification Subsystem

The visual classification subsystem is modelled by a convolutional neural network
(CNN) previously described [4]. The classifier takes, as input, retinotopic maps of sim-
ple oriented visual features at two different spatial frequencies, or scales: one of these
scales is selected by the attentional system. The classifier was trained with six shapes
at each spatial frequency (see Figure 1b). The classifier has seven output units: six of
these provide localist encodings of the six shape categories and the seventh encodes the
verdict ‘unknown category’. The units have activations ranging from zero to one. We
define the classifier’s decision to be the strongest output over 0.5. If no unit’s activation
exceeds 0.5 the classifier’s decision is assumed to be ‘unknown category’. In summary,
the classifier provides two pieces of information: first, whether classification is possible
and, if so, what that classification is.

The classifier exhibits two types of invariance which have been observed in IT [14]
and are generally acknowledged to be crucial for a model of vision [10], namely location
(or translation) invariance and scale invariance. Location invariance is a result of the
architecture of the CNN, which intersperses feature combination layers with layers that
abstract over space [4]. Scale invariance depends on the input having been prefiltered
for the desired frequency: the small shapes must be classified with the high-frequency
visual features, and the large ones with the low-frequency features. Importantly for the
current paper, the classifier is also blind to the cardinality of homogeneous groups of
small shapes: its accuracy varies from 95% for a single shape to 97% for a homogeneous
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group of five shapes. Interestingly, these results show a redundancy gain effect similar
to that found in humans: the classifier’s performance improves the more instances of a
type it classifies.

2.2 The Attentional Subsystem

As shown in Figure 1a, the attentional subsystem can be divided into two interacting
stages: a preattentive, or parallel, stage and an attentive, or serial, stage.

The preattentive stage includes an operation called saliency analysis. The job of
saliency analysis is to analyse the local contrast and texture homogeneity of the input in
parallel. These are used to implement the Gestalt grouping properties of proximity and
similarity respectively. The result of this is a saliency representation, or saliency map
[15]. This representation is the point of communication between saliency analysis and
the selection mechanism. The selection mechanism uses the saliency representation to
decide how best to deploy attention. Once processing of attended stimuli is complete
the representation is updated and then used to redeploy attention.

The saliency representation is also used to gate the input to the classifier. Input is
gated in two different ways. It is gated by location, which is a well-known idea [6,16]).
And it is also independently gated by scale, which is a new idea in our model. The
initial scale selected by the attentional system is the default classification scale for
the selected region. In order to recognise a figure within a region, the primitive visual
features which the classifier uses must be of an appropriate spatial scale—not too large
and not too small (see Sowden and Schyns [17]). If they are too large, they cannot be
combined to represent a complex shape within the region. And if they are too small,
then their combinations are not guaranteed to represent the global form of the figure
occupying the region. A novel idea in our model is that a selected region can first be
classified at the default classification scale, and then subsequently at a finer classifica-
tion scale. If the classifier returns a result in this second case, it is identifying the type of
objects in a homogeneous group occupying the selected region. In the remainder of this
section we will provide more details about the attentional subsystem and its interaction
with the classifier. Full technical details are given in [18].

3 Performance of the System in a Visual Search Task

In this section we describe two experiments investigating the behaviour of our complete
system in the domain of visual search There are well-known similarity and grouping
effects in search, which our model may be able to explain.

In a visual search task, a subject searches for a target stimulus in a field of distractors.
The search time is a function of the number of distractors, but also on the visual proper-
ties of the target and distractor stimuli. The earliest visual search experiments reported
a discrete difference between ‘parallel search’, in which search time is independent of
the number of distractors, and ‘serial search’, where search time is linearly proportional
to the number of distractors (Treisman and Gelade [5]). In the original model explain-
ing this finding, feature integration theory (FIT), parallel search is possible if there is
a single ‘visual feature’ that the target possesses and the distractors do not, allowing it
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t1 t2 t3 t4 t5

Class: [discarded] Class: TRIANGLE Class: [discarded] Class: TRIANGLE Class: ELL

Fig. 2. An example sequence of operations during simple search. At t1 the input is presented and
at subsequent time steps attention is directed as shown until the target (ell) is found. Thick borders
around a region indicate attention to the low spatial frequency, thin borders attention to the high
spatial frequency.

to ‘pop out’ of the field of distractors; if the target is distinguished from the distractors
by a specific conjunction of visual features, items in the visual field must be attended
serially, to allow their features to be integrated.

Later experiments uncovered more complex patterns of visual search performance.
Treisman [19] found that perceptual grouping affects search because subjects serially
scan groups of items where possible, not just individual items. Treisman and Gormi-
can’s group scanning theory [20] drew this finding into the FIT model. In group scan-
ning theory, when parallel search fails because the target cannot be discriminated from
the distractors, attention is used to limit the spatial scope of the parallel search to a
region where parallel search by feature discrimination can work. Parallel search then
continues inside the attended area.

Duncan and Humphreys [1] presented results that challenged the basic assumption of
a simple dichotomy between parallel and serial search. They gave subjects search tasks
where the similarity between targets and distractors, and the similarity between dis-
tractors (i.e. the homogeneity of the set of distractors) were varied continuously. They
found that increasing the degree of similarity between target and distractors progres-
sively increases the slope of the search graph, and that increasing the similarity between
distractors has the opposite effect. In Duncan and Humphreys’ stimulus similarity the-
ory (SST), pop-out and item-by-item serial search are opposite ends of a continuum of
search processes, rather than discrete alternatives.

Our model of visual attention and classification is able to identify homogeneous
groups and classify their elements in single operations; it therefore has some interest as
a model of visual search. In this section we examine its performance on search tasks
where target-distractor similarity and distractor-distractor similarity are varied, as in the
experiment of Duncan and Humphreys.

To test the search performance of our model, we created four different search tasks,
defined by varying two independent binary parameters based on those used by Duncan
and Humphreys: target-distractor similarity (with values ‘t-d similar’ and ‘td-different’)
and distractor-distractor similarity (with values ‘d-d similar’ and ‘d-d different’). De-
tails of these tasks are given in [18]. We presented displays of each type to the model,
and recorded how many serial attentional steps were taken for it to find the target.
Figure 2 shows the steps taken by the system during a td-different/dd-similar search.
We found that different search tasks have different slopes. Our simulation reproduces
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Duncan and Humphreys’ main experimental results: when targets are dissimilar to dis-
tractors but distractors are similar to one another the search slope is close to flat, and
when targets are similar to distractors the slopes are highest. Details of these findings,
and a comparison with other computational models of visual search, are given in [18].
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Abstract. We have developed an intelligent agent to engage with users in 
virtual drama improvisation previously. The intelligent agent was able to 
perform sentence-level affect detection especially from user inputs with strong 
emotional indicators. However, we noticed that emotional expressions are 
diverse and many inputs with weak or no affect indicators also contain 
emotional indications but were regarded as neutral expressions by the previous 
processing. In this paper, we employ latent semantic analysis (LSA) to perform 
topic detection and intended audience identification for such inputs. Then we 
also discuss how affect is detected for such inputs without strong emotional 
linguistic features with the consideration of emotions expressed by the most 
intended audiences and interpersonal relationships between speakers and 
audiences. Moreover, uncertainty-based active learning is also employed in this 
research in order to deal with more open-ended and imbalanced affect detection 
tasks within or beyond the selected scenarios. Overall, this research enables the 
intelligent agent to derive the underlying semantic structures embedded in 
emotional expressions and deal with challenging issues in affect detection tasks.  

Keywords: Affect detection, latent semantic analysis, and dialogue contexts. 

1 Introduction 

There has been significant progress for human computer interaction research to build 
human-like computer interfaces. This endeavour has given rise to agent-based user 
interfaces [1, 2]. Moreover, we believe it will make intelligent agents possess human-
like behaviour and narrow the communicative gap between machines and human-
beings if they are equipped to interpret human emotions during social interaction. 
Thus in this research1, we focus on the production of intelligent agents with the 
abilities of interpreting dialogue contexts semantically to inform affect detection.   

We previously developed an online multi-user role-play virtual drama framework, 
which allows school children to perform drama performance training. In this platform 
                                                           
1 This work is supported by Northumbria Alumni Funding and TSB grant AK014L. The 

previous background research was supported by grant RES-328-25-0009 from the ESRC 
under the ESRC/EPSRC/DTI ‗PACCIT programme. It was also partially supported by 
EPSRC grant EP/C538943/1. 
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young people could interact online in a 3D virtual drama stage with others. An 
intelligent agent is also involved in improvisation. It included an affect detection 
component, which detected affect from human characters’ each individual turn-taking 
input. The agent also made responses based on the detected affect to stimulate the 
improvisation. This original affect detection was mainly built using pattern-matching 
rules that looked for simple grammatical patterns partially involving specific words. 
From the analysis of the transcripts, the previous affect detection without any 
contextual inference proved to be effective enough for those inputs containing strong 
emotional indictors such as ‘haha’, ‘thanks’ etc. There are also situations that users’ 
inputs contain very weak affect signals, thus contextual inference is needed to further 
derive the affect conveyed in such inputs. This research especially deals with such 
challenges and discusses how LSA is used to perform affect detection from contexts. 
It will either detect affect using emotion contexts of the most intended audiences and 
relationships between characters when dealing with scenario related improvisation. Or 
it will detect affect using a min-margin based active learning when handling open-
ended inputs beyond constraints of scenarios.  

2 Related Work 

Affect detection from texts has attracted great attention in recent years. ConceptNet 
[3] was developed as a toolkit to provide practical textual reasoning for affect sensing, 
text summarization and topic extraction. Ptaszynski et al. [4] employed context-
sensitive affect detection with the integration of a web-mining technique to detect 
affect from users’ input and verify the contextual appropriateness of the detected 
emotions. However, their system targeted interaction only between an AI agent and 
one human user in non-role-playing situations, which reduced the complexity of the 
modelling of the interaction context. Although Façade [5] included shallow natural 
language processing for characters’ open-ended utterances, the detection of major 
emotions, rudeness and value judgments was not mentioned. Cavazza et al. [6] 
reported an AI agent embodied in a robot to provide suggestions for users on a 
healthy living life-style. Their system seemed not able to cope well with open-ended 
interactions based on the selected planning techniques. Endrass et al. [1] carried out 
study on the culture-related differences in the domain of small talk behaviour. Their 
agents were equipped to generate culture specific dialogues. 

3 Affect Detection Based on Semantic Analysis of Contexts 

In this section, we first of all discuss the development of latent semantic analysis 
based topic detection. Then we introduce how rule-based inference is used to interpret 
emotions from interaction contexts with the consideration of the detected topics and 
relationships between characters within the improvisation of the chosen scenarios. 
Finally, we discuss how a min-margin based active learning is developed to deal with 
imbalanced affect detection and affect classification beyond pre-defined scenarios. 

In order to build a reliable and robust analyser of affect it is necessary to undertake 
several diverse forms of analysis and to enable these to work together to build 
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stronger interpretations. Thus in this study, we integrate semantic interpretation of 
social contexts to inform affect analysis. In this section, we discuss our approaches of 
using latent semantic analysis [7] for terms and documents comparison to recover 
discussion themes and audiences for those inputs without strong affect indicators.  

Latent semantic analysis generally identifies relationships between a set of 
documents and the terms they contain by producing a set of concepts related to the 
documents and terms. In order to compare the concepts behind the words, LSA maps 
both words and documents into a ‘concept’ space and performs comparison in this 
space. In detail, LSA assumed that there is some underlying semantic structure in the 
data which is partially obscured by the randomness of the word choice. This random 
choice of words also introduces noise into the word-concept relationship. LSA aims to 
find the smallest set of concepts that spans all the documents. It uses a statistical 
technique, called singular value decomposition, to estimate the hidden concept space 
and to remove the noise. This concept space associates syntactically different but 
semantically similar terms and documents. We use these transformed terms and 
documents in the concept space for retrieval rather than the original ones.  

In our work, we employ the semantic vectors package [8] to perform LSA and 
calculate similarities between documents. This package provides APIs for concept 
space creation. It applies concept mapping algorithms to term-document matrices 
using Apache Lucene, a powerful search engine library [8]. We integrate this package 
with our AI agent’s affect detection component to calculate semantic similarities 
between user inputs and training documents with clear themes. In this paper, we 
employ transcripts of the Crohn’s disease2 scenario for context-based affect analysis. 

In order to compare the improvisational inputs with documents from different topic 
categories, we have to collect some sample training documents with strong themes. 
Personal articles from the Experience project (www.experienceproject.com) are 
borrowed to construct training documents. Since we intend to perform topic detection 
for the transcripts of the Crohn’s disease scenario, we extracted sample articles close 
enough to this scenario including articles of Crohn’s disease (5 articles), school 
bullying (5), family care for children (5), food choice (3), school life including school 
uniform (10) and school lunch (10). Phrase and sentence level expressions implying 
‘disagreement’ and ‘suggestion’ are also gathered from several other articles 
published on this website. Thus we have training documents with eight discussion 
themes including ‘Crohn’s disease’, ‘bullying’, ‘family care’, ‘food choice’, ‘school 
lunch’, ‘school uniform’, ‘suggestions’ and ‘disagreement’. In order to detect some 
metaphorical phenomena, we include five types of metaphors published on online 
resources in our training corpus. These include mental (ideas), cooking, family, 
weather, and farm metaphors. All the sample files of the above 13 categories 
(including five types of metaphors) are regarded as training files. We use the 
following example interaction produced by subjects to demonstrate how to detect 
topics for those inputs with weak affect indicators. 
                                                           
2 Peter has Crohn’s disease and has the option to undergo a life-changing but dangerous 

surgery. He needs to discuss the pros and cons with friends and family. Janet (Mum) wants 
Peter to have the operation. Matthew (younger brother) is against it. Arnold (Dad) is not able 
to face the situation. Dave (the best friend) mediates the discussion. 
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1. Arnold: lets order some food. Peter drop the subject! [disapproval] 
2. Dave: Arnold, Peter needs ur support and u can’t just ignore it. [played by the AI 

agent] 
3. Peter: how would u all feel if u were in my situation? [Topic themes: family care, 

disease and disagreement; Target audience: Arnold; Rhetorical question: angry] 
4. Janet: nobody cares peter. [angry] 
5. Arnold: we know peter now stop talking about it. [disapproval] 
6. Janet: well you have got mine, peter. [Topic themes: family care and disease; Target 

audience: Peter; Emotion: caring] 
7. Peter: help me daddy. [sad] 
8. Arnold: not now son. Wife, ur blood pressure will get too high. [disapproval] 
9. Peter: im confused and hurt. [sad] 
10. Janet: nobody cares wat u think dad. [angry] 
11. Dave: Arnold, y u don’t want 2 b involved in? Peter is ur son. [played by the AI 

agent] 
12. Arnold: dave I said bring me da menus! [Topic themes: ‘food’ and ‘bullying’; Target 

audience: Dave; Emotion: angry] 
13. Janet: whos Arnold. [neutral; Small talk] 
14. Peter: Natalie. [neutral; Small talk] 
15. Arnold: I just don’t want to talk about it. I do care about peter. [disapproval] 

First of all, the previous affect detection provides affect annotation for those inputs 
with strong emotion signals in the above example. The emotion indicators are also 
illustrated in italics in the above example. The inputs without an affect label followed 
straightaway are those with weak affect indicators (3rd, 6th, and 12th inputs). Therefore 
further processing is needed to recover their discussion themes and identify their most 
likely audiences in order to identify implied emotions more accurately. The general 
idea for the topic detection is to use LSA to calculate similarities between each test 
input and all the training files with clear themes. Semantic similarities between the 
test input and the 13 topic terms (such as ‘disease’) are also calculated. The final 
detected topics are derived from the integration of the similarity outputs from the 
above two channels. We start with the 3rd input to demonstrate the topic detection.  

In order to produce a concept space, the corresponding semantic vector APIs are 
used to create a Lucene index for all the training samples and the test file as the first 
step. This generated index is also used to create term and document vectors, i.e. the 
concept space. We first provide rankings for all the training files and the test input 
based on their semantic similarities to a topic term. We achieve this by searching for 
document vectors closest to the vector of a specific term (e.g. ‘disease’). The 3rd input 
thus obtains the highest semantic similarity to the topic, ‘family care’, among the 13 
topics with a similarity score of 0.797. Then we also find semantic similarities 
between training and test documents by using the CompareTerms semantic vector 
API. It shows there are three training files (crohn3.txt (0.788), family_care3.txt 
(0.783) and disagree1.txt (0.779)) semantically most similar to the test file. These 
training files respectively recommend the following three themes: ‘disease’, ‘family 
care’ and ‘disagreement’. With the integration of the results obtained from both of the 
above two semantic-based processings, the system concludes that the 3rd input from 
Peter relates most closely to the topics of ‘family care’, ‘disease’ and ‘disagreement’.  
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In order to identify the 3rd input’s audiences, we conduct topic theme detection for 
the previous two inputs and retrieve step-by-step until we find the input sharing at 
least one topic with the current input. The above topic detection identifies the 1st input 
from Arnold shares one theme (i.e. disapproval) with the 3rd input. Thus Arnold is 
regarded as the intended audience of the 3rd input.  

In our application domain, one character’s manifestations of emotion can thus 
influence others. Thus interpersonal relationships (such as friendly or hostile) are also 
employed to advise the affect detection in social contexts. In this example, since Peter 
(the speaker) and Arnold (the audience) have a negative relationship and Arnold 
showed ‘disapproval’ in the most related context with an identified ‘bullying’ 
intention, Peter is most likely to indicate a resentful ‘angry’ emotion in the 3rd input. 
Appraisal rules reflecting the above reasoning are generated to derive affect from 
contexts. The rules accept the most recent emotions expressed by the target audiences 
identified by the topic detection and relationships between the audiences and the 
speaker for affect interpretation. Four transcripts from employed scenarios are used 
for the rule generation. The topic processing also identifies the 6th input from Janet 
conveys a ‘caring’ emotion from mum, Janet, towards Peter and the 12th input from 
Arnold is more likely to express ‘anger’ towards the AI agent, Dave. It also shows 
great potential in distinguishing between scenario driven and small talk dialogues 
(e.g. 13th and 14th inputs) to effectively guide the responding regime of the AI agent.  

In order to improve the robustness of our system and deal with imbalanced and 
open-ended affect classifications beyond scenarios, we have also used a min-margin 
based active learning method for affect detection. Supervised learning algorithms 
usually require a large number of labelled training data and most of them suffered 
from the lack of sufficient training data or heavily imbalanced classification samples. 
Thus, active learning becomes a promising method to solve such bottleneck labelling 
problems [9, 10]. The active learning algorithm we employ is able to effectively 
inform the classifier with the best queries. Providing the true labels for those 
examples with the most ambiguous affect annotations has improved the system’s 
performance greatly for each learning process. Initial experiments also indicated that 
the algorithm showed impressive performances (reaching >90% accuracy after several 
learning iterations) when tested with 180 heavily imbalanced and open-ended inputs. 

4 Evaluation and Conclusion 

The overall system is able to perform affect detection in real-time as the development 
of each improvisation. The rule-based reasoning inferences emotions from contexts 
with the consideration of emotions expressed by the audiences and the relationships 
between speakers and the audiences. The detected emotions and topic themes also 
enable the AI agent to make appropriate responses during improvisation. We select 
265 inputs of the Crohn’s disease scenario with agreed topic annotations provided by 
two human judges to evaluate the efficiency of the context-based affect and topic 
detection. A keyword pattern matching baseline system for topic detection is used to 
compare the performance with that of the LSA. The LSA based analysis achieves the 
precision and recall scores respectively 0.736 and 0.733 for the detection of 13 topics 
while the baseline system with precision and recall results respectively 0.603 and 
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0.583. The two judges also annotated the 265 examples with 15 emotions including 
‘neutral’, ‘approval’, ‘disapproval’, ‘angry’, ‘grateful’, ‘regretful’, ‘happy’, ‘sad’, 
‘worried’, ‘stressful’, ‘sympathetic’, ‘embarrassed’, ‘praising’, ‘threatening’ and 
‘caring’. The inter-agreement between human judge A/B for affect annotation is 0.63. 
While the previous version of affect detection achieves 0.46, the new version achieves 
inter-agreements scores respectively 0.56 and 0.58. The inter-agreements achieved by 
the updated system become very close to the agreement level between the two judges.  

Then 120 example inputs from another scenario, school bullying and 26 articles 
from the Experience website are also used to further prove the robustness of topic and 
affect detection. Comparing with the annotations provided by one human judge, the 
LSA-based topic detection achieves an 83% accuracy rate for the annotation of the 
bullying inputs and 86% for the annotation of the online articles beyond scenarios.  

In this research, we make initial explorations on developing a semantic-based 
approach and active learning in order to provide solutions for challenging issues such 
as affect detection from inputs without strong linguistic affective indicators, open-
ended and imbalanced affect categorizations. The proposed system achieves 
impressive performances. In future work, we also intend to extend the emotion 
modeling with the consideration of personality and culture. We also aim to equip the 
AI agent with culturally related small talk behavior in order to ease the interaction and 
further contribute to natural human agent interaction.  
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Abstract. In machine learning, it is common to require a large number
of instances to train a model for classification. In many cases, it is hard
or expensive to acquire a large number of instances. In this paper, we
propose a novel genetic programming (GP) based method to the prob-
lem of automatic image classification via adopting a one-shot learning
approach. The proposed method relies on the combination of GP and
Local Binary Patterns (LBP) techniques to detect a predefined number
of informative regions that aim at maximising the between-class scatter
and minimising the within-class scatter. Moreover, the proposed method
uses only two instances of each class to evolve a classifier. To test the
effectiveness of the proposed method, four different texture data sets
are used and the performance is compared against two other GP-based
methods namely Conventional GP and Two-tier GP. The experiments
revealed that the proposed method outperforms these two methods on
all the data sets. Moreover, a better performance has been achieved by
Näıve Bayes, Support Vector Machine, and Decision Trees (J48) methods
when extracted features by the proposed method have been used com-
pared to the use of domain-specific and Two-tier GP extracted features.

Keywords: Genetic Programming, Local Binary Patterns, Image Clas-
sification, One-shot Learning.

1 Introduction

The ability of recognising objects surrounding us represents one of the supreme
tasks of human brains, specifically the visual system. Different parts of our bodies
(i.e. eyes, hands, tongue, and brain) cooperate with each other in order to learn
new objects. Humans are heavily relying on the visual system to capture the
variety of object characteristics such as colour, shape, size, and distance. One
study [3] shows that the brain of a six year child can recognise objects from
more than 104 categories, and the learning process continues throughout life.
Furthermore, the human brain has the ability to organise learnt objects into
different informative groups.

Image classification is mainly concerned with the task of grouping images
based on the similarity of its contents, which represents an important task in a
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variety of fields such as automatic face recognition, disease detection, and ma-
chine vision. The importance of this operation has attracted many researchers
over the last three decades; and a rich set of different methods have been pro-
posed to the problems of object classification, detection, and recognition. How-
ever, performing image classification by machines remains difficult and not as
easy as it is by humans.

Genetic Programming (GP) is an evolutionary computation method based
on Darwinian principles of natural selection [10]. The promising results achieved
using GP techniques to solve a variety of problems in different domains represent
a major reason that motivated researchers to investigate those techniques even
more over decades. However, the high computational cost of such techniques
represents its major drawback.

Local Binary Patterns (LBP) aims at extracting image descriptors based on
the relation between each pixel value in an image and its 8 (3×3 window) neigh-
bouring pixels [16]. Since 1995, a number of LBP variants have been introduced
and investigated in the literature. In Section 2 of this paper we will provide more
details about this operator.

Generally, the task of learning or evolving models requires tuning a large num-
ber of parameters in order to capture features covering a diversity of different
objects. It has been observed that a large number of training instances are re-
quired to adjust or estimate the models’ parameters values [7], [22], [23], [24].
In many cases, the task of acquiring a large number of instances can be dif-
ficult, expensive or infeasible (e.g. ID-card identification and e-passport). Jain
and Chandrasekaran [9] discussed the problem of the training set size in gen-
eral. Raudys and Jain [20] investigated the effect of using a smaller training set
on statistical pattern recognition and gave guidelines and recommendations for
practitioners. Moreover, Duin [5] showed that one possible way to reduce the
number of used training instances is via reducing the searching space size (i.e.
number of features). The main difficulty of this approach is that it has to be han-
dled by a domain expert with good background knowledge about the problem
nature, which is in many cases hard and expensive.

Motivated by humans remarkable ability of learning relatively new objects
using one or few images, researchers have tried to replicate this functionality in
machines and termed it as one-shot learning [6]. This problem has been broadly
researched and numerous methods are proposed in the field of, but not limited
to, machine vision. To stimulate the ability of humans to rapidly learn numer-
ous types of regularities and generalisations, Yip and Sussman [26] proposed a
novel method towards fast learning in the domain of morphology. The method
exploits the characteristics of sparse representations and forced constraints by a
plausible hardware mechanism. A Bayesian-based method is proposed by Fei-Fei
and Fergus [6] investigating the problem of object categories using the one-shot
learning approach. The aim of their study was to use only one or very few
of images to learn much information about a category. Their results show the
system can effectively use information gathered during the learning phase to
discriminate between unseen instances. Lake et al. [12] proposed a generative
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model motivated by the concepts of one-shot learning. The method shows how
obtaining knowledge from previously learnt characters can be relied on to infer
the use of strokes for different characters composition. A hierarchical Bayesian
model has been developed in [21] that uses a single training example to learn
informative information about a complete category.

In this paper, we propose a hybrid GP based method that adopts the one-
shot learning approach to the problem of image classification. The proposed
method relies on the combination of GP and a LBP operator to handle the
task of automatic binary classification in images using raw pixel values. We are
interested in investigating the following objectives:

– To develop a program structure that has the ability to capture informative
information of the two classes;

– To find a suitable design of a fitness function that minimises the within-class
scatter and maximises the between-class scatter;

– To test the performance of the system against other GP based methods for
automatic image classification (i.e. Two-tier GP [2]), and conventional GP
using hand-crafted domain-specific features; and

– To investigate the ability of the proposed method for feature extraction by
comparing the features extracted by the proposed method with domain-
specific features and those extracted by Two-tier GP on three commonly
used methods: Näıve Bayes, Support Vector Machines and Decision Trees
(J48).

The rest of this paper is structured as follows. Section 2 briefly explains the
Local Binary Patterns (LBP) operator and LBP histogram (LBPH). A detailed
description of the proposed method is given in Section 3. Experimental design,
data sets, baseline methods, and parameter settings are described in Section 4.
Results are shown in Section 5. Section 6 concludes the paper.

2 Local Binary Patterns

The Local Binary Patterns (LBP) operator was originally proposed by Ojala et
al. [16] in which the authors aimed at calculating each pixel value of an image
based on the values of its neighbouring pixels. The basic LBP operator works in a
3×3 window, which consists of three steps: (1) Assign the value of a neighbouring
pixel to 0 if it is less than the centre value of the window and 1 otherwise; (2)
the values of the resulted matrix are then multiplied by the power of two in
a clockwise direction; and (3) the value of the centre pixel is then replaced by
the summation of the resulted values as shown in Figure 1. Formally, the LBP
operator can be defined as

LBPn,r(xc, yc) =
n−1∑
j=0

2js(Vj − Vc) (1)

where r is the radius and n is the number of neighbouring pixels. The values of
xc and yc represent the coordinate of the centre pixel of the current window. The
jth pixel value is denoted as Vj whilst the value of the centre pixel is Vc. The
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Fig. 1. An example of the required steps to extract an LBP code

Fig. 2. Some examples of texture primitives of different uniform LBP codes

function s(x) returns 1 if x ≥ 0 and zero otherwise. A variety of LBP operators
have been proposed in the literature that differ in the way of thresholding the
neighbouring pixel values, the size of the window and radius, and calculating the
final value (more details can be found in [18]). An important extension of basic
LBP is known as uniform patterns [17] that is denoted as LBPu2

n,r. A circularly
traversed pattern is considered to be uniform if bits equal 1 are consequent. For
example, if we have the code 00000000, then 00011000, 00110000, and 00111000
are all uniform codes. Uniform codes are important for two reasons: (1) the
frequency of uniform codes is higher than non-uniform ones [1]; hence, omitting
non-uniform patterns reduces the number of possible LBP codes significantly;
and (2) uniform codes can be used to detect different texture primitives as shown
in Figure 2.

In [13], a grey-scale invariant intensity-based descriptor is proposed named
NI-LBP. The main difference between basic LBP and NI-LBP is that the latter
uses the mean value of all pixels in a window as the threshold instead of only
the value of the centre pixel. In this study, we use the same descriptor (NI-LBP)
to extract the pattern of each pixel.

Traditionally, the frequencies of LBP codes appearance are used to form Lo-
cal Binary Pattern Histogram (LBPH) [8]. For example, if we have an 8-bit
codes then we can label 256 different labels starting from 0 (00000000) up to
255 (11111111). Each label of the LBPH is considered as a bin that accumu-
lates the number of occurrences of a specific value or label. By omitting non-
uniform codes, there will be only 59 bins (58 uniform codes plus one bin for
all non-uniform ones). Let LBPn,r(i, j) identify the calculated LBP code of the
pixel(i, j) where 0 ≤ i < N and 0 ≤ j < M of an N × M image; then the
histogram h of length L of the entire image can be formally defined as

h(l) =

N−1∑
i=0

M−1∑
j=0

(LBPn,r(xi, yj) = l) l = 0, 1, ..., L− 1 (2)

LBP histograms can either be calculated over the entire image or combine mul-
tiple histograms that are obtained from different areas (mostly non-overlapping).
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The latter approach is used in this study. The length of the histogram vector
varies based on the number of areas as shown in Figure 3.

Fig. 3. An example of an LBP histogram that constructed as the combination of 24
sub-histograms (one per region)

3 The New Method

The representation of a new one-shot GP-based method is described in this
section. The design of the GP individual that extracts LBP histograms from a
raw image pixel value and calculates the similarity of two histograms occupies
the first part of this section. The rest of the section gives the terminal and
function sets, and the fitness function.

3.1 One-Shot GP and Program Structure

An individual is made up of three types of non-terminal nodes: (1) controller
node; (2) histogram node; and (3) area node. Figure 4 shows a general structure
of an individual for binary classification. Each individual has a set of control-
ling instances, one for each class notated as controllerX where X represents the
class label of that instance. The training process starts by extracting the his-
togram of each controller instance depending on the detected areas by the current
individual. Hence, in our case of binary classification we have histogramA and
histogramB where A and B are the class labels of the two classes. The controller
histogram will be compared with the histogram of each and every instance in the
training and test sets. The system then iterates over all instances of the training
set and for each instance there will be H histograms (equal to the maximum
number of classes) one from each branch of the individual tree. The distance
between each of the corresponding histograms (controller and instance resulted
from the same branch) is then calculated and passed over to the controller node
(more details of this step in the fitness function subsection). To meet the condi-
tion of one-shot learning (only one or a few number of instances), the training
set is made up of two randomly selected instances of each class. One is used as a
controller and the other is used to reflect the goodness of the evolved individual
on unseen data (validation set).

The size of the evolved individual under this design is fixed in terms of depth
and width of the tree. The number of branches (children of the controller node)
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increases only if more classes are added which will increase the size of the tree
horizontally. The number of detected areas has the same impact and will result
in a wider tree. Hence, the positions and sizes of the detected areas represent
the only dynamic part of the evolved individual.

Fig. 4. The program structure of a one-shot GP, which consists of two histogram nodes
that each has four area nodes

3.2 Function Set

The function set in this study is strongly-typed [15], and is composed of three dif-
ferent types of nodes in which each type has its own functionality. The controller
node represents the first type, which restricted to be the root of the individual
tree. Hence, each individual has one and only one node of this type. The out-
put of this node is a vector of double-precision values for each instance. The
length of the resulted vector is fixed and equivalent to the number of classes.
The type of input values of this node is the extracted LBP histograms from its
children. The second type is the histogram node that represents the root node of
each branch of the controller node children. Histogram nodes are responsible for
extracting the LBP histograms by combining the received sub-histograms from
each of its children. Each histogram node has a predefined number of area nodes
that represent the third type of the function set nodes. Each area node detects
an area of the image, calculates the LBP histogram, and passes it over to its
parent (histogram node).

3.3 Terminal Set

The terminal set is also made of three nodes: 1) X-Coordinate; 2) Y-Coordinate;
and 3) Window size. Each of these nodes is of type integer value and has its
own restrictions. For example, x-cord and y-cord nodes take values in the range
[1, N − 2] and [1, M − 2] respectively, where N and M represent the width and
height of an image respectively. The size node is restricted to be in the range
between 3 and 15.
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3.4 Fitness Function

The fitness function used here aims at minimising the within-class scatter and
maximising the between-class ones as shown in Equation (3). The fitness value
is proportional to the distance of the same class instances and inversely propor-
tional to distance between instances of different class. However, the denominator
of the function is assigned to a small value (0.0001) if it was 0 in order to prevent
the division by zero. Based on this design, the smaller the within-class distance
or the greater the between-class distance, the better the fitness.

Fitness(I) =

T∑
j=1

χ̄2(hx
j , h

x
c )

χ̄2(h̄x
j , h

x̄
c )

(3)

Here I is the current individual being evaluated, T is the total number of
training instances, χ̄2(.) is the distance measure, hx

j and h̄x
j are the extracted

histograms of the jth instance, and hx
c and hx̄

c are the two classes controller
histograms. The motivation for this fitness function is to give the GP process
the opportunity to detect more distinctive regions during the training process.
Note that the use of accuracy makes the system suffer from the problem of
over-fitting1.

In [25], the χ2 distance measurement shown in Equation (4) is used to measure
the similarity between two histograms (bin-by-bin approach). To give the system
more flexibility, a shape based version of this formula is used to make it shifting
invariant (unbinned approach) via using the mean and standard deviation as
shown in Equation (5) [19].

χ2(ha, hb) =
1

2

B̄−1∑
i=0

(ha
i − hb

i )
2

ha
i + hb

i

(4)

χ̄2(ha, hb) =
(μa − μb)2

σa + σb
(5)

where ha and hb are the two histograms, B̄ is the total number of bins, μa and
μb are the mean of histogram ha and hb respectively, and σa and σb are the
standard deviation of histogram ha and hb respectively.

4 Experimental Design

The main focus of this section is to highlight the parameter settings and data
sets that were used to evaluate the proposed method.

4.1 Data Sets

In order to test the effectiveness of the proposed method, four different tex-
ture image-based data sets are used. Six different classes of the Kylberg Texture

1 The GP process can easily detects areas that can be relied on to discriminate between
a small number of instances. However, exposing such a model to a large set of unseen
instances can result in a very poor performance.
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Fig. 5. Samples of the four texture data sets

Dataset [11] are selected to form three data sets in this paper. Originally, this
data set is composed of 28 different classes that each consists of 160 instances.
Each instance of this data set is a grey-scale image of size 576× 576 pixels that
was resampled to 57× 57 pixel in our experiments. Furthermore, we equally di-
vided the total number of instances of each class between the training and test
sets. Hence, each set is made of 160 instances in total (2 classes × 80 instances).

The stoneslab1 and wall1 classes are picked to represents the first data set in
this study and we named it as Textures-1. Figure 5(a) shows a sample of these
two classes. Textures-2 represents the second set that is made of the rice2 and
sesameseeds classes as shown in Figure 5(b). The training and test sets of the
third set are made of the blanket1 and canvas1 class instances which we refer to
as Textures-3 in this paper and some of its instances are shown in Figure 5(c).

The instances of the fourth data set were taken from the Columbia-Utrecht
Reflectance and Texture (CUReT) data set [4]. The CUReT data set is made of
61 classes in total that only brown bread and sponge classes are selected to form
the fourth data set that we call it Textures-4 in this study as shown in Figure
5(d). The size of each instance is a 200 × 200 pixel and there are 81 instances
in each class. Hence, the training and test sets consist of 40 and 41 instances of
each class respectively.

4.2 Baseline GP Methods

The performance of the proposed system has been compared against two other
GP-based methods. The details of those two methods are discussed below.

Conventional GP. The conventional GP method is applied on a set of hand-
crafted pre-extracted features. The mean and standard deviation of the entire
image, the four quadrants, and the centre part of each instance have been calcu-
lated. The extracted 12 values are then stored in a text file which is later fed to
a GP package to evolve a model. Then the evolved model is tested on the test
set that was created in a similar way to the training set.

Two-tier GP. Al-Sahaf et al. [2] have developed a GP-based method for au-
tomatic feature extraction and selection, and image classification named it as
Two-tier GP. The system automatically detects areas of different shapes and
sizes, and uses different functions to extract the features from pixel values of
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those areas. The Two-tier GP method showed superior performance over all
other competitive methods in that study [2]. Hence, we will compare the perfor-
mance of the one-shot GP with this Two-tier GP method.

4.3 Parameter Settings

The GP parameters of the three methods in all conducted experiments are shown
in Table 1. As shown in the table, some of the parameters are not applicable
in the case of the proposed method due to the design restrictions discussed in
Section 3. The rates of crossover, mutation and reproduction are 0.80, 0.19, and
0.01 respectively. The tournament selection method of size 7 is used to maintain
population diversity.

4.4 Evaluation

Two different set of experiments are conducted that each aims at testing a differ-
ent objective. In the first set, the focus was toward investigating the performance
of the proposed method against the two baseline (GP) methods. Hence, each of
the three methods (two baseline methods and the proposed one) has been eval-
uated on the four data sets described at the beginning of this section. Only four
instances (two of each class which represents the smallest number based on the
current design) are randomly selected to play the role of training set. The best
evolved individual of each run is then tested against the unseen instances (test
set) and the accuracy is reported. In the case of both baseline methods, the
value of 0 is used to divide the results space such that all negative values and 0
are considered representing one class while the other class is considered having
positive values. However, the instance is evaluated as belonging to the branch
having a smaller distance of the evolved program in the case of the proposed
method.

This process is repeated for 30 independent runs using the same training and
test sets. The average performance of the best evolved programs of the 30 runs
on the test set is then recorded. The use of different instances to evolve the model
has large impact on the performance of the resulted program. Hence, the entire
procedure is repeated 10 times (10 × 30 = 300 runs) using different instances
in the training set each time while test set kept the same. At the end of all 10
repetitions the highest and lowest average performances are reported, and the
mean and standard deviation statistics are calculated as shown in Table 2. The
same procedure is used to evaluate all three methods using exactly the same
training and test instances each time.

In the case of the second experiment, the best evolved program at the end
of each of the 30 runs of the first experiment is used to extract features of the
detected areas in the case of the proposed and Two-tier GP methods. Hence,
there will be 10 different individuals as the first experiment is repeated 10 times.
In the case of Two-tier GP method, the calculated values of the aggregation
nodes are used to represents the extracted features similar to the work in [2].
In the case of one-shot GP method, the calculated differences between the two
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Table 1. The GP Parameters of all experiments

Parameter Value Conve-GP Two-tier GP One-shot GP
Generations 20 ✓ ✓ ✓
Population Size 1000 ✓ ✓ ✓
Tree min-depth 2 ✓ ✓ ✗
Tree max-depth 10 ✓ ✓ ✗
Crossover min-depth 2 ✓ ✓ ✗
Crossover max-depth 10 ✓ ✓ ✗
Mutation min-depth 2 ✓ ✓ ✗
Mutation max-depth 10 ✓ ✓ ✗
Initial Population Ramped half-and-half ✓ ✓ ✗

controller histograms and resulted histograms of each instance are considered
to be the extracted features. This process is also repeated 10 times for each
individual due to having 10 different training sets (as mentioned in above). It
is important to notice that, extracted features by any two individuals of the
test set are different due to different detected areas in terms of position, size,
and/or number. In addition to feature sets extracted by those two methods,
domain-specific features are also used in this experiment (as stated earlier). The
extracted features by each of the three methods are then fed to three different
classification methods, i.e., Näıve Bayes (NB), Support Vector Machines (SVM)
and Decision Trees (J48). The goal of this set of experiments is to investigate
the capability of the new method for automatic feature extraction.

The proposed method, as well as the two other GP-based methods, were all
implemented using the platform provided by Evolutionary Computing Java-based
(ECJ) package [14]. This is mainly because implementing strongly-typed GP in
this package is relatively easy.

5 Results and Discussions

This section highlights the results of the experiments. Here, t-tests have been
used to compare the difference between the performances of the proposed method
and each of the two baseline methods. The “†” and “§” signs in the tables
appear if the performance of the proposed method is significantly different than
conventional GP and Two-tier GP methods respectively. The bolded numbers
in the tables represent the highest mean value amongst the three methods.

Table 2 shows the average performance of the 10 repetitions (each with 30
independent runs) gained from the first experiment on the four data sets. The
proposed method has significantly outperformed both conventional GP and Two-
tier GP methods on all of the data sets. Moreover, the proposed method, in its
worst case, shows better performance than the best performance of the Two-tier
GP method on all experimented data sets. However, in the case of conventional
GP this property does not hold on the Textures-3 and Textures-4 data sets, but
the best performance of the proposed one-shot GP is 16% and 30% higher than
the conventional GP and Two-tier GP respectively.

The performance statistics of the NB, SVM and DT (J48) on the four data
sets using three different sets of features are shown in Table 3. The three clas-
sifiers show significantly better performance on all data sets using the features



120 H. Al-Sahaf, M. Zhang, and M. Johnston

Table 2. Comparison between conventional GP, Two-tier GP, and One-shot GP

Conventional GP (%) Two-tier GP (%) One-shot GP (%)
Min Max x̄ ± s Min Max x̄ ± s Min Max x̄ ± s

Texture-1 52.73 66.37 57.10 ± 4.43 49.29 53.56 51.52 ± 1.23 82.37 92.23 87.76 ± 3.65 †§

Texture-2 47.92 63.98 55.50 ± 4.76 50.29 53.33 51.30 ± 1.05 98.88 99.81 99.38 ± 0.34 †§

Texture-3 50.77 66.48 57.75 ± 4.85 48.29 54.06 51.62 ± 1.69 64.92 82.50 76.95 ± 6.09 †§

Texture-4 44.72 63.21 56.35 ± 5.94 50.41 55.08 53.05 ± 1.49 54.11 93.25 81.12 ± 14.64 †§

Table 3. The performance of Näıve Bayes, Support Vector Machine, and Decision
Trees (J48) classification methods on the four texture data sets using domain-specific
features, and features extracted by each of the Two-tier GP and One-shot GP methods

Domain-specific (%) Two-tier GP (%) One-shot GP (%)
Min Max x̄ ± s Min Max x̄ ± s Min Max x̄ ± s

Tex-1 NB 53.75 92.50 70.00 ± 12.18 47.50 66.25 55.56 ± 5.65 83.75 96.25 91.07 ± 4.29 †§

SVM 47.50 94.38 74.64 ± 13.67 50.00 65.63 55.25 ± 5.44 88.13 98.75 92.69 ± 3.72 †§

J48 66.25 97.50 88.13 ± 10.87 46.88 64.38 53.82 ± 6.55 51.88 90.00 79.00 ± 12.64 §

Tex-2 NB 96.25 100.0 98.50 ± 1.36 46.88 69.38 55.13 ± 6.35 93.75 100.0 98.69 ± 2.07 §

SVM 83.75 100.0 96.75 ± 4.98 48.75 58.13 52.50 ± 3.85 93.13 100.0 99.13 ± 2.15 §

J48 43.13 92.50 71.50 ± 15.78 50.00 58.75 53.63 ± 3.59 53.75 96.88 69.63 ± 16.16 §

Tex-3 NB 61.25 92.50 79.00 ± 12.39 36.25 63.75 53.57 ± 8.06 60.00 85.00 76.82 ± 8.56 §

SVM 55.00 96.25 85.75 ± 12.47 55.00 65.63 55.44 ± 6.05 78.75 86.25 82.94 ± 2.65 §

J48 56.88 93.75 76.25 ± 12.12 39.38 67.50 53.50 ± 8.17 52.50 86.25 69.56 ± 12.25 §

Tex-4 NB 42.68 82.93 61.22 ± 11.82 46.34 71.95 64.27 ± 8.81 36.59 98.78 82.44 ± 19.22 †§

SVM 42.68 51.71 61.59 ± 16.61 50.00 74.39 60.00 ± 7.53 67.07 100.0 88.17 ± 10.94 †§

J48 14.63 86.59 60.37 ± 19.89 29.27 76.83 55.98 ± 14.67 50.00 95.12 75.00 ± 16.90 §

extracted by the proposed method over using those extracted by the Two-tier
GP. However, this property holds for NB and SVM in Textures-1 and Textures-4
data sets in the case of comparing the use of domain-specific features and the
features extracted by the proposed method. In Textures-3 data set, the three
classification methods have achieved better results using domain-specific features
over features extracted by the other two methods, which is opposite to the case
of Textures-4. We can observe that the features extracted by the new method
have positive influence on the performances of both NB and SVM (scored first
in three out of four data sets). This is also true in the case of DT (J48) in the
Textures-4 data set. In all other cases, these methods have the second rank using
the set of extracted features by the proposed method.

6 Conclusions

In this paper, a one-shot learning approach has been adopted to the problem
of automatic image classification. The proposed method uses the combination
of GP and LBP techniques to evolve a classifier. Moreover, the fitness function
has been designed to maximises the distance of between-class and minimises the
within-class distance. We used four texture data sets to evaluate the perfor-
mance of the proposed method. The conventional GP and Two-tier GP methods
have been used as competitive methods. Two experiments have been conducted
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that aim at investigating different objectives. The performance of the proposed
method is investigated in the first experiment and compared to each of the two
baseline methods. The results of this experiment show superior performance of
the new method over the other two competitive methods. The second exper-
iment aims at investigating the effectiveness of the extracted features by the
proposed method on the performance of Näıve Bayes, Support Vector Machines,
and Decision Trees (J48) classification methods. The resulted performances are
also compared against the use of both domain-specific features and features ex-
tracted by the Two-tier GP method. The results of this experiment show that
significantly better or at least comparable performance can be achieved when
features extracted by the proposed method are used.
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Abstract. We propose a new video manifold learning method for event
recognition and anomaly detection in crowd scenes. A novel feature de-
scriptor is proposed to encode regional optical flow features of video
frames, where quantization and binarization of the feature code are em-
ployed to improve the differentiation of crowd motion patterns. Based
on the new feature code, we introduce a new linear dimensionality re-
duction algorithm called “Spatial-Temporal Locality Preserving Projec-
tions” (STLPP). The generated low-dimensional video manifolds
preserve both intrinsic spatial and temporal properties. Extensive ex-
periments have been carried out on two benchmark datasets and our
results compare favourably with the state of the art.

Keywords: manifold learning, event recognition, anomaly detection.

1 Introduction

Recent advances in imaging, multimedia compression and storage technologies
have led to the rapid expansion of the use of crowd surveillance systems. The un-
precedented availability of large amounts of video data demand new technologies
and tools for efficient and automatic surveillance video content analysis. Indeed,
crowd scene analysis and classification has been catching growing attention in
computer vision research.

Among others, the high density of objects in a video scene remains a challenge
to crowd scenes analysis in surveillance videos. A conventional approach would
normally aim at tracking individual objects (e.g., [1]), but this cannot cope with
frequently occurring conditions such as severe occlusions, small object sizes, and
strong similarity among the objects. To overcome these difficulties, various ap-
proaches based on features that characterize crowd motions have been proposed
for crowd event recognition and abnormal crowd event detection in surveillance
videos. These features used for crowd motion modeling include optical flow [2,3],
spatial-temporal gradient [4], and volumetric shape matching [5].

On the other hand, a social force model was employed in [6] to estimate the
interaction force between pedestrians. Video frames as normal and abnormal are

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 123–134, 2013.
c© Springer International Publishing Switzerland 2013
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classified by using a bag-of-words approach. Ref. [7] used the largest Lyapunov
exponents and correlation dimensions to examine the chaotic dynamics of par-
ticle trajectories for anomaly detection in crowd scenes. In [8], testing samples
are classified as abnormal or normal based on their sparse reconstruction cost.

Recently, learning low-dimension video manifolds using dimension reduction
algorithms has become a popular approach [9,10]. In [9], unusual events were de-
tected by combining Laplacian Eigenmaps (LE) [11] with temporal information.
Focusing on the analysis of crowd scenes, a framework was proposed for event
detection using optical flow and spatio-temporal Laplacian Eigenmap [10,12].
However, LE is a nonlinear dimension reduction algorithm that works in batch
mode; it is unclear how to embed new testing frames, hence it is unsuitable for
real-time applications.

Feature extraction

Quantized Binary Code (QBC) generation

Spatial-Temporal

Locality Preserving Projections (STLPP)
Learning model

Event recognitionAnomaly detection

One-class classifier

Video Clips

Fig. 1. The computational framework for crowded event recognition and anomaly
detection

In this paper, we propose a framework for crowd event recognition and ab-
normal crowd event detection in surveillance videos based on learning video
manifolds. A new feature code design by applying adaptive quantization and
binarization is adopted so as to increase the dissimilarity between motion pat-
terns. We propose a linear dimensionality reduction algorithm that considers
both spatial and temporal similarities between frames when generating the video
manifold. Experimental results demonstrate that our new method outperforms
the state-of-the-art methods.

2 The Computational Framework

Our computational framework is shown in Figure 1. Motion features based on op-
tical flows are first extracted between two successive frames. Using these features,
we generate the Quantized Binary Code (QBC) for every frame. Then the QBCs
are embedded into a low-dimensional manifold using a new algorithm called
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“Spatial-Temporal Locality Preserving Projections” (STLPP). Event recogni-
tion and anomaly detection are eventually conducted on the low-dimensional
manifolds. Details of these algorithmic steps are explained as follows.

2.1 Feature Extraction

We adopt a matrix of size W × H × L for a video clip, where W and H are the
width and height of the video frame respectively, and L is the total number of
frames of the clip. Optical flow between successive frames is estimated according
to [13]. The optical flow vector of the frame at time t is denoted as: {(fx,t, fy,t)}.
Then, insignificant values due to camera motion or noise are removed based on
a predefined threshold.

The orientation θ of a nonzero optical flow vector is determined as:

θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1(
fy
fx

) fx > 0

tan−1(
fy
fx

) + π fy ≥ 0, fx < 0

tan−1(
fy
fx

)− π fy < 0, fx < 0

+
π

2
fy > 0, fx = 0

−π

2
fy < 0, fx = 0

(1)

with −π < θ < π. We then construct an 8-bin histogram for θ.
We compute the average magnitude of optical flows in each bin, and a his-

togram stacking average flows within m × n regions is formed. Figure 2 shows
an example of the feature extraction process. We partition a frame into 48 (i.e.,
6 × 8) regions (shown on the left), and every region has 8 bins. This results in
a 2-D histogram (shown on the right). The corresponding direction with high
magnitudes in the histogram indicates the main directions of crowd motions,
and the region index indicates the position of the crowd in the frame.

2.2 Quantized Binary Code

Based on the 2-D optical flow histogram, we next propose a novel feature scheme
called quantized binary code (QBC). Rather than using the optical flow his-
togram vectors directly for further computational procedures, we transform the
histogram code through quantization and binarization. Our intention is to make
the transformed feature code more discriminative for different motion types.

For each region we have a 8-dim flow vector f after feature extraction. This is
expanded into a QBC vector as a 2-tuple c = (cl, cr), where cl and cr are both
of length 8. The binary element values in the tuple are assigned with the help
of a binarization threshold Tb:

cli = 1, IF 0 < fi < Tb;
cri = 1, IF fi ≥ Tb;

(2)
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Fig. 2. The splitting of frames into regions and the generation of optical flow histogram

where i = 1, 2, · · · , 8. Otherwise, these elements will remain 0 as initialized.
The generation of QBC is demonstrated in Figure 3. The QBC has 16 bi-

nary elements, the first 8 of them corresponding to cl and the next 8 elements
corresponding to cr. Threshold Tb is indicated by the red dotted line in the di-
agram. Despite the quantization and binarization operations, the QBC feature
still preserves both the directional and magnitude information of local motions.

Fig. 3. Generation of the quantized binary code from optical flow histograms

The threshold Tb can be adaptively determined from a k-means clustering
process (k = 2) on the optical flow vectors. Identical activities in different regions
usually do not generate the same scale of flow values due to camera perspectives.
Hence we obtain a local Tb threshold for each region separately.

2.3 Spatial-Temproal Locality Preserving Projections

The proposed Spatial-Temporal Locality Preserving Projections (STLPP) is
based on Locality Preserving Projections (LPP) [14]. Unlike the original LPP



Event Detection Using QBC and STLPP 127

algorithm, however, STLPP utilizes both spatial and temporal information for
manifold learning. The procedure works as follows.

Constructing the Weight Matrix. Let W be a symmetric m × m (m is the
total number of frames) matrix, with the weight between Frame i and Frame j
given as:

wij = SSij × T Sij . (3)

Here SSij denotes the spatial similarity between ci and cj , i.e., the QBC vectors
of Frame i and Frame j respectively:

SSij =
ci · cj

‖ ci ‖‖ cj ‖ , (4)

and T Sij denotes the temporal similarity between the two frames:

T Sij = e−
(i−j)2

σ2 , (5)

where σ is a parameter controlling the effective scope for temporal similarity.

Generating Eigenmaps. Having had the similarity matrix W , we deal with
the generalized eigenanalysis problem [15]:

XLXTv = λXDXTv , (6)

where D is a diagonal matrix whose entries are column (or row) sums of W ,
i.e., dii =

∑
j wij ; L = D − W is the Laplacian matrix; and X denotes the data

matrix whose i-th column xi corresponds to the QBC vector of Frame i.
Let columnvectorsv0, · · · , v l−1 be the solutions of Eq. (6), with the correspond-

ing eigenvalues in ascending order: λ0 < · · · < λl−1. Then, the l-dimensional em-
bedding vector yi corresponding to xi is estimated by:

yi = V T xi, V = (v0, v1, · · · , v l−1) (7)

2.4 Event Recognition and Anomaly Detection

Now the high-dimensional video frames are embedded into a low-dimensional
manifold. A frame in a video clip is represented as a data point in the embedded
space. A trajectory Si is constructed as Si = {yi

t|t = 1, 2, · · · , T }, where T
denotes the temporal window size, and yt is the l-dimensional embedding vector
obtained in Eq. (7). Machine learning algorithms can then be employed on the
embedded manifolds for event classification and anomaly detection.

Event Recognition. To recognize events in crowd scenes, first we need to
measure the similarity between the reference trajectory and the test trajectory
in the low-dimensional embedding space. Specifically, given two trajectories S1

and S2 we use the Hausdorff Distance to compute their similarity:

H(S1,S2) = max(h(S1,S2), h(S2,S1)), (8)
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where

h(S1,S2) = max
y1
i∈S1

min
y2
j∈S2

‖y1
i − y2

j‖, (9)

and ‖ · ‖ is the Euclidean norm.
Crowd events are classified by the 1-Nearest Neighbour (1-NN) algorithm.

Denote the training set of trajectories as TR. For a test trajectory Ste, it is
classified as Class c if it finds the nearest match in TR with a class label c:

c = argmin
c

H(Ste,S
c), ∀ Sc ∈ TR, class(Sc) == c. (10)

Note that a more sophisticated classifier could be employed, but here we con-
centrate on evaluating the 1-NN discriminative ability of QBC and STLPP.

Anomaly Detection. We adopt the One-Class Support Vector Machine (OC-
SVM) [16] for anomaly detection. Given a sample of normal trajectories {Si}ni=1,
OC-SVM maps these trajectories into an inner product space and finds the
optimal boundary that encloses them. A new trajectory that falls within the
boundary is labeled as “normal”, otherwise as “abnormal”. More specifically, let
Φ be a feature map Si → F , OC-SVM solves the following quadratic program:

min
w∈F,ξ∈Rl,ρ∈R

1

2
‖ w ‖ +

1

vn

n∑
i=1

ξi − ρ (11)

subject to (w · Φ(Si)) � ρ − ξi, ξi � 0. Here w, ξ, and ρ are the solution of
this problem, v is a specified prior, and the function f(x) = sgn((w · Φ(Si))− ρ)
determines whether a new trajectory is “in” (normal) or “out” (abnormal).

walking running evacuation

local dispersion crowd formation crowd splitting

Fig. 4. Sample frames in the PETS dataset, each representing a crowd event
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3 Experiments

3.1 Crowd Event Recognition

The PETS 2013 dataset 1 is used for crowd event recognition. It contains four
video sequences (1059 frames in total) with timestamps 14-16, 14-27, 14-31 and
14-33. As shown in Figure 4, crowd events vary over time as follows: walking,
running, evacuation (rapid dispersion), local dispersion, crowd formation and
splitting. We use the same ground truth as in [12], shown in Table 1.

Evaluation of QBC. Binarization thresholds are derived individually for each
region, based on which the QBC for each frame is obtained.

To acquire the optimal σ value, we first set the embedding dimension l and the
temporal window size T both to 3, obtaining trajectories of 9 dimensions; then a
4-fold cross-validation is employed on these trajectories to compute recognition
accuracy with σ increasing exponentially (σ = 2−5, 2−4, · · · , 29), and the scale
with the best cross-validation accuracy is chosen. Meanwhile, the QBC and plain
optical flow histogram are tested respectively to verify the effectiveness of the
QBC. The outcome is illustrated in Figure 5. It shows that, over a large range
of σ values (from 1

4 to 64), the performance of the QBC is stable and better.

Table 1. Ground truth for crowd event recognition in the PETS dataset

Classes Timestamp [frames]

Walking 14-16 [0-36, 108-161] 14-31[0-50]

Running 14-16 [37-107, 162-223]

Local dispersion 14-16 [0-184, 280-333]

Local movement 14-33 [197-339] 14-27 [185-279]

Crowd splitting 14-31 [51-130]

Crowd formation 14-33 [0-196]

Evacuation 14-33 [340-377]

Evaluation of STLPP. Figure 6 shows the 3-D manifolds of four dimension
reduction algorithms: LPP [14], principal component analysis (PCA), ST-LE
[10], and STLPP. In STLPP, σ is set as 16(i.e., 24). It can be seen that STLPP
and ST-LE show better visual clustering effects. However, the effect of temporal
information in ST-LE is too strong, shaping the generated video manifold almost
into a time series. In our STLPP, similar motion pattern still cluster together
despite integrating temporal similarity.

To evaluate the classification performance, a training/testing split ratio is set
to 1/2 for the dataset (the same as in [12]). The average results are reported from
10 randomized runs. The confusion matrix corresponding to the highest recog-
nition accuracy, with the embedding dimension and temporal window both set
to 5, is shown in Table 2. Clearly most crowd events have very good recognition

1 Available from URL http://pets2013.net/
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Table 2. Confusion matrix for event recognition in the PETS dataset (l = 5, T = 5)

Walking (W) 1.00 0 0 0 0 0 0
Running (R) 0.03 0.97 0 0 0 0 0

Local dispersion (LD) 0 0 0.95 0.05 0 0 0
Local movement (LM) 0 0 0.07 0.92 0 0.01 0

Splitting (S) 0.03 0 0 0 0.97 0 0
Formation (F) 0 0 0 0.02 0 0.98 0
Evacuation (E) 0 0 0 0.01 0 0 0.99

Classified as → W R LD LM S F E

Table 3. Comparison of event recognition accuracy on the PETS dataset

Method Ref.[17] Ref.[18] Ref.[12] Ours

Accuracy 0.83 0.84 0.90 0.967

Scene 1: normal event Scene 2: normal event Scene 3: normal event

Scene 1: abnormal event Scece 2: abnormal event Scene 3: abnormal event

Fig. 7. Sample scene frames in the UMN dataset

performance. The high similarity between local movement (LM) and local dis-
persion (LD) contributes to a significant confusion, which is however consistent
with the manifold shown in Figure 6(a). Recognition accuracy of our proposed
method is compared with the state of the art in Table 3, which indicates that
we have increased the recognition accuracy by around 7%.

3.2 Anomaly Detection

We use the University of Minnesota dataset 2 for crowd anomaly detection.
It contains eleven video clips of three different scenes: two clips of Scene 1
(outdoor), six clips of Scene 2 (indoor), and three clips of Scene 3 (outdoor).

2 Available from URL http://mha.cs.umn.edu
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Table 4. Comparison of average AUC on the UMN dataset

Methods Ref.[7] Ref.[6] Ref.[8] Ref.[12] Ref.[19] Ours

AUC 0.99 0.96 0.98 0.97 0.89 0.99
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Fig. 8. STLPP manifolds for the UMN scenes (shown on the right) generated from
optimal σ values (indicated by red square markers shown on the left).(a)(b) Scene 1;
(c)(d) Scene 2; (e)(f) Scene 3.
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Each clip starts with normal activities and ends with some anomalies – see Figure
7. Motion patterns in different clips vary. For comparison purposes, we follow
the same usage as in other works: 3/4 normal trajectories are selected randomly
for training and the rest trajectories (normal and abnormal) are used for testing.
The results reported are averaged from 10 randomized runs. In this experiment,
we split each frame (240× 320) into 20 (4× 4) regions.

Similar to experiments in Section 3.1, we first fix the embedding dimension
and temporal window size (both to 3) and compute the best detection accu-
racy while increasing σ exponentially. The corresponding results are shown in
Figure 8. The σ with the best detection accuracy in three scenes are 2, 2−2

and 2−2 respectively. Their corresponding 3-dimension manifolds demonstrate
that our proposed method separate normal and anomaly events clearly in the
low-dimensional embedding space.

Eventually, we compare our method using QBC and OC-SVM with six other
state-of-the-art methods in Table 4, where the area under the ROC (AUC) values
are reported. The performance of our method is competitive, being the same as
[7], and outperforming others [6,8,12,19].

4 Conclusion and Future Work

In this paper we have proposed a new method for event recognition and anomaly
detection in crowd scenes based on video manifold learning. Optical flow features
are first encoded through adaptive quantization and binarization. Codes are em-
bedded in a low-dimensional space using a manifold projection algorithm which
is improved by integrating both spatial and temporal similarities among frames.
The proposed approach is able to generate manifolds with well-shaped motion
pattern clusters. Experimental results have verified that our proposed method
enhances the discriminative ability of optical flow features, and is effective for
event recognition and anomaly detection in crowd scenes.

Despite the competitive results, STLPP works in batch-mode, hence cannot
satisfy the demand of applications where data are received incrementally from
online video streams. To address this limitation, we intend to explore an incre-
mental learning model in the future.

References

1. Nguyen, H.T., Ji, Q., Smeulders, A.W.: Spatio-temporal context for robust multi-
target tracking. IEEE TPAMI 29(1), 52–64 (2007)

2. Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detec-
tion. In: Proc. ICPR 2006, vol. 1, pp. 175–178 (2006)

3. Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event de-
tection using multiple fixed-location monitors. IEEE TPAMI 30(3), 555–560 (2008)

4. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using
spatio-temporal motion pattern models. In: Proc. CVPR 2009, pp. 1446–1453
(2009)



134 H. Lin, J.D. Deng, and B.J. Woodford

5. Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: Proc.
ICCV 2007, pp. 1–8 (2007)

6. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social
force model. In: Proc. CVPR 2009, pp. 935–942 (2009)

7. Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories
for anomaly detection in crowded scenes. In: Proc. CVPR 2010, pp. 2054–2060
(2010)

8. Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection.
In: Proc. CVPR 2011, pp. 3449–3456 (2011)

9. Tziakos, I., Cavallaro, A., Xu, L.Q.: Event monitoring via local motion abnormality
detection in non-linear subspace. Neurocomputing 73(10), 1881–1891 (2010)

10. Thida, M., Eng, H.-L., Dorothy, M., Remagnino, P.: Learning video manifold for
segmenting crowd events and abnormality detection. In: Kimmel, R., Klette, R.,
Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 439–449. Springer,
Heidelberg (2011)

11. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation 15(6), 1373–1396 (2003)

12. Thida, M., Eng, H.L., Monekosso, D.N., Remagnino, P.: Learning video manifolds
for content analysis of crowded scenes. IPSJ Transactions on Computer Vision and
Applications 4, 71–77 (2012)

13. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion anno-
tation. In: Proc. CVPR 2008, pp. 1–8 (2008)

14. Niyogi, X.: Locality preserving projections. Neural Information Processing Sys-
tems 16, 153 (2004)

15. Golub, G.H., van Loan, C.F.: Matrix computations (1996)
16. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-

mating the support of a high-dimensional distribution. Neural Computation 13(7),
1443–1471 (2001)

17. Garate, C., Bilinsky, P., Bremond, F.: Crowd event recognition using hog tracker.
In: Proc. PETS-Winter 2009, pp. 1–6 (2009)

18. Chan, A.B., Morrow, M., Vasconcelos, N.: Analysis of crowded scenes using holistic
properties. In: Proc. PETS-Winter 2009, pp. 101–108 (2009)

19. Shi, Y., Gao, Y., Wang, R.: Real-time abnormal event detection in complicated
scenes. In: Proc. ICPR 2010, pp. 3653–3656 (2010)



Growing Neural Gas Video Background Model

(GNG-BM)

Munir Shah, Jeremiah D. Deng, and Brendon J. Woodford

Department of Information Science, University of Otago, Dunedin, New Zealand
{munir.shah,jeremiah.deng,brendon.woodford}otago.ac.nz

Abstract. This paper presents a novel growing neural gas based back-
ground model (GNG-BM) for foreground detection in videos. We pro-
posed a pixel-level background model, where the GNG algorithm is mod-
ified for clustering the input pixel data and a new algorithm for initial
training is introduced. Also, a new method is introduced for foreground-
background classification and online model update. The proposed model
is rigorously validated and compared with previous models.

Keywords: Background subtraction, online learning, growing neural
gas, video processing and Gaussian mixture model.

1 Introduction

Precise localization of foreground objects is one of the most important building
blocks of computer vision applications such as smart video surveillance, auto-
matic sports video analysis and interactive gaming [1]. However, accurate fore-
ground detection for complex visual scenes in real time is a difficult task due
to the intrinsic complexities of real-world scenarios. Some of the key challenges
are: dynamic background, shadows, sudden illumination changes and foreground
aperture [1, 2].

Recently, significant research efforts have been made in developing methods
for detecting foreground objects in complex video scenes [1, 3–5]. The mixture
of Gaussians (MoG) is one of the most popular background models, due to its
ability in handling multi-model backgrounds, and robustness to gradual illumi-
nation changes [1, 3]. Thus, it is widely adopted as a basic framework in many
subsequent models. However, MoG based models have some common limitations.
Firstly, these models assume that the video data follow a Gaussian or normal
distribution, which is not always true [6]. Secondly, during the maintenance pro-
cess the distribution tails are not updated, i.e., the distribution is only updated
when a new pixel value is within its variance range. Consequently, the standard
deviation can be underestimated and values in the tail may be misclassified [7].
This motivated us to explore a growing neural gas based approach for video
background modeling.

The main contributions of this study are: firstly, a pixel-level background
model, where the GNG algorithm is modified for clustering the input pixel data.

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 135–147, 2013.
c© Springer International Publishing Switzerland 2013
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Secondly, a new algorithm for initial training, which helps the model to be-
come more stabilized and better approximate the distribution of the training
set. Thirdly, a new criteria to differentiate between foreground and background
nodes. Finally, an online method to update the background model.

2 Growing Neural Gas (GNG)

The concept of GNG was introduced by [8] as an extension of Neural Gas, which
is an unsupervised incremental clustering algorithm [9]. The GNG incrementally
constructs a graph of nodes for a given n-dimensional input data distribution in
a Rn space. This algorithm starts with two nodes and constructs a graph, where
neighboring nodes are connected by an edge. The nodes in the network compete
for determining the node with the highest similarity measured in Euclidean
distance to the input datum using competitive Hebbian learning (CHL) [10].
The CHL algorithm directs the local adaptation of nodes and insertion of new
nodes, where local error is maintained during the learning process to determine
the location of new nodes. A new node is inserted between the two nodes having
the highest and the second highest accumulated error.

One advantage of GNG is its ability of adapting itself to a slowly changing in-
put distribution, i.e., it move the nodes to cover new distributions. Furthermore,
GNG add nodes incrementally during execution, therefore there is no need to
define the number of nodes a priori. The insertion of nodes stops if a maximum
network size is reached or some user defined criteria is met.

The detail procedure of GNG is given in Algorithm 1. The GNG contains a
set of nodes and edges connecting them in a topological structure. Each node k
consists of a reference vector w̄k in Rn, a local accumulated error variable errork
and a set of edges defining the neighbors of node k. The w̄k is the position
of a node k in the input space. The local accumulated error is a statistical
measure used to determine insertion points for the new nodes. Furthermore, an
age variable is maintained for each edge, which is used to remove obsolete edges
in ordered to keep the topology updated.

Figure 1 pictorially illustrates the working of GNG algorithm, where GNG
is initialized with two random nodes. The accumulated error, node movements,
edges and topology update, and nodes insertion are the important parts of the
GNG algorithm. Each of these components are discussed as follows.

2.1 The Local Accumulated Error

GNG computes a local accumulated error for each node for each input signal. The
local error is a statistical measure reflecting the portion of the input distribution
covered by that node. The large coverage means larger updates of the local error
values because inputs at greater distances are mapped to the node. Since the
GNG tries to minimize the errors, knowing where the error is large is helpful to
find the location for a new node at its insertion time. The local error for each
node s is updated as in Eq. (1).
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(d)

(a) (b)

(c)

Fig. 1. An illustration of the GNG algorithm. (a) The initialization of the GNG algo-
rithm by creating two nodes at random location; (b) The state of the GNG algorithm
after 1000 iterations, a third node is inserted as depicted in blue color; (c) After 9000
iterations, GNG has 10 nodes covering data space; (d) After 50000 iterations, 50 nodes
are spread out over the data space.

errors ← errors + ‖ws − x‖2 , (1)

where the error is updated with the squared distance to the input. This provides a
way to detect all nodes that cover a larger proportion of the input distribution.
Finally, errors for all nodes are decreased which keeps the local errors from
growing out of proportion and at the same time, it gives more importance to the
recent errors.

∀j∈S errorj ← errorj − β × errorj , (2)

where β is a learning rate used to reduce over all error. In the default settings
β = 0.0005 [11].

2.2 Node Movements

When a new input x is presented, GNG updates the winning node s and its
direct topological neighbors:

ws ← ws + ew(x − ws), (3)

wn ← wn + en(x − wn), ∀n ∈ Ns, (4)
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where the learning ew, en ∈ [0, 1] and Ns denotes the neighborhood of a node s.
These parameters should not be set too high as this will result in an unstable
graph while setting them too low will make the adaptation slow. The default
settings are ew = 0.05 and en = 0.0006 [12]. The movement of the winner node
and its direct neighbors is linear, i.e., the farther the node is from the input the
greater distance it is translated. However, the neighboring nodes are translated
with a much smaller amount than the winner-node, which results in smoother
clustering behavior.

Algorithm 1. Growing neural gas

Input: A set of training samples X ← {x1, x2, ..., xN} and Control
Variables: amax, λ, Maxiter, Maxnodes.

Output: The GNG topological graph
1 Initialize: Create two randomly positioned nodes, set their errors to 0, connect

them with an edge and set its age to 0, set Nodecount ← 2.
2 while Stopping criterion is not met do
3 Randomly select an input vector x from the training samples

4 Locate the two nodes s and t nearest to x such that ‖ws − x‖2 is the

smallest and ‖wt − x‖2 is the second smallest, ∀ nodes k. /* ws and wt

are reference vectors for s and t. */

5 Update the local error for the winner node s using Eq. (1).
6 Move s and its direct topological neighbors towards x by using Eq. (3) and

(4) and increment the age of all edges from node s to its neighbors.
7 if s and t are connected by an edge then
8 Set the age of that edge to 0.
9 end

10 else
11 Create an edge between them.
12 end
13 Remove edges having age greater than amax, remove nodes with no edges

and decrement Nodecount.
14 if Current iteration is an integer multiple of λ and Nodecount < Maxnodes

then
15 Determined the node u with largest accumulated error and among its

neighbors, determine the node v with the largest error.

16 Insert the new node r between u and v as wr ← wu+wv
2

17 Create edges between u and r, and v and r. and remove edge between u
and v.

18 Update errors for u, v using Eq. (5) and (6) and set error for r using Eq.
(7).

19 Nodecount ← Nodecount + 1.

20 end
21 Decrease the errors for all nodes j by a factor β using Eq. (2).

22 end
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2.3 Update Edges and Topology

The movement of the nodes in the direction of input may cause the current
construction of Delaunay triangulation to become invalid. Therefore, GNG uses a
local aging process to remove old edges that should not be a part of the Delaunay
triangulation. More specifically, the edges for which CHL has not detected any
activity in amax steps are considered as invalid edges and thus removed from
the graph. In its default setting amax = 100 [12]. This removal of edges may
result in a node with no edges. This type of nodes are called dead-nodes and
thus removed from the graph. Furthermore, the GNG uses CHL to create and
update the edges. The age variable for the recently accessed edges is reset to 0,
which prevents them from being removed immediately.

2.4 Node Insertion

In the GNG algorithm, a new node r is inserted after a predefined number
of training epochs. Since GNG tries to minimize the error, r is placed in the
middle position of the node u with the largest accumulated error and the nodes
v among the neighbors of u with the largest accumulated error. This decreases the
coverage area (Voronoi regions) of both u and v, which leads to the minimization
of their future errors. Thus the errors for u and v are decreased as in Eq. (5)
and (6).

erroru ← α × erroru, (5)

errorv ← α × errorv, (6)

where the value of α determines the amount of reduction in the error. Usually it
is set to some high value (α = 0.5). However, how much it should be decreased
depends on the particular application.

The main motivation for reducing errors for u and v comes from the argu-
ment that a new node r inserted in the middle of them covers some of the input
distribution from both u and v. Therefore, it makes sense to reduce their error
variable because the error in essence represents the coverage of the input distri-
bution. Furthermore, decreasing the errors for u and v prevents the insertion of
the next node in the same region.

Also, the error for the new node r is set as a mean of errors of u and v as:

errorr ← erroru + errorv
2

. (7)

Initializing the error in this way gives the approximation of the error for a new
node.

Furthermore, a fixed insertion rate scheme (λ) might not always be desirable
because it may lead to unnecessary or untimely insertions. Normally, λ = 600
and setting λ too low will result in poor initial distribution of nodes because the
local errors will be approximated badly. Also, it may lead to the risk of nodes
becoming inactive because they are not close enough to the inputs, thus not
adapted. On the other hand, setting the λ parameter too high will result in slow
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growth, which means a large number of iterations are required. However, nodes
will be well distributed. The desirable insertion scheme can be based on the
global mean error, i.e., a threshold constant could be used on the mean squared
error to trigger node insertion.

Furthermore, due to the incremental nature of the GNG, it is not required to
specify the number of nodes a priori. This is a very important characteristic of
GNG compared with other clustering algorithms such as k-means, which makes it
an attractive choice for problems where the input distribution is unknown. Thus
the GNG algorithm is suitable for online or real-time clustering algorithms.

We explore the GNG for modeling video backgrounds. Since GNG gives better
clustering capabilities and has less sensitive parameters [11], it can be a good
choice for online background modeling. The proposed GNG background model
is explained in the next section.

3 Growing Neural Gas Background Model (GNG-BM)

In the propose model, values of a pixel in a video are modeled as a GNG graph.
Suppose we have a set of training samples X = {x1, x2, ..., xN} for a pixel con-
sisting of N YCbCr vectors (3-dimensional). The proposed model maintains the
GNG topological graph for the training samples. In this algorithm, each node
is represented by a reference vector in the R3 space. It can be seen as a topo-
logical graph in a three dimensional plane, where each dimension corresponds
to individual color channel in YCbCr color space. Here the maximum value
for each dimension, i.e., color channel, is 255, therefore the size of the plane is
255× 255× 255. Also, we maintain the winning frequency of each node, which
will be used for differentiating between background and foreground nodes. The
complete algorithm for GNG training is listed in Algorithm 2.

3.1 Initial Training

The proposed algorithm starts with two randomly created nodes. In each training
epoch, a sample is randomly selected from the training set and the winner and
runner-up nodes are determined based on their Euclidean distance from the
input vector x. Some of the initial video frames are used to generate training
set for each pixel in the frame. Empirically, we found that the 100 to 300 frames
would be sufficient for initial training. Particularly, when input vector is selected
randomly from the training set for a specified number of iterations, some training
samples will be repeated several times, which gives sufficient time for the GNG
algorithm to adapt itself to the data distribution. In the proposed model, the
number of iterations are set to 10 times the number of samples N in the training
set. In this way, the samples will be presented or selected a sufficiently large
number of times, which helps the GNG algorithm to achieve more stabilized
topological approximation of the data distribution.

In this algorithm, for each selected vector the winner node and runner-up node
is determined based on their Euclidean distance from the input vector x. After
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Algorithm 2. Growing neural gas background model (Training)

Input: A set of training samples X ← {x1, x2, ..., xN} for a pixel, where N is
the number of samples and Control Variables: amax, λ, Maxiter,
Maxnodes, wincounter counts the number of wins for a node.

Output: Background model for a pixel
1 Initialize: Create two randomly positioned nodes, set their errors to 0,

wincounter to 1, connect them with an edge and set its age to 0, and set
Nodecount ← 2.

2 while iter < Maxiter do
3 Randomly select input x ← {Y,Cb, Cr} from the training samples.
4 Update the network topology as in Step 4 to 13 of Algorithm 1 and

increment the wincounter for the winning node s.
5 if s does not satisfies the criteria in Eq. (8) OR iter is an integer multiple

of λ then
6 Insert new node r as in Step 15 to 19 of Algorithm 1 and set its

wincounter to 1.

7 end
8 Decrease errors for all nodes j by a factor β using Eq. (2).
9 iter ← iter + 1

10 end

that the winner node, its topological neighbors and topology of the graph are
updated, as in Step 4 of Algorithm 2. The winner counter wincounter that counts
the number of wins by a node is updated each time node wins. The wincounter

reflects the portion of data covered by a particular node.
In the proposed model, the pixel value x ← {Y, Cb, Cr} is a 3-D vector, where

Y represents the intensity information, Cb and Cr represent color information. In
the realistic scenarios, Y channel (intensity) experience larger noise or variations
than color channels, especially in case of shadows and highlights. Therefore,
matching criteria used to decide whether the insertion of a new node is required
or not is slightly modified in the proposed model.

MATCH =

⎧⎪⎪⎨⎪⎪⎩
true, if ‖ws(Y )− x(Y )‖ < Ti AND ‖ws(Cb)− x(Cb)‖ < Tc

AND ‖ws(Cr) − x(Cr)‖ < Tc,

false, otherwise,

(8)
where Ti and Tc are thresholds for the intensity and the color channels respec-
tively. In the proposed model, Ti is set higher than Tc, so that it can cover higher
variation in the intensity channel than the color channels. Empirically, we found
that Ti = 10 and Tc = 5 are good values for these thresholds.

If the winner node s does not satisfy the criteria given in Eq. (8), or the
current iteration is an integer multiple of λ, a new node is inserted in the graph
as in Step 5 of Algorithm 2. It should be noted that the new node is inserted
near the winner node instead of near the node with the largest error as in the
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original GNG model. This makes sense because a new data point is closer to
the winner node than any other node, thus the node created for this data point
should be topological neighbor of the winner node. Although the original GNG
algorithm may also adapt this node to move it closer to the winning nodes over
the time, but it takes time.

Further, if an edge is older than amax (maximum age of the edge), i.e., it is not
updated for a long time, that edge is considered as an obsolete edge and therefore
can be safely removed from the graph. After that, a node with no edges should
also be removed. This is necessary, especially when input data is erroneous or
data distribution is changing over the time. In case of erroneous input data, the
GNG creates nodes and edges for it, but these inputs do not occur frequently.
Thus, the corresponding nodes unnecessarily occupy the resources. On the other
hand, in case of changing data distribution in an online environment, previous
nodes become invalid. Thus old edges and nodes are removed from the network,
which keeps the GNG graph compact.

Moreover, for background modeling, the foreground objects can be considered
as noise and thus nodes created for foreground objects should be removed from
the graph. No foreground object stays at the same location for more than 300
frames with the exception of stationary foreground objects. Therefore, in the
proposed model amax = 300 is used for all of our experiments. This means that
an edge which is not accessed for more than 300 frames is removed from the
graph.

Algorithm 3. Foreground detection and online model update

Input: Pixel value x ← {Y,Cb, Cr} at time tt and a background model M .
Output: Detection result and updated background model

1 Update the network topology as in Step 4 to 13 of Algorithm 1 and increment
the wincounter for the winning node s.

2 if s satisfies the condition as in Eq. (8) and wincounter > Twin then
3 Classify the pixel as background
4 end
5 else
6 Classify the pixel as foreground
7 if s does not satisfy the condition as in Eq. (8) then
8 Insert new node r as in Step 15 to 19 of Algorithm 1 and set its

wincounter to 1.

9 end

10 end
11 Decrease errors for all nodes j by a factor β using Eq. (2).

3.2 Foreground Detection and Online Update

After the initial training phase, a new incoming pixel value x is compared against
the background model M , and the winner node s and runner-up node t is de-
termined. If the winner nodes s satisfied the condition as in Eq. (8) and its
wincounter > Twin, this pixel is classified as background, otherwise it is clas-
sified as foreground. The wincounter of a node reflects the portion of the data
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modeled by that node. As the background surfaces appear more frequently than
the foreground surfaces, the nodes corresponding to the background will have
higher wincounter compared with the nodes corresponding to the foreground. In
the proposed model, the threshold value of Twin = 300 is empirically found a
reasonable setting for a variety of scenes.

Furthermore, in real-world scenarios the geometry of the scene may change
over a period of time. For instance, a new chair is brought into the room. Also,
lighting conditions may also change, e.g, clouds appearing in front of the sun
change the brightness condition of the outdoor scene, To handle such situations,
the model is adapted online. The online adaptive algorithm is listed in Algorithm
3. If a pixel is classified as foreground and the winning node s does not satisfy
the condition in Eq. (8), that means no node is existing in the model that
corresponds to the current pixel. Thus, a new node r is inserted in the network
using the same procedure as explained in Algorithm 2.

4 Experimental Results

In this section, the proposed model GNG-BM (growing neural gas based back-
ground model) is validated and compared with the MoG [3], KMoG [4], SMoG
[13], KDE [14] and PBAS [15] background models. The parameters values for
the proposed model are set as mentioned in the original papers respectively.
These models are compared both qualitatively and quantitatively on the CDnet
dataset [16]. This dataset contains 31 indoor and outdoor video sequences, which
covers various challenging real life sceneries. Importantly, for precise validation,
this dataset provides ground truth at pixel resolution for each frame in a video.
This makes detailed quantitative analysis and comparison possible. Due to the
space limitation we will present example results on “DynamicBackground” and
“shadow” categories, however similar trend is experienced for other categories.

GNG-BM

Frame 1200

MoG KMoG

SMOGPBAS

KDE

Fig. 2. Comparative qualitative results on the “fall” video sequence in the “Dynam-
icBackground” category
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Fig. 3. Comparative quantitative results

Frame 1367

GNG-BM
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Fig. 4. Comparative qualitative results on the “copyMachine” video sequence in the
“shadow” category

Figure 2 presents an example result for the “fall” video sequence in the CDnet
dataset. This video is one of the most complex videos for dynamic background
modeling. Particularly, the tree in the middle sways irregularly due to the strong
wind, which generates multiple background surfaces in pixel values. Also, this
tree sways in a large area. As one can see in Figure 2, GNG-BM gives better
results than other proposed models. These results are confirmed by the quanti-
tative results presented in Figure 3. This figure presents an average F-measure
results for six videos in the “DynamicBackground” category. The F-measure
takes into consideration both recall and precision, therefore it is a better choice
to present results concisely. As shown in the figure, GNG-BM obtained a better
F-measure than other methods.
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Furthermore, Figure 4 presents the visual results for the “copyMachine” video
sequence in the CDnet dataset. This is a very challenging video sequence for lo-
cal illumination changes handling techniques. It can be seen in the figure that
the GNG-BM gives almost ideal results, whereas MoG gives some false pos-
itive results. The same trend is confirmed from the quantitative results pre-
sented in Figure 3. This figure plots the average F-measure obtained by the
background modeling algorithms for six videos in the “Shadow” category in the
CDnet dataset. The GNG-BM achieved a better overall F-measure than other
models.

To measure the processing speed, we implemented all the algorithms in C++
using the OpenCV library and ran them on an Intel machine with 2.6 GHz
CPU, 3 GB main memory and the Microsoft Windows XP operating System.
We measure the processing speed averaged over 10 video sequences of resolution
320× 240 (Width × Height). The proposed model gives processing speed equal
to 16 frames per second.

4.1 Discussion

The proposed model is validated and compared with the previous models. The
GNG-BM gives significantly better results than other MoG based models both
for dynamic backgrounds and illumination changes. This improvement is due
to the better clustering abilities of the GNG algorithm and new the training
procedure. Especially, the random selection of data samples for training over the
specified number of iterations stabilized the model and thus helps in achieving
better segmentation. Also, the GNG based background model is good for dy-
namic backgrounds because it updates the age for the recently or frequently ac-
cessed nodes. In this way, even if the background surfaces occurs less frequently,
they will have their edges updated regularly and thus they will remain in the
model, which enables the proposed model to handle less regular background sur-
faces. Also, it gives a better solution for the illumination changes, especially for
shadows because it creates more nodes near the wining node, which increases
the chances of having active nodes corresponding to background surface shifted
due to the illumination changes.

Furthermore, it provides a number of advantages compared to traditional
methods. Firstly, the GNG based algorithm has the ability to grow and shrink
itself according to the data distribution. Therefore, there is no need to specify a
number of nodes in advance. Secondly, the inherently adaptive mechanism can
model changing data distributions. Thirdly, it has less sensitive parameters [11].
Finally, it has better online clustering capabilities than its competitors. These
are the desirable characteristics for online data modeling algorithms. Therefore,
it has shown great potential for robust background modeling in complex envi-
ronments.

However, it requires some data samples for initial training and one the pass
learning algorithm is not sufficient to achieve good approximation of the data
distribution. Therefore, the initial learning procedure has to be repeated for a
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number of iterations, which takes time. The GNG-BM gives a processing speed
lower than what is required for real-time processing, but it gives better segmen-
tation accuracy than other methods.

5 Conclusion

We proposed a pixel-level background model, where the GNG algorithm is mod-
ified for clustering the input pixel data. An algorithm is introduced for initial
training, which helps the model to become more stabilized and better approx-
imate the distribution of the training set. Also, a new criteria is introduced to
differentiate between foreground and background nodes. Finally, the proposed
online method to update the background model helps the model to cover chang-
ing distribution of the data. Overall, the proposed model gives more than 20%
and 10% improvements for the “dynamicBackground” and the “shadow” cate-
gory respectively. Although the proposed model achieved significantly better seg-
mentation accuracy than the previous model, it gives a processing speed lower
than what is required for real-time processing. However, the structure of the
proposed model is inherently parallelizable. We are intending to propose a GPU
based model to get better processing speed.
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Abstract. Sparse principal component analysis (SPCA) is a popular
method to get the sparse loadings of principal component analysis(PCA),
it represents PCA as a regression model by using lasso constraint, but
the selected features of SPCA are independent and generally different
with each principal component (PC). Therefore, we modify the regres-
sion model by replacing the elastic net with L2,1-norm, which encourages
row-sparsity that can get rid of the same features in different PCs, and
utilize this new “self-contained” regression model to present a new frame-
work for graph embedding methods, which can get sparse loadings via
L2,1-norm. Experiment on Pitprop data illustrates the row-sparsity of
this modified regression model for PCA and experiment on YaleB face
database demonstrates the effectiveness of this model for PCA in graph
embedding.

Keywords: SPCA, L2,1-norm, row-sparsity.

1 Introduction

High dimensionality of data may bring a big issue to science and engineering
applications, therefore, many methods have been proposed by scientists to reduce
data dimensions [1]. PCA [2] is one popular technique for dimension reduction.
It has been used successfully because it can find a range of linearly independent
basis by minimizing the loss of information. However, PCA also has obvious
drawback such as each of linearly independent basis is constructed by nonzero
elements, which make it hard to explain what variables play a major role in the
data. In some high-dimensional data analysis, people always want to know what
variables play a major role, which variables do not work, and the unimportant
variables can be ignored to reduce the workload. In addition, people wish to use
the least components to explain data. Yet, PCA cannot solve these problems.

In order to compensate the shortcoming, many methods have been proposed.
Rotation techniques are commonly used to help practitioner to interpret princi-
pal components [3]; simple principal components which restrict the loadings to
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take values from a set of candidate integers such as 0, 1 and -1 [4]; SCoTLASS was
proposed to get modified principle components with possible zero loadings [5];
sparse principal component analysis (SPCA) [6], one of famous algorithms was
also been proposed. In SPCA, PCA is decomposed by the singular value decom-
position (SVD) [7] and its objective function is expressed as a “self-contained”
regression-type optimization problem, and the lasso [8], [18] with L1-norm is in-
tegrated into the regression criterion, which can lead to the sparse loadings [9].
However, the selected features by SPCA are independent and generally different
with each PC.

Recently, L2,1-norm has been proposed, which can encourage the loadings
row-sparsity [10], [16], each row of projection matrix corresponds to a feature.
In addition, researchers have successfully applied L2,1-norm in Group Lasso [12],
multi-task feature learning [13], joint covariate selection and joint subspace learn-
ing [14]. Moreover, L2,1-norm also was used in graph embedding [15], which is a
famous framework including PCA for reducing the dimension of data [11]. How-
ever, the motivations between graph embedding and SPCA are different and
their optimization models are also different, thus, the optimization process of
SPCA is different from graph embedding.

Based on the above motivation, in this paper, we employ L2,1-norm to modify
the regression model of SPCA firstly, in which L2,1-norm is used to minimize
the loss function and regularization instead of using the L2-norm and L1-norm.
Then, we unify the optimization problem of graph embedding into the new “self-
contained” regression model, which can get orthogonal solution of graph embed-
ding, and use this modified model to get the sparse loadings of PCA in graph
embedding.

The rest of this paper is organized as following: Section 2 briefly reviews
SPCA and graph embedding. In Section 3, we modify the model of SPCA via
L2,1-norm and unify the optimization model of graph embedding into the new
model. Experiments on different datasets are showed in Section 4. Finally, a
conclusion is drawn and future work is pointed out in Section 5.

2 A Brief Review of SPCA and Graph Embedding

2.1 Notations and Definitions

For matrix M = (mij) ∈ Rp×d, mi and mj respectively present its i-th row and

j-th column. The Lp-norm of vector v ∈ Rn is defined as ‖v‖p = (
∑n

i=1 |vi|
p
)

1
p .

The L1-norm of the matrix is defined as ‖M‖1 =
∑n

i=1 ‖mi‖1, the L2-norm of

M is defined as ‖M‖22 =
∑p

i=1 ‖mi‖22 and L2,1-norm of Matrix M is defined as
‖M‖2,1 =

∑p
i=1 ‖mi‖2.

2.2 SPCA

Given training data set X ∈ Rn×p, which has n observations with p predictors,
the mean of Xi ∈ X is zero. Y ∈ Rn×k is the data after dimension reduction,
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β ∈ Rp×k is a projection matrix, which can be obtained by the following least
squares regression [17]

min
β

n∑
i=1

‖Xiβ − Yi‖22 (1)

It is also viewed as a loss function. By adding a penalty term, it can be written
as following [19]

min
β

n∑
i=1

‖Xiβ − Yi‖22 + γΦ(β) (2)

If the penalty term Φ(β) equals 1
γ (λ1 ‖β‖22 +

∑k
j=1 λ2,j ‖β(:, j)‖1), then above

optimization problem is transformed into the following elastic net problem [20]

min
β

n∑
i=1

‖Xiβ − Yi‖22 + λ1 ‖β‖22 +
k∑

j=1

λ2,j ‖β(:, j)‖1 (3)

PCA can be done via singular value decomposition (SVD) of X , X = UDV T ,
Yi = UiDi is the i-th principal component. Therefore, in SPCA, above regression
model is expressed as the following optimization problem [6]

(α∗, β∗) = arg min
α,β

∑n
i=1

∥∥XiβαT − Xi

∥∥2
2
+ λ1 ‖β‖22 +

∑k
j=1 λ2,j ‖β(:, j)‖1

s.t. αT α = I
(4)

Then, β∗ = β(:,j)
|β(:,j)| , for j = 1, 2, · · · , k. α ∈ Rp×k.

This formula successfully integrates PCA into a regression type problem. By
solving this model, the sparse projection matrix β can be obtained.

2.3 Graph Embedding

Graph embedding can be seen as a general framework, which can interpret many
dimensionality reduction methods [15]. In graph embedding, a data graph G can
be constructed, whose vertices correspond to X = {x1, x2, · · · , xn} ∈ Rp×n.
W ∈ Rn×n is a symmetric matrix to measure the similarity of any two differ-
ent vertices. The purpose of graph embedding is to find low-dimensional vector
Y = {y1, y2, · · · , yn}T ∈ Rn×k representing vertices, for the linear dimensional
reduction, that is, XTA = Y , A ∈ Rp×k, the optimal A is given by the following
optimization problem

min
A

T r AT XLXTA

s.t. ATXDXTA = I
(5)

where Dii =
∑n

i=1 Wij is a diagonal matrix, L = D − W is Laplacian matrix.
Different linear dimensional reduction methods have different W in graph

embedding framework. For PCA, supposing the intrinsic graph connecting all
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the vertices with equal weights and constrained by scale normalization on the
projector vector, W is defined as

Wij =

{
1
n i �= j
0 otherwise

(6)

The first optimization model (5) with L2,1-norm has been solved by trans-
forming it into two following optimization problems [11]:

min
Y

T r Y TLY

s.t. Y TDY = I
(7)

min
A

‖A‖2,1
s.t.

∥∥XTA − Y
∥∥2
2
≤ δ2

(8)

By using (6) to get W and obtaining L based on L = D − W , then substituting
L into (7) and (8), the sparse loadings of PCA can be got. In this paper, this
method using graph embedding for sparse PCA via joint L2,1-norm is called
L2,1GSPCA.

3 Sparse Principal Component Analysis via Joint
L2,1-Norm

3.1 Sparse PCA via Joint L2,1-Norm

In SPCA, the number of zero loadings of projection matrix is controlled by L1-
norm, but the zero loadings in each PC are different, which means the selected
features in each PC are independent. Meanwhile, since each row of projection
matrix corresponds to a feature in data matrix and L2,1-norm can make some
rows of projection matrix zeros. In addition, the coefficient λ1 of L2-norm in (4)
does not influence the correlation between β∗ and V in (4) after normalization
of β∗ [6]. These motivates us modify the regression model of SPCA. By using
λ
γ ‖β‖2,1 to replace Φ(β) of (2), then the model becomes as following:

min
β

n∑
i=1

‖Xiβ − Yi‖22 + λ ‖β‖2,1 (9)

Therefore, formula (4) can be translated into the following optimization problem

(α∗, β∗) = arg min
α,β

∑n
i=1

∥∥XiβαT − Xi

∥∥2
2
+ λ ‖β‖2,1

s.t. αT α = I
(10)

Then β∗ = β(:,j)
|β(:,j)| , for j = 1, 2, · · · , k. α ∈ Rp×k.

From (10), it can get ∑n
i=1

∥∥XiβαT − Xi

∥∥2
2
+ λ ‖β‖2,1

= T rXTX + T rβT (XTX � λG)β − 2T rαTXTXβ
(11)
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where G is a diagonal matrix and the i-th diagonal element is

gii =

{
0 if βi = 0
1

2‖βi‖1
2

otherwise (12)

For fixed α, the formula (11) is minimized at

β = (XTX + λG)−1XTXα (13)

Substituting (13) into (11), we get

max
α

T r αT XTX(XTX + λG)−1XTXα

s.t. αT α = I
(14)

From (13) and (14), we can see that if λ = 0, α =β=V .
Based on the Theorem 3 and 4 in SPCA [6], the solution of α can be obtained
by SVD of XTXβ, XTXβ=UDV T , the solution of α is

α = UV T . (15)

In summary, we present the algorithm for optimizing (10) in Algorithm 1.

Algorithm 1. Sparse principal components analysis via joint L2,1-norm (L2,1SPCA)

Initialize: G0 = I , t = 0;
α0 start at V (:, 1 : k), the loadings of first k principal components.
Repeat

Given fixed αt, compute βt+1 by (XTX + λGt)
−1XTXαt ;

For each fixed βt+1 , do the SVD of XTXβt+1=UDV T , then αt+1 = UV T ;
Compute Gt+1 based on βt+1;
t = t+ 1;

until β converge

Normalization: β∗
:,j =

β:,j

|β:,j | , j = 1, 2, · · · , k.

3.2 Time Complexity

In Algorithm 1, the first step is to compute the matrix
∑

= XTX requires
np2 operations. Then the computational cost of G is O(pk), and the inverse of

the matrix
∑̂

=
∑

+λG is of order O(p3). In addition, computing XTXα and
XTXβ need p2k and pJk operations respectively, J is the number of nonzero
loadings. The SVD of XTXβ is of order O(pJk). Generally, k and J is smaller
than n and p, therefore, if p > n, the total computational cost is mO(p3),
otherwise, it is mO(np2), where m is the number of iterations before convergence.
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3.3 Joint L2,1-Norm Orthogonal Regression in Graph Embedding

Except the objection function (5), the objection function to get the optimal A
in graph embedding also can be written as following:

min
A

T r AT XLXTA

s.t. ATA = I
(16)

The optimization model (16) is different from (5) and we solve it by “self-
contained” regression type in this section.

Theorem 1: Denote ∀ matrix X , Xi is its i-th row vector. If XTX = S, for any
λ, let

(α∗, β∗) = arg min
α,β

∑n
i=1

∥∥XiβαT − Xi

∥∥2
2
+ λ ‖β‖12

s.t. αT α = I

Then, for any X with product S, the PCs are invariable.

Proof: Based on (13) and XTX = S. Then, the solution of β can be written as

β = (S + λG)−1Sα (17)

In addition, based on XTX = S, (14) can be expressed as following

max
α

T r αT S(S + λG)−1Sα

s.t. αT α = I
(18)

Therefore, the solution of α can be obtained by SVD of Sβ, Sβ=UDV T , then
α=UV T .

Theorem 2: For any matrix X and L, if L is a real symmetric positive definite
matrix, let

H = XTLX

Then, ∃ matrix Φ(X), such that Φ(XT )Φ(X) = H .

Proof: Due to L is a real symmetric positive definite matrix, thus, based on the
Cholesky Decomposition [21]:

L = RRT .
Therefore, XLXT=XRRTXT .
Let Φ(X) = RTXT , then
XLXT=Φ(X)TΦ(X) = H .

Based on Theorem 1 and Theorem 2, by using the model of L2,1SPCA, we
write (16) as the following “self-contained” regression model

(α∗, β∗) = arg min
α,β

∑n
i=1

∥∥Φ(Xi)βαT − Φ(Xi)
∥∥2
2
+ λ ‖β‖12

s.t. αT α = I
(19)

Then β∗ = β(:,j)
|β(:,j)| , for j = 1, 2, · · · , k.
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Solving (19), the solution of β is similar with (17) and can be written as
β = (H + λG)−1Hα.

The solution of β can be obtained by SVD of Hβ. Hβ = UDV T , the solution
of α is α = UV T .

In summary, this algorithm to solve the optimization problem of (16) can be
presented in Algorithm 2.

Algorithm 2. Joint L2,1-norm orthogonal regression in graph embedding
(L2,1ORGE)

Initialize: XLXT = H , G0 = I , t = 0;
α0 start at V (:, 1 : k), the loadings of first k principal components.
Repeat

Given fixed αt, compute βt+1 by (H + λGt)
−1Hαt ;

For each fixed βt+1 , do the SVD of Hβt+1=UDV T , then αt+1 = UV T ;
Compute Gt+1 based on βt+1;
t=t+1;

until β converge

Normalization: β∗
:,j =

β:,j

|β:,j| , j = 1, 2, · · · , k.

For obtaining the sparse loadings of PCA, use (6) to get W and obtain L
by L = D − W , then substitute L into Algorithm 2. As a side note, (16) is a
criterion for minimum, but SCPA is opposite, it should be noted for β∗ in the
selection in Algorithm 2.

4 Experiments

4.1 Pitprop Data

Pitprop data is a classic data set for PCA analysis. It was first used by ScoTLASS
[5] and also used in SPCA. In order to compare with SPCA easily, we also use
this data set and try to interpret the first 6 PCs to evaluate the performance of
our algorithm.

In the model of L2,1SPCA, the penalty coefficient λ can influence the per-
formance including the variance and the number of zero loadings, which can be
showed in Fig. 1. Fig. 1(a) displays the variance changes of 6 PCs with different
λ and Fig. 1(b) shows the total number of zero loadings changes of 6 PCs (the
total number of zero loadings is the sum of the number of each PC’s zero load-
ings) with different λ. All the variance of 6 PCs are not changing until λ near
3.4 in Fig. 1(a), correspondingly, the total number of zero loadings is increasing
in Fig. 1(b). When λ is from 3.4 to 5.3, all the variance of 6 PCs are nearly still,
but the total number of zero loadings is still slightly increasing till largest. As λ
is larger than 5.3, all variance of 6 PCs increase and reach stable quickly, but the
total number of zero loading decreases till nearly zero. Therefore, the suitable
value of λ is between 3.4 and 5.3.

Table 1 displays the sparse effect of L2,1SPCA, in which the absolute value
of loadings less than 0.01 is set to 0. To better evaluate the sparse effect by
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L2,1SPCA, the sparse result of two famous sparse algorithms ScoTLASS and
SPCA are showed in Table 2, in which all of them used the same low limitation
as Table 1. From Table 2, it can be seen that SPCA has the strong performance
on sparse loadings but weak on row-sparsity, on the contrary, L2,1SPCA has
strong performance on row-sparsity. In detail, it can be seen that 6 features do
not work at all and three features, which include testsg, bowmax and bowdist,
work little in 6 PCs in Table 1. It shows the strong performance of L2,1SPCA
on explaining the features which play an important role in total variance.
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Fig. 1. Pitprops data: the sequence of sparse approximations to the first 6 principal
components. (a) The percentage of explained variance (PEV) by different λ (b)The
total number of zero loadings by different λ.
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Fig. 2. YaleB face database: the correlation among the number of selected features,
PEV and λ. (a) The number of selected features by different λ (b)The percentage of
explained variance (PEV) by different λ, λ = 0.1 ∗ 2t.

4.2 YaleB Face Database

Besides using L2,1SPCA to obtain the row-sparsity of loadings, there are still two
situations including (5) and (16) in graph embedding via L2,1-norm, we name the
model (5) via L2,1-norm for sparse PCA as L2,1GSPCA and the model (16) via



156 S. Xiaoshuang et al.

Table 1. Pitprops data: loadings of the first 6 modified PCs by L2,1SPCA

λ = 4
Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.618 0.124 -0.472 0.289 -0.064 0.118
length -0.611 0.222 -0.537 0.332 0.029 0.162
moist 0 0 0 0 0 0
testsg 0 0 0 0 -0.019 -0.014
ovensg 0 0 0 0 0 0
ringtop 0 -0.019 0 0.022 0.013 -0.025
ringbut -0.478 -0.939 -0.600 0.887 0.981 -0.969
bowmax 0 0 0 0 0 0
bowdist -0.018 0.030 -0.025 0 0.020 0
whorls -0.127 -0.231 -0.357 0.135 0.178 -0.140
clear 0 0 0 0 0 0
knots 0 0 0 0 0 0
diaknot 0 0 0 0 0 0

Number of
5 6 5 5 7 6nonzeros

loadings
Variance 20.00 7.23 21.83 15.62 9.48 7.27

Table 2. Pitprops data: performance of the first 6 modified PCs by ScoTLASS, SPCA
and L2,1SPCA

Algorithm Total loadings Zero loadings Selected Features Total Variance

ScoTLASS 78 37 13 82.8
SPCA 78 60 13 80.5
L2,1SPCA 78 44 7 81.43

Table 3. YaleB face database: the number of selected features with the similar variance
by L2,1SPCA, L2,1GSPCA and L2,1ORGSPCA

Algorithm Dimensions t Selected Features Variance

L2,1SPCA 64 10 42 0.6051
L21GSPCA 64 5 167 0.6265
L2,1ORGSPCA 64 13 40 0.5952

L2,1-norm for sparse PCA as L2,1GSVDSPCA in this paper. To compare their
sparse performance, we use the face images of YaleB database, there are including
38 human subjects with 65 face images of each person and the resolution of each
image is 25*25, which means each face image can be represented by a 625-
dimensional vector. The correlation among the selected features, PEV and the
parameter λ is showed in Fig. 2, in which the 625-dimensional vector was reduced
to 64.
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In Fig. 2, λ is growing exponentially, thus, we use t to represent it, λ =
0.1 ∗ 2t. Based on Fig. 2, it shows the different λ can lead to huge difference
between the results, which means the suitable value of λ is very important. The
smallest number of selected features is 10, 167 and 5 in L2,1SPCA, L2,1GSPCA
and L2,1ORGSPCA when t is 12, 5 and 13 respectively, which suggests that
the L2,1ORGSPCA can obtain the smallest number of selected features among
three methods. However, we also can see that the number of selected features
of L2,1SPCA is smaller than L2,1ORGSPCA before t reaching 10 in Fig. 2(a).
Moreover, the PEV of L2,1SPCA is more stable than L2,1ORGSPCA in Fig.
2(b) before t growing to 10. Therefore, the overall performance of L2,1SPCA is
better than L2,1ORGSPCA.

As the number of selected features is the smallest in L2,1GSPCA, its variance
is 0.6265. To better compare these three algorithms’ performance, we choose the
similar variance for L2,1SPCA and L2,1ORGSPCA, and the comparison result is
showed in Table 3, which infers that L2,1SPCA and L2,1ORGSPCA have smaller
number of selected features than L2,1GSPCA as their variance are similar. To be
clearer, the selected features represented by white pixel in face image are showed
in Fig. 3. Similar phenomena can be observed when the 625-dimensional vector
is reduced to other dimensions which are smaller than 64. For the space limit,
we do not show them.

Fig. 3. YaleB face database: the selected features of different sparse algorithms. (a)
Original images (b) L2,1SPCA (c) L2,1GSPCA (d) L2,1ORGSPCA.

5 Conclusion

In this paper, we propose two methods L2,1SPCA and L2,1ORGE. L2,1SCPA is
obtained by modifying the regression model of SPCA through replacing the
penalty term L2-norm and L1-norm with L2,1-norm, and L2,1ORGE is got
via this modified model to unify the optimization problem of graph embed-
ding for obtaining the sparse loadings. Experiment on Pitprop data illustrates
L2,1SPCA can get row-sparse loadings of PCA and experiment on Yale database
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demonstrates the effectiveness of L2,1ORGSPCA, which is one application of
L2,1ORGE, for obtaining row-sparse loadings of PCA. However, there are still
some problems unsolved, for instance, how to choose a stable λ to get the sparest
solution. In our future work, we should continue to study these problems and
apply L2,1ORGE on other methods of graph embedding.
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Dirk Pflüger2, and Hans-Joachim Bungartz1

1 Department of Informatics, Technische Universität München, Germany
2 Institute for Parallel and Distributed Systems, University of Stuttgart, Germany

Abstract. We present a novel adaptive sparse grid method for unsuper-
vised image segmentation. The method is based on spectral clustering.
The use of adaptive sparse grids achieves that the dimensions of the in-
volved eigensystem do not depend on the number of pixels. In contrast
to classical spectral clustering, our sparse-grid variant is therefore able
to segment larger images. We evaluate the method on real-world im-
ages from the Berkeley Segmentation Dataset. The results indicate that
images with 150,000 pixels can be segmented by solving an eigenvalue
system of dimensions 500× 500 instead of 150, 000 × 150, 000.

Keywords: sparse grids, image segmentation, out-of-sample extension.

1 Introduction

In unsupervised image segmentation, the objective is to partition images into
disjunct regions. In this paper, we focus on segmenting natural images from the
Berkeley Segmentation Dataset [1]. Our key idea is to combine the strengths
of both spectral clustering and adaptive sparse grids. This is accomplished by
adapting a recent clustering method [2] to the image segmentation problem.

Spectral clustering methods often outperform classical methods such as k-
means [3], but they are computationally expensive. For an image with M pixels,
the computational complexity for solving the involved generalized eigenproblem
is in O(M3). To make things worse, the number of pixels M grows quadratically
with the image resolution.

In our method, we address this problem by employing a so-called out-of-sample
extension based on sparse grids [2]. We learn sparse grid functions by solving
an eigensystem whose dimensions depend on the number of sparse grid points
rather than the number of image pixels. The sparse grid functions are evaluated
for all image pixels to produce the input for a final k-means clustering step.

The proposed method is related to the two out-of-sample extensions pre-
sented in [4,5]. Fowlkes et al. [4] use the Nyström method, where eigenfunc-
tions are learned directly on a subsample of the image pixels. As an alternative,
Alzate and Suykens [5] formulate spectral clustering in terms of weighted kernel
PCA. The principal components are computed for a subsample. The remaining
out-of-sample pixels can be projected onto these principal components. Both
methods [4,5] reduce computational costs in comparison to classical spectral
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clustering but have the disadvantage that the dimensions of the involved eigen-
systems still depend on the number of sample pixels. This motivates our choice
to use adaptive sparse grids.

2 Spectral Clustering

Let S = {x1, . . . , xM} ⊂ Rd be the data set that we want to cluster with spectral
clustering. We define a weighted graph G = (S, E), where the weight Wij of the
edge connecting the data point xi with xj is a measure for the similarity between
the two data points. Spectral clustering minimizes the so-called normalized cut
between the different partitions. For that we solve the generalized eigenproblem
Ly = λDy with where L = D − W is the so-called graph Laplacian with the
diagonal matrix Dii =

∑
j Wij , see [6]. The components {y1, . . . , yM} of the

solution vector y are a low-dimensional embedding of the data points in S.
The advantage of this low-dimensional embedding is that the cluster structure
becomes more evident. That is why the components {y1, . . . , yM} are clustered
with k-means to determine the cluster assignment of the data points. We refer
to [3,6] for more details.

3 Sparse-Grid-Based Out-of-Sample Extension

In this section, we describe how to formulate the classical spectral clustering
problem with sparse grid functions [2]. The sparse-grid-based out-of-sample ex-
tension provides an explicit clustering model because once the sparse grid func-
tion is learned, it can be evaluated on the whole dataset. Thus, it allows us to
solve the spectral clustering eigenproblem for a couple of training points only
and to interpolate cheaply the cluster assignment for all other points.

We represent a function f(x) =
∑N

i=1 αiφi(x) as a linear combination of basis
functions φ1, . . . , φN stemming from a grid with N grid points. The costs for
evaluating such a function are independent from the number of data points M
and depend linearly on the number of grid points N . Unfortunately, a straight-
forward discretization with 2l grid points in each direction suffers from the curse
of dimensionality – the number of grid points would increase exponentially with
the number of dimensions d. That is why we employ so-called sparse grids that
consist of O(2ldl−1) grid points instead of O(2ld) grid points as with ordinary
discretizations, see Fig. 1. Under certain smoothness assumptions, the sparse
grid discretizations leads to similar accuracies as the classical discretization but
with orders of magnitude fewer grid points [7]. To further reduce the number
of sparse grid points, we can employ adaptivity and tailor the grid structure to
the current problem at hand [8,7]. To achieve that we require an error indicator
or adaptivity criterion. In Sect. 4 we will introduce an error indicator that is
well-suited for image segmentation.

For our sparse-grid-based out-of-sample extension, we want to construct a
sparse grid function f that approximates the eigenfunctions corresponding to
the eigenproblem Ly = λDy of the previous section. This is achieved by solving
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Fig. 1. On the left a full grid, in the middle a regular sparse grid, and on the right an
adaptive sparse grid [8]

BTLBα = λBT DBα where α is the vector containing the hierarchical coeffi-
cients of f and the matrix B ∈ RM×N has the entries Bij = φj(xi), see [2] for
details. Note that we can evaluate the sparse grid function at the data points
in S = {x1, . . . , xM} with the matrix-vector product B · α. It is important that
the dimensions of the eigenproblem are N ×N where N is the number of sparse
grid points. Thus, in contrast to other out-of-sample extensions [4,5,9], the di-
mensions are completely independent from the number of data points M .

4 Image Segmentation

The proposed sparse-grid-based image segmentation algorithm consists of ex-
tracting features, setting up and solving the eigensystem, optional adaptive re-
finement, and a final clustering step with k-means (see Fig. 2).

Fig. 2. Flowchart of the image segmentation algorithm with sparse grids. This chart
provides a rough overview on how an image is preprocessed, how spectral decomposition
on a sparse grid is performed in one or more iterations, and how the final clustering is
obtained.

Constructing the graph Laplacian for a subsample of M training pixels is the
first step. As in [4,5], we use local color histograms as pixel features. These are
computed within a 5 × 5 neighborhood on an image reduced to C colors with
minimum-variance quantization [10]. The value hic denotes the c-th bin value
for the i-th pixel. We define the distance tij between the i-th and the j-th pixel
as
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tij =
1

2

C∑
c=1

(hic − hjc)
2

hic + hjc

A radial basis function provides the weights wij = exp
(
−tij/σ2

)
for the graph

Laplacian. Then the spectral clustering eigensystem is solved. In order to achieve
this, we use a combination of two freely available software libraries: the SG++ [8]
toolbox for sparse grids, and GSL1 for solving the eigensystem. Only the first k−1
eigenvectors {α(r)}k−1

r=1 are taken into account, where k is the number of desired
clusters. Each eigenvector contains the hierarchical coefficients of one sparse grid
function. Evaluating the k − 1 sparse grid functions on all image pixels yields
the input for the final k-means clustering.

With the optional adaptive refinement, the choice of sparse grid and the sam-
pling strategy can be adapted to the image. We use the hierarchical coefficients
as an error indicator [7]. For each of the k − 1 sparse grid functions defined
by the hierarchical coefficients α(r), we refine a fixed percentage of grid points
with the largest hierarchical coefficient. Refining a grid point here means that
four grid points are added within its support. Adding more grid points increases
the degrees of freedom in the sparse grid. Therefore, we also extend the set of
training pixels by sampling an additional fixed number of pixels uniformly from
the whole image.

Fig. 3. Five images (top row) from the Berkeley Segmentation Dataset 300. The corre-
sponding segmentations (bottom row) have been obtained on regular sparse grids with
levels 7, 8, 7, 7, and 7 (from left to right), and 8000 training pixels each.

5 Results

We show qualitative results on five images of the Berkeley Segmentation Dataset
300 [1], which has also been used for evaluation in [4,5]. The five images are
shown in the top row of Fig. 3, and are coined elephant, bird, pyramids, surfer,
and parade for easier reference. The segmentation results obtained with our
method are given in the bottom row of Fig. 3. We discuss results on regular
sparse grids first and evaluate adaptive sparse grids next. Note that throughout
the evaluation, we use linear boundaries for the sparse grids. A more detailed
treatment of the choice of parameters can be found in [11].
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Fig. 4. Three segmentations of image elephant, obtained with regular sparse grids of
level 6 (left) and level 7 (middle), and with an adaptive sparse grid (right)

Fig. 5. Three segmentations obtained on adaptive sparse grids. They illustrate that
the grids are adaptively refined mostly in regions containing natural boundaries.

The choice of the sparse grid, together with the similarity measure, decide
about the amount of details in an image that can be resolved by the segmentation
method. Figure 4 shows the segmentations of elephant for regular sparse grids
(see Fig. 1) of level 6 and 7. The regular sparse grid at level 6 is not sufficient to
obtain good segmentation boundaries. However, we obtain satisfactory results
already with the regular sparse grid of level 7 (833 grid points).

Figure 5 shows segmentations on adaptive sparse grids for elephant, bird, and
surfer. Only few grid points fall into relatively homogeneous regions, but many
grid points are spent near natural contours in the images. This is desirable
because sparse grid points are only placed in image regions that require higher
resolution.

Adaptive sparse grids can achieve similar segmentations as regular sparse
grids with considerably fewer grid points. Figure 4 (right) shows the adaptive
segmentation of elephant with 499 grid points, achieving a similar result as with
a regular sparse grid of level 7 (833 grid points). At the same time, the adaptive
sparse grid clearly improves upon the regular sparse grid of level 6 (385 grid
points).

6 Conclusion

We employed a sparse-grid-based out-of-sample extension to segment images of
the Berkeley Segmentation Dataset with spectral clustering. The advantage of

1 http://www.gnu.org/software/gsl

http://www.gnu.org/software/gsl
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our approach is that the dimensions of the corresponding eigensystem do not
dependent on the number of data points.

The results indicate that even in the absence of a sophisticated similarity
measure, we are able to segment real-world images. We showed how the seg-
mentation is affected by the choice of grid level and concluded that by using
adaptive sparse grids, as few as 500 grid points can be sufficient. This confirms
that the adaptivity criterion indeed refines only near cluster boundaries where
many grid points are required to achieve a sufficient approximation and that only
few grid points are spent in homogeneous regions of the images. Overall, for the
presented examples, we can reduce the dimension of the eigensystem involved in
the spectral clustering method from about 150,000 to 500 only.
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Abstract. A key challenge in developing efficient local search solvers is
to intelligently balance diversification and intensification. This study pro-
poses a heuristic that integrates a new dynamic scoring function and two
different diversification criteria: variable weights and stagnation weights.
Our new dynamic scoring function is formulated to enhance the diversifi-
cation capability in intensification phases using a user-defined diversifica-
tion parameter. The formulation of the new scoring function is based on
a probability distribution to adjust the selecting priorities of the selection
between greediness on scores and diversification on variable properties.
The probability distribution of variables on greediness is constructed to
guarantee the synchronization between the probability distribution func-
tions and score values. Additionally, the new dynamic scoring function
is integrated with the two diversification criteria. The experiments show
that the new heuristic is efficient on verification benchmark, crafted and
random instances.

1 Introduction

Stochastic Local Search (SLS) is a competitive and an efficient approach to
find the optimal solution or the approximately optimal solution for very large
and complex combinatorial problems. Some examples of practical combinatorial
problem instances that have been solved efficiently by SLS under the Satisfi-
ability (SAT) framework are hardware verification and planning. Despite this
significant progress, SLS solvers still have limitations compared with systematic
solvers in practical and structured SAT problems as evident through the series of
SAT competitions. Because structured and practical SAT problems have tighter
constraints than randomized SAT problems, SLS algorithms are easily trapped
in local minima and have difficulty to escape from stagnation. This problem
does not exist in systematic search algorithms because of the nature of complete
searching strategies.

Since the introduction of the GSAT algorithm [15], there have been huge im-
provements in developing efficient SLS algorithms for SAT. These improvements
need to properly regulate diversification and intensification in local search. There
are some common techniques to boost diversification such as random walk [10]
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and Novelty+ [8]. In addition, some diversification boosting methods includes
variable weighting [13] or clause weighting [16,12,6]. As reported in [14], the
clause weighting scheme is able to escape the local minima by focusing on sat-
isfying long-time unsatisfied clauses. The Hybrid [18] and TNM [17] algorithms
exploit variable weight distribution to regulate the two noise heuristics but do
not directly exploit variable weights to select variables. Recently, stagnation
weights were introduced as a new diversification criterion to avoid local minima
in gNovelty+PCL [11]. Stagnation weights can be considered as an extension to
variable weights because they record frequencies of variables involved in stag-
nation paths [5]. Sparrow2011 [1], the winner of the SAT competition 2011, is
based on gNovelty+ [12] framework but instead of using the Novelty+ strategy
at stagnation phases, it employs its own dynamic scoring function to escape
from local minima. Recently, CCASat [3], the winner of SAT Challenge 2012,
heuristically switches between two greedy modes and one diversification mode,
and uses configuration checking to prevent the blind unreasonable greedy search.

In terms of intensification enhancement, the majority of local search solvers
greedily explore the search space. More specifically, a local search will choose
the most decreasing variable (i.e. a variable that leads to the most decrease in
the number of unsatisfied clauses if being flipped). If there is more than one best
decreasing variable, the algorithm prefers the variable with better diversification
(i.e the least recently flipped or the lowest variable weight). The diversification
mode is invoked when the search cannot greedily explore the search space. During
the intensification mode, the scoring function (i.e. objective function) is very im-
portant. The drawback of most scoring function and variable selection methods
is a lack of compromise between scores and tiebreak criteria. Mostly the tiebreak
criteria are variable properties such as variable ages in most SLS solvers and vari-
able weights in VW2 or stagnation weights in gNovelty+PCL. The tiebreak crite-
ria are considered as diversification boosting properties. Despite the fact that the
current gradient-based scoring function (i.e. score in G2WSAT) in greedy phases
works efficiently with current SLS solvers, a more advanced scoring function is
needed to balance the score and the diversification tiebreaks. It motivates us to
develop a single scoring function that combines greedy scores and diversification
criteria.

In this work, we present a new SLS solver which uses an integration of a
new probability-based dynamic scoring function as the objective function and
two diversification criteria. The proposed dynamic function is controlled by a
diversification noise α and is designed as a combination of clause-weighting score
function and diversification criteria. The remainder of this paper is structured
as follows. Section 2 summaries the background of SLS in developing objective
functions. The motivation and construction of the probability-based dynamic
formula are presented in section 3. Section 4 describes our algorithm, named
PCF. The experiments on verification, crafted and random instances of SAT
competitions are reported in section 5. This section also discusses the coverage
of optimal diversification parameters. Section 6 concludes the paper and outlines
the future work.
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2 Preliminaries

Most modern SLS solvers operate in two modes : greedy (or intensification) mode
and random (or diversification) mode. Starting from a randomized candidate so-
lution, the solver computes the objective function for each variable. The function
reflects the improvements in regards to the decrease in the number of the num-
ber of unsatisfied clauses when a variable is flipped. The most basic objective
function (or scoring function) is computed as the decrease in the number of un-
satisfied clauses. While this traditional score was used by TNM, sattime2011,
the most up-to-date dynamic scoring function is the additive clause-weighting
score used by many SLS solvers (e.g. gNovelty+, Sparrow, EagleUP, CCASat ).

In the greedy mode, if there exist variables with positive scores, the solver
will select the variable with the highest score, breaking ties by the least recently
flipped variables. Otherwise, the local search resides in a local minimum in which
there is no possible greedy move. In such cases, it selects variables according
to the random mode. There are numerous heuristics for the variable selection
at the random mode. Most of them randomly pick an unsatisfied clause and
select variables within that clause. Random walk is the simplest way of selecting
variables randomly from the selected clauses. Novelty+ is the most common and
efficient scheme integrated in adaptG2WSAT, gNovelty+.

2.1 Basic Scoring Function

The most basic scoring function for SAT is proposed by GSAT. It defines the
number of unsatisfied clauses. Afterwards, the score is computed in an alterna-
tive objective function of the decrease in the number of unsatisfied clauses in
G2WSAT. Eq. 1 expresses the score computed in G2WSAT.

score(v) =
∑

c
(Cls′(c, α, v)− Cls(c, α)) (1)

where score(v) is the decrease in the number of unsatisfied clauses if variable v is
flipped. Cls(c, α) is the value of clause c under the candidate solution assignment
α. If clause c is satisfied, Cls(c, α) = 1, else Cls(c, α) = 0. Given an circumstance
of assignment α, Cls′(c, α, v) is the value of clause c after variable v is flipped.

2.2 Dynamic Scoring Function

To prevent the search from getting trapped in local minima, other dynamic
penalties of clauses are integrated into the objective function of the search. The
SLS using dynamic scoring functions is named the dynamic local search. This
method is based on modifying the scoring function at each search step to re-
evaluate the objective function in conjunction with changed circumstances. The
purpose of the dynamic scoring function is to adjust the circumstance of local
minima from the static method of computing an objective function. Because the
dynamic scoring function can adjust the objective function, it assists the local
search to dynamically avoid failing into previous stagnation.
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Clause-Weighting. The state-of-the-art dynamic scoring function is based
on the clause weighting scheme. This scheme typically associates weights with
clauses. At each step, clause weights are adjusted according to truth value of
corresponding clauses. Then instead of minimising the number of false clauses,
the algorithms minimise the sum of clause weights. Eq. 2 expresses the clause-
weighting score.

scorew(v) =
∑

c
W gh(c)× (Cls′(c, α, v)− Cls(c, α)) (2)

where W gh(c) is the clause weight of clause c.

VW2. Another way of computing dynamic scoring function based on variable
weights is firstly proposed in VW1 and VW2 [13]. The dynamic scoring function
of VW2 uses variable weights as diversification properties involved in the score.
The scoring function of VW2 is computed as follows:

scoreV W2(v) =
(∑

c
break(c, α, v)

)
+
(

b × (vw(v) − vw)
)

(3)

where break(c, α, v) is set to one if clause c becomes unsatisfied when variable
v is flipped in the candidate solution α; otherwise its value is set to zero. vw(v)
is the weight of variable v. vw denotes the average of variable weights across all
variables. b is a pre-defined parameter. The update and continuous smoothing
procedure on variable weights vw is described in [13].

Sparrow. introduced a dynamic scoring function to overcome local minima.
Its scoring function is modeled under a probability distribution and computed
based on scorew and variable ages. The variable selection is still based on the
scorew in the greedy mode. However, this dynamic scoring function is employed
at stagnation phases only. The solver selects randomly one of the yet unsatisfied
clauses at random. The selected clause is notated as ui = (xi1 ∨ .. ∨ xik ). The
probability distribution to select variables in clause ui is computed as the Eq. 4.

p(xij ) =
ps(xij )× pa(xij )∑k
l=1 ps(xil )× pa(xil )

(4)

with ps(xij ) = a
scorew(xil

)

1 , and pa(xij ) = (
age(xil

)

a3
)a2

The constant a1, a2, a3 are experimentally determined and reported in [1].

3 Probability-Based Dynamic Scoring Function

3.1 Motivation

As mentioned in the previous sessions, few solvers have addressed the issue of
combining greediness and diversification criteria into a single function. One draw-
back of variable selections of most SLS solvers is the fact that algorithms greedily



170 T.-T. Duong, D.-N. Pham, and A. Sattar

select the most promising variable in terms of scores as the first priority. In case
two variables have the same score, the algorithms will consider about tiebreak
criteria (e.g. variable age). The scores and variable ages are considered separately
in variable selection. Moreover, scores have greater priority than variable ages.

In order to construct a single scoring function as a trade-off between scores
and tiebreaks, we decided to use probability knowledge to formulate a new dy-
namic scoring function. The idea of using a probability-based dynamic scor-
ing function was firstly introduced in Sparrow [1]. Sparrow2011 and EagleUP
[7] won the first and third places respectively in the SAT 2011 competition in
Random track. These two solvers are efficient on random instances, which was at-
tributed to their probability-based scoring function. However, their probability-
based scoring function is restricted to stagnation phases whereas the conventional
clause-weighting score is still used during intensification phases. We decided to
approach the problem differently from the Sparrow formula by using additive
formulation opposed to multiplicative formulation (Eq. 4). One reason for creat-
ing additive formulation is to modify the function gradually instead of adjusting
rapidly as the multiplicative formulation. Additionally, we preferred to employ
fewer parameters for users to regulate the scoring function more easily.

3.2 Defining a Probability Distribution

The proposed dynamic scoring function is formulated as Eq. 5. The scoring
function is a summary of greediness and diversification probability distribution.
The probability of diversification contribution is regulated by a user-defined
parameter α. Thus, greediness probability contribution is regulated by (1− α).

P (vi) = (1− α)× Pg(vi) + α × Pd(vi) (5)

where vi is the i-th variable and P (vi) is the probability of selecting variable
vi. The higher the value of P (vi), the more likelihood vi is selected. Pg(vi) is
the probability of greediness and Pd(vi) is the probability of diversification for
variable vi. In accordance to the fact that P (vi), Pg(vi), Pd(vi) are probability
distribution functions (pdf), their values are scaled in the range of [0,1].

Probability Distribution on Greediness. In this work, we chose scorew in
Eq. 2 to compute Pg(vi). scorew(vi) is firstly scaled into the range [0,maxscorew

- minscorew ] to satisfy the condition that the probability distribution function is
non-negative. The adjusted scoring function for vi is calculated by Eq. 6.

score′w(vi) = scorew(vi)− minscorew (6)

where minscorew and maxscorew is the minimum and maximum scorew across all
variables. Afterwards, the scoring function is normalized to satisfy the condition
of a probability distribution function (i.e. probability distribution functions are
in the range [0,1] and summarized to one) as follows:
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Pg(vi) = N (score′w(vi)) =
score′w(vi)∑
j score′w(vj)

(7)

Probability Distribution on Diversification. In this work, we chose two
diversification properties separately to compute the probability distribution of
diversification Pd(vi) in order to investigate the effect of different diversification
properties. These properties are variable weights and stagnation weights.

Variable weights are first used in the work VW1 and VW2. To improve the
diversification capacity, the variables with low flipped frequencies (i.e. low vari-
able weights) are preferred to be selected. It was reported that variable weights
improved the diversification capacity of SLS solvers [13].

Stagnation weights are presented in the work [12] as diversification criteria
with the purpose of preventing local minima. The stagnation weight of a variable
is computed as the frequency of its occurrences in stagnation paths. A stagnation
path within a given tenure k is defined as a list of k consecutively flipped variables
leading to a local minimum [4].

In order to compute Pdv (vi), vw(vi) and sw(vi) are scaled into [0, maxvw −
minvw], [0, maxsw − minsw] and transferred to vw′(vi), sw′(vi) respectively as
follows:

vw′(vi) = maxvw − vw(vi) (8)

sw′(vi) = maxsw − sw(vi) (9)

where vw(vi) and sw(vi) are variable weights and stagnation weights respec-
tively. minvw and maxvw are the minimum and maximum variable weights.
minsw and maxsw are the minimum and maximum stagnation weights.

The functions Pdvw(vi) and Pdsw(vi) are the diversification probability distri-
butions of variable weights and stagnation weights respectively. The formulas to
compute the scaled diversification criteria Pdvw(vi) and Pdsw(vi) are presented
as follows:

Pdvw (vi) = N (vw(vi)) =
vw′(vi)∑
j vw′(vj)

(10)

Pdsw(vi) = N (sw(vi)) =
sw′(vi)∑
j sw′(vj)

(11)

The probability distributions Pdvw(vi) and Pdsw(vi) grant bigger values to vari-
ables with higher scores and low variable weights and low stagnation weights
respectively (e.g. preferring the least frequent flipped variables and least stag-
nated variables).

3.3 Diversification Parameter α

According to the probabilistic scoring function (Eq. 5), α is a pre-defined di-
versification parameter. It specifies the contribution of distribution probabilities
in the scoring function in Eq. 5, whereas (1 − α) takes charge of the degree of
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intensification. In conventional clause-weighting, the objective function scorew
is maximized in order to greedily exploit the current searching position. In this
case, the degree of intensification is 100% and the diversification parameter α is
zero.

4 The PCF Algorithm

This section describes our proposed SLS solver, named PCF. It is based on
gNovelty+ and employs the new probability-based scoring function. gNovelty+

is the state-of-the-art framework for SLS solvers and some currently superior
SLS algorithms for SAT (e.g. Sparrow, CCASat) are tightly correlated with
gNovelty+ framework. The adjustment of PCF with the gNovelty+ are listed
below:

– Scoring function:

• Instead of using the scorew, PCF applies the new scoring function P
described in section 3.2 for both greedy and diversification phases.

• Re-usage of the additive weighting-scheme for the greediness distribution
function Pg

– Diversification criteria:

• Applying variable weights and stagnation weights as tiebreaks of the
scoring function.

• Variable weights and stagnation weights are contributed in computing
the scoring function.

The algorithm PCF is presented in Algorithm 1. PCF utilities a probabilis-
tic objective function to determine search directions. The new heuristics PCF
has one extra parameter, the diversification probability α. We use the clause-
weighting scoring function in Eq. 2 as the greediness function. According to the
diversification criteria of variable weights and stagnation weights respectively,
we named the two variants of PCF as PCFvand PCFs.

At the initialization stage, clause weights are initiated to one; variable weights
and stagnation weights are set at zero (line 2). If promising variables exist, the
promising variable with the maximum probabilistic distribution value P is se-
lected to be flipped, breaking ties by diversification criteria (line 9). Promising
variables are defined as the variables whose scorew are positive. If there is no
promising variable, the Novelty strategy is invoked to escape from local min-
ima. The procedure of updating stagnation weights is performed according to
the original work gNovelty+PCL [12,5] (line 11). Afterwards, weights of unsat-
isfied clauses are increased by one according to the additive weighting-scheme
in gNovelty+. More specifically, with probability sp, weights of weighted clauses
are decreased by one. Weighted clauses are declared as clauses whose weights are
larger than one [12]. The variable weight of the selected variable var is increased
by one (line 17).
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Algorithm 1. PCF(Θ, sp)
Input : A formula Θ, wp = 0.01, diversification parameter α, smooth probability sp
Output: Solution σ (if found) or TIMEOUT

1 randomly generate a candidate solution σ;
2 initiate all clause weights to 1, stagnation weights and variable weights to 0;
3 while not timetout do
4 if σ satisfied the formula Θ then return σ ;
5 if within the random walk probability wp then
6 var = Random Walk in an unsatisfied clause;
7 else
8 if there exists promising variable then
9 var = variable maximized P function, breaking ties by diversification

criteria;

10 else
11 Update stagnation weights;
12 var = Novelty Escape with P function, breaking ties by diversification

criteria;
13 Increase the weights of unsatisfied clauses by 1;
14 if within smooth probability sp then
15 Decrease clause weights of weighted clauses;

16 Update candidate solution σ with the selected variable var;
17 Increase the variable weight of var and adapt Novelty noise;

18 return TIMEOUT;

5 Experiments

The experiments were conducted on cbmc1(a set of software verification prob-
lems), crafted instances of the SAT 2012 competition and medium-sized random
instances of the SAT 2011 competition2. In our experiments, the time limit
was set at 600 seconds. The number of runs per solver are 50 times for cbmc
and 10 times for SAT Competition instances. The two PCF variants in the ex-
periments are PCFv and PCFs, which employ variable weights and stagnation
weights as the diversification criteria. The experiments were conducted on Grif-
fith University Gowonda HPC Cluster Intel(R) Xeon(R) CPU X5650 2.67GHz.
Our proposed algorithms PCFv and PCFs were compared with seven common
SLS solvers:

– VW2, gNovelty+PCL: originally uses variable weights and stagnation weights.
– gNovelty+, sattime2011, EagleUP, Sparrow2011 [2], CCASat: are the top-3

best solvers of SAT competitions.

Table 1 and Table 2 present the results on structured instances (cbmc and
crafted 2012) and medium-sized random instances of SAT 2011. Performance of
a solver for a specific dataset are reported in three rows. The first and second
rows indicate the success rate and the average of median CPU times. The third
row specifies the number of flips in thousands. The number of flips of VW2,
Sparrow2011 and CCASat are not reported because of the over-flown counted
number of flipped in the VW2 , Sparrow2011; and CCASat did not provide that
information in the output.

1 http://people.cs.ubc.ca/davet/papers/sat10-dave-instances.zip
2 http://www.satcompetition.org

http://people.cs.ubc.ca/davet/papers/sat10-dave-instances.zip
http://www.satcompetition.org


174 T.-T. Duong, D.-N. Pham, and A. Sattar

Table 1. Results on the cbmc, Crafted 2012

Instances VW2 gNovelty+ sattime2011 EagleUP Sparrow2011 gNovelty+PCL CCASat PCFv PCFs

cbmc 31% 85% 54% 0% 51% 100% 54% 100% 100%

(39) 439.128 247.997 322.528 600.000 384.359 1.453 276.196 0.634 1.013

- 230, 030 354, 874 544, 647 - 1, 287 - 523 782

Crafted 0% 88% 84% 23% 70% 88% 82% 93% 95%

(74) 600.000 91.896 107.680 464.004 230.463 128.590 115.210 73.552 70.377

- 22, 476 22, 784 142, 440 - 38, 067 - 13, 725 13, 234

As presented in Table 1, gNovelty+PCL , PCFv and PCFs are the three solvers
gaining a success rate of 100%. Among them, two variants of PCF performed
better than gNovelty+PCL. In regards to crafted instances, the two PCF variants
gained better results than other solvers in terms of success rate, CPU time and
flips.

Table 2. Results on SAT2011 Medium size

Instances VW2 gNovelty+ sattime2011 EagleUP Sparrow2011 gNovelty+PCL CCASat PCFv PCFs

3-SAT 1% 50% 100% 100% 100% 93% 98% 100% 100%

(100) 595.033 336.962 0.880 6.471 20.498 52.893 9.691 1.378 1.966

- 445, 280 1, 504 9, 631 - 98, 343 - 1, 863 2, 688

5-SAT 36% 98% 100% 100% 100% 98% 100% 100% 100%

(50) 410.750 48.136 3.815 30.260 55.846 27.300 7.199 2.889 3.277

- 20, 391 2, 275 14, 925 - 15, 134 - 1, 280 1, 473

7-SAT 37% 100% 100% 100% 98% 100% 94% 100% 100%

(51) 400.219 20.026 9.454 23.917 65.350 22.152 51.236 7.944 7.439

- 3, 360 2, 255 5, 301 - 4, 874 - 1, 250 1, 203

Random 19% 75% 100% 100% 100% 96% 98% 100% 100%

Medium 499.761 184.698 3.785 16.815 40.671 38.726 19.613 3.420 3.681

(201) - 227, 457 1, 887 9, 849 - 53, 928 - 1, 562 2, 009

The medium-sized random instances in Table 2 are categorized into three
subsets: 3-SAT, 5-SAT and 7-SAT 3. On random 3-SAT instances, sattime2011,
Sparrow2011, PCFv and PCFs are the four solvers having a success rate of 100%.
Among the four solvers, sattime2011 is the best solver in terms of the average
time of 0.88 seconds and the number of flips. Although PCF is not the best
solver on 3-SAT instances, the two PCF variants performed well compared with
other solvers on 5-SAT and 7-SAT. More specifically, in random 5-SAT, PCFv is
the best solver with an average time of 2.899 seconds. On the other hand, PCFs

performed better than PCFv with an average time of 7.439 seconds. For the
whole dataset, PCFv is considered better than PCFs in terms of average CPU
time of 3.42 and 3.681 respectively. It is clear from the Table 2, the two PCF
variants generally performed well in medium-sized random instances compared
with other solvers in the experiments.

3 Random k-SAT instances consistently have k variables in every clause.



Diversify Intensification Phases in Local Search for SAT 175

Figure 1 illustrates the comparison of solvers for cbmc and SAT 2011 Random
Medium and SAT 2012 Crafted instances. The comparison is plotted in the log-
log scale cactus presenting the distribution of the number of solved runs when
the time limit increases. A run of an instance with a solver is defined as solved if
it produces a solution within the given time limit. The x-axis corresponds to the
time limit in seconds and the y-axis presents the number of solved runs within
the corresponding time limit. The data points in these figures are plotted in
every 50 seconds.

According to Figure 1(a) on the cbmc dataset, PCFv, PCFs and
gNovelty+PCL are outperformed other solvers. In the SAT 2011 RandomMedium
dataset, PCFs, PCFv and sattime2011 were consistently better than other solvers
as displayed in Figure 1(b). The plot displayed in Figure 1(c) indicates that PCFs

and PCFv steadily improved upon other solvers in crafted instances of the SAT
2012 competition. More specifically, PCFs was not as good as PCFv until 150
seconds but surpasses PCFv thereafter.
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5.1 Analysis of Parameter Configurations

The parameter configurations for PCF variants were optimized separately on each
instance set within {0.5;1;1.5;2;2.5;3} days by ParamILS with its default setting.
ParamILS is a local search optimization tool for parameterized algorithms [9]. The
best parameter settings of PCF variants are reported in Table 3. The sets for train-
ing and testing were divided half and separately from the original sets.

Table 3. PCF parameters trained by ParamILS

Solvers cbmc Crafted Random

tenure α sp tenure α sp tenure α sp

PCFv n/a 0.5 0.1 n/a 0.05 0.30 n/a 0.15 0.30

PCFs 30 0.5 0.1 30 0.05 0.3 15 0.05 0.35

As can be seen in Table 3 for cbmc, the α values are high. In contrast, for
crafted and random instances, α converges to low values (i.e. 5% for crafted in-
stances for two PCF variants and 15% and 5% for PCFv and PCFs for random
instances). The α values for cbmc instances are high to keep the diversifica-
tion probability high, whereas the diversification probability should be set low
for random and crafted instances. This situation probably arises because cbmc
instances are highly-constrained problems. In such instances, local minima are
results of the conflicts between constraints and the current solution candidate.
For this reason, too much greedy exploration in local searching areas will lead
search trajectory to trapped areas. This situation, however, is not as problematic
as random instances because random instances are formulated by randomization
mechanism and are not embedded highly-constrained information in the struc-
tures. Therefore, the search trajectory is able to sufficiently overcome the traps
and archive the optimal solution.

6 Conclusion and Future Work

In summary, we proposed a new local search solver for SAT named PCF, which
integrates our new probability-based scoring function and variable diversifica-
tion criteria. The dynamic scoring function is a combination of greediness and
diversification capability. The main contribution of this study is modeling the
probability distribution for each variable as a dynamic scoring function. An ad-
ditional contribution of this work is to examine the effect of two diversification
criteria of variable properties (e.g variable weights and stagnation weights) in the
new scoring function. The probabilistic function is the new regulation between
intensification in terms of the clause-weighting score and diversification in terms
of variable properties.

The experiments showed that the new solver PCF significantly improved on
the performance of other solvers. Comparative experiments demonstrated that
the proposed approach outperformed original solvers (e.g. gNovelty+, VW2 and
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gNovelty+PCL). Furthermore, PCF outperformed other contemporary solvers on
structure problems andmedium-sized random instances.Our observation fromop-
timization parameters suggests that the diversification parameter α for the verifi-
cation benchmark and structure instances should be assigned high. In contrast, for
random and crafted instances, diversification probability should be defined low.

In future, we plan to apply the probability-based scoring function to other
solvers and self-tune the parameters α. Additionally, the intuitive research on
the different performance of PCFv and PCFs should be investigated thoroughly
on different benchmarks.
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Abstract. Techniques exist that enable problem-solvers to automati-
cally generate an almost unlimited number of heuristics for any given
problem. Since they are generated for a specific problem, the cost of se-
lecting a heuristic must be included in the cost of solving the problem.
This involves a tradeoff between the cost of selecting the heuristic and
the benefits of using that specific heuristic over using a default heuristic.
The question we investigate in this paper is how many heuristics can we
handle when selecting from a large number of heuristics and still have
the benefits outweigh the costs. The techniques we present in this paper
allow our system to handle several million candidate heuristics.

1 Introduction

Techniques exist that enable problem-solvers to automatically generate an al-
most unlimited number of heuristics for any given problem. These heuristics are
tailored to a given problem, therefore the cost of determining which heuristic
to use must be included in the cost of solving the problem. The system must
weigh the costs of selecting a heuristic against the savings resulting from using
that better heuristic instead of a default heuristic. As runtime is an important
criteria for evaluating problem-solvers, costs and savings should be expressed in
terms of the impact on the system’s total runtime.

Most of these techniques create new heuristics by combining heuristics. There
are three standard ways of combining heuristics: maxing over them, randomly
picking one of them, and summing their values together. Maxing is currently the
most common way of combining heuristics. In this paper, we call the heuristics
that are being combined base heuristics and the combined heuristic is a heuris-
tic combination. Our system, RIDA* (Reconfigurable IDA*), is given a set of
heuristics from which it finds a “good” combination to max over.

A parametric model for heuristic search is at the heart of the system’s rea-
soning about runtimes of heuristic combinations. The model has variables that
specify the problem solver’s per node runtime costs as well as variables specify-
ing the number of nodes in the search tree. Some of these variables (e.g., average
branching factor (ABF)) cannot be determined a priori. Our system estimates
these values by sampling the behavior of the different heuristics while expanding
early portions of the problem’s search tree. The most expensive calculation is the
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ABF of the heuristic combinations. This paper presents techniques for reducing
the runtime costs for determining the ABF.

These techniques allow RIDA* to handle several million heuristic combina-
tions and still show a reduction in total runtime over simply using the default
heuristic, maxing over the set of base heuristics. We have tested RIDA* using
two sliding tile puzzles (the 15-puzzle and 24-puzzle) with IDA* and the Towers
of Hanoi (ToH) with A*. The base heuristics used were PDB-based heuristics.

2 Parametric Model

T ime(comb, iter) =Nodes(comb, iter) ∗ t(comb) (1)

Nodes(comb, iter) =SampledNodes(comb) ∗ ABF (comb)D (2)

ABF (comb) =
Nodes(comb, LastSampledIteration)

Nodes(comb, P enultimateSampledIteration)
(3)

D =F (CurrentIteration) − F (LastSampledIteration) (4)

Equation 1 is used by RIDA* to estimate the time performance for every heuris-
tic combination it considers. t(comb) is the sum of the average cost of generating
a node plus the average cost of evaluating the node for each of the base heuristics
in comb. The evaluation of the base heuristics is the average per node evaluation
time of a base heuristic. This is determined a priori, i.e., before solving any prob-
lems, for the domain. Equation 1 needs to know the number of nodes generated
for the previous iteration. Equation 2 estimates the number of nodes generated
for the current iteration based on two parameters: the number of nodes gen-
erated for the combination on the previous iteration (SampledNodes) and the
Average Branching Factor(ABF). D stands for the difference between the previ-
ous iteration’s f-limit and this iteration’s f-limit, IDA*’s f-limits need not go up
by one for successive iterations. For example, the f-limits for the 8-puzzle using
Manhattan Distance heuristic, usually goes up by 2 for each iteration. RIDA*
assumes that if a sufficiently large part of the search space has been sampled,
then ABF behaves asymptotically for the remaining iterations until a solution
is found. F is the f-limit for an iteration.

The proposed parametric model requires RIDA* to sample enough IDA* iter-
ations to be able to make good predictions for each combination, assuming the
ABF behaves asymptotically. Doing this naively, i.e. sampling each combination
by growing a separate search tree, is too costly. The next section describes how
we reduce the sampling costs so that we can efficiently sample each combination.

3 Techniques for Reducing Sampling Costs

RIDA*’s parametric model requires the number of nodes generated in the last
sampled iteration and an average branching factor. There are two possible ap-
proaches to estimate these parameters, one is to calculate it as the ratio of
generated nodes between the last two sampled iterations. The other is to use
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models which are based on the probability distribution of heuristic values. The
latter is too memory intensive, see Section 4.

To calculate the average branching factor we need to count how many nodes
a heuristic combination generated on the current iteration compared to how
many it generated on the previous iteration. The naive way of doing this is,
for each heuristic combination, grow a search tree deep enough to get a useful
estimate of that combination’s average branching factor. However, there is a lot
of redundancy in growing the search trees. Many of the nodes are going to be
common to many of the search trees.

To minimize the costs of sampling multiple heuristic combinations we cre-
ated a data structure called the Heuristic Union Search Tree(HUST ). A regular
heuristic search tree, which we call a maxTree, assigns to each node the maximum
heuristic value. The HUST can be seen as the union of all the maxTrees that
would have resulted if we had grown a separate search tree for each combination.

Nodes in the HUST are pruned only if all heuristics prune them. By contrast,
maxTrees will prune a node if any of the available heuristics prune it. For each
iteration there is a maxTree for each heuristic combination. There is only one
HUST for each iteration and each of the maxTrees is a subtree of the HUST.

The HUST is the union of all possible maxTrees. It is more efficient than
doing all possible maxTrees because nodes common to two or more heuristic
combinations are represented as one node in the HUST. Hence the HUST of an
iteration is a lossless compression of all the maxTrees of that iteration.

HUSTs are substantially larger than any single maxTree for the same iteration.
In order to achieve our objective of keeping the sampling costs low we need to
stop growing the HUST at least one iteration before the solution for the current
problem instance. If the problem instance is solved while we are generating the
HUST, the resulting time performance will be as bad, if not worse, than the
worst available heuristic combination.

Note that in order to generate the HUST we do not need to evaluate all
heuristics in the set for each node. Once a heuristic prunes a node, the heuristic
is suspended until IDA* backtracks past this node. There is a small associated
bookkeeping cost, but its negligible compared to the resulting savings.

3.1 The Credit Assignment Problem

The HUST reduces the sampling costs via eliminating the generation of redun-
dant nodes. Any node which is reachable by any heuristic combination is present
once and only once in the HUST. Hence, creating a HUST reduces node redun-
dancy from up to 2H to 1 where H is the number of base heuristics in the set.

This merging of search trees removes some of the redundant work in growing
multiple maxTrees, however, we can go further. Even if nodes are being generated
only once for multiple heuristic combinations, we need to account for which
combinations were responsible for generating each of the HUST’s nodes. We call
this the “credit assignment problem”. In a naive implementation of the HUST,
we would still treat each heuristic combination separately. We would evaluate
each node with every combination of heuristics and would count how many
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nodes would be expanded by each combination. This means that every node is
evaluated by every heuristic combination, and then added to the corresponding
combination counters. This is an extremely high overhead per node.

We need to reduce these per node costs. Ideally we would like to reduce the
evaluation costs from using every heuristic combination to only using every base
heuristic We can certainly do that by using the HUST’s expansion rule, i.e.
expand any node if any base heuristic would expand it. This way we know that
some combination would expand that node and therefore we want to expand
that node in the HUST. However, this makes the proper accounting of how
many nodes each heuristic combination would expand more complicated. How
do we keep the accounting straight?

Ideally, we would like to reduce the number of additions per node to one,
but is that possible? While it is not strictly possible we have come close to that
ideal. We have split the counting into two phases. One phase is while growing
the HUST. The second phase is after growing the HUST when we compute the
generated nodes and branching factors for the different heuristic combinations.

The first phase calculates which base heuristics are “guilty” of expanding a
node. We call this heuristic a “culprit”. For each expanded node, we associate a
“culprit id” (CI) which identifies all the heuristics which would expand the node.
Examples of CIs are shown in Figure 1, e.g., the root’s CI is 111, which means
that all three heuristics expanded the root node. We have a counter, called a
“culprit counter”(CC ), for each CI. When we expand a node, we update its CC
(the one associated with its CI). An example of a CC is in Figure 1 where the CC
for CI 100 is shown as six. Therefore we only do 1 counter update per expanded
node, while growing the tree.

In the second phase we compute how many nodes a particular heuristic com-
bination would have generated (storing this number in Heuristic Combination
Counters (HCC)), if we had grown its search tree (maximizing all heuristics in
the combination). For example, in Figure 1 the HCC for CI 100 is nine. We do
this using the CCs we updated while growing the HUST. We need to clarify the
relation between what nodes were expanded by a given CI in the HUST and what
nodes a given combination of heuristics would have expanded in its own search
tree. Happily, this relation is straightforward. Given a heuristic combination, it
only expands a node if all of its heuristics would expand that node. So given a CI,
we would add its associated CC to the HCC only if the “guilty” heuristics in the
CI are a superset of the heuristics in the combination, we call this a Contribut-
ingCC. This means we can compute the nodes that would have been generated
by a given heuristic combination by summing together all of the CCs for CIs
which represent supersets of the heuristics in that combination. Note that we
only keep track of non-zero culprit counters. Also note, that depending upon the
number of base heuristics, there could have been far fewer nodes expanded in
the HUST than the number of possible heuristic combinations. Therefore if we
have a smart way of selecting interesting combinations, we can calculate those
combinations without having to explicitly deal with all possible combinations.
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In the worst case, in the second phase we have a separate culprit counter for
each node in the HUST, but this is unlikely.

3.2 Culprit Counters Example

We will be referring to an example search tree (Figure 1) to explain RIDA*’s
HUST and CCs. The HUST’s objective is to cheaply measure the number of
generated nodes, for any heuristic combination, up to the current IDA*’s f-limit1.
RIDA* uses the estimated generated nodes for each combination, together with
the sampled average branching factor, to predict the number of generated nodes
and ultimately search time for the next f-limit. Figure 1 is a HUST tree. Each
node is identified by its path, e.g. root’s left child is called “L” and L’s right
child is called “LR”. Note that the node also contains which heuristics expanded
it (1) and which prune it (0), e.g. 100 means that only h1 expands this node.

Fig. 1. Example HUST with 3 heuristics (h1,h2,h3)

Table 1. CCs and Heuristic Combination Counters(HCC ) for Example Fig. 1

Populated Culprit Counters

CI Associated Children Nodes

111 CC(111)=2
011 CC(011)=4
100 CC(100)=6
010 CC(010)=2

Generated Nodes When Using Maximization

Heuristic Combinations Generated Nodes

h1&h2&h3 HCC(111) = 1 +
∑

CC(111) = 3
h1&h2 HCC(110) = 1 +

∑
CC(11X) = 3

h1 HCC(100) = 1 +
∑

CC(1XX) = 9
. . . . . .

1 IDA* iteratively expands its search tree down to a given f-value, called its f-limit.
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RIDA* solves the credit assignment problem by using the Culprit Coun-
ters(CC). For instance, given a set of three heuristics, CC(100) = 6 means
that only six nodes in the HUST were generated by parent nodes on which the
first heuristic was below the f-limit but pruned by the other two (their f-value
was higher than the current f-limit). Table 1 shows how RIDA* uses CCs to
calculate the number of nodes generated by any heuristic combination by sum-
ming the corresponding CCs, e.g. to calculate how many nodes were generated
by maximizing heuristics h1 and h2, sum all CCs whose first and second bit
indexes are one plus the root node. For example, HCC(100) = 1 (for the root
node) + CC(111) + CC(100) = 9.

The CC solution has four main strengths. Firstly, it reduces the per node
costs from exponential to linear as a function of the number of base heuristics.
Secondly, the on-line bookkeeping costs are reduced further by only updating the
corresponding CC when a node is expanded. Pruned nodes have no bookkeeping
costs. Thirdly, CCs are memory efficient, we only generate a CC if the specific CI
generated a node in the HUST. For example, in Figure 1 there are no nodes that
were only expanded by heuristic h3, therefore there are no culprit counters for
the culprit id 001. Note a large collection of HUST nodes can be represented by a
single CC. Lastly, it enables RIDA* to only solve the credit assignment problem
once per iteration instead of once per generated node. Without a solution like
CCs, sampling a large number of heuristic combinations would be impractical
due to large bookkeeping costs.

3.3 Managing Large Powersets

Unfortunately, for the post-sampling phase, the number of heuristic combina-
tions grows exponentially as a function of the number of base heuristics. For
example, for a set of 100 heuristics there are 2100 = 1.27 ∗ 1030 heuristic combi-
nations. In this paper the biggest set is even larger (120 heuristics for ToH). The
time it takes to solve the credit assignment problem should be small enough to
keep some of the HUST’s overall savings. We now describe two techniques used
to reduce the cost of the post-sampling phase.

Limiting the Combination Degree. The first technique is to limit the Maxi-
mum Combination Degree (MCD). Taking advantage of the diminishing returns
property, we focus the sampling on the lower combination degrees by ignoring all
heuristic combinations above a predetermined degree. This reduces the number

of heuristic combinations which need to be computed from 2H to
i=MCD∑

i=1

(
H
i

)
, H

being the number of base heuristics. The maximum practical MCD depends on
the number of base heuristics. In our experiments we show that it works quite
well for up to 120 heuristics. Since the total number of heuristic combinations is
the number of base heuristics choose MCD, this means that the larger the set of
base heuristics, the lower the MCD must be, otherwise there would be too many
counters to fit into memory. However, RIDA*’s objective is not to select the best
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possible combination, but to balance the in situ prediction costs against their
potential savings.

Sparse Representation of the Culprit Counter Lattice. The search trees
we are creating in this paper’s experiments can be several hundred million nodes.
But, as previously said, the number of possible heuristic combinations can be
many orders of magnitude larger. Evidence from our experiments with the 100
heuristic set in the 24-puzzle domain shows that for the HUST tree, which has a
few million nodes, there are less than a million CCs. Given 100 base heuristics,
there could theoretically be up to 1030 CCs which is approximately 24 orders
of magnitude greater than the number of CCs that were actually created. The
more base heuristics the sparser the CC lattice is. The intuitive reason is that as
only one CC, at most, can be populated for each expanded HUST node, and the
number of nodes generated is orders of magnitude smaller than the amount of
possible heuristic combinations, the CC lattice must be very sparsely populated
for large sets of base heuristics.

Equation 5 calculates the number of additions, per populated CC, to calculate
the number of generated nodes for all heuristic combinations up to the maximum
combination degree(MCD). Each CC contributes to those combinations where its
set of generating heuristics is a superset of the combination’s heuristics. Hence,
the maximum combination degree each CC contributes to ActvDegree is the
smallest of either the MCD or the number of contributing heuristics ( called in
the equation the NumContributingCC). For instance, if the culprit counter has
two expanding heuristics then it only contributes to heuristic combinations of
degree one or two, any degree combinations of three or higher would not have
generated the CC’s associated nodes because at least one base heuristic would
prune them.

T otalCCsAdditions ≤
∑
∀ CC

ActvDegree∑
i=1

(
H

i

)
(5)

ActvDegree = min(MCD , NumContributingCC)

3.4 Capping Limit

The purpose of the HUST in RIDA* is to sample enough nodes for each heuristic
combination so that we can make good predictions of their branching factors, but
not so many nodes that the sampling cost is too expensive. The worst heuristic
combinations can create maxTrees whose size is orders of magnitude larger than
their more informed counterparts for the same f-limit. Hence we are potentially
investing much more sampling effort on the worst heuristics while making lower
quality predictions, due to their low sampling frequency, on the better heuristic
combinations. We solve this by capping the HUST.

Capping the HUST means that once any of the base heuristics expands more
nodes than a predetermined number, we call the capping limit, we will stop
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expanding any heuristic combinations using this heuristic for future HUST iter-
ations. Hence sampling effort is more evenly split over all heuristic combinations.
In Section 5 we show that by using the right capping limits we can achieve a
good prediction quality while keeping sampling costs reasonable. Once all the
base heuristics are capped, RIDA* makes its selection and solves the rest of the
problem using maximization.

3.5 Summary

Using the HUST and CCs reduces several sources of redundancy from repeatedly
regrowing parts of the search tree, repeated base heuristic evaluations of a node
(base heuristics are repeated within different combinations), and aggregating
counts by CIs so that we have many fewer additions to perform overall.

4 Related Research

Parametric models In the last decade there has been significant research into
improving heuristic performance prediction. This paper introduces a new para-
metric model to predict the performance of heuristics. Lopez and Junghanns[1]
introduced a parametric model of perimeter search which enabled his system
to predict the optimal perimeter depth. Their work is the only other work that
actually uses a runtime formula to modify their problem solving behavior.

Selective Maxing Using Bayesian Classifiers. The only other system which
makes efficient in situ heuristic selections in the context of optimal search, given a
set of heuristics, is [5]. It is based on using Bayesian classifiers to select heuristics
on a state-by-state basis. The first important difference between [5] and RIDA*
is that their system has on-line meta-reasoning costs for every generated node.
RIDA* instead uses the early IDA* iterations of a problem to gather data up
to a sampling cap. Once RIDA* has made a selection for the current problem,
there are no more meta-reasoning costs. This also means that RIDA* cannot
adapt its choice if its initial sampling is not representative of the whole problem.

Secondly, their experiments used heuristics which have large on-line overheads.
Note that their meta-reasoning increases the average overhead for all generated
nodes. It would be harder for such a system to be as efficient when using pre-
calculated heuristics. RIDA*’s sampling mechanism is designed to be efficient
even when using heuristics with a small on-line overhead.

Finally, their heuristic set contains only two heuristics. Their paper states
that the number of classifiers it needs to update on-line, and presumably the
overhead costs, grow quadratically as a function of the number of base heuristics.
This means that for the larger heuristic sets used in our experiments their on-line
meta-reasoning costs would increase by 4 orders of magnitude. That would make
their listed 2% average meta-reasoning costs per node too expensive. RIDA*’s
on-line meta-reasoning costs grow linearly instead of quadratically.
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Choosing Heuristics Based on the Number of Generated Nodes. There
are several papers on how to generate the best abstraction-based heuristics, e.g.
iPDB [7], Merge-and-Shrink [8], etc. There are surprisingly few examples at-
tempting to efficiently and automatically select from different types of admissible
heuristics in situ in the context of optimal search.

All these heuristic generation procedures do a restricted on-line heuristic se-
lection, to determine which abstractions will reduce the search space the most.
The main difference with our approach is that RIDA* is using a parametric
model to estimate which heuristic combination will solve the problem faster.
Generating the lowest amount of nodes does not guarantee the fastest solving
time, otherwise maximizing all available heuristics would always be the fastest
option. Even though it is not done in this paper, RIDA* handles heuristics with
very different evaluation times.

5 Experiments

For the 15-puzzle we used a manually selected set of 5 PDB-based heuristics for
a suite of 1,000 random problems. The heuristics were manually generated to
complement each other.

For the 24-puzzle we decided to automatically generate sets of heuristics. Each
pattern was selected randomly, albeit with the condition that the patterns must
be “neighours” in the goal description, and also no pattern is repeated. The main
difference with the manual selection of PDBs for the 15-puzzle is that we did not
take into account how well each generated heuristic will complement the other
heuristics in the set. This makes the heuristic set more amenable to RIDA*, i.e.
RIDA* finds the heuristic subset which it estimates to be most complementary
while balancing this with the overhead costs to select good heuristic subsets.
We created a set of 100 heuristics. We only included 9 random problems for
the 24-puzzle set. The problems take about a month to solve when evaluating
performance against maximizing over the whole set.

The ToH problem is a classic search problem, consisting of 3 pegs and a set of
disks. We used 4 pegs because there is no known deterministic algorithm which
guarantees an optimal solution for the 4 peg problem[9]. The heuristic set was
created using the same pattern database as in [9]. They calculated the largest
pattern which can fit in memory, then use the domain symmetries to generate a
large set of a hundred and twenty heuristics [9].

5.1 Sampling Cost Savings

Table 2 shows how increasing the number of combinations generally increases re-
dundancy compression and time compression. The number of populated Culprit
Counters is also a factor on the HUST’s savings ratio.

In general, the more heuristic combinations in the set, the bigger the redun-
dancy reduction (second column). Note that the number of combinations RIDA*



A New Efficient In Situ Sampling Model 187

Table 2. Sampling Savings w/wo Credit Assignment(CA)

15-puzzle

Heuristic Set Redundancya Time Compressb TC after CAc

5 heuristics, MCD=5, 32 combos 4.04 3.85 3.85

24-puzzle

Heuristic Set Redundancy Time Compress TC after CA

8 heurs, MCD=8, 256 combos 3.01 2.12 2.12

25 heurs, MCD=4, 1.53E+004 combos 47.41 22.37 21.7

25 heurs, MCD=5, 6.84E+004 combos 121.43 65.98 58.79

100 heurs, MCD=3, 1.67E+005 combos 367.26 52.50 32.67

50 heurs, MCD=4, 2.51E+005 combos 463.58 143.70 68.91

50 heurs, MCD=5, 2.37E+006 combos 2326.40 910.89 85.43

100 heurs, MCD=4, 4.09E+006 combos 2496.51 703.10 47.59

Towers of Hanoi

Heuristic Set Redundancy Time Compress TC after CA

120, MCD=3, 2.88E+005 combos 10,173 1,696.51 768.35

120, MCD=4, 8.50+006 combos 204,589 34,900 709.25

a Redundancy Reduction = NodesGenerated by AllPossibleSubsets
Nodes generated in HUST

b T ime Compression = Time to Generate All Possible Subsets
Time to Generate HUST

c HUST’s Time Compression after solving credit assignment problem.

considers is a function of the number of heuristics in the set and the maximum
combination degree being considered. Solving the credit assignment can signifi-
cantly reduce the overall time savings.

5.2 Overall Runtime Results

The first part of Table 3 shows that RIDA* was only slightly faster than simply
maximizing the heuristic set on the 15-puzzle. The reason for the poor perfor-
mance improvement is that the heuristic set is made of a small number of base
heuristics which were generated manually to complement each other. RIDA*
could not find significant savings by selecting a subset of these heuristics. For
the 24-puzzle, Table 3 shows the overall speed up achieved when using RIDA*
compared to simply maximizing over 25, 50 and 100 heuristics sets respectively.
The overall times for each set is calculated by summing over all 9 problems. The
best results are achieved for the 100 heuristic set, where RIDA* is 3.91 times
faster than using the default combination. Note that the overall times being
compared include all RIDA* sampling and prediction costs. It is interesting to
note that for the two biggest heuristic sets (50 and 100 heuristics) the better
Maximum Combination Degree(MCD) is getting smaller. The reason for the
poorer performance of larger MCDs is the high costs associated with solving the
credit assignment problem for large heuristic sets. However, note that even when
RIDA* is dealing with 4 million heuristic combinations (100 base heuristics and
MCD = 4), its speed-up ratio is 3.54.
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Table 3. RIDA*’s Speed-up ratio vs Maximization Speed up Ratio(SR) =
Maximize Whole Set Runtime

RIDA ∗ Overall Runtime

Fifteen Puzzle
5 Heuristic Set,MCD 5,Capping Limit=5,000 nodes.

SR=1.17

Twenty-Four Puzzle
Capping Limit = 5 Million Nodes

25 Heuristic Set 50 Heuristic Set 100 Heuristic Set
MCD 4 MCD 5 MCD 4 MCD 5 MCD 3 MCD 4
SR=1.83 SR=2.03 SR=3.10 SR=3.04 SR=3.9 SR=3.54

Towers of Hanoi (16 Disks, 4 Pegs)
120 Heuristic Set, Capping Limit=100,000 nodes

MCD 3 MCD 4
SR=4.12 SR=1.36

The third part of Table 3 lists the speed-up ratio when using RIDA* with
an MCD of 3 in the Towers of Hanoi (ToH) domain as 4.12 times faster but
with an MCD of 4 RIDA* is only 1.36 times faster. The best results in our
experiments were obtained in the ToH domain with a MCD of 3. The same
reasoning as before applies for using this low MCD. Namely the high cost of
solving the credit assignment problem for higher MCDs causes the speed-up
ratio to drop significantly when RIDA* uses an MCD of 4. An MCD of 4 with
120 base heuristics created 8.5 million heuristic combinations. The cost of just
computing the combination counters from the culprit counters for an MCD of
4 was twice the total cost of solving the problem when the MCD was 3. This
illustrates that our current techniques do have limits on how many heuristic
combinations they can handle.

6 Conclusions

The goal of this paper was to investigate how many heuristic combinations
RIDA* can handle and still solve the problem faster than simply maxing over
the set of base heuristics. In our experiments we showed that on the 24-puzzle
even when handling 4 million heuristic combinations, RIDA* was significantly
faster (speed-up ratio of 3.54) than the default heuristic. However, our exper-
iments showed that on ToH 8.5 million heuristic combinations was not much
faster (speed-up ratio of 1.36) than the default.

RIDA* uses 4 different techniques to reduce the cost of computing the quality
of the heuristic combinations. Firstly, the HUST reduces the number of dupli-
cated nodes produced during sampling. Secondly, the culprit counters reduce the
number of heuristic evaluations of a state from the number of heuristic combina-
tions to the number of base heuristics and reduce the number of counter updates
per expanded node from the number of heuristic combinations to just 1. Thirdly,
only non-zero culprit counters are stored which reduces the number of culprit
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counters needed from the number of heuristic combinations to a worst case of
the number of internal nodes in the HUST. Lastly, the law of diminishing returns
allows us to limit the number of base heuristics in any single combination, which
reduces the number of combinations considered from 2H to a few million.

This is the only study where so many heuristic combinations were evaluated
on-line. Our conclusion is that using techniques, like the ones described in this
paper, makes it possible to reduce the cost of evaluating combinations to the
point where a system can evaluate relatively large numbers of heuristic combi-
nations and still have the savings outweigh the cost.
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Abstract. Research in traffic assignment relies largely on experimentation. The
outcomes of experiments using different traffic assignment methods on different
road network scenarios may vary greatly. It is difficult for the reader to assess
the quality of the results without prior knowledge about the difficulty of the road
network. In the current work, we propose an approximate metric to characterise
the difficulty of network scenarios which takes travellers’ origins and destinations
as well as link capacities into account rather than relying on the size of the net-
work. As this metric considers number of overlapping routes between the origins
and destinations of the travelles, a higher number in the metric would indicate a
higher possibility of congestion in the road network scenario.

Keywords: Traffic Assignment, Evolutionary Optimisation, Network Complex-
ity, Experimental Evaluation.

1 Introduction

The road network is used by travellers who make trips from origins to destinations.
Given these origin-destination (OD) pairs, the travellers usually have a set of route op-
tions to choose from. The selection of a route for an OD pair is known as traffic assign-
ment (TA). TA is the cause of the distribution of traffic on the road network. Researchers
have used a variety of approaches to approximate traffic distributions. Among others,
multiagent systems [1,2], evolutionary games and evolutionary algorithms such as ge-
netic algorithms [3] and ant colony optimisation [5] have been applied to the problem.
To test their approaches, many authors have performed experiments either on hypothet-
ical road networks or road networks modelled on real geographical areas. However, the
results of different TA approaches over different road networks cannot be compared
easily, as there is no a priori indication of the results to be expected.

The success of road traffic optimisation is mostly measured in terms of the cost in-
curred by the traveller. Often, this cost is expressed as travel time. To assess the success
of a TA approach, it would be helpful to have an indication how ‘difficult’ the optimised
network scenario is. Larger road networks would appear more difficult for road traffic
optimisation. However, in road traffic scenarios, the difficulty in achieving an optimal
distribution of travellers arises not from the number of links available between an origin
and a destination, but rather the number of travellers competing for road capacity. The
deciding factor is where the travellers come from and where they wish to go, which
forms the OD pair of a traveller. A network may be very simple for one set of OD pairs
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which have no or few overlapping routes, whereas the same network may become very
complex for another set of OD pairs which have many overlapping routes. We refer to
networks in combination with OD pairs as traffic scenarios.

The difficulty measure for road network experimentation proposed here is based on
how many times each link is included in the alternative routes between each OD pair.
Thus, practitioners can have an expectation of congestion in a road network scenario by
the value of this metric.

2 Traffic Assignment Experimentation

In transport modelling, the most commonly applied state-of-the-art technique is the so-
called four-step model: trip generation, trip distribution, mode choice and traffic assign-
ment [6,7,8]. The last step, traffic assignment (TA) has been receiving much attention
from a number of researchers internationally.

Chen and Ben-Akiva [9] attempted to achieve optimal traffic flows by applying
game-theoretic formulations. The authors evaluated their methods on a simple hypo-
thetical network with seven nodes, seven links and 3 OD pairs. Bazzan and Klügl [1]
investigated the behaviour of agents under the effect of real-time information and thus
studied how the agents change their route mid-way. Their experimental scenario was
a 6x6 grid network with 36 nodes and 60 one-way links. The scenario had three main
origins and one main destination as well as several other origins and destinations with
some probabilities. Zhu et al. [2] proposed an agent-based route choice (ARC) model
where nodes, links and travellers were modelled as agents. The agents achieve an equi-
librium by exchanging experience of previous route choices. The authors reported the
results in terms of link flows from experiments on the Sioux-Falls network, which has
24 nodes and 76 links. They also demonstrated their approach on the Chicago Sketch
Network with 933 nodes and 2950 links.

Kitamura and Nakayama [10] investigated the effect of distributing information about
travel time to the travellers. The experiments were performed on a network with only
three nodes and three links with two OD pairs. The investigation was based on the Mi-
nority Game (MG) model introduced by Challet and Zhang [11] which shows emerging
cooperation among the agents by means of self-organisation without precise informa-
tion. Galib and Moser [12] proposed using modified MG for TA. The approach was
demonstrated on a network with 10 nodes, 24 links and 9 OD pairs. The network sce-
nario was chosen to represent a ‘difficult’ situation with many overlapping routes.

In an attempt to assess the degree of challenge posed by the network, Bazzan and
Klügl [1] discussed the complexity of the 6x6 grid they used for experimentation. Their
explanation of the network complexity considers the distribution of OD combinations
and defines the capacity of the roads as non-homogeneous. The researchers except Baz-
zan and Klügl [1], mentioned in this section, did not attempt to measure or assess the
difficulty of their road network scenarios.

Defining the difficulty of a network scenario or measuring network complexity has
been of interest in various disciplines [13,14]. In graph theory, the complexity of a
graph can be measured by the number of spanning trees the graph contains [15] or
by the minimum number of union and intersection operations required to obtain the
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whole set of its edges starting from the simplest graph (a star graph) [16]. Kim and Wil-
helm [17] and Da Costa, Rodrigues and Traviseo [18] have surveyed some approaches
which measure the complexity of graphs. Dehmer et al. [13] described how such com-
plexity measures can be applied to chemical structures. Strogatz [14] explored several
complications different types of networks may have and investigated the complexity of
networks in different scientific fields. However, methods based on graph theory do not
lend themselves for road networks because of the presence of OD pairs. Therefore, we
attempt to quantify the difficulty of road network scenarios using link cross-inclusion
between the OD pairs.

3 Quantifying Network Difficulty

3.1 Cross-Inclusion Factor

Road networks can differ in the number of nodes/intersections, number of links/roads,
and the average degree of the network i.e. the average number of roads connected to
an intersection, capacity and free flow travel time. From the point of view of TA, a
crucial factor is how quickly one can expect to travel from one node in the network to
another. From this point of view, one of the main contributors to network difficulty is
the distribution of the origins and destinations within the network. If the possible paths
between one OD pair are entirely separate from another, the difficulty of route choice
depends entirely on the driver having current information about the route alternatives
and their usages and capacities.

However, when links have to be shared between routes, the allocation task becomes
more difficult. Assuming, realistically, that most drivers with experience of travelling
from an origin to a destination are likely to allocate themselves to a set of the fastest
routes they are aware of, we are suggesting a difficulty measure which is based on
common link inclusions in the path options between OD pairs. To calculate link cross-
inclusion, we first apply a breadth-first graph traversal technique which determines the
shortest path between each intermediate node to the destination. To compile the set of
intermediate nodes between each OD pairs, we first traverse the road network as a graph
from the origin to the destination and then from the destination to the origin, collecting
the traversed nodes into two sets. The intersection of the sets results in a set of links that
comprise feasible routes between the origins and destinations.

Let G(V, E) be a road network where V is the set of nodes (intersections) and E is
the set of links (roads). The set of OD pairs is denoted by M , its cardinality |M |. The
links belonging to the shortest paths are comprised in the sets S1 − S|M|. We denote as
η the total number of links included in all shortest paths between the OD pairs in M .
Here, ω� and τ�,0 are the capacity and free flow travel time of the link �, respectively.
Considering xi as the proportion of travellers assigned to OD-pair i, we can calculate a
measure of difficulty CG for a network scenario as shown in Eq. 1.

CG =

∑|M|
i=1 xi

∑
�∈Si

(
1− ω�∑

�∈Si
ω�

)
∗ τ�,0∑

�∈S1−|M| τ�,0

η
(1)
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The cross-inclusion factor CG considers the cross-use of links in shortest paths between
origins and destinations, relative to all links used in shortest paths η. The link capacity
ω� is normalised and inverted, as an increased capacity is expected to lead to a shorter
travel time. Eq. 1 also considers the free flow travel times of the links τ�, which has
the opposite effect on the outcome, as larger free flow travel times are mostly - but
not exclusively - indications of the lengths of the links which increase the experienced
travel times. It can be argued that the inclusion of all path options between each node to
the destination is not necessary. However, when travellers choose a route from a node
to the destination, their decisions often change on the fly and second and third shortest
routes are included ad hoc. For this reason, we calculate the link cross-inclusion within
the shortest paths from each intermediate node to the destination.

The cross-inclusion factor x represents the number of drivers allocated to a particu-
lar OD pair as a proportion of all travellers. In traffic experimentation, the number of
travellers is often distributed uniformly among the OD pairs. In such a situation, the
factor xi in eq. 1 can be omitted. In realistic traffic scenarios, different percentages of
travellers will be travelling between the OD-pairs. Traffic authorities can be consulted
for the actual proportions in this case. In simulations, researchers may wish to vary the
proportions of travellers between the OD pairs.

3.2 Discussion

It is clear that the metric proposed is not without its limitations; a network scenario may
have several near-optimal routes from an origin to a destination, making it easy to find
alternative routes with low impact on the travel times in a case where some of the routes
are used by another OD pair.

Also, the heavy cross-inclusion of a few common links scores similarly on the cross-
usage metric as the sharing of a multitude of links between few OD pairs. The latter
situation is arguably less likely to have a severe impact on travel times.

A high cross-inclusion factor can also indicate that one or several links are shared
between OD pairs without other options. In such a case, the optimisation problem is not
difficult, as there are no options to optimise, but the resulting travel times are guaranteed
to by high. Therefore, cross-inclusion sometimes identifies unavoidable delays rather
than optimisation challenges. Even so, cross-usage can help adjust our expectation of
travel times resulting from TA experimentation.

4 Result

Results of TA experiments can be shown in terms of travellers’ travel times. One of the
most common alternatives for calculating travel times for each link in transportation re-
search is the BPR (Bureau of Public Roads) Volume Delay Function (VDF) [7], shown
in Eq. 2.

τ� = τ�,0 + [1 + α(
ρ�

C�
)β ] (2) τn =

∑
�∈�n

τ� (3)

where τ� is the travel time on link �, τ�,0 is the free flow link travel time for link �, C� is
the capacity of link �, ρ� is the traffic volume on link � and α and β are parameters. The
time to travel from an origin to a destination for a traveller can be calculated by Eq. 3.
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We simulate 1260 travellers in a road network of 1000 nodes and 2459 links. The
scenario has 9 OD pairs with 886 overlapped links between the OD pairs resulting in
a score of 2.74 on the difficulty measure. We subsequently removed the most included
link at a time and recalculated CG, repeating this process 9 times to obtain the scenarios
with the new cross-inclusion factors shown in the legend of Fig. 1.
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Fig. 1. Average travel times for OD pairs in a
network where the most heavily included link is
repeatedly removed

Higher cross-inclusion generally pre-
dicts longer travel times. Removing the
link which is included in the most
routes should, intuitively, lower the
cross-inclusion factor because the heav-
iest contributor has been removed. In
practice, the cross-inclusion factor can
rise or fall depending on the alternatives
included in the routes instead. The mag-
nitude of the link cross-inclusion factor
depends not only on the number of in-
clusions but also on the relative free flow
travel time and the relative capacity of
the link removed and the links taking its
place.

Fig. 1 illustrates that initially, links can be removed with the effect of lowering the
link cross-inclusion factor, when there are still links which can be included instead of the
removed link. However, as links are removed repeatedly, the cross-inclusion naturally
has an increasing trend, as fewer links are available and the cross-use becomes more
intense. Given the load is not adjusted, it is clear that the travel times also tend to rise.

5 Conclusion

Road traffic scenarios are largely dependent on the physical structure of the road net-
work - the network topology, the distribution of the OD pairs and their geograph-
ical/physical locations. Traffic Assignment methods proposed by researchers mainly
attempt to optimise the traffic distribution in the road networks. There has been a neces-
sity to define the level of difficulty of a road network scenario. Therefore, in this paper,
we have introduced a metric to quantify the difficulty level of a road network scenario.
As the topology of the network and graph theoretic methods to measure network com-
plexity do not sufficiently account for the difficulty of a road network scenario due to
the presence of the OD pairs, we proposed that the number of overlapping routes be-
tween the OD pairs can be a good indication to determine the degree of difficulty of a
road network scenario. A high score on the metric suggests that the network scenario
is difficult for the travellers to avoid congestion than a scenario with a low score on the
link-cross inclusion measure.

To evaluate a TA method, travellers using the method have to be simulated in real-
istic road network scenarios. The scenario can first be measured using the link cross-
inclusion metric. This provides an idea about the difficulty level of the scenario that
helps assess whether the TA method can easily avoid congestions. If there are many
overlapping links, the scenario would have a high score indicating a higher possibility
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of congestion on some links even though an intelligent TA method is applied. Thus, the
measure can help one reasonably expect the difficulty of optimising the traffic distribu-
tion in a road network scenario. Then the method can be simulated with a ‘reasonable’
or ‘optimisable’ traffic load in the road network scenario and finally the results of the
method in terms of travel times can be compared with those of a benchmark method
which has also been simulated with the same traffic load in the same scenario. There-
fore, the proposed metric can act as a part of the framework to evaluate TA experimen-
tations where proposing a benchmark TA approach with a traffic load categorisation
technique is our future work.
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Abstract. Many science and engineering applications require finding solutions 
to planning and optimization problems by satisfying a set of constraints. These 
constraint problems (CPs) are typically NP-complete and can be formalized as 
constraint satisfaction problems (CSPs) or constraint optimization problems 
(COPs). Evolutionary algorithms (EAs) are good solvers for optimization prob-
lems ubiquitous in various problem domains. A variation of EA - Intelligent 
constraint handling evolutionary algorithm (ICHEA) has been demonstrated to 
be a versatile constraints-guided EA for all forms of continuous constrained 
problems in our earlier works. In this paper we investigate an incremental ap-
proach through ICHEA in solving benchmark exam timetabling problems 
which is a classic discrete COP and compare its performance with other well-
known EAs. Incremental and exploratory search in constraint solving has 
shown improvement in the quality of solutions. 

Keywords: constraint satisfaction problems, constraint optimization problems, 
evolutionary algorithms, exam timetabling problems. 

1 Introduction 

Many engineering problems ranging from resource allocation and scheduling to fault 
diagnosis and design involve constraint satisfaction as an essential component that 
require finding solutions to satisfy a set of constraints over real numbers or discrete 
representation of constraints [12, 13, 19]. There are many classical algorithms that 
solve CSPs like branch and bound, backtrack algorithm, iterative forward search algo-
rithm, local search but heuristic methods such as evolutionary algorithms (EAs) have 
mixed success and for many difficult problems these are the only available choice [2, 
13, 17]. EAs however suffer from some of its inherent problems to solve CSPs as it 
does not make use of knowledge from constraints and blindly search in the vast solu-
tion space using its heuristic search mechanism. Constraints can reduce the search 
space and direct the evolutionary search towards feasible regions. Additionally large 
static CPs can be solved like a dynamic CP formulation where a subset of constraints 
is added incrementally. The incremental approach shows more effective results in 
terms of evaluation parameters of success rate (SR) and efficiency. SR is the rate of 
successful trials for each problem i.e.  /  . 
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The main contribution of this paper is to show that incremental approach in solving 
constraints leads to better quality solutions. Incremental approach also helps in getting 
feasible solutions without any need to have a separate bespoke algorithm. We have 
enhanced the existing ICHEA [20, 21] to solve discrete COPs. Now ICHEA can be 
used to solve any form of a CP. The paper is organized as follows: Section 2 describes 
the cost function of the benchmark timetabling problems and Section 3 describes how 
the algorithm of ICHEA incrementally solves them. Section 4 demonstrates experi-
ments on benchmark exam timetabling problems. Section 5 discusses the experimen-
tal results and Section 6 concludes the paper by summarizing the results confirming 
the claim against the established hypothesis and proposing some further possible ex-
tensions to the research. 

2 Solving Exam Timetabling Problems 

There are two types of constraints: if constraints are required to be satisfied under any 
circumstances to have an acceptable solution are known as hard constraints. Another 
type of constraints are called soft constraints that are considered to be desirable but 
not essential [3]. Solutions, which satisfy all the hard constraints, are often called 
feasible solutions. Soft constraints can have some degree of satisfaction or order of 
preferences for a particular problem. Soft constraints can be represented by penalty 
functions for COPs where higher weights demonstrate lower preferences and vice 
versa for higher preferences. We used University of Toronto benchmark exam time-
tabling problems (version I) given in [18, 23] where the given weights based on the 
spread of exams for each student is: 

 2   (1) 

where  is the distance between two timeslots in the range [0 4],  is total corres-
ponding students and  is the total corresponding weight. The cost function is the 
average weight corresponds to each student given as:  

 ∑ 2 (2) 

We mainly used our modified Kempe chain [8, 14] techniques for mutating timetables 
in ICHEA that also follows a reversible hill climbing technique that works like a 
backtracking algorithm. The details will be provided in the extended journal paper. 

3 ICHEA Algorithm for Exam Timetabling Problems 

Some large CPs like exam timetabling problems can be divided into several compo-
nents (subsets of constraints) then each component can be solved incrementally. This 
divide and conquer approach solves a CP by taking a component to get feasible solu-
tions before taking next component. In the literature, exam timetabling problems sort 
the constraints according to the largest degree (LD), saturation degree (SD), largest 
weighted degree (LWD), largest penalty (LP) or random Order (RO) [4, 7, 9]. LD and 
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SD are commonly used sorting order. In LD exams are ordered decreasingly accord-
ing to the number of conflicts each exam has with others, and in SD the exams are 
ordered increasingly according to the number of remaining timeslots available to as-
sign them without causing conflicts. The definition of other sorting orders can be 
found in [7]. ICHEA uses LD to sort all the exams based on clashes with other exams. 
It takes only 5% of the sorted exams in every increment and once a feasible solution 
is obtained the optimization operators are applied for  generations before taking 
next increment of exams. The value of  is 500 in our experiments. 

Solving CPs incrementally has many advantages. Incrementality in solving CPs 
also comes handy when a new constraint is added or an existing constraint is changed. 
A by-product of incrementality in search is a set of generated partial solutions for 
each increment that can be stored separately and later reused, where a new constraint 
can be added or an existing constraint can be changed without making too much dis-
tortion to the current solution. More importantly incremental ICHEA does not have to 
define any problem specific algorithm to get feasible solutions as many other ap-
proaches like [1, 6, 14] use bespoke algorithms or SD graph-coloring heuristics to get 
the feasible solutions.  

4 Experiments for Discrete COPs  

Hyper-heuristics have been frequently used to solve benchmark exam  
timetabling problems 
which show promis-
ing results [8, 14]. 
ICHEA is a meta-
heuristic algorithm 
that uses multiple 
mutation strategies 
to optimize a CP as 
described in Section 
3. All the benchmark 
problems have been 
experimented on a 
Windows 7 machine 
with Pentium (R) i5 
CPU 2.52 GHz and 
3.24 GB RAM ex-
cept the problem 
Pur93 which was run on a server machine (Intel Xeon CPU 2.90GHz and 128 GB 
RAM) because of its size and memory requirements. We ran all the problems over-
night because of their size and complexity. Additionally, real world timetabling prob-
lem does not required to be solved within minutes or hours [1, 14]. Even though 
smaller sized problems like Hec92 and Sta83 can be solved within an hour or two; 
however problem Pur93 had to be run for almost 24 hours because of its huge size. 

Table 1. Statistical summary of results from IICHEA and 
ICHEA 

Instance Best Median Worst SD 

Car91 4.91 (5.1) 5.04 (5.3) 5.16 (5.46) 0.01 (0.15) 
Car92 4.08 (4.3) 4.1 (4.45) 4.2 (4.54) 0.05 (0.10) 
Ear83 33.24 (33.6) 34.02 (34.69) 34.7 (37.39) 0.57 (1.24) 
Hec92 10.13 (10.17) 10.33 (10.45) 10.61 (11.15) 0.15 (0.37) 
Kfu93 13.58 (13.8) 13.8 (14.1) 14.21 (15.09) 0.20 (0.37) 
Lse91 10.37 (10.95) 10.51 (11.34) 10.67 (11.8) 0.11 (0.27) 
Pur93 4.67 (5.2) 4.78 (5.43) 4.99 (5.81) 0.12 (0.21) 
Rye92 8.63 (9.07) 8.76 (9.4) 8.85 (9.7) 0.08 (0.19) 

Sta83 
157.03 

(157.03) 
157.03 

(157.03) 
157.03 

(157.03) 
0.0 (0.0) 

Tre92 8.33 (8.8) 8.5 (9.3) 8.8 (9.6) 0.16 (0.28) 
Uta92 3.28 (3.48) 3.41 (3.60) 3.57 (3.64) 0.07 (0.07) 
Ute92 24.85(24.9) 24.9 (25.7) 25.1 (27.0) 0.10 (0.87) 
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All the experimental results have been verified through the standard evaluator pro-
gram available in the dedicated website for research on benchmark exam timetabling 
problems [23]. We executed each problem for 10 trials to get SRs and establish statis-
tical evaluation in Table 1.  

Many times incremental approach to solve a complex static CP gives better results 
than solving entire constraints altogether. We used both approaches in the experi-
ments to demonstrate supremacy of one approach over another. We observed that this 
incremental approach also helps in quickly providing feasible partial solutions and 
eventually feasible solutions at the SR of 100% for all the benchmark problems; whe-
reas SRs of non-incremental ICHEA are very low for bigger problems like Car91 and 
Uta92 have only 0%-10% of SR, and 30%-70% for other problems of medium size. 
Non-incremental ICHEA also takes much longer duration to get the first feasible solu-
tion. The unpromising outcome from non-incremental ICHEA has led us to do the 
experiments with incremental ICHEA only. We first sort the constraints (exams 
clashes) according to LD then remove first 5% of the total exams as input for each 
increment in ICHEA. Intermarriage crossover constructs new partial feasible solu-
tions which are then optimized using mutation strategies for feasible partial solutions. 
We used two instances of ICHEA for the experiments to demonstrate the validation of 
incrementality. The first and second instances of ICHEA optimize the partial solu-
tions for 0 and 500 generations respectively. The only difference between these two 
instances is the first one does not apply optimization strategies to partial solutions 
while the other optimizes the partial solution for 500 generations. However, both 
instances get the feasible solutions incrementally. To distinguish the two instances the 
first one is called ICHEA and second one is called incremental ICHEA (IICHEA) as 
it fully exploits the notion of incrementality.  

The statistical results of IICHEA and ICHEA on all the problems from University 
of Toronto benchmark exam timetabling problems (version I) from [18, 23] are shown 
in Table 1. We only used version I because it has been mostly reported in the litera-
ture. ICHEA results are in the brackets. We also compared our best solutions with 
other published results from [1, 5, 8, 10, 11, 14–16, 22] cited frequently in the litera-
ture in Table 2. 

Table 2. Best results from the literature compared with IICHEA 

Algorithms Car91 Car92 Ear83 Hec92 Kfu93 Lse91 Pu93 Rye92 Sta83 Tre92 Uta92 Ute92 Yor83 

IICHEA 4.9 4.1 33.2 10.1 13.6 10.4 4.7 8.6 157.0 8.3 3.3 24.8 36.2 

[15] 7.1 6.2 36.4 10.8 14.0 10.5 3.9 7.3 161.5 9.6 3.5 25.8 41.7 

[31] 5.1 4.3 35.1 10.6 13.5 10.5 - 8.4 157.3 8.4 3.5 25.1 37.4 

[16] 5.4 4.4 34.8 10.8 14.1 14.7 - - 134.9 8.7 - 25.4 37.5 

[52] 4.5 3.9 33.7 10.8 13.8 10.4 - 8.5 158.4 7.9 3.1 25.4 36.4 

[1] 5.2 4.4 34.9 10.3 13.5 10.2 - 8.7 159.2 8.4 3.6 26.0 36.2 

[26] 5.2 4.3 36.8 11.1 14.5 11.3 - 9.8 157.3 8.6 3.5 26.4 39.4 

[9] 4.6 3.8 32.7 10.1 12.8 9.9 4.3 7.9 157.0 7.7 3.2 27.8 34.8 

[13] 4.9 4.1 33.2 10.3 13.2 10.4 - - 156.9 8.3 3.3 24.9 36.3 

[23] 4.5 3.8 32.5 10.0 12.9 10.0 5.7 8.1 157.0 7.7 3.1 24.8 34.6 
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5 Discussion 

To solve a CSP ICHEA works with allele coupling only. So only the definition of 
constraints and the rules for coupling of two constraints need to be provided for in-
termarriage crossover. Experimental results for benchmark exam timetabling prob-
lems for COPs are very promising. Results for problems Ear83, Hec92, Sta83, Tre92, 
Ute92 are in top three and other results are also in the upper half of the best results. It 
is noted that IICHEA has been giving consistent results for all the problems. It is 
noted that exam timetabling problems show good results with hyper-heuristics. Using 
the incrementality technique of IICHEA on these hyper-heuristics can produce even 
better results as shown in the comparative results between ICHEA and IICHEA. In-
crementality in ICHEA produces better results than without incrementality. Conse-
quently, IICHEA can also be used for real time discrete COPs. IICHEA also does not 
require having a separate problem specific algorithm to get feasible solutions as a 
preprocessor for constraint optimization. It has found feasible solutions for all the 
problems at the SR of 100%. 

6 Conclusion 

This paper focuses on incorporating ICHEA for solving discrete COPs. ICHEA has 
been designed as a generic framework for evolutionary search that extracts and ex-
ploits information from constraints. ICHEA has shown promising results experi-
mented on benchmark exam timetabling problems. We proposed another version of 
intermarriage crossover operator for discrete CSPs to get the feasible solutions. Con-
straint optimization requires additional optimization techniques that are not all generic 
in its current form. ICHEA uses many problem specific mutation strategies to optim-
ize exam timetabling problems. A major experimental observation was realizing the 
efficacy of incrementality in evolutionary search. Incrementality helps in getting feas-
ible solutions with SR of 100% that also produces solutions of better quality. Incre-
mental ICHEA can also be used for real time dynamic COPs in discrete domain. The 
competitive results from ICHEA shows its potential in making a generic evolutionary 
computational model that discovers information from constraints.  
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Abstract. Risky driver behaviours such as sudden braking, swerving,
and excessive acceleration are a major risk to road safety. In this study,
we present a learning method to recognize such behaviours from smart-
phone sensor input which can be considered as a type of multi-channel
time series. Unlike other learning methods, this Genetic Programming
(GP) based method does not require pre-processing and manually de-
signed features. Hence domain knowledge and manual coding can be
significantly reduced by this approach. This method can achieve accu-
rate real-time recognition of risky driver behaviours on raw input and
can outperform classic learning methods operating on features. In addi-
tion this GP-based method is general and suitable for detecting multiple
types of driver behaviours.

1 Introduction

Road safety is a significant issue in modern society. Road fatalities and injuries
cost the Australian economy 27 billion dollars a year [1]. More than 15,000 peo-
ple have been killed in road accidents during 2002 to 2011 in Australia [2]. These
tragic figures could be dramatically reduced if improper driving was instanta-
neously notified to the drivers and recorded for the stakeholders, as risky driving
behaviours can cause road traumas. One cost-effective approach is performing
driver behaviour recognition on smart phones which all have built-in accelerom-
eter, gyroscope and magnetometer for sensing movements and directions.

Continuous digital signals produced by each sensor can be viewed as a time
series. So the readings from all sensors can be considered as multi-channel time
series. Therefore the task of risky driver behaviour recognition can be treated as
a type of time series classification [3]. One difficulty of using this approach is to
find a suitable set of features which can be used to differentiate risky behaviours
from normal behaviours. Usually a feature set that is good for one problem is not
suitable for a slightly different task. Furthermore, the duration or time-span of a
target event should be defined beforehand although that might vary and even be
unknown in real world scenarios. Even experienced road safety experts might not
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be able to provide a good set of features for various scenarios. The other approach
which does not require features is to build a mathematical model for normal
behaviours [4]. Any statistically significant change in the model would indicate
a risky behaviour. However these modelling methods often are applicable on
one variable, not suitable for multi-channel stream data. In addition, significant
variations may exist even in the same type of driver behaviours. Beside these
issues another important consideration is real-time performance.

In this study we aim to establish a Genetic Programming (GP) based learning
method which can avoid the problem of finding suitable features. In particular
the main goals are:

– How can a suitable method be established to learn patterns of risky driver be-
haviours from multi-channel smartphone data without using manually con-
structed features?

– How is this GP-based learning method compared to conventional learning
methods on this time series classification problem, especially when multiple
types of detection are required?

– How would the learnt detectors perform on real-time road tests?

To address the above questions three typical types of risky driver behaviours
are studied: excessive acceleration, sudden braking and swerving (either left or
right). Several classic algorithms were used for comparison including Decision
Tree, Näıve Bayes, IB1, SVM and a boosting classifier. For these methods two
sets of manually constructed features were used while our GP-based method
directly operates on raw multi-channel stream data.

2 Related Work

Improving road safety by analyzing driver behaviours is an active research area.
Wahlstrom et al. [5] used video camera to analyze the pupils of the driver to
determine whether the driver is distracted or not. Oliver and Pentland used
Coupled Hidden Markov Models (CHMMs) to predict driver behaviours which
were captured by in-vehicle sensors such as video camera, face and gaze move-
ment trackers, and the car internal state (speed, acceleration, steering wheel
angle, gear, and brake) [6]. Their data was originated from a driving simulator
rather than the real-world scenarios. In [7], methods to identify drunk driving be-
haviours in real-time were proposed. Two stages of ubiquitous data mining were
applied, which is clustering and classification of driver behaviours. The major
challenge was in linking the results of clustering models with the existing expert
knowledge in the road safety field. Sensor data for the evaluation was generated
using simulation based on an expert study, which categorised drunk driving be-
haviour into sober, borderline, drunk, and very drunk. The classification rules
consisted of the following variables: number of correct responses, number of col-
lisions, time over speed limit, reaction time, speed deviation, and lane deviation
[7]. Due to the computational capability, smart phones have been widely used
for behaviour or activity recognition [8]. Dai et al. proposed a method to detect
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drunk driving based on smart phone accelerometer [9]. In all above researches,
domain knowledge is required so the solution can be problem-dependent. Our
method can address this problem.

Another area of related work is on Genetic Program which has been demon-
strated as a powerful problem solving mechanism especially for some complex
tasks such as scheduling, structural design, object recognition and classification
[10]. GP has been successfully applied in time series data analysis, including pre-
diction [11,12] and pattern discovery [13]. GP has shown success in time series
classification as well. Song and Pinto used GP on motion detection [14]. Xie et.
al used GP for differentiating various events from time series data [15]. In the
last two studies, GP were directly operating on raw input without any feature
extraction process. These applications show the potential of GP being used in
our study which is a complex time series classification task.

3 Data Collection

In this study sensor data was collected on an iPhone 5 when the subject is
driving. The phone has three types of built-in sensors: accelerometer, gyroscope
and magnetometer, all providing tri-axial measurements. The accelerometer read
user acceleration as well as gravitational acceleration. The gyroscope measures
the rotation of the device in rotation rates and the angles of the rotation in three
dimensions as “roll”, “pitch” and “yaw”. The magnetometer reports the mag-
netic fields around the device. The readings will be from the earth magnetic field
if there is no other detectable field. In total, these sensors provide 21 channels of
input which are all used in this study (see Table 1). Without domain knowledge
from a human expert, it is difficult to determine which channels are relevant or
more important for detecting different types of driver behaviors.

We sample the 21-channel time series data at a frequency of 10Hz. Figure 1(a)
shows 500 time-intervals of original readings. It contains a swerving to the left
and then to the right, and some gentle turning behaviors. Clearly the patterns
of swerving are not obvious from the graph. After close examination of the data,
we removed the readings of Yaw, Pitch, Roll (No. 10-12) and Magnetic Heading
(No. 19-21) as shown in Figure 1(b). Then some patterns can be observed. Our
GP-based learning method is expected to automatically capture these patterns
while ignoring irrelevant data input.

Table 1. Sensor Channels available on iPhone

No. Channel
1-3 Raw Acceleration X, Y, Z (raw accelerometer reading)
4-6 Gravity X, Y, Z
7-9 User Acceleration X, Y, Z
10 - 12 Yaw, Pitch, Roll
13 - 15 Raw Rotation Rate X, Y, Z (raw gyro reading)
16 - 18 Unbiased Rotation Rate X, Y, Z
19 - 21 Magnetic Heading X, Y, Z
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(a) Original 21-Channel Sensor Input (b) Manually Processed 15-Channel Input

Fig. 1. Examples of the Multi-Channel Sensor Input

During the data collection process, the phone was attached to the windshield
in front of the driver. Because our approach is a type of supervised learning,
all the data recorded are labelled for training and test purposes. Data labelling
is done through voice command. When a person in the car feels uncomfortable
with the impact of swerving, excessive acceleration or deceleration, the person
will speak out and the data recorded at that time will be labelled as “positive”.
Otherwise the data will be labelled as “negative”. One positive label indicates
the occurrence of an event which is one of the three types of risky driver behav-
iors. The duration of an event is not recorded.

Table 2. Training and Test Data Set for Three Types of Driving Behaviours

Training Test
Total Instances Positives Negatives Total Positives Negatives

1. Harsh Acceleration 1182 12 1160 690 9 681
2. Sudden Brake 1688 9 1679 947 6 941
3. Swerving 1206 12 1194 828 6 822

Table 2 presents the total number of instances, the number of positive in-
stances and negative instances in the training and test datasets for detecting the
three type of driver behaviors. As shown in the table, the data is highly unbal-
anced, much more negatives than positives. A suitable learning method should
be able to handle such imbalance.

4 Methodology

As one of the main evolutionary computing techniques, the basic principle of
Genetic Programming is also “survival of the fittest”. A GP evolution process
firstly generates a population of initial solutions for a particular problem, then
reproduces the next generation of solutions by recombining or mutating the good
solutions, and repeats this reproduction process until a certain stopping criteria
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is met, for example a perfect solution is found. One unique feature of canon-
ical GP is that each solution in the population is an executable program tree
represented in Lisp S-expression. For different problems one needs to determine
the basic components for constructing these trees and the fitness measure for
evaluating the performance of each tree.

4.1 Function Set and Terminal Set

The function set is to define which components can be used for internal nodes of
a GP program tree, while the terminal set is to define which components can be
used for leaf nodes. In our method only one type of general terminal is provided
for any functions. These terminals are named “Channel [m]” where m is the
index of the channel. In addition some function nodes have their own specific
terminals.

Table 3. Function Set

Function Parameter
Parameter No Type Value

+
1 Double [DOUBLE MIN, DOUBLE MAX]
2 Double [DOUBLE MIN, DOUBLE MAX]

− 1 Double [DOUBLE MIN, DOUBLE MAX]
2 Double [DOUBLE MIN, DOUBLE MAX]

∗ 1 Double [DOUBLE MIN, DOUBLE MAX]
2 Double [DOUBLE MIN, DOUBLE MAX]

/
1 Double [DOUBLE MIN, DOUBLE MAX]
2 Double [DOUBLE MIN, DOUBLE MAX]

Window
1 Double [DOUBLE MIN,DOUBLE MAX]

2 Temporal-Index [1, 2window−size − 1]
3 Temporal-Operation AVG,STD,DIF,SKEWNESS

Temporal Diff 1 Double [DOUBLE MIN,DOUBLE MAX]

Multi Channel
1 Double [DOUBLE MIN,DOUBLE MAX]

2 Channel-Index [1, 2num−of−channels − 1]
3 Channel-Operation AVG,STD,MED,RANGE

Table 3 shows all the function nodes designed for this task, including number
of parameters, data type of each parameter and the range of parameter val-
ues for each function. All these functions return double value as output. Two
functions are specifically designed for processing time series data, W indow and
T emporal Diff . The last function Multi Channel is designed to capture inter-
variable dependency in multi-channel data. The details are explained below. The
2nd and 3rd parameters of W indow and Multi Channel are special terminals.

Function Window. This function samples data points from a time series for
analysis. It has three parameters: “Input”, “Temporal Index” and “Temporal
Operation”. The first parameter records the current reading from the time se-
ries. The second parameter “Temporal Index” is for data point selection. This
W indow function stores a sequence of data points of length specified in window-
size (which is 12 in this study). Not every points should participate in the sub-
sequent analysis. For example, if an event is short, then extra data points will be
irrelevant and may even bias the results. In addition, using fewer points means
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less computational cost. “Temporal Index” is designed for this purpose. For ex-
ample, if this number is set as 15 by the GP process, then the binary equivalent
is 000000001111. So the last four data points will be selected for analysis as the
last four digits are 1 while others are 0. Effectively it defines a sub-window size
of 4 within the sampled data sequence. Furthermore, non-consecutive points can
be selected in this way. For example an index value of 101010000000 (decimal
2688) would select the first, the third and the fifth data points for analysis.

The third parameter of W indow is “Temporal Operation” which selects one of
four operations: AVG, STD, DIF and SKEWNESS. The operation type is determined
during GP evolution. They are terminals which will return the average value,
the standard deviation, the sum of absolute differences and skewness of the
points selected by parameter “Temporal Index”. Presumably a poor selection of
operation will result in poor accuracy, hence will not survive the evolutionary
process.

Function Temporal Diff . Function “Temporal Diff” is similar to the stan-
dard temporal difference function. It returns the the deviation of two adjacent
points on a time series. This function can be attached to other functions such
as “Window” function. It can be nested so higher order of deviations can be ex-
tracted. This function only operates on two consecutive points therefore behaves
similar to a “Window” function of size 2 with a DIF operator, despite the DIF
operation returns absolute values.

Function Multi Channel. Analyzing driver behaviours involves multiple
channels. For example the pattern of swerving would appear in both accelerom-
eter and gyroscope readings. Therefore capturing the dependences between chan-
nels would be helpful for detecting risky driver behaviours. So function
“Multi Channel” is introduced. It is similar to Function “Window”, except it
operates on data channels rather than data points inside of a window. The two
parameters “Channel Index” and “Multi Channel Operation” work the same
way as the second and the third parameter of “Window” function. “Channel
Index” has a value range between 1 and 2M −1, where M is the number of chan-
nels. Moreover. The operations here are AVG, STD, MED and RANGE which return
the average, the standard derivation, the median and the distance between the
maximum and minimum input of a channel. It should be noted that this function
works on the most recent data point. It does not record historical values.

4.2 Fitness Function

As illustrated in Section 3, it is natural that the behavioural data is dominated
by negative instances. Hence accuracy is not a reliable measure of performance
in this case. Instead we use AUC as the fitness measure.

AUC (Area under the ROC (Receiver Operating Characteristics) Curve) mea-
sures how far the two different classes can be separated. It is considered as better
alternative to overcome the bias caused by data imbalance [16]. While AUC takes
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all possible thresholds into account to calculate the fitness value. In practice we
expect the selected threshold can maximise True Positive Rate and minimise
False Positive Rate at the same time. In this study we choose the threshold cor-
responding to the point on ROC curve with the shortest distance to the left top
corner (the point representing 100% of True Positive and 0% of False Positive)
[17].

5 Experiments

The parameters of our experiments on the GP method are listed in Table 4,
which have not been tuned deliberately. Population is the number of solutions
in each generation. A large population of 1000 is used to increase the chance of
finding a good solution. The maximum and minimum depth of our GP tree are 8
and 2 respectively. Crossover rate is the probability of a solution being generated
by swapping tree branches between two selected parents. Mutation rate is the
probability of a solution being generated by mutating one parent. Elitism rate
determines the proportion of good solutions which can be copied from the previ-
ous generation to the current generation. Each evolutionary process is repeated
10 times for each task. The best evolved programs are selected for testing. The
stopping criteria is either the process has found an program which has 0% of
recognition error, or the maximum generation 50 is reached.1

Table 4. GP Runtime Parameters

Population 1000
Generation 50
Maximum Depth 8
Minimum Depth 2
Mutation Rate 5%
Crossover Rate 85%
Elitism Rate 10%
Number of Runs 10

5.1 Methods for Comparison

Five classic classifiers were chosen for comparison purpose. They are Decision
Tree in particular J48 2 [18], Näıve Bayes (NB) [19], IB1 [20], Support Vector
Machine (SVM) [21] and Adaboost [22]. The last one is a boosting classifier
which takes the best of the other four classifiers as the base learner. For all
these methods, two sets of features are manually created. There features are
commonly used in time series classification such as Activity Recognition, which
is very similar to our task which is to detect patterns from sensory data.

The first set of features are the temporal difference between two consecutive
data points of each channel. The second set contains the average and the stan-
dard deviation of data points along the time series. A sliding window of size 12

1 The conventional cross-validation is not particularly suitable for this streaming data,
hence was not used in the experiments.

2 The Java implementation of C4.5 in Weka.
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is used to go through the time series and to return the two values for each time
interval. The sliding window has the same size as the window size in “Window”
function.

5.2 Results

The best programs generated from the GP evolutionary process are evaluated on
test data. Table 5 shows the test results on raw sensor input data, including the
accuracy, true positive rate (TP) and true negative rate (TN). All traditional
classifiers performed very poorly on the three recognition tasks. Their high accu-
racies are due to the significantly unbalanced data. Their True Positive rate are
quite low. The performance of classical classifiers are very poor in recognizing
these three risky driver behaviours. Only J48 and Näıve Bayes obtained reason-
able results on detecting swerving. In comparison our GP method identified all
risky driving behaviours with minor false positives on all three tasks.

Table 5. Results on Raw Stream Data(%)

Tasks J48 Näıve Bayes IB1 SVM AdaBoost GP

1. Sudden
Acceleration

95.73
TP : 33.3
TN : 96.6

77.76
TP : 66.7
TN : 77.9

98.23
TP : 33.3
TN : 99.1

98.53
TP : 0

TN : 99.9

98.23
TP : 33.3
TN : 99.1

97.79
TP : 100

TN : 97.76

2. Sudden
Braking

99.36
TP : 50
TN : 99.7

99.36
TP : 0

TN : 100

99.36
TP : 0

TN : 100

99.36
TP : 0

TN : 100

99.36
TP : 50
TN : 99.7

99.68
TP : 100

TN : 99.68

3. Swerving
99.51

TP : 83.3
TN : 99.6

94.86
TP : 83.3
TN : 94.9

99.39
TP : 66.7
TN : 99.6

97.8
TP : 0

TN : 98.5

99.39
TP : 33.3
TN : 99.9

99.02
TP : 100

TN : 99.01

Table 6. Comparing with Conventional Methods on Pre-defined Feature Set 1

Tasks J48 Näıve Bayes IB1 SVM AdaBoost GP

1. Sudden
Acceleration

98.09
TP : 33.3
TN : 99

47.28
TP : 100
TN : 46.6

96.9
TP : 0

TN : 98.2

98.67
TP : 0

TN : 100

98.67
TP : 0

TN : 100

97.79
TP : 100

TN : 97.76

2. Sudden
Braking

69.8
TP : 67.3
TN : 71.4

39.96
TP : 50
TN : 39.9

99.36
TP : 0

TN : 100

99.36
TP : 0

TN : 100

99.47
TP : 16.7
TN : 100

99.68
TP : 100

TN : 99.68

3. Swerving
98.9

TP : 16.7
TN : 99.5

71.85
TP : 83.3
TN : 71.8

99.39
TP : 16.7
TN :100

99.27
TP : 0

TN : 100

99.27
TP : 0

TN : 100

99.02
TP : 100

TN : 99.01

To further compare the performance, we applied these traditional methods on
extracted features which are manually designed. Table 6 and Table 7 show the
results along with the GP results on raw data.

Feature set 1 did not bring much benefits, while feature set 2 did contribute
towards much higher accuracies. J48 achieved the best performance over all the
others on task 1 and task 3. Unfortunately, it did not perform well on detecting
sudden braking. In comparison the performance of our GP method is consistent,
and not statistically worse than J48 on Task 1 and 3. One may argue that with
better features or combination of features, these traditional methods can achieve
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Table 7. Comparing with Conventional Methods on Pre-defined Feature Set 2

Tasks J48 Näıve Bayes IB1 SVM AdaBoost GP

1. Sudden
Acceleration

99.26
TP : 100
TN : 99.3

65.68
TP : 66.7
TN : 65.7

96.2
TP : 33.3
TN : 97

98.67
TP : 0

TN : 100

99.12
TP : 44.4
TN : 99.9

97.79
TP : 100
TN : 97.76

2. Sudden
Braking

98.61
TP : 16.7
TN : 99.1

99.36
TP : 0

TN : 100

99.36
TP : 0

TN : 100

99.36
TP : 0

TN : 100

98.61
TP : 16.7
TN : 99.1

99.68
TP : 100

TN : 99.68

3. Swerving
99.76

TP : 100
TN : 99.8

94.86
TP : 100
TN : 94.8

99.39
TP : 100
TN : 99.4

99.27
TP : 0

TN : 100

99.51
TP : 100
TN : 99.5

99.02
TP : 100
TN : 99.01

good results. However that is exactly the point of this study. We would like to
avoid this feature extraction step as a good feature set is often dependent on the
problem and sensitive to the learning method.

6 Discussion and Analysis

To further test the detection performance, we selected the programs which ob-
tained the highest test accuracy for each task and embedded them into an iphone
app. Figure 2 shows the app in action. The left photo shows the phone detecting
a sudden braking event and right photo shows the detection of a swerving event.

(a) Sudden Braking Detected (b) Swerving Detected

Fig. 2. Evolved Detection Programs Running During Road Test

Our road test was performed on a slightly different condition compared to the
original data collection exercises. The total driving time was over 20 minutes. The
result from the road test is shown in Table 8. For three types of behaviors, there
was no false negatives, meaning these trained GP programs did not miss any case
of positives. For swerving, there was no false positives. There were some false
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Table 8. Road Test

True Positives False Positives False Negatives

1. Sudden Acceleration 3 2 0

2. Sudden Braking 2 3 0

3. Swerving 3 0 0

positives for detecting excessive acceleration and deceleration. These detection
were actually caused by bumpy road surface. The person in the car could feel the
movement at that time. This type of movement might generate a similar pattern
as that of sudden acceleration and deceleration, hence triggered the detection
program to report a positive. Inside the iphone app shown in Figure 2 there are

[1] Sudden Acceleration

Multi_Channel(AVG, 1779415) + Channe_l4 /Window(STD, 751, Channe_l2)

- Window(AVG, 3847, Channel_10) - Window(STD, 580, Channel_18)

[2] Sudden Braking

Channel_8 + Channel_7 - Window(DIF, 1391, Channel_13 + Channe_l3)

[3] Swerving

- Window(STD, 1920, Channel_6) * (Temporal_Diff(Channel_4) +

Channel_13) * (Channel_4 + Window(DIF, 1918, Channel_12)) +

Channel_0 * Channel_13

Fig. 3. Examples of Evolved Programs for the Three Tasks

three evolved programs embedded. Each program is responsible for one type of
driver behaviour. The sensor input streamed from 21 channels is processed by
all of them. If one program reports positive, then the app shows and records the
corresponding driver behaviour. Even with three programs running inside, the
app can still achieve real-time performance because these GP-evolved programs
are quite small. Examples are shown in Figure 3. They were for detecting sudden
braking, sudden acceleration and swerving respectively. As we can see there are
no more than 20 nodes on each program and there is no loop in any of them.

The exact algorithms evolved in these three programs are difficult to explain
(which is an common issue in GP paradigm). However we can obtain some
insights from these programs. The detecting program for sudden acceleration is
a little complex. However it did not all 21 channel but 14 of them. Its Multiple
Channel function takes input 1779415 of which the binary is 110110010011011010
111. Most of the z-axis channels were not used.

The program for detecting sudden braking is simpler and only uses four chan-
nels: x-axis gravity, y-axis user acceleration, z-axis user acceleration and y-axis
raw rotation rate. Its choice of channels seems understandable as three channels
are related to acceleration and sudden braking will surely generate significant
readings on acceleration. Moreover, this program did not use any magnetic sen-
sors. For swerving, five channels are selected by the evolved program including
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x-axis raw acceleration, y-axis gravity, x-axis user acceleration, x-axis raw rota-
tion rate, y-axis raw rotation rate. Intuitively gyro should play a more important
role here.

7 Conclusions and Future Work

This study presents a GP-based methodology for learning the recognition of
risky driver behaviours through smartphone sensor input. The advantage of this
approach can be shown from the results in comparison with other classic meth-
ods. This approach can be directly applied on raw multi-channel sensor data
without any pre-processing and manually designed features. This characteristic
is very desirable in situations where domain knowledge is not clear or not avail-
able. By this approach, there is little need for road safety experts to manually
determine what kind of accelerometer reading and other sensor readings should
be considered as unsafe. Furthermore the evolved detection programs are small
in size and low in complexity. They can achieve real-time performance on road
tests. GP can provide a feasible solution for recognizing risky behaviours and
help improve road safety.

This study can lead to a range of future work. We will continue collabo-
rating with road safety experts and authorities to test our methods on more
road conditions. Furthermore we will extend the recognition to more types of
driver behaviours. Another future investigation is how to eliminate false positives
caused by bumpy rides which may produce patterns similar to those of genuine
risk driver behaviours. We also intent to further study the behaviours of these
evolved GP programs to reveal the reasons behind their success. In addition,
Hidden Markov approaches will be included in the comparison.
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Abstract. Feature selection is an important issue in classification, but it is a diffi-
cult task due to the large search space and feature interaction. Statistical clustering
methods, which consider feature interaction, group features into different feature
clusters. This paper investigates the use of statistical clustering information in
particle swarm optimisation (PSO) for feature selection. Two PSO based feature
selection algorithms are proposed to select a feature subset based on the statistical
clustering information. The new algorithms are examined and compared with a
greedy forward feature selection algorithm on seven benchmark datasets. The re-
sults show that the two algorithms can select a much smaller number of features
and achieve similar or better classification performance than using all features.
One of the new algorithms that introduces more stochasticity achieves the best
results and outperforms all other methods, especially on the datasets with a rela-
tively large number of features.

Keywords: Feature selection, Particle swarm optimisation, Statistical clustering.

1 Introduction

A machine learning technique (e.g. a classification algorithm) often suffers from the
problem of high dimensionality. Feature selection aims to select a small subset of rel-
evant features to reduce the dimensionality, maintain or increase the classification per-
formance and simplify the learned classifiers [1].

Feature selection is a difficult task due mainly to the large search space and the
feature interaction problem [2]. Most of the existing methods suffer from the problem
of stagnation in local optima. Particle swarm optimisation (PSO) [3,4] is an arguable
global search technique, which has been successfully applied to many areas, including
feature selection [5,6]. In PSO, a candidate solution is represented by a particle in the
swarm. Particles fly in the search space to find the optimal solutions by updating the ve-
locity and position of each particle. In binary PSO (BPSO) [7], each particle is encoded
as a binary string (i.e. “1” and “0”). The velocity value represents the probability of the
corresponding dimension in the position taking value “1”. The detailed description of
BPSO is not presented here due to the page limit and it can be seen in [7].

Many statistical measures have been applied to form the evaluation function in a fea-
ture selection algorithm [1,8]. However, all of them are used in filter approaches, which
can not achieve as good classification performance as wrapper approaches [1]. This pa-
per uses a new statistical clustering method [9,10] that groups relatively homogeneous
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features together based on a statistical model. The method considers all features simul-
taneously and takes the feature interaction into account. Features in the same cluster are
similar and they are dissimilar to features in other clusters. Since the feature interaction
is an important issue in feature selection, the statistical feature interaction information
found by the clustering method can be used to develop a good feature selection algo-
rithm. However, this has seldom been investigated.

1.1 Goals

The overall goal of this paper is to investigate the use of statistical clustering informa-
tion in PSO for feature selection. To achieve this goal, a statistical clustering method as
a preprocessing step is performed on part of the training set to group features to differ-
ent clusters. A simple greedy forward search (GFFS) is developed to select one feature
from each cluster and then two new PSO based algorithms are proposed to search for a
better combination of features from each cluster. Specifically, we will investigate:

– whether the simple GFFS can effectively use the clustering information to select a
small number of features and achieve similar or even better classification accuracy
than using all features,

– whether PSO with the clustering information produced by statistical clustering can
achieve better performance than GFFS, and

– whether the introduction of a greater amount of stochasticity to the above new PSO
based algorithm can further improve the classification accuracy.

2 Proposed Feature Selection Approaches

In this work, we use a newly developed clustering method proposed by Pledger and
Arnold [9] and Matechou et. al. [10], which is not described here due to the page limit.
The clustering method is performed as a preprocessing step on a small number of train-
ing instances to cluster features into different groups. Features in the same cluster are
considered as similar features. Selecting multiple features from the same cluster may
bring redundancy. Features from different clusters are more likely to be complementary
to each other, which can increase the classification performance. Therefore, we first de-
velop a simple greedy forward selection algorithm to select a single feature from each
cluster to investigate whether the selected features can obtain similar or better classifi-
cation performance than using all features. We then propose two BPSO based feature
selection algorithms to search for a better feature subset.

2.1 Greedy Forward Feature Selection (GFFS)

GFFS is proposed based on the idea of sequential forward selection, where features
are sequentially added to the feature subset, but the key part of GFFS is the use of the
statistical clustering information.

GFFS starts with an empty feature set S and features are sequentially added into
S according to the classification performance. Each individual feature is first used for
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classification on the training set. Features are then ranked according to the classifica-
tion accuracy. The highest ranked feature that has the best classification performance is
added to the feature subset S and other features in the same cluster are removed. For the
remaining features, the feature combined with which S can achieve better classification
performance than with others is added to S. The other features in the same cluster are
removed. This procedure is repeated until all clusters have been visited and only one
feature is selected from each cluster. The number of features selected by GFFS is the
number of feature clusters, which is much smaller than the total number of features.

2.2 BPSO for Feature Selection Based on Maximum Probability (PSOMP)

Traditionally, when using PSO for feature selection, features are selected from the
whole feature set [5,6]. In order to select one feature from each cluster, we first develop
a new BPSO based feature selection algorithm named (PSOMP), where features are
selected from each cluster according to the maximum probability calculated by BPSO.

When using PSO for feature selection, each feature corresponds to one dimension
in the position and velocity. “1” in the position means the corresponding feature is
selected and “0” otherwise. BPSO may select more than one feature from each cluster.
Therefore, PSOMP is proposed to select a single feature from each cluster. When using
clustering information, a cluster of features correspond to a number of dimensions.
Selecting one feature from each cluster means only one of these dimensions in the
position can be updated to “1”. To achieve this, the maximum probability mechanism
is developed in PSOMP, where the motivation is that the velocity in BPSO represents
the probability of the corresponding dimension taking value “1” [7]. In terms of feature
selection, the velocity represents the probability of a feature being selected, i.e. the
feature with the highest velocity has the maximum probability to be selected. Therefore,
PSOMP updates the position value of only one feature (with the highest velocity) to “1”,
and updates all the other position values in the same cluster to “0”.

Algorithm 1 shows the pseudo-code of PSOMP. The classification performance of
the selected features is used to form the fitness function in PSOMP. The number of
features selected equals to the number of feature clusters.

2.3 PSOMP with Tournament Feature Selection (PSOTFS)

PSOMP is based solely upon the probability of each feature, which allows PSOMP to
select a single feature from each cluster, but may result in the quick (premature) conver-
gence of the swarm. To resolve this problem, a tournament feature selection operator is
introduced to PSOMP to develop a new algorithm named PSOTFS.

The goal of using the tournament selection operator is to introduce some stochas-
ticity to the swarm to ensure the diversity of the population. Note that the tournament
selection operator is not applied to the individual particles in PSO, but to the features
in the same cluster to select a sub-group of features. The tournament selection oper-
ator is applied before the position updating procedure in Algorithm 1 (after Line 10).
It randomly selects a sub-group of features from a feature cluster. Then the maximum
probability mechanism (in Line 11) is applied on the selected sub-group (instead of
on the whole cluster in PSOMP) to find the feature with the highest probability in the
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Algorithm 1: Pseudo-code of PSOMP
1 begin
2 initialise position x and velocity v of each particle,
3 random select one feature from each cluster;
4 while Maximum Iterations has been not met do
5 evaluate the classification performance of the selected features;
6 update pbest and gbest of each particle;
7 for i=1 to Swarm Size do
8 for d=1 to Dimensionality do
9 update vi ; /* Update velocity */

10 for C=1 to Clusters Size do
11 find the dimension (LD) with the largest velocity in the cluster C ; /* feature with

the highest probability */
12 update the position value in dimension LD to 1 ; /* Update position */
13 update other dimensions(features) in C to 0 ; /* Update position */

14 calculate the training and testing classification performance of the selected features;
15 return gbest, the training and testing classification performance.

Table 1. Datasets

Dataset # Features # Instances # Classes # Clusters
Australian Credit Approval (Aus.) 14 690 2 7
Vehicle 18 846 4 5
German 24 1000 2 10
World Breast Cancer Diagnostic (WBCD) 30 569 2 8
Lung Cancer 56 32 3 7
Sonar 60 208 2 10
Musk Version 1 (Musk1) 166 476 2 12

sub-group. The position value of this feature is updated to “1” and that of all other fea-
tures in the same cluster are updated to “0”. Algorithm 1 can show the pseudo-code of
PSOTFS by adding the tournament selection after Line 10 and replacing the cluster in
Line 11 with the sub-group selected by the tournament selection.

3 Experimental Design

Seven benchmark datasets (Table 1) were chosen from the UCI machine learning repos-
itory [11] to test the performance of the proposed algorithms, GFFS, PSOMP and
PSOTFS. The number of clusters obtained from the statistical clustering method is
listed in the last column of Table 1. The instances in each dataset are split randomly
into a training set (70%) and a test set (30%). K-Nearest Neighbour (KNN) with K=5
is used to evaluate the classification performance of the selected features.

The parameters of PSOMP and PSOTFS are set as follows: w = 0.7298, c1 = c2 =
1.49618, population size is 30, the maximum number of iterations is 100 and the fully
connected topology is used. These values are chosen based on the common settings in
the literature [4]. The size of the tournament feature selection in PSOTFS is half of
the number of features in the cluster. On each dataset, GFFS obtained an unique solu-
tion because it is a deterministic algorithm. PSOMP and PSOTFS have been conducted
for 50 independent runs on each dataset. Student’s T-tests (Z-tests) are performed to
compare their classification performances, where the significance level was selected as
0.05.
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Table 2. Experimental Results

Dataset Method
NO. of Accuracy

Dataset Method
NO. of Accuracy

Features Ave (Best) Std T1 T2 Features Ave (Best) Std T1 T2

Aus.

All 14 70.05

Vehicle

All 18 83.86
GFFS 7 70.53 + GFFS 5 84.84 +
PSOMP 7 73.43 (73.43) 0 + + PSOMP 5 84.41 (84.84) 8.1E-3 + -
PSOTFS 7 73.43 (73.43) 0 + + PSOTFS 5 84.84 (84.84) 1E-015 + =

German

All 24 68.33

WBCD

All 30 92.98
GFFS 10 68.67 + GFFS 8 89.47 -
PSOMP 10 69.67 (72.00) 0.0047 + + PSOMP 8 93.91 (94.74) 0.00574 + +
PSOTFS 10 69.67 (69.67) 1E-015 + + PSOTFS 8 92.98 (92.98) 0 = +

Lung

All 56 70

Sonar

All 60 76.19
GFFS 7 90 + GFFS 10 76.19 =
PSOMP 7 80.2 (90.00) 0.0424 + - PSOMP 10 75.65 (82.54) 0.0322 = =
PSOTFS 7 80.8 (90.00) 0.0337 + - PSOTFS 10 76.29 (85.71) 0.0337 = =

Musk1

All 166 83.92
GFFS 12 79.02 -
PSOMP 12 80.8 (86.01) 0.0233 - +
PSOTFS 12 81.62 (87.41) 0.0266 - +

4 Results and Discussions

Experimental results are shown in Table 2, where “T1” represents the results of the T-
Test between the classification performance of each new algorithm and that of using all
features. “T2” represents the results of the T-Test between the classification accuracy
achieved by GFFS and that of PSOMP or PSOTFS.

Note that since each algorithm is only allowed to select a single feature from each
cluster, the number of features selected by all the three algorithms is the same as the
number of feature clusters. Therefore, each algorithm selected a significantly smaller
number of features than the total number of features in the dataset.

Results of GFFS. According to Table 2, on five of the seven datasets, GFFS maintained
or improved the classification performance by using only the selected small number of
features. On the WBCD and Musk1 datasets, although the classification performance of
GFFS is slightly decreased, the number of features is significantly reduced. The results
suggest that this simple greedy forward selection algorithm can utilise the information
provided by the clustering method to effectively reduce the number of features and
achieve similar or higher classification performance than using all features.

Results of PSOMP. Table 2 shows that PSOMP achieved significantly higher classifi-
cation accuracy than using all features on five of the seven datasets and similar perfor-
mance on one dataset. Although on Musk1, the average classification performance of
PSOMP is slightly (3%) lower than using all features, PSOMP removed around 92%
of the original features, which considerably reduced the classification time and dimen-
sionality. Meanwhile, the best classification performance of PSOMP is 2% higher than
using all features. The results suggest that PSOMP using the statistical information to
guide the search of BPSO can successfully address feature selection problems.

PSOMP discovered feature subsets with significantly better or similar classification
performance to GFFS in most cases. The results suggest that PSOMP using BPSO
as the search technique can better search the solution space to obtain better results
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than GFFS. Meanwhile, rather than obtaining a single solution by GFFS, PSOMP can
generate multiple results, which has a higher probability to achieve better performance.

Results of PSOTFS. According to Table 2, PSOTFS selected a significantly smaller
number of features and achieved similar or significantly higher accuracy than using all
features on six of the seven datasets. Only on the Musk1 dataset, the average classi-
fication accuracy of PSOTFS is around 2% lower than using all features, but its best
accuracy is around 4% higher and it selected only around 7% of the original features.
PSOTFS achieved similar or higher accuracy than GFFS on six of the seven datasets.
Compared with PSOMP, PSOTFS achieved similar performance to PSOMP on five
of the seven datasets, where the number of features is relatively small. On the Sonar
and Musk1 datasets with a slightly larger number of features, PSOTFS outperformed
PSOMP in terms of both the average and the best classification performance.

The results suggest that a greater amount of stochasticity in PSOTFS maintains the
swarm diversity to avoid premature convergence. Therefore, PSOTFS achieved higher
classification accuracy than PSOMP in most cases, especially on the datasets with a
larger number of features and the solution space is more complex.

5 Conclusions

The goal of this paper was to investigate the use of statistical clustering methods in PSO
for feature selection. The goal was successfully achieved by developing two new PSO
based feature selection approaches, PSOMP and PSOTFS, to select a single feature
from each cluster. The proposed algorithms are compared with a simple greedy for-
ward feature selection algorithm (GFFS) on seven datasets. The experiments show that
by using the statistical clustering information, GFFS selected a small number of fea-
tures and achieved better classification performance than using all features. The basic
PSOMP outperformed GFFS in most cases and PSOTFS achieved better classification
performance than PSOMP because of the introduction of stochasticity to the swarm.

This study is a preliminary work of successfully using statistical clustering in feature
selection, which motivates us to further investigate this research topic, such as using
PSO to select multiple or zero features from each cluster to further improve the perfor-
mance and using statistical clustering information for feature construction.
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Abstract. In this paper, we present new experimental results support-
ing the Seeding Genetic Algorithm (SGA). We evaluate the algorithm’s
performance with various parameterisations, making comparisons to the
Canonical Genetic Algorithm (CGA), and use these as guidelines as we
establish reasonable parameters for the seeding algorithm. We present
experimental results confirming aspects of the theoretical basis, such as
the exclusion of the deleterious mutation operator from the new algo-
rithm, and report results on GA-difficult problems which demonstrate
the SGA’s ability to overcome local optima and systematic deception.

Keywords: genetic algorithm, evolutionary algorithm, seeding genetic
algorithm, seeding operator.

1 Introduction

The field of evolutionary computation is well-established, but still poorly under-
stood. Evolutionary algorithms’ behaviour, particularly the low-level interaction
of their constituent parts, is often counterintuitive. For example, it has been
demonstrated [1] that a naive selection scheme can lead to reduced performance
of the evolutionary algorithm through extinction of the fundamental building
blocks. that appear in the solution. While the crossover operator is capable of
propagating and recombining building blocks, its capacity for recombination is
often stunted in practice by low building block diversity. Conversely, operators
that are good at discovery (e.g., mutation, random search) tend to be much more
disruptive of existing building blocks. We claim that it should be possible to (a)
explicitly segregate building block discovery and combination phases and opti-
mise them independently, and (b) adjust a selection scheme to greatly reduce
building block extinction without unduly reducing performance.

Skinner and Riddle [2,3] have addressed these claims with work on a seeding
operator that significantly outperforms mutation on the task of building block
discovery, reduces extinction events, and is able to navigate local optima. The
primary purpose of this paper is to report the results of further experiments
with this new operator in an exploration and delimitation of the abilities of an
algorithm using it: the Seeding Genetic Algorithm (SGA). This paper has been
shortened for publication; an expanded version is available online. [4] In the
remainder of this paper we report on a series of experiments examining the SGA’s
behaviour on four problems, establishing effective and generalisable parameters
for the algorithm, and demonstrating the seeding operator’s flexibility.
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2 The Seeding Genetic Algorithm

Perhaps the core problem for the GA is maintaining population diversity. Nu-
merous techniques have been demonstrated to combat early convergence (e.g.,
crowding [5]). However, few provide a strong guarantee that they indefinitely
prevent premature convergence. The SGA makes such a guarantee. [2,3] Skin-
ner’s analysis [2,3] elicited a number of key concepts, including: (a) the positive
correlation between number of bits per block and importance of high discov-
ery rate; (b) the distinctive ‘rapid combination’ and ‘slow completion’ phases
of the Canonical Genetic Algorithm (CGA); (c) The generally poor discovery-
to-destruction ratios of mutation and crossover;1 (d) The capacity of random
search to outperform common genetic operators; and (e) Discovery in the CGA
is largely due to crossover, rather than mutation. These motivated the creation of
the Seeding Genetic Algorithm, which does away with mutation and divides the
functionality of the genetic algorithm into selection, discovery and combination.

The algorithm’s basic functionality is as folllows. In a single initial stage, it
samples the search space with random search, selecting candidates of above-
average fitness to create a ‘seed pool’ containing a number of the lowest-level
building blocks in the problem. It then runs as a GA, but during the crossover
step candidate parents from the seed pool may be inserted into the main pop-
ulation via seeding. Besides serving the role of discovery operator, seeding has
two additional effects. When a particular building block becomes extinct in the
main population the seed pool retains a copy that can then be incorporated into
the population via recombination. Furthermore, those parts of seed pool indi-
viduals’ genomes that do not contribute to fitness will be copied into the main
population along with the building blocks, boosting diversity and preventing
early convergence. For further details, see the long form of this paper. [4]

3 Experimental Results

We will report on a series of experiments that examine how the SGA behaves on
a number of well-known fixed-length problems. We choose problems with known
building block structure, on the basis that the GA’s power comes from its ability
to combine different building blocks. In particular we are interested in the ability
of the algorithm to discover new building blocks and to select pairs of parents
that have some hope of producing highly fit offspring.

We report on three problem sets. The classic Royal Road problem2 was de-
signed as a GA-easy problem, but found to be unusually difficult. It lacks decep-
tion, and has discrete building blocks and a single solution. The more difficult
recursive Hierarchical If-And-Only-If [7] problem3 has multiple global optima.

1 Mutation can only discover new blocks where local search would be useful, and may
destroy more than 99% of the blocks it discovers.

2 Our implementation of this problem, RR, following Mitchell and Forrest [6], is a
64-bit Royal Road consisting of eight adjacent, coherent blocks of eight bits each.

3 We implement a Hierarchical If-And-Only-If problem, HIFF , of length 64.
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HIFF has 254 blocks of six different lengths, with massive interdependence, a
massively vertiginous fitness landscape,4 and two possible maximally different
solutions. The Deceptive Trap problem5 is designed to foil optimisation algo-
rithms such as gradient descent; Deceptive Trap does so at the building block
level. In this deceptive problem, [8] each block decreases in fitness as it comes
closer to its complete form. Incremental improvements for a block lead the algo-
rithm towards a local maxima. A complete inversion is required to go from the
trapped state to the maximum for that block. Any hill-climbing type search will
lead directly away from the global maximum.

In the following sections, we use the bootstrap test [9] for statistical signifi-
cance. This usage is motivated by our having censored data (not all runs of the
algorithm complete). The test draws many “bootstrap samples” from the com-
bined results of two algorithms A and B to establish whether the difference in
their means is significantly different from the 0 predicted by the null hypothesis.
We set p < 0.05 to determine statistical significance. Extra numerical results
and descriptions not given here are available online. [4]

Seeding Probability against Mutation Rate. We first apply an experimen-
tal framework to the question of whether there is any point to retaining mutation
alongside seeding; the theoretical work of Skinner determined mutation to be in-
effectual as a discovery operator, but did not test this. We ran tests on RR with
2-point crossover, a presample size of 1000, and a seed pool size of 50. We took
the mean of 100 runs each time, testing various combinations of parameters,
including seeding probabilities varying from 0.1 to 0.3, 1/64 or 1/1024 mutation
rates, and five forms of tournament selection, rank selection and fitness propor-
tional selection. For lower seeding probabilities, the SGA always significantly
outperformed the CGA, and mutation reduced its performance. The ‘best’ level
of mutation appeared to be at least partly dependent on the seed probability,
suggesting there is some interference between the operators. We discard the mu-
tation operator for the remainder of our tests.

Seeding with Random Individuals. We wish to test Skinner’s [3] theory-
based statement that the usefulness of seeding lies in introducing ‘superior’
genetic material (building blocks) – as opposed to the benefit it provides by
preventing early convergence. To this end, we compare the CGA to a form of
SGA that seeds with randomly generated individuals.6 The test was run on RR
with 5-tournament and 2-point crossover, for five different seed probabilities. In
every comparable instance, the CGA outperformed the random-seeding SGA.
We conclude that the seeding operator is not just enforcing diversity, but intro-
ducing the building blocks vital to the algorithm.

4 Every (n)-value local or global optimum has two smaller, less-fit (n−1)-value fitness
peaks equidistant from it in solution space.

5 Our implementation, DT , is a 60-bit string consisting of 12 traps of length 5 each.
6 Either mutation or seeding could technically introduce new blocks, but the chance is
remote; we are thus effectively comparing the power of the mutation operator in the
CGA and the power of the seeding operator in the SGA to prevent early convergence.
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Table 1. Mean generations for the SGA to complete the RR problem; comparing
presample size (rows) and seed probabilities (columns). The best value is given in
bold. Values worse than those for the CGA are given in italics. Numbers presented
here are normalised for the cost of seed pool generation.

0.1 0.15 0.2 0.25 0.3
500 363.7 315.7 323.4 342.2 506.1
1000 221.7 181.8 169.7 196.7 394.8
2000 126.2 99.1 91.5 107.1 235.9
5000 122.9 98.5 95.1 96.4 229.9
10000 123.3 94.9 88.2 101.4 199.3
20000 118.6 99.9 97.9 103.8 189.6
30000 124.6 106.6 107.4 111.4 177.3
40000 128.6 112.5 111.8 118.5 165.5
50000 135.5 122.4 119.9 125.4 167.2
100000 189.6 185.8 182.9 188.2 206.3
125000 225.2 220.4 220.8 222.9 238.6
150000 265.2 258.9 258.4 260.9 275.6

We now turn to investigation of the various parameters of the SGA. We will
normalise results of the SGA to account for the computational cost of seed pool
generation,7 by assuming that the computational bottleneck is the number of
fitness evaluations performed.8 [3]

Presample Size and Seed Probability. We first varied the seeding proba-
bility against the presample size. Skinner [3] used a presample size of 1000, and
chose the probability 1

3 so that approximately half of the crossover operations
would involve replacement of at least one parent. We conducted experiments
varying the size of the presample from 500 to 750000. We tested seeding proba-
bilities in the range 0.1 to 0.35, using typical parameters, including 5-tournament
selection, 2-point crossover, and seed pool size n = 50.

The results for RR with 2-point crossover are given in Table 1. The CGA
completed in a mean 256.6 generations. The SGA was able to reduce this by as
much as 233 generations (a 90% reduction, or 66% after normalisation). While a
seed probability near 0.2 is best, the seeding algorithm significantly outperforms
the CGA with seed probabilities between 0.1 and 0.3. The algorithm encounters
diminishing returns with presample sizes above 150,000. The SGA performed
comparably with different variations and parameterisations of the problem.

The CGA did not succeed on HIFF: one in 1000 runs succeeded with 2-point
crossover; the “weaker” selection operators (rank selection and 2-tournament)
were more able to escape local optima and performed slightly better. The SGA
solved HIFF fairly easily, but even with a presample of 500,000, at least 10% of
the runs did not complete. We therefore ran a set of experiments of 100 runs
each, increasing the maximum number of generations from 1000 to 20,000, using
the higher seed probabilities earlier experiments indicated. According to Table 2

7 Without normalisation, an arbitrarily large presample will always be ‘best’ in the
sense that at some point, the presample will actually include a solution string.

8 The canonical GA makes N fitness calculations per generation, depending on various
factors; a presample size of N is then equivalent to running one extra generation of
the CGA, and so a presample of size X has an additional cost of X/N .
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Table 2. Tests of the SGA on deceptive problems: HIFF (left) and DT (right). Each
value is a mean over 100 runs up to 20,000 generations. Rows are different presample
sizes; columns are different seed probabilities. The best value for each problem is given
in bold. Numbers presented here are normalised for the cost of seed pool generation.

0.2 0.25 0.3 0.35 0.1 0.15 0.2
100 8016.4 3932.5 7794.6 N/A 100 3182.8 4279.3 4684.1
500 5029.7 2860.9 6794.4 N/A 500 1458.9 1623.0 1566.1
1000 6521.5 2149.4 6301.2 10152.0 1000 1063.0 1251.1 966.7
5000 5781.4 2261.7 4318.8 8800.1 5000 585.0 563.0 556.2
10000 4239.2 1774.0 3087.8 9409.9 10000 513.6 386.3 458.0
50000 3309.3 1291.0 2019.4 6071.1 25000 401.9 394.8 331.5
100000 3505.3 1480.9 1109.4 4404.2 50000 372.0 282.8 307.4
200000 1734.1 1126.4 1257.7 2981.6 75000 355.6 332.9 325.5
300000 2845.7 1467.7 1084.5 2365.3 100000 371.0 360.1 356.5
400000 3397.8 1394.7 1099.4 2379.8 150000 492.3 397.6 417.5
500000 2505.6 1336.9 1101.9 2232.5 200000 491.4 479.5 481.1

(left), the CGA remained inadequate on HIFF, but the SGA solved it rapidly
(after normalisation) with a seed probability9 of 0.3 and presample size around
300,000. Even a relatively small presample size is still useful: all runs found a
solution for seed probabilities up to 0.3 with presamples of size ≥10,000.

The CGA cannot solve DT: it did not succeed once in a total of over 15,000
tests. Remarkably, the SGA solved DT even more easily than HIFF. With a large
presample of 500,000, the SGA is sufficiently powerful to solve the DT problem
every time, but for smaller presamples, not all runs completed. Again, we ran
additional tests to 20,000 generations. The SGA then consistently found a so-
lution for all tested seed probabilities when the presample was at least 25,000.
Table 2 (right) suggests that the SGA had a ‘spread’ of generally good perfor-
mance for presamples ranging from tens of thousands to hundreds of thousands.
Even when a seed pool of 50 was drawn from a presample of 100, the SGA was
sufficiently robust to solve DT more than two-thirds of the time.

Presample Size and Seed Pool Size. To find the best seed pool size for given
presample sizes, we varied the size of the seed pool from n = 5 to 1000, fixing the
seed probability at a previously discovered reasonable level. Given that Section 3
showed that diversity maintenance is not the seeding operator’s most important
contribution, we expected using a smaller proportion of the presample (i.e., seed
quality) to be at least as important as sheer presample size (i.e., seed diversity).

We ran experiments on RR with a seed probability of 0.2. Our initial seed
pool size of 50, following Skinner, [3] was a good choice (95.1 normalised gener-
ations for presample 5000); 100 may have been slightly better (78.0 normalised
generations), but not to a statistically significant level. The viable seed pool size
increases with the presample size, but the optimal size is fairly consistent. The
SGA was able to improve on the performance of the CGA (256.6 generations)
with as small a seed pool as 25. On the HIFF problem, using the previously-
determined ‘good’ seed probability of 0.3, we found that the SGA performs well

9 The algorithm becomes steadily more effective with higher seed probabilities before
dropping off suddenly after 0.3. Interestingly, this value represents a ∼50% chance
that at least one parent in a reproduction event will be replaced by a seed individual.
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with a seed pool size around 25, finishing in a mean normalised 401.7 gener-
ations at a presample size of 50,000. Diminishing returns appeared before the
presample reached 100,000 (much lower for larger seed pools). We ran the same
experiments on the DT problem, using the ‘good’ seed probability 0.175. We
found a trend towards a larger seed pool size than usual; with increasing pre-
sample size, the first seed pool size on which all runs completed was 1000; the
second was 500. 98.8 - 99.9% of runs completed for seed pool sizes 50 and 100
and presample size 50,000, in a mean ∼305 generations.

4 Concluding Remarks

We confirmed the SGA’S efficacy compared to the CGA. A continual supply of all
building blocks combined with a suitable selection scheme leads to a significant
reduction in number of fitness evaluations required. We have demonstrated an
80% or greater reduction in the difficulty of problems the CGA struggles with,
and the ability to solve problems the CGA cannot, including those with extreme
local optima and block-level deception. We have run the SGA over 1,200,000
times to obtain an initial set of ‘reasonable’ parameters.10

Many extensions to the CGA have addressed the failings we overcame here.
The utility of the seeding operator lies in its ability to prevent early convergence
and overcome local optima and solve deceptive problems.11 Much future work is
possible, including exploring the relationship between selection pressure and seed
probability, refinement of the selection operator and replacement strategy12 to
take advantage of the SGA’s strengths, and testing the algorithm on real-world
domains. For further comments, see our extended online paper. [4]
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Abstract. We introduce a simple Artificial Chemistry to provide an
open-ended representation for the exploration of artificial evolution. The
chemistry includes an energy model based on the conservation of total ki-
netic and potential energy, and a constructive reaction model where pos-
sible reactions are discovered “on-the-fly”. The implementation is built
on an existing open-source cheminformatics toolkit for performance and
has a feature-set that prioritises the needs of Artificial Life over fidelity
to real-world chemistry, unlike many existing artificial chemistries.
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1 Introduction

We are interested in the factors that enable “true” open-ended evolution in
an artificial system. Previous work has emphasized that simply creating the
conditions for ongoing evolution is unlikely to result in outcomes that surprise
or intrigue [3,10].

In this paper we concentrate on the open representation component of true
open-ended evolution: the mechanism for describing the targets of the evolution-
ary component. In addition to the basic function of description, any representa-
tion must be capable of unrestricted extension, be understandable by humans,
and be computationally efficient. Previous work (e.g., [7]) has supported our
belief that these requirements can be met by an Artificial Chemistry (see [5] for
an introduction).

2 An Artificial Chemistry for Open-Ended Evolution

Following Dittrich et al. [5], we describe our Artificial Chemistry implementa-
tion by (S, R, A): a set of molecules S, a set of rules R describing the possible
transformations of the molecules, and a reactor algorithm A to select and order
reactions.

In general, for systems where S represents a set of discrete molecules, there are
two main strategies for reaction selection [7], sometimes combined hierarchically:
spatial and aspatial. In a spatial strategy, molecules have position and velocity,
and reactions occur when two molecules collide. Modelling the motion of a large
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population of molecules can however be computationally expensive. By contrast,
in an aspatial strategy, molecules are assumed to occupy a well-mixed container.
Our broader motivation is to identify a set of factors that may lead to open-ended
evolution. With this in mind, an aspatial approach has several advantages: first,
it is computationally simpler than a spatial chemistry. Second, it is likely to be
more robust in respect to parameter selection as it removes the need for models
of molecular movement and spatial proximity.

With regard to our specific chemistry, to the best of our knowledge the arti-
ficial chemistry described by Ducharme et al. [6] is the only other work similar
in both goals and approach to our own. The approach taken is to model the en-
ergy changes associated with reactions. The chemistry however is spatial; atoms
are arranged on a 2-dimensional grid and have velocity. When two atoms pass
within a particular distance, they interact. The possible types of interactions
are pre-specified, with the type chosen being driven by the atomic composition
and energies of the interacting atoms. Reactions are therefore between atoms
rather than molecules. Although computational costs are not reported, it seems
plausible that the calculation of intersections on a spatial grid will be expen-
sive for large molecular populations. Another cost comes from the required re-
arrangement of molecules post-reaction into energy-efficient configurations. We
are interested in establishing whether, for the purposes of modelling open-ended
evolution, these extra capabilities with their associated performance costs are
actually required.

2.1 Molecules (S)

Our model is based on RDKit [9], open-source software for cheminformatics.
RDKit provides a number of useful capabilities including format conversions to
and from SMILES [4] and graphical forms of molecules; standard sanity checks
for molecular structure, and molecular manipulations, but most importantly, is
well-tested and optimised for performance.

Molecules are modelled as an extension of standard RDKit Mol objects, con-
structed from RDKit Atoms connected with Bonds. Standard Lewis dot struc-
tures built on the inherited atomic properties are used to identify possible bonds,
and a formal charge model is used to record the charge changes associated with
modifications to the molecular structure caused by reactions.

2.2 Reaction Rules (R)

A constructive artificial chemistry [8] is one where new components may be
generated through the action of other components, and where those new com-
ponents may themselves take part in new types of reactions, and so on. This ap-
pears fundamental to an open-ended representation. In our model, all reactions
emerge solely from the properties of the reacting molecules. For each reaction
between two molecules we generate a list of reaction alternatives by enumerat-
ing all possible bond additions, bond subtractions, and changes in bond type
between the reactants. For example, the reactants H2 and O2 generate three
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reaction alternatives: breaking of the H-H bond, breaking of the O=O double
bond, and a transformation of the O=O double bond to a single bond. The re-
actants H+ and OH− give two alternative reactions: breaking of the O-H bond
(giving H+H++O−) and formation of a single bond between H+ and O to give
H2O. The Reactor Algorithm selects one of these reaction alternatives by choos-
ing from a distribution of reaction alternatives weighted by associated energy
changes (see sec. 2.3.)

Our energy model enforces conservation of mass so reactions can be repre-
sented solely by bond changes in RDKit. This follows the approach taken in
graph-based chemistries such as GGL/ToyChem [1,2] where reactions are mod-
elled as a series of changes to graph edges, or bonds, only.

2.3 Reactor Algorithm (A)

Our reactor algorithm is an implementation of a well-stirred reaction container
where every reactant has equal probability of participating in the next reaction.
Reactions are modelled as head-on elastic collisions between two reactants, cho-
sen at random from the population, with changes to kinetic energy equalling the
increase or decrease in molecular potential energy associated with the creation,
destruction or change of order of bonds. Creation of a bond results in a reduc-
tion of molecular potential energy and an increase to kinetic energy; destruction
results in the reverse. A change in bond type is modelled as the sum of a bond
creation and of a bond destruction. Total energy in the system is always con-
stant, and equal to the sum of the initial kinetic energy of all molecules plus the
sum of their potential energies.

The magnitude of the change in potential energy, measured in arbitrary energy
units, is taken for simplicity from a table of approximate real-world chemical
bond energies for each combination of atoms and bond type. For example, the
creation of an H-H bond releases 104.2 units; the breaking of a C=O double
bond takes 185 energy units.

We select a reaction to fire from the possible alternatives for the reactants by
probabilistic selection from the alternatives biased towards options that release
rather than consume energy. Fig. 1 shows an example of the shift in products
that occurs as a result of this weighting as the overall quantity of energy in the
system is changed.

3 Experimental Evaluation

The reaction model and energy model leads to the following expectations:

1. Given two reactants, changing the reaction energy should result in different
sets of reaction products.

2. Molecular quantities reach equilibrium—that is, the set of interacting
molecules is constant, with fluctuations expected in quantities. We expect
molecular concentrations to stabilize at non-extreme values (equilibrium
rather than driven to an extreme) after some transition period from the
initial conditions.
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Fig. 1.Molecular quantities over time for initial population of N2O4 and 2NO2 with ini-
tial average KE ranging from 0 to 200 units (only molecules with significant quantities
are labelled; remainder appear as light-grey lines). Molecules represented in SMILES
notation.
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3. The equilibrium point depends on the energy of the system. Our energy
model preferentially forms bonds at low energies, and breaks bonds at high.
We expect the average length of molecules in the artificial chemistry to be
greater at low energies than at high energies.

These predictions were tested by two experiments: first, we examined the reac-
tion products produced at a range of reaction energies for four sets of reactants.
Second, for a given set of reactants, we ran the simulation for 10,000 iterations
at four successive initial average kinetic energy levels—0, 67, 133, and 200 units
per molecule—with each molecule initially at quantity 100. The experiment was
run first with a reactant set containing N2O4 and 2NO2 (results in Fig.1), and
then with a reactant set of H2, O2 and H2O.

3.1 Results and Discussion

Beyond the initial transition period, both reactant sets showed results essentially
consistent with equilibrium. Population variability was high in both cases, but
more so for the N2O4 and 2NO2 reactant set. In that case, some molecules never
reached a relatively constant population level (gradient of a best-fit population
line remained significantly non-zero.) The fluctuations in the quantities of the
other molecules are expected according to our criteria, and result from the in-
herent variability in reaction selection which causes the quantities to oscillate
around a norm.

With both reactant sets the model produced a significant number of molecules
which would be considered unstable in real-world chemistry (such as [O-] and
[O].) This is likely an artefact of the method we use to generate reaction op-
tions, where a bond-break plus bond-formation reaction—moving through an
intermediate unstable ion—occurs in our model as two separate reactions. As
all molecules currently react with equal likelihood, significant time can elapse
before the intermediate product reacts to form a stable product.

Both reactant sets showed clear differences in population composition between
the four initial kinetic energy levels. In the H2, O2 and H2O reactant set, no re-
actions occurred at the zero energy level. This is expected from our energy model
as only bond-formations are possible without free kinetic energy. With reactants
of H2, O2 and H2O no bond formations are possible, confirmed by examining
the bond options returned by the model for the six possible combinations of
initial reactants. By contrast, the reactant set N2O4 and 2NO2 at energy zero
contains one possible bond formation reaction (in SMILES, [O]N=O.[O]N=O
to O=N[O][O]N=O) which can proceed without free kinetic energy. This then
releases a product which can also react, and so on, thus explaining the different
results between the reaction sets.

4 Conclusions

Open-ended evolution is, as far as we know, an emergent phenomenon, and
so an open-ended system is more likely to be discovered than designed. Our
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approach therefore will be to identify a set of plausible factors that may lead to
emergent evolution; to systematically search through the set of chemistries based
on varying values of those factors; and to use a reasonable set of measures, such as
the number and types of reaction cycles, to identify promising chemistries from
our search. This is quite different from other works which postulate a particular
design at the outset.

Our initial artificial chemistry appears to be at least compatible with the
requirements for the future exploration of open-ended evolution. The model is
simpler than comparable alternatives, and the energy and reaction models pro-
duce results consistent with our predictions for the system’s behaviour (with
the exception of achieving equilibrium with the N2O4 and 2NO2 reactant set).
An aspatial approach does however come with restrictions. Most obviously, as
there is no concept of proximity in the chemistry, there can be no boundaries
or membranes or even basic distinctions between inside and outside. This is
critical in biology but it is unclear if this is equally important in non-biological
systems. We expect that experimental comparison between the aspatial and spa-
tial approaches in the course of our exploratory experiments will help to clarify
this.
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Abstract. We describe a multilevel algorithm compiling a general game
description in GDL into an optimized reasoner in a low level language.
The aim of the reasoner is to efficiently compute game states and per-
form simulations of the game. This is essential for many General Game
Playing systems, especially if they use simulation-based approaches. Our
compiler produces a faster reasoner than similar approaches used so far.
The compiler is implemented as a part of the player Dumalion. Although
we concentrate on compiling GDL, the developed methods can be applied
to similar Prolog-like languages in order to speed up computations.

Keywords: General Game Playing, Game Description Language, Com-
piler Construction.

1 Introduction

The aim of General Game Playing (GGP) is to develop a system that can play
variety of games with previously unknown rules. Unlike standard artificial game
playing, where designing an agent requires special knowledge about the game,
in GGP the key is to create an universal algorithm performing well in different
situations and environments. As such, General Game Playing was identified as
a new Grand Challenge of Artificial Intelligence and from 2005 the annual AAAI
GGP Competition is taking place to foster and monitor progress in this research
area [5]. Because of its universal domain, GGP combines multiple disciplines
[19] from searching, planning, learning [1,4,12,15,17] to evolutionary algorithms,
distributed algorithms and compiler construction [11,14,16,20].

In many General Game Playing systems it is crucial to have an efficient rea-
soning algorithm performing simulations of the game. More computations means
a larger game tree traversed, more gained knowledge, deeper search or more sim-
ulations in Monte Carlo algorithms. In response to these needs, we developed
our compiler. Because of used optimizations, it produces very effective reasoners
which can compute game states faster than other so far known approaches.

The paper is organized as follows. Section 2 provides necessary background
and describes current state of the art. Step by step details of our construction
are presented in Section 3. Section 4 contains overview of experimental results.
We conclude in Section 5.
� This research was supported in part by Polish MNiSW grant IP2012 052272.
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2 Game Description Language

To develop a general game playing system, there is a need for a standard to
encode game rules in a formal way. For the sake of World Wide GGP Compe-
tition, Game Description Language (GDL) [5,10] is used. This first-order logic
language based on Datalog has enough expression power to describe all finite,
turn-based, deterministic games with full information, simultaneous moves and a
fixed number of players. By “finite” we mean that the set of possible game states,
and the set of actions (moves) which players can choose in each state should be
finite. Also every match should end after a finite number of turns. Players per-
form actions simultaneously, which means that in each turn all players select
their moves, without knowing the decision of the others. Sequential games can
be simulated by explicit adding some noop move for the players which should
normally wait. Another strong restrictions are that no game element can be
random and all players should have the full information about the game state.
Extension of the GDL called GDL-II [18] removes these limits, but this leads to
a more complicated system where general playing is even harder.

Syntactically GDL is very similar to Prolog. It is purely axiomatic, so there is
no arithmetic or other complex game concepts (like pieces or boards) included,
every such thing must be explicitly stated in the code. GDL is rule based which
means that gaining information about a game state is equivalent to applying
rules and extending the set of holding (true) facts. As example, in listing 1.1, we
show some rules of the game Goldrush from Dresden GGP Server [6].

Listing 1.1. Part of the Goldrush game GDL code

1 ( role Green ) ( role Red)
2 ( in i t (OnMap Green 1 1) ) ( in i t (OnMap Red 7 7) )
3 ( in i t (OnMap Obstac le 1 6) ) ( in i t (OnMap Obstac le 2 4) ) . . .
4 ( in i t (OnMap (Gold 2) 1 7) ) ( in i t (OnMap (Gold 1) 3 6) ) . . .
5 ( in i t (OnMap ( Item Bla s t e r 3) 7 4) ) . . .
6 ( in i t (OnMap ( Item Stonep lace r 3) 1 4) ) . . .
7 (<= ( legal ? r (Move ?nx ?y ) )
8 ( role ? r ) ( true (OnMap ? r ?x ?y ) ) ( InBoard ?nx ) )
9 (or (+ ?x 1 ?nx) (− ?x 1 ?nx ) )

10 (<= (next (OnMap ? r ?x ?y ) )
11 ( role ? r ) (does ? r (Move ?x ?y ) ) )
12 (+ 0 0 0) (+ 1 0 1) (+ 2 0 2) (+ 3 0 3) . . .
13 (<= (− ?x ?y ? z ) (+ ?y ?z ?x ) )
14 ( InBoard 1) ( InBoard 2) ( InBoard 3) . . . ( InBoard 7)

Predicates that are arguments of init, true and next can be considered as
a minimal set of predicates enough to restore all information about the state,
which we will call as the base predicates. This means that the full game state
(the view of a state) is a set of facts closed under application on the base facts
and the next state is computed based on the previous full state and the players
actions.

This leads us to the notion of the reasoner. This is an essential part of
every player, allowing it to shift the state based on information from the game
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controller. During competition, the game controller sends to a player only moves
made by all players, so computing the next state, legal moves and so forth should
be made at the player’s side. In other words the reasoner is an implementation
of the game loop (Fig. 1) described by game rules.

base

 init

terminal

 view

does
 next

legal
 view

goal

 view

Fig. 1. Game loop: the view of
a state is computed based on
the current base facts. Then
either game ends or the pro-
gram should wait for actions
of the players and then com-
pute a next base.

2.1 Reasoner Implementations

An efficient reasoner implementation, while not
connected with playing algorithms, is one of the
most important part of a general game player.
This applies to currently dominating simulation-
based approach [3], but also some knowledge
based ([7,8,15]) players make benefits from
performing game simulations to tune their heuris-
tic evaluation functions [1]. The problem of play-
ing general games is so computationally difficult,
that most of players use distributed architecture
to support parallel computations on many ma-
chines [11,13]. Complementary approach to par-
allelism is speeding up the process of reasoning
itself. Most common implementations of the rea-
soner are based on prolog engines built into an-
other programming language. The benefit from
this approach is that it requires only syntactic
modifications of GDL, so it results in simplicity

of implementation. But using a very general inference engine to compute rules
of strictly given form is a drawback causing lack of computations speed.

The most obvious method of avoiding this is compiling GDL to other language.
Straightforward rewriting GDL code to C++ language, done in a top-down man-
ner was described in [20] and Java version of this approach can be found in [13].
On the other hand, the method of forward chaining GDL to OCaml compilation
with some optimizations was proposed in detail in [14]. Other approaches to
make reasoning faster contains usage of propositional networks [2] and instanti-
ating games to use binary decision diagrams [9].

In the following section we will describe in details our method of construct-
ing GDL compiler. We use combination of a few ideas such us careful ordering
of computations, optimizing control flow and designing dedicated structures to
perform queries. All of these, result in a significant improvement in efficiency
compared to the methods used before.

3 Compilation

Our compiler takes as an input the game rules written in GDL and outputs
a structure called compilation plan, decoding the computation strategy for the
reasoner. The plan can be then translated to some efficient low-level program-
ming language like C/C++. In this section we describe all major steps of con-
structing the plan. Our general aim is to achieve better efficiency of computing



Game Description Language Compiler Construction 237

game states by the resulted reasoner. Looking to a process of playing GDL game,
it can be considered as an usage of a database. The predicates are containers with
some facts and we have to perform reading (queries) and writing (insertions) to
these containers. Our method uses such techniques as flattening domains, opti-
mizing data structures for containers, reordering operations, which are mostly
apart from the target language.

3.1 Calculating Domains and Flattening

The first thing we need to do, after parsing GDL to some abstract tree struc-
ture, is to compute domains of the predicates’ arguments. Let P be a predicate.
Because predicates in GDL can be nested, every occurrence of P form a tree
of its arguments. In that case we can describe such occurrence as a function
from vectors encoding positions in tree to arguments symbols, so e.g. position
of 3 in OnMap (Item Blaster 3) 7 4 can be described as 〈0, 2〉 (positions at
every tree level are enumerated from 0). We want to calculate domain as a func-
tion which takes a pair of a predicate P and a tree position p̃ (possible for P ),
and returns a set of symbols that can occur in this position. Such domains are
in fact a supersets of the real predicates’ domains and also lose information
about dependencies between arguments. However this is enough for the further
calculations.

The method proposed in [9] requires computing set of dependencies where
(P, p̃) � (Q, q̃) (� is “depends on” relation) if and only if there exists a rule with
P in the head and Q in the body, where at the positions p̃ and q̃ respectively, the
same variable occurs. This means that every symbol in domain of (Q, q̃) should
be also in domain of (P, p̃). In this approach calculating domains means resolving
dependencies by extending appropriate domains until a fixpoint is obtained.

We improved this method to handle nested predicates and compute smaller
domains. In our case extending domains include also domains of every subtree
of variable occurrence. If (P, p̃) � (Q, q̃) then for every q̃′′ which has q̃ as a prefix
(so q̃′′ = q̃ + q̃′ for some position vector q̃′), also (P, p̃ + q̃′) � (Q, q̃′′). These
dependencies must be dynamically computed because during the algorithm new
predicates positions can be found.

Instead of � we use relation �R where (P, p̃) �R (Q, q̃) if dependency is cre-
ated by rule R in CNF form (note that every game described in GDL can be
easily converted do CNF). Let $ be the operator of domain conjunction defined
as ($ d1 . . . dn) v = d1(v) ∩ . . . ∩ dn(v). For every rule R we create set πR

(P,p̃)

containing every (Q, q̃) such that (P, p̃) �R (Q, q̃) holds. Then for every πR
(P,p̃)

we extend domain of (P, p̃) by $ di for di ∈ πR
(P,p̃). This simulates conjunction

which takes place in GDL rules and prevent domains from containing symbols
unused in practice. The procedure loops for every pair (P, p̃) and finishes when
a fixpoint is found.

To illustrate this algorithm, consider a subset of game rules shown in Listing
1.1. Calculating domains based on this example appoints the following domain
of predicate OnMap:



238 J. Kowalski and M. Szyku�la

(OnMap, 〈0〉) → {Green,Red,Obstacle}
(OnMap, 〈0, 1〉) → {Gold,Item}
(OnMap, 〈0, 2〉) → {1,2,Blaster,Stoneplacer}

(OnMap, 〈0, 3〉) → {3}
(OnMap, 〈1〉) → {1,2,3,4,5,6,7}
(OnMap, 〈2〉) → {1,2,3,4,5,6,7}

Because of arguments nesting, the number of leaves in parse tree can vary
for one predicate. But to effectively perform queries, we need to have predicates
without nesting and with a fixed arity. To achieve this, we developed a notion
of flattened predicate and algorithms to convert standard (nested) predicate to
flattened form and to perform reversed conversion.

The arity of a flattened predicate is the number of leaves in the widest of
arguments assignments found in domain calculating phase. Tighter occurrences
of the predicate are then stretched using special non-GDL symbol #nil, and
each variable occurrence is extended by introducing new variables with added
suffixes to avoid ambiguity. From now on, each mentioned predicate is flattened.
Conversion from flattened predicate to its standard GDL form is necessary when
the player needs to send a move to the game controller, having a flattened move
given by the reasoner. As we made proper algorithms, we can stand:

Lemma 1. For every occurrence of a valid GDL predicate with a fixed domain,
there exist its unique flattened form. There exists an algorithm that converts
these forms.

A small part of flattened Goldrush game is shown in Listing 1.2 as an example.
As it shows at line 10, it can create rules with unbound variables, but the values
of these variables are explicitly set to #nil during further calculations.

Listing 1.2. Flattened GDL code

2 ( in i t (OnMap Green #n i l #n i l 1 1) ) . . .
3 ( in i t (OnMap Obstac le #n i l 1 6) ) . . .
4 ( in i t (OnMap Gold 2 #n i l 1 7) ) . . .
5 ( in i t (OnMap Item Bla s t e r 3 7 4) ) . . .
6 ( in i t (OnMap Item Stonep lace r 3 1 4) ) . . .

10 (<= (next (OnMap ? r0 ? r1 ? r2 ?x0 ?y0 ) )
11 ( role ? r0 ) ( does ? r0 ( Move ?x0 ?y0 #n i l ) ) )

3.2 Predicates Dependency Graph and Layering

Let say that a predicate P depends on Q if there exists a game rule R such that P
is the head of R and the body of R contains Q. We consider the dependency graph,
which is a directed graph representing the dependency relation of predicates.

After the complete dependency graph is built, it is split up to subgraphs rep-
resenting each of the game phases, depending on what we are going to compute.
The phases are: init, term, goal, legal and next and they correspond to the solid
arrows from the game loop visualization (Fig. 1), where term, goal and legal
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belong to view. In such a way, the dependency graph gives us information about
the predicates usage.

We can get rid of all predicates that are not needed to compute any of legal,
terminal, goal, next. Constant predicates can be fully precomputed during
the initialization phase and they stay unchanged during the rest of the game.
These and base predicates belong to the init phase. The predicates reachable in
the reversed dependency graph from terminal, goal, legal and next belong
to corresponding phases respectively. There is one exception: predicates reach-
able from both goal and legal are put in the term phase. We note that it is
not necessary required to compute the goal predicate while the state is non-
terminal. This loses possible information about scores in non-terminal states,
but it saves computation time and in Monte Carlo approach simulations go to
the end anyway, so checking the goal values in non-terminals can be avoided.

All proper GDL games must be stratified, which means that for all predicates
P and Q if P depends on not Q then P must be in a higher stratum, and all facts
of a lower stratum should be deducted before deducting the upper stratum starts
(which is always possible). This mechanism allows to treat GDL deduction as
continuously adding facts to a database, without worrying of withdrawing them
if computations are made in the proper order. In a top-down approach right
computation order is for free, but in a bottom-up ordering is more flexible and
can lead to better efficiency.

Despite stratification as a result of negations placement, we consider layering.
This is a more general and a more complex approach based on dependency
graphs. Each layer corresponds to a set of strongly connected components of the
dependency graph. There are two types of layers:

Acyclic layer is a set of predicates such that there is no path in the dependency
graph between any two predicates from this set. This means that, if only all the
lower layers are computed, all the rules with these predicates in the head can be
computed simultaneously and only once.

Cyclic layer is a set of predicates that are reachable from any other from this
set (by using at least one edge). In this case the number of rules applications
to deduct these predicates is unknown, and computations must take place until
a fixpoint is reached (no new fact is added after an iteration).

Partitioning of the dependency graph to layers should be done in a way,
that acyclic layers should be as large as possible, and cyclic layers as small as
possible (which reduces number of computations). Currently we create the layers
incrementally from the nodes without ingoing edges (so the first layer contains
all “leaves” of graph). If there is a choice which layer cyclic or acyclic should be
considered as a lower, the lower (first to compute) goes cyclic one.

3.3 Defining the Rules Computation Order

Mapping from predicates to layers does not make ordering of rule computation
unambiguous. Consider a rule R and let LR

h be the layer where the head of the
rule belongs, and let LR

b max be the maximal (the highest) layer of predicates in
body of R. This means that R must be computed before layer LR

h + 1 and after
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Fig. 2. Dependency graph of the game Goldrush (predicates legal and next are omit-
ted due to visibility) with cyclic layers marked with dashed border

layer LR
b max, so the rule can be placed in any layer between these values. An

exceptional situation is when LR
h = LR

b max, which happens only for some rules
from cyclic layers. In this case rule placing is unambiguous.

Intelligent rule placement can lead to some speed improvement in two main
cases. First, when the predicate in the head of a rule is from a cyclic layer but
the body is not (LR

h < LR
b max) then the rule can be computed cheaper, because

it is computed only once within a lower (assuming non cyclic) layer. Sometimes
even special layers for such rules can be created. The second reason to move rules
is that in some layers in admissible range there are rules similar in construction
and some sharing computations between them can be done.

3.4 Filter Trees

With computed order of the rule computations we can produce the final plan.
In such a plan the symbols and predicates get their unique id, and each predi-
cate has bound information about its (flattened) domain and container type. To
appoint exact ordering of game state computations, structures called filter trees
are created.

Filter trees contains nodes, which can have child nodes. The whole compu-
tation process is just traversing the tree and performing actions according to
the types of nodes. During computation a set of local variables and a set of
containers are maintained. In the root the sets are empty. A variable (similarly
container) defined in a node has scope bounded to the children nodes. A variable
defined in a parent node is bound in the children and cannot change its value.
The nodes have the following types:

– Sequence A node with many children which should be executed in the order.
– Query Queries the specified container for a given subset of facts. There

can be either symbols or bound and unbound variables. For each fact in
the container which matches the query, define unbound variables by setting
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the values to match the fact and go into the child node. For optimization
purposes a query can have additional explicit domain filter.

– Accept Inserts a fact to the specified container. All of the variables used in
an insertion must be bound. If a new fact is added, a special repeat flag is
set to inform a cyclic layer to be repeated.

– Repeat Repeats computation of its subtree until the repeat flag is unset. The
flag is checked and cleared each time between iterations.

– If It has three children. The child called test is executed first until it is
finished or a special Return node is reached. If Return was reached the child
true is executed, otherwise false.

A GDL rule can be simply transformed to a filter tree without any significant
modifications. A conjunction is simply nested children, an alternative can be
decoded as Sequence and negated terms can be put in If filter with Accept
in false subtree. Distinct between two variables is converted to a Query with
unspecified container but with a list of distinct variables, while distinct with a
variable and a symbol is just Query with reduced variable’s domain.

A careful way of constructing filter trees can reduce much of computations.
At first, if the same query occurs in two rules in the same layer it can be shared.
Because every nested query can potentially cut out variable domains, the right
order of nested queries can also improve efficiency. The last main optimization
takes place when all variables from the heads of the rules are already defined in
some query. Since the added fact is fully defined it remains only to check if the
rest of queries can be satisfied. This can be realized by putting into If the rest
nested queries, so a single positive pass through them is sufficient to immediately
return and insert a fact.

We observe that only the values of variables which can reach Insert or Return
node are necessary to be considered. We can restrict the domain in advance in
queries defining these variables, instead of filtering them by nested queries.

We create five filter trees, one for each of the phases. An example filter tree
for next phase of the game blocker [6] is presented in Fig. 3. Creating the filter
trees finishes our construction, allowing generation of the final code.

3.5 Data Structures for Containers

Queries can have very different shapes. They consist of a predicate and a fixed
number of arguments, depending on the predicate’s arity. The arguments can be
constants or variables. The simplest are those asking about existence of a partic-
ular fact like cell 1 3 b. More complicated are queries mixing both constants
and variables, including bound variables like in cell ?x ?x ?t. Efficiency of
performing queries depends on the data structure used to implement the con-
tainer for a given predicate. An elementary analysis can be used to estimate
query and insert costs for various data structures. Although more deep opti-
mizations can take care of the proportion between queries and insertions, and
occurrences of query shapes.

In our compiler we use a few different data structures. We describe them here
and perform a simple efficiency analysis. Consider a container and assume that
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Sequence

( cell ?m ?n b ) ( cell ?m ?n ?x ) 
?x in {blk, crosser}

If

( does blocker (mark ?m ?n) )

test

( next (cell ?m ?n blk ) )

true

If

false

( does crosser (mark ?m ?n) )

test

( next (cell ?m ?n crosser ) )

true

( next (cell ?m ?n b ) )

false

( next (cell ?m ?n ?x ) )

Fig. 3. Next filter tree of the game blocker. Box nodes represent Queries while ellipses
are Accept filters. Every test branch of If ends with unmarked Return node.

d is the arity of facts in the container. Then let c1, . . . , cd be the sizes of the
domains of the arguments, that is the i-th argument can take one of ci possible
values. Thus the container can hold at most C =

∏d
i=1 ci facts. Assume that

n is the number of currently stored facts in the container. We assume that d is
a fixed constant and comparing any two values (symbols) takes O(1) time.

Querying a subset of facts in the container takes time at least Ω(s), where s
is the size of the queried subset, because of further processing these facts. For
simplicity we do not consider the cases with duplicated unbound variables in
a single query, which are also rare cases. Thus an optimal data structure would
take O(s) time performing a query, and O(1) time performing an insertion.
A special careful should be taken for querying for a particular fact, because such
an operation is often required during insertions to prevent storing duplicated
facts in the container.

One of the simplest data structures is a standard dynamically-sized vector.
Inserting to a vector takes O(1) time, but querying for a particular fact or a
subset of facts can take O(n) time in the worst case. In opposition to the vector
there is a complete lookup array with the fixed size C. Each allowed fact has
a fixed position in the array storing a flag indicating if the fact is in the container.
Insertion to an array, as well as querying for a particular fact, takes O(1) time.
However querying for a larger subset of facts can take O(C) time, depending
on the number of possible facts matching the query. Thus vectors are better for
larger domains and smaller number of stored facts, and arrays conversely.

Hash and tree sets are quite efficient for insertions and querying for a partic-
ular fact, which take O(1) time in a hash set and O(log n) in a balanced tree set
with lexicographically ordering of facts. However querying for a subset of facts
may take O(n) in a hash set, and as well in a tree set if the first argument is an
unbound variable.

A trie is a more complex tree-like structure. Levels correspond to the argu-
ments. At the level h, each node contains dh pointers to nodes at the height



Game Description Language Compiler Construction 243

h + 1 (except the last). These correspond to all dh allowed values of the h-th
argument. A fact is encoded by a path from the root to a leaf. A pointer is null
if there are no facts with the corresponding value. A trie grows as more facts
are added. An insertion takes O(

∑d
i=1 ci) time in the worst case (empty trie),

because we must create a node at each level. Querying a particular fact takes
O(1) time. Efficiency of a trie in querying for a specified subset depends on the
order of the arguments. A query can cost from O(s) time when the constant
arguments are at the beginning, up to O(n) time when they are at the end. We
consider tries as an universal balanced structure, since it performs quite well in
most cases.

With an assumption that we have a constant number of query shapes, we
developed two nearly optimal composed structures. Composed structure consist
of a set of other structures made especially for efficient maintaining of different
query shapes. The first such structure is the trie-composed structure based on
tries, and the second is the tree-composed structure based on balanced tree sets.
It seems that the trie-composed structure is better, because queries usually occur
more frequently than insertions, and it generally has a lower constant factor.

Lemma 2. The trie-composed structure takes O(s) time for a query and O(c1+
. . . + cd) time for an insertion.

Lemma 3. The tree-composed structure takes O(s + logn) time for a query
and O(log n) time for an insertion.

3.6 Final Code Generation

We have implemented GDL compilation to C++. The compiled reasoner is just
a module allowing to maintain game states. In particular the phases are functions
initializing the reasoner and computing the init state, computing a view state
given a base state, or computing a next base state given a base state, view state
and moves of the players. It also provides an interface for answering if a state is
terminal, getting the goal or the legal moves.

Each node of the filter tree is directly inlined in the code. In this way many
technical optimizations are possible by using the context, since for example, each
query can have different set of domains for the variables and we can perform
explicit iteration through them.

4 Experimental Results

We have implemented the compiler as a Java program producing a reasoner in
C++ as output. Our benchmark results are presented in Table 1. The resulted
reasoners were compiled by g++. The main program performed uniformly ran-
dom simulations of the games. Comparative reasoners uses ECLiPSe Prolog sys-
tem. The benchmarks were done on Intel(R) Core(TM) i7-3610QM 2.3GHz with
8GB of RAM.
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Table 1. The numbers of performed random simulations and visited game states per
second for different games

Game
The reasoner of Dumalion Prolog

Compilation Simulations States Simulations States

Tic-Tac-Toe 0.736 s 331,647 2,860,888 2,076 15,829

Blocker 0.645 s 194,628 1,729,674 1,020 8,049

Connect Four 0.857 s 15,092 353,283 287 6,424

Breakthrough 1.074 s 3,086 200,901 55 3,553

Checkers 10.482 s 211 21,291 12 1,186

Skirmish 7.810 s 71 7,114 5 518

Although differences between computation speed between a simple Prolog
engine and the optimized and compiled code are outstanding as expected, an
interesting observation is that the improvement factor is less for more compli-
cated games (such a tendency is also visible in benchmarks from [13,14]). In
other hand, while the improvement factor is smaller, the numbers of performed
simulations and visited states were increased several time, and this is especially
crucial for very difficult games when computing states is hard and even small
speed up can give a big advantage.

Because of hardware differences and chosen method of benchmarking it is
hard to make a straightforward comparison between our compiler and other
approaches described in [13,14,20]. But after recalculating all the results to
a common base simulations over a second, a roughly comparison shows that
the reasoner of Dumalion can compute simulations from 2 to about 10 times
faster (depending on the game) than the compiling methods described so far,
and from 10 to 160 times faster than a standard Prolog engine.

5 Conclusions and Future Work

Using a compiler generator to create reasoners requires far more work than
running a Prolog engine on syntactically changed GDL code, but the benefit in
computation speed is significant. We mention here a few of inconveniences in
our method. At first the produced reasoner must be compiled into a native code.
This can take quite long if the game is complicated. The second problem is that
we lose all the structure information, for example we cannot ask about a specified
predicate defined in the original GDL, since it is possible that the corresponding
container does not exist at all due to optimizations. Another drawback is that
the process of compilation itself make the whole GGP system more complicated
and harder to handle, especially if it should support parallelism.

There are many other ways of further optimizations of the plan. They include
introducing new temporary containers, reordering of arguments, more careful
selection of container types, reordering of queries and splitting them. As the
future work, we have plan to construct GGP architecture with the aim of efficient
maintain compiled code in a scalable, parallel system.
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Abstract. GDL-II is a logic-based knowledge representation formalism used
in general game playing to describe the rules of arbitrary games, in particular
those with incomplete information. In this paper, we use model checking to au-
tomatically verify that games specified in GDL-II satisfy desirable temporal and
knowledge conditions. We present a systematic translation of GDL-II to a model
checking language, prove the translation to be correct, and demonstrate the feasi-
bility of applying model checking tools for GDL-II games by four case studies.

1 Introduction

The general game description language GDL, as the input language for general game-
playing systems [7], has recently been extended to GDL-II to incorporate games with
nondeterministic actions and where players have incomplete/imperfect information [20].
However, not all GDL-II descriptions correspond to games, let alone meaningful and
non-trivial games. Genesereth et al. [7] list a few properties that are necessary for well-
formed GDL games, including guaranteed termination and the requirement that all play-
ers have at least one legal move in non-terminal states. The introduction of incomplete
information raises new questions, e.g., can players always know their legal moves in
non-terminal states or know their goal values in terminal states?

Temporal logics have been applied to the verification of computer programs, and
more broadly computer systems [13,3]. The programs are in certain states at each in-
stant, and the correctness of the programs can be expressed as temporal specifications.
A good example is the temporal logic formula “AG¬deadlock” meaning the program
can never enter a deadlock state. Epistemic logics, on the other hand, are formalisms for
reasoning about knowledge and beliefs. Their application in verification was originally
motivated by the need to reason about communication protocols. One is typically inter-
ested in what knowledge different parties to a protocol have before, during and after a
run (i.e., an execution sequence) of the protocol. Fagin et al. [4] give a comprehensive
study on epistemic logic for multi-agent interactions.

Ruan and Thielscher [16] have shown that the situation at any stage of a game in
GDL-II can be characterized by a multi-agent epistemic (i.e., S5-) model. Yet, this
result only provides a static characterization of what players know (and don’t know)
at a certain stage. Our paper extends this recent analysis with a temporal dimension,
and also provides a practical method for verifying temporal and epistemic properties
using a model checker MCK [5]. We present a systematic translation from GDL-II
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into equivalent specifications in the model specification language of MCK. Verifying a
property ϕ for a game description G is then equivalent to checking whether ϕ holds for
the translation trs(G). The latter can be automatically checked in MCK.

The paper is organized as follows. Section 2 introduces GDL-II and MCK. Section 3
presents the translation along with possible optimizations and a proof of its correctness.
Experimental results for four case studies are given in Section 4. The paper concludes
with a discussion of related work and directions for further research.

2 Background

Game Description Language GDL-II. A complete game description consists of the
names of (one or more) players, a specification of the initial position, the legal moves
and how they affect the position and the players’ knowledge thereof, and the terminat-
ing and winning criteria. The emphasis of game description languages is on high-level,
declarative game rules that are easy to understand and maintain. Background knowl-
edge is not required—a set of rules is all a player needs to know to be able to play
a hitherto unknown game. Meanwhile, GDL and its successor GDL-II have a precise
semantics and are fully machine-processable.

The GDL-II rules in Fig. 1 formalize a simple but famous game called Monty Hall,
where a car prize is hidden behind one of three doors and where a candidate is given
two chances to pick a door. Highlighted are the pre-defined keywords of GDL-II. The
intuition behind the rules is as follows. Line 1 introduces the players’ names (the game
host is modelled by the pre-defined role called random). Line 2 defines the four features
that comprise the initial game state. The possible moves are specified by the rules for
legal: in step 1, the random player must decide where to hide the car (line 3) and,
simultaneously, the candidate chooses a door (line 7); in step 2, random opens a door
that is not the one that holds the car nor the chosen one (lines 4–5); finally, the candidate
can either stick to their earlier choice (noop) or switch to the other, yet unopened door
(line 9 and 10, respectively). The candidate’s only percept throughout the game is to
see the door opened by the host (line 14) and where the car is after step 3 (line 15). The
remaining rules specify the state update (rules for next), the conditions for the game to
end (rule for terminal), and the payoff for the player depending on whether they got
the door right in the end (rules for goal).

GDL-II is suitable for describing synchronous n-player games with randomness and
imperfect information. Valid game descriptions must satisfy certain syntactic restric-
tions, which ensure that all necessary inferences “�” in Definition 1 below are finite
and decidable; see [12] for details. In the following, we assume the reader to be familiar
with basic notions and notations of logic programming, as can be found in e.g. [11].

A state transition system can be obtained from a valid GDL-II game description by
using the notion of the stable models of logic programs with negation [6]. The syntactic
restrictions in GDL-II ensure that all logic programs we consider have a unique and
finite stable model [12,20]. Hence, the state transition system for GDL-II has a finite
set of players, finite states, and finitely many legal moves in each state. By G � p we
denote that ground atom p is contained in the unique stable model, denoted as SM(G),
for a stratified set of clauses G. In the following definition of the game semantics for
GDL-II, states are identified with the set of ground atoms that are true in them.
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1 role(candidate). role(random).
2 init(closed(1)). init(closed(2)). init(closed(3)). init(step(1)).
3 legal(random,hide_car(?d)) <= true(step(1)), true(closed(?d)).
4 legal(random,open_door(?d)) <= true(step(2)), true(closed(?d)),
5 not true(car(?d)), not true(chosen(?d)).
6 legal(random,noop) <= true(step(3)).
7 legal(candidate,choose(?d)) <= true(step(1)), true(closed(?d)).
8 legal(candidate,noop) <= true(step(2)).
9 legal(candidate,noop) <= true(step(3)).

10 legal(candidate,switch) <= true(step(3)).
11 next(car(?d)) <= does(random,hide_car(?d)).
12 ...
13 next(step(4)) <= true(step(3)).
14 sees(candidate,?d) <= does(random,open_door(?d)).
15 sees(candidate,?d) <= true(step(3)), true(car(?d)).
16 terminal <= true(step(4)).
17 goal(candidate,100) <= true(chosen(?d)), true(car(?d)).
18 goal(candidate, 0) <= true(chosen(?d)), not true(car(?d)).

Fig. 1. GMH - a GDL-II description of the Monty Hall game adapted from [21]

Definition 1. [20] Let G be a valid GDL-II description. The state transition system
(R, s0, τ, l, u, I, Ω) of G is given by

– roles R = {i | role(i) ∈ SM(G)};
– initial position s0 = SM(G ∪ {true(f) | init(f) ∈ SM(G)});
– terminal positions τ = {s | terminal ∈ s};
– legal moves l = {(i, a, s) | legal(i, a) ∈ s};
– state update function u(M, s) = SM(G∪{true(f) | next(f) ∈ SM(G∪s∪M)}),

for all joint legal moves M (i.e., where each role in R takes one legal move);
– information relation I = {(i, M, s, p) | sees(i, p) ∈ SM(G ∪ s ∪ M)};
– goal relation Ω = {(i, n, s) | goal(i, n) ∈ s}.

Note that a state s contains all ground atoms that are true in the state, which includes
the “fluent atoms” true(f) in, respectively, {true(f) | init(f) ∈ SM(G)} (for the
initial state) and {true(f) | next(f) ∈ SM(G ∪ s ∪ M)} (for the successor state of s
and M ), and all other atoms that can be derived from G and these fluent atoms.

Different runs of a game can be described by developments, which are sequences of
states and moves by each player up to a certain round. A player cannot distinguish two
developments if the player has made the same moves and perceptions in both of them.

Definition 2. [20] Let (R, s0, τ, l, u, I, Ω) be the state transition system of a GDL-II
description G, then a development δ is a finite sequence

〈s0, M1, s1, . . . , sd−1, Md, sd〉

such that for all k ∈ {1, . . . , d} (d ≥ 0), Mk is a joint move and sk = u(Mk, sk−1).
A terminal development is a development such that the last state is a terminal state,

i.e., sd ∈ τ . The length of a development δ, denoted as len(δ), is the number of states
in δ. By M(i) we denote agent i’s move in the joint move M . Let δ|k be the prefix of δ
up to length k ≤ len(δ).

A player i ∈ R\{random} cannot distinguish two developments δ = 〈s0, M1, s1, . . .〉
and δ′ = 〈s0, M ′

1, s′1 . . .〉 (written as δ ∼i δ′) iff len(δ) = len(δ′) and for any 1 ≤ k ≤
len(δ)−1:Mk(i)= M ′

k(i), and {p | (i, Mk, sk−1, p)∈I}={p | (i, M ′
k, s′k−1, p) ∈ I}.
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Model Checker MCK. In this paper, we will use MCK (for: “Model Checking Knowl-
edge”), which is a model checker for temporal and knowledge specifications [5]. The
overall setup of MCK supposes a number of agents acting in an environment. This
is modelled by an interpreted system, formally defined below, where agents perform
actions according to protocols. Actions and the environment may only be partially ob-
servable at each instant in time. In MCK, different approaches to the temporal and
epistemic interaction and development are implemented. Knowledge may be based on
current observations only, on current observations and clock value, or on the history of
all observations and clock value. The last corresponds to synchronous perfect recall and
is used in this paper. In the temporal dimension, the specification formulas may describe
the evolution of the system along a single computation, i.e., use linear time temporal
logic; or they may describe the branching structure of all possible computations, i.e.,
use branching time or computation tree logic. We give the basic syntax of Computation
Tree Logic of Knowledge (CTL∗Kn).

Definition 3. The language of CTL∗Kn (with respect to a set of atomic propositions Φ),
is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | Aϕ | Xϕ | ϕU ψ | Kiϕ.

The other logic constants and connectives %,⊥,∨,→ are defined as usual. In addition,
F ϕ (read: finally, ϕ) is defined as %U ϕ, and Gϕ (read: globally, ϕ) as ¬F¬ϕ.

The semantics of the logic can be given using interpreted systems [4]. Let S be a set,
which we call the set of environment states, and Φ be the set of atomic propositions. A
run over environment states S is a function r : N → S × L1 × . . . × Ln, where each
Li is called the set of local states of agent i. These local states are used to concretely
represent the information on the basis of which agent i computes its knowledge. Given
run r, agent i, and time m, we write ri(m) for the (i+1)-th component (in Li) of r(m),
and re(m) for the first component (in S). An interpreted system over environment states
S is a tuple IS = (R, π), where R is a set of runs over environment states S, and
π : R ×N → P(Φ) is an interpretation function. A point of IS is a pair (r, m) where
r ∈ R and m ∈ N.

Definition 4. Let IS be an interpreted system, (r, m) be a point of IS , and ϕ be a
CTL∗Kn formula. Semantic entailment |= is defined inductively as follows:

– IS, (r, m) |= p iff p ∈ π(r, m);
– the propositional connectives ¬,∧ are defined as usual;
– IS, (r, m) |= Aϕ iff ∀r′ ∈ R with r′(k) = r(k) and ∀k ∈ [0..m], we have

IS, (r′, m) |= ϕ;
– IS, (r, m) |= Xϕ iff IS, (r, m + 1) |= ϕ;
– IS, (r, m) |= ϕU ψ iff ∃m′ ≥ m s. t. IS, (r, m′) |= ψ and IS, (r, k) |= ϕ for all

k ∈ [m..m′);
– IS, (r, m) |= Kiϕ iff ∀(r′, m′) with ri(m) = r′i(m

′), we have IS, (r′, m′) |= ϕ.

Syntax of MCK Input Language. An MCK description consists of an environment
and one or more agents. An environment model represents how states of the environ-
ment are affected by the actions of the agents. A protocol describes how an agent selects
an action under a certain environment.
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Formally, an environment model is a tuple Me = (Agt, Acts, Vare, Inite, P roge)
where Agt is a set of agents, Acts is a set of actions available to the agents, Vare is a set
of environment variables, Inite is an initial condition, in the form of a boolean formula
over Vare, and P roge is a standard program for the environment e to be defined below.

Let ActVar(Me) = {i.a | i ∈ Agt, a ∈ Acts} be a set of action variables gen-
erated for each model Me. An atomic statement in P roge is of the form x := expr ,
where x ∈ Vare and expr is an expression over Vare ∪ ActVar(Me).

A protocol for agent i in Me is a tuple Prot i = (PVar i, OVar i, Actsi, Prog i),
where PVar i ⊆ Vare is a set of parameter variables, OVar i ⊆ PVar i is a set of
observable variables, Actsi ⊆ Acts, and Prog i is a standard program. An atomic state-
ment in Prog i is either of the form x := expr , or of the form & a ' with a ∈ Actsi.

A standard program over a set Var of variables and a set A of atomic statements is
either the terminated program ε or a sequence P of the form stat1 ; . . . ; statm, where
each statk is a simple statement and ‘;’ denotes sequential composition.

Simple statement statk can be atomic statements in A; or nondeterministic branch-
ing statements of the form: if g1 → a1 [] . . . [] gm → am fi; or nondeterministic
iteration statements of the form: do g1 → a1 [] . . . [] gm → am od, where each ak

is an atomic statement in A and each guard gk is a boolean expressions over Var .
Each atomic statement ak can be executed only if its corresponding guard gk holds

in the current state. If several guards hold simultaneously, one of the corresponding
actions is selected nondeterministically. The last guard gm can be “otherwise”, which
is shorthand for ¬g1 ∧ · · · ∧ ¬gm−1. An if -statement executes once but a do-statement
can be repeatedly executed.

Semantics of MCK Input Language. Based on a set of agents running protocols in
the context of a given environment, we can define an interpreted system as follows.

Definition 5. A system model S is a pair (Me, Prot) where Me = (Agt, Acts, Vare,
Inite, P roge) and Prot a joint protocol with Prot i = (PVar i, OVar i, Actsi, Prog i)
for all i ∈ Agt.

Let a state with respect to S be an assignment s over the set of variables Vare. A
transition model over S is M(S) = (S, I, {Oi}i∈Agt,→, V ), where S is the set of
states of S; I is the set of initial states s such that s |= Inite; Oi(s) = s � OVar i is
the partial assignment given on the observable variables of agent i, → is a transition
relation on S × S;1 and a valuation function V is given by: for any boolean variable
x, x ∈ V (s) iff s(x) = true. 2

An infinite sequence of states s0s1... is an initialized computation of M(S) if s0 ∈ I ,
sk ∈ S and sk → sk+1 for all k ≥ 0. An interpreted system over S is IS(S) =
(R, π), where R is the set of runs such that each run r corresponds to an initialized
computation s0s1... with re(m) = sm, and ri(m) = Oi(s0)Oi(s1) . . . Oi(sm); and
π(r, m) = V (sm).

1 More precisely, s → s′ if s′ is obtained by executing the parallel program
Proge ||i∈Agt Prog i on s; see [14] for details.

2 For simplicity, we assume x to be boolean; this can be easily extended to enumerated type vari-
ables: Suppose x is a variable with type {e1, . . . , em}, then use m booleans x.e1, . . . , x.em
such that x.ek ∈ V (s) iff s(x) = ek.
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3 Translation from GDL-II to MCK

Our main contribution in this paper is a systematic translation from a GDL-II descrip-
tion G into an MCK description trs(G). The translation is provably correct in that the
game model derived from G using the semantics of GDL-II satisfies the exact same for-
mulas as the model that is derived from trs(G) using the semantics of MCK. This will
be formally proved later in this section. We use the GDL-II description of the Monty
Hall game from Fig. 1, denoted as GMH , to illustrate the whole process. The translation
trs can be divided into the following steps.

hide_car(?d)

1

2

3

closed(?d)

Preprocessing. The first step is to obtain
a variable-free (i.e., ground) version of
the game description G. We can compute
the domains, or rather supersets thereof,
for all predicates and functions of G by
generating a domain dependency graph from the rules of the game description, follow-
ing [19]. The nodes of the graph are the arguments of functions and predicates in game
description, and there is an edge between two nodes whenever there is a variable in a
rule of the game description that occurs in both arguments. Connected components in
the graph share a (super-)domain. E.g., lines 2–3 in GMH give us the domain graph as
above, from which it can be seen that the arguments of both closed() and hide car()
range over {1, 2, 3}.

Once we have computed the domains, we instantiate all the variables in G to ob-
tain all ground atoms, e.g., true(closed(1)), legal(random, hide car(1)), etc. Our
following translation operates on an equivalent variable-free version of G, which for
convenience we still refer to as G.

Deriving Environment Variables. This step derives all the environment variables Vare.
Let AT be the set of ground atoms in G. Define the following subsets of AT according
to the keywords: ATt = {h ∈ AT | h = true(p)}, ATn = {h ∈ AT | h = next(p)},
ATd = {h ∈ AT | h = does(i, a)}, ATi = {h ∈ AT | h = init(p)}, ATs = {h ∈
AT | h = sees(r, p)}, and ATl = {h ∈ AT | h = legal(r, p)}. Let p be obtained by
replacing ‘(’ and ‘,’ with ‘ ’ and by removing ‘)’ in a ground atom p. Define t as follows:

– t(init(p)) = p, t(true(p)) = p old and t(next(p)) = p;
– t(does(i, a)) = did i;
– t(p) = p for all p ∈ AT \ (ATi ∪ ATt ∪ ATn ∪ ATd).

Note that the ground atoms with keywords legal, terminal, goal are all in AT \
(ATi∪ATt∪ATn∪ATd). As an example, t(sees(i, a)) = sees i a and t(legal(i, a)) =
legal i a. The set of environment variable Vare is then {t(p) | p ∈ AT}. For conve-
nience, we denote t(A) as {t(x) | x ∈ A}.

The type of each variable did i ∈ t(ATd) is the set of legal moves of agent i plus two
additional moves,INIT and STOP, that do not appear in G, i.e., {a | legal(i, a) ∈ AT}∪
{INIT, STOP}. The type of variables in Vare \ t(ATd) is Bool.

Initial Condition. This step specifies the environment initial condition Inite, which
is an assignment over Vare. By using the semantics of G and ATi, we first compute
the initial state s0 (see Definition 1). Then for any p ∈ ATi, we add boolean expression
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“t(p) == true” to Inite as a conjunct; and for all did i ∈ t(ATd), we add “did i ==
INIT”. For the rest, add “t(p) == true” if p ∈ s0, and “t(p) == false” if p �∈ s0.

Agent Protocols. This step specifies the agents and their protocols. The names of the
agents are read off the role() facts. Let Prot i = (PVar i, OVar i, Actsi, Prog i) be
the protocol of agent i, such that PVar i = Vare, OVar i = {sees i p | sees i p ∈
t(ATs)} ∪ {did i} includes all the variables representing i’s percept and i’s move, and
Actsi = {a | legal(i, a) ∈ G} includes all the legal moves of agent i. Note that Actsi
does not include the two special moves in the protocol. The last component Progi is a
standard program of the following format:

begin do neg terminal ->
if legal_i_a1 -> <<a1>> [] legal_i_a2 -> <<a2>> [] ...
fi od end

This program intuitively means that if the current state is not terminal, then a le-
gal move is selected non-determinstically by i. The statements between do · · · od are
executed repeatedly. The variables inside <<>> represent moves.

State Transition. This step specifies the environment program P roge. Each environment
variable is updated in correspondence with the rules in G. The main task is to translate
these rules into MCK statements in a correct order. In GDL-II, the order of the rules does
not matter as the stable model semantics [12,20] always gives the same unique model,
but MCK uses the imperative programming style in which the order of the statements
does matter; e.g., executing “x := 0;x := 1; ” results in a different state than “x :=
1;x := 0; ”. To take care of the order, we separate the program P roge into three parts.

The first part updates the variables in t(ATd) using the following template (for i):

if i.a1 -> did_i := a1 [] i.a2 -> did_i := a2 []
... otherwise -> did_i := STOP

fi;

The second part of P roge updates the variables in t(ATt) and t(ATn ∪ ATs). For all
p old ∈ t(ATt), an atomic statement of the form p old := p is added to ensure that the
value of p is remembered before it is updated. For any atom h ∈ t(ATn ∪ ATs), suppose
h = t(h) and Rules(h) is the set of rules in G with head h:

r1 : h⇐b11, · · · , b1j
. . . . . .
rk : h⇐bk1, · · · , bkj

where bxy is a literal over AT. Define a translation tt as follows:

– tt(does(i, a)) = did i == a;
– tt(not x) = neg tt(x); and other cases are same as t.

The translation of Rules(h) has the following form:

h := (tt(b11) ∧ · · · ∧ tt(b1j)) ∨ · · · ∨ (tt(bk1) ∧ · · · ∧ tt(bkj))

This simplifies to h := true if one of the bodies is empty. Essentially, this is a form of
the standard Clark Completion [2], which captures the idea that h will be false in the
next state unless there is a rule to make it true. The statements with t(ATt) should be
given before those with t(ATn ∪ ATs).
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The third part deals the variables in t(AT \ (ATt ∪ ATn ∪ ATs ∪ ATd ∪ ATi)). Pick
such an atom h and take Rules(h). The literals in the body of these rules are translated
differently from the last case, as h refers to the current instead of the next state. Define
a new translation tt′ as follows:

– tt′(true(p)) = p and all other cases are identical to tt.

The translation of Rules(h) is similar to the above by replacing tt by tt′. The statements
in the third part are ordered according to the dependency graph. If h′ depends on h, then
the statement of tt′(h) must appear before that of tt′(h′). The fact that GDL rules are
stratified ensures that a desirable order can always be found.

Optimizations. The above translation can be further optimized to make the model
checking more efficient by reducing the number of variables.

(1) Using definitions. The variables in t(AT \ (ATt ∪ ATn ∪ ATd ∪ ATi)) (refer to
the third part of the State Transition step) can be represented as definitions to save
memory space for variables. The assignment statement h := expr is swapped with
definition define h = expr. MCK replaces h using the boolean expression expr during
its preprocessing stage, so h does not occupy memory during the main stage.

(2) Removing static atoms. We distinguish three special kinds of atoms in GDL-II:
those (a) appearing in the rules with empty bodies, (b) never appearing in the heads
of rules, (c) only appearing in the rules with (a) and (b). Under the GDL-II semantics,
atoms in (a) are always true, those in (b) are always false, and those in (c) do not change
their value during gameplay. Therefore we can replace them universally with their truth
values. E.g., consider the following rules:

succ(1,2). succ(2,3).
next(step(2)) <= true(step(1)), succ(1,2).
next(step(3)) <= true(step(2)), succ(2,3).

Both succ(1, 2), succ(2, 3) are always true, so we replace them using their truth
values. Then we can further simplify this by removing the “true” conjuncts universally
(and by removing the rules with a “false” conjunct in the body):

next(step(2)) <= true(step(1)). next(step(3)) <= true(step(2)).

(3) Converting booleans to typed variables. The atoms in AT \ ATd are translated to
booleans in our non-optimized translation. There often are sets of booleans B such that
at each state exactly one of them is true. We can then convert the booleans in B into one
single variable vB with the type {b1, . . . , b|B|}, where |B| is the size of B. This results
in a logarithmic space reduction on B: 2|B| is reduced to |B|. Reusing the example just
discussed, we can create a variable vstep with type {1, 2, 3}.

Translation Correctness

The above completes the translation from G to trs(G). As our main theoretical result,
we show as follows that our translation is correct: first the game model derived from a
GDL-II description G is proved to be isomorphic to the interpreted system that is de-
rived from its translation trs(G), then a CTL∗Kn formula is shown to have an equivalent
interpretation (i.e., the same truth value) over these two models.

We first extend the concept of finite developments in Definition 2 to infinite ones.
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Definition 6 (Infinite Developments and GDL-II Models). Let 〈R, s0, t, l, u, I, g〉 be
the state transition system of a game description G, and δ = 〈s0, M1, s1, . . . , Md, sd〉
a finite terminal development of G, then an infinite extension of δ is an infinite sequence
〈s0, M1, s1, . . . , Md, sd, Md+1, sd+1, . . .〉 such that Md+k is the joint move where all
players take a special move STOP and sd+k = sd for all k ≥ 1.

Given a GDL-II description G, the game model GM(G) is a tuple (D, {∼i |i ∈
Agt}), where D is the set of infinite developments δ such that either δ is an infinite
development without terminal states, or δ is an infinite extension of a finite terminal de-
velopment; and ∼i is agent i’s indistinguishability relation defined on the finite prefixes
of δ|k as in Definition 2.

For a given δ, let δ(k) denote the k-th state sk; δ(k)M the k-th joint move Mk; and
(δ, k) the pair (Mk, sk).

Definition 7 (Isomorphism). Let GM = (D, {∼i |i ∈ Agt}) be a game model and
IS = (R, π) an interpreted system. GM is isomorphic to IS if there is a bijection w
between the ground atoms of GM and the atomic propositions of IS , and a bijection z
between D and R satisfying the following: z(δ) = r iff for any ground atom p: p ∈ δ(k)
iff w(p) ∈ π(r, k), and does(i, a) ∈ δ(k)M iff did i == a is true in (r, k).

Intuitively, z associates a point (δ, k) in a development to a point (r, k) in a run
such that they coincide in the interpretation of basic and move variables. The following
proposition is the first step in showing the correctness of our translation.

Proposition 1. Given a GDL-II description G, let trs be the translation from GDL-II to
MCK, then the game modelGM(G) is isomorphic to the interpreted system IS(trs(G)).

For the technical details of the proof we must refer to [17].
Let w be a bijection from the set of ground atoms of G to the set of atomic propo-

sitions of CTL∗Kn and w−1 be its inverse. The semantics of CTL∗Kn over GDL-II
Game Models can be given as relation GM(G), (δ, m) |= ϕ in analogy to the semantics
of CTL∗Kn over interpreted systems; e.g., GM(G), (δ, m) |= p iff w−1(p) ∈ δ(m), and
GM(G), (δ, m) |= Kiϕ iff for all states (δ′, m′) of GM(G) that satisfy δ|m ∼j δ′|m′

we have GM(G), (δ′, m′) |= ϕ.
The following proposition then shows that checking ϕ against a game model of G is

equivalent to checking ϕ against the interpreted system of trs(G).

Proposition 2. Given a GDL-II description G, let trs be the translation from GDL-II
to MCK; ϕ a CTL∗Kn formula over the set of atomic propositions in trs(G); and w, z
the bijections from the isomorphism between GM(G) and IS(trs(G)) then:

GM(G), (δ, m) |= ϕ iff IS(trs(G)), (z(δ), m) |= ϕ.

This follows from Proposition 1 by an induction on the structure of ϕ and completes
the proof of our main result.

Our optimization techniques do not affect the isomorphism. So we can follow a sim-
ilar argument as Proposition 1 and 2 to show that the optimized translation is correct.
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4 Experimental Results

We present experimental results on four GDL-II games from the repository at general-
game-playing.de: Monty Hall (MH), Krieg-TicTacToe (KTTT), Transit, and Meier.
Same games were also used in Haufe and Thielscher [9]. MCK (v1.0.0) runs on In-
tel 3.3 GHz CPU and 8GB RAM with GNU Linux 2.6.32.

Temporal and epistemic specifications. The temporal logic formulas can be used to
specify the objective aspects of a game. The following three properties represent the
basic requirements from [7]. (Let Legali and Goali be the set of legal moves and goals
of i respectively.)

AF terminal (1)

AG(¬terminal →
∧

i∈Agt

∨
p∈Legali

p) (2)∧
i∈Agt

¬AG¬goal i 100 (3)

Property (1) says that the game always terminates. Property (2) expresses playability: at
every non-terminal state, each player has a legal move. Property (3) expresses fairness:
every player has a chance to win, i.e., to eventually achieve the maximal goal value
100. These properties apply both to GDL and GDL-II games. The next three properties
concern the subjective views of the players under incomplete-information situations,
hence are specific to GDL-II games.∧

i∈Agt

G(terminal → Kiterminal) (4)

∧
i∈Agt

G (¬terminal →
∧

p∈Legali

(Kip ∨ Ki¬p)) (5)

∧
i∈Agt

G (terminal →
∧

p∈Goali

(Kip ∨ Ki¬p)) (6)

Property (4) says that once the game has terminated, all players know this. Property (5)
says that any player always knows its legal moves in non-terminal states; and property
(6) says that in a terminal state, all players know their outcome.

ϕ MH KTTT Transit Meier Meier′ ϕ MH KTTT Transit Meier Meier′

(1) 0.47 1864.81 12.17 6.41 8079.52 (4) 0.60 22847.06 14.91 7.00 NA
(2) 0.48 3528.14 7.54 9.75 13192.91 (5) 0.56 22643.12 14.39 23.28 NA
(3) 0.67 303.04 11.02 17.06 15056.29 (6) 0.43 5498.03 45.15 11.01 NA

The table above shows the runtimes (in seconds) on five translations. The first four
translations use all three optimization techniques on the four games. The last translation,
Meier′, is partially optimized with the third technique applied only for the variables in
t(ATs). As a consequence, Meier′ uses 126 booleans for what in the fully optimized
Meier is represented by 4 enumerated type variables of a size equivalent to about 22
booleans, i.e., the state space of Meier is only (1/2)104 of the state space of Meier′. The
time is measured in seconds and “NA” indicates that MCK did not return a result after
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10 hours. A comparison of the two translations of Meier shows that our optimization
can be very effective. Somehow surprisingly, the result shows that the game Meier is
not well-formed as it does not satisfy property (1). The last three properties were also
checked by Haufe and Thielscher [9], but for Transit, their approach could not prove
or disprove these properties; in contrast, our approach obtains the results fully. Note
that although we only show the experiment results for four games, our approach is not
a specialised solution for these four games only. It is general enough to deal with all
GDL and GDL-II games.

5 Related Work and Further Research

There are a few papers on reasoning about games in GDL and GDL-II. Haufe et al. [8]
use Answer Set Programming for verifying temporal invariance properties against a
given game description by structural induction. Haufe and Thielscher [9] extend [8]
to deal with epistemic properties for GDL-II. Their approach is restricted to positive-
knowledge formulas unlike ours, which can handle more expressive epistemic and tem-
poral formulas.

Ruan et al. [15] provide a reasoning mechanism for strategic and temporal prop-
erties but restricted to the original GDL for complete information games. Ruan and
Thielscher [16] examine the epistemic logic behind GDL-II and in particular show that
the situation at any stage of a game can be characterized by a multi-agent epistemic
(i.e., S5-) model. Ruan and Thielscher [18] provide both semantic and syntactic char-
acterizations of GDL-II descriptions in terms of a strategic and epistemic logic, and
show the equivalence of these two characterizations. The current paper does not handle
strategies but is able to provide practical results by using a model checker.

Kissmann and Edelkamp [10] instantiate GDL descriptions and utilise BDDs to con-
struct a symbolic search algorithm to solve single- and two-player turn-taking games
with complete information. This is related to our work in the sense that we also do
an instantiation of GDL descriptions and uses the BDD-based symbolic model check-
ing algorithms of MCK to verify properties. But our approach is more general and in
particular handles games with incomplete information.

Other existing work is related to our paper in that they too deal with declarative lan-
guages. Chang and Jackson [1] show the possibility of embedding declarative relations
and expressive relational operators into a standard CTL symbolic model checker. Wha-
ley et al. [22] propose to use Datalog (which GDL is based upon) with Binary Decision
Diagrams (BDDs) for program analysis.

We conclude by pointing out some directions for further research. Firstly our results
suggest that the optimization we have applied allows us to verify some formulas quickly,
but it is still difficult to deal with a game like Blind TicTacToe. However a hand-made
version of this game (with more abstraction) in MCK does suggest that MCK has no
problem to cope with the number of reachable states in this game. So the question is,
what other optimization techniques can we find for the translation? Secondly, we would
like to investigate how to make MCK language more expressive by allowing declarative
relations such as shown in [1]. Our current translation maps GDL-II to MCK’s input,
and MCK internally encodes that into BDDs for symbolic checking. So a more direct
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map from GDL-II to BDDs may result in a significant efficiency gain. Thirdly, we want
to explore the use of bounded model checking as MCK has implemented some model
checking algorithms for this.
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Abstract. Real-Time Strategy (RTS) games have become an attractive
domain for AI research in recent years, due to their dynamic, multi-agent
and multi-objective environments. Micromanagement, a core component
of many RTS games, involves the control of multiple agents to accomplish
goals that require fast, real time assessment and reaction. In this paper,
we present the application and evaluation of a Neuroevolution technique
in evolving micromanagement agents for the RTS game Starcraft: Brood
War (SC:BW). The NeuroEvolution of Augmented Topologies (NEAT)
algorithm, both in its standard form and its real-time variant (rtNEAT)
is comparatively evaluated in micromanagement tasks. Preliminary re-
sults suggest the general viability of these techniques in comparison to
traditional, non-adaptive AI. Further analysis of each algorithm identi-
fied differences in task performance and learning rate.

Keywords: Real-Time Strategy Games, Neuroevolution, Evolutionary
Computation.

1 Introduction

It was predicted more than a decade ago, that interactive computer games would
emerge as an ideal platform for Artificial Intelligence research [1]. Due to their
increasingly complex and realistic simulations, video games have become fine
approximations of real world environments. AI techniques can be developed and
evaluated in a cost effective and contained manner, before being applied to more
complicated real world problems [1,2]. The popularity of video games as an
entertainment medium has resulted in a consistently growing, multi-billion dollar
software industry [3]. This in turn is a driver of video game technology and
research, of which AI is a vital component [4].

The popularity and ease of access to videogame hardware and software has
increased the accessibility of computing power and simulation environments for
AI research. On the other hand, the contribution of AI research to commercial
game development has been lacking in recent years [5]. This has resulted in
high dependency on deterministic and non-adaptive AI techniques in commercial
games that limit their realism, replayability and challenge [6].

Real Time Strategy (RTS) games are a genre of video games that provide
unique challenges to AI research [7]. Characteristic of the genre is a real-time,

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 259–270, 2013.
c© Springer International Publishing Switzerland 2013
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stochastic environment, with multiple objectives and enormous action and state
space. These features require AI agents with multiple levels of abstraction and
reasoning, fast reaction and expert game knowledge. An example of the genre
is Starcraft: BroodWar (SC:BW)1, an RTS game that is a popular game envi-
ronment for AI research. Using a third party plugin called the Brood War API
(BWAPI)2, it is possible to create complex AI agents to play matches of SC:BW.

In this paper, we aim to evaluate the effectiveness of Neuroevolution (NE)
techniques in developing learning agents for playing SC:BW. The goal is to con-
tribute to the development of a complete AI system capable of learning and
executing human expert level strategy in SC:BW. In particular we focus on ‘mi-
cromanagement’, a crucial level of abstraction in the RTS domain, handling the
fast combat component of the overall game. NE applies evolutionary algorithms
to train artificial neural networks that are known to be effective approximators
of complex, non-linear functions. Meanwhile, RTS games have a large state and
action space that is suitable for neural networks. Furthermore, research on the
NEAT algorithm [8] has shown the effectiveness of NE in reinforcement learning
tasks, of which SC:BW has been successfully modelled [9,10].

We first implemented a micromanagement agent for SC:BW that uses NEAT
and a real time variant rtNEAT for learning behavior. Next, the viability of the
agent was evaluated against the existing SC:BW AI in multiple experiments.
Finally, we analyzed the difference in performance between standard NEAT and
the real-time variant, both in the rate of learning and in match performance. The
rest of the paper is structured as follows: we provide a survey of related work
around SC:BW AI and the NEAT algorithm. Next, we describe an overview of
the implementation of our AI agent and the usage of NEAT, followed by the
evaluation of the agent and a discussion of results. Finally, we give concluding
remarks and highlight areas of future research.

2 Related Work

In many RTS games, the game strategy can be roughly divided into two levels
of abstraction. Macromanagement is the level that is concerned with high level
strategic decision making such as resource planning and opponent modeling.
Techniques dealing with macromanagement must choose and adapt
sequences of strategic actions to meet goals of varied hierarchy. Example of
techniques applied to this domain include Case Based Reasoning[11] and Goal
Driven Autonomy[12]. Micromanagement is the level concerned with direct com-
bat tactics and unit control. Traditionally, micromanagement is accomplished
via static AI techniques such as scripts based on simple metrics [13]. More com-
plicated techniques in the literature include Reinforcement Learning (RL) and
Evolutionary Algorithm approaches.

RL combined with neural networks has been applied to SC:BW micromanage-
ment [10]. Agent learning was accomplished using the online Sarsa RL algorithm,

1 Starcraft: Brood War: http://us.blizzard.com/en-us/games/sc/
2 Brood War API: http://code.google.com/p/bwapi/
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with neural-networks to approximate the state-action value function. Results
showed a significant winning advantage against standard Starcraft AI, but re-
quired thousands of training rounds and are limited in the type and number of
units represented. In [9], a comparative evaluation of RL techniques applied to
SC:BW was presented. Four variants of RL algorithms were applied to a spe-
cific micromanagement task, involving a long ranged unit with high mobility
against numerous melee (close ranged) enemies. Evaluations identified strengths
and weaknesses of the different algorithms, and showed a high win rate against
the default SC:BW AI. However, the results are derived from a very limited sce-
nario, and the author acknowledges it is only the first part of a larger RL based
SC:BW agent.

Work that is most related to ours is from [14], in which rtNEAT was applied to
SC:BW micromanagement. Units were controlled by separate neural networks,
specifying actions to take in real time. The network typology is evolved over gen-
erations of 12 vs 12 unit combat. Evaluations showed a significant win rate within
300 training generations and also claimed the rtNEAT algorithm allowed fast,
real-time strategy adaptation. A limitation of the study is the use of a custom
SC:BW map that replenishes unit numbers with up to 100 unit reserves. This is
an unrealistic depiction of real SC:BW combat where units are not replenished
immediately to replace dead units. Furthermore, real-time fitness improvement
occurs only over unit combat time that is minimal in a full SC:BW match. How-
ever, the work showcased the potential of applying NEAT based algorithms to
SC:BW micromanagement that our work analyzes further.

2.1 Neuroevolution and NEAT

Neuroevolution (NE) has shown effectiveness compared to standard RL, in prob-
lems with continuous and high-dimensional state spaces [8]. Traditional NE
worked on pre-defined topologies, and searched over the space of connection
weights. Topology and Weight Evolving Artificial Neural Networks (TWEANNs)
attempts to also evolve the topology of the network, and has the potential to
improve training speed and accuracy of solutions [15]. Furthermore, it reduces
the uncertainty and effort of deciding on network topology by researchers [16].

However, TWEANN techniques face numerous challenges, such as complica-
tions with network structure in crossover and problems with genetic encoding.
Work by [16] developed the NEAT algorithm to address these challenges. The
classic NEAT algorithm was expanded to a real-time variant[17], in which evolu-
tion occured over a real time environment. The rtNEAT algorithm was demon-
strated in a game called NERO, where agents are evolved and adapted in real
time to tackle changing objectives. Regular NEAT has been successfully applied
to RTS by [18], where neural networks are evolved to become AI players in an
ensemble process. In [6] both NEAT and rtNEAT were used to automatically
balance the challenge of the AI player in an RTS game. A novel challenge metric
coupled with a fitness function guided the evolution of neural networks. The AI
was continuously evolved to converge to the same challenge level as the human
player, thus creating a more balanced gaming experience.
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3 Implementation

We use the BWAPI open source framework for creating and executing AI mod-
ules. It exposes functionality to retrieve information about the game state and
to issue commands to game units. Units are encapsulated as BWNEAT units,
with an accompanying neural network for decision making. The SC:BW game
state is updated once per frame, i.e. every 56 milliseconds on normal game speed.
BWAPI triggers an event on every game state update, allowing AI code to react.
During this event, each BWNEAT unit feeds internal and external percepts from
the AI Module as inputs to its neural network, and interprets the network output
as the next action to be performed. The NEAT Manager module is responsible
for instantiating the BWNEAT Units and is an interface to the NEAT and rt-
NEAT algorithms. It receives evaluated fitness from each unit, performs NEAT
evolution and reassigns neural networks to BWNEAT units. Fig. 1 summarizes
the agent architecture.

Fig. 1. An overview of the agent architecture

3.1 Neural Network Architecture

The basic neural network architecture is fully connected and feed forward, with
randomized starting weights (Fig. 2). It begins with 0 hidden nodes and gradually
allows nodes and connections to be added via the NEAT and rtNEAT algorithms.
The inputs were chosen as important percepts to induce learning behavior that
would allow a unit to inflict as much damage to the enemy units, while taking as
little damage as possible. For example, when the unit’s weapon is on cooldown
(a pause between consecutive attacks), it should do its best to avoid damage.
Another aspect is the range of unit weapons. If for example, the unit has a
longer weapon range than the enemy units, it is possible to perform a hit-and-
run strategy. These percepts are based on domain knowledge of SC:BW and is
common in many RTS games.
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Fig. 2. Initial network architecture. Nodes A to G (Bias, WeaponCooldown, Re-
mainingHealth, WeaponRange, EnemyWeaponRange, NumAlliesInRange and NumEn-
emiesInRange) denote a mixture of agent internal and external percepts as input to the
network, while nodes H and I (Fight and Retreat) denote the outputs as two possible
unit actions.

The output of the neural network corresponds to two unit actions: fight or
retreat. The action with the largest corresponding output is chosen by the unit. If
the fight action is taken, the unit executes a simple routine that targets the enemy
unit with the lowest hit points (health) within its weapon range. The retreat
action makes the unit move a small distance away from enemies and obstacles,
via a weighted vector. These actions are based on similar implementations in [9]
and [10], as they are simple to implement, but complicated enough to produce
sophisticated behavior when performed in varying sequences.

3.2 Fitness Function

The NEAT and rtNEAT algorithms are guided by a fitness metric. In the context
of SC:BW unit micromanagement, the fitness should reflect the performance of
an individual unit. For both NEAT and RTNEAT, we define the fitness Fi for a
unit i as:

Fi =
T DDi − HP Li

IHPi
+ 1 (1)

The function takes in the total damage dealt by the unit (TDD), its hit point
loss (HPL) accrued over the match and its initial hit point (IHP). In theory,
the fitness is only upperbound by the total hit points of enemy units. However
in practise, the average fitness of each unit falls under [0, 2] where at its lowest
the unit has produced no damage and dies, and at its highest value it has dealt
twice as much damage than it has taken.

3.3 NEAT Evolution

Training via the classic NEAT algorithm occurs over generations of SC:BW
matches. After a match, regardless of win or loss, the population of neural
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networks go through an evolutionary process. First the fitness of each network
is evaluated based on the units performance during the match. Next, some of
the worst performing networks are replaced by the offspring of some of the best
performing networks. This simple process is guided by three principles: track-
ing evolution via historical markers, protecting innovation via speciation and
minimizing search via ‘complexification’ [8].

NEAT uses historical markings to efficiently evaluate similarity between net-
work topologies. Networks are then speciated using a similarity metric formed
via the number of disjoint genes D (genes that exist in one network and not the
other), excess genes E (genes that appear in one network later in evolution than
any genes on the other network) and the mean weight difference of matching
genes W[8]:

S =
c1E

N
+

c2D

N
+ c3W (2)

c1, c2 and c3 are adjustible weighting coefficients, and E and D are normalized
by dividing N , the number of genes in the larger network. Networks are grouped
into species via this similarity metric, and a compatibility threshold that can be
modified to specify species bounds. A network shares its evaluated fitness with
other members of its species, in order to encourage diversification of solutions and
prevent single species dominance. NEAT adjusts each network’s fitness based on
its similarity metric against all other organisms in the population. The number of
offsprings spawned by a species after each generation is based on the proportion
of its average species fitness to the total of all average species fitness [8].

3.4 rtNEAT Evolution

The real-time variant of the NEAT algorithm is designed specifically to operate
in a continuous, real-time domain. In particular when adapted to video games,
the performance of AI agents is able to improve gradually as the game is played,
without abrupt changes over a whole generation of evolution. In the context of
SC:BW, rtNEAT applies evaluation and replacement on game units every n ticks
of game time. The number of game ticks between replacement is an important
factor that affects evolution. If new organisms are replaced too quickly, then they
cannot be evaluated accurately and new innovations may be needlessly thrown
away. A law of eligibility is formed by [17], stating the number of ticks between
replacements, with respect to the fraction of the population that is too young
to be replaced I, the minimum time alive m and the population size P :

n =
m

|P |I (3)

In our experiments we empirically define m as 300 game frames, to offset the
delay between the start of a match and the first enemy encounter. We follow
[17] in defining 50% of the population as eligible for replacement, and p = 12
the number of units which is constant. This gives us n = 50, the number of
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games frames between replacement in rtNEAT experiments. In the next sec-
tion we describe in more detail, evaluations that incorporate these algorithms
and principles to analyse the effectiveness of NEAT and rtNEAT for SC:BW
micromanagement.

4 Experimentation and Results

We devised experiments to gauge the effectiveness of NEAT and rtNEAT evolved
micromanagement agents against the standard SC:BW AI. A variety of unit
setups were used in order to simulate different micromanagement scenarios. From
these experiments, we saw very high fluctuation and variation in the fitness and
win rate of agents over generations. In order to adjust for these fluctuations, we
ran experiments to find the number of generations taken for each algorithm to
converge to a suitable solution, when evolution is halted upon finding a potential
candidate.

4.1 Experiment Setup

SC:BW units vary on attributes such as race, weapon and armour type. In
order to keep the experimental variables constant and to avoid an explosion of
unit type permutations, we based our experimental setup on [14] that compared
4 unit type variations (melee vs. melee, ranged vs. ranged, melee vs. ranged,
ranged vs. melee). The number of units is kept at a constant 12 vs. 12, which
is the maximum selectable number of units for a human controlled squad. The
scenario used throughout experimentation is a flat map, based on those used in
the AIIDE 2010 Starcraft micromanagement tournament3.

4.2 Evolutionary Process Experiment

We first compared the performance of NEAT and rtNEAT algorithms on each of
the 4 unit matchup variations, over 300 generations of evolution. Each matchup
is repeated 25 times to reduce randomness in network starting weights. The
average unit fitness and the match outcome is recorded over 300 generations,
and averaged over the 25 runs.

Fig. 3. Summary statistics for our first experiment. Mean win rate (WR) over 300
generations, standard deviation (SD) and the 95% confidence level (CL) is shown.
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Fig. 4. Plot of the best performing match up (range vs. melee) average win rate

Fig. 5. Plot of the worst performing match up (melee v.s melee) average win rate

The results suggest that there is no single algorithm dominating all match
variations (Fig. 3). Mean win rate is higher for NEAT on range vs. melee (mean
97.59%, SD 7.95% ) and melee vs. range (58.89% mean, 10.79% SD), while rt-
NEAT is higher on range vs. range (60.39% mean, 9.86% SD) and melee vs
melee (49.73% mean, 11.63% SD). If we consider a win rate higher than 50% to
indicate better than baseline performance against the built-in SC:BW AI, then
both NEAT and rtNEAT show effectiveness on range vs. range and range vs.
melee battles. NEAT is also effective in melee vs. range (58.89% mean ± 1.23%
at 95% confidence level). From examining the agent behavior, the effectiveness
of controlling ranged units can be attributed to having learnt the hit-and-run
micromanagement strategies. It is interesting to note the generally poor per-
formance of both algorithms when controlling melee units. We discuss in more
detail the evolved behavior of the agents contributing to the performance in
Section 5.

Fig. 4 and Fig. 5 show plots of some of the best and worst performing match
up variations. The average fitness plot is not shown, but is highly correlated to
the average win rate. From these plots, we see a trend of initial poor perfor-
mance and a quick convergence to some local optima. This is typical of evolu-
tionary algorithms where the initial starting solutions are randomized and are

3 AIIDE 2010 micromanagement tournament: eis.ucsc.edu/starcrafttournament1
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not expected to perform well. On all variations the first convergence to a local
optimal occurs between the 10th to 20th generation. There is significant fluc-
tuation of win rate throughout generations that is further illustrated by high
variance shown by their standard deviations. In general, the standard deviation
is higher on rtNEAT runs, suggesting greater variation in evolutionary success
over generations than standard NEAT. This may be due to the nature of the
rtNEAT algorithm, in introducing real time change. Both algorithms are capable
of producing high performing solutions at various generations, but are also quick
to introduce mutations weakening the solutions. This is partly due to the nature
of the experiment where we allow evolution to continue even after achieving a
winning solution.

4.3 Generational Convergence Experiment

By defining a success criteria, we can halt the evolution of both the NEAT and
rtNEAT algorithms once an acceptable solution is achieved. We defined a suc-
cessful solution to be an agent that achieves 10 consecutive wins (the probability
an agent with 50% win rate can win 10 consecutive games is < 0.1%). This is a
strict criteria as an agent may still be high performing even though it loses 1 game
out of 10 (e.g. due to the stochastic nature of the game state). However, we use
this to simplify the running of the experiment and to show that it is possible to
robustly generate agents of this level of performance. We keep all other variables
the same as in our previous experiment, except that the evolution terminates
when a solution reaches 10 wins, or after 1000 generations. When a solution
achieves a win, evolution is halted until the agent either achieves 10 wins, or a
loss is encountered, where upon evolution continues. After a successful solution
is achieved, or if no solution is found after 1000 generations, the experiment is
reset to an initial population with randomized weights. For each algorithm and
each matchup, we stopped the experiment at 60 runs and analyzed the results.

Fig. 6. Summary statistics for generational convergence experiment. Mean number
of generations (MNG) taken to produce an acceptable solution is shown. Standard
deviation (SD) and the 95% confidence level (CL) for the mean was also calculated.

In all experiments, an acceptable solution was found before 1000 generations,
with most converging under 100 generations (Fig. 6). There was high variability
in the number of generations required to arrive at an acceptable solution, evident
by the high standard deviation in some match ups (e.g. 124.39 SD and 116.03
Mean generations for NEAT range vs range). The mean number of generations
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taken between NEAT and rtNEAT is comparable to the average win rate per-
formance of the previous experiment: NEAT converges faster for range vs. melee
and melee vs. range match ups, while rtNEAT is faster for range vs. range and
melee vs. melee. The range in generations taken between different matchups is
higher for NEAT (4.15 mean for range.vs melee and 116.03 mean for range vs.
range) than for rtNEAT (18.33 mean for range vs. range and 26.78 mean for
melee vs. melee). This suggests the performance of rtNEAT is more stable under
different unit variations.

Overall, the experiment showed that both algorithms were capable of gener-
ating effective solutions for micromanagement against the default SC:BW AI.
However, it was necessary to establish an acceptance criteria for which to halt
evolution and to preserve winning behavior. In the next section, we discuss fur-
ther implications of the experimental results.

5 Discussion

In the first experiment, the fluctuation of fitness and success rate of solutions can
be due to a number of reasons. Firstly, it suggests that any structural innovations
introduced were making significant differences in the performance of the neural
networks. This is probably due to the simplicity of the network design, where only
2 outputs exist, such that any structural change may affect the action selected.
A simple neural network allows faster convergence by reducing the search space
of initial nodes and weights. But it also means it is faster to diverge from the
local optima. On top of this, the stochastic nature of the game environment can
result in the same solution having varied success over different runs.

This also explains the general poor performance of both algorithms on melee
match ups in the first experiment. Melee units do best in direct attack as they
lack the weapon range to perform hit-and-run maneuvers. Any innovation intro-
duced to make melee units run will immediately reduce the success rate of the
solution. In the second experiment, the algorithms have no problem generating a
solution for melee match ups, when no new innovations were introduced after a
solution begins to do well. Another factor is an interesting behavior exhibited by
the units over generations of evolution: some units are evolved to retreat when
enemies are first found, but come back to fight after allied units are engaged in
combat. These units tend to generate more fitness than those directly attacking
from the beginning, as they do not receive as much damage over time. However,
as the population begins to favour this behavior, there is a breaking point in
which no units will stay to fight, leading to a match loss and a return to evolu-
tion favouring units that do not retreat. This cycle is highly correlated with the
fluctuation of the win rate over generations.

Interestingly, the first experiment showed that rtNEAT produced higher vari-
ation in the success of solutions than NEAT over time. However in the second
experiment, the average number of generations for an acceptable solution was
less varied across different match ups than NEAT. This suggests real-time evo-
lution can be quicker in introducing changes that reduce fitness, but also allow a
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more robust convergence to a solution regardless of unit variation (variability in
state and solution space). This is intuitive, since rtNEAT should be faster in re-
acting to changes in the environment in real time, than regular NEAT evolution
between generations.

It is possible to complicate the initial neural network architecture, by incorpo-
rating more percepts as input nodes and providing finer grain output decisions.
For example, the inputs can incorporate a deeper ontology of unit quality and
type variations (armour, weapon and ability types etc) and more precise direc-
tional and distance data. Instead of fight or retreat actions, the decisions can be
to move at specific angles for specific distances, and to explicitly decide which
units to attack. Enemy target selection is itself complicated enough to be a
separate learning task, perhaps requiring the optimization of a separate neural
network that takes into consideration enormous unit type variations and the lo-
cation of units. More complicated neural network designs allow for agents with
more complicated behaviors that are able to perform well under a higher variety
of conditions. The disadvantage is a greater number of dimensions to search and
optimize for, resulting in slower training time.

There are limitations to the evaluation methodology to be addressed. For
example, while the experiments show that the technique is able to learn to
defeat the standard SC AI, the results do not extend to human opponents.
However, testing against the standard SC AI is a baseline measure used in much
of the related work, particularly for micromanagement. It is difficult to evaluate
against human players, due to the number of games required to be played, and
the lack of an objective human skill measure for the micromanagement task
(current measures exist only for full SC games). It is possible to evaluate against
other micromanagement AI, but there is a lack of a standardized evaluation
methodology to do so.

6 Conclusions

Our evaluations confirmed the viability of NEAT and rtNEAT algorithms in
evolving agents for various SC:BW micromanagement scenarios. When the al-
gorithms are allowed to run non-stop, the win rate of agents against the default
SC:BW AI fluctuates highly over generations. However, when evolution is halted
upon reaching an acceptable level of performance, both algorithms are able to
consistently generate winning agents, with most under 100 generations. Each
algorithm differs in the variability of performance over different unit matchups.
Factors contributing to the difference in performance include the complexity of
the network starting topology and the variation in unit types. There is room to
explore network complexity further, and a need to establish standardized evalu-
ation methods for micromanagement agent evaluations. More work is needed to
adapt these techniques for commercial RTS game deployment, but results here
have shown promising performance in a learning AI capable of defeating scripted
AI under short training time.
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Abstract. General Game Playing aims at AI systems that can understand the
rules of new games and learn to play them effectively without human interven-
tion. Our paper takes the first step towards general game-playing robots, which
extend this capability to AI systems that play games in the real world. We develop
a formal model for general games in physical environments and provide a sys-
tems architecture that allows the embedding of existing general game players as
the “brain” and suitable robotic systems as the “body” of a general game-playing
robot. We also report on an initial robot prototype that can understand the rules
of arbitrary games and learns to play them in a fixed physical game environment.

1 Introduction

General game playing is the attempt to create a new generation of AI systems that can
understand the rules of new games and then learn to play these games without human
intervention [5]. Unlike specialised systems such as the chess program Deep Blue, a
general game player cannot rely on algorithms that have been designed in advance for
specific games. Rather, it requires a form of general intelligence that enables the player
to autonomously adapt to new and possibly radically different problems. General game-
playing systems therefore are a quintessential example of a new generation of software
that end users can customise for their own specific tasks and special needs.

This paper makes the first step towards general game-playing robots, which we de-
fine to be autonomous systems that can understand descriptions of new games and learn
to play them in a physical game environment. Ultimately, a truly general game-playing
robot must be able not only to accommodate new game rules but also adapt to unknown
game environments. However, as a first step we aim at robots that learn to play new
games within a fixed physical world. These robots should accept arbitrary game de-
scriptions for such environments and then play these games effectively by manipulating
the actual objects, e.g. pieces, of the real game.

In seeking to build a novel system such as a general game-playing robot, it is nec-
essary to provide some justification for why such a system is of interest. We briefly
highlight three disparate reasons. Firstly, interaction with a game-playing robot requires
both mental and physical activity from a human opponent and could therefore be of in-
terest in the area of rehabilitation and elderly care [3]. Secondly, games have a wide
variety of physical requirements, and consequently offer a vast array of well-defined
and controlled environments in which to benchmark techniques for robot recognition
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User GGP
System

Game description (START)

move (PLAY)

move

Fig. 1. Functionality of a general game player

and manipulation. Finally, this research has applications beyond games. Many tasks
have game-like properties. For example, a domestic robot fetching an item has to adapt
to changes in the environment; the item may not be where the robot expected, or the
operator may change locations. Viewing such a task as a game can provide a natural
framework for controlling the robot’s behaviour.

Our specific contribution to general game-playing robots in this paper is three-fold.
First, we develop a formal model to identify essential requirements for game descrip-
tions when translating gameplay moves from a purely virtual to a physical environment
(Section 3). Second, we provide a systems architecture that integrates research in Gen-
eral Game Playing with research in Robotics (Section 4). This architecture is generic in
that it allows the embedding of both existing general game players and suitable robotic
systems. Third, to evaluate the feasibility of our framework, we have built a first general
game-playing robot and tested it on different games of variable difficulty played on a
physical chess-like board with moving pieces (Section 5).

2 Background

General Game Playing. The annual AAAI GGP Competition [5] defines a general
game player as a system that can understand the rules of any n-player game given
in the general Game Description Language (GDL) and is able to play those games
effectively. The functionality is illustrated in Fig. 1: A player must first accept any com-
municated game description (START message). After a given time period, and without
human intervention, the player then makes his opening move, accepts legal moves by
other players (PLAY message) and continues to play until the game terminates.

Since the first AAAI competition in 2005, General Game Playing has evolved into a
thriving AI research area. Established methods include Monte Carlo tree search [2], the
automatic generation of evaluation functions [4] and knowledge acquisition [7]. Several
complete general game-playing systems also have been described [12,2].

Robotics. Building a robot that can recognise and manipulate objects in a physical
environment is a complex and challenging problem. While basic robot kinematics is
well understood, the ability to recognise and manipulate arbitrary objects in a complex
environment remains an active area of research [9]. However, dealing with a prede-
termined set of rigid objects, such as common household items or game boards and
pieces, is more amenable to known techniques and technologies [10,6]. Consequently,
the research in domestic robotics provides an excellent platform for the development of
general game playing robots that can play a wide variety of games.
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3 GDL Descriptions for Physical Game Environments

Game descriptions must satisfy certain basic requirements to ensure that the game is
effectively playable; for example, players should always have at least one legal move
in nonterminal positions [5]. In bringing gameplay from mere virtual into physical en-
vironments, general game-playing robots add a new class of desirable properties that
concern the manifestation of the game rules in the real world. Notably, a good GDL de-
scription requires all moves deemed legal by the rules to be actually physically possible.
In this section we develop a framework for mathematically describing the application of
game descriptions to physical environments that allows us to formalise such properties.

Environment Models. Consider the robotic game environment shown in Fig. 2(a). It
features a 4× 4 chess-like board with an additional row of 4 marked positions on
the right. Tin cans are the only type of objects and can be moved between the marked
positions (but cannot be stacked). To formally analyse the use of physical environments
like this to play a game, we model them by state machines (Σ, S, s0, δ), where

– Σ denotes the actions that can be performed in the environment;
– S are the states the environment can be in, including the special failure ∈ S ;
– s0 ∈ S is the starting state;
– δ : S × Σ → S is the transition function.

Example. The following is a model for our cans-on-a-chessboard environment.

– We want to allow players two actions: doing nothing and moving a can. Formally,
Σ = {noop} ∪ {move(u, v, x, y) : u, x ∈ {a, b, c, d, x}; v, y ∈ {1, 2, 3, 4}} .

– Any location can either be empty or house a can. Hence, the environment can be in
any of 220 different states plus failure . Fig. 2(b) illustrates two example states.

– Any configurations of cans can be set up as the starting state s0 .
– For the transition function δ , action noop has no effect, hence δ(s, noop) = s .

Action move(u, v, x, y) maps any state with a can at (u, v) and no can at (x, y) to
the same state except that now there is a can at (x, y) and none at (u, v). If no can
is at (u, v) or there already is one at (x, y) , then δ(s, move(u, v, x, y)) = failure.
E.g., s2 = δ(move(d, 4, b, 2), δ(move(x, 2, a, 1), s1)) where s1 and s2 respec-
tively denote the top and bottom states depicted in Fig. 2(b).

Projecting Games onto Physical Environments. When we use a physical environ-
ment to play a game, the real objects become representatives of entities in the abstract
game. A pawn in chess, for example, is typically manifested by an actual wooden piece
of a certain shape and colour. But any other physical object, including a tin can, can
serve the same purpose. Conversely, any game environment like our 4× 4 board with
cans can be interpreted in countless ways as physical manifestation of a game. Thus our
example board can not only be used for all kinds of mini chess-like games (cf. top of
Fig. 2(c)) but also to play, say, the single-player 8-PUZZLE (cf. bottom of Fig. 2(c)).
For this the cans represent numbered tiles that need to be brought in the right order.

The manifestation of a game in a physical environment can be mathematically cap-
tured by projecting the positions from the abstract game onto actual states of the game
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Fig. 2. Game environment with robot, and games projected onto this environment

environment. Formally, if Positions is the set of all possible positions in the game,
then a projection function is of the form π : Positions → S \ {failure} , where S
is the set of states in the environment model as above.

Example. Fig. 2(c) shows two positions from two different games, a mini-variant of
Breakthrough and the 8-puzzle. We can view the states depicted to the left of each
position (Fig. 2(b)) as their projection onto our example physical game environment, in
which the extra row can be used to park captured pieces. For the sake of simplicity, the
robot in our environment is not required to distinguish between different types of cans.
Hence, it is only through the projection function that the robotic player knows whether
a can stands for a white or a black pawn, say. The reader should note that a similar
feature is found in many games humans play; for example, the pieces on a chessboard
alone not telling us whose move it is or which side still has castling rights.

Requirements for Game Descriptions for Physical Environments. The standard se-
mantics for GDL [13] defines precisely how to interpret a given set of rules as a game.
In particular, every valid game description determines the following.

– The set Positions of all possible positions in the game.
– The initial position, Init ∈ Positions.
– The set LegalMoves(p) of legal moves in each position p.
– The function Update(p, m) to compute the new position after move m in p.

All of these elements of a general, abstract game can be related to gameplay in a
physical game environment via the projection function that maps game positions onto
physical states. Specifically, we can formalise fundamental requirements concerning
the playability of an arbitrary game in a given environment (Σ, S, s0, δ) as follows.

1. All legal moves must correspond to actions in the physical environment. Formally,
∀p ∈ Positions. ∀m ∈ LegalMoves(p). m ∈ Σ .

2. Initial position and initial physical state correspond. Formally, π[Init] = s0 .
3. All legal position updates correspond to a possible physical state update. Formally,

∀p ∈ Positions. ∀m ∈ LegalMoves(p). π[Update(p, m)] = δ(π[p], m) .
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Fig. 3. Systems architecture

4 Systems Architecture

In the following, we describe a general systems architecture for general game-playing
robots (Fig. 3). Its defining feature is to allow for the seamless integration of any exist-
ing general game player as the “brain” and any suitable robotic system as the “body.”

The Robot Controller serves as the low-level executor of the robot. The required
functionality is, (1) to process sensor data in order to recognise moves by detecting
changes in the environment, and (2) to command the manipulator to execute any in-
stance of the defined actions in the environment. Performing a single action may re-
quire a complex series of operations; for example, the sequence of operations required
to move a can from one location to another. The robot controller needs to monitor the
execution of such an action and, if possible, recover from failures whenever they occur.

The Game Controller provides the link between the low-level executor and the high-
level decision making. It accepts any new GDL description sent through the interface
and transmits these game rules to the general game-playing system in the form of a
standard START message. During gameplay, the game controller passes on any move
decided upon by the high-level controller to the low-level controller, and it converts
opponent moves reported by the robot controller into standard PLAY messages for the
general game player. The latter involves validating the legality of all opponent moves.

The systems architecture allows for plugging in as the high-level control module any
General Game-Playing System that follows the standard specification [5].

5 Prototype

We constructed a prototype system using a Kinova Jaco arm, pictured in Fig. 2(a), and
the ROS robotic software [11]. The highly successful CadiaPlayer [2] was used as the
underlying GGP reasoner. While the basic system architecture has been implemented
as described in Sections 4, the prototype simulates the vision module through operator
input. For this reason the robot relies on the pieces being in the correct game position.

We ran tests with three games, each repeated 10 times. Each round of the short single-
player 4-QUEENS game lasted approximately 2.5 minutes. At no point was operator
intervention required. 8-PUZZLE, a single-player game with a cluttered physical envi-
ronment (cf. Fig. 2(b), bottom), lasted approximately 16-17 minutes with 30 moves.
Two out of 10 games required operator intervention to pick up a can that had fallen
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after being bumped by the robot gripper. Being more interactive, the 2-player MINI-
BREAKTHROUGH games (cf. Fig. 2(b)-(c), top) varied in length from 5 joint moves in
4 minutes to 14 joint moves taking 10 minutes. Two games required operator interven-
tion to correct fallen cans caused by interference to the gripper by adjacent cans.

6 Conclusion and Future Work

In this paper we take a first step towards building general game-playing robots; robots
that can understand and play arbitrary games in a physical environment. The system
was realised by drawing together two topical yet disparate areas of artificial intelli-
gence research: general game playing and robotics. A prototype system was built and
experiments performed to validate the general architecture and feasibility of the project.

Beyond the necessary task of implementing the object recognition system, there are
a number of directions for future work. Firstly, given some GDL game it should be
possible to automatically construct the rules of a meta-game that incorporates recovery
from known error states. The recovery behaviour would then simply be a result of the
robot playing the larger meta-game. A second broad area for future work is that of
learning. Instead of having to describe new games in GDL, it would be beneficial if the
robot were able to learn how to play a game by being shown how by a user, as in [8,1].
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Abstract. Epistemic plausibility models are Kripke models agents use
to reason about the knowledge and beliefs of themselves and each other.
Restricting ourselves to the single-agent case, we determine when such
models are indistinguishable in the logical language containing condi-
tional belief, i.e., we define a proper notion of bisimulation, and prove
that bisimulation corresponds to logical equivalence on image-finite mod-
els. We relate our results to other epistemic notions, such as safe belief
and degrees of belief. Our results imply that there are only finitely many
non-bisimilar single-agent epistemic plausibility models on a finite set of
propositions. This gives decidability for single-agent epistemic plausibil-
ity planning.

1 Introduction

A typical approach in belief revision involves preferential orders to express de-
grees of belief and knowledge [10,13]. This goes back to the ‘systems of spheres’
in [11,9]. Dynamic doxastic logic was proposed and investigated in [14] in order
to provide a link between the (non-modal logical) belief revision and modal log-
ics with explicit knowledge and belief operators. A similar approach was pursued
in belief revision in dynamic epistemic logic [3,19,17,5,20], that continues to de-
velop strongly [7,18]. We focus on the proper notion of structural equivalence
on (static) models encoding knowledge and belief simultaneously. A prior inves-
tigation into that is [8], which we relate our results to at the end of the paper.
Our motivation is to find suitable structural notions to reduce the complexity of
planning problems. Such plans are sequences of actions, such as iterated belief
revision. It is the dynamics of knowledge and belief that, after all, motivates our
research.

The semantics of belief depend on the structural properties of models. To
relate the structural properties of models to a logical language we need a notion
of structural similarity, known as bisimulation. A bisimulation relation relates a
modal operator to an accessibility relation. Epistemic plausibility models do not
have an accessibility relation as such but a plausibility relation. This induces a
set of accessibility relations: the most plausible states are the accessible states for
the modal belief operator; and the plausible states are the accessible states for
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the modal knowledge operator. But it contains much more information: to each
modal operator of conditional belief (or of degree of belief) one can associate a
possibly distinct accessibility relation. This begs the question how one should
represent the bisimulation conditions succinctly. Can this be done by reference
to the plausibility relation directly, instead of by reference to these, possibly
many, induced accessibility relations? It is now rather interesting to observe
that relative to the modal operations of knowledge and belief the plausibility
relation is already in some way too rich.

Example 1. The (single-agent) epistemic plausibility model on the left in Figure 1
consists of three worlds w1, w2, and w3. p is only false in w2, and w1 < w2 < w3

1:
the agent finds it most plausible that p is true, less plausible that p is false, and
even less plausible that p is true. As p is true in the most plausible world, the agent
believes p. If we go to slightly less plausible, the agent is already uncertain about
the value of p, she only knows trivialities such as p ∨ ¬p. The world w3 does not
make the agent even more uncertain. We therefore can discard that other world
where p is true. This is the model in the middle in Figure 1. It is bisimilar to the
model on the left! Therefore, and that is the important observation: having one
world more or less plausible than another world in a plausibility model does not
mean that in any model with the same logical content we should find a matching
pair of worlds. This is evidenced in the figure: on the left w3 is less plausible than
w2, but in the middle no world is less plausible than v2; there is no match.

Now consider retaining w3 and making it as plausible state as w1. This gives
the plausibility model on the right in Figure 1, where u1 and u3 are equiplausible
(equally plausible), written u1 	 u3. This model is bisimilar to both the left and
the middle model. But the right and middle one share the property that more or
less plausible in one, is more or less plausible in the other: now there is a match.
This makes for another important observation: we can reshuffle the plausibilities
such that models with the same logical content preserve the plausibility order.

w1

p

w2

p

w3

p

↔ v1

p

v2

p

↔ u1

p

u2

p

u3

p

Fig. 1. All three models are bisimilar. The models in the middle and on the right
are normal, the model on the left is not normal. An arrow w1 ← w2 corresponds to
w1 ≤ w2. Reflexive edges are omitted. p means that p does not hold.

In Section 2 we define the epistemic doxastic logic, the epistemic plausibility
models on which it is interpreted, the suitable notion of bisimulation, and demon-
strate the adequacy of this notion via a correspondencebetweenmodal equivalence
and bisimilarity. The final sections 3, 4, and 5 respectively translate our results to
degrees of belief and safe belief, discuss the problematic generalization to themulti-
agent case, and demonstrate the relevance of our results for epistemic planning.

1 If s < t, we have s ≤ t and t 
≤ s.
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2 Single-Agent Plausibility Models and Bisimulation

2.1 Language, Structures, and Semantics

Definition 1 (Epistemic doxastic language). For any countable set of propo-
sitional symbols P , we define the epistemic-doxastic language LP by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕϕ

where p ∈ P , K is the epistemic modality (knowledge) and Bϕ the conditional
doxastic modality (conditional belief). We use the usual abbreviations for the
other boolean connectives as well as for % and ⊥, and the abbreviation B for
B�. The dual of K is denoted K̂, and the dual of Bϕ is denoted B̂ϕ.

We consider epistemic plausibility models as in [5]. A well-preorder on a set
S is a reflexive and transitive relation ≤ on S such that every non-empty subset
has minimal elements. The set of minimal elements of a subset T of S is given
by:

Min≤T = {s ∈ T | s ≤ s′ for all s′ ∈ T }.

This is a non-standard notion of minimality, taken from [5]. Usually a minimal
element of a set is an element that is not greater than any other element. On
total preorders the two notions of minimality coincide. In fact, using the defini-
tion of minimality above, any well-preorder is total: For any pair of worlds s, t,
Min≤{s, t} is non-empty, and therefore s ≤ t or t ≤ s.2 These well-preorders
are the plausibility relations (or plausibility orderings), expressing that a world
is considered at least as plausible as another. This encodes the doxastic content
of a model.

We can define such epistemic plausibility models with the plausibility relation
as a primitive and with the epistemic relation as a derived notion. Alternatively,
we can assume both as primitive relations, but require that more plausible means
(epistemically) possible. We chose the latter.

Definition 2 (Epistemic plausibility model). An epistemic plausibility
model (or simply plausibility model) on a set of propositional symbols P is a tu-
ple M = (W,≤,∼, V ), where

– W is a set of worlds, called the domain.
– ≤ is a well-preorder on W , called the plausibility relation.
– ∼ is an equivalence relation on W called the epistemic relation. We require,

for all w, v ∈ W , that w ≤ v implies w ∼ v.
– V : W → 2P is a valuation.

For w ∈ W we name (M, w) a pointed epistemic plausibility model, and refer
to w as the actual world of (M, w).

2 A well-preorder is not the same as a well-founded preorder; e.g., y ≤ x, z ≤ x
is a well-founded preorder, but not a well-preorder, as z and y are incomparable.
Well-founded preorders are not necessarily total.
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As we require that ≤-comparable worlds are indistinguishable, totality of ≤ gives
that ∼ is the universal relation W × W .

Definition 3 (Satisfaction Relation). Let M = (W,≤,∼, V ) be a plausibility
model on P . The satisfaction relation is given by, for w ∈ W , p ∈ P , ϕ, ϕ′ ∈ LP ,

M, w |= p iff p ∈ V (w)
M, w |= ¬ϕ iff not M, w |= ϕ
M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′

M, w |= Kϕ iff M, v |= ϕ for all v ∼ w
M, w |= Bψϕ iff M, v |= ϕ for all v ∈ Min≤�ψ�M,

where �ψ�M := {w ∈ W | M, w |= ψ}. We write M |= ϕ to mean M, w |= ϕ
for all w ∈ W . Further, |= ϕ (ϕ is valid) means that M |= ϕ for all models M,
and Φ |= ϕ (ϕ is a logical consequence of the set of formulas Φ) stands for: for
all M and w ∈ M, if M, w |= ψ for all ψ ∈ Φ, then M, w |= ϕ.3

Example 2. Consider again the the models in Figure 1. The model on the left
is of the form M = (W,≤,∼, V ) with W = {w1, w2, w3} and ≤ defined by:
w1 ≤ w2, w2 ≤ w3, w1 ≤ w3 (plus the reflexive edges). The valuation V of the
model on the left maps w1 into {p}, w2 into ∅ and w3 into {p}. In all three
models of the figure, the formula Bp ∧ ¬Kp holds, that is, p is believed but not
known.

2.2 Normal Epistemic Plausibility Models and Bisimulation

The examples and proposal of Section 1 are captured by the definition of bisim-
ulation that follows after these preliminaries. First, given a plausibility model
M = (W,∼,≤, V ) consider an equivalence relation on worlds defined as follows:

w ≈ w′ iff V (w) = V (w′).

The ≈-equivalence class of a world is defined as usual as [w]≈ = {w′ ∈ W | w′ ≈
w}. Next, the ordering ≤ on worlds in W can be lifted to an ordering between
sets of worlds W ′, W ′′ ⊆ W in the following way:

W ′ ≤ W ′′ iff w′ ≤ w′′ for all (w′, w′′) ∈ W ′ × W ′′.

Finally, the lifted ordering leads us to a formalization of normal models of Ex-
ample 1.

Definition 4 (Normal Plausibility Relation). Given a plausibility model
M = (W,≤,∼, V ), the normal plausibility relation on M is the relation on W
defined by:

w ) w′ iff Min≤[w]≈ ≤ Min≤[w′]≈.

M is called normal if ) = ≤. The normalisation of M = (W,≤,∼, V ) is M′ =
(W,),∼, V ). As for <, we write w ≺ w′ for w ) w′ and w′ �) w.

3 For an axiomatization of this logic see e.g. [16].
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Note that if u, v ∈ Min≤W ′ for some set W ′ then, by definition of Min≤, both
u ≤ v and v ≤ u. Hence, the condition Min≤[w]≈ ≤ Min≤[w′]≈ above is equiva-
lent to the existence some minimal element of [w]≈ being ≤-smaller than some
minimal element of [w′]≈.

Lemma 1. Let w and w′ be two worlds in the normal model M = (W,),∼, V ).
If w and w′ have the same valuation, they are equiplausible.

Proof. As w ≈ w′, we have [w]≈ = [w′]≈, and thus Min�[w]≈ = Min�[w′]≈. By
Definition 4 we w ) w′ and w′ ) w, which is equivalent to w 	 w′.

Example 3. Take another look at the models of Figure 1 (for reference, we name
them M1, M2 and M3). We want models M1 and M2 to be bisimilar via the
relation R given by R = {(w1, v1), (w3, v1), (w2, v2)} (see Section 1). Usually, in
a bisimulation, every modal operator has corresponding back and forth require-
ments. For our logic of conditional belief there is an infinity of modal operators,
as there is an infinity of of conditional formulas. (Having only unconditional be-
lief Bϕ defined as B�ϕ is not enough, see Example 4.) Instead, we define our
bisimulation indirectly by way of the plausibility relation. Example 1 showed
that we cannot match ‘more plausible’ in M1 with ‘more plausible’ in M2 using
simply ≤. With ≤ as seen in M3 (the normalization of M1) where ≤=), we
can.

Definition 5 (Bisimulation). Let plausibility models M = (W,≤,∼, V ) and
M′ = (W ′,≤′,∼′, V ′) be given. Let ),)′ be the respective derived normal plau-
sibility relations. A non-empty relation R ⊆ W × W ′ is a bisimulation between
M and M′ if for all (w, w′) ∈ R:

[atoms] V (w) = V ′(w′).
[forth�] If v ∈ W and v ) w, there is a v′ ∈ W ′ s.t. v′ )′ w′ and (v, v′) ∈ R.
[back�] If v′ ∈ W ′ and v′ )′ w′, there is a v ∈ W s.t. v ) w and (v, v′) ∈ R.
[forth∼] If v ∈ W and w ∼ v, there is a v′ ∈ W ′ s.t. w′ ∼′ v′ and (v, v′) ∈ R.
[back∼] If v′ ∈ W ′ and w′ ∼′ v′, there is a v ∈ W s.t. w ∼ v and (v, v′) ∈ R.

A total bisimulation between M and M′ is a bisimulation with domain W and
codomain W ′. For a bisimulation between pointed models (M, w) and (M′, w′)
it is required that (w, w′) ∈ R. If a bisimulation between (M, w) and (M′, w′)
exists, the two models are called bisimilar and we write (M, w)↔(M′, w′). Two
worlds w, w′ of a model M are called bisimilar if there exists a bisimulation R
between M and itself with (w, w′) ∈ R.

This definition gives us the bisimulation put forth in Example 3. As ∼ is the
universal relation on W , [forth∼] and [back∼] enforce that all bisimulations are
total.

If ∼ was not a primitive, we could instead have conditions [up-forth�] and [up-
back�] (that consider less plausible v and v′), in place of [forth∼] and [back∼].
This would define the same bisimulations.
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2.3 Correspondence between Bisimilarity and Modal Equivalence

In the following we prove that bisimilarity implies modal equivalence and vice
versa. This shows that our notion of bisimulation is proper for the language and
models at hand. First we define modal equivalence.

Definition 6 (Modal equivalence). Given are models M = (W,≤,∼, V ) and
M′ = (W ′,≤′,∼′, V ′) on P with w ∈ W and w′ ∈ W ′. We say that (M, w) and
(M′, w′) are modally equivalent iff for all ϕ ∈ LP , M, w |= ϕ iff M′, w′ |= ϕ.
In this case we write (M, w) ≡ (M′, w′).

Lemma 2. If two worlds of a model are ≈-equivalent, they are bisimilar.

Proof. Assume worlds w and w′ of a model M = (W,≤,∼, V ) have the same
valuation. Let R be the relation that relates each world of M to itself and
additionally relates w to w′. We want to show that R is a bisimulation. This
amounts to showing [atoms], [forth�], [back�], [forth∼] and [back∼] for the pair
(w, w′) ∈ R. [atoms] holds trivially since w ≈ w′. [forth∼] and [back∼] also hold
trivially, by choice of R. For [forth�], assume v ∈ W and v ) w. We need to find
a v′ ∈ W such that v′ ) w′ and (v, v′) ∈ R. Letting v′ = v, it suffices to prove
v ) w′. Since w ≈ w′ this is immediate: v ) w iff Min≤[v]≈ ≤ Min≤[w]≈ iff
(because w ≈ w′) Min≤[v]≈ ≤ Min≤[w′]≈ iff v ) w′. [back�] is proved similarly.

Proposition 1. Bisimilarity implies modal equivalence.

Proof. We will prove that for all formulas ϕ ∈ LP , if R is a bisimulation between
pointed models (M, w) and (M′, w′) then M, w |= ϕ iff M′, w′ |= ϕ. The proof
is by induction on the structure of ϕ. The base case is when ϕ is propositional.
Then the required follows immediately from [atoms], using that (w, w′) ∈ R. For
the induction step, we have the following cases of ϕ: ¬ψ, ψ ∧ γ, Kψ, Bγψ. We
skip the first three, fairly standard cases and show only Bγψ.

Let R be a bisimulation between (M, w) and (M′, w′) with M = (W,≤,∼, V )
and M = (W ′,≤′,∼′, V ′). We only prove M, w |= Bγψ ⇒ M′, w′ |= Bγψ,
the other direction being proved symmetrically. So assume M, w |= Bγψ, that
is, M, v |= ψ for all v ∈ Min≤�γ�M. We need to prove M′, v′ |= ψ for all
v′ ∈ Min≤′�γ�M′ . So let v′ ∈ Min≤′�γ�M′ . Choose x ∈ Min≤{u ∈ W | u ≈
z and (z, v′) ∈ R for some z ∈ W}. Let y ∈ �γ�M be chosen arbitrarily, and
choose y′ with (y, y′) ∈ R (recall that any bisimulation is total). The induction
hypothesis implies M′, y′ |= γ. Let y′′ ≈ y′ be chosen arbitrarily. Lemma 2
implies the existence of a bisimulation R′ between (M′, y′′) and (M′, y′). Since
M′, y′ |= γ, the induction hypothesis gives us M′, y′′ |= γ, that is, y′′ ∈ �γ�M′ .
Since v′ was chosen ≤′-minimal in �γ�M′ , we must have v′ ≤′ y′′. Since y′′ was
chosen arbitrarily with y′′ ≈ y′, we get v′ ≤′ Min≤′ [y′]≈. We can now conclude
Min≤′ [v′]≈ ≤′ v′ ≤′ Min≤′ [y′]≈, and hence v′ ) y′.

By [back�] there is a v such that (v, v′) ∈ R and v ) y. By choice of x,
x ≤ Min≤[v]≈. Since v ) y we now get: x ≤ Min≤[v]≈ ≤ Min≤[y]≈ ≤ y. Since
y was chosen arbitrarily in �γ�M, we can conclude:

x ≤ u for all u ∈ �γ�M. (1)
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By choice of x, there is a z ≈ x with (z, v′) ∈ R. From z ≈ x, Lemma 2 implies
the existence of a bisimulation R′′ between (M, x) and (M, z). Since R′′ is a
bisimulation between (M, x) and (M, z), andR is a bisimulation between (M, z)
and (M′, v′), the composition R′′ ◦ R must be a bisimulation between (M, x)
and (M′, v′). Applying the induction hypothesis to the bisimulation R′′ ◦ R,
we can from v′ ∈ �γ�M′ conclude x ∈ �γ�M. Combining this with (1), we get
x ∈ Min≤�γ�M. By original assumption this implies M, x |= ψ. Applying again
the induction hypothesis to the bisimulation R′′ ◦ R, this gives us M, v′ |= ψ,
as required, thereby concluding the proof.

We proceed now to the converse, that modal equivalence with regard to LP

implies bisimulation, though first taking a short detour motivating the need for
conditional belief.

Example 4. The normal plausibility models (M1, w1) and (M2, v1) of Figure
2 are modally equivalent for the language with only unconditional belief. We
can show this by first demonstrating that M1 and M2 have the same modal
description Φ (a modal description Φ of a model M is a set of formulas such
that Φ |= ψ iff M |= ψ). We observe that the description of both models is

B(p1 ∧ ¬p2 ∧ ¬p3) ∧ K((p1 ∧ ¬p2 ∧ ¬p3) ∨ (¬p1 ∧ p2 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ p3))

To see why, note that w1 and v1 are both the only minimal worlds in their
respective models, so belief in (description of the valuation) p1∧¬p2∧¬p3 will be
the same. Further, in both models all three constituent worlds are epistemically
possible, so K cannot distinguish either between the models (the disjunction
sums up the three different valuations). We then note that, as both w1 and
v1 satisfy p1 ∧ ¬p2 ∧ ¬p3, (M1, w1) and (M2, v1) of Figure 2 must be modally
equivalent: any boolean formula must be a consequence of p1∧¬p2∧¬p3, whereas
any belief or knowledge formula evaluated in the points of these models must be
a model validity that is a consequence from the model description Φ.

On the other hand, (M1, w1) and (M2, v1) are not bisimilar. Pairs in the
bisimulation must have matching valuations, so the only option is the relation
{(w1, v1), (w2, v2), (w3, v3)}. But this does neither satisfy [forth�] nor [back�].

We do not want that these models are modally equivalent in, for example,
a dynamic epistemic language. Consider an agent learning ¬p1 from a public
announcement. This deletes w1 and v1 from their respective models. After this
announcement in M1, the agent believes p2. In M2 this is not the case. Here
the agent will believe p3. With conditional belief we can capture this distinction
already in the static language (M1 |= B¬p1p2, while M2 �|= B¬p1p2).

w1

p1

w2

p2

w3

p3

M1 : v1

p1

v2

p3

v3

p2

M2 :

Fig. 2. The models M1 and M2 of Example 4. For visual clarity, we leave out false
propositional variables.
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Definition 7 (Δ). Let two worlds w, w′ of a model M = (W,≤,∼, V ) on P be
given where V (w) �= V (w′). If there is a p ∈ V (w)−V (w′), then let δw,w′ be such
a p; otherwise, let δw,w′ = ¬q for some q ∈ V (w′) − V (w). Any such choice of
δw,w′ for a given pair w, w′ is called a propositional difference between w and w′.
If instead V (w) = V (w′), let δw,w′ = %. Finally, let Δw =

∧
w′≺w δw,w′ be the

conjunction of some propositional difference between w and each world strictly
more )-plausible than w (the empty conjunction when no such world exist).

Continuing Example 4, we can choose Δw2 = ¬p1. We then have that B̂Δw2 p2
distinguishes M1 and M2 by evaluating belief on worlds no more plausible than
w2 and v2 respectively. However, choosing Δw2 = p2 would not distinguish, so we
add an additional disjunct for w3. Regardless of which propositional differences
are used in Δw2 and Δw3 , B̂Δw2∨Δw3 p2 distinguishes the models. This is, of
course, not sufficient for constructing distinguishing formulas in the general case,
but for our purposes of proving Proposition 2 it is enough.

Lemma 3. Let w and w′ be worlds of the model M = (W,≤,∼, V ) s.t. w′ ) w,

and ϕ a formula of LP , s.t. M, w′ |= ϕ. Then M, w |= B̂Δw∨Δw′ ϕ.

Proof. In the following we abbreviate Δw∨Δw′ by Δw,w′. We need to show that
∃u ∈ Min≤�Δw,w′�M, s.t. M, u |= ϕ. By construction of Δw,w′ , we have that
for all s ∈ �Δw,w′�M, either s ≈ w, s ≈ w′ or (w ) s and w′ ) s). By choice
of w and w′, we have w′ ) w, meaning that ∃w′′ ∈ Min≤�Δw,w′�M such that
w′ ≈ w′′. Lemma 2 then says that w′ and w′′ are bisimilar, and Proposition 1
that they are modally equivalent. Thus M, w′′ |= ϕ. This is the u we are looking

for, giving M, w |= B̂Δw,w′ ϕ.

Proposition 2. On the class of image-finite models, modal equivalence implies
bisimilarity.

Proof. Let M = (W,≤,∼, V ) and M′ = (W ′,≤′,∼′, V ′) be two image-finite,
plausibility models on P , and define R ⊆ W × W ′, such that (w, w′) ∈ R iff
(M, w) ≡ (M′, w′). We show that R is in fact a bisimulation of the kind defined
in Definition 5. Showing that R satisfies [atoms] is trivial. We skip the, less
trivial, [forth∼], and [back∼] and show the considerably more complicated case
of [forth�] ([back�] is similar) as follows: Assume (M, w) ≡ (M′, w′), v ∈ W
and v ) w and show that assuming that for all v′ ∈ W ′, v′ ) w′ implies
(M, v) �≡ (M′, v′), leads to a contradiction. This then gives (M, v) ≡ (M′, v′)
and therefore (v, v′) ∈ R.

Let S′ = {v′ | v′ ) w′} = {v′
1, . . . v′

n} be the successors of w′. This set is
finite, due to image-finiteness of the model. If v and no successor of w′ is modally
equivalent, there exists formulae ϕv′

i , such that M, v |= ϕv′
i and M′, v′

i �|= ϕv′
i .

Therefore, M, v |= ϕv′
1 ∧ · · · ∧ ϕv′

n . For notational ease, let Φ = ϕv′
1 ∧ · · · ∧ ϕv′

n .

With M, v |= Φ, Lemma 3 gives M, w |= B̂Δw,vΦ (Δw,v is finite due to image-

finiteness of the models). Now, M′, w′ |= B̂Δw,vΦ (which we must have due to
modal equivalence) iff there exists a u′ ∈ Min≤�Δw,v�M′ such that M′, u′ |= Φ.
By construction of Φ, no world v′

i exists such that v′
i ) w′ and M′, v′

i |= Φ, so



Bisimulation for Single-Agent Plausibility Models 285

we must have w′ ≺ u′. There are two cases for (the weakest requirements for)
this u′ to be minimal. Either (i) u′ ≤ w′ or (ii) w′ < u′ and w′ �∈ �Δw,v�M′ .
If (i) is the case, we must have a world w′′, with w′′ ≈ w′ and w′′ < u′, or we
couldn’t have w′ ≺ u′. But w′′ < u′ means that u′ cannot be minimal unless
w′ �∈ �Δw,v�M′ , because otherwise w′′ ∈ �Δw,v�M′ . So, for (i) and (ii) both, we
must have w′ �∈ �Δw,v�M′ . This yields M′, w′ |= ¬Δw,v. But as M, w |= Δw,v,
we get the sought after contradiction of (M, w) ≡ (M′, w′).

3 Degrees of Belief and Safe Belief

In this section we sketch some further results that can be obtained for our
single-agent setting of the logic of knowledge and conditional belief. Apart from
conditional belief, other familiar epistemic notions in the philosophical logical
and artificial intelligence community are safe belief [16] and degrees of belief
[10,15]. Our results generalize fairly straightforwardly to such other notions. An
agent has safe belief in formula ϕ iff it will continue to believe ϕ no matter what
true information conditions its belief.4

Definition 8 (Safe belief). We extend the inductive language definition with a
clause �ϕ for safe belief in ϕ. The semantics are M, w |= �ϕ iff (M, w |= Bψϕ
for all ψ such that M, w |= ψ).

Degrees of belief are a quantitative alternative to conditional belief. The zeroth
degree of belief B0ϕ is defeasible belief Bϕ as already defined. For M, w |=
B1ϕ to hold ϕ should be true in (i) all minimal worlds accessible from w; but
additionally, (ii) if you take away those from the equivalence class, in all worlds
that are now minimal. If we do this with the normal plausibility relation we
get what we want (otherwise, we run into the same problems as before — our
treatment is not compatible with e.g. Spohn’s approach [15], that allows ‘gaps’
(layers without worlds) in between different degrees of belief).

Min0
�[w]∼ := Min�([w]∼)

Minn+1
� [w]∼ := Minn

�[w]∼ if Minn
�([w]∼) = [w]∼

Minn+1
� [w]∼ := Minn

�[w]∼ ∪ Min�([w]∼ \ Minn
�[w]∼) otherwise

We now can define the logic of knowledge and degrees of belief.

Definition 9 (Degrees of belief). We replace the clause for conditional belief
in the inductive language definition by a clause Bnϕ for belief in ϕ to degree n,
for n ∈ N. The semantics are

M, w |= Bnϕ iff for all v ∈ Minn
�([w]∼) : M, v |= ϕ

In an extended version of this paper we are confident that we will prove that the
logics of conditional belief and knowledge, of degrees of belief and knowledge,
and both with the addition of safe belief are all expressively equivalent.

4 This definition is conditional to modally definable subsets, unlike [5,16] where it is
on any subset. In that case safe belief is not bisimulation invariant and increases the
expressivity of the logic.
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4 Multi-agent Epistemic Doxastic Logic

For a finite set A of agents and a set of propositional symbols P the multi-agent
epistemic-doxastic language LP,A is

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | Bϕ
a ϕ,

where p ∈ P and a ∈ A. Epistemic plausibility models are generalized similarly,
we now have plausibility relations ≤a and epistemic relations ∼a for each agent
a. For each agent the domain is partitioned into (possibly) various equivalence
classes, such that each class is a well-preorder. The single-agent results do not
simply transfer to the multi-agent stage. We give an example.

Example 5. Consider Figure 3. The solid arrows represent the plausibilities for
agent a and the dashed arrow for agent b. In our example, the partition for a
is {w0}, {w1, w2, w3}, whereas the partition for b is {w0, w1}, {w2}, {w3}. Unlike
before, the two p-states are not bisimilar, because in the state w1 agent b is
uncertain about the value of p but defeasibly believes p (there is a less plausible
alternative w0, whereas in state w3 agent b knows (and believes) that p. In
both worlds, of course, agent a still believes that p, but a distinguishing formula
between the two is now, for example, ¬Kbp ∧ Bap, true in w1 but false in w3.

w0

p

w1

p

w2

p

w3

p

Fig. 3. A plausibility model wherein the two p worlds are not bisimilar, because they
have different higher-order belief properties

It will be clear from Example 5 that we cannot, for each agent, derive a normal
plausibility relation)a from a given plausibility relation≤a by identifying worlds
with the same valuation: w ≈a w′ iff V (w) = V (w′) and w ∼a w′ does not work
(worlds w1 and w3 in Example 3 satisfy different formulas). Some strengthening
guarantees that bisimilarity still implies modal equivalence. An example is, using
the above ≈a:

w ≈ w′ iff (for all agents a : w ≈a w′)
w )a w′ iff (Min≤a [w]≈ ≤a Min≤a [w

′]≈)

Unfortunately we do not get that modal equivalence then implies bisimilarity. The
strongest possible approach is of course to require that [ w ≈ w′ iff (w, w′) is a pair
in the bisimulation relation ]. This works, but it is is rather self-defeating. In due
time we hope to find a proper generalisation in between these two extremes.

5 Planning

In planning an agent is tasked with finding a course of action (i.e. a plan) that
achieves a given goal. A planning problem implicitly represents a state-transition
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system, where transitions are induced by actions. Exploring this state-space is
a common method for reasoning about and synthesising plans. A growing com-
munity investigates planning in dynamic epistemic logic [6,12,4,1], and using the
framework presented here we can in similar fashion consider planning with dox-
astic attitudes. To this end we identify states with plausibility models, and the
goal with a formula of the epistemic doxastic language. Further we can describe
the dynamics of actions by using e.g. hard announcements or soft announcements
[17], or yet more expressive notions such as event models [5].

With the state-space consisting of plausibility models, model theoretic results
become pivotal to the development of planning algorithms. In general, we cannot
require even single-agent plausibility models (even on a finite set of propositional
symbols) to be finite. Also, normal plausibility models need not be finite — obvi-
ous, as the ‘normalising’ procedure in which we replace ≤ by ) does not change
the domain. Our definition of bisimulation has a crucial property in this regard: By
Lemma 2 the bisimulation contraction of a model will contain no two worlds with
the same valuation, hence any bisimulation minimal model on a finite set of propo-
sitions is finite. Moreover, two bisimulation minimal models are bisimilar exactly
when they are isomorphic, and it follows that are only finitelymanydistinct bisimu-
lationminimal epistemic plausibilitymodels.With the reasonable assumption that
actions preserve bisimilarity (this is the case for the types of actions mentioned
above), our investigations on the proper notion of bisimulation therefore allow us
to employ a smaller class of models in planning. This is a chief motivation for our
work here, and an immediate consequence is that determining whether there exists
a plan for a plausibility planning problem is decidable (see [2]).

w0

p

w1

p

w2

p

w3

p

w4

p

· · ·

Fig. 4. Uncontractable chain of p and ¬p-worlds

It is remarkable that the approach of [8] to defining bisimulation for epistemic
plausibility models does not yield decidability of planning problems, not even
for single-agent models defined on a single proposition. It has, for instance, that
the model in Figure 4 consisting of an infinite ‘directed chain’ of alternating p
and ¬p worlds (a copy of the natural numbers axis) is bisimulation minimal. In
our approach the bisimulation minimal model would be the middle one of Figure
1, regardless of the number of worlds. Though [8] also shows that bisimilarity
implies modal equivalence and vice versa (for image finite models), this is not
inconsistent with our results here. Another difference between our approach and
[8] lies in the semantics of safe belief. There, safe belief is relative to any subset
(see also Footnote 4). For a ‘directed chain’ model, the safe belief semantics
of [8] permits counting the number of p and ¬p worlds. Such more expressive
semantics naturally come at a cost, namely having no finite bound on the size
of minimal single-agent models.
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An Efficient Tableau

for Linear Time Temporal Logic

Ji Bian, Tim French, and Mark Reynolds

The University of Western Australia,
Crawley, WA 6009, Australia

Abstract. Practical reasoning aids for dense-time temporal logics are
not at all common despite a range of potential applications from verifi-
cation of concurrent systems to AI. There have been recent suggestions
that the temporal mosaic idea can provide implementable tableau-style
decision procedures for various linear time temporal logics beyond the
standard discrete natural numbers model of time. In this paper we extend
the established idea of mosaic tableaux by introducing a novel abstract
methodology of partiality which allows a partial mosaic to represent
many mosaics. This can significantly reduce the running time of building
a tableau. We present partial mosaics, partial mosaic-based tableau and
algorithms for building the tableau.

Keywords: dense-time temporal logic, partial mosaic, tableau.

1 Introduction

The development [5,1,11] of temporal logics for reasoning applications using var-
ious dense and general linear models of time has progressed for decades alongside
the more well-known logics for discrete time [10]. Applications range from en-
gineering of reactive hardware [1] to continuous time multi-agent systems [8].
Being able to efficiently automate reasoning in continuous systems is an impor-
tant aspect of building autonomous hybrid systems [15].

A basic syntax underlying this work is L(U ,S) with natural-language style
Until and Since connectives originally introduced in [7]. We denote by US/LIN
the logic of L(U ,S) over the class of all linear flows of time. Other logics for
more specific flows of time such as the reals or dense-time can be obtained by a
semantic restriction of the same language [11].

It was only recently [12] that deciding satisfiability of US/LIN formulas was
shown to be in PSPACE (just like PLTL [14]). However, the formulation of
reasoning tools for US/LIN has been a much longer process in the making:
axioms [4], decidability [5], complexity [12], and the outline of a new tableau
technique [13] based roughly on the idea of mosaic games [11].

In this paper we continue the work with making this proposed tableau tech-
nique considerably more efficient and practical. The tableau is used to decide
the satisfiability (or equally the validity) of any given formula in US/LIN. The
mosaics we use are the description of small pieces of a model: they describe which
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formulas hold at a pair of points from a model and which hold everywhere in
between. Other sorts of mosaics have been used to develop reasoning techniques
for other temporal and modal logics [9,6]. We decide whether a finite set of such
small pieces is sufficient to describe a model of a given formula.

This paper makes a big step towards building more practical tableau systems
by proposing a new theoretical object, the partial mosaic, which represents a
whole range of related mosaics, in one finite syntactic object. By supporting
dealing with a whole set of similar mosaics at once, we can speed up large parts
of the reasoning task by significant amounts.

We start with describing partial mosaics. In this part, we will see that partial
mosaics, which each represents several mosaics, can reduce searching times when
building a tableau tree. Next we show the equivalence of the existence of a certain
saturated set of partial mosaics to the existence of a linear structure witnessing
the mosaics and introduce a partial mosaic-based tableau. In the last part, we
show this new mosaic technique makes a measurable step towards practicality,
by running experiments comparing the partial mosaic approach with the older
full mosaic approach.

2 The Logic

Fix a countable set L of propositional atoms. Frames (T, <), or flows of time,
will be irreflexive linear orders. Structures T = (T, <, h) will have a frame (T, <)
and a valuation h for the atoms i.e. for each atom p ∈ L, h(p) ⊆ T . The idea is
that if t ∈ h(p) then the proposition p is true at time t.

The language L(U ,S) is is determined by the 2-place temporal connectives U
(Until) and S (Since) along with classical ¬ and ∧. The well-formed formulas of
the language are built up recursively from atoms and % (for truth) using those
connectives. That is, for formulas α and β, ¬α, α ∧ β, U(α, β) and S(α, β) are
included in the language.

Formulas are evaluated at points in structures T = (T, <, h). We write T, x |=
α when α is true at the point x ∈ T :
T, x |= p iff x ∈ h(p), for p atomic;
T, x |= U(α, β) iff there is y > x in T such that T, y |= α and for all z ∈ T
such that x < z < y we have T, z |= β; and
T, x |= S(α, β) iff there is y < x in T such that T, y |= α and for all z ∈ T
such that y < z < x we have T, z |= β.
Abbreviations include the usual classical and temporal ones such as F α =

U(α,%) and Gα = ¬F (¬α) and their mirror images P and H . The resulting
logic is refered to as US/Lin.

As a simple example of the problems we aim to solve, we can give a dense-
time point-based temporal language and a synthesis algorithm to solve planning
problems.

The states are represented as propositions: g, p, q, r, and actions are repre-
sented by propositions that may hold over extended intervals: a, b, c

Suppose that we want to achieve goal g from starting state s, under the
following conditions:
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In order to achieve g you need to do a from state p and also (in parallel) do b
from state s;
To get to p you need to do c from s but as a red herring you can also achieve p
from q by doing a;
There is no action that ends in q.

Here are a list of formulas to capture this, and some other basic assumptions
(such as the uniqueness of the start state s):

G(g → (S(p, a) ∧ S(s, b))) G(p → (S(s, c) ∨ S(q, a)) G(¬q)
H(¬g ∧ ¬p ∧ ¬q ∧ ¬r) H(¬a ∧ ¬b ∧ ¬c) H¬s ∧ s ∧ G¬s

The synthesis task is to find a model of F g along with the conjunction of the
clauses above. In this case, there is a model and it tells us a plan to achieve the
goal.

3 Partial Mosaics for U and S
To decide the satisfiability of a formula, we construct a complete structure for
the formula using mosaics as building blocks. Mosaics correspond to sets of
labelled structures and building a tableau of mosaics is proved equivalent to
building a whole model in [13]. However, the huge numbers of mosaics often make
exhaustive searches infeasible in practice, especially for unsatisfiable formulas.
Results for satisfiable formulas are also often slow or not feasible.

Here we introduce partial mosaics where each partial mosaic represents a set
of mosaics. This representation reduces the search space for the tableau. Partial
mosaics can be used to represent structures at different levels of abstraction.
We will see the representation of models and abstraction of partial mosaics in
the following subsection. To build a whole model, the set of partial mosaics has
be free of defects that necessitates inclusion of some others partial mosaics. A
full decomposition is the resulting sequence of partial mosaics after all defects
have been cured. The existence of partial mosaic-based tableau proves to be
equivalent to a structure via a saturated set.

3.1 A Mosaic

Mosaics are concerned with a finite set of formulas:

Definition 1. For each formula φ, define the closure of φ to be Clφ = {ψ,¬ψ |
ψ ≤ φ} where χ ≤ ψ means that χ is a subformula of ψ.

We can think of Clφ as being closed under negation: treat ¬¬α as if it was α.
A mosaic is a description of a small piece of a model. Each mosaic consists

of three parts: a set of formulas held at a earlier point in a model, a set of
formulas held at a final point in a model, and a set of formulas held by all points
in a between. Any mosaic m′ is defined to a triple S(m′), C(m′), E(m′) in [13]
where both S(m′) and E(m′) are sets of formula. The sets S(m′) and E(m′) are
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restricted to be propositionally consistent and maximal (relative to a closure set)
so they describe the set of formulas true at two points in a structure, and the set
C(m′) is all formulas that are true at all points in between. (Note that C(m′) may
not be maximal , since formulas may be true at some points and false at others,
and may not be consistent, because there may be no points between the start
and the end of the mosaic. For a formal description, see [13]). We can see that
for a formula consisting on n symbols, there could be as many as 23n mosaics,
making exhaustive search very costly. A partial mosaic generalizes many mosaics
allowing us to search large regions of the mosaic state space simultaneously.

3.2 A Partial Mosaic

We will define a partial mosaic to be a triple (S(m), C(m), E(m)) of sets of
formulas as well. The intuition is that this corresponds to two points from a
structure: S(m) is the start set of formulas (from Clφ) true at the starting
point, E(m) is the end set of formulas true at the final point, and C(m) is the
cover set of formulas which are held or possibly held by all points strictly in
between. A partial mosaic m, like a full mosaic, consists of three sets of formulas
(S(m), C(m), E(m)): the start set, S(m), contains of formulas that must be true
at the start of the mosaic; the end set, E(m), contains formulas that must be
true at the end of the mosaic; and the cover set, C(m), describes formula that
must be true in the middle of the model. These sets are not maximal, so for
example, we may find that neither p nor ¬p is in the start set. In this case the
partial mosaic matches full mosaics that have p in the start set, and full mosaics
that have ¬p in the start set. For the cover set, we are interested in whether
a formula is true over an interval, so we introduce S5 modalities, � and ♦, to
generalize these scenarios.

Definition 2. The partial closure of φ is the set PClφ = {�α,♦α|α ∈ Clφ}

Intuitively, if �α is in the cover set, then α is true everywhere between the
start and the end of the mosaic, and if ♦α is in the cover set, the α is true
somewhere between the start and the end of the mosaic. It is important that
these sets of formulas are consistent.

Definition 3. Suppose φ ∈ L(U ,S) and S ⊆ Clφ. Say S is propositionally
consistent (PC) iff there is no substitution instance of a tautology of classical
propositional logic of the form ¬(α1 ∧ ... ∧ αn) with each αi ∈ S.
Say S is maximally propositionally consistent (MPC) iff S is maximal in being
a subset of Clφ which is PC.
Suppose S ⊆ PClφ. Then S is partially propositionally consistent if for every
♦α ∈ S, {α} ∪ {β|�β ∈ S} is propositionally consistent.

Note, that it is possible that there is no formula ♦α ∈ C(m), in which case it is
possible that m describes a structure with no points between the start and the
end. We are now able to formally define partial mosaics.
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Definition 4. Suppose φ is from L(U, S). A φ-partialmosaic is a triple m. S(m) ⊆
Clφ, E(m) ⊆ Clφ and C(m) ⊆ PClφ such that:
C0 S(m) and E(m) are PC, and C(m) is partially propositionally consistent.
C1 ♦α ∈ C(m) and �β ∈ C(m) imply U(α, β) ∈ S(m).
C2 �β ∈ C(m) and α ∈ E(m) imply U(α, β) ∈ S(m).
C3 �β ∈ C(m), β ∈ E(m) and U(α, β) ∈ E(m) imply U(α, β) ∈ S(m).
C4 U(α, β) ∈ S(m) implies either: ♦α ∈ C(m);

or �β ∈ C(m) and α ∈ E(m);
or �β ∈ C(m), β ∈ E(m) and U(α, β) ∈ E(m).

C5 ♦¬β ∈ C(m) and �¬α ∈ C(m) imply ¬U(α, β) ∈ S(m).
C6 �¬α ∈ C(m), ¬β ∈ E(m) and ¬α ∈ E(m) imply ¬U(α, β) ∈ S(m).
C7 �¬α ∈ C(m), ¬α ∈ E(m) and ¬U(α, β) ∈ E(m) imply ¬U(α, β) ∈ S(m).
C8 ¬U(α, β) ∈ S(m) implies either: ♦¬β ∈ C(m);

or �¬α ∈ C(m), ¬β ∈ E(m) and ¬α ∈ E(m);
or �¬α ∈ C(m), ¬α ∈ E(m) and ¬U(α, β) ∈ E(m).

C9- C16 mirrors of C1 to C8.

We now confine our attention to the semantics of a partial mosaic. The se-
mantics of a partial mosaic is a set of some fragments of structures it represents.

Definition 5. If T = (T, <, h) is a structure and φ ∈ L(U ,S) then for some
x < z from T we say that a partial mosaic m represents T from x to z iff:

1. S(m) ⊆ {α ∈ Clφ|T, x |= α};
2. C(m) ∩ Clφ ⊆ {β ∈ Clφ| for all y ∈ T ,

if x < y < z then T, y |= β}, and
3. E(m) ⊆ {γ ∈ Clφ|T, z |= γ}

A partial mosaic m is satisfiable if and only if there is some structure T = (T, <
, h) and some x, z ∈ T such that m represents T from x to z.

With these semantics we can now see the syntactic criteria of Definition 4. If
U(α, β) ∈ S(m) it is either satisfied before the end of the mosaic (C1), at the end
of the mosaic (C2), or after the end of the mosaic (C3), and one of these cases
must hold (C4). Likewise, if ¬U(α, β) ∈ S(m) then U(α, β) must be invalidated
before the end of the mosaic (C5), at the end of the mosaic (C6), or after the
end of the mosaic (C7), and one of these conditions must hold (C8). Similar
constraints can be given for S(α, β) which we omit due to space reasons.

3.3 Mosaics vs Partial Mosaics

A partial mosaic can refer to a higher level of abstraction than a full mosaic
and so it can serve to express a whole range of related mosaics. The intuition
is that the S(m) and E(m) of a mosaic that are maximally propositionally
consistent are less abstract than S(m) and E(m) of a partial mosaic that are
only propositionally consistent; and C(m) of a mosaic that is subset of Clφ
can be captured by a C(m) of a partial mosaic that is partially propositionally
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consistent. Given any full mosaic m, the corresponding partial mosaic is m =
(S(m), {�α|α ∈ C(m)}, E(m)). However, as partial mosaics do not need to have
maximal propositional consistent sets for the start and end of a mosaic, they
can represent structures at varying levels of abstraction. We first demonstrate
different levels of the abstraction in C(m) by introducing an ordering over partial
mosaic.

Definition 6. For φ-partial mosaics m1 and m2, we say m1 ⊆ m2 iff S(m1) ⊆
S(m2), C(m1) ⊆ C(m2) and E(m1) ⊆ E(m2), and we say that m1 is more
general than m2

If m1 is more general than m2 then m1 will typically represent more models
than m2.

Example: a partial mosaic for U(p, q) is

({q}, {♦¬p,♦q}, {}).

this partial mosaic can serve to express another partial mosaic and a mosaic as
follows:

({q,U(p, q)}, {♦¬p,♦q,♦U(p, q)}, {¬p,¬q,¬U(p, q)})
({p, q,U(p, q)}, {♦¬p,♦q,�q}, {p,¬q,¬U(p, q)})

As partial mosaics represent many full mosaics, if we are able to show that a
partial mosaic does not correspond to a linear temporal structure, then we have
ruled out a large number of full mosaics, which now do not have to be explored.

3.4 Defects

When building a model we may find that a certain set of required partial mo-
saics necessitates the inclusion of another set of partial mosaics. This includes
satisfying formulas in the form of U(α, β) in the start set, S(α, β) in the end set,
and formulas that are required to be true at a point between the start and the
end. For example, if we have U(α, β) holding at x < z, it possibly requires point
y with x < y < z witnessing α such that α true at y and β true everywhere
between x and y. Another example is if we have ¬β not true everywhere between
x and z then we need to find a point y in between x and z witnessing β. Here a
defect is introduced as a not yet satisfied formula, and we have to cure it.

Here we introduce 5 types of defects:

Definition 7. A defect in a partial mosaic m is one or more of the followings:

1. a formula U(α, β) ∈ S(m) with either
1.1 �β /∈ C(m),
1.2 α �∈ E(m) and β �∈ E(m), or
1.3 α �∈ E(m) and U(α, β) �∈ E(m);

2. a formula S(α, β) ∈ E(m) with either
2.1 �β �∈ C(m),
2.2 α �∈ S(m) and β �∈ S(m), or
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2.3 α �∈ S(m) and S(α, β) �∈ S(m);
3. a formula β ∈ Clφ with ♦β ∈ C(m) ; or
4. a formula U(α, β) ∈ E(m);
5. a formula S(α, β) ∈ S(m).

A sequence of partial mosaics is usually used to cure defects, and we have to
string them together in the linear order. The following definition allows us to
relate sequences of mosaics to a single mosaic.

Definition 8. Suppose C(m1), C(m2), and C(m3) are partially propositionally
consistent. We introduce partial intersection ∩∗ as:

C(m1) ∩∗ C(m2) = {�α,♦β | �α ∈ C(m1) ∩ C(m2), ♦β ∈ C(m1) ∪ C(m2)}.

Definition 9. We say that φ-partial mosaics m1 and m2 are composable iff
E(m1) = S(m2). In that case, their composition is m , in which S(m) = S(m1),
E(m) = E(m2), and

C(m) = ((C(m1) ∩∗ C(m2))− {�α|α /∈ E(m1)) ∪ {♦α|α ∈ E(m1)}

The idea of composition between two partial mosaics can be easily extended
to a sequence of composable partial mosaics, by successive compositions.

Definition 10. We say a sequence of composable partial mosaics is a decom-
position of a partial mosaic m1 iff its composition m2 has m1 ⊆ m2.

A full decomposition of is intended to provides witnesses to the cure of every
type 1, 2 and 3 defect in the partial mosaic.

Definition 11. The decomposition of < m1, m2, ..., mn > of partial mosaic m
is full iff the following three conditions all hold:

1. for all U(α, β) ∈ S(m) we have either
1.1. �β ∈ C(m) and either (β ∈ E(m) and U(α, β) ∈ E(m))
or α ∈ E(m),
1.2. or there is some i with 1 ≤ i < n such that
α ∈ E(mi), �β ∈ C(mj) (all j ≤ i)
and β ∈ E(mj) (all j < i);

2. the mirror image of 1.; and
3. for each β ∈ Clφ, we have ♦β ∈ C(m); and there is i

such that 1 ≤ i < n and β ∈ E(mi).

1.2 aims at curing type 1 defect in m and α is witnessed by the end of mi.
Similarly for the mirror image for type 2 defect; 3 is for type 3 defect: the end
of mi witnesses β. Similar constructions can be defined to cure type 4 and 5
defects, by appending mosaics to the start of end of a mosaic. We will omit the
details due to space considerations.
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3.5 Satisfiability Formulas and Partial Mosaics

We say a formula φ is satisfiable iff there a point in a structure T = (T, <, h)
such that φ is true at that point. Here we check the satisfiability of a formula φ in
L(U, S) with satisfiable partial mosaics. Specifically, if we check the satisfiability
of a φ-partial mosaic m with either φ ∈ S(m) or φ ∈ E(m), then φ is satisfiable.

The main idea is similar to situation in [13] with mosaic, but a partial mosaic
is more general than a mosaic as shown by the following lemma.

Lemma 1. A φ-partial mosaic m is satisfiable iff there is at least a satisfiable
φ-mosaic m′ such that m ⊆ m′.

Clearly, if a φ-partial mosaic m is not satisfiable then any mosaic m′ with
m ⊆ m′ is also not satisfiable. Checking the satisfiability of partial mosaics
rather than mosaics can greatly reduce the search space. A proof of Lemma 1
can be found in [2].

In the procedure of proving US/LIN satisfiability, we are to guess a partial
mosaic (S(m), C(m), E(m)) for φ and then check that (S(m), C(m), E(m)) is
satisfiable. Thus we now focus on deciding whether a partial mosaic is satisfiable.

We introduce a technique: a saturated set of partial mosaics (SSSPM) as seen
in earlier work [9].

Definition 12. A full special expansion for a standard partial mosaic m is any
finite, composing sequence of partial mosaics < m1, ..., mi, ..., mj , ..., mn > with
mi and mj(1 ≤ i ≤ j ≤ n) such that
1. S(mi) = S(m), and E(mj) = E(m),
2. m1, m2, ..., mi−1 is a left expansion of m,
3. mi, ..., mj is a full decomposition of m,
4. mj+1, ..., mn is a right expansion of m.

A SSSPM is a set of partial mosaics with each one in the set having a full
special expansion containing only partial mosaics from the set. It also summarises
the organization of partial mosaics in it, and show cures for any defects in any
partial mosaic in the set.

4 Tableau of Partial Mosaic

The ultimate aim is to determine whether a given formula φ in L(U, S) is sat-
isfiable in US/LIN or not. Deciding validity is simply equivalent to determining
satisfiability of the negation. We can show a formula φ is satisfiable if and only if
there is a satisfiable for φ-partial mosaic, and a mosaic is satisfiable if and only
if it has a SSSPM. To show that a SSSPM exists, we use a tableau method to
progressively cure defects in mosaics.

The tableau is a tree where each node is labelled by a partial mosaic, and
each node has a finite number of children (which are ordered). The labels on the
nodes of the children must form a full decomposition of the label on the node of
the parent. Nodes whose labels do not have defects do not require children, and
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nor do nodes whose label is equal to the label of an ancestor. If a finite tableau
exists with a mosaic m at the root, then m is satisfiable. A complete description
can be found in [9].

Rather than the depth-first search approach used in [9], the partial mosaic lend
themselves to an iterative deepening approach, where a finer level of abstraction
is only explored if it is required to cure a defect.

We are able to show that the satisfiability of a formula, is equivalent to the
existence of a saturated set of partial mosaics (SSSPM) containing a φ-partial
mosaic, and that such a SSSPM exists if and only if there is a successful tableau
with m at its root.

Lemma 2. A φ-partial mosaic m has a successful tableau iff there exists a sat-
urated set of partial mosaics(SSSPM) for φ with m in it,

Theorem 1. Suppose that φ is a formula of L(U, S). Then φ-partial mosaic m
is satisfiable iff there a successful tableau with m as its root

For full proofs of Lemma 2 and Theorem 1, see [2].
When using tableaux to decide US/LIN, we have to see that a partial mosaic

represents model with more than two points. However some formulas are only
satisfiable in one point models such as ¬U(%,%) ∧ ¬S(%,%). We introduce a
singleton tableau that is PC set of subformulas of φ with no formulas of the form
U(α, β) or S(α, β). Then tableau is able to solve the satisfiability for all formulas

The strategy for constructing a successful tableau is to search through every
possible tableau for all partial mosaics for φ. The strategy is similar in construct-
ing a mosaics-based tableau [13]. However, rather than expanding the labels of
new nodes via only full expansions of mosaics, here we not only expand the
labels of new children nodes via full expansions of partial mosaics but also we
sometimes have to expand the leaf nodes of neighbouring branches with a single
and more specific child node. This is because a partial mosaic may not contain
a critical formula, nor its negation.

4.1 Examples

Here are some examples. Tableaux shown in diagrams as trees grow down from
the root. Left-expanding children are indicated by l, right by r. If left-expanding
or right-expanding children don’t exist, we use n short for null to represent it.
Successful branches are indicated by leaf .

See the example in Figure 1 a successful tableau for a φ-mosaic containing
φ = U(q, r)∧S(p, r). Here, there is no type 3 for the root partial mosaic. However,
it has both type 4 defect U(q, r) in the end set and type 5 defect S(p, r) in the
start set. So, it has only left-expanding children and right-expanding children.

See the example in Figure 2 for an incomplete tableau for a φ-mosaic con-
taining φ = p∧F P H¬p. The last two non-null-branches end successfully. There
is no way, however, of completing the first non-null branch from m1 to m2 as
there is no way of curing the type 3 defect ¬H¬p in m2. Note that although the
branch from m1 to m2 is doomed to failure, the formulas φ is satisfiable, and an
alternative satisfying tableaux can be found.
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{φ,U(q, r),S(p, r)},
{�r},

{U(q, r)}

l
{p},
{�r},

{φ,U(q, r),S(p, r)}

leaf

r
{U(q, r)},
{�r},
{q}

leaf

Fig. 1. Tableau for φ = U(q, r)∧S(p, r)

m1 =
{φ, FPH¬p, p},

{♦PH¬p},
{}

l
n

m2 =
{φ,FPH¬p, p},

{♦H¬p},
{PH¬p}

m3 =
{φ, FPH¬p, p},

{},
{H¬p}

m4 =
{H¬p},

{},
{PH¬p}

leaf

m5 =
{PH¬p},

{},
{}

leaf

r
n

Fig. 2. Partial tableau for φ = p ∧
FPH¬p

5 Experimental Results

A comprehensive set of benchmarks has been collected for discrete linear time,
and some application benchmark are directly the specification of actual systems
including traffic-light controlling system and mutual exclusion protocol. Despite
the significant accumulation, there are no such systematic application benchmark
formulas for US/LIN or dense time. Here we try to introduce some benchmark
formulas to compare the two reasoners in Table 1: The formulas 2, 3 and 10 are
three of six Burgess-Xu axioms, and all of them are valid in US/LIN; we create
16 and 18 that intend to violate another two axioms and they are unsatisfiable
in US/LIN (both of them involve exhaustive search for mosaics/partial mosaics
and trigger exponential behaviour in both reasoners); 12, 13 and 14 are a series
of benchmarks to specify various mutual exclusions protocols, especially 14 is
for general linear time; 19 is to test the performances of reasoners on dense time
only; 9 comprises many eventualities to be checked, and even some eventualities
are contradicted; 5 requires us to check eventualities for Until and also for Since;
17 and 20 are random unsatisfiable formulas; and 1 and 4 are random satisfiable
formulas.

We present timing and space results in Table 1. Column Sat? indicates whether
it is satisfiable; Run contains the time taken by full mosaics (M) and partial
mosaics (P M). The value U indicates exceeding 3 hours but without any re-
sults. The column Nodes is the number of nodes explored. We see that there is
great improvement of performance for most case no matter what formulas they
are(either satisfiable or unsatisfiable formulas). Some performance improvement
is attributed to not having to check a large number of root nodes. See formula
r ∧ U(p ∧ ¬S(r, s)), s). We have to check 213,330 mosaics as the root, while we
only check 5 partial mosaics as the root. The decreased difficulty of decomposing
a node also contributes to the speedup. Intuitively, more defects requires longer
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expansion to cure and more running time. Mosaics easily introduce much more
defects than partial mosaics, especially type 3 defect. This is mainly attributed
to their different cover set. See formula ¬(U(p, q) → U(p, q ∧ U(p, q))). Some
mosaics even have up to 12 type 3 defects including some roots, while a partial
mosaic only at most 4. Type 3 defects are expensive to cure. Even if we cure
type 3 defects in one level, the curing witnesses may possibly have type 1 or 2
defects in the next level. This is the reason why it even takes several minutes to
decompose a mosaic for r∧U(p∧¬S(r, s)), s) and ¬(U(p, q) → U(p, q∧U(p, q))).
There is another interesting result that tableau of partial mosaics has shorter full
decomposition in comparison with that of full mosaic tableaux. This generally
implies less nodes to decompose that improves the running time. This is the
reason for the improvement in p∧G(p → F p)∧G(U(%,⊥))∧F G¬p and G(p →
G¬q) ∧ G(q → G¬p) ∧ F G(¬p ∧ ¬q). An online implementation of this solver is
provided [3].

Table 1. Run-time and memory usage of partial mosaic and full mosaic tableaux. A
full table and detailed results is available in [2].

Num Formula Sat? Run(s) Nodes

M PM M PM

1 G(U(¬p, p)) ∧ ¬F (U(¬p,⊥)) ∧ ¬F (U(p,⊥)) Y 888 < 1 52 8

2 G(p → q) → (U(r, p) → U(r, q)) Y U 1 > 220 7

3 (p ∧ U(q, r)) → U((q ∧ S(p, r)), r) Y U 4 > 220 5

4 G(U(F¬p, p)) ∧G(¬p → G¬p) Y 61 < 1 47 4

5 G((S(p,¬p) ∧ U(p,¬p)) ∨ (S(¬p, p) ∧ U(¬p, p))) Y U < 1 > 220 3

9 G(p → U(q, 0) ∧ Fq → FFq ∧ Fq ∧ Fq → p) Y U 1 > 210 2

10 G(p → q) → (U(p, r) → U(q, r)) Y U < 1 > 210 2

12 Fp ∧G(p → Fp) ∧G(U(�,⊥)) ∧ FG¬p Y 24 < 1 13 3

13 G(p → G¬q) ∧G(q → G¬p) ∧ FG(¬p ∧ ¬q) Y U < 1 > 210 4

14 p ∧ (p → Fp) ∧G(p → Fp) ∧G(U(p,¬p)) ∧ F¬p Y 14 < 1 7 2

16 r ∧ U(p ∧ ¬S(r, s)), s) N U < 1 > 220 5

17 U(U(p, q),U(q, p)) ∧G¬p N U < 1 > 220 9

18 ¬(U(p, q) → U(p, q ∧ U(p, q))) N U < 1 > 220 3

19 ¬U(¬p, p) ∧ ¬U(p,¬p) ∧G¬U(�,⊥) Y 189 30 102 21

20 FPp ∧ ¬Fp ∧ ¬p ∧ ¬Pp N 9 < 1 2 2

6 Conclusion and Future Work

We have been able to formulate the novel idea of a partial mosaic, representing
a whole set of more or less similar mosaics. We have presented a partial mosaic-
based tableau for US/LIN and shown that it is a sound and complete reasoning
system via saturated sets of partial mosaics. We have also shown that the partial
mosaic tableau system is a big step towards a practical and efficient reasoning
system for US/LIN. Experiments have shown significant speedups in comparison
with the existing tableau of mosaics.
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Particular directions to pursue in future work include finding good heuris-
tics for the choice of partial mosaics to expand nodes or enhancing the level of
abstraction for partial mosaics.
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Abstract. In this paper we present a two-fold generalization of conditional pref-
erence networks (CP-nets) that incorporates uncertainty. CP-nets are a formal tool
to model qualitative conditional statements (cp-statements) about preferences
over a set of objects. They are inherently static structures, both in their ability
to capture dependencies between objects and in their expression of preferences
over features of a particular object. Moreover, CP-nets do not provide the abil-
ity to express uncertainty over the preference statements. We present and study
a generalization of CP-nets which supports changes and allows for encoding un-
certainty, expressed in probabilistic terms, over the structure of the dependency
links and over the individual preference relations.

Keywords: Preferences, Graphical Models, Probabilistic Reasoning, CP-nets.

1 Introduction

CP-nets are used to model conditional information about preferences [2]. Preferences
play a key role in automated decision making [9] and there is some experimental
evidence suggesting qualitative preferences are more accurate than quantitative pref-
erences elicited from individuals in uncertain information settings [19]. CP-nets are
compact, arguably quite natural, intuitive in many circumstances, and widely used in
many applications in computer science such as recommendation engines [8].

Real life scenarios are often dynamic. A user can change his mind over time or the
system under consideration can change its laws. Preferences may change over time.
Thus, we need a structure that can respond to change through updates, without the need
to completely rebuild the structure. Additionally, we often meet situations characterized
by some form of uncertainty. We may be uncertain about our preferences or on what
features our preferences depend. In order to model this, we need a structure that includes
probabilistic information. The need for encoding uncertain, qualitative information has
seen some work in the recommendation engine area [7,16] and is a motivating example.

Consider a household of two people and their Netflix account. The recommendation
engine only observes what movies are actually watched, what time they are watched,
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and their final rating. There are two people in this house and let us say that one prefers
drama movies to action movies while the other has the opposite preference. When mak-
ing a recommendation about what type of movie to watch, the engine may have several
solid facts. Comedies may always be watched in the evening, so we can put a deter-
ministic, causal link between time of day and type of movie. However, we cannot ob-
serve which user is sitting in front of the television at a given time. There is strong
evidence from the behavioral social sciences showing that adding uncertainty to pref-
erence frameworks may be a way to reconcile transitivity when eliciting input from
users [17], among other nice properties [12]. Using this idea, we add a probabilistic de-
pendency between our belief about who is in front of the television and what we should
recommend. We may want to update the probability associated with this belief based
on the browsing or other real-time observable habits of the user. To do this we need a
updateable and changeable structure that allows us to encode uncertainty.

We propose and study the complexity of reasoning with PCP-nets, for Probabilistic
CP-nets, which allow for uncertainty and online modification of the dependency struc-
ture and preferences. PCP-nets provide a way to express probabilities over dependency
links and probability distributions over preference orderings in conditional preference
statements. Given a PCP-net, we show how to find the most probable optimal outcome.
Additionally, since a PCP-net defines a probability distribution over a set of CP-nets,
we also show how to find the most probable induced CP-net.

2 Background and Related Work

Probabilistic reasoning has received a lot of attention in Computer Science [8] and
other areas [12]. Elicitation and modeling of preferences has also been considered in
probabilistic domains such as POMDPs [3]. Recently, another generalization of CP-
nets to include probabilities was introduced by Bigot et al. [1]. The model proposed by
Bigot et al. restricts probabilities to be defined on orderings. We allow for probabilities
on edges but, as we will show, this is a somewhat redundant specification that is useful
for elicitation. Moreover, Bigot et al. focus on optimization and dominance testing in
the special tractable case of tree-structured networks, we base our algorithmic approach
on a more general connection with Bayesian networks. Reconciling these two models
is an important direction for future work.

2.1 CP-Nets

CP-nets are a graphical model for compactly representing conditional and qualitative
preference relations [2]. They exploit conditional preferential independence by decom-
posing an agent’s preferences via the ceteris paribus (cp) assumption (all other things
being equal). CP-nets bear some similarity to Bayesian networks (see 2.2). Both use
directed graphs where each node stands for a domain variable, and assume a set of
features F = {X1, . . . ,Xn} with finite domains D(X1), . . . ,D(Xn). For each feature Xi,
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each user specifies a set of parent features Pa(Xi) that can affect her preferences over
the values of Xi. This defines a dependency graph in which each node Xi has Pa(Xi) as
its immediate predecessors. Given this structural information, the user explicitly speci-
fies her preference over the values of Xi for each complete assignment on Pa(Xi). This
preference is a total or partial order over D(X) [2].

Note that the number of complete assignments over a set of variables is exponential
in the size of the set. Throughout this paper, we assume there is an implicit constant that
specifies the maximum number of parent features, |Pa(X)|, that any feature may have.
With this restriction, and an implicit bound on |D(X)|, we can and do treat the size of
the conditional preference representation for any X as a constant.

An acyclic CP-net is one in which the dependency graph is acyclic. A CP-net need
not be acyclic. For example, my preference for the entree may depend on the choice of
the main course, and my preference for the main course may depend on the choice of
the entree. However in this paper we focus on acyclic CP-nets.

The semantics of CP-nets depends on the notion of a worsening flip. A worsening
flip is a change in the value of a variable to a value which is less preferred by the cp-
statement for that variable. We say that one outcome α is better than another outcome
β (written α > β ) if and only if there is a chain of worsening flips from α to β . This
definition induces a preorder over the outcomes.

In general, finding optimal outcomes and testing for optimality in this ordering is
NP-hard. However, in acyclic CP-nets, there is only one optimal outcome and this can
be found in as many steps as the number of features via a sweep forward procedure
[2]. We sweep through the CP-net, following the arrows in the dependency graph and
assigning at each step the most preferred value in the preference table. Each step in the
sweep forward procedure is exponential in the number of parents of the current feature,
and there are as many steps as features. In this paper we assume the number of parents
is bounded, so this algorithm takes time polynomial in the size of the CP-net.

Determining if one outcome is better than another according to this ordering (called
a dominance query) is NP-hard even for acyclic CP-nets [6,10]. Whilst tractable special
cases exist, there are also acyclic CP-nets in which there are exponentially long chains
of worsening flips between two outcomes.

2.2 Bayesian Networks

Bayesian networks (BNs) allow for a compact representation of uncertain knowledge
and for a rigorous way of reasoning with this knowledge [15]. A BN is a directed graph
where each node corresponds to a random variable; the set of nodes is denoted by V ;
a set of directed edges connects pairs of nodes (if there is an edge from node X to
node Y , X is said to be a parent of Y ); the graph has no directed cycles and hence is a
directed acyclic graph (DAG); each node Xi has a conditional probability distribution
P(Xi|Parents(Xi)) that quantifies the effect of the parents on the node. If the nodes are
discrete variables, each Xi has a conditional probability table (CPT) that contains the
conditional probability distribution, P(Xi|Parents(Xi)). Each CPT row must therefore
have probabilities that sum to 1.
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Inference in a BN corresponds to calculating P(X |E) where both X and E are sets
of variables of the BN, or to finding the most probable assignment for X given E . The
variables in E are called evidence.

There are three standard inference tasks in BNs: belief updating, which is finding the
probability of a variable or set of variables, possibly given evidence; finding the most
probable explanation (MPE), that is, the most probable assignment for all the variables
given evidence; and finding the maximum a-posteriori hypothesis (MAP), where we
are interested in a subset of m variables A1, · · · ,Am and we want to compute the most
probable assignment of {A1, · · · ,Am} by summing over the values of all combinations
of V \ {A1, · · · ,Am}∪E , where E is a (possibly empty) set of evidence variables.

The inference tasks are computationally hard. However, they can be solved in poly-
nomial time if we impose some restrictions on the topology of the BNs such as bounding
the induced width [4, 5]. Given an ordering of the variables of a BN, these algorithms
have a number of steps linear in the number of variables, and each step is exponential
in the number of variables preceding the current one in the ordering and connected to it
in the BN graph. The largest of these numbers is the induced width of the graph of the
BN. Different variable orderings give steps with different complexity. Finding a good
variable ordering is a difficult problem. If we assume the induced width is bounded,
the overall algorithm is polynomial, and if |Pa(X)| is bounded by a constant, then the
induced width is also bounded.

3 Probabilistic CP-Nets

We define a generalization of traditional CP-nets with probabilities on individual cp-
statements as well as on the dependency structure.We assume that the probabilities
expressed over the dependency structure is consistent with the probabilities expressed
over the variable orderings themselves. A model defined in this way allows us to use
algorithms and techniques from BNs to efficiently compute outputs for common queries
when the size of the dependency graph is bounded.

A PCP-net (for Probabilistic CP-net) is a CP-net where: (1) each dependency link is
associated with a probability of existence consistent with the given variable ordering;
and (2) for each feature A, instead of giving a preference ordering over the domain of
A, we give a probability distribution over the set of all preference orderings for A.

More precisely, given a feature A in a PCP-net, its PCP-table is a table associating
each combination of the values of the parent features of A to a probability distribution
over the set of total orderings over the domain of A.

Probabilities expressed on the dependency links and the corresponding PCP-tables
are not independent. If we consider all the possible ways in which we can obtain a
CP-table from PCP-table by choosing specific orderings we see that we can divide the
CP-tables into two classes: those representing a “true” dependency and those represent-
ing independence of the child feature. Each induced CP-table is associated to the joint
probability of the orderings it contains. The probability of activation or non-activation
of a dependency must coincide with the sum of probabilities associated to the CP-tables
where the dependency is activated or not activated. Otherwise, the probability of the
dependency and the probability of the ordering are not reconcilable and the structure
itself expresses an impossible relationship.
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Example 1. Consider the PCP-net C shown with two features, A and B, with domains
DA = {a1,a2} and DB = {b1,b2}. The preferences on B depend on the assignment to A
with probability p. Given the probability assignment to the orderings of B given A we
have that p = q1 · (1− q2)+ (1− q1) ·q2.

Structure:

A B
p

Feature A:
A orderings P

a1 > a2 r
a2 > a1 1− r

Feature B:
A values B orderings P

a1
b1 > b2 q1

b2 > b1 1− q1

a2
b1 > b2 q2

b2 > b1 1− q2

The induced CP-net with probability P= (1− r) · (1− q1) ·q2 is shown below.

Structure:
A B

Feature A:
A orderings

a2 > a1

Feature B:
A values B orderings

a1 b2 > b1

a2 b1 > b2

Given a PCP-net C , a CP-net induced by C has the same features and domains as C .
The dependency edges of the induced CP-net are a subset of the edges in the PCP-net
which must contain all edges with probability 1. CP-nets induced by the same PCP-net
may, therefore, have different dependency graphs. Moreover, the CP-tables are gener-
ated accordingly for the chosen edges. For each independent feature, one ordering over
its domain (i.e., a row in its PCP-table) is selected. Similarly, for dependent features, an
ordering is selected for each combination of the values of parent features. Each induced
CP-net has an associated probability obtained from the PCP-net by taking the product
of the probabilities of the deterministic orderings chosen in the CP-net.

One may note that the probabilities on edges are redundant whenever the probabili-
ties in the PCP-tables are completely specified. However, we have chosen the presented
formalism as it may be useful for elicitation purposes. Consider a settings where we are
attempting to determine the strength of a relationship between two variables, such as the
relationship between time of day and type of movie desired. It may be easier for people
to describe this relationship directly rather than express the underlying joint probability
distribution as humans are generally poor at estimating and working with probability
directly [20]. Using this elicitation method we could then assume some underlying dis-
tribution for the variable ordering (skewed one way or another based on evidence). We
leave an exploration of this topic for future work and focus on the base case, where
PCP-nets are consistent, for the current work.

Since we have a probability distribution on the set of all induced CP-nets, it is im-
portant to be able to find the most probable induced CP-net. We are also interested in
finding the most probable optimal outcome. Given a PCP-net and an outcome (that is, a
value for each feature), the probability of such an outcome being optimal corresponds
to the sum of the probabilities of the CP-nets that have that outcome as optimal.
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4 Reasoning with PCP-Nets

Given a PCP-net we study mainly two tasks: finding the most probable induced CP-
net and finding the most probable optimal outcome. These two reasoning tasks have
slightly different semantics and may be of use to different groups in the preference
reasoning community. The most probable induced CP-net is analogous, in our Netflix
example from earlier, to the CP-net that most likely maps onto a viewer in the house-
hold. Whereas, the most probable optimal outcome would be what a recommendation
engine should suggest to maximize the probability of a correct recommendation. One
is an aggregated model, that still retains usefulness for prediction and sampling while
the other is an aggregated outcome, that maximizes the probability of being correct.

4.1 The Most Probable Induced CP-Net

We reduce the problem of finding the most probable induced CP-net to that of finding
an assignment with maximal joint probability of an appropriately defined BN.

Given a PCP-net C , we define the BN called general network, or G-net(C ), asso-
ciated with C , as follows. We create a variable for each independent feature A of the
PCP-net, with domain equal to the set of all possible total orderings over the domain of
A. The probability distribution over the orderings is given by the PCP-table of A. For
each dependent feature B of the PCP-net, we add as many variables to the G-net as there
are combinations of value assignments to the parents. Each of these variables B1 to Bn

will have the same domain: the set of total orderings over the domain of B.
Consider the PCP-net with two features, C , from Example 1 whose corresponding

G-net is shown below. The variables have domains DA = {a1 > a2,a2 > a1}, DBa1
=

{b1 > b2,b2 > b1}, and DBa2
= {b1 > b2,b2 > b1}.

A

Ba1 Ba2

Variable A:
A P

a1 > a2 r
a2 > a1 1− r

Variable Ba1 :

Ba1 P
b1 > b2 q1

b2 > b1 1− q1

Variable Ba2 :

Ba2 P
b1 > b2 q2

b2 > b1 1− q2

Theorem 1. Given a PCP-net C and the corresponding G-net N, there is a one-to-one
correspondence between the assignments of N and the induced CP-nets of C .

Theorem 2. Given a PCP-net C , the probability of realizing one of its induced CP-nets
Ci, is the joint probability of the corresponding assignment in the G-net for C .

Proof. There is a one-to-one correspondence between rows in the PCP-tables and nodes
in the G-net. Additionally, choosing a particular ordering in a PCP-net row corresponds
to an assignment to a variable in the G-net. ��

Theorem 3. The probabilities over the induced CP-nets of a certain PCP-net form a
probability distribution.
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Proof. The probability defined in Theorem 2 is computed as a product of non-negative
factors, thus it is non-negative. Moreover, the sum of the probabilities of all the CP-nets
in the set of the induced CP-nets is equal to 1, because there’s a 1-1 correspondence
between the assignments of the G-net with positive probability and the induced CP-
nets, and the sum of the probabilities of all the assignments of a BN is equal to 1. ��

Theorem 4. Given a PCP-net C and its induced CP-nets, the most probable of the
induced CP-nets is the variable assignment with maximal joint probability in the G-net
for C .

4.2 The Most Probable Optimal Outcome

The most probable optimal outcome is the outcome that occurs with the greatest prob-
ability as the optimal in the set of induced CP-nets. The probability that an outcome o
is optimal corresponds to the sum of the probabilities of the CP-nets that have o as the
optimal outcome. Observe that the most probable optimal outcome may not be the op-
timal outcome of the most probable CP-net. Consider a PCP-net with only one feature
A with domain DA = {a1,a2,a3} and let a1 > a2 > a3 = 0.3, a1 > a3 > a2 = 0.3, and
a3 > a2 > a1 = 0.4. The most probable CP-net is the one corresponding to the third
ordering and it has the optimal outcome a3. The other CP-nets have a1 as optimal, so
P(a1) = 0.6 and P(a3) = 0.4. The most probable optimal outcome is therefore a1 but
the optimal outcome of the most probable CP-net is a3.

To find the most probable optimal outcome, we cannot find the most probable in-
duced CP-net by the G-net procedure described above and then find its optimal out-
come; we must make use of another BN which we call the optimal network.

Given a PCP-net C , the optimal network (Opt-net) for C is a BN with the same
dependencies graph as C . Thus, the Opt-net has a variable for each of the PCP-net’s
features. The domains of the variables in the Opt-net are the values of the correspond-
ing features that are ranked first in at least one ordering with non-zero probability. The
conditional probability tables of the Opt-net are obtained from the corresponding PCP-
tables as follows: for each assignment of the parent variables, we consider the corre-
sponding probability distribution over the values of the dependent variable defined in
the PCP-table. The probability of a value for the dependent variable is the sum of the
probabilities of the orderings that have that particular value as most preferred accord-
ing to that distribution. Notice that our construction applies even when there are cyclic
dependences in the corresponding PCP-net.

Example 2. Consider the PCP-net C with three features A, B and C with domains DA =
{a1,a2}, DB = {b1,b2} and DC = {c1,c2,c3}.The Opt-net has the same dependency
graph as C , with three variables A, B and C with domains: DA = {a1,a2}, DB = {b1,b2}
and DC = {c1,c2}, and two edges AC and BC. The domain of variable C in the Opt-net
does not contain value c3 because it never appears as most preferred in any ordering.
Therefore, the Opt-net has a table for entry a1b2 where c1 appears with probability 0.2
and c2 appears with probability 0.8.
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Structure:
A C B

Variable A:
ordering for A P

a1 > a2 0.8
a2 > a1 0.2

Variable B:
ordering for B P

b1 > b2 0.7
b2 > b1 0.3

Variable C:
A & B ordering for C P

a1 b1
c1 > c2 > c3 0.3
c2 > c1 > c3 0.7

a1 b2

c1 > c2 > c3 0.2
c2 > c1 > c3 0.4
c2 > c3 > c1 0.4

a2 b1
c1 > c3 > c2 0.4
c2 > c3 > c1 0.6

a2 b2
c1 > c2 > c3 0.1
c2 > c1 > c3 0.9

Theorem 5. Given a PCP-net C and its Opt-net, there is a one-to-one correspondence
between the assignments (with non-zero probability) of the Opt-net and the outcomes
that are optimal in at least one induced CP-net of C .

Theorem 6. Given a PCP-net C , the probability that an outcome is optimal is the
joint probability of the corresponding assignment in the optimal network. If no such
corresponding assignment exists, then the probability of being optimal is 0.

Proof. By construction, the set of assignments of the Opt-net of C is a subset of those
of C . By the definition of the Opt-net, if an assignment of C is not an assignment of
the Opt-net, then it cannot be optimal in any induced CP-net.

Let us now focus on the assignments of C that have a corresponding assignment in
the Opt-net. Let x = (x1,x2, ...,xn) be one of these assignments. We denote by Popt(x)
the joint probability of x, P(X1 = x1, ...,Xn = xn) in the Opt-net. We recall that the
probability that x is optimal in the PCP-net is the sum of the probabilities of the induced
CP-nets that have assignment x as optimal. We call this probability Pcp(x). We must
prove that Popt(x) = Pcp(x).

Let us consider Ax, the set of induced CP-nets that have x as their optimal assign-
ment; giving Pcp(x) = ∑C∈Ax P(C ). When we compute the optimal value for a CP-net,
we sweep forward, starting from the independent features, assigning features their most
preferred value. This means that only one subset of the rows of the CP-tables is con-
sidered when computing the optimal outcome. We can thus split a CP-net C into two
parts, one affecting the choice of the optimal outcome (denoted with C∗) and one not
involved in it (denoted with C−∗). If we consider the probability that that CP-net is
induced by the PCP-net, we see that these two parts are independent. Thus we have
Pcp(x) = ∑C∈Ax P(C ) = ∑C∈Ax P(C∗)P(C−∗).

Regarding C∗, observe that the optimal outcome x can be produced in many different
ways, as there can be many different orderings that produce the same result. For exam-
ple the orderings a1 > a2 > a3 and a1 > a3 > a4 produce both the optimal value a1 for
variable X1. So we can do a disjoint partition of the set Ax into k subsets Ax1 , ...,Axk for
some k.

Two CP-nets C and D that belong to the same Axi are equal in the part that ac-
tively affects the choice of the optimal value and different in the other parts: C∗ =
D∗ and C−∗ �= D−∗.
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Let C i
∗ be the part that is equal for all the members of Axi . The probability becomes:

Pcp(x)=∑k
i=1P(C

i
∗)∑C∈Axi

P(C−∗). We note that ∑C∈Axi
P(C−∗)= 1 ∀i= 1, ...,k, since

we are summing the probability of all possible cases regarding C−∗. Thus the prob-
ability becomes Pcp(x) = ∑k

i=1P(C
i
∗). However, we have P(X1 = x1, ...,Xn = xn) =

∑k
i=1P(C

i
∗) and, thus, Pcp(x) = Popt(x). since we built the rows of the probability ta-

bles for the variables X1, ...,Xn by summing the probability of the orderings that have
the same head. This is the same as summing the probabilities over the subset Axi . ��

Theorem 7. To find the most probable optimal outcome for a PCP-net C , it is sufficient
to compute the assignment with the maximal joint probability of its optimal network.

5 PCP-Nets and Induced CP-Nets

A PCP-net defines a probability distribution over a set of induced CP-nets. However,
this step is not always reversible: below we show that, given a probability distribution
over a set of CP-nets, all with the same features and domains, there may be no PCP-
net such that the given CP-nets are its induced CP-nets. However, the function that
maps a PCP-net to its set of induced CP-nets is injective. Therefore, if there is a PCP-
net which induces a set of CP-nets, we can find it quickly. This observation may be
an interesting starting point for future work. We may be able to use CP-nets elicited
from individuals to generate a PCP-net with which to “hot start” and create highly
probable configurations for a recommendation system that is responsible for suggesting
configurations for products to new customers [7, 16].

Theorem 8. Given a probability distribution over a set of CP-nets (even if they have
the same dependency graph), there may exist no PCP-net inducing it.

Proof. Consider the following four CP-nets (C1, C2, C3 and C4) defined on the same
variables: A and B. The two features have domains DA = {a1,a2} and DB = {b1,b2}.
The probability distribution on the four CP-nets is defined as follows:

– C1 has probability P(C1) = 0.3 and CP-tables:

A B ordering for A
a1 > a2

A ordering for B
a1 b1 > b2

a2 b2 > b1

– C2 has probability P(C2) = 0.2 and CP-tables:

A B ordering for A
a1 > a2

ordering for B
b1 > b2

– C3 has probability P(C3) = 0.1 and CP-tables:

A B ordering for A
a1 > a2

ordering for B
b2 > b1

– C4 has probability P(C4) = 0.4 and CP-tables:
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A B ordering for A
a1 > a2

A ordering for B
a1 b2 > b1

a2 b1 > b2

If C1, C2, C3 and C4 were all the induced CP-nets of a PCP-net, this PCP-net would have
the dependency graph (on the features A and B with the relationship having probability
k of occurring):

A B
k

and the following PCP-tables:

ordering for A
a1 > a2

A ordering for B probability

a1
b1 > b2 p1

b2 > b1 p2

a2
b1 > b2 p3

b2 > b1 p4

where the values p1, p2, p3 and p4 need to be solutions of the following system of
equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

p1 p3 = 0.2

p2 p3 = 0.4

p1 p4 = 0.3

p2 p4 = 0.1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ p1 ≤ 1

0 ≤ p2 ≤ 1

0 ≤ p3 ≤ 1

0 ≤ p4 ≤ 1

{
p1 + p2 = 1

p3 + p4 = 1

However, such a system has no solution. ��

Theorem 9. Given a probability distribution over a set of CP-nets, we can compute a
PCP-net to fit this distribution, if it exists.

6 Updating Probabilistic CP-Nets

We now turn our attention to modifications to the structure of a PCP-net. These changes
can be implemented in an efficient way and their effects on computing the most prob-
able optimal outcome and the most probable induced CP-net are minimal, in terms of
complexity. Modifying the structure of the PCP-net is similar to entering evidence in a
BN framework. By changing an arc or setting an ordering for a variable we can fix parts
of the probability distribution and compute the outcomes of the resulting structure.

To add or delete a dependency or feature we just update the respective probability
tables. This may involve deleting redundancy when we delete a feature. Due to the
independence assumptions, we can modify probabilities over ordering and features at
a local level, with no need to recompute the entire structure when new information is
added.

When we modify a PCP-net C we also need to modify the probability tables in the
associated G-net. This can change the most probable induced CP-net and therefore we
need to recompute the outcome of the G-net.
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To add or delete a dependency or feature, independent or dependent, we need to add
or delete (or both) a number of nodes in the G-net which is exponential in the maximum
number of parents which we assume to be bounded. The same can be said with respect
to updating a probability table with either evidence or changing the distribution.

When we modify a PCP-net C , the changes affect its Opt-net. Consider the depen-
dency of feature B on feature A. When we add or delete this dependency, or when we
change its probability, we only need to recompute the probability table of B in the Opt-
net. When computing the most probable optimal outcome, we note that, in the worst
case, we must recompute the whole maximal joint probability of the Opt-net. The same
can be said when we delete a feature, as this amounts to the deletion of a set of depen-
dencies, or when we modify the probability distribution over the orderings on B for a
specific assignment to all of its parents. When we add a feature A to C , we must add
the corresponding node in the Opt-net and generate the corresponding probability ta-
ble. This new node is independent. Thus, revising the current most probable optimal
outcome is easy: the new optimal is the current one extended with the optimal value of
the new feature.

7 Conclusions and Future Work

We have defined and shown how to reason with a generalized version of CP-nets, called
PCP-nets, which can model probabilistic uncertainty and be updated without recomput-
ing their entire structure. We have studied how to reason with these new structures in
terms of optimality. PCP-nets can be seen as a way to bring together BNs and CP-nets,
thus allowing to model preference and probability information in one unified structure.

We plan to study dominance queries and optimality tests in PCP-nets, as well as
to study appropriate eliciting methods for both preferences and probabilities. Bigot
et al. [1] have begun this line of inquiry on their model and show that, for PCP-nets
that have a tree structure, dominance testing is tractable. We would also like to further
explore, as Bigot et al., how our results related to the notion of local Condorcet win-
ners in CP-net aggregation [21] as well as other issues in CP-net aggregation such as
bribery [13, 14] and joint decision making [11]. Additionally, we have made several
assumptions to bound the reasoning complexity of PCP-nets; we would like to relax
these bounds or obtain results about approximability when these assumptions are lifted.
We also plan to consider the use of PCP-nets in a multi-agent setting, where classical
CP-nets have already been considered [18]. In this setting, PCP-nets can be used to
represent probabilistic information on the preferences of a population.
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Abstract. Judgment aggregation is a social choice method for aggregat-
ing information on logically related issues. In distance-based judgment
aggregation, the collective opinion is sought as a compromise between
information sources that satisfies several structural properties. It would
seem that the standard conditions on distance and aggregation functions
are strong enough to guarantee existence of feasible procedures. In this
paper, we show that it is not the case, though the problem becomes easier
under some additional assumptions.

1 Introduction

It is often convenient to ascribe information-related stances (such as judgments,
opinions, beliefs, etc.) to collectives of agents. The need for modeling collective
opinions can be either external or internal. External agents may ascribe opinions
to institutions and groups in order to simplify their model of the world and rea-
son about it. Agents inside the group may need to reach consensus about issues
of interest, and in particular to obtain collective decisions that will lead to con-
sistent collective action. In this paper, we focus on one of the formal frameworks
that try to explain how collective judgments are formed from individual stances,
namely judgment aggregation theory [33].

Several formal theories within artificial intelligence have tried to explain how
collective judgments arise from individual judgments. Epistemic logic [41] pro-
poses to aggregate agents’ views by aggregating the underlying models, i.e., indis-
tinguishability relations over different valuations of atomic sentences. By different
operations on epistemic relations we obtain different notions of group knowledge:
mutual knowledge, common knowledge, distributed knowledge etc. [24]. On the
other hand, Dempster-Shafer theory [9, 39] shows how probabilistic beliefs can be
merged into a single collective belief. However, epistemic logic requires complete
individual views, that is, everybody’s opinions about every conceivable state of
the world must be given as input. Dempster rule of combination admits incom-
plete models, butmay yield logically inconsistent judgments, i.e., ones that violate
logical interdependencies between issues (even if the input consists of consistent
individual judgments). Thus, both theories make assumptions that turn out too
strong for most cases of practical reasoning.
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Another formal framework is provided by social choice theory. It develops
and analyses (on a more abstract level) methods for reaching group decisions
through aggregating individual stances. For instance, voting rules used in po-
litical elections are social choice methods. Deriving collective opinions from a
partial representation of individual judgments on a set of mutually dependent
issues may be obtained by a method of similar kind. More precisely, the problem
of aggregating binary valuations assigned to each element of a set of logically
related elements into a consistent set of valuations is studied by judgment ag-
gregation theory [33].

Distance-based judgment aggregation [34, 38] comprises the largest class of
judgment aggregation rules. Inspired by belief merging rules, the idea is to define
the collective opinion as a “well-behaved compromise” among the individual
opinions of the group members. That is, we assume that each member is willing
to give up some of their judgments as long as the resulting aggregate judgment
set does not stray too far from their individual ones. Distance-based aggregation
rules are supposed to satisfy a number of structural constraints (see Section 3 for
details) to make sure their output is indeed “well-behaved” in the mathematical
sense. It seems – at least at the first glance – that the constraints should lead to
computationally well-behaved procedures. In this paper, we show that it is not
necessarily true.

Why is computational complexity important for aggregating judgments? Es-
sentially, judgment aggregation provides an intuitive representation for decision
problems in collective reasoning. In this context, its computational complexity is
crucial. More specifically, judgment aggregation rules are procedures that deter-
mine the collective view based on individual inputs. The procedure is only useful
if it returns the result in reasonable time. This is perhaps not that crucial in
case of a jury consisting of 10 members and deliberating over 5 connected issues.
Consider, however, a team of 100 robots reaching a collective decision based
on the input from 400 sensors with different (but overlapping) range, or 500
stakeholders trying to agree on a company agenda. Scalability of the procedure
becomes clearly of utmost importance.

The paper is structured as follows. In Section 3 we give the necessary defini-
tions for a judgment aggregation problem and distance-based aggregation rules.
In Section 4 we consider the problem of verifying whether a particular set of
judgments can be selected as collective, for a collection of individual judgments,
by a distance-based judgment aggregation rule. We also extend our results to
aggregation of opinions expressed in multi-valued logics. In Section 5 we present
our conclusions.

2 Related Work

Our paper fits in the area of computational social choice [6] which comprises
interdisciplinary study of how computational analysis can be used to make social
choice methods operational. Many contributions, e.g. [1, 7, 8, 23], have been
made towards understanding the complexity-theoretic properties of voting rules.
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In comparison, complexity-theoretic properties of judgment aggregation are not
so well explored.

Complexity analysis of distance-based judgment aggregation has, to the best
of our knowledge, been focused on analysis of particular aggregation rules. The
following papers have addressed the complexity of judgment aggregation pro-
cedures: [2–4, 20–22]. Out of these works, [2–4] focus on the complexity and
parameterized complexity of decision problems related to control and bribery in
quota judgment aggregation rules which generalize issue-by-issue majority judg-
ment aggregation [12].. [20] studies the complexity of deciding whether the so
called premise-based judgment aggregation rule (a special type of quota rule [14])
can be applied to a given judgment aggregation problem. [21] investigates the
complexity of deciding if a given judgment is selected by two alternative rules:
the quota rule and the most “typical” distance-based aggregation rule that uses
the sum of Hamming distances to compute the “score” for each judgment set.
The work [22] gathers and deepens the results of [21] and [20].

Summarizing, complexity-theoretic properties of judgment aggregation are
only partially explored. This applies especially to distance-based judgment ag-
gregation, where the only existing studies refer to particular “natural” judgment
aggregators, mainly based on the sum of Hamming distances. In contrast, we take
the opposite approach and explore the bounds of the framework. That is, we in-
vestigate what kind of complexity can be expected from arbitrary distance-based
aggregation rules.

Besides papers that explicitly refer to the complexity of judgment aggregation
procedures, we must also mention works on complexity of distance-based belief
merging [28] and especially distance-based preference aggregation [1, 18, 19].

Relation to Research on Preference Aggregation. The research on com-
plexity in preference aggregation connects to the research on complexity of
distance-based judgment aggregation through the result of [19] where it was
shown that the Kemeny rule of voting coincides, for strict preference orders, with
judgment aggregation based on the sum of Hamming distances. The complex-
ity of the winner determination problem for the Kemeny preference aggregation
rule, has been studied in [1] and [27], the latter proving it to be ΘP

2 complete.
It has been demonstrated that judgment aggregation is related to preference

aggregation by showing when a preference aggregation problem can be translated
to a judgment aggregation problem and vice versa [11, 26, 32]. Studies that for-
mally establish the relationship between judgment aggregation rules and voting
rules (or preference aggregation rules) on the general level are only now starting
to be pursued [30], despite a number of discussions on the topic [13, 29, 35].
The general relationship between the complexity properties of preference aggre-
gation rules and the complexity properties of the judgment aggregation rules
that generalize them, is the next research step. We present some preliminary
intuitions.

A judgment set can be used to characterize a strict preference order [11] by
using a formula ϕa

b to represent that alternative a is preferred to alternative b.
In complexity of preference aggregation, one is typically interested in the winner
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determination problem, that is, the problem of deciding whether an alternative is
top ranked in at least one of preference orders produced by the preference aggre-
gation rule. Considering only aggregation of strict preferences and following the
analogy that a preference order is a judgment set, an alternative in preference
aggregation corresponds to a judgment, and the winner determination problem
can be interpreted as that of determining whether a particular judgment ϕa

b is a
part of the collective judgment set produced by the judgment aggregation rule.
The difficulty lies in the fact that a judgment aggregation rule can produce mul-
tiple collective judgment sets, some containing ϕa

b and some not. Therefore two
different meaningful questions can be studied: (1) whether a judgment set as a
whole can be selected as the collective opinion, corresponding to our definition of
the winner set verification problem in Section 4, or (2) whether a given judgment
is an element of all collective opinions, as in [22]. For preference aggregation, (1)
corresponds to checking if a preference order is selected by the preference aggre-
gation rule, while (2) is about determining whether a given alternative is highest
ranked in all selected preference orders. Both decision problems are at least as
hard as the problem of deciding whether an alternative is a winner of the elec-
tion. Therefore we can expect decision problems in judgment aggregation to be
no easier than their counterparts in preference aggregation.

Relations with Belief Merging. Judgment aggregation has been related with
belief merging [38]. Both theories are concerned with aggregating sets of formu-
las, however the demands on the aggregation results are different. In judgment
aggregation, the agenda limits the scope of issues whose consistent aggregated
truth-value is of interest. In belief merging, the agenda does not exist. The in-
terest focus in merging is on determining, not sets of formulas like in judgment
aggregation, but the (closed under deduction) set of formulas that are logically
entailed by the sets of formulas being merged. The computational complexity
analysis in belief merging is concerned with the decision problem of whether one
particular formula (judgment) is entailed by a given collection of belief sets [28].

3 Preliminaries

We first give a brief exposition of judgment aggregation and distance-based judg-
ment aggregation.

3.1 Judgment Aggregation

Let L be a propositional language over a countable set of atomic propositions
P rop, and let T be a set of truth values such that 1 ∈ T (i.e., it includes the value
for “absolutely true”). Any v : P rop → T is called a propositional valuation;
we denote the set of valuations as P V . Each v ∈ P V extends to a valuation
valv : L → T for all formulae of L. In most of the paper we will assume that L
is the language of classical propositional logic, T = {0, 1}, and valv is defined
by the classical Boolean semantics of negation, conjunction, etc.
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Judgment aggregation can be defined as follows.1 Let N be a finite set of
agents, A ⊆ L a finite agenda of issues, and C ⊆ L a finite set of admissibility
constraints. A judgment set is a consistent and admissible combination of opin-
ions on issues from A, that is, some js : A → T for which there exists a valuation
v ∈ P V such that: (i) valv(ϕ) = js(ϕ) for every ϕ ∈ A, and (ii) valv(ψ) = 1 for
every ψ ∈ C. The set of all judgment sets is denoted by JS. Now, a judgment
profile is a collection of judgment sets, one per agent, i.e., jp : N → JS. With a
slight abuse of notation, we will denote the set of all such profiles by JS|N |. Note
that we can conveniently represent judgment profiles as |Agt| × |A| matrices of
elements from T . Finally, a judgment aggregation rule ∇ : JS|N | → P(JS) \ {∅}
aggregates opinions from all the agents into a collective judgment set (or sets).
We allow for more than one “winning” set to account for nondeterministic or
inconclusive aggregation rules.

p1 p2 p3
robot 1 1 1 0
robot 2 0 0 0
robot 3 0 1 1

majority 0 1 0

Fig. 1. Guarding robots.
N = {1, 2, 3}, A = {p1, p2, p3},
C = {¬p1 ∧ p2 → p3}.

Example 1. Consider 3 robots guarding a
building, that have just observed a person.
Each robot must assess whether the person is
authorized to be there (proposition p1), if it
has malicious intent (p2), and whether to clas-
sify the event as dangerous intrusion (p3). Ad-
ditionally, it is assumed that a non-authorized
person with malicious intent implies intru-
sion: ¬p1 ∧ p2 → p3 (note that the converse
does not have to hold). A possible judgment
profile is shown in Figure 1. The figure also shows that the most “obvious” ag-
gregation rule (majority) results in an inadmissible judgment set.

In case of binary (yes/no) judgments, this is equivalent to representing opinions
as consistent and complete sets of propositional formulas. For example, the view of
robot 1 in the Example 1 can be represented by the set {p1, p2, p3}, the judgment
set of robot 2 is {¬p1,¬p2,¬p3}, and for robot 3 it becomes {¬p1, p2, p3}. Issue-
by-issue majority rule aggregates the sets into {¬p1, p2,¬p3}which is inconsistent
with the constraint ¬p1∧p2 → p3. Three-valued judgments can be modeled anal-
ogously by assuming that the third value is in place for pi when neither pi nor ¬pi
occurs in the set (obviously, a set of judgments is then only required to be con-
sistent but not necessarily complete). Representing judgments with more than 3
truth values by sets of formulas is not straightforward anymore.

There are two natural computational problems related to judgment aggrega-
tion: computing a “winning” judgment set and verifying that a judgment set is
one of the winner sets. We look closer at the latter problem in Section 4.

3.2 Distance-Based Aggregation Rules

A distance-based aggregation rule [34, 38] looks for a collective opinion that
does not stray too much from the individual judgments: Formally, such a rule

1 Our definition of judgment aggregation combines features of logic-based aggrega-
tion [33] and algebraic aggregation [42]. It is easy to see that both formulations can
be expressed in our notation.
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is defined as ∇d,aggr(jp) = argminjs∈JS

{
aggr

(
d(js, jp[1]), . . . , d(js, jp[|N |])

)}
,

where d is a distance function [10, p.3-4 and 45], and aggr an aggregation func-
tion [25, p.3], cf. the definitions below.

Definition 1. An algebraic aggregation is a function aggr : (R+)n → R+

such that: (minimality) aggr(0n) = 0, and (non-decreasing) if x ≤ y, then
aggr(x1, . . . , x, . . . , xn) ≤ aggr(x1, . . . , y, . . . , xn).

Definition 2. A distance over set X is a function d : X × X → R+ ∪ {0} such
that: (minimality) d(x, y) = 0 iff x = y, (symmetry) d(x, y) = d(y, x), and
(triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).

Well known aggregators are: min, max, sum, and product. Well known dis-
tances are the Hamming distance dH(x, y) =

∑m
i=1 δH(x[i], y[i]), and the drastic

distance dD(x, y) = maxmi=1 δH(x[i], y[i]), while δH(x, y) = 0 if x = y and 1
otherwise.

In belief-merging, it is not required that d satisfies triangle inequality, d is
a pseudo-distance, but the only two concrete distances used in belief merging,
the Hamming and drastic distance, satisfy it. How necessary this property is in
judgment aggregation, is not well studied, but since we do not know of d’s that
are not distances, we decided to use distances within the scope of this paper.

Example 2. Consider the robots from Example 1, and let us use dH as the
distance and

∑
as the aggregator. Then, the winner sets are {000, 011, 110},

all with score (i.e., aggregate distance) 3. In other words, the agents cannot do
better than to accept one of their individual opinions.

4 Verification of Collective Opinions in Distance-Based
Judgment Aggregation

In computational social choice various complexity-theoretic aspects of voting
theory are studied, such as how difficult it is to find a winner of elections or how
difficult it is to manipulate an election. There are two natural computational
problems related to judgment aggregation: the function problem of computing
a “winning” judgment set, and the decision problem of verifying that a given
judgment set is one of the winner sets. We look closer at the latter.

4.1 Winner Set Verification

In judgment aggregation the “winner” of an aggregation is the resulting collective
opinion, i.e., a set of judgments. Consequently one can consider complexity issues
from the stance of a judgment on a particular issue, but also from the stance of an
entire set of judgments. If one is concerned with particular judgments, then the
interesting complexity-theoretic one-judgment question to study is: how complex
is it to determine if a judgment value t ∈ T was assigned to issue a ∈ A. This
stance is taken in the complexity analysis of [21]. A similar stance, of whether
a given belief is included in the merging result of belief bases, is taken when
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studying the complexity-theoretic properties of belief merging [28]. We adopt
a different approach, and look at the verification problem for a given complex
opinion, i.e., a judgment set.

We begin by defining formally the problem of winner set verification. Then,
we investigate the “absolute” complexity that one may face in distance-based
aggregation. It turns out that the problem is undecidable in general. On the other
hand, the problem becomes more feasible under some reasonable restrictions
on the distance and algebraic aggregation functions. Finally, we determine the
complexity of winner set verification for some natural aggregators.

The winner set verification problem for agenda A, set of constraints C, logic
L and a rule ∇d,aggr, is defined as follows.

Definition 3. winver∇ is the decision problem defined as follows:
Input: Agents N , agenda A, constraints C, judgment profile jp ∈ JS|N |(A, C),
and judgment set js ∈ JS(A, C).
Output: true if js ∈ ∇(jp), else false.

What is the complexity of winver? One could expect that, under the assump-
tions in Definitions 1 and 2, distance-based aggregation should behave reasonably
in computational terms. Unfortunately, it is not the case.

4.2 Negative Results

Theorem 1. There is a distance which is not Turing computable.

Proof. We construct the Turing distance dTR as follows. First, we assume a
standard encoding of Turing machines in binary strings; we use T M(X) to refer
to the machine represented by the string of bits X ∈ {0, 1}m. We also assume by
convention that strings starting with 0 or ending with 1 represent only machines
that always halt (e.g., they can represent various TM’s with only accepting
states).

Let halts(X) = 0 if the T M(X) halts, and 1 otherwise. Now, for any
js, js′ ∈ {0, 1}m, we take

dTR(js, js′) = dD(js, js′) + halts(h(js, js′)),

where dD is the drastic distance (i.e., dD(js, js′) = 0 if js = js′ and 1 other-
wise), and h(js, js′) =

(
δH(js[1], js′[1]), . . . , δH(js[m], js′[m])

)
is the Hamming

sequence for (js, js′). In other words, we XOR the binary strings corresponding
to js and js′, interpret the resulting string as a TM, and set the distance to 0 or
1 depending on whether the TM halts or not. On top of that, we add 1 whenever
js, js′ are not exactly the same.

We check that dTR is a distance:
1. dTR(js, js) = dD(js, js) + halts(0m) = 0;
2. dTR(js, js′) = 0 ⇒ dD(js, js′) = 0 ⇒ js = js′;
3. dTR(js, js′) = dTR(js′, js): straightforward;
4. Triangle inequality: the nontrivial case is js �= js′ �= js′′, then
dTR(js, js′) + dTR(js′, js′′) ≥ 2 ≥ dTR(js, js′′).
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For incomputability, we observe that T M(X) halts iff dTR(X, 0|X|) ≤ 1. Con-
sider the following cases: (1) X = 0n: T M(0n) halts and dTR(0

n, 0n) = 0; (2)
X �= 0n and T M(X) halts: then, dTR(X, 0|X|) = 1 + halts(X) = 1; (3) X �= 0n

and T M(X) does not halt: then, dTR(X, 0|X|) = 1 + halts(X) = 2. ��

Theorem 2. There is a distance and an aggregation function for which winver
is undecidable.

Proof. We construct a Turing reduction from the halting problem. Given is a
representation X ∈ {0, 1}m of a Turing machine (same assumptions as in Theo-
rem 1, i.e., every X starting with 0 or ending with 1 represents a TM that halts).
We take dTR as the distance, and aggr =

∑
. Let the agenda A = {p1, . . . , pm}

consist of n unrelated atomic propositions, the set of constraints C = ∅, and the
judgment profile jp = {0m, X}. Now, for X = 1 . . . 0 (the other cases of X triv-
ially halt), we have that T M(X) halts iff js = 0m, X are the only winner sets. To
prove this, we first observe that: (i) there is no Y ∈ {0, 1}m with the aggregate
distance less than 1 (since the aggregate distance for Y is a sum of nonnegative
elements that includes dD(Y, X) + dD(Y, 0m) and X �= 0m by assumption); (ii)
for all candidate judgment sets Y /∈ {0m, X} the aggregate distance is at least 2
(by the analogous argument); (iii) for Y = 1m the aggregate distance is always
exactly 2, the score being dD(1m, 0m) + halts(1m) + dD(1m, X) + halts(X) =
1+0+1+0. T M(1m) halts because 1m ends with 1, and T M(X) halts because
X begins with 0. Now we prove the equivalence:

⇒: Assume that T M(X) halts. Then, the aggregate distance for X is 1, and
the same for 0m (because dTR(X, 0m) = 1 and dTR(X, X) = dTR(0

m, 0m) = 0).
Thus, by (i), 0m, X must be winners, and by (ii) no other judgment set can be
a winner.

⇐: Assume that T M(X) does not halt. Then, the aggregate distance for X
is 2, and likewise for 0m (because dTR(X, 0m) = 2). By (ii), 0m, X must be
winners, but they are not the only winners – by (iii), 1m must be a winner too.

We have proved that T M(X) halts iff js = 0m, X are the only winner sets.
Suppose now that deciding winver terminates in finite time. Then, the halting
of T M(X) could be verified by 2m winver checks, i.e., also in finite time –
which is a contradiction. ��

Thus, the standard requirements on distance metrics and aggregation function
are not sufficient to guarantee even decidability of the winner set verification
problem. Of course, the judgment aggregation rule used in the proof of Theorem 2
is artificial and unlikely to be ever used in any practical context. Still, it shows
that the framework allows – at least theoretically – for such ill-behaved rules.
Note that the effect should be the same if the distance is based on solving any
other undecidable problem. For example, it can be based on a solution to a
certain game, and if the game assumes imperfect information and perfect recall
of players then solving it is in general undecidable [37, 15]. Or, the distance
can be defined in terms of resources needed by a group of agents to achieve a
given task (for undecidability, cf. e.g. [5]). We believe that these two examples
of hypothetical distance-based rules are not so far-fetched anymore.
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Distance-based aggregation rules that are actually used have much better
computational properties, as we demonstrate in Section 4.3. Yet, Theorem 2
is important because it shows the bounds of the framework: in principle, the
complexity of related decision problems can be very bad. This means that, when
trying a new variant of distance-based aggregation, one should be cautious, and
carefully examine its computational characteristic beforehand.

4.3 Positive Results

We now prove that, under reasonable conditions, winner set verification sits in
the first level of the polynomial hierarchy. We recall that PNP[k] is the class of
problems solvable by a polynomial-time deterministic Turing machine asking at
most k adaptive queries to an NP oracle. Clearly, NP ⊆ PNP[k] ⊆ ΔP

2 = PNP.

Theorem 3. If aggr and d are computable in polynomial time then winver for
∇d,aggr is in PNP[2].

Proof. We prove the inclusion by showing Algorithm 1 for winver, which uses
two oracles, given in Algorithms 2 and 3. Note that the js in the input of
Algorithms 3 is always consistent.

Algorithm 1. Winver()

Input: js,jp,N,A,C,d,aggr
Output: true if js is a winner for jp under aggr, false otherwise

1 if Consistent(js,A,C) and not ExistsBetter(js,jp,N,A,C,d,aggr) then
2 return true else return false

Algorithm 2. Oracle Consistent()

Input: js,A,C
Output: true if js is consistent for A and C, false otherwise

1 guess a valuation v ∈ PV for the atomic propositions in A
2 if valv(ϕ) = js(ϕ) for every ϕ ∈ A and valv(ψ) = 1 for every ψ ∈ C then
3 return true else return false

Algorithm 3. Oracle ExistsBetter()

Input: js,jp,N,A,C,d,aggr
Output: true if there is a judgment set ‘closer’ to jp than js, false otherwise

1 guess js′ ∈ JS
2 guess a valuation v′ ∈ PV for the atomic propositions in A
3 if valv′(ϕ) = js′(ϕ) for every ϕ ∈ A and valv(ψ) = 1 for every ψ ∈ C
4 andaggr

(
d(js′, jp[1]), . . . , d(js′, jp[|N |])

)
< aggr

(
d(js, jp[1]), . . . , d(js, jp[|N |])

)
then

5 return true else return false
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For combinations of most typical distances and aggregators, the following
is a straightforward consequence.The problem of checking if a judgment is in
at least one collective judgment set is already known to be NP-complete for
d = dH , aggr =

∑
[21].

Corollary 1. If aggr ∈ {min,max,
∑

,
∏

} and d ∈ {dH , dD} then winver for
∇d,aggr is in PNP[2].

4.4 Aggregation of Non-binary Judgments

In this section, we briefly report that all the results from Sections 4.2 and 4.3
carry over to the case of judgments interpreted in a given k-valued logic.2 In
particular, we note that the algorithm in Section 4.3 depends neither on the
set of truth values, nor on the way valuations of complex formulas derive from
valuations of atomic propositions. Also, the Turing distance used in Section 4.2
is built on pointwise comparison of judgment sets that always results in a binary
string. Thus, we can state the following.

Theorem 4. For every k ∈ N, there is a distance over {0, . . . , k − 1}m which is
not Turing computable.

Proof. Analogous to the proof of Theorem 1.

Theorem 5. Let k ∈ N, and L a k-valued logic constructed like in Section 3.1.
Then, there is a distance and an aggregation function for judgment sets in L
such that winver is undecidable.

Proof. Analogous to the proof of Theorem 2.

Theorem 6. If aggr is an aggregation function over over {0, . . . , k − 1}n, d is
a distance metric over {0, . . . , k − 1}m, and both aggr and d are computable in
polynomial time, then winver for ∇d,aggr is in PNP[2].

Proof. The claim is demonstrated by the same algorithm as in the proof of
Theorem 3.

5 Conclusions

Complexity-theoretic properties of voting procedures are a frequent topic of
study in computational social choice. In contrast, the complexity of judgment
aggregation has drawn attention only recently. In this paper, we explore the com-
plexity bounds of an important family of judgment aggregation rules, namely
those based on minimization of aggregate distance. More precisely, we study
the decision problem of verifying if a given judgment set can be selected as the

2 We do not discuss motivation for using such judgments, and instead refer the inter-
ested reader e.g. to [36, 16, 31, 40, 17].
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collective opinion. It turns out that feasibility of distance-based aggregation in
general cannot be guaranteed, and should not be taken for granted. However,
by assuming some requirements on the possible outcomes of the distance and
aggregation functions, we can tame the complexity reasonably. We also show
that the pattern of complexity does not change when the framework is extended
to multi-valued judgments.

To our best knowledge, this paper is the first to analyze the complexity of
verifying distance-based aggregate judgments on an abstract level. There are
not many concrete judgment aggregation rules proposed in the literature; this
aspect of the judgment aggregation theory has only now begun to be developed.
Our results suggest that, when devising a new judgment aggregation rule, we
should expect complexity traps, and carefully look for rules that are relatively
efficient.
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obtained by varying the criteria according to which counterexamples to
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1 Introduction

Classical logic focuses on the relatively cautious consequence relation |=, which
is used to represent inferences from premisses ϕ to consequences ψ that preserve
truth: ϕ |= ψ if and only if every model of ϕ is a model of ψ. Mathematical
reasoning mainly employs classical consequence.

In contrast, nonmonotonic logic belongs to a tradition in logic that considers
|= merely a useful cognitive reference point among several consequence relations
that may be of interest. As Johan van Benthem [12] puts it:

“The idea that logic is about just one notion of ‘logical consequence’ is
actually one very particular historical stance. It was absent in the work
of the great pioneer Bernard Bolzano, who thought that logic should
chart the many different consequence relations that we have, depending
on the reasoning task at hand.”

When defining alternative consequence relations, one may choose to go sub-
classical or to go supraclassical or both. To go subclassical is to disallow some
inferences from premiss to consequence that would be legitimate according to
|=. One may wish, for example, to introduce a constraint of pertinence between
premiss and conclusion as in [2], which results in a stricter criterion than |=. The
result is that some of the classically permitted inferences become illegitimate.

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 326–337, 2013.
c© Springer International Publishing Switzerland 2013



Supraclassical Consequence Relations 327

Nonmonotonic logic chooses instead to go supraclassical, adopting a criterion
less strict than |= so as to accommodate various forms of common-sense reasoning
in which agents compensate for limited information by using heuristic rules of
thumb. Arguably, the most important thing about nonmonotonic logic is not its
nonmonotonicity but its supraclassicality. Supraclassical consequence relations
are ampliative extensions of |=, i.e. if |∼ is supraclassical, then ϕ |= ψ is a
sufficient condition for ϕ |∼ ψ. Thus supraclassical consequence relations build on
the pairs in |= by adding new inference-pairs legitimised by the agent’s heuristic
information. It is these additional inference-pairs that may need to be retracted
in the light of new evidence, giving rise to nonmonotonicity.

The endeavour to develop useful supraclassical logics was set forth in the
landmark paper [8], in which the extra heuristic information needed for venturing
beyond |= was encoded in a preference order on states. Consequence relations
satisfying different groups of postulates were described. One particular group of
postulates (in some sense the strongest) characterised the rational consequence
relations [9], which have since earned a privileged position in virtue of their close
connection with AGM belief change [13]. However, focusing only on rational
consequence relations would give nonmonotonic logic a rather monolithic face.

When we reflect on everyday human reasoning, it becomes apparent that this
complex scene comprises diversified, even disparate, subfields, potentially exceed-
ing Charles Sanders Peirce’s division of reasoning into deduction, induction, and
abduction [5,6]. Along one dimension the intentions and goals of the reasoning
agents may differ: to induce a plausible prediction; to abduce a plausible cause;
to test the plausibility of some purported entailment; to speculate (but not too
wildly); etc. Along another dimension the heuristic information embodied in a
specific preference order on states may be expressing a comparison relative to
diverse attributes of those states: normality; typicality; likelihood; frequency of
occurrence; resemblance to some real or ideal state; closeness in time according
to the plan for some important event; place in some causal order in accord with
relevant laws of nature; degree of compliance with some norm; etc.

We shall describe a family of supraclassical entailment relations among which
are the rational consequence relations that constitute the industry standard for
nonmonotonic logic. The family also includes hitherto unexamined relations that
deserve scrutiny because of the very natural way in which they arise within
our semantic framework. The product is an articulated range of consequence
relations all sharing the preferential paradigm but varying in aptness for specific
contexts.

The novelty of the contribution resides in the method by which different mem-
bers of the family are generated. Whereas [8] arrives at different consequence re-
lations by varying the type of order relation on states or the association between
states and valuations, we shall take these to be fixed as if for rational conse-
quence relations, and instead use the preference relation on states to control, in
a nuanced way, the addition of new inference-pairs to |=.
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2 Preliminaries

Henceforth LA denotes a propositional language generated from the atomic sen-
tences in A by the usual set of connectives {¬,∧,∨,→,↔}, with % designating
an arbitrary tautology. The language is equipped with a semantics in the manner
familiar from nonmonotonic logic [8,9], so that the semantic structure comprises
a set S of states, the set WA of all valuations w : A −→ {0, 1}, a labelling
function � : S −→ WA, and a suitable order relation � on S. As is customary,
� encodes heuristic information about preference, typicality, or likelihood that
cannot in general be expressed propositionally in LA (but see Section 8).

We shall deviate from [8] and [9] in three ways.
Firstly, we shall assume that A and S are finite. We consider this finiteness

assumption to be justified both by an interest in everyday reasoning (as opposed
to metamathematical applications) and as a technical simplification appropri-
ate for an initial scrutiny of a new landscape. (A consequence of the finiteness
assumption is that smoothness for � is automatic.)

Secondly, we shall assume that � is a total preorder on S (i.e. is reflexive
on S, transitive, and connected in the sense that for all s, t ∈ S at least one
of s � t and t � s is the case). Total preorders provide a unified framework
for both nonmonotonic logic and belief revision, and the strict modular partial
orders used in [9] are just strict versions of total preorders.

Finally, we take states higher up in the order to be more preferred, more typ-
ical, or more likely to occur. For historical reasons the order is often inverted,
as in [8] and [9], but we follow Shoham ([11], p.74) in respecting the common
intuition that ‘up’ is ‘more’ when ‘more’ qualifies positive attributes such as
normality, typicality, or likelihood rather than negative qualities such as abnor-
mality, atypicality, or unlikelihood.

Satisfaction is defined as usual. For every sentence ϕ ∈ LA, Mod(ϕ) denotes
the set of models of ϕ, i.e. the set of all s ∈ S for which �(s) renders ϕ true, and
Max(ϕ) the maximal models of ϕ with respect to �.

For purposes of illustration we shall take A = {p, q} with S = WA =
{11, 10, 01, 00} where 10 denotes the state (i.e. valuation) in which p is true and
q is false, and so forth. As an interpreted language, we may consider the system
of interest to be either the Traffic System in which p abbreviates The light for on-
coming traffic is red and q stands for The oncoming car stops, or the Light-Fan
System in which p abbreviates The light is on and q stands for The fan is on.

3 From Counterexamples to Supraclassicality

Since ϕ |= ψ if and only if Mod(ϕ) ⊆ Mod(ψ), a strictly supraclassical conse-
quence relation must have at least one pair (ϕ, ψ) for which ϕ � ψ and thus
for which there is some model u of ϕ that fails to be a model of ψ. Think of
state u as a counterexample to ϕ |= ψ, and thus in some sense a ‘bad guy’. More
generally, Mod(ϕ ∧ ¬ψ) is the set of bad guys (i.e. counterexamples).
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Not all bad guys are equally bad. The total preorder � on S stratifies the
states into levels stacked from the least normal (most rare, most atypical) to the
most normal (most likely, most typical). In this context some counterexample
states may be relatively exceptional (less normal, less typical, or less likely than
others). The guiding idea behind supraclassicality is to tolerate such not-so-very-
bad guys, just as in life we commonly view those guilty of an uncharacteristic
lapse of judgment less harshly than habitual criminals.

We wish to allow an inference-pair (ϕ, ψ) into the consequence relation as long
as the counterexamples in Mod(ϕ∧¬ψ) are not maximally bad. The new insight
of which we take advantage is that the worst counterexample states, those that
are maximal, may be identified in four different ways. Maximality is relative not
only to the ordering but also to the subset within which an element is considered
to be maximal. Different supraclassical relations may be obtained by varying the
subsets of S against which counterexamples are evaluated. These subsets must
be supersets of Mod(ϕ ∧ ¬ψ).

��

����ψ��

����¬ψ��

����ϕ��

����ϕ∧¬ψ��

Fig. 1. Important subsets of S

On the face of it, there are four obvious supersets of Mod(ϕ ∧ ¬ψ) within
which counterexamples could be maximal:

1. X1 = Mod(ϕ)
2. X2 = Mod(¬ψ)
3. X3 = Mod(ϕ) ∪ Mod(¬ψ)
4. X4 = S.

As a generic symbol for a supraclassical consequence relation we use |∼ deco-
rated by a subscript designating one of the four supersets of Mod(ϕ∧¬ψ). Thus
we explore four supraclassical consequence relations, |∼1, |∼2, |∼3 and |∼4, which
are all defined similarly:

ϕ |∼i ψ if and only if Mod(ϕ ∧ ¬ψ) ∩ Max(Xi) = ∅.

Relative to a fixed semantics, we may speak of ‘the’ relation |∼i rather than ‘a’
relation |∼i.
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4 Rational Consequence

Consider |∼1. In this case the set of counterexamples Mod(ϕ∧¬ψ) is viewed as a
subset of X1 = Mod(ϕ), and thus ϕ |∼1 ψ if and only if Mod(ϕ∧¬ψ)∩Max(ϕ) =
∅.

It follows that ϕ |∼1 ψ if and only if every maximal model of ϕ is a model of ψ.
In other words, |∼1 is the familiar rational consequence relation of nonmonotonic
logic, defined as in [9].

A great deal is known about the properties of rational consequence relations
and how they differ from those of |=. For purposes of comparison, we give a swift
and selective recapitulation, beginning with some familiar properties of |= that
fail to hold for |∼1.

The relation |∼1 is famously nonmonotonic, i.e. there exist instances of |∼1

such that for some sentences ϕ, ψ, α ∈ LA we have ϕ |∼1 ψ but not α ∧ ϕ |∼1 ψ.
As hinted earlier, we should not ascribe overwhelming importance to nonmono-
tonicity. For some forms of reasoning, nonmonotonicity may be appropriate; for
others, it may not. We shall see that the supraclassical consequence relation |∼2

is in fact monotonic, and that this appears appropriate given that its utility is
in a sense complementary to that of |∼1.

Contraposition fails for |∼1, since it is possible to have ϕ |∼1 ψ while failing
to have ¬ψ |∼1 ¬ϕ . This has significance for |∼2, as we shall see.

Also, |∼1 fails the Ramsey test relative to the conditional → since it is not in
general the case that ϕ |∼1 ψ if and only if % |∼1 (ϕ → ψ). This failure gains an
interesting twist when we discuss |∼4 later.

Various other properties of |= fail for |∼1, but will not be addressed here.
Turning to properties that do hold in general for |∼1, we may note the obser-

vance of a weaker form of monotonicity, rational monotonicity, which accounts
for the rational in the name given to this type of consequence relation:

if ϕ |∼1 ψ and it is not the case that ϕ |∼1 ¬α, then α ∧ ϕ |∼1 ψ.

Although unqualified monotonicity fails for |∼1, the property called right weak-
ening, which is a sort of dual of monotonicity obtained by replacing ∧ by ∨ and
left with right, does hold for |∼1:

if ϕ |∼1 ψ then ϕ |∼1 ψ ∨ α.

We shall see the relevance of the duality between monotonicity and right weak-
ening when we examine |∼2.

We may also make an algebraic observation. The reader will recall that in
classical propositional logic, the equivalence classes of sentences form a Boolean
algebra (hereafter referred to as the Lindenbaum-Tarski algebra) having |= as
the order relation, conjunction as meet, disjunction as join, the class % of tau-
tologies as maximum, and the class ⊥ of contradictions as minimum. The set of
consequences of a premiss ϕ under |= is a filter of the algebra, and in the other
direction the set of premisses entailing a fixed consequence under |= forms an
ideal. This classical picture is neatly bisected by |∼1 and |∼2.
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In respect of |∼1, we note that for a fixed premiss ϕ the set {ψ | ϕ |∼1 ψ} is a
filter in the Lindenbaum-Tarski algebra of propositions, just as in the classical
case. In contrast, for a fixed conclusion ψ the set {ϕ | ϕ |∼1 ψ} is not necessarily
an ideal, because of nonmonotonicity.

Concluding our brief overview, the significance of the rational consequence re-
lation |∼1 is that arguably it formalises inductive reasoning of the kind we might
call singular predictive inference in order to distinguish it from other meanings
of “induction”, such as learning a default rule from a finite set of instances (gen-
eralisation). An example will serve to illustrate, but a deeper analysis may be
found in [3] and [4], as well as in Section 7.

Example 1. Consider the language L{p,q} with a semantics consisting of S =
{11, 10, 01, 00} and the total preorder � that stratifies S into two levels, with
10 and 01 on the bottom and 11 and 00 at the top. Think of this as a knowl-
edge representation language for the Traffic System. The preorder � depicts the
heuristic that it is normal for the oncoming traffic to stop if their traffic light
is red (the state 11) and it is normal for the oncoming traffic to continue driv-
ing without stopping if their traffic light is not red (the state 00). Suppose we
are waiting at the intersection and observe that p is the case, i.e. that the light
for oncoming cross traffic is red. We need to decide whether q is the case, i.e.
whether the oncoming car will stop. Although p � q, the reason we get to work
every morning is that we are able to predict that the oncoming car will stop
and so proceed fearlessly to cross the intersection ourselves. Our prediction is
sanctioned by |∼1, since p |∼1 q. The prediction may of course turn out to be
wrong, because |∼1 relies on uncertain heuristic information. In the case of a
disastrous falsification of q, the disaster embodies a tragic, though presumably
rare, counterexample to p |= q. Had the prediction instead been sanctioned by
|=, we could have proceeded across the intersection secure in the knowledge that
no drunk driver would run the red light. Sadly, everyday decision-making seldom
enjoys the luxury of sufficient information to dispense with |∼1 and rely on |=.

5 Dual Preferential Consequence

Rational consequence in [9] (Section 3) corresponds to modularity of the pref-
erential order, which is there taken to be a strict partial order on S, and in
our exposition to totality of the preferential preorder. In [9] “preferential con-
sequence” (and related terminology) does not connote modularity of the corre-
sponding order. In this article, however, we use “preferential” throughout while
always staying with the stipulation in Section 2 that � is a total preorder on S.

Consider |∼2. In this case the set of counterexamples Mod(ϕ ∧ ¬ψ) is viewed
as a subset of X2 = Mod(¬ψ), and thus ϕ |∼2 ψ if and only if Mod(ϕ ∧ ¬ψ) ∩
Max(¬ψ) = ∅.

By the definition, although it is possible that some model of ϕ may fail to
satisfy ψ, that model is not to be a typical (i.e. maximal) model of ¬ψ but
instead is required to be somewhat atypical among the states that falsify ψ.



332 W. Labuschagne, J. Heidema, and K. Britz

It is not hard to see that ϕ |∼2 ψ if and only if Mod(ϕ) ⊆ S \ Max(¬ψ) .
Hence |∼2 is precisely the dual preferential consequence relation studied in [1].

The relation |∼2 is related to the rational consequence relation |∼1 in a manner
that contraposition would have rendered trivial had this property held for |∼1:

ϕ |∼2 ψ if and only if ¬ψ |∼1 ¬ϕ.

This intimate connection between |∼1 and |∼2 invites a quick comparison of
features.

We first note that whereas |∼1 is nonmonotonic, monotonicity holds for |∼2:

if ϕ |∼2 ψ then α ∧ ϕ |∼2 ψ.

As previously observed, monotonicity is in some sense a dual of right weak-
ening, and there is a general pattern of properties holding for |∼2 if they are the
duals of properties holding for |∼1, as explained in [1]. For example, although
right weakening fails to hold for |∼2, the weaker form of right weakening that is
the dual of rational monotonicity does hold:

if ϕ |∼2 ψ and it is not the case that ¬α |∼2 ψ then ϕ |∼2 ψ ∨ α.

Algebraically, for a fixed conclusion ψ the set {ϕ | ϕ |∼2 ψ} is an ideal of the
Lindenbaum-Tarski algebra, just as in the classical case, but for a fixed premiss
ϕ the set of consequences {ψ | ϕ |∼2 ψ} may fail to be a filter.

Finally, the significance of |∼2 is that it arguably formalises a kind of abductive
reasoning, i.e. ϕ |∼2 ψ can be interpreted as “ϕ partially explains ψ”. An example
will serve to illustrate, until Section 7.

Example 2. Consider again the language L{p,q} with a semantics consisting of
S = {11, 10, 01, 00} and the total preorder � that stratifies S into two levels,
with 10 and 01 on the bottom and 11 and 00 at the top. Think of this as a
knowledge representation language for the Light-Fan System, where p stands for
“The light is on” and q for “The fan is on”. Now suppose we observe that ¬p∧ q
is the case. The semantic constraint |∼2 admits several different explanations
amongst which is the sentence (p ∨ q) ∧ ¬(p ∧ q), which we may abbreviate by
p + q. To see that p + q |∼2 ¬p ∧ q, note that although 10 ∈ Mod(p + q) and 10
is a counterexample to p + q |= ¬p ∧ q, 10 is not maximal in Mod(¬(¬p ∧ q)).
Intuitively, the observation that the light is off while the fan is on has been
explained by the conjecture that only one component can be on at a time.

6 Correlative Preferential Consequence

Consider |∼3. In this case the set of counterexamples Mod(ϕ ∧ ¬ψ) is viewed
as a subset of X3 = Mod(ϕ) ∪ Mod(¬ψ), and thus ϕ |∼3 ψ if and only if
Mod(ϕ ∧ ¬ψ) ∩ Max(Mod(ϕ) ∪ Mod(¬ψ)) = ∅.

Recalling that Mod(ϕ) ∪ Mod(¬ψ) = Mod(ψ → ϕ), we get that

ϕ |∼3 ψ if and only if Mod(ϕ ∧ ¬ψ) ⊆ S \ Max(ψ → ϕ).
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Fig. 2. The shaded region depicts X3 = Mod(ϕ) ∪Mod(¬ψ)

As far as the authors are aware, the relation |∼3 has not previously been
studied, and its intuitive meaning, properties, and potential uses remain to be
fully elucidated. Nevertheless, we are able to report some preliminary insights.

One striking aspect is that the counterexample states in Mod(ϕ ∧ ¬ψ) are
interdicted from the set of maximal models of ψ → ϕ, giving the following
surprising connection between |∼3 and the rational consequence relation |∼1:

ϕ |∼3 ψ if and only if Mod(¬(ϕ → ψ)) ⊆ S \ Max(ψ → ϕ)

if and only if Max(ψ → ϕ) ⊆ S \ Mod(¬(ϕ → ψ))

if and only if Max(ψ → ϕ) ⊆ Mod(ϕ → ψ)

if and only if (ψ → ϕ) |∼1 (ϕ → ψ)

if and only if (ψ → ϕ) |∼1 (ϕ ↔ ψ).

If ϕ |∼3 ψ says that the truth of the conditional ψ → ϕ renders plausible
the converse conditional ϕ → ψ, one is reminded of psychological experiments
showing that under some circumstances humans have a tendency to infer the
converse from a conditional premiss in exactly this way [7, pages 51–54]. Perhaps
|∼3 represents thought patterns deriving from mental models in the sense of
Johnson-Laird — a topic for future research.

Further reflection reveals that, since � is a total preorder on S, the set
Max(ψ → ϕ) from which counterexamples are interdicted must be one of the
following three sets: Max(ϕ), Max(¬ψ), or Max(ϕ)∪Max(¬ψ). This allows us
to prove that |∼3 is related to both |∼1 and |∼2 in an elegantly balanced way:

– If Max(ψ → ϕ) = Max(ϕ) then Mod(ϕ ∧ ¬ψ) has no member in Max(ϕ)
and so ϕ |∼1 ψ

– If Max(ψ → ϕ) = Max(¬ψ) then Mod(ϕ∧¬ψ) has no member in Max(¬ψ)
and so ϕ |∼2 ψ

– If Max(ψ → ϕ) = Max(ϕ) ∪ Max(¬ψ) then both ϕ |∼1 ψ and ϕ |∼2 ψ .

Summarising, if ϕ |∼3 ψ then ϕ |∼1 ψ or ϕ |∼2 ψ or both.
Conversely, if both ϕ |∼1 ψ and ϕ |∼2 ψ, then ϕ |∼3 ψ .
Overall: (|∼1 ∩ |∼2) ⊆ |∼3 ⊆ (|∼1 ∪ |∼2).
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7 More on Rational, Dual, and Correlative Preferential
Consequence

In our introduction we referred to Peirce’s articulation of reasoning into deduc-
tion, induction, and abduction (concisely delineated in [10]). Classical |= is the
canonical way to secure “deduction”. In Example 1 we illustrated how ϕ |∼1 ψ
may be one way to assign a formal meaning to the following notion: “from ev-
idence ϕ we induce — defeasibly but plausibly — the prediction that also ψ”.
And in Example 2 we propounded ϕ |∼2 ψ for “from evidence ψ we abduce the
hypothesis ϕ as a plausible partial explanation of ψ”. In |∼3 we have a type of
balanced, correlated combination of |∼1 and |∼2, roaming the interval between
|∼1 ∩ |∼2 and |∼1 ∪ |∼2. But a sharper focus on ϕ as the given evidence versus
ψ as the given evidence may enhance intuitive appreciation of the dual roles of
|∼1 and |∼2.

When glossing ϕ |∼1 ψ as “the information (evidence, observation) expressed
by ϕ is given and affords, quite plausibly, that we have ψ too”, ϕ is given, fixed,
presumably reliable, and the actual state (if pertinent) is one in Mod(ϕ). In
contrast, ψ is now much more fluttery. Many different predictions may be un-
derwritten by ϕ. When accepting defeasibility of prediction ψ by tolerating some
of the counterexamples in Mod(ϕ ∧ ¬ψ), the only dependable information we
have against which to evaluate them sits embedded in Mod(ϕ), which contains
all of these counterexamples. So it is reasonable to tolerate only those coun-
terexamples not maximally likely in Mod(ϕ), i.e. those in Mod(ϕ) \ Max(ϕ).
The actual state (if pertinent) then would likely sit in Max(ϕ) and not be a
counterexample — a comforting thought.

When glossing ϕ |∼2 ψ as “the information (evidence, observation) expressed
by ψ is given and is afforded, quite plausibly, by the explanatory hypothesis ϕ”,
ψ is given, fixed, presumably reliable, and the actual state (if pertinent) is one
in Mod(ψ). Many hypotheses may constitute plausible if partial explanations of
ψ, among them ϕ. (The monotonicity of |∼2 in this explanatory context seems
agreeable: if ϕ plausibly and partially explains ψ, then so does ϕ ∧ α. A next
stage in one’s abductive endeavour may then be the somewhat controversial
search for the best explanation of ψ.) All counterexamples to ϕ |= ψ falsify ψ,
sit in Mod(¬ψ), but among them we tolerate only those states that do not add
insult to injury by being very likely to occur. So to be tolerable a counterexample
must not be “maximally bad”, i.e. must not belong to Max(¬ψ).

In a correlative preferential entailment ϕ |∼3 ψ, we may be in a context where
the agent’s aim is neither to predict ψ from ϕ, nor to explain ψ by ϕ. No extra
evidence supports either ϕ or ψ in an unbalanced way. When tolerating some
counterexamples, the information in � now plays a balanced role with regard
to proscribing states that support ϕ but violate ψ and is used to interdict those
that are seriously embarrassing the entailment of ψ by ϕ by their maximally
prominent presence in the crowd of kindred states which support ϕ or violate ψ.

The information embodied in (S,�, �) determines in a unique way all three
consequence relations |∼1, |∼2, and |∼3 on the sentences of LA. We now assume
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that � : S −→ WA is injective and then show that � can be recovered from each
of |∼1 and |∼2.

A literal or diagrammatic sentence is any atomic sentence in A or the negation
of such an atom. The state description or diagram of state s ∈ S is the sentence
δ(s) that is the conjunction of all the literals made true by �(s). For instance,
if �(s) = 10, then δ(s) = p ∧ ¬q. Let s and t be any two (possibly equal)
states. We demonstrate that any information about s and t in � can be retrieved
from the corresponding relation |∼1 on sentences that are state descriptions or
disjunctions of such. Remember that Mod(δ(s)) = {s}. No undue cognitive
torment is incurred when verifying the following:

s ≺ t iff δ(s) ∨ δ(t) |∼1 δ(t) and not δ(s) ∨ δ(t) |∼1 δ(s)

s = t iff δ(s) ∨ δ(t) |∼1 δ(s) and δ(s) ∨ δ(t) |∼1 δ(t)

s � t, t � s, and s �= t iff not δ(s) ∨ δ(t) |∼1 δ(s) and not δ(s) ∨ δ(t) |∼1 δ(t).

So, when � is one-to-one, then |∼1 harbours exactly the same information as �.
Since |∼2 is the dual or contrapositive relation of |∼1 (ϕ |∼2 ψ iff ¬ψ |∼1 ¬ϕ), |∼2

on Boolean combinations of state descriptions also contains the same heuristic
information as �.

8 Contextual Rules

Consider |∼4. In this case the set of counterexamples Mod(ϕ ∧ ¬ψ) is viewed as
a subset of X4 = S, and thus ϕ |∼4 ψ if and only if Mod(ϕ∧¬ψ)∩Max(S) = ∅.

While this entailment relation is quite new, it has a simple intuitive basis.
Recall that in the case of classical entailment we have, if % denotes your favourite
tautology,

ϕ |= ψ if and only if % |= (ϕ → ψ).

Now we observe that although, as previously noted, it is not in general the case
that ϕ |∼1 ψ if and only if % |∼1 (ϕ → ψ), the latter condition is of independent
interest, because:

ϕ |∼4 ψ if and only if Mod(ϕ ∧ ¬ψ) ⊆ S \ Max(S)

if and only if Max(S) ⊆ Mod(ϕ → ψ)

if and only if % |∼1 (ϕ → ψ).

This relationship between |∼4 and |∼1 affords a new and surprising way to
understand the former, namely as deduction from a knowledge base. Suppose an
agent has background information expressed by a sentence κ. This background
information can be encoded into a preference order on states — simply take the
dichotomous total preorder on S that places all models of κ on the upper level
and all nonmodels of κ on the lower level. Since Max(S) = Max(%) = Mod(κ)
it follows that

κ |= ψ if and only if % |∼1 ψ
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where we have used the dichotomous preorder induced by κ for defining the
rational consequence relation |∼1.

Hence in the context of background information κ we see that

ϕ |∼4 ψ if and only if % |∼1 (ϕ → ψ)

if and only if κ |= (ϕ → ψ).

The real surprise lurks in the converse. Suppose we start (not with sentence
κ, but) with some � and consider the corresponding |∼4. The simplification �∗

of � into the dichotomous preference order on S with Max(S) in the top level
and S \ Max(S) in the bottom level yields again the same |∼4. And �∗ (or
�) yields the corresponding explicit object-language background informational
sentence κ =

∨
{δ(s) | s ∈ Max(S)}. Now �∗, |∼4, and κ harbour exactly the

same information. And, against the background of this informational context,
we may construe ϕ |∼4 ψ as the conditional rule ϕ → ψ.

9 Future Research

Impelled by the conviction that it would be a mistake to seek a single ‘correct’
consequence relation for the formalisation of common-sense reasoning and the
belief that appropriate candidates would be supraclassical, we have described a
coherent family of supraclassical consequence relations |∼i within a single unify-
ing framework.

In so doing, we tolerated all but the most habitual criminals in the set Mod(ϕ∧
¬ψ) of counterexamples. Accordingly we may think of the family of |∼i as the
‘liberal’ supraclassical relations, each of which includes inference-pairs (ϕ, ψ)
as long as the counterexample states in Mod(ϕ ∧ ¬ψ) are not maximal in the
relevant superset of Mod(ϕ ∧ ¬ψ).

There is an intriguing extension of this family. Tolerating only those crimi-
nals whose transgressions are very rare would deliver ‘conservative’ supraclassi-
cal relations, from each of which inference-pairs (ϕ, ψ) are excluded unless the
counterexample states, if any, are all minimal in the relevant superset.

Recall the four supersets of Mod(ϕ∧¬ψ) within which counterexamples could
be either ‘not maximal’ or ‘minimal’: X1 = Mod(ϕ), X2 = Mod(¬ψ), X3 =
Mod(ϕ) ∪ Mod(¬ψ), and X4 = S.

As a generic symbol for a conservative supraclassical entailment relation we
may use |≈, with appropriate subscript. The conservative |≈1, |≈2, |≈3 and |≈4

would most naturally be defined by

ϕ |≈i ψ if and only if Mod(ϕ ∧ ¬ψ) ⊆ Min(Xi).

However, there is a subtle problem with this. We would wish to allow the
total preorder � on S to be S ×S = {(s, s′) | s, s′ ∈ S}, the relation of complete
preferential equity between all states, in order to include the case of an agent
with no discriminatory heuristic information at all. Unfortunately, Min(Xi) =
Max(Xi) in this case, which causes the constraint Mod(ϕ ∧ ¬ψ) ⊆ Min(Xi) to
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violate the guiding intuition that counterexample states should certainly not be
maximally typical or maximally likely in Xi.

We therefore introduce the notation Min ���Max (Xi) = Min(Xi) \ Max(Xi)
and define the four conservative entailment relations by

ϕ |≈i ψ if and only if Mod(ϕ ∧ ¬ψ) ⊆ Min ���Max (Xi).

In the limiting case of an agent with no heuristic information (i.e. when � is
S × S), we now have that both the liberal consequence relations |∼i and the
conservative consequence relations |≈i collapse to |=.

Precisely how the conservative consequence relations are related to the liberal
consequence relations is as yet terra very much incognita.
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Abstract. An approach to formulating relative expressiveness of defeasible log-
ics was introduced in [14]. In this paper we address the relative expressiveness
of the well-founded defeasible logics in the framework WFDL and their rela-
tionship to the defeasible logics in the framework DL. We show that, in terms
of defeasible reasoning, the logics in WFDL have greater (or equal) expres-
siveness than those in DL, but it is not clear whether they have strictly greater
expressiveness. We also show that different treatments of ambiguity lead to dif-
ferent expressiveness in WFDL, as it does in DL.

1 Introduction

Defeasible reasoning concerns reasoning where a chain of reasoning can be defeated
(that is, not considered the basis of an inference) by another chain of reasoning (or,
perhaps, several chains of reasoning). Defeasible logics are a class of non-monotonic
logics designed to support defeasible reasoning. These logics have application in pro-
viding a computational representation of legal documents [13,22,1,9] and in legal rea-
soning [20,10]. They also have a role in the rule layer of the semantic web [4], and
agent-based computing [6,11].

The defeasible logics we address are distinguished by their choices on three orthogo-
nal issues. The first issue is the treatment of circular reasoning: when a proposition is not
proved, but depends circularly on itself, should we consider the proposition unproved
or undecided (neither proved nor unproved)? Treating the proposition as unproved im-
plies a more powerful proof system, capable of detecting such cycles; we refer to such
logics as well-founded defeasible logics, because they reflect the well-founded seman-
tics of logic programming [8]. The most widely investigated defeasible logics regard
the proposition as undecided, but a case is made in [18] that – at least in ontologi-
cal reasoning – treating such propositions as unproved is more natural. The framework
DL encompasses several logics that take the former viewpoint, while WFDL contains
logics taking the latter view.

The second issue is one of team defeat: when there are competing claims (on infer-
ring q or ¬q, say), should a single claim for q be required to overcome all competing
claims in order to validate the inference, or is it sufficient that every claim for ¬q is over-
come by some claim for q, so that the claims for q, as a team, overcome all competing
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claims? The third issue addresses ambiguity, the situation where there is no resolution
of the competing claims, so that neither q nor ¬q can be derived. Should ambiguity
block, so that inferences relying on q or ¬q simply fail to apply, or should the fact
that there are claims for q (say) that are not overcome by claims for ¬q be allowed to
influence later inferences, so that ambiguity propagates?

Relative expressiveness provides a way of evaluating features of a logic, to see
whether the features can be imitated in another logic, or provide capabilities that cannot
be imitated. Recently the relative expressiveness of defeasible logics in DL has been
investigated [14,15]. That work showed that, within DL, different treatments of am-
biguity lead to different expressiveness, while the use of teams or not does not affect
expressiveness.

In this paper we study relative expressiveness in the well-founded defeasible log-
ics of WFDL, and their relationship to defeasible logics in DL. We show that the
WFDL logics are not immediately more expressive than the logics in DL: the differ-
ent treatments of the monotonic component of the logics are a barrier. However, when
we consider the defeasible reasoning component alone, we show that each of the logics
of WFDL is more (or equal) expressive than the logics of DL. On the other hand, it
is not clear that WFDL is strictly more expressive than DL, and we give an example
suggesting that DL might have the capability to simulate WFDL. Within WFDL,
we show that, as in DL, different treatments of ambiguity result in differences in ex-
pressiveness. We also show that the WFDL logics with individual defeat are equally
as expressive as the corresponding logics that apply team defeat.

The paper is structured as follows. The next section provides an overview of defeasi-
ble logics. It is followed by a discussion and formulation of relative expressiveness. The
next section investigates the simulation of DL in WFDL, while the following section
addresses relative expressiveness within WFDL.

2 Defeasible Logic

In this section we can only present an outline of the defeasible logics we investigate.
Further details can be obtained from [5] and the references therein. We address propo-
sitional defeasible logics, but the results should extend to a first-order language.

A defeasible theory is built from a language Σ of literals (which we assume is closed
under negation) and a language Λ of labels. A defeasible theory D = (F, R, >) consists
of a set of facts F , a finite set of rules R, each rule with a distinct label from Λ, and
an acyclic relation > on Λ called the superiority relation. This syntax is uniform for all
the logics considered here. Facts are individual literals expressing indisputable truths.
Rules relate a set of literals (the body), via an arrow, to a literal (the head), and are one
of three types: a strict rule, with arrow →; a defeasible rule, with arrow ⇒; or a defeater,
with arrow �. Strict rules represent inferences that are unequivocally sound if based
on definite knowledge; defeasible rules represent inferences that are generally sound.
Inferences suggested by a defeasible rule may fail, due to the presence in the theory of
other rules. Defeaters do not support inferences, but may impede inferences suggested
by other rules. The superiority relation provides a local priority on rules. Strict or defea-
sible rules whose bodies are established defeasibly represent claims for the head of the
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rule to be concluded. The superiority relation contributes to the adjudication of these
claims by an inference rule, leading (possibly) to a conclusion. Given a theory D, the
corresponding languages are expressed by Σ(D) and Λ(D).

Defeasible logics derive conclusions that are outside the syntax of the theories. Con-
clusions may have the form +dq, which denotes that under the inference rule d the
literal q can be concluded, or −dq, which denotes that the logic can establish that under
the inference rule d the literal q cannot be concluded. The syntactic element d is called
a tag. In general, neither conclusion may be derivable: q cannot be concluded under d,
but the logic is unable to establish that. Tags +Δ and −Δ represent monotonic prov-
ability (and unprovability) where inference is based on facts, strict rules, and modus
ponens. We assume these tags and their inference rules are present in every defeasible
logic. What distinguishes a logic is the inference rule for defeasible reasoning. The four
logics in DL correspond to four different pairs of inference rules, labelled ∂, δ, ∂∗, and
δ∗; they produce conclusions of the form (respectively) +∂q, −∂q, +δq, −δq, etc. The
inference rules δ and δ∗ require auxiliary tags and inference rules, denoted by σ and σ∗,
respectively. For each of the four principal defeasible tags d, the corresponding logic is
denoted by DL(d).

There is not enough space to present all the inference rules for the logics in DL,
so we focus on Δ, ∂ and ∂∗ inference rules, presented in Figure 1. For the remaining
inference rules and further properties of the logics in DL, see [5]. Some notation in the
inference rules requires explanation. Given a literal q, its complement ∼q is defined as
follows: if q is a proposition then ∼q is ¬q; if q has form ¬p then ∼q is p. We say q and
∼q (and the rules with these literal in the head) oppose each other. Rs (Rsd) denotes
the set of strict rules (strict or defeasible rules) in R. R[q] (Rs[q], etc) denotes the set of
rules (respectively, strict rules) of R with head q. Given a rule r, A(r) denotes the set
of literals in the body of r.

The inference rules are presented in the form of the definition of a function TD for
a given theory D. Given a defeasible theory D, for any set of conclusions E, TD(E)
denotes the set of conclusions inferred from E using D and one application of an infer-
ence rule.

The inference rules for ∂ and ∂∗ display the two sides of the team defeat issue: the
rule r and rules t in the +∂ inference rule form a team overcoming the opposing rules
s whereas, in +∂∗ the rule r alone must overcome the opposing rules s. For example,
consider the following defeasible theory D on whether animals are mammals [2].

r1 : monotreme ⇒ mammal r3 : laysEggs ⇒ ¬mammal
r2 : hasF ur ⇒ mammal r4 : hasBill ⇒ ¬mammal

r1 > r3
r2 > r4

For a platypus, we have the facts: monotreme, hasF ur, laysEggs, and hasBill.
The rules r3 and r4 for ¬mammal are over-ruled by, respectively, r1 and r2. Con-
sequently, under inference with team defeat (∂ and δ), we conclude +∂mammal and
+δmammal. Under inference without team defeat (∂∗ and δ∗), there is no rule that
overrules all the opposing rules. Consequently we cannot make any positive conclu-
sion; we conclude −∂∗mammal and −∂∗¬mammal, and similarly for δ∗.
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+Δ) +Δq ∈ TD(E) iff either
.1) q ∈ F ; or
.2) ∃r ∈ Rs[q] such that

.1) ∀a ∈ A(r),+Δa ∈ E

−Δ) −Δq ∈ TD(E) iff
.1) q /∈ F , and
.2) ∀r ∈ Rs[q]

.1) ∃a ∈ A(r),−Δa ∈ E

+∂) +∂q ∈ TD(E) iff either
.1) +Δq ∈ E; or
.2) The following three conditions all hold:

.1) ∃r ∈ Rsd[q]
∀a ∈ A(r),+∂a ∈ E, and

.2) −Δ∼q ∈ E, and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−∂a ∈ E; or
.2) ∃t ∈ Rsd[q] such that

.1) ∀a ∈ A(t),+∂a ∈ E, and

.2) t > s.

−∂) −∂q ∈ TD(E) iff
.1) −Δq ∈ E, and
.2) either

.1) ∀r ∈ Rsd[q]
∃a ∈ A(r),−∂a ∈ E; or

.2) +Δ∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+∂a ∈ E, and
.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t),−∂a ∈ E; or

.2) not(t > s).

+∂∗) +∂∗q ∈ TD(E) iff either
.1) +Δq ∈ E; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+∂∗a ∈ E, and

.2) −Δ∼q ∈ E, and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−∂∗a ∈ E; or
.2) r > s.

−∂∗) −∂∗q ∈ TD(E) iff
.1) −Δq ∈ E, and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−∂∗a ∈ E; or

.2) +Δ∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+∂∗a ∈ E, and
.2) not(r > s).

Fig. 1. Inference rules for Δ, ∂, and ∂∗

Both ∂ and ∂∗ block ambiguity. Consider the following theory D.

r1 : ⇒ p r3 : ⇒ q
r2 : ⇒ ¬p r4 : ¬p ⇒ ¬q

p and ¬p are ambiguous: neither r1 nor r2 can overcome the other via the superiority
relation. Thus −∂¬p is inferred. Now, because the body of r4 fails, there is no rule left
to compete with r3, and so +∂q is inferred. We also conclude −∂¬q; thus there is no
ambiguity about q and ¬q, the ambiguity has been blocked. The same arguments apply
for ∂∗.

On the other hand, δ and δ∗ propagate ambiguity. −δ¬p is inferred and consequently
−δ¬q is inferred. However, ambiguity propagating logics like DL(δ) do not support a
conclusion +δq. There is a possibility that ¬p holds, given that r2 was not overcome
via the superiority relation but simply failed to overcome its competitor. Hence there is
a possibility that ¬q holds. And since r3 cannot explicitly overcome r4 via the superi-
ority relation, the conclusion +δq is not justified and, in fact, −δq is concluded. This
idea of “possibly holding” is called support; it is expressed by an auxiliary tag σ and
defined by a corresponding inference rule in DL(δ) (and, similarly, the auxiliary tag σ∗

in DL(δ∗)). In the theory D above, among the conclusions are +σp, +σ¬p, +σ¬q, and
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+σq. Since both q and ¬q possibly hold, they are ambiguous and clearly the ambiguity
has propagated.

2.1 Well-Founded Defeasible Logic

The inference rules for provability in WFDL are exactly the same as in DL, while
the inference rules for unprovability extend those of DL. Hence the function WD ex-
pressing one-step inference extends TD . Inference of unprovability in WFDL extends
DL by the identification of “unfounded sets”, representing sets of literals that are either
directly unprovable in the DL sense or not provable and cyclically dependent on each
other. In the latter case, WFDL detects unprovability that is not detectable by DL.
Thus the central definitions in WFDL are those of a d-unfounded set, for each tag d.
These definitions are inspired by the well-founded semantics of logic programs [8].

Consider a defeasible theory D = (F, R, >). For any set of conclusions E and any
tag d we define +dE = {q | + dq ∈ E} and −dE = {q | − dq ∈ E}. We begin with
Δ. A set S of literals is Δ-unfounded with respect to an extension E if: For every literal
s in S, s �∈ F and for every strict rule B → s either

– B ∩−ΔE �= ∅, or
– B ∩ S �= ∅
This definition extends the −Δ inference rule with an additional clause that captures

the cyclic dependency. Indeed, all definitions of d-unfounded set are obtained in the
same way: by adding the alternative that B ∩ S �= ∅. The corresponding definitions
for defeasible inferences are more complex, since there are more factors that influence
defeasible inference. Nevertheless, the basic idea is the same.

A set S of literals is ∂-unfounded with respect to an extension E if: For every literal
s in S, s ∈ −Δ and for every strict or defeasible rule r1 : A(r1) ↪→ s in D either

– A(r1) ∩ −∂E �= ∅, or
– A(r1) ∩ S �= ∅, or
– ∼s ∈ +ΔE , or
– there is a rule r2 : A(r2) ↪→ ∼s in D such that A(r2) ⊆ +∂E and for every rule

strict or defeasible r3 : A(r3) ↪→ s in D either
• A(r3) ∩ −∂E �= ∅, or
• r3 �> r2.

Again notice the close relationship between the definition of ∂-unfounded set and
the inference rule for ∂-unprovability in DL. The second disjunct has been added to
that inference rule to capture cyclic dependency. The definition of other d-unfounded
sets are obtained from the −d inference rules in the same way.

Clearly the class of d-unfounded sets is closed under unions. Hence there is a great-
est d-unfounded set wrt E, denoted by Ud

D(E). We define UD(E) = {−dq | q ∈
Ud
D(E), d is a tag}. The function WD computes all the inferences that can be made

from its argument in one inference step (either through a positive inference or iden-
tification of an unfounded set). We define WD(E) = TD(E) ∪ UD(E) and the least
fixedpoint of WD is the set of all conclusions from D, denoted by W F (D). For any
tag d and literal q, when +dq ∈ W F (D) we also write D �WF +dq, and similarly
for −dq.
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3 Relative Expressiveness

[14] introduced a framework for addressing the relative expressiveness of defeasible
logics. The framework identifies the greater (or equal) expressiveness of L2 compared
to L1 with the ability to simulate any theory D in a logic L1 by a theory T (D) in the
logic L2, in the presence of an addition.

The addition of a theory A to a theory D is denoted by D+A. Addition is essentially
the union of the theories, but we require Λ(D) ∩ Λ(A) = ∅, so that the addition of
theories preserves the property that distinct rules have distinct labels. This requirement
also has the effect that a superiority statement in D cannot affect a rule in A, and vice
versa. Let D = (F, R, >) and A = (F ′, R′, >′). Then D + A = (F ∪ F ′, R ∪ R′, >
∪ >′). Λ(D+A) = Λ(D) ∪ Λ(A) and Σ(D+A) = Σ(D) ∪ Σ(A).

A simulating theory T (D) in general will involve additional literals, rules and la-
bels beyond those of D. If additions A were permitted to affect these, the notion of
simulation would become trivial, so we restrict additions to have only an indirect ef-
fect on T (D), via Σ(D). Given a theory D and a possible simulating theory T (D), we
say an addition A is modular if Σ(A) ∩ Σ(T (D)) ⊆ Σ(D), Λ(D) ∩ Λ(A) = ∅, and
Λ(T (D))∩Λ(A) = ∅. We will consider specific classes of additions but, for each class
and any D and T (D), only the modular additions in the class will be considered.

Since different logics involve different tags, conclusions from theories in different
logics cannot be identical. For simulation it suffices that conclusions are equal modulo
tags. Given logics L1 and L2, with principal tags d1 and d2, respectively, we say two
conclusions α in L1 and β in L2 are equal modulo tags if α is +d1q and β is +d2q or
α is −d1q and β is −d2q.

Thus we have the following definition of simulation and relative expressiveness. For
more discussion on the motivations for the definitions, see [14].

Definition 1. Let C be a class of defeasible theories.
We say D1 in logic L1 is simulated by D2 in L2 with respect to a class C if, for

every modular addition A in C, D1 + A and D2 + A have the same conclusions in
Σ(D1 + A), modulo tags.

We say a logic L1 can be simulated by a logic L2 with respect to a class C if every
theory in L1 can be simulated by some theory in L2 with respect to additions from C.

We say L2 is more (or equal) expressive than L1 if L1 can be simulated by L2 with
respect to C.

Different notions of relative expressiveness arise from different choices for C. There
were two classes of additions investigated in [14]: the addition of facts (that is, A has the
form (F, ∅, ∅)), and the addition of rules (that is, A has the form (∅, R, ∅)). Simulation
with respect to addition of rules is stronger than simulation with respect to addition of
facts because any fact can equally be expressed as a strict rule with an empty body.
We might also consider arbitrary additions, where A can be any defeasible theory, and
no additions, where simulation is simply an implementation of the theory in a different
logic.
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The main results of [14,15] are that:

– all the DL logics have equal expressiveness, with respect to addition of facts
– the two ambiguity propagating logics in DL are equally expressive, with respect to

addition of rules, as are the two ambiguity blocking logics in DL
– the ambiguity propagating logics and ambiguity blocking logics in DL are incom-

parably expressive, with respect to addition of rules
– when arbitrary additions are permitted, of the four defeasible logics in DL, none is

more expressive than any other

4 Comparing the Expressiveness of WFDL and DL

In some ways, logics in WFDL are more powerful than those in DL. In terms of
inference strength, it is shown in [16] that WFDL(∂) is strictly stronger than DL(∂),
and this result extends to all other tags. Furthermore, the complexity of inference in
WFDL is quadratic, as compared to linear complexity in DL. Thus it is of interest to
see whether WFDL logics are more expressive than DL logics.

As we have seen, the difference between DL and WFDL is the ability of the latter
to infer −dq from loops such as (in the simplest case) q ⇒ q. As a result, as we might
expect, DL logics cannot simulate WFDL logics with respect to addition of rules. It
is less obvious that WFDL logics cannot simulate DL logics.

Theorem 1. For every d, d′ ∈ {∂, ∂∗, δ, δ∗, σ, σ∗},

– DL(d′) cannot simulate WFDL(d) with respect to addition of rules.
– WFDL(d′) cannot simulate DL(d) with respect to addition of rules.

The proof uses the addition of a loop q ⇒ q, and shows that there is no way, within a
theory T (D), to counter the different treatment of loops in the two frameworks. Hence,
according to the stronger formulation of relative expressiveness, the logics of DL and
WFDL have incomparable expressiveness.

Even if we consider only addition of facts, the different treatment of loops in strict
rules distinguishes DL logics from WFDL. For this reason, we consider a class of
theories where this difference is not apparent, to see whether the incomparable expres-
siveness still holds. A defeasible theory D is Δ-decisive in DL if for every literal q
in Σ(D), D � +Δq or D � −Δq. For such theories, the strict consequences are the
same under DL and WFDL. Without this property, no simulation of a DL logic in a
WFDL logic is possible.

Proposition 1. Suppose D + A is not Δ-decisive in DL, for some addition A. Then
there is no simulation T (D) in WFDL of D in DL with respect to addition of facts.

Thus we require theories that remain Δ-decisive after the addition of arbitrary facts.
That leads us to the following definitions. The strict dependency graph of a proposi-
tional defeasible theory D is a directed graph consisting of a vertex for each literal, and
an edge from literal q to literal p iff there is a rule in D with head p in which q occurs
in the body. A theory is strict-acyclic if the strict dependency graph is acyclic (that is, it
forms a tree). Strict-acyclicity is sufficient to ensure that, even with additions of facts,
the theory is Δ-decisive in DL.
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Proposition 2. Let D be any strict-acyclic defeasible theory and A be any set of facts.
Then D+A is Δ-decisive in DL, that is, for each q ∈ Σ, either D+A � +Δq or
D+A � −Δq. Furthermore, D+A � +Δq iff D+A �WF +Δq and D+A � −Δq iff
D+A �WF −Δq

In the case where the addition is empty, this result covers more cases than Theorem
2.1(a) of [3] because of the use of a different dependency graph.

Strict-acyclicity seems close to being a syntactic characterization of the property that
D+A is Δ-decisive in DL for every addition of facts A. However, it is not a complete
characterization, as the following theory D shows.

a, c → b
b, c → a
c → b

Here D is not strict-acyclic but is Δ-decisive in DL for every addition of facts A.
Now we establish the relative expressiveness of DL and WFDL logics when we

focus on defeasible inference. We are able to identify a transformation of defeasible
theories that proves to be a simulation of DL by WFDL wrt addition of facts, if
we restrict ourselves to defeasible inference. The transformation employs new propo-
sitions, a(q), b(q), and n(q), for each q in Σ, and new labels: r′ for each r ∈ R, and
e(q), f(q), g(q), h(q) and j(q), for each q in Σ.

Definition 2. Let D = (F, R, >) be a defeasible theory with language Σ. We define
the transformation T of D to T (D) = (F ′, R′, >′) as follows:

1. The facts of T (D) are the facts of D. That is, F ′ = F .
2. Every strict rule of R is contained in R′. That is, Rs ⊆ R′.
3. For each strict or defeasible rule r = B ↪→r q in R, R′ contains

r′ : B ⇒ a(q)

In addition, for every superiority statement r > s in D, we have r′ >′ s′ in T (D).
4. For each defeater r = B � q in R, R′ contains

r′ : B � a(q)

5. For each literal q in Σ, R′ contains

e(q) : a(q) ⇒ ¬n(q)
f(q) : ⇒ n(q)
g(q) : n(q) ⇒ ¬b(q)
h(q) : ⇒ b(q)
j(q) : b(q) ⇒ q

and the superiority relation contains e(q) > f(q) and g(q) > h(q).

This transformation has linear complexity.
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The transformation leaves the facts and strict rules unchanged. By Proposition 2,
if we restrict our attention to strict-acyclic theories then the transformation provides a
simulation of DL by WFDL for strict conclusions.

Part 5 of this transformation places several rules between the body and the head of
rules in D that can be used to derive defeasible knowledge. Thus a rule r is broken
into r′ (in part 3) and j(q) (in part 5) and the intervening rules e(q), f(q), g(q), and
h(q). The effect of these intervening rules is prevent any d-unfounded sets except for
those that are consequences of −d inference in DL. At the same time, these rules are
transparent to +d and −d inferences in DL.

These claims are formalized in the following lemma.

Lemma 1. Let E be the set of conclusions drawn from T (D)+A by DL. Then, for
d ∈ {∂, ∂∗, δ, δ∗, σ, σ∗}, the following statements hold:

1. a(q) ∈ +dE iff b(q) ∈ +dE

2. a(q) ∈ −dE iff b(q) ∈ −dE

3. n(q) is in a d-unfounded set S wrt E iff a(q) ∈ +dE

4. ¬n(q) is in a d-unfounded set S wrt E iff a(q) ∈ S or a(q) ∈ −dE

5. ¬b(q) is in a d-unfounded set S wrt E iff n(q) ∈ S or n(q) ∈ −dE iff a(q) ∈ +dE

6. b(q) is in a d-unfounded set S wrt E iff n(q) ∈ +dE iff a(q) ∈ −dE iff b(q) ∈ −dE

These statements are easily verified using the inference rules in DL and the definition
of d-unfounded sets.

As a consequence, we find that WFDL(d) can simulate DL(d) in defeasible rea-
soning (as well as in strict reasoning for our limited class of theories).

Theorem 2. For strict-acyclic theories, WFDL(d) can simulate DL(d) with respect
to addition of facts.

Using results of [14,15] on simulation within DL we conclude that, under the restric-
tion on theories, the logics of WFDL are more (or equal) expressive than the logics of
DL with respect to addition of facts.

Theorem 3. For strict-acyclic theories, and for every d, d′ ∈ {∂, ∂∗, δ, δ∗}:
WFDL(d) can simulate DL(d′) with respect to addition of facts.

We might expect that WFDL is strictly more expressive than DL, that is, that DL
cannot simulate WFDL, but this is not as obvious as it first appears. For example,
consider the theory D

a ⇒ b
b ⇒ a

This is a prime candidate for distinguishing WFDL from DL because it contains a
loop, but the two rules in the loop appear necessary to support inferences when facts
are added. In WFDL(∂) we have −∂a and −∂b as consequences of D, but in DL
neither are consequences. When we add the fact a to D we can conclude +∂b and,
symmetrically, when we add b we can conclude +∂a.

At first glance, D looks difficult to simulate in DL, but consider the following theory
D′:
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r1 : a → a′ r5 : ¬a′ � ¬b
r2 : b → b′ r6 : ¬b′ � ¬a
r3 : ⇒ ¬a′ r7 : a ⇒ b
r4 : ⇒ ¬b′ r8 : b ⇒ a

with r3 > r1 and r4 > r2. In DL, from D′ we have +∂¬a′ and +∂¬b′, using the
superiority relation. Hence the defeaters r5 and r6 are applicable. Furthermore, r8 �> r6
and r7 �> r5, so we can infer −∂a and −∂b.

If we add a to D′ then we can infer +Δa and +Δa′, and hence −∂¬a′. Thus the
defeater r5 is not applicable. Consequently, using r7 we infer +∂b. Similarly, adding
the fact b allows us to infer +∂a. Thus D′ in DL(∂) simulates D in WFDL(∂) with
respect to addition of facts.

It remains unclear whether the logics of WFDL are strictly more expressive than
the logics of DL with respect to addition of facts.

5 The Relative Expressiveness of WFDL Logics

It was established in [14] that the two treatments of ambiguity have incomparable ex-
pressiveness wrt addition of rules inDL. This result carries across toWFDL. Consider
the theory D, with rules

r1 : ⇒ p
r2 : ⇒ ¬p

and consider an addition A of rules

r3 : ⇒ ¬p
r4 : ⇒ q
r5 : ¬p ⇒ ¬q

Inference from D and D+A is the same whether team defeat or individual de-
feat is used, because the superiority relation is empty. Similarly, inference in DL and
WFDL is the same, because there are no loops. D introduces ambiguity and the ad-
dition A forces identifiable behaviour of the treatment of ambiguity. In the ambiguity
propagating logics we have D+A �WF −δq, while in the ambiguity blocking logics
D+A �WF +∂q. However, assuming there is a simulating theory D′, A must be inter-
preted in the simulating logic, while producing a behaviour reflective of the simulated
logic. This turns out not to be possible, for reasons similar to those in [14].

Theorem 4

– WFDL(∂) and WFDL(∂∗) cannot simulate either WFDL(δ) or WFDL(δ∗)
with respect to addition of rules.

– WFDL(δ) and WFDL(δ∗) cannot simulate either WFDL(∂) or WFDL(∂∗)
with respect to addition of rules.

Furthermore, none of the logics in WFDL is more expressive than the others, if we
consider addition of arbitrary theories.
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Proposition 3. None of the logics WFDL(∂), WFDL(∂∗), WFDL(δ), and
WFDL(∂∗) can simulate any of the others, with respect to addition of an arbitrary
theory.

Next, we show that well-founded logics with team defeat can simulate the corre-
sponding logic with individual defeat. We use the same transformation as used in [15]
for DL (Definition 9 of [15]). The part of the proof addressing +d inferences is similar
to that in [15], but the proof addressing −d inferences is different since it must handle
d-unfounded sets.

Theorem 5. The logic WFDL(∂∗) can be simulated by WFDL(∂), and the logic
WFDL(δ∗) can be simulated by WFDL(δ), with respect to addition of rules.

Finally, for this section, we show that well-founded logics with individual defeat can
simulate the corresponding logic with team defeat. Again, we use the transformation
used in [15] (Definition 13) for the corresponding theorem for DL.

Theorem 6. The logic WFDL(∂) can be simulated by WFDL(∂∗), and WFDL(δ)
can be simulated by WFDL(δ∗), with respect to addition of rules.

Combining Theorems 4, 5, and 6, we see that the logics of WFDL are divided into
two classes of incomparable expressiveness (using the stronger formulation), and the
two classes are characterized by their treatment of ambiguity.

6 Conclusion

We have established several relative expressiveness results for well-founded defeasible
logics. In particular, we showed that the ambiguity propagating logics of WFDL have
different expressiveness than the ambiguity blocking logics. We also showed the rela-
tionship between the logics of WFDL and the logics of DL, leaving open the question
of whether DL can simulate WFDL with respect to addition of facts.

These results suggest that a logic from WFDL might be preferable to the corre-
sponding logic from DL, since defeasible reasoning in a well-founded logic is at least
as expressive as the corresponding logic from DL, unless it is important to be able to
express undecidedness for monotonic provability; WFDL is unable to express such
undecidedness. On the other hand, the use of team or individual defeat makes no dif-
ference to the expressiveness of the logic. Finally, the choice of treatment of ambiguity
is significant to the expressiveness of the logic, but the choice should be based on other
considerations since the two possibilities have incomparable expressiveness.

The results leave several open problems. Most directly, it is of interest whether all
the relative expressiveness results for DL [15] carry over to WFDL. We have seen in
this paper that many of them do. More broadly, the expressiveness relationship between
WFDL logics and other defeasible logics, such as NDL [19], ADL [17] and Cour-
teous Logic Programs [12] deserves investigation. Finally, and even more broadly, the
expressiveness relationship between these defeasible logics and argumentation systems
[7,21] is of interest.
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Abstract. We consider conjunctive query answering and other basic reasoning
services in CFDnc, an alternative to the description logic CFD that retains the
latter’s ability to support PTIME reasoning in the presence of terminological cy-
cles with universal restrictions over functional roles and also in the presence of
functional constraints over functional role paths. In contrast, CFDnc replaces
the ability to have conjunction on left-hand-sides of inclusion dependencies with
the ability to have primitive negation on right-hand-sides. This makes it possible
to say that primitive concepts must denote disjoint sets of individuals, a common
requirement with many information sources.

1 Introduction

Scalability issues in reasoning over the semantic web have led the W3C to adopt two
description logic (DL) fragments of OWL 2 that are designed to ensure PTIME com-
plexity in the size of respective knowledge bases for a number of important reasoning
problems. Called profiles, the DLs are EL++ [2] and DL-Lite [1,4]. Medical ontolo-
gies were an important motivation for the former, whereas the latter was heavily influ-
enced by a need to access information residing in data sources conforming to relational
schema, particularly in cases where the schema has been derived via ER modelling.

Toman and Weddell proposed an alternative to DL-Lite called CFD that was de-
signed to provide better support for data sources based on relational schema that include
more extensive collections of dependencies such as primary and foreign keys [17]. The
paper has shown that the problem of deciding concept subsumption in CFD had PTIME
complexity, and therefore might qualify as a useful additional option for an OWL 2 pro-
file. However, there are two issues with CFD that make it less attractive in this role: (1)
unlike DL-Lite, it is not possible to say that two primitive concepts must denote disjoint
sets of individuals or entities, a common requirement with many information sources,
and (2) computing the certain answers to conjunctive queries is PSPACE-complete,
even for simple queries of the form ∃x.A(x), where A is a primitive concept.

In this paper we introduce CFDnc, an alternative to CFD that retains the latter’s
key abilities: supporting terminological cycles with universal restrictions over func-
tional roles, and supporting a rich variety of functional constraints over functional role
paths. In particular, CFDnc replaces the ability in CFD to have conjunction on left-
hand-sides of inclusion dependencies with a new ability to have primitive negation on
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SYNTAX SEMANTICS: “(·)I”

C ::=A AI ⊆ �
| ¬A � \AI

| C1 � C2 CI
1 ∩ CI

2

| ∀Pf .C {x : PfI(x) ∈ CI}
| A : Pf1, . . . ,Pfk → Pf {x : ∀ y ∈ AI .

∧k
i=1 Pf

I
i (x) = PfIi (y) ⇒ PfI(x) = PfI(y)}

Fig. 1. CFDnc CONCEPTS

right-hand-sides (the same is also true for the original version of DL-Lite). This re-
moves both problems with CFD. In particular, we show that the following fundamental
reasoning problems are in PTIME w.r.t. the size of the knowledge base: (1) knowledge
base consistency, determining if at least one model exists for a given knowledge base;
(2) logical implication, determining if a given inclusion dependency is logically en-
tailed by the terminological component of a given knowledge base; (3) instance check-
ing, determining if a given concept assertion is entailed by a given knowledge base; and
(4) conjunctive query answering, computing certain answers for arbitrary conjunctive
queries over a CFDnc knowledge bases. We also show that the combined complexity
of CQ answering is complete for PSPACE.

Reasoning in DL-Lite, EL, and their variants often relies on the existence of poly-
nomially-sized canonical models (or canonical structures that closely resemble such
models) to address the above reasoning tasks [10,12]. It is worth noting that CFDnc
does not share this property: an equivalent of a canonical model for a CFDnc knowl-
edge base is necessarily exponential in the size of the knowledge base.

We begin in the next section by introducing the syntax and semantics of CFDnc and
talk about some of its key features and limitations. The problems above are the focus
of Section 4 in which we appeal to an automata-based method for their resolution. This
method is introduced in Section 3 where we consider the simpler problem of concept
satisfiability. Computing certain answers for conjunctive queries is considered in Sec-
tion 5, and a review of related work and summary comments then follow in Sections 6
and 7, respectively.

2 The Description Logic CFDnc

A formal definition of CFDnc knowledge bases and the above reasoning problems
now follows. Observe that the logic is based on attributes or features instead of the
more common case of roles which can denote arbitrary binary relations. However, this
is not really an issue, as CFDnc is ideal for expressing reification for predicates of
arbitrary arity [13].

Definition 1 (CFDnc Knowledge Bases). Let F, PC and IN be disjoint sets of (names
of) attributes, primitive concepts and individuals, respectively. A path function Pf is a
word in F∗ with the usual convention that the empty word is denoted by id and concate-
nation by “.”. Concept descriptions are defined by the grammar on the left-hand-side of
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Figure 1 in which occurrences of “A” denote primitive concepts. A concept produced
by the “A : Pf1, . . . ,Pfk → Pf” production of this grammar is called a path functional
dependency (PFD). In addition, to avoid undecidability [16], any occurrence of a PFD
must adhere to one of the following two forms:

1. A : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf or
2. A : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f

(1)

Metadata and data in a CFDnc knowledge base K are respectively defined by a TBox
T consisting of a finite set of inclusion dependencies of the form A - C, and by an
ABox A consisting of a finite set of concept assertions of the form A(a) and path
function assertions of the form Pf1(a) = Pf2(b), where A is a primitive concept, C an
arbitrary concept, {Pf1,Pf2} ⊆ F∗ and where {a, b} ⊆ IN.

Semantics is defined in the standard way with respect to a structure (., (·)I), where
. is a domain of “objects” and (·)I an interpretation function that fixes the interpreta-
tion of primitive concepts A to be subsets of ., attributes f to be total functions on .,
and individuals a to be elements of .. The interpretation is extended to path expres-
sions by interpreting id , the empty word, as the identity function λx.x, concatenation
as function composition, and to derived concept descriptions C as defined in Figure 1.

An interpretation satisfies an inclusion dependency A - C if AI ⊆ CI , a concept
assertion A(a) if aI ∈ AI and a path function assertion Pf1(a) = Pf2(b) if PfI1 (a

I) =
PfI2 (b

I). An interpretation satisfies a knowledge base K if it satisfies each inclusion
dependency and assertion in K. �

The conditions imposed on PFDs in (1) distinguish, for example, PFDs of the form
C : f → id and C : f → g from PFDs of the form C : f → g.h. This is necessary
to retain PTIME complexity for the reasoning problems [9,16] and does not impact the
modelling utility of CFDnc for formatted legacy data sources. It remains possible, for
example, to capture arbitrary keys or functional dependencies in a relational schema.

3 TBox and Concept Satisfiability

It is easy to see that every CFDnc TBox T is consistent (by setting all primitive con-
cepts to be interpreted as the empty set). For other reasoning tasks, such as concept
satisfiability and knowledge base consistency, it is convenient to assume by default, and
without loss of generality, that CFDnc knowledge bases are given in a normal form.

Lemma 2 (TBox and ABox Normal Forms). For every CFDnc TBox T , there ex-
ists an equivalent TBox T ′ that adheres to the following (more limited) grammar for
CFDnc concept descriptions.

C ::= A | ¬A | ∀f.A | A : Pf1, . . . ,Pfk → Pf

Also, for every ABox A, there exists an equivalent ABox A′ containing only assertions
of the form f(a) = b and a = b. �

Obtaining T ′ and A′ from an arbitrary knowledge base K is achieved by a straightfor-
ward introduction of auxiliary names for intermediate concept descriptions and individ-
uals (e.g., see defn. of simple concepts in [15,16]); the normalized TBox and ABox are
linear in the size of the inputs.
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Definition 3 (A Transition Relation for T ). Let T be a CFDnc TBox in normal form.
We define a transition relation δ(T ) over the set of states S = PC ∪ {¬A | A ∈ PC}
and the alphabet F as follows:

A1
ε→A2 ∈ δ(T ) if A1 - A2 ∈ T

A1
ε→¬A2 ∈ δ(T ) if A1 - ¬A2 ∈ T

A1
f→A2 ∈ δ(T ) if A1 - ∀f.A2 ∈ T

where ε is the empty letter transition and f ∈ F. �

The transition relation allows us to construct non-deterministic finite automata (NFA)
that can be used for various reasoning problems that relate to a CFDnc TBox T . Note
that we follow common practice in automata theory and use ε for the empty letter in
transition relations.1

Lemma 4. Let M = (S, {A}, {B}, δ(T )) be an NFA with the set of states S (as above),
start state A, final state B, and transition relation δ(T ). Then T |= A - ∀Pf .B
whenever Pf ∈ L(M).

Proof (sketch) For Pf ∈ L(M) there must be a run

A = A0
l1→A1

l2→A2 · · ·Ak−1
lk→Ak = B

in M where li ∈ F ∪ {ε} and such that Pf = l1.l2. · · · .lk. It follows from the definition

of δ(T ) that Ai−1
li→Ai exists if Ai−1 - Ai, for li = ε, or Ai−1 - ∀li.Ai, for li ∈ F

(and hence these dependencies are trivially implied by T ). The claim then follows by
simple transitive reasoning, all necessary cases derive from the fact that

{B1 - ∀Pf .B2,B2 - ∀Pf′ .B3} |= B1 - ∀Pf .Pf′ .B3,

and the lemma then follows by induction on the length of the run. �

Note that the converse implication in this lemma may not hold, e.g., when A is incon-
sistent with respect to T .

The problem of concept satisfiability asks, for a given concept C and TBox T , if
there exists an interpretation I for T in which CI is non-empty. Such problems can be
reduced to the case where C is a primitive concept A by simply augmenting T with
{A - C}, where A is a fresh primitive concept.

Given a primitive concept A and TBox T , one can test for primitive concept satisfi-
ability by using the following NFA, denoted nfaaB(T , {A(a)}):

(S ∪ {a}, {a}, {B}, δ(T ) ∪ {a
ε→A}),

with states given by primitive concepts, their negations, and a distinguished node a,
with start state a, with final state B ∈ S, and with transition relation δ(T ) ∪ {a

ε→A}.

Theorem 5 (Concept Satisfiability). A is satisfiable with respect to the TBox T if and
only if L(nfaaB(T , {A(a)})) ∩ L(nfaa¬B(T , {A(a)})) = ∅ for every B ∈ PC.

Proof (sketch) For a primitive concept B ∈ PC, a word Pf in the intersection language

of the two automata above is a witness of the fact that PfI(aI) ∈ BI and PfI(aI) ∈
1 Another option would have been to use id for this purpose, but we thought, on balance, that

this would hinder readability.
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¬BI must hold in every model of T , for reasons analogous to the proof of Lemma 4,
which leads to a contradiction since Pf is a (total) function.

Conversely, if no such word exists then one can construct a deterministic finite automa-
ton from nfaaB(T , {A(a)}), using the standard subset construction, in which no state
containing both B and ¬B is reachable from the start state {a}. Unfolding the transition
relation of this automaton, starting from the state {a}, labelling nodes by the concepts
associated with the automaton’s states, and adding missing features to complete trees in
which no primitive concept is true for any node, yields a tree interpretation that satisfies
T (in particular in which all PFD constraints are satisfied vacuously) and whose root a
provides a witness for satisfiability of A. �

Since the |nfaaB(T , {A(a)})| ∈ O(|T |) and all the needed automata operations can be
implemented in PTIME [7], the following result is immediate.

Corollary 6. Concept satisfiability with respect to CFDnc TBoxes is in PTIME.

Note that it is impossible to precompute all inconsistent concepts since this would
require consideration of all possible types over PC (i.e., finite subsets of primitive con-
cepts), a process essentially equivalent to constructing an equivalent deterministic au-
tomaton which can require exponential time [7].

4 ABox Reasoning and K Satisfiability

The automata-based approach to concept satisfiability can be extended to the more gen-
eral problem of knowledge base consistency. Intuitively, each ABox individual a must
be linked to the TBox automaton in a fashion similar to how the “prototypical object”
a was linked in Section 3. This idea leads to the following definition:

Definition 7 (A Transition Relation for A). Let A be a CFDnc ABox in normal form.
We create a transition relation δ(A) for an nfa over the set of states S = PC ∪ {a |
a in A} and the alphabet F as follows:

a
ε→a ∈ δ(A) if a appears in A,

a
ε→A ∈ δ(A) if A(a) ∈ A,

a
f→ b ∈ δ(A) if f(a) = b ∈ A and

a
ε→ b, b

ε→a ∈ δ(A) if a = b ∈ A.

where ε is the empty letter transition. �

Observe that we have used ε transitions to simulate equality assertions in A. This is
justified, e.g., by considering the ABox individuals to be nominals.

(aside on notation) Hereon, we write “n
Pf
� m in δ” if Pf ∈ L(nfa(S, {n}, {m}, δ)),

where S is a set of states (that will be clear from the context), m and n are states in S,
and δ is a NFA transition relation over S (also be clear from context). (end of aside)

Unfortunately, taking δ(T ) ∪ δ(A) alone as the transition relation of an NFA and then
testing for consistency of every ABox individual (as in Theorem 5) is not sufficient as
the following cases illustrate. The problems raised by each case will be addressed by
defining rules that impose additional closure conditions on the transition relation. To
begin, we need to ensure that ABox assertions f(a) = b are functional:
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Example 8 (Path Function Assertions). Consider the ABox A = {f(a) = b, f(a) =
c}. Clearly bI must equal cI in any model I of a knowledge base that includes A. �

To remedy this, we define a functionality rule for δ(T ,A) as follows:

if a
f
� b and a

f
� c in δ(T ,A) then {b

ε→ c, c
ε→ b} ⊆ δ(T ,A).

Next, we need to ensure that ABox assertions of the form f(a) = b are coherent with
TBox assertions A - ∀f.B with respect to concept memberships of a and b:

Example 9 (ABox and Value Restrictions). Consider the TBox T = {A - ∀f.B}
and an ABox A = {f(a) = b,A(a)}. Clearly, in any model I of the knowledge base
(T ,A), bI must be an element of BI . However, B cannot be reached from b in δ(T ) ∪
δ(A), and therefore an automaton based on such a transition relation alone cannot
reflect the correct concept membership of b. �

We define a coherence rule for the transition relation δ(T ,A) to remedy this as follows:

if a
f
� b, a

ε
� A, and A

f
� B in δ(T ,A) then b

ε→B ∈ δ(T ,A).

Finally, PFDs are no longer trivially satisfied as the ABox A may not be tree shaped.

Example 10 (ABox and PFDs). Consider A = {A(a), B(b), f(a) = c, f(b) = c}.

– A TBox T = {A - B : f → id} implies that the individuals a and b must denote
the same domain element.

– A TBox T = {A - B : f → g} implies that there must be an additional (anony-
mous) individual d such that g(a) = d and g(b) = d.

Note that the PFD A - B : f.g → id is also violated by the pair of individuals a and b,
this despite the fact that neither of these two individuals is the origin of an explicit f.g
path in A: since features are interpreted as total functions, the individual c must have
an “outgoing” g feature, and therefore a and b must agree on f.g. �

A remedy for these cases is obtained by defining a PFD closure rule for the transition
relation δ(T ,A) for each PFD A - B : Pf1, . . . ,Pfk → Pf ∈ T . The rule will refer to
the following auxiliary functions.

match(a, b,Pf, δ(T ,A)): Returns true if there is a (possibly empty) prefix Pf ′ of Pf

such that a
Pf′
� c and b

Pf′
� c in δ(T ,A) for some individual c; it returns false other-

wise.
expf(a,Pf, δ(T ,A)): Returns the minimal set of transitions (by creating new individ-

uals) such that a
Pf
� c in δ(T ,A) holds for some c.

mkeq(a, b,Pf, δ(T ,A)): Returns {c
ε→ d, d

ε→ c} where, for some individuals c and d,

we have a
Pf
� c and b

Pf
� d in δ(T ,A).

The PFD closure rule is then defined as follows:

if {a
ε
� A, b

ε
� B} ⊆ δ(T ,A) and

match(a, b,Pfi, δ(T ,A)), for 0 < i ≤ k, and not match(a, b,Pf, δ(T ,A))
then expf(a,Pf, δ(T ,A)) ⊆ δ(T ,A), expf(b,Pf, δ(T ,A)) ⊆ δ(T ,A), and

mkeq(a, b,Pf, δ(T ,A)) ⊆ δ(T ,A)
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The rules enable one to define a transition relation for an NFA that captures reasoning
in the knowledge base (T ,A) as follows.

Definition 11 (Transition Relation δ(T ,A)). Let δ(T ,A) be the smallest transition
relation containing δ(T ) and δ(A) that is closed under the functionality, coherence,
and PFD closure rules. �

Note that δ(T ,A) is constructed by applying the closure rules to δ(T ) ∪ δ(A) until a
fixpoint is reached (in a polynomial number of steps). We use δ(T ,A) as the transition
function for the NFA nfaaB(T ,A) with the start state {a} and final state B (similarly to
Section 3).

Theorem 12 (Knowledge Base Consistency). A knowledge base (T ,A) is consistent
if and only if

L(nfaaB(T ,A)) ∩ L(nfaa¬B(T ,A))

is empty for all primitive concepts B ∈ PC and all ABox individuals a in A.

Proof (sketch) Assume Pf ∈ L(nfaaB(T ,A)) ∩ L(nfaa¬B(T ,A)) for some path func-
tion Pf, individual a and primitive concept B, and that I |= (T ,A). Composing all
the assertions corresponding to the transitions in δ(T ,A) along the runs corresponding
to Pf in the two automata, however, implies that PfI(aI) ∈ BI and PfI(aI) ∈ ¬BI

(similarly to Lemma 4); a contradiction as interpretations of path functions are func-
tional.

For the other direction we define an interpretation I as follows: let /a0 be an represen-
tative of the equivalence class {a | a

ε
� b, b

ε
� a in δ(T ,A)} and let PF(a) denote

{f.Pf | a
f
� b not in δ(T ,A)} for any individual b}.

Then set

– .I =
⋃

a in A{/a0. id} ∪ {/a0.Pf | Pf ∈ PF(a)};
– aI = /a0. id ;

– AI = {/a0.Pf | a
Pf
� A in δ(T ,A)}; and

– fI = {(/a0. id , /b0. id) | a
f
� b in δ(T ,A)} ∪

{(/a0.Pf, /a0.Pf .f) | /a0.Pf, /a0.Pf .f ∈ .I}.

It is immediate that I |= A since δ(A) ⊆ δ(T ,A) and we corrected for all violations
of PFDs. By inspecting T it is also easy to see that I |= T . �

Note that the core of this construction is again the subset construction for NFA deter-
minization (cf. Theorem 5) where the TBox-ABox interactions are facilitated by the
closure rules. What remains is to show that knowledge base consistency can be checked
in PTIME.

Lemma 13. |δ(T ,A)| is polynomial in |T |+ |A|.
Proof (sketch) The number of individuals in δ(T ,A) is bounded by |A| + 2|T ||A|2
since the PFD closure rule can add at most two new individuals per pair of individuals
in A and PFD in T . Thus, since the number of states is polynomial in |T | + |A|, the
number of transitions in δ(T ,A) is also at most polynomial in |T |+ |A|. �
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This result, together with the argument we made for concept satisfiability with respect
to a TBox, yields a PTIME algorithm for KB consistency. Since we do not assume
the unique name assumption, the problem is also PTIME-hard (we have Horn-SAT
embedded in reasoning with the PFDs alone).

Corollary 14. Knowledge base consistency for CFDnc is PTIME-complete. �

4.1 Logical Implication

Now we consider the logical implication questions of the form (T ,A) |= C(a),
(T ,A) |= Pf1(a) = Pf2(b), and ultimately T |= A - C. Since C can be a com-
plex concept and CFDnc is not closed under negation, logical implication must be
resolved by asking several separate questions by exhaustively applying the following
simplification rules:

Simp(∀Pf .C1 � C2) → Simp(∀Pf .C1) ∪ Simp(∀Pf .C2)

Simp(∀Pf .∀Pf′ .C1) → Simp(∀Pf .Pf′ .C1)

obtaining a set of irreducible concepts of the forms ∀Pf .A, ∀Pf .¬A, and ∀Pf .A :
Pf1, . . . ,Pfk → Pf′. We call the irreducible concepts obtained by Simp(C) simplifica-
tions of the concept C. Note that | Simp(C)| ∈ O(|C|2).

Lemma 15. (T ,A) |= C(a) (T |= A - C) if and only if (T ,A) |= D(a) (T |= A -
D, respectively) for all D ∈ Simp(C).

Proof (sketch) By observing that the each step of simplifications preserves logical
implication. �

The simplified logical implication questions can now be reduced in a natural way to
CFDnc knowledge base satisfiability as follows:

Theorem 16 (Instance Checking)

1. (T ,A) |= ∀Pf .A(a) iff (T ,A∪ {∀Pf .¬A(a)}) is not satisfiable.

2. (T ,A) |= ∀Pf .¬A(a) iff (T ,A ∪ {∀Pf .A(a)}) is not satisfiable.

3. (T ,A) |= (∀Pf .A : Pf1, . . . ,Pfk → Pf′)(a) iff

(T ,A ∪ {Pf(a) = b,A(c),D(Pf ′(b)),¬D(Pf ′(c)} ∪
⋃

0<i≤k

{Pfi(b) = Pfi(c)})

is not satisfiable, for b and c fresh individuals and D a fresh primitive concept.

4. (T ,A) |= (Pf1(a) = Pf2(b)) iff (T ,A ∪ {D(Pf1(a)),¬D(Pf2(b))} is not satisfi-
able, where D a fresh primitive concept. �

For logical implication questions of the form T |= A - C, where C is irreducible,
simply replace the ABox A in the above by {A(a)}. The results then follow by virtue
of the first three cases in the preceding theorem. Overall, we have the following:

Corollary 17. Both instance checking and logical implication for CFDnc are in
PTIME.
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5 Conjunctive Queries

A conjunctive query (CQ) is an expression of the form {x̄ | ∃ȳ.BODY} where BODY

is a conjunction of atomic formulas of the form C(x) and f(x) = y for C a CFDnc
concept description not containing PFDs, and x and y are variables among x̄ ∪ ȳ. We
often conflate the BODY of the query with the set of its atomic conjuncts. We call the
variables x̄ the answer variables. An answer to a CQ ϕ w.r.t. a KB K is a vector of
individuals ā ⊆ IN such that K |= ϕ(ā) where ϕ(ā) is a formula obtained from ϕ by
substituting x̄ by ā. We assume that CQs are connected; otherwise we simply process
each component separately.

To compute answers for a CQ ϕ we use the notion of CQ folding; we assume
(w.l.o.g.) that exactly one concept is associated with each variable in BODY of ϕ:

Definition 18. Let ϕ be a CQ. We define a set Fold(ϕ) to be the least set of CQ that
contains ϕ and is closed under the following two rules.

1. If {x̄ | ∃ȳ.BODY} ∈ Fold(ϕ), {f(x) = y,C(y)} ⊆ BODY and y does not ap-
pear elsewhere in BODY nor in x̄, then {x̄ | ∃ȳ.BODY − {f(x) = y,C(y)} ∪
{∀f.(C)(x)}} ∈ Fold(ϕ).

2. If {x̄ | ∃ȳ.BODY} ∈ Fold(ϕ) and {f(x) = y, f(x′) = y} ⊆ BODY, then {x̄ |
∃ȳ.BODY}[x/x′] ∈ Fold(ϕ);

The intuition behind this definition is that to find query answers it is now sufficient
to match the queries in Fold(ϕ) explicitly against the (extended) ABox (nodes that
denote individuals in δ(T ,A)) and verify correct concept membership for these nodes
as prescribed by the query as possible matches outside of this ABox are reduced to
instance checks against concepts obtained by the folding process.

Lemma 19. Let ϕ be a CQ with at least one answer variable. Then ā is an answer to
ϕ over K = (T ,A) if and only if there is a mapping μ : x̄ ∪ ȳ → SA where SA is the
set of states of the nfa(T ,A) that correspond to objects, such that

1. μ(x) is a state corresponding to an individual in A for x ∈ x̄ an answer variable;

2. μ(x)
f
� μ(y) ∈ δ(T ,A) for all f(x) = y ∈ BODY; and

3. μ(x) satisfies concept C for all C(x) ∈ BODY (as in Theorem 16),

for at least one {x̄ | ∃ȳ.BODY} ∈ Fold(ϕ).

Proof (sketch) Observing that δ(T ,A) restricted to SA is essentially a part of the mini-
mal model of K (as K is essentially Horn) and that every element of Fold(ϕ) implies ϕ,
it is easy to see that whenever (1-3) are satisfied, there will be a match of ϕ in the mini-
mal model and thus ā will be an answer. Conversely, if a match of ϕ in a minimal model
exists yielding ā answer, then part of the match will be realized in δ(T ,A) restricted to
o SA (as at least one variable must be bound to an ABox individual) and the reminder
of the match must be forest-like. Hence one of the queries in Fold(ϕ) will match in
δ(T ,A) and the remaining conjuncts will be verified using the folded concepts in that
query in condition (3). �
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For CQ without answer variables, we need an additional step that checks whether the
query (when equivalent to a concept) matches in the tree part of every interpretation
of K. We use the following construction: Let C be a CFDnc concept not containing a
PFD and Simp(C) = {∀Pf1 .L1, . . . , ∀Pfk .Lk}. We define an automaton

M(C) = nfasF1
(T ,A′)× . . . × nfasFk

(T ,A′).
where A′ = A∪{fi(s) = ai | ai an individual in A} such that s and fi do not appear
in T ∪A and, for 0 < j ≤ k, Fj is a set of final states: those states m in nfa(T ,A′) for

which m
Pfj
� Lj

Lemma 20. Let ϕ be a CQ without answer variables. Then K |= ϕ if and only if
conditions (2) and (3) in Lemma 19 are met, or if there is a concept C ∈ Fold(ϕ) such
that M(C) is nonempty.

Proof (sketch) The first condition is similar to Lemma 19, the second allows for queries
that can be folded into a concept to be realized completely outside of the (extended)
ABox. Nonemptiness of M(C) indeed corresponds to finding an object that makes the
query true in the minimal model. �

The constructions used in Lemmas 19 and 20 also yield the upper bounds; the lower
bounds follow from reductions from graph reachability, Horn-SAT, and the DFA inter-
section problem [11], respectively. For the final lower bound, one uses a knowledge
base in which the query is not directly satisfied by any ABox individual. Note that
PSPACE-hardness holds even for CQs of the form ∃x.(A1(x) ∧ . . . ∧ Ak(x)).

Corollary 21. Data complexity for CQ query answering over CFDnc KB is in PTIME.
CQ query answering over CFDnc KB is NLOGSPACE-hard for data complexity (in
|A|), PTIME-hard in |T +A|, and PSPACE-hard for combined complexity.

6 Related Work

PFDs in CFDnc were first introduced and studied in the context of graph-oriented data
models such as RDF and its refinements [8,18]. Subsequently, an FD concept construc-
tor was proposed and incorporated in Classic [3], an early DL with PTIME reasoning
capabilities, without changing the complexity of its implication problem. We mentioned
earlier that removing the conditions imposed on PFDs by (1) makes logical implication
EXPTIME-complete [9] and general reasoning undecidable [16].

We also mentioned earlier that relaxing the syntactic restrictions for left-hand sides
of inclusion dependencies often causes the loss of PTIME complexity for some of the
reasoning problems of CFDnc. Here are several cases worth noting.

– Allowing conjunction “�” yields the logic CFD⊥ and therefore makes logical im-
plication PSPACE-complete [17].

– Allowing conjunction and value restriction “∀” makes logical implication
EXPTIME-complete [9].

In [6], the authors consider a DL with functional dependencies and a general form of
keys added as additional varieties of dependencies, called a key box. They show that
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their dialect is undecidable for DLs with inverse roles, but becomes decidable when
unary functional dependencies are disallowed. This line of investigation is continued
in the context of PFDs and inverse features, with analogous results [14]. Subsequently,
Calvanese et al. have shown how DL-Lite can be extended with a path-based variety
of identification constraints analogous to PFDs without affecting the complexity of rea-
soning problems [5].

For CQ answering, it is worth observing that the transition function δ(T ,A) con-
tains a completion of the ABox A with respect to concept subsumptions. Hence despite
of data complexity laying outside AC0, a variant of the combined approach to query
answering [10,12] seems to be feasible.

7 Summary

We have presented the DL logic CFDnc, a variation on the logic CFD with the fol-
lowing notable properties.

– CFDnc retains what we believe are the most important features of CFD: its ability
to capture terminological cycles with universal restrictions over functional roles
and its ability to capture a rich variety of functional constraints over functional role
paths.

– In contrast to CFD, the logic adds an ability to express disjointness of atomic
concepts.

– Also in contrast to CFD, the logic supports important reasoning services in PTIME:
determining knowledge base consistency, deciding logical implication and instance
checking.

There are a number of open issues and directions for continued research. The con-
sequences of allowing CFDnc concept constructors other that conjunction on the left-
hand-side of inclusion dependencies is, to the best of our knowledge, open. In particular,
this includes values restrictions “∀”, negated primitive concepts “¬A” and PFDs.

One enhancement to CFDnc that we believe is straightforward, and that would con-
siderably enhance its utility for modelling RDF data sources, would be to allow roles
and role inclusion axioms of either the form “f - R” or the form “R1 - R2” to be
included in CFDnc TBoxes, and then to allow roles to be mentioned in conjunctive
queries. We conjecture that allowing EL role constructors on right-hand-sides of in-
clusion dependencies in CFDnc would also be possible without damage to its PTIME
capabilities.
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Abstract. Multi-instance learning is a generalisation of attribute-value
learning where examples for learning consist of labeled bags (i.e. multi-
sets) of instances. This learning setting is more computationally chal-
lenging than attribute-value learning and a natural fit for important
application areas of machine learning such as classification of molecules
and image classification. One approach to solve multi-instance learning
problems is to apply propositionalisation, where bags of data are con-
verted into vectors of attribute-value pairs so that a standard propo-
sitional (i.e. attribute-value) learning algorithm can be applied. This
approach is attractive because of the large number of propositional learn-
ing algorithms that have been developed and can thus be applied to the
propositionalised data. In this paper, we empirically investigate a vari-
ant of an existing propositionalisation method called TLC. TLC uses
a single decision tree to obtain propositionalised data. Our variant ap-
plies a random forest instead and is motivated by the potential increase
in robustness that this may yield. We present results on synthetic and
real-world data from the above two application domains showing that it
indeed yields increased classification accuracy when applying boosting
and support vector machines to classify the propositionalised data.

1 Introduction

Multi-instance learning is a generalisation of standard propositional learning–
also called attribute-value learning–first introduced in [6]. Whereas propositional
learning represents each example as one fixed-size vector of attribute-value pairs,
multi-instance learning uses a bag of such vectors to represent examples and class
labels are only associated with entire bags. The original learning assumption for
multi-instance learning presented in [6] is applicable to two-class classification
problems only and states that there is at least one vector in a positive bag that
causes that bag to be a positive one. Negative bags are assumed to not contain
any such “positive” vectors. Later work [18] has generalised this so-called multi-
instance assumption to allow for arbitrary minimum and maximum counts of
“positive” vectors as the necessary and sufficient condition for a positive bag.

Algorithms for multi-instance learning can be grouped into three classes. First
there are dedicated new algorithms, with the most prominent one being Diver-
sity Density [11]. Secondly, standard propositional learners like decision trees or
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1: x0

2: x1

 = false

9: x1

 = true

3: x2

 = false

6: x2

 = true

4 : pos (94.76/43.53) 

 = false

5 : pos (66.26/26.7) 

 = true

7 : pos (72.01/25.69) 

 = false

8 : pos (70.52/31.26) 

 = true

10: x2

 = false

13 : pos (138.9/0) 

 = true

11 : pos (58.18/11.46) 

 = false

12 : pos (49.36/20.86) 

 = true

Fig. 1. Unpruned decision tree used for propositionalisation. In (x/y), x gives the
total weight of all instances at the leaf node, and y gives the weight of all misclassified
instances. Each leaf node is labeled pos, which means that for each leaf the sum of
weights for positive instances is greater than the sum of weights for negative instances.

support vector machines, can be adapted–sometimes this is called upgraded–to
deal with multi-instance data. Typical examples are MITI [3] and MISVM [1].
Thirdly, instead of adapting the algorithm, the data can be adapted, or propo-
sitionalised, to turn it into a standard propositional representation. As multi-
instance learning is a special case of relational learning, any propositionalisation
method from relational learning [9] could be applied, but generic relational learn-
ing methods often do not scale well. Therefore specialised multi-instance propo-
sitionalisation methods, inspired by general relational algorithms, have attracted
some interest. One such method is PROPER [15], which is a specialisation of
RelAggs [10]. On the other hand, the TLC algorithm [18] introduced a gen-
uinely new way of propositionalisation, based on hierarchically partitioning the
full instance space into sub-regions. The algorithm presented and analysed in
this paper is a simple, yet effective extension of TLC.

The next section will describe this extension. Some implementation aspects are
discussed in Section 3. Section 4 provides insights into the algorithm’s behaviour
by applying it to a synthetic multi-instance problem and Section 5 evaluates the
method using a number of standard multi-instance benchmark datasets. Section
6 provides some pointers for future work and conclusions.

2 Propositionalisation Using Random Forests

The multi-instance learning method presented in this paper is a simple extension
of the Two-Level Classification (TLC) method as presented in [18]. TLC uses
a heuristic approach to partition the instance space into regions. Once this has
been done, a bag of instances (i.e. an example for learning in a multi-instance
dataset) is propositionalised by counting how many instances of the bag fall into
each region. These counts are attribute values in the propositionalised problem
(i.e. there is one attribute for each region in the partition). Once each bag of
data has been propositionalised in this form, and each bag’s classification has
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Bag

x0 x1 x2

false true false
false true true
false true true
true false false
true false true
true false true
true false false
true true true
false false false

⇒
Instance

r1 r2 r9 r3 r6 r10 r13 r4 r5 r7 r8 r11 r12

9 4 5 1 3 4 1 1 0 1 2 2 2

Fig. 2. Bag of instances and propositionalised form

been attached to its propositionalised form, a standard single-instance learning
algorithm for classification problems can be applied to the data.

The motivation for using this approach is that by dividing the instance space
into regions and measuring occupancy, it becomes possible to describe the dis-
tribution of a bag’s instances in instance space. This provides an alternative to
simpler propositionalisation approaches that compute summary statistics such
as the mean and standard deviation of the attribute values in a bag. In this
manner, it is possible to preserve more information when propositionalising.

The question is how to define the regions in the instance space. TLC uses a
standard single-instance decision tree to obtain a partition. To learn this tree,
all instances from all bags are joined into a single dataset, discarding bag mem-
bership information, and labeled by their bag’s class label. To make sure that
large bags receive as much weight as small bags, each instance in this dataset
is weighted by 1

|X| ×
N
b , where X is is the bag the instance comes from, N is

the number of instances in the joined data, and b is the number of bags in the
original dataset. In this manner, the sum of weights for the instances in the new
dataset is N .

Let us consider an illustrative example, where we generated synthetic multi-
instance data with three Boolean attributes x0, x1, and x2, for each bag. We
generated 100 bags of instances, where each bag had between one and 10 in-
stances, with equal probability for each bag size. When sampling instances, the
joint probability distribution over the attributes was the uniform distribution,
making all combinations of attribute values equally likely. The classification of
each bag was determined as follows. A bag received the class label “positive” if it
contained at least one instance for which both x0 and x1 had the value true. If it
did not contain any instance with this property, the bag was labeled “negative”.
This relationship is an example of the classic (or “standard”) assumption for
multi-instance learning given in [6].

We then applied the above process to generate a partitioning, using an un-
pruned decision tree grown using information gain (based on the REPTree clas-
sifier with option -P in WEKA [8]). The resulting tree is shown in Figure 1. The
leaf nodes in the tree show the majority class, which is “positive” in all cases,
determined by examining the sum of weights of the instances in each class. This
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tree defines 13 regions, one for each node in the tree. Note that all nodes in the
tree are used to define regions, not just the leaf nodes. In this example prob-
lem, (leaf) node 13 is the key region, because a bag is positive if and only if
it has an instance in this region, but in general any node (or even combination
of nodes) in the tree may need to be considered to determine class membership
of a bag. Thus, occupancy counts for all regions are used as attribute values
in the propositionalised data, so that the single-instance learner applied to the
propositionalised data can identify the salient relationship.

Figure 2 shows an example bag and its propositionalised version, proposition-
alised using the tree in Figure 1. The class label has been omitted in this case,
but the bag (and the resulting instance) are both positive because of member-
ship in region 13. Note that the tree is explored in a breadth-first manner to
generate the attribute values for the instance.

The hypothesis we investigate in this paper is that for large and messy real-
world data a single tree may not be sufficient to obtain a robust learning method
for multi-instance data. When considering standard classification problems, it is
well-known that ensembles of trees such as random forests [5] outperform a single
tree in terms of predictive performance. Here, we want to use an ensemble of
trees for propositionalisation. The basic process is the same: the multi-instance
dataset is converted into a single-instance dataset by attaching each instance’s
bag label to the instance and reweighting the instance, just as in TLC described
above. Then, rather than learning a single tree, we learn an ensemble of trees
using the random forest method, for example, using the RandomForest class in
WEKA. If tree i in the ensemble of trees has li nodes (internal nodes + leaf
nodes), then the ensemble defines

∑
i li regions. To propositionalise a bag of

instances, we then simply calculate the occupancy counts for all of these regions
and create a feature vector of size

∑
i li. This vector is then labeled with the

bag’s label and can be processed using a single-instance learner.
It is clear that the resulting propositionalised instances have many more at-

tributes than in the single-tree-based TLC method. The size of the feature vector
is determined by the size of the ensemble. Our hypothesis is that larger en-
sembles, and thus feature vectors, will generally lead to improved classification
accuracy when applying a learning algorithm to the propositionalised data.

3 Implementation in the WEKA Workbench

The WEKA machine learning workbench has support for multi-instance data in
recent versions of the software, facilitated by the availability of relation-valued
attributes: each bag of instances is stored as the value of a relation-valued at-
tribute. For the experiments reported in this paper, a new PartitionGenerator

interface has been added to WEKA that is implemented by several tree learn-
ers. It has a method that returns an array with counts that indicates, for a
given instance, in which regions of the partition this instance is present. A tree
learner may fill in this array by traversing a tree in a breadth-first fashion.
In the case of a tree ensemble, the vectors for the individual trees are simply
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concatenated. WEKA now also has a PartitionMembershipFilter that can
apply any PartitionGenerator to a given dataset to obtain these vectors for
all instances. In conjunction with a new MultiInstanceWrapper filter in the
MultiInstanceFilters package for WEKA 3.7, this filter can be applied to
multi-instance data. When this is done, the vectors for all instances in a bag are
simply added together by this filter to yield a vector of membership counts for
a bag.

For added convenience, the MultiInstanceLearning package contains a new
classifier implementation called TLC (for Two-Level Classification [18]) that ap-
plies the filtering process, using the above two filters, based on a particular
PartitionGenerator specified as a parameter, and then runs a standard single-
instance classifier on the propositionalised data. This single-instance classifier
can also be specified as a parameter. It is thus straightforward to run systematic
experiments with different partition generators and single-instance classifiers.
For the experiments in this paper, WEKA’s RandomForest class and REPTree

decision tree learner were modified to implement the PartitionGenerator in-
terface and the modified code is now part of the official WEKA code repository.

4 A Synthetic Problem

Our hypothesis is that propositionalisation using a random forest yields a more
robust classifier than propositionalisation based on a single decision tree. In this
section, we test this hypothesis empirically by introducing different levels of
noise and data redundancy in a very simple synthetic learning problem. In this
learning problem, there is a single numeric attribute that completely determines
the classification of a bag: if this attribute has at least one positive value in
the bag concerned, the bag is classified “positive”; otherwise, its class label is
“negative”. As we want to test the robustness of learning algorithms, we modify
this deterministic relationship by first duplicating the attribute and its values
for a particular bag to yield n copies and then taking a certain percentage of
these copies for the particular bag concerned and replacing all their positive
attribute values by their additive inverses (i.e. attribute value x becomes −x if
x > 0), without changing the class label of the bag. Hence, the modified data
has n attributes per bag instead of one, where some of the attributes of positive
bags may be corrupted and do not correctly indicate that the bag is positive.
A learning algorithm must thus exploit the redundancy in these attributes to
achieve maximum accuracy and cannot rely on a single attribute alone.

The exact set-up of the experiment is as follows. Based on a particular seed for
the pseudo random number generator, we generate 100 bags containing between
one and five instances each, where each bag size is given equal probability. For
each bag, we first generate uncorrupted attribute values by sampling from the
uniform distribution over the range [−0.5, 0.5). If one of these attribute values is
positive, the bag’s class label is set to “positive”, otherwise it is set to “negative”.
Once the class label has been determined, n copies of the uncorrupted attribute
values for a bag are generated to yield n attributes. Then, a biased coin is flipped
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n times, where this coin has probability p of coming up heads. If heads is the
result of the coin flip, all positive attribute values in the corresponding copy of
the attribute for the bag concerned (if any) are replaced by their additive inverse
to introduce non-determinism in the relationship between this attribute’s values
and the bag’s classification. In this way, all negative bags in the data have n
identical attributes, but the n attributes of a positive may bag differ, depending
on the value of the chosen probability p.

To measure accuracy of a learning algorithm on this data, we apply stratified
10-fold cross-validation to estimate the value of the kappa statistic, which can
be viewed as a normalised version of classification accuracy that is particularly
useful when the classes are unbalanced. Kappa is computed as follows:

κ =
a − ar

1− ar
,

where a is the estimated classification accuracy of the learning algorithm we
want to evaluate, and ar is the expected accuracy of a random classifier that
assigns instances randomly to classes in such a manner that it assigns the same
number of instances to each class as the learning algorithm we are evaluating.
If kappa is greater than zero, the learning algorithm exhibits accuracy greater
than what would be expected by assigning classifications randomly to the bags
occuring in the test folds of the cross-validation. A value of one is the maximum
that can be achieved.

We compare propositionalisation using unpruned decision trees grown using
the information gain (based on REPTree with option -P in WEKA) to propo-
sitionalisation using a random forest of size 10 (based on RandomForest with
option -K 1 in WEKA). LogitBoost with decision stumps and 100 boosting
iterations was used as the learning algorithm for the propositionalised data
(LogitBoost with option -I 100 in WEKA). Figures 3 and 4 show the results
obtained for different numbers of attributes (i.e. values of n) and two different
noise levels (i.e. values of p). Figure 3 shows results for the case where p = 0.1
and Figure 4 shows results for the case where p = 0.3. Each point in the plot cor-
responds to an average over 10 different runs of the experiments, where data was
generated from scratch for each run using a different seed for the pseudo random
number generator, followed by 10-fold cross-validation on this fresh data. The
error bars correspond to 95%-level confidence intervals.

The graphs show that both propositionalisation methods benefit from redun-
dancy in the data: accuracy increases as the number of attributes increases. How-
ever, at the higher noise level we consider (p = 0.3), accuracy levels out earlier
when using a single, deterministically-grown decision tree. In contrast, proposi-
tionalisation using random forests benefits more from adding redundancy in the
input by including more attributes: we can see that for p = 0.3, and more than
four attributes (n > 4), the random-forest-based method achieves a level of ac-
curacy that is statistically significantly higher than that obtained using a single
tree—the 95%-level confidence intervals for the two methods do not overlap.
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Table 1. 10-times 10-fold cross-validated classification accuracy obtained using linear
support vector machines

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 84.4±13.2 87.7±10.7 89.1±10.6 89.4± 10.3
musk2 76.0±12.9 80.7±11.6 80.4±11.1 80.5± 10.9
mutagenesis3-atoms 86.5± 8.5 86.6± 8.1 86.7± 8.0 86.7± 8.1
mutagenesis3-bonds 86.1± 7.3 86.7± 7.5 86.7± 7.6 87.1± 7.5
mutagenesis3-chains 83.4± 8.9 84.5± 9.0 84.8± 9.6 85.3± 9.3
thioredoxin 88.4± 4.2 88.7± 4.6 89.3± 4.2 89.6± 4.2
suramin 65.0±45.2 61.0±46.9 57.0±47.7 55.0± 47.9
elephant 80.9± 9.8 86.0± 8.0 88.8± 7.4 ◦ 88.9± 7.0 ◦
fox 63.0± 9.2 62.7± 9.1 65.0±10.0 66.2± 8.1
tiger 80.1± 9.1 81.1± 9.6 83.6± 8.2 84.3± 7.9
bikes 79.6± 4.6 81.6± 4.2 83.8± 4.3 ◦ 84.3± 3.8 ◦
cars 67.8± 4.7 72.4± 4.4 ◦ 75.4± 4.8 ◦ 76.1± 4.4 ◦
people 78.4± 4.6 80.7± 4.5 82.5± 3.9 ◦ 83.4± 3.9 ◦

◦ statistically significant improvement

5 Experiments on Real-world Data

To evaluate the performance of the random-forest-based propositionalisation ap-
proach, we performed experiments on benchmark multi-instance datasets that
have previously been used in the literature. For propositionalisation, we used un-
pruned decision trees grown deterministically using information gain (REPTree
with option -P in WEKA), and random forests with 10, 50, and 100 trees
(RandomForest with options -I 10, -I 50, and -I 100 in WEKA). Classifi-
cation accuracy was estimated using 10-times 10-fold stratified cross-validation.
Propositionalisation was performed separately based on each of the 100 training
sets of the repeated cross-validation, so that the test data was never used in
the propositionalisation process. We evaluated two learning algorithms in con-
junction with the propositionalisation methods: linear support vector machines
with C = 1 (SMO with option -no-checks -N 2 in WEKA), using WEKA’s
NonSparseToSparse filter to create input data in sparse format, and boosted
decision stumps, using 100 boosting iterations (LogitBoost in WEKA with op-
tion -I 100). The corrected resampled paired t-test [13] was used to establish
statistical significance when considering observed differences in estimated accu-
racy, with a significance level of 0.05. All experiments were performed using the
WEKA Experimenter interface [8].

The experimental results are shown in Tables 1 and 2. They include results for
the two well-known musk datasets [6], where the task is to determine whether a
molecule is active based on its geometric properties. Another task included is mu-
tagenicity prediction [16], which was considered for multi-instance tree and rule
learning in [19], based on three different representations of molecules as bags of
instances muta-atoms, muta-bonds and muta-chains. We also include the thiore-
doxin protein identification task [17] and the suramin data, which is another
drug activity prediction problem: identifying suramin [4] analogues that can act
as anti-cancer agents. Image classification is another important application area
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Table 2. 10-times 10-fold cross-validated classification accuracy obtained using Logit-
Boost with 100 boosting iterations

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 84.6±12.9 86.2±12.0 88.4±10.4 88.4± 11.4
musk2 76.5±12.6 80.9±10.8 82.5±11.7 82.7± 12.2
mutagenesis3-atoms 85.5± 9.3 86.4± 8.7 86.0± 8.7 85.5± 8.3
mutagenesis3-bonds 86.7± 7.3 87.7± 7.1 87.6± 7.5 87.2± 7.0
mutagenesis3-chains 87.7± 8.1 86.5± 8.6 87.4± 7.6 87.8± 8.3
thioredoxin 90.2± 5.0 90.6± 4.7 91.2± 4.8 91.9± 4.2
suramin 49.5±47.9 56.5±48.0 51.5±48.4 56.0± 48.3
elephant 79.8± 9.4 83.7± 8.5 86.3± 7.5 86.4± 7.0
fox 63.0±10.0 62.4±11.2 65.9±10.9 64.4± 10.3
tiger 78.2± 8.8 81.4± 9.0 83.2± 8.5 83.5± 9.2
bikes 79.7± 4.5 81.2± 4.0 82.3± 4.7 83.2± 4.6 ◦
cars 70.1± 5.1 72.9± 3.9 74.8± 5.0 ◦ 75.1± 4.5 ◦
people 77.3± 4.6 79.6± 4.1 80.4± 4.1 81.0± 3.8 ◦

◦ statistically significant improvement

of multi-instance learning methods. We include two sets of content-based im-
age classification datasets. The first set consists of the elephant, fox and tiger [1]
datasets and the second one contains the bikes, cars and people datasets. The lat-
ter set is based on Ohta-based features as in [12], and derived from the GRAZ02
dataset [14].

Table 1 shows that, when applied in conjunction with a linear support vector
machine, using random forests for propositionalisation is preferable to using a
single deterministic decision tree. This is particularly apparent in the case of the
image classification datasets. Noteworthy improvements in predictive accuracy
are obtained for all six image classification problems when using 100 trees in the
random forests, and in four cases the improvement is statistically significant. The
results also show that accuracy generally improves as more trees are included
in the random forests. Again, bigger improvements are obtained in the image
classification datasets. This is consistent with our hypothesis that random-forest-
based classification can better exploit redundancy in the input data because the
features in the image classification datasets are likely to be highly redundant.

Table 2 shows a similar picture when using 100 boosted decision stumps in-
stead of linear support vector machines. Using random forests with 100 trees
instead of a single unpruned decision tree yields higher estimated accuracy for
12 out of the 13 datasets. In the case of the three image classification datasets
bikes, cars, and people, the improvement in accuracy is statistically significant.

Comparing the performance of boosted stumps and support vector machines
when using propositionalisation based on random forests with 100 trees, we
can see that support vector machines produce better accuracy on the image
classification datasets, whereas there is no clear difference on the other datasets.
Given that 100 boosted decision stumps can only test a maximum of 100 regions
in the partitioned instance space, this indicates that high accuracy on the image
classification datasets requires consultation of more than 100 regions to yield
accurate classifications.
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Table 3. Average training time in seconds in 10-times 10-fold cross-validated classifi-
cation, obtained using linear support vector machines

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 0.1±0.1 0.1± 0.1 0.4± 0.0 ◦ 1.0± 0.1 ◦
musk2 0.9±0.1 2.2± 0.3 ◦ 13.7± 2.0 ◦ 36.3± 6.1 ◦
mutagenesis3-atoms 0.1±0.0 0.8± 0.1 ◦ 9.5± 0.7 ◦ 62.9± 18.4 ◦
mutagenesis3-bonds 0.1±0.0 2.2± 0.1 ◦ 23.3± 2.2 ◦ 127.7± 27.7 ◦
mutagenesis3-chains 0.3±0.0 4.2± 0.2 ◦ 59.0±13.1 ◦ 263.3± 47.7 ◦
thioredoxin 3.1±0.1 55.9± 2.9 ◦ 665.2±93.5 ◦ 1919.3±145.9 ◦
suramin 0.0±0.0 0.2± 0.0 ◦ 0.8± 0.1 ◦ 1.8± 0.1 ◦
elephant 0.3±0.0 0.8± 0.0 ◦ 7.5± 0.4 ◦ 41.4± 18.3 ◦
fox 0.3±0.0 0.9± 0.1 ◦ 10.4± 0.6 ◦ 73.2± 27.3 ◦
tiger 0.2±0.0 0.6± 0.0 ◦ 5.8± 0.3 ◦ 21.3± 2.8 ◦
bikes 1.0±0.1 5.9± 0.2 ◦ 105.8±17.5 ◦ 400.0± 75.4 ◦
cars 1.4±0.1 9.5± 0.4 ◦ 213.8±34.6 ◦ 729.8±133.4 ◦
people 0.9±0.1 5.0± 0.2 ◦ 76.6±13.6 ◦ 317.9± 61.3 ◦

◦ statistically significant degradation

It is instructive to compare the accuracy obtained in the experiments pre-
sented here to that obtained in [2] (Table 4, semi-random ensemble), which
evaluated random forests of size 100 grown using a modified version of the MITI
algorithm [3], a tree inducer designed for multi-instance learning. Exactly the
same experimental protocol, based on the same 10-times 10-fold cross-validation
runs, was applied in [2]. Propositionalisation using 100 trees, applied in conjunc-
tion with linear support vector machines (Table 1), produces higher estimated
accuracy for eight of the twelve datasets considered both here and in [2], and
lower accuracy for four datasets. Overall, accuracy obtained using proposition-
alisation appears very competitive.

Note that, computationally, support vector machines are well suited for the
propositionalised data: the propositionalised bags yield very sparse feature vec-
tors because most regions defined by a decision tree will not contain any instances
of any particular bag. Hence, most attribute values in the propositionalised data
will be zero, yielding sparse attribute vectors. Sparse vectors can be dealt with
very efficiently in support vector machines because dot products of sparse vec-
tors can be computed by iterating over the non-zero elements in the vectors
only. WEKA supports data in sparse format, where only non-zero values in the
instances are explicitly represented, and the NonSparseToSparse filter can be
used to create this data.

Tables 3 and 4 show training times, including the propositionalisation process,
averaged over the 10 runs of 10-fold cross-validation. It can be seen that using
random forests to propositionalise the data significantly increases training time
in all cases. One reason is that a tree ensemble needs to be grown, rather than a
single tree. (Note that this process can be parallelised.) Another reason is that
the instances in the propositionalised data have many more attributes when using
random forests than when using a single deterministic tree because an ensemble
of trees is used instead of a single tree and a single tree in a random forest
is generally larger than a single deterministically grown tree, where attribute
selection using information gain aims to minimise tree size. The results also show
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Table 4. Average training time in seconds in 10-times 10-fold cross-validated classifi-
cation, obtained using LogitBoost with 100 boosting iterations

Dataset Decision Forest Forest Forest
Tree (10 trees) (50 trees) (100 trees)

musk1 0.2±0.1 0.7±0.1 ◦ 3.5± 0.2 ◦ 7.6± 0.5 ◦
musk2 1.1±0.2 5.5±0.6 ◦ 30.9± 3.5 ◦ 70.6± 8.7 ◦
mutagenesis3-atoms 0.6±0.0 9.7±0.4 ◦ 53.7± 1.9 ◦ 129.3± 11.1 ◦
mutagenesis3-bonds 0.9±0.1 14.4±0.5 ◦ 82.9± 3.2 ◦ 215.2± 23.6 ◦
mutagenesis3-chains 1.2±0.1 21.6±0.8 ◦ 134.7± 8.5 ◦ 427.2± 37.2 ◦
thioredoxin 7.0±0.3 106.2±3.6 ◦ 946.0±59.2 ◦ 2641.3±126.3 ◦
suramin 0.0±0.0 0.2±0.0 ◦ 1.1± 0.1 ◦ 2.5± 0.2 ◦
elephant 0.6±0.1 9.2±0.3 ◦ 49.6± 1.3 ◦ 116.6± 9.4 ◦
fox 0.7±0.1 11.0±0.4 ◦ 60.5± 1.3 ◦ 147.2± 11.3 ◦
tiger 0.5±0.1 8.0±0.4 ◦ 42.6± 1.3 ◦ 95.7± 7.0 ◦
bikes 7.1±0.2 90.5±1.4 ◦ 598.0±12.0 ◦ 1545.8± 38.2 ◦
cars 10.7±0.3 136.8±1.7 ◦ 952.5±23.0 ◦ 2381.3±131.4 ◦
people 6.0±0.2 76.2±1.1 ◦ 496.3± 7.7 ◦ 1208.0± 49.9 ◦

◦ statistically significant degradation

that applying a linear support vector machine is faster than applying boosting
due to the fact that sparse data can be processed efficiently.

6 Conclusions

Multi-instance learning is an interesting and useful generalisation of proposi-
tional learning. This paper has presented a simple, yet effective extension of the
TLC propositionalisation method that grows random forests for propositional-
ising multi-instance data. The new method’s increased robustness with regard
to noise in the input was demonstrated with a synthetic example, and a com-
prehensive evaluation on benchmark datasets representing image and molecule
classification problems also shows improved accuracy for the new method, albeit
at the cost of a considerable increase in runtime.

The standard random forest method applied in this paper chooses split points
on numeric attributes deterministically when considering these attributes for
splitting. However, as the instances’ class labels used in this process are sim-
ply taken to be their bags’ labels, they may be incorrect. Hence, it would be
interesting to apply a method that chooses split points randomly. This is what
the Extra-Trees algorithm [7] for growing a tree ensemble does. Applying it
to propositionalisation of multi-instance data is a promising avenue for future
research.
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ative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto,
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Abstract. Most traditional supervised classification learning algorithms
are ineffective for highly imbalanced time series classification, which has
received considerably less attention than imbalanced data problems in
data mining and machine learning research. Bagging is one of the most
effective ensemble learning methods, yet it has drawbacks on highly
imbalanced data. Sampling methods are considered to be effective to
tackle highly imbalanced data problem, but both over-sampling and
under-sampling have disadvantages; thus it is unclear which sampling
schema will improve the performance of bagging predictor for solving
highly imbalanced time series classification problems. This paper has
addressed the limitations of existing techniques of the over-sampling
and under-sampling, and proposes a new approach, hybrid sampling
technique to enhance bagging, for solving these challenging problems.
Comparing this new approach with previous approaches, over-sampling,
SPO and under-sampling with various learning algorithms on benchmark
data-sets, the experimental results demonstrate that this proposed new
approach is able to dramatically improve on the performance of previous
approaches. Statistical tests, Friedman test and Post-hoc Nemenyi test
are used to draw valid conclusions.

Keywords: Hybrid sampling, over-sampling, under-sampling, imbalanced
data, time series data, ensemble learning, and classification.

1 Introduction

In data mining research, mining time series data is one of the most challenging
problems [1], and the imbalanced data problem is a fundamental classification
problem [2]. Most traditional supervised classification learning algorithms are
ineffective for highly imbalanced time series classification (HITSC) [3]. Due
to its challenging issues of high dimensionality, large scale, and uneven class
distribution among different classes, and considering the sequence of the
numerical attributes carrying special information as whole instead of individual
attributes [4, 5], it has received considerably less attention than imbalanced
data problems in data mining and machine learning research. HITSC refers to
a situation in which the proportions of the training examples of time series
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data are varied significantly among different classes. This study mainly focuses
on imbalanced binary time series classification (TSC), e.g., the proportion of
positive examples that are far fewer than the proportion of negative examples
in the training data of the TSC.

Bagging [6] was introduced by Breiman in 1996. Previous research shows that
bagging can improve the performance of individual classifiers if base learners
are unstable [6–9], but it has a limitation for solving highly imbalanced data
problems. Sampling techniques are considered to be one of the most effective
ways to tackle highly imbalanced problems, but since both over-sampling and
under-sampling techniques have their limitations, it is unclear which sampling
schema is able to enhance the performance of bagging. These challenging issues
have motivated me to propose a new approach, hybrid-sampling (H-Sampling)
techniques, to enhance bagging, for solving HITSC problems.

The proposed new H-sampling approach randomly over-samples the positives

and under-samples the negatives to half of the original training size, |P |+|N |
2 ,

respectively, to generate a set of balanced bootstrap samples from the original
training set. This set of balanced bootstrap samples is used to train a set of
classifiers; then each test example is predicted by a set of trained classifiers;
lastly, the final prediction of each test example is made by the majority votes of
these predictions of the set of trained classifiers. Comparing the performance of
this new approach with previous approaches [10, 3, 5],the over-sampling method
SPO and under-sampling method with various algorithms on the benchmark
data-sets, the experimental results demonstrate that the proposed new approach,
H-sampling to enhance bagging, is superior to previous approaches [10, 3, 5], and
dramatically improves the performance of previous approaches. Statistical tests,
Friedman and post-hoc Nemenyi tests for comparing the performance of multiple
learning methods over multiple benchmark data-sets are applied to draw valid
conclusions.

The key contributions of this paper are as follows. (1) This paper addresses
the limitations of the existing over-sampling and under-sampling techniques,
and proposes a new approach, H-sampling technique to enhance bagging, for
improving the performance of prediction models to solve the HITSC problems.
(2) Empirically comparing the performance of this new approach with previous
approaches on the benchmark data-sets, the experimental results demonstrate
that the new approach,H-Sampling integrating the unstable base learner, decision
trees J48 with bagging, is effective for solving the HITSC problems and is
dramatically superior to previous approaches: the over-sampling method, SPO
and the under-sampling method with KNN.

The paper is organized as follows. Section 2 presents an outline of the proposed
new approach. Section 3 shows related work. Section 4 presents the evaluation
measures. Sections 5 and 6 provide the experimental setting and experimental
analysis. Section 7 concludes this work.
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Algorithm 1. H-Sampling Bagging

Input:
D, original training set, containing |P | positive
and |N | negative instances;
a learning scheme (algorithm, e.g., J48);

Output: A composite model, C∗.

Method:

for i = 1 to k do
Create balanced bootstrap samples of
size |Di| sub-sets, |Di| = |Pi|+ |Ni| where
Pi and Ni are randomly drawn with replacement
from original training set, P and N , respectively:

|Pi| = |Ni| = (|P |+|N|)
2

and;

end
return a set of bootstrap samples Di (containing k bootstrap samples);

Train each base classifier model Ci from Di;

To use the composite model, C∗ for a test set T on an instance x where its true
class label is y:

C∗(x) = argmaxy

∑
i

δ (Ci(x) = y)

Delta function δ(�) = 1 if argument is true, else 0.

2 Hybrid Sampling Approach

Algorithm 1 outlines the proposed new approach,H-sampling integrating unstable
learner decision trees J48 with bagging. This new approach is different from
previous approaches [10, 3, 5] because H-sampling reduces the disadvantage of
under-sampling, loosing to much important information for training, and the
disadvantages of over-sampling, over-fitting, high computational cost and longer
training time. This new approach, H-sampling, randomly selects the positives and

the negatives to the balanced point at half of the original training size, |P |+|N |
2 .

For example, the positives are randomly selected with replacement from the entire
positive class to the size of the balanced point; the negatives are randomly selected
with replacement from the negative class of original training set to the size of the
balanced point.

For the proposed prediction model, suppose the size of an ensemble is k, a set
of classifiers Ci (for i=1 to k) is built from a set of balanced bootstrap samples
Di; each new test example is classified by a set of classifiers Ci, and the final
prediction is made by majority votes to aggregate the predictions of the set of
classifiers Ci by using a delta function δ(�) = 1 if the prediction of Ci is a true
class label, else the delta function δ(�) = 0.

Majority votes, aggregating the set of predicted class labels, use the delta
function to vote for a class and the class label obtaining the highest number of
votes is considered as the output of the final prediction.
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3 Related Work

This paper proposes a new approach, H-sampling integrating unstable learner
decision trees J48 with bagging for solving HITSC problems. This new approach
is different to previous approaches [10, 3, 5] because both over-sampling and
under-sampling techniques have disadvantages. This new approach not only
reduces the limitations of over-sampling and under-sampling techniques, but
also enhances bagging to effectively improve the performance of the previous
approaches for solving HITSC problems.

The main disadvantages of over-sampling are that over-sampling dramatically
increases the computational cost of training and training time, and may cause
over-fitting, even though it maintains the important information for training,
because additional large number of new positive examples with high dimensional
features are generated to balance the training set for HITSC [3]. The main
disadvantages of under-sampling may lose important and useful information
for training and may degrade the performance of the prediction models, even
though it significantly reduces the computational cost of training, because only a
proportion of the majority class examples are selected to train prediction models.

In earlier research, a structure-preserving over-sampling (SPO) [10] method
with support vector machines (SVM) was proposed for solving HITSC problems;
it achieves better results than other over-sampling methods and state-of-the-art
methods in TSC, based on a comparison of the average values of two evaluation
measures, Fvalue and Geometric mean (Gmean), without statistical analysis to
support this conclusion. The study compared SPO with over-sampling methods,
which include repeating (REP), SMOTE [11] (SMO), Borderline SMOTE [12]
(BoS), ADASYN [13] (ADA), and DataBoost [14] (DB); and with state-of-the-
art methods in TSC, which include Easy Ensemble [15] (Easy), BalanceCascade
[15] (Bal), One nearest neighbor classifier using Euclidean distance [16] (1NN),
and One nearest neighbor classifier using dynamic time warping distance [17]
(1NN DW).

Our other work [3] proposed an under-sampling technique integrated with
SVM, which is more efficient than other more complicated approaches, such as
SPO with SVM for HITSC. However, it is unclear whether the under-sampling
method with various supervised learning algorithms is more effective than the
over-sampling method, SPO, and the under-sampling technique integrated with
SVM for HITSC.

Our previous work [5] conducted an empirical evaluation of the performance
of over-sampling methods (e.g., the complex SPO [10]) and under-sampling
with various supervised learning algorithms selected from Weka [18], such as
Sequential Minimal Optimization (SMO) of SVM, decision trees (J48), Random
Tree (RTree), K Nearest Neighbor (KNN) with default parameter setting K=1,
and Multi-layer Proceptron (MLP). The experimental results indicate that the
under-sampling technique with KNN achieves better results than the existing
complicated SPO method for ITSC.
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3.1 Statistical Tests

Friedman and post-hoc Nemenyi tests are applied to compare the performance
of the multiple learning methods on multiple data-sets, where it is inappropriate
to compare their average value, because the average values are susceptible to
outliers [19, 5]. Therefore, average rank is preferred for evaluating the performance
of multiple learning methods. This work therefore performs statistical tests to
evaluate the performance of the multiple learning methods on multiple data-sets.
The Friedman test is utilized to obtain the average rank of the performance of
the multiple learning methods on multiple data-sets; the post-hoc Nemenyi test
is utilized to check whether there is a statistically significant difference between
the learning methods at a 95% confidence interval.

4 Evaluation Metrics

The estimated overall accuracy is an ineffective evaluation measure for the
imbalanced classification task [5, 20–22], so two evaluation measures are used
for this study: Fvalue and Gmean.

Table 1 presents a confusion matrix for a binary classification problem; the
columns represent the predicted class, and the rows represent the actual class.
The evaluation measures are derived from the confusion matrix as follows:

Table 1. Confusion matrix for a binary classification problem

Predicted Positives Predicted Negatives

Actual Positives (P ) True Positive (TP ) False Negative (FN)
Actual Negatives (N) False Positive(FP ) True Negative (TN)

T P R =
T P

T P + F N
(1)

T NR =
T N

T N + F P
(2)

recall =
T P

T P + F N
(3)

precision =
T P

T P + F P
(4)

Fvalue =
2recall ∗ precision

recall + precision
(5)

Gmean =
√

T P R ∗ T NR (6)
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5 Experimental Setup

Java platform is used to implement the new approach, H-sampling technique
integrated unstable learner, decision trees J48 [18] with bagging, and to investigate
the performance of the new approach and previous approaches. 31 bootstrap
samples are used in the ensemble. A 10-trial 10-fold cross-validation evaluation is
performed for this study. The Friedman test is used for the calculation of average
rank.

Table 2. Time series data-sets [5]

Data-sets Data Information Class Information

TS Instances Ratio Previous Altered
Index Name Length (P+&N−) P+ N− P+/N− Class class

1 Adiac 176 781 23 758 0.0303 37 2
2 S-Leaf 128 1125 75 1050 0.0714 15 2
3 Wafer 152 7164 762 6402 0.0119 2 2
4 FaceAll 131 2250 112 2138 0.0524 14 2
5 Yoga 426 3300 1530 1770 0.8644 2 2

5.1 Data-Sets

Table 2 shows a summary of the characteristics of the five time series data-
sets from the public UCR time series repository [23], which were used as the
benchmark data-sets of previous work [10, 3, 5].

6 Experimental Results Analysis

This section contains two sub-sections: 6.1 comparison of the performance of
over-sampling, under-sampling with various algorithms and H-sampling methods
on HITSC; and 6.2 comparison of the performance of other learning methods,
SPO, under-sampling with various algorithms, and H-sampling methods for
HITSC.

6.1 Comparison of the Performance of Over-sampling,
Under-sampling, and Hybrid-sampling Methods

Table 3 presents a comparison of the performance of this new approach, H-
sampling to enhance bagging, with previous approaches, over-sampling methods
and the under-sampling with various algorithms based on the Fvalue and Gmean

measures. The experimental results indicate that this new approach, H-sampling
to enhance bagging, achieves the best performance with Fvalue across all over-
sampling methods and the under-sampling with various algorithms on average
value and average rank of Fvalue. This new approach achieves the highest average
value 0.962 with smallest standard deviation (STD) 0.031 and the best average
rank 1.4, respectively, which are the best results across all methods; while KNN
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Table 3. Comparison of the performance of over-sampling, under-sampling methods
with different learning algorithms, and H-sampling to enhance bagging based on the
evaluation metrics Fvalue and Gmean

Metrics
Data-set Results from Previous Research [10] Results from previous Work [5] This Work

Over-sampling Methods Under-sampling H-sampling

Name REP SMO BoS ADA DB SPO SVM J48 RTree KNN MLP H-Bagging

Fvalue

Adiac 0.375 0.783 0.783 0.783 0.136 0.963 0.967 0.883 0.903 0.918 0.947 0.975
S-Leaf 0.761 0.764 0.764 0.759 0.796 0.796 0.841 0.820 0.849 0.836 0.786 0.932
Wafer 0.962 0.968 0.968 0.967 0.977 0.982 0.891 0.929 0.956 0.999 0.933 0.980
FaceAll 0.935 0.935 0.935 0.935 0.890 0.936 0.957 0.876 0.863 0.909 0.919 0.995
Yoga 0.710 0.729 0.721 0.727 0.689 0.702 0.744 0.771 0.811 0.807 0.780 0.926

AverageValue 0.740 0.836 0.834 0.834 0.698 0.876 0.880 0.856 0.876 0.894 0.873 0.962

STD 0.236 0.108 0.110 0.109 0.332 0.122 0.110 0.061 0.055 0.075 0.083 0.031

AverageRank 8.90 6.90 7.30 7.70 8.70 4.50 7.40 7.80 6.40 4.40 6.60 1.40

CD 7.45

Gmean

Adiac 0.480 0.831 0.831 0.831 0.748 0.999 0.957 0.910 0.920 0.958 0.975 0.989
S-Leaf 0.800 0.861 0.861 0.849 0.898 0.898 0.902 0.809 0.812 0.887 0.856 0.976
Wafer 0.965 0.969 0.970 0.970 0.980 0.984 0.903 0.907 0.956 0.998 0.937 0.988
FaceAll 0.950 0.950 0.950 0.950 0.948 0.957 0.966 0.870 0.860 0.929 0.925 0.997
Yoga 0.741 0.756 0.750 0.755 0.724 0.735 0.630 0.807 0.803 0.808 0.774 0.976

AverageValue 0.787 0.783 0.872 0.871 0.860 0.915 0.872 0.861 0.870 0.916 0.893 0.985

STD 0.197 0.088 0.090 0.089 0.117 0.108 0.138 0.051 0.067 0.073 0.079 0.009

AverageRank 9.30 6.80 6.90 7.20 7.50 4.10 6.60 8.60 8.20 4.20 7.20 1.40

CD 7.45

with the under-sampling method achieves the average value 0.894 with STD
0.075 and average rank 4.40, respectively, which is the second best across all
methods on Fvalue.

On average value and average rank of the Gmean measure, this new approach,
H-sampling to enhance bagging achieves the highest average value 0.985 with
smallest STD 0.009 and lowest average rank 1.40, respectively, which is the best
across all the compared methods; while, the SPO over-sampling method achieves
average value 0.915 with STD 0.108 and average rank 4.1, respectively, which is
the second best across all the compared methods on average rank of the Gmean

measure, whereas KNN with the under-sampling method achieves average value
0.916 with STD 0.073 and average rank 3.4, respectively, which is the second
best across all the compared methods on average of the Gmean measure. The
results highlighted in red indicate the correction of the previous work [10, 5].

Figs 1 and 2 present a comparison of this new approach, H-sampling to
enhance bagging, with previous approaches, over-sampling and under-sampling
with various algorithms, with the Nemenyi test, where the x-axis indicates
the ranking order of the sampling methods; the y-axis indicates the average
rank of the Fvalue and Gmean performance, respectively, and the vertical bars
indicate the “Critical Difference”. Groups of sampling methods that are no
significantly different at a 95% confidence interval are indicated when the vertical
bars overlap. Comparing the performance of this new approach with previous
approaches, over-sampling [10] and under-sampling with various algorithms [24],
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based on Fvalue and Gmean, H-sampling with bagging has the best average rank
on both measures. KNN with the under-sampling method has the second best
average rank of Fvalue; while the SPO over-sampling method has the second best
average rank of Gmean. Statistical tests indicate that there is no statistically
significant difference at a 95% confidence interval between over-sampling SPO,
under-sampling KNN, and H-sampling with Bagging on the average rank of
Fvlaue and Gmean; however, there is statistically significant difference at a 95%
confidence interval between H-sampling and two over-sampling methods, DB
and REP on Fvlaue measure, and between H-sampling and two over-sampling
methods,J48 and REP on Gmean measure.
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Fig. 1. Comparison of average rank of the Fvalue with the Nemenyi test for the over-
sampling, SPO, under-sampling, and H-sampling methods, where the x-axis indicates
the ranking order of all the sampling methods with learning algorithms, the y-axis
indicates the average rank of the Fvalue, and the vertical bars indicate the “Critical
Difference”
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Fig. 2. Comparison of average rank of the Gmean with the Nemenyi test for all the
over-sampling, under-sampling, and H-Bagging methods, where the x-axis indicates
the ranking order of all the sampling methods with learning algorithms, the y-axis
indicates the average rank of the Gmean, and the vertical bars indicate the “Critical
Difference”



382 G. Liang

6.2 Comparison of the Performance Learning Methods,
Over-sampling SPO, Under-sampling, and H-sampling Methods

Table 4 presents a comparison of the performance of previous work (learning
methods [10] and the under-sampling with various algorithms [5]), and this
work H-sampling with bagging based on Fvalue and Gmean evaluation measures.
The experimental results indicate that H-sampling with bagging achieves the
best performance on Fvalue and Gmean across all previous approaches, and H-
sampling methods on average value of 0.962 and 0.985, and average rank of 1.40
and 1.40, respectively, which is the best average value and average rank of Fvalue

and Gmean across all previous learning methods [10] and under-sampling method
[5]; KNN achieves an average value of 0.894 and 0.916, and an average rank of
3.0 and 2.4, respectively, which is the second best average value and average rank
of Fvalue and Gmean across all the remaining methods.The results highlighted
in red indicate the correction of the previous work [10].

Table 4. Comparison of the performance of learning methods from previous research
[10] and learning algorithms with under-sampling [5], and H-sampling from this work
based on evaluation metrics: Fvalue and Gmean

Metrics
Data-set Results from Previous Research [10] Results from Previous Work [5] This Work

Learning Methods Under-sampling H-sampling

Name Easy Bal. 1NN 1NN DW SPO SVM J48 RTree KNN MLP H-Bagging

Fvalue

Adiac 0.534 0.348 0.800 0.917 0.963 0.967 0.883 0.903 0.918 0.947 0.975
S-Leaf 0.521 0.578 0.716 0.429 0.796 0.841 0.820 0.849 0.836 0.786 0.932
Wafer 0.795 0.954 0.949 0.857 0.982 0.891 0.929 0.956 0.999 0.933 0.980
FaceAll 0.741 0.625 0.802 0.959 0.936 0.957 0.876 0.863 0.909 0.919 0.995
Yoga 0.356 0.689 0.652 0.710 0.702 0.744 0.771 0.811 0.807 0.780 0.926

AverageValue 0.589 0.639 0.784 0.774 0.876 0.880 0.856 0.876 0.894 0.873 0.962

STD 0.179 0.218 0.112 0.215 0.122 0.092 0.061 0.055 0.075 0.083 0.031

AverageRank 10.4 9 8.4 7.2 4.6 4.6 6.6 4.6 3.8 5.4 1.4

CD 7.00

Gmean

Adiac 0.782 0.897 0.875 0.920 0.999 0.957 0.910 0.920 0.958 0.975 0.989
S-Leaf 0.721 0.898 0.798 0.572 0.898 0.902 0.809 0.812 0.887 0.856 0.976
Wafer 0.817 0.970 0.953 0.870 0.984 0.903 0.907 0.956 0.998 0.937 0.988
FaceAll 0.792 0.918 0.983 0.985 0.957 0.966 0.870 0.860 0.929 0.925 0.997
Yoga 0.464 0.688 0.695 0.741 0.735 0.630 0.807 0.803 0.808 0.774 0.976

AverageValue 0.713 0.874 0.861 0.818 0.915 0.872 0.861 0.870 0.916 0.893 0.985

STD 0.145 0.108 0.117 0.164 0.108 0.113 0.051 0.067 0.073 0.079 0.009

AverageRank 10.80 6.50 7.20 7.10 3.50 7.10 7.20 6.50 3.20 5.50 1.40

CD 7.00

Figs 3 and 4 present a comparison of the performance of previous work
(learning methods and the under-sampling method with various algorithms)
and this new approach, H-sampling to enhance bagging, using the Nemenyi
test, where the x-axis indicates the ranking order of the learning methods and
learning algorithms; the y-axis indicates the average rank of Fvalue and Gmean

performance, respectively, and the vertical bars indicate the “Critical Difference”.
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Groups of learning methods and learning algorithms that are no statistically
significant difference at a 95% confidence interval are indicated when the vertical
bars overlap. Comparing the previous approaches [10, 5] and this approach, H-
sampling to enhance bagging, based on Fvalue and Gmean, H-sampling with
bagging has the best average rank on both measures. KNN with under-sampling
method has the second best average rank of Fvalue and Gmean. The statistical
test results demonstrate that H-sampling with bagging method is statistically
significantly better than 1NN, Bal. and Easy on Fvalue, and better than Easy on
Gmean at a 95% confidence interval; however, there is no statistically significant
difference between this new approach, H-sampling with bagging and previous
approaches, over-sampling SPO and under-sampling KNN at a 95% confidence
interval on both the Fvalue and Gmean measures.
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Fig. 3. Comparison of average rank of the Fvalue metric with the Nemenyi test for the
learning methods, SPO, under-sampling, and H-sampling methods, where the x-axis
indicates the ranking order of all the learning methods and sampling methods with
learning algorithms, the y-axis indicates the average rank of Fvalue, and the vertical
bars indicate the “Critical Difference”
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Fig. 4. Comparison of average rank of the Gmean metric with the Nemenyi test for
the learning methods, SPO, under-sampling, and H-sampling methods, where the x-
axis indicates the ranking order of all the learning methods, sampling methods with
learning algorithms, the y-axis indicates the average rank of Gmean, and the vertical
bars indicate the “Critical Difference”
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7 Conclusion

This paper has addressed the limitations of existing techniques of over-sampling
and under-sampling methods, and proposed a new approach, H-sampling schema
to enhance bagging for improving the performance of previous approaches. It
has empirically compared this new approach with the previous approaches of
over-sampling, SPO and under-sampling with various algorithms based on two
evaluation measures, Fvalue and Gmean on benchmark data-sets. Statistical tests
are used to draw valid conclusions.

This new approach, H-sampling, reduces the computational cost and training
time of over-sampling by using fewer positives in training, and increases the
capability of under-sampling by using more negatives for training. Bagging is
one of most effective ensemble learning methods for improving the performance
of the individual classifiers when base learners are unstable, but it also has
a limitation on highly imbalanced problems. The new approach integrates H-
sampling technique with an unstable base learner J48 to enhance bagging for
further improving the performance of the previous approaches. The experimental
results demonstrate that this new approach H-sampling method to enhance the
bagging dramatically improves the performance of the previous approaches, over-
sampling SPO and under-sampling with KNN. This new approach achieves the
highest average value with the lowest STD and the lowest average rank on
both evaluation measures, and it is superior to previous approaches on both
evaluation measures. For future work, I would like to investigate the impact of
the performance of H-sampling integrating bagging with other base learners:
unstable learners and stable learners.

Acknowledgments. Special thanks to Dr. Tony Bagnall for generously sharing
his ARFF format time series data-sets.

References

1. Yang, Q., Wu, X.: 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making 5(4), 597–604 (2006)

2. Hoens, T.R., Qian, Q., Chawla, N.V., Zhou, Z.-H.: Building decision trees for the
multi-class imbalance problem. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J.
(eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 122–134. Springer, Heidelberg
(2012)

3. Liang, G., Zhang, C.: An efficient and simple under-sampling technique for
imbalanced time series classification. In: CIKM 2012, pp. 2339–2342 (2012)
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Abstract. This paper presents a pilot study on the development of an
automated diagnostic tool for Attention Deficiency Hyperactivity Dis-
order (ADHD) based on regional anatomy of the child brain. For the
pilot study, amygdala and cerebellar vermis are chosen from magnetic
resonance images obtained from ADHD-200 consortium data set. These
regions play a vital role in the control of emotional response and be-
havior/locomotion, respectively. The images are preprocessed, registered
by transforming each image to the space of the population average. The
gray matter tissue probability values of amygdala and cerebellar ver-
mis are obtained by applying a region-of-interest mask. These values are
then used to train a Projection Based Learning algorithm for a Meta-
cognitive Radial Basis Function Network (PBL-McRBFN) for the diag-
nosis of ADHD and prediction of its subtype. Performance results show
that the PBL-McRBFN diagnoses ADHD and predicts its subtypes based
on these regions with an accuracy of approx. 65% and 62%, respectively.

Keywords: Attention Deficient Hyperactivity Disorder, Meta-cognitive
Radial Basis Function Network, Projection Based Learning, Region-of-
Interest, Magnetic Resonance Imaging.

1 Introduction

Attention Deficiency Hyperactivity Disorder (ADHD) is a childhood neuropsy-
chiatric disorder that is comorbid with other neurological disorders. It is esti-
mated that about 5% of school-going children world wide are affected by ADHD
[1]. The Diagnostic and Statistical Manual of Mental disorders, IV edition, Text
Revision defines ADHD as a persistent and age-inappropriate pattern of inatten-
tion, hyperactivity or both [2]. Although both genetic and environmental factors
are known to influence the onset of ADHD [3], the cause of the disorder is not
completely understood. The studies in literature that aim at understanding the
neurobiology of ADHD in childhood is extensively surveyed in [4].

Neuroimaging based regional anatomical study of the human brain can pro-
vide us insights to the neurobiology of ADHD in childhood. Magnetic Resonance
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Imaging (MRI) is one of the most important neuroimaging procedure that pro-
vides accurate information about the anatomy of the brain. Further, MRI based
studies on the pathophysiology of ADHD in the brains of children show signif-
icant decrease in total cerebral volume [5], abnormalities in the frontostriatal
areas, temporoparietal lobes, basal ganglia, corpus callosum [6], amygdala, and
thalamus [7], abnormal/delayed cortical development [8] etc. Therefore, there is
a need to develop automated diagnostic tools based on regional anatomical study
to understand the onset and development of ADHD. This paper reports a pilot
study on the development of an automated diagnostic tool that performs regional
anatomical study of the brain to understand the influence of the various regions
in the onset and development of ADHD. This pilot study reports the diagnos-
tic results from the analysis of amygdala and cerebellar vermis that are known
to play a key role in control of emotional response and behavior/locomotion,
respectively.

As we are interested in conducting a regional anatomical study, we use the
Region-of-Interest (ROI) methods to extract voxels of the regions [9]. In this
paper, we conduct an automated diagnostic study of ADHD based on regional
anatomy of the most frequently reported regions for ADHD, namely, amygdala
and cerebellar vermis, obtained from the ADHD-200 data set [10]. First, the
ROI of these regions are defined using the Wake Forest University Pick-atlas
[11]. The voxels of the ROI thus obtained are then used as input features to
train a Projection Based Learning algorithm of a Meta-cognitive Radial Basis
Function Network (PBL-McRBFN) classifier [12] to perform ADHD diagnosis.
Based on the diagnostic study, the subjects are classified either as Typically
Developing Controls (TDC) or ADHD. Finally, the ADHD subjects are classified
as belonging to either the inattentive and hyperactive type (combined type) or
the inattentive type using the PBL-McRBFN classifier.

A meta-cognitive neural network is a network that has been developed based
on the the best human learning strategy, namely, self-regulated learning [13]. A
meta-cognitive neural network has a cognitive component that represents knowl-
edge and a meta-cognitive component that monitors and controls the knowledge
represented by the cognitive component. Recently, a number of meta-cognitive
learning algorithms have been developed and are available in the literature
[14–17]. In [18], the various models of human meta-cognition have been reviewed
in detail. Of these various models, the model proposed by Nelson and Narens [19]
is the most comprehensive and imitable in machine learning. Several machine
learning algorithms have been developed based on this Nelson and Narens model
of human meta-cognition for real-valued neural networks [20, 12], complex-valued
neural networks [21–23] and neuro-fuzzy inference systems [24, 25]. It can be seen
from these studies that a meta-cognitive network with self-regulated learning
outperform the networks without meta-cognition. As the ADHD 200 competi-
tion data set is a real-valued data set, we use the real-valued meta-cognitive
neural network in our work. Of the real-valued meta-cognitive neural networks,
the projection based learning algorithm of the meta-cognitive radial basis func-
tion network [12] performs classification better than the meta-cognitive neural
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network [20] due to its ability to store past knowledge and to use the knowledge
at a later stage of learning. Hence, in this work, we employ the projection based
learning algorithm of the meta-cognitive radial basis function network [12] for
the diagnosis of ADHD and identification of its subtype.

McRBFN is a meta-cognitive neural network with a cognitive component and
a meta-cognitive component that monitors and controls the cognitive compo-
nent. For each sample in the data set, the meta-cognitive component chooses
suitable learning strategies, depending on the relative knowledge of the sample
with respect to the cognitive component. Thus, it realizes the best human learn-
ing strategy of ’self-regulated learning’ by deciding what-to-learn, when-to-learn
and how-to-learn for the cognitive component. McRBFN realizes what-to-learn
by deleting samples that are similar to the knowledge already learnt by the
network, when-to-learn by reserving samples for future use and how-to-learn by
using the sample to add a neuron or to update the network parameters. When
a neuron is used in the learning process, a projection based learning algorithm
is used to estimate the output weights for a fixed hidden neuron parameters.
The hidden neurons are Gaussian in nature and its parameters are fixed based
on sample overlapping conditions. Thus, the PBL algorithm begins with zero
hidden neurons, and adds neurons, updates the network parameters until an
optimum network structure is obtained.

The paper is organized as follows: Section 2 presents the ROI extraction
method used and the description of the PBL-McRBFN classifier. In Section
3, the experimental study on the ability of PBL-McRBFN classifier to diagnose
ADHD and predict its subtypes is presented. Finally, Section 4 summarizes the
main conclusions from the study.

2 Materials and Methods

This section describes the data and the machine learning tools used in the ADHD
diagnostic study. The diagnostic tool takes the whole brain MR images of the
subjects, extracts the features from the ROI of the chosen regions, which are
then used for automated ADHD diagnosis using a PBL-McRBFN classifier.

2.1 Data Set

In our study, the ADHD-200 consortium data set has been used [10]. This data
set is a collection of brain MR images of 941 subjects from 8 participating mem-
bers of the consortium. The subjects include 581 TDC and 360 ADHD subjects,
of which 210 are both inattentive and attention deficient, 137 are inattentive
and 13 are hyperactive. All MR images are processed with the Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) [26]
using the Statistical Parametric Mapping (SPM) software package based on the
Burner pipeline of the ADHD-200 consortium data set.
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Fig. 1. ROI based Feature Extraction

2.2 ROI Based Feature Extraction

A feature extraction approach based on the Region-of-Interest (ROI) method
is employed in this work. In essence, ADHD patients lack control over their
emotional response and/or their behaviour and locomotion. Hence, amygdala
that plays a key role in processing emotions and cerebellar vermis that controls
behavior/locomotion are chosen for this study. It is also reported in the literature
that there are pronounced structural changes in amygdala of ADHD patients
[27] and that smaller volume of cerebellar vermis is attributed to symptoms of
hyperactivity and inattention [28]. The ROI based feature extraction process
is explained in Fig. 1. The ROI masks of amygdala and cerebellar vermis are
defined using the Wake Forest University Pickatlas [11]. The gray matter tissue
probability values are extracted as features from the modulated and normalized
grey matter images, using the generated ROI masks. The extracted features are
then used as an input to the PBL-McRBFN classifier.

2.3 PBL Algorithm for McRBFN Classifier

Given a stream of training data samples, {
(
x1, c1

)
, · · · , (xt, ct) , · · ·}, where xt ∈

1m is an m-dimensional input of the tth sample, and ct ∈ [1, n] is its class label,
and n is the total number of classes. The coded class labels yt ∈ 1n are given
by:

yt
j =

{
1 if ct = j
−1 otherwise

j = 1, · · · , n (1)

The objective of McRBFN classifier is to approximate the function xt ∈ 1m →
yt ∈ 1n. McRBFN has two components, namely, the cognitive component and
the meta-cognitive component.
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Cognitive Component of McRBFN is a radial basis function network. The
hidden layer employs Gaussian activation function. Without loss of generality,
let us assume that McRBFN builds K neurons from t − 1 training samples. For
an input xt, the predicted output ŷt

j is given as

ŷt
j =

K∑
k=1

wkjh
t
k, j = 1, · · · , n (2)

Where wkj is the weight connecting the kth hidden neuron to the jth output
neuron and ht

k is the response of the kth hidden neuron given by

ht
k = exp

(
−‖xt − μl

k‖2
(σl

k)
2

)
(3)

Where μl
k ∈ 1m and σl

k ∈ 1+ are the center and width of the kth hidden neuron,
and the superscript l is the class of the kth hidden neuron.

Next, we present the projection based learning algorithm of McRBFN.

Projection Based Learning Algorithm works on the principle of minimiza-
tion of error function given by the hinge loss and finds the optimal network
output parameters for which the error function is minimum. For t consecutive
samples, the error function is

J(W) =
1

2

t∑
i=1

n∑
j=1

{
0 if yi

j ŷ
i
j > 1(

yi
j − ŷi

j

)2
otherwise

(4)

The optimal output weights (W∗ ∈ 1K×n) are estimated such that J(W∗)
is minimum, i.e., W∗ := arg minW∈�K×n J(W) Thus, W∗ is obtained by
equating the first order partial derivative of J(W) with respect to the W to
0, and are hence determined using W∗ = A−1B [12], where the elements of A
and B are defined as akp =

∑t
i=1 hi

khi
p and bpj =

∑t
i=1 hi

pyi
j , respectively. Here,

k, p = 1, · · · , K; j = 1, · · · , n.

Meta-Cognitive Component of McRBFN monitors the cognitive compo-
nent through the knowledge measures and controls the learning of the cognitive
component through the self-regulated thresholds. The meta-cognitive compo-
nent measures the knowledge of the cognitive component with respect the cur-
rent sample t using the predicted class label (ĉt), maximum hinge loss error
(Et), confidence of the classifier (p̂(ct|xt)) and the class-wise significance (ψc)
that are defined in [12]. Based on these knowledge measures, the meta-cognitive
component chooses the best of the following learning strategies for the current
training sample. These strategies address the basic principles of self-regulated
human learning (i.e., what-to-learn, when-to-learn and how-to-learn).

Sample Delete Strategy: A sample is deleted from the training data set if
ĉt == ct AND p̂(ct|xt) ≥ βd, where βd is the delete threshold that controls the
number of samples participating in the learning process, and is usually selected
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in the range [0.9, 0.95]. The sample delete strategy avoids over-training and
reduces computational effort.

Neuron Growth Strategy: A sample is used to add a neuron to the network
if (ĉt �= ct OR Et ≥ βa) AND ψc(x

t) ≤ βc, where βc is the knowledge mea-
surement threshold and βa is the self-adaptive addition threshold. The βc and
βa allows samples with significant knowledge for learning first and rest for fine
tuning. The thresholds βc and βa are usually selected in the range [0.3, 0.7] and
[1.3, 1.7], respectively. βa is self-adapted according to βa := δβa + (1 − δ)Et,
where δ is the slope that controls rate of self-adaptation and is set close to 1.

When a new neuron is added, the parameters of the neuron are initialized
based on the neuron’s overlap with inter/intra-class. The overlap is measured
using the Euclidean distance of the sample to the nearest hidden neuron in the
intra and inter classes. If the neuron does not overlap with other neurons in

any class, then the parameters are initialized as μc
K+1 = xt; σc

K+1 = κ
√
xtTxt,

where κ is an overlap factor of the hidden units, which lies in the range 0.5 ≤ κ ≤
1. However, if the neuron overlaps with neurons in intra/inter class, the center
is shifted to reduce overlapping and hence, misclassification, as shown in [12]. In
the PBL-McRBFN, the knowledge of the past samples is stored in the network
as neurons center/width and their associated class label are used to initialize
the output weight of the new neuron. When a neuron is added to McRBFN, the
output weights are initialized according to:[

Wt
K

wt
K+1

]
=

[
At−1

K×K aTK+1

aK+1 aK+1,K+1

]−1 [
Bt−1

K×n

bK+1

]
(5)

Where Wt
K is the output weight matrix for K hidden neurons, and wt

K+1 is the

vector of output weights for new hidden neuron after learning from tth sample.
It must be noted that the size of matrix A is increased from K × K to (K +
1)× (K + 1) according to:

At =

[
At−1

K×K + (ht)
T
ht aTK+1

aK+1 aK+1,K+1

]
(6)

Where ht = [ht
1, ht

2, · · · , ht
K ] is a vector of the existing K hidden neurons re-

sponse for new (tth) training sample. The elements of aTK+1 and aK+1,K+1 is

computed according to aK+1,p =
∑K+1

i=1 hi
K+1hi

p, p = 1, · · · , K; and aK+1,K+1 =∑K+1
i=1 hi

K+1hi
K+1, respectively. Also, the size of B is increased from K × n to

(K + 1)× n

Bt
(K+1)×n =

[
Bt−1

K×n + (ht)
T
(yt)

T

bK+1

]
(7)

and bK+1 ∈ 11×n is assigned as bK+1,j =
∑K+1

i=1 hi
K+1ỹ

i
j , j = 1, · · · , n, Where

ỹi is the pseudo-output for the ith hidden neuron (μl
i).

Parameter Update Strategy: The current (tth) training sample is used to up-

date the output weights of the cognitive component (WK = [w1,w2, · · · ,wK ]
T
)
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if ct == ĉt AND Et ≥ βu, where βu is the self-adaptive parameter update
threshold that is selected in the interval of [0.4, 0.7]. The βu is adapted based on
the hinge loss error as βu := δβu+(1−δ)Et. When a sample is used to update the

network parameters, the A ∈ 1K×K matrix is updated as At = At−1+(ht)
T
ht,

and hence the output weights are updated as Wt
K = Wt−1

K +(At)
−1

(ht)
T
(et)

T
,

where et is hinge loss for tth sample.

Sample Reserve Strategy: If the sample does not satisfy any of the above
criteria, then the current sample is pushed to the rear end of data stream for
future use.

This learning is continued for all the samples in the training data set.

3 Results

In this section, we study the performance of PBL-McRBFN in diagnosing ADHD
and identifying its subtypes using the ADHD-200 consortium data set. First, the
ability of PBL-McRBFN in diagnosing ADHD is studied with the features chosen
from amygdala and cerebellar vermis. Next, its ability to distinguish combined
type Vs inattentive type of ADHD based on the individual regions is studied.
Sensitivity and specificity are used as performance measures.

First, we present the diagnostic results of PBL-McRBFN in classifying the
subjects as TDC or ADHD patients. The number of features in the selected
regions obtained by ROI, the number of neurons (K), and the training and test-
ing sensitivities (Sens) and specificities (Spec) are tabulated in Table 1. It was
observed that these regions can differentiate between TDC and ADHD on the
training and testing samples by an accuracy of about 95% and 65%, respectively.
The training specificity and sensitivity of the PBL-MCRBFN classifier for these
regions are as high as 0.993 and 0.996, respectively. Therefore, it can be inferred
that the classifier is capable of differentiating TDC and ADHD subjects accu-
rately. In the testing data set, while the classification results with amygdala has
high specificity of 0.766 (and hence, low type I error), the results with cerebellar
vermis has high sensitivity of 0.714 (and hence, low type II error). The accuracy
of the PBL-McRBFN classifier is greater than the accuracy reported in the lit-
erature on the complete data set with a SVM classifier [29]. The sensitivity and
specificity of the SVM classifier has been reported as 0.33 and 0.79, respectively.
Thus, it can be inferred based on these results that the PBL-McRBFN classi-
fier is capable of diagnosing ADHD with higher accuracy using the features in
amygdala and cerebellar vermis.

Further, we study the ability of PBL-McRBFN to predict the subtype of
ADHD. A subject with ADHD can be either inattentive or hyperactive or both.
As the ADHD-200 data set has only 13 samples for the hyperactive group, we
solve this problem of diagnosing the subtype as either inattentive or inattentive
and hyperactive (combined type). The training and testing performances of PBL-
McRBFN in predicting the subtype of ADHD is also presented in Table 1. It is
observed that the performance of PBL-McRBFN in classifying the subtype of
ADHD is approximately 62%, which is greater than the results reported in [29].
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Table 1. PBL-McRBFN Performance: TDC Vs ADHD

Study Region No. of K Training Testing
features Sens Spec Sens Spec

ADHD Amygdala 1050 300 0.886 0.993 0.506 0.766
Vs TDC Cerebellar Vermis 6358 355 0.996 0.905 0.714 0.553

Subtype Amygdala 1050 154 0.991 0.950 0.730 0.510
Cerebellar Vermis 6358 155 1 0.931 0.346 0.755

Further, it can be observed that while the classification results with amygdala has
high sensitivity (and hence, low type I error), the results with cerebellar vermis
has high specificity (and hence, low type II error). In this context, sensitivity
refers to the ability to classify combined type accurately and specificity refers
to the ability to classify inattentive type accurately. Thus, it can be inferred
that the PBL-McRBFN classifier can predict the subtype of ADHD with higher
accuracy based on the features obtained from amygdala and cerebellar vermis.

4 Conclusion

Results of a pilot study on the development of an automated diagnostic tool for
Attention Deficiency Hyperactivity Disorder (ADHD) based on regional anatomy
obtained from the MR images of child brain have been presented. MR images
obtained from ADHD-200 data set are preprocessed and the region-of-interest of
amygdala and cerebellar vermis are obtained. The gray matter tissue probability
values thus obtained are used as features to train a PBL-McRBFN classifier
for the diagnosis of ADHD and the prediction of its subtype. It is observable
from the performance results that amygdala and cerebellar vermis are sufficient
for the diagnosis. Extending the study to other regions of the human brain to
understand the pathophysiology of ADHD is a scope for future work.
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Abstract. Sparse coding of visual information has been of interest to
the neuroscientific community for many decades and it is widely recog-
nised that sparse codes should exhibit a high degree of statistical
independence, typically measured by the kurtosis of the response distri-
butions. In this paper we extend work on the hierarchical temporal mem-
ory model by studying the suitability of the augmented spatial pooling
(ASP) sparse coding algorithm in comparison with independent com-
ponent analysis (ICA) when applied to the recognition of handwritten
digits. We present an extension to the ASP algorithm that forms synap-
tic receptive fields located closer to their respective columns and show
that this produces lower Näıve Bayes classification errors than both ICA
and the original ASP algorithm. In evaluating kurtosis as a predictor
of classification performance, we also show that additional measures of
dispersion and mutual information are needed to reliably distinguish be-
tween competing approaches.

1 Introduction

Investigating the statistical properties of sparse image representations has been a
focus of computational neuroscience research for several decades. The motivating
hypothesis is that the mammalian neocortex forms models of the environment
based on the statistics of visual sensory experience. Sparse coding approaches
have been used to demonstrate the neural selectivity of V1 simple cells [16], the
neural responses at later stages of visual processing [1], and can be plausibly
implemented within the hierarchically structured layers of visual cortex [7].

In previous work [19] it was shown that an augmented version of the spatial
pooler algorithm proposed in [6] exhibits desirable properties of sparsity and is
a useful feature detector when applied to temporal sequences of images. In the
current paper we further investigate this augmented spatial pooler (ASP) by com-
paring the statistical independence of ASP sparse codes with codes generated
using independent component analysis (ICA). We chose ICA as a comparison al-
gorithm as it is explicitly designed to extract statistically independent signals [9]
and is also used in several state-of-art unsupervised feature detection algorithms
(e.g. [11]). In order to characterise the nature of the statistical independence, we
compare ASP and ICA sparse codes using several statistical measures of sparse-
ness, e.g. kurtosis, dispersion and mutual information. Our focus on statistical
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independence is motivated by the assumption that codes with greater statisti-
cal independence will better represent the independent causes in the world that
generate the raw input of the coding process. We test this assumption by com-
paring the performance of the two approaches using a Näıve Bayes classifier. Our
choice of Näıve Bayes is motivated by the expectation that sparse codes with
greater statistical independence will produce a better Näıve Bayes classification,
i.e. because Näıve Bayes classification itself assumes independence.

The ASP algorithm is one component of the Hierarchical Temporal Memory
(HTM) model of the neocortex proposed and developed over the last eight years
by Jeff Hawkins and various collaborators [6, 7]. The HTM model is a synthe-
sis of general concepts of neocortical function and morphology, and is based on
the view that the uniform appearance of the neocortex signifies a similarly uni-
form functional process [7]. The model is structured as a hierarchical network of
identical processing units comprising two functions: a spatial pooler (SP) and a
temporal pooler (TP), which cooperate to encode sensory input into temporal
sequences [6]. The poolers are modeled as collections of columns, where each
column comprises a set of neurons and their associated dendrites and synapses.
This columnar structure is modeled on the cortical mini-column, which Mount-
castle has described as a basic functional unit within the neocortex [15]. In the
spatial pooling function, the columns become active or inactive through inter-
column competition and inhibition, which allows HTMs to self organise in direct
response to the input while producing sparse distributed representations. The
TP then makes Bayesian-like inferences about the temporal ordering of the codes
produced by the SP which are fed back into the hierarchy in the form of predic-
tions. This predictive function of the TP distinguishes HTMs from other hierar-
chical Bayesian models, e.g. [13]. Furthermore, HTM’s flexibility and efficiency in
processing temporal sequences makes it suitable for online data streams, unlike
other sparse coding approaches such as ICA [10].

The current research extends existing work on evaluating the HTM model by
studying the relative suitability of the ASP algorithm in comparison with ICA
in the domain of handwritten digit recognition. Previous work [20] compared
kurtosis measures for ASP and ICA on natural images on the assumption that
higher kurtosis would equate to greater statistical independence and hence would
produce better feature encoders. Here we question the suitability of kurtosis as
the sole indicator of the performance of a feature detector and investigate alter-
nate measures of dispersion and mutual information, while using Näıve Bayes as
a measure of relative performance. We also introduce an extension to the ASP
algorithm that clusters synapses more closely to their respective columns and
show how this can produce a lower Näıve Bayes classification error.

In the remainder of the paper we provide details of the ASP algorithm and
our own extensions, followed by a brief description of the FastICA algorithm we
used for comparison purposes. We then provide details of the statistical measures
used to evaluate the ASP and ICA sparse codes and present the results of our
experiments on the well known MNIST handwritten digits dataset. Finally the
significance of these results are analysed and discussed.
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2 Augmented Spatial Pooling

The basic functional unit of the HTM poolers is a column which consists of a col-
lection of cells and dendrites that form synaptic connections with other columns
and with an input layer. The HTM temporal pooler connects individual cells
within a column to cells within other columns and the spatial pooler connects
an entire column to the elements of an input layer. As the paper is concerned
with SP sparse codes, we shall not consider the temporal pooler further. Instead,
we shall treat a column as a single coding unit (CU) with dendrites that only
synapse with the individual elements of an input layer.

Unlike more traditional neural networks, the SP connections are not multi-
plicatively weighted to determine the strength of the input signal. Instead, the
synapses are potential and assigned a permanence value which indicates whether
the synapse is connected (i.e. active), or potential and inactive. It is only when
the permanence value of a synapse passes a certain threshold that the synapse
becomes connected and the value of the input to which it is connected is then
passed on by the dendrite. The activity level for a column is then calculated as
the sum of the input from all its connected synapses.

Each column is positioned above a single pixel of the input image and no
pixel has more than one column above it. A set of dendrites from each column
is mapped to a subset of the pixels of the image, where each dendrite forms a
single synaptic connection to a single pixel. This topographic layout allows for
the calculation of the Euclidean distances from a column to each of its poten-
tial synapses. The column’s list of potential synapses is then ordered by these
distances, and this ordering is used when determining the initial synapse perma-
nence values. The area that bounds a column’s connected synapses is termed the
column’s receptive field, and the mean receptive field size of all columns is the
size of the inhibition area. The sparse encoding of an input pattern is produced
via a process of competition whereby the more active columns within a given
inhibition area inhibit (or switch off) their less active neighbours.

Learning in the spatial pooler is based on how well the column synapses match
(or overlap) the input to which they are connected. This is achieved by mod-
ifying the synapse permanence values of the columns which win the inhibition
competition – synapses connected to active input have their permanence val-
ues increased, while synapses connected to inactive input have their permanence
values decreased. In addition, columns that fail to reach a minimum average
activation threshold are able to competitively form new synapses with the input
(for full details see [19]).

Initialising the Spatial Pooler Synapses: The process of initialising the
columns and their synapses is presented in Algorithm 1. The first step is to ran-
domly select a percentage of the image pixels to which potential synapses will be
mapped according to the value of P(potential) (in the current implementation,
this is set to 0.1). The next step is to probabilistically set the perm(s) perma-
nence values for each of the potential synapses for all columns according to the



Evaluating Sparse Codes on Handwritten Digits 399

original ASP algorithm [20] or according to two modified approaches (ASP+M
and ASP+G) detailed below.

The last step of initialisation is to calculate each column’s receptive field area
(line 13) and the inhibition area size (line 15) to be used by all columns during the
inhibition competition. After each training instance is presented to the system
the receptive fields of all columns and the inhibition area are recalculated.

Algorithm 1. initialiseColumns(columns, method, m)

1: for each column c in columns do
2: for each synapse s in column c do
3: if random(0,1) ≤ P (potential) then
4: if method is ASP then
5: perm(s) = threshold + (random(0.0, 0.1) − distance(s))
6: else if method is ASP+M then
7: perm(s) = threshold + (random(0.0, 0.1) − (distance(s) × m))
8: else if method is ASP+G then
9: perm(s) = gaussianPDF(distance(s) × m, 0, σ) + random(-0.05, 0.05)
10: end if
11: end if
12: end for
13: totalReceptiveF ieldAreas += calculateReceptiveFieldArea(c)
14: end for
15: inhibitionArea = totalReceptiveF ieldAreas / numCols

ASP+M: In the HTM specifications [6] initial synapse permanence values are
randomly set to within a small range of the permanence threshold and are linearly
biased such that synapses which are closer to their column are more likely to
have an initial permanence value at or above the threshold. In the original ASP
algorithm [19] the synapse permanence values have a potential range of 0 to 1
with the threshold set at 0.2 and initial permanences bound to be within 0.1 of
the threshold. We use these values in our current study (see lines 4–5).

By way of extension, we also experimented with a multiplier m that increases
the range of possible initial permanence values, such that they are no longer
within the 0.1 bound. This multiplier increases the probability of synapses close
to their column having permanence values above the threshold, and decreases the
probability for those further from their column. We name this method ASP+M
(see lines 6–7).

For both ASP and ASP+M, we standardise the distance(s) measure for each
synapse to range between 0.0 and 0.1. In ASP this distance is subtracted from a
random number that also ranges from 0.0 to 0.1 and the result is added to the
preset threshold value of 0.2. In ASP+M, we simply multiply the normalised
distance value by a value m and proceed as for ASP (see line 7).

ASP+G: The second extension to ASP replaces the linear bias with a Gaussian
distribution centred on each column, where synapses furthest from the column
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are least likely to have their permanence values set above the connection thresh-
old. The initial permanence values are then randomly selected from within a
boundary of 0.05 of the Gaussian probability density function. We name this
method ASP+G (see lines 8–9).

ASP+G converts a synapse’s distance(s) from its column into a number of
standard deviations from the mean of a Gaussian, such that a column’s most
distant synapse is set to m standard deviations (in the experimental study we
set m = 5). We then calculate the probability of this distance using a Gaussian
probability density function (PDF) with mean 0 and standard deviation σ. The
synapse’s permanence value equals this probability plus a random noise value
between ±0.05 (see line 9).

3 Independent Component Analysis

Our experimental study compares ASP sparse codes with codes generated using
independent component analysis (ICA). ICA belongs to the class of blind source
separation (BSS) methods aimed at separating data into maximally indepen-
dent features. It is based on the assumption that the sources are non-Gaussian
and statistically independent [17]. However, particularly in the case of natural
images, the independence assumption has been criticised and has led to the
development of independent subspace analysis (ISA) which, in addition to per-
forming ICA, also attempts to find independent groups of features [9]. In order
to equitably compare ASP codes with the higher order codes learned by ISA, a
hierarchical implementation of spatial pooling would also be required. However,
such a hierarchical implementation runs the risk of obfuscating the underlying
performance of the two algorithms. In contrast, the lower order functionality of
ICA is more directly comparable to a single layer ASP and allows for unmodi-
fied statistical measurements. For these reasons we have not included ISA in the
study.

ICA may be considered a multivariate, parallel version of projection pursuit
which seeks to maximise the kurtosis, or alternatively minimise the mutual in-
formation, of separated signals. Maximising kurtosis is based on the assumption
that a mixed signal, which is often Gaussian in nature, is composed of inde-
pendent non-Gaussian signals. Further, ICA assumes that any Gaussian signal
may contain noise, which is first separated from the mixed signal by applying
principle component analysis (PCA) [17]. This may result in reducing the di-
mensions of the mixed signal, and consequently, ICA will extract fewer signals
than suggested by the dimensions of the raw input.

The Matlab-based FastICA implementation of ICA, which we use in this
study, employs the Kullback-Leibler divergence as a measure of the distance
between an extracted signal and a Gaussian signal, and seeks to maximise that
distance in the gradient descent search [10]. As FastICA explicitly maximises
non-Gaussianity (i.e. kurtosis) during the learning process, we expect the sparse
codes it produces will display high kurtosis.
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4 Statistical Properties of Sparse Codes

In this study we are interested in the statistical properties of ASP and ICA sparse
codes and apply a series of measurements to enable a quantitative comparison
between them. For the purpose of these comparisons, we define a coding unit
(CU) as a column in ASP and a basis function in ICA. For both algorithms, the
CUs are the constituents of the sparse responses to the image data.

Willmore, Mazer and Gallant [21] describe a range of statistical measures used
to characterise sparse codes and note that different studies used similar termi-
nology but in different contexts, making the comparison of the models and their
sparseness measurements problematic. To resolve some of the confusion, they
clearly define the different interpretations of sparseness and present a taxonomy
of these concepts. The first classification they describe distinguishes overall ac-
tivity from the shapes of response distributions. Overall activity measures the
mean firing rates of neurons and is intuitively suitable for characterising the be-
haviour of biological neurons rather than computational models of neurons. As
the sparse CUs of ASP and ICA are theoretical collections of neurons, we do not
attempt similar measurements in this study. Instead we investigate the shapes
of response distributions which can be measured in two distinct dimensions: life-
time measures that characterise the response distribution of single CUs to many
images and population measures that characterise the response distribution of
an entire collection of CUs to a single image instance. The following sections
detail several such measures that we will use in the experimental comparison:

4.1 Lifetime Measures

Lifetime Sparseness: A response distribution where CUs are primarily inactive
but occasionally respond strongly is defined as having high lifetime sparseness.
A response of this kind may be characterised by measuring the kurtosis of the
response distribution. To compare the lifetime sparseness of ASP and ICA sparse
codes, we calculate the average kurtosis of each CU’s responses to an entire set
of input images using the method in [22].

Maximisation of Information: Willmore et al. [21] state that if the visual
cortex maximises information, then the response distribution should be expo-
nential in shape. In this respect we have fitted an exponential model, of the
form aebx, to the response distribution of each CU of ASP and ICA. We use the
goodness of fit (measured by the root mean square error, RMSE) of the model
to characterise how well the CU’s response distribution matches the exponential
distribution. A close fit will result in a low RMSE and indicate that the sparse
codes of the distribution have a high degree of information.

4.2 Population Measures

Population Sparseness: A sparse code where the population response distri-
bution to a single image has high kurtosis is referred to as having high population
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sparseness, i.e. only a small proportion of the CUs is active at any given time.
We calculate the population kurtosis of a single image using the method in [22].

Mutual Information Minimisation: Given two random variables, X and Y ,
the mutual information, I(X ;Y ), between these variables is:

I(X ;Y ) =
∑
x,y

PXY (x, y)log
PXY (x, y)

PX(x)PY (y)
(1)

where PX(x) and PY (y) are the probability mass functions of X and Y respec-
tively, and PXY (x, y) is their joint probability mass function. If we consider a
single CU to be a random variable whose distribution of responses to a set of
M images constitutes its probability mass function, then we may calculate the
average mutual information between all pairs of CUs as follows:

averageMutualInformation =
2

(N − 1)N

N−1∑
i=1

N∑
j=i+1

I(i; j) (2)

where I(i; j) is the mutual information between CUs i and j computed as above,
and 2

(N−1)N is the number of distinct pairs possible from N CUs. This gives us

a measure of the average amount of information that is shared between CUs.
High mutual information values indicate that the sparse codes have a high level
of redundancy, whereas an efficient system will have low redundancy producing
a low mutual information value [3].

Redundancy Minimisation: As a second measure of redundancy, we consider
the degree of load sharing by counting the number of sparse codes in which
the CUs participate. Following [22], for each image we set a threshold value
equal to the standard deviation of the response distribution for that image. CUs
whose response magnitude for that image is greater than the threshold value are
considered ‘on’ and CUs with response magnitudes less than the threshold value
are considered ‘off’. The binarised response of CU c to image i is then calculated
as:

binarisedActivityc
i =

{
1 if ac

i > σi

0 otherwise
(3)

where ac
i is the response magnitude of CU c to image i, and σi is the standard

deviation of the CU population’s response distribution to image i. The partici-
pation level of a CU c is then the total count of the sparse codes in which it is
considered ‘on’.

Dispersion: The response of a CU to an image will vary from strongly positive,
where an image matches the CU’s receptive field, through zero where the image
is orthogonal to the receptive field, to strongly negative where the image is the
inverse of the receptive field. If an image set has a high variance along the axis
of the CU’s receptive field then the responses of the unit over the set will show
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a high variance between the positive and negative extremes. This indicates that
the CU’s receptive field is well matched to some of the variations in the image set
and the CU is therefore appropriate for encoding differences between members
of this set [23]. Conversely, a low variance indicates that the variations in the
image set are largely orthogonal to the CU’s receptive field and that the CU is
not appropriate for encoding variations in the image set.

By comparing the response variances of all CUs in a set, we can obtain a mea-
sure of how evenly the coding is dispersed. Willmore, Watters and Tolhurst [23]
suggest visualising and quantifying these differences using scree plots. After bi-
narising the ASP and ICA CU activities we calculate and normalise the variance
of all units such that the maximum is 1. We plot the variances in rank order,
highest to lowest, and use the area under the curve as a measure of dispersion.
A low area indicates that there are a few high variance CUs that are encoding
the majority of the variations in the image set, i.e. the coding is concentrated,
not dispersed. Conversely, a large area shows there are many high variance CUs
sharing the encoding and the resulting codes have greater dispersion.

5 Experimental Evaluation and Discussion

As earlier spatial pooler versions have been tested on character recognition
problems (e.g. [5]) we chose to test our modified spatial poolers, ASP+M and
ASP+G, and ICA on the well known MNIST handwritten digits dataset [12].
The set comprises 70,000 handwritten images (28× 28 pixels) of the digits 0–9,
split into 60,000 training images and 10,000 test images. ASP and FastICA use
random seeds, so we executed all experiments five times using different seeds,
and report the average of these executions. All tests were conducted on a Dell
Optiplex 990 3.10 GHz Intel Core i5 processor with 16 Gb of 1333 MHz DDR3
RAM running Windows 7 Enterprise v. 6.1 and Matlab v. 7.12 (R2011a). For
classification we used the Matlab Statistics Toolbox Näıve Bayes classifier.

Varying Initial Receptive Field Size: We tested our modified ASP algo-
rithms on a range of settings in order to investigate the effect of the different
methods for initialising ASP’s synapse permanence values. ASP+M was tested
using multiplier values 0–6 with 4 giving the highest classification. ASP+G was
tested by altering the standard deviation of the Gaussian distribution from 0.1
to 1.8 in steps of 0.1, with 0.9 producing the best classification result. Table 1
summarises the mean Näıve Bayes classification accuracies, and population and
lifetime kurtosis of the response distributions for ASP, ASP+M and ASP+G.
Setting the ASP+M multiplier to 0 is equivalent to removing the linear bias and
setting synapse permanence values randomly without respect to their distance
from their column. Results for this setting are included in Table 1 as ASP− and
show that randomly selecting active synapses without any topographic reference
to their column produce the worst classification accuracy (82.65%), population
kurtosis (38.30) and lifetime kurtosis (49.87).

The ASP+M multiplier causes active synapses to be more clustered around
their column than for ASP, and could explain ASP+M’s higher accuracy of 88.62
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Table 1. Summary of results for ASP, ASP+M, ASP+G and ICA

Algorithm ASP− ASP ASP+M ASP+G ICA

Accuracy (%) 82.65 84.39 88.62 89.45 86.12
Population Kurtosis 38.30 47.80 73.79 65.48 48.13
Lifetime Kurtosis 49.87 60.85 98.43 83.86 4864.19

Mutual Information — — — 0.0082 0.0063
Goodness of Fit (RMSE) — — — 7.26 1190.10
Dispersion Area — — — 121.06 177.20

(compared to ASP’s accuracy of 84.39). The more clustered receptive fields of
ASP+M (with a mean 1 : 4.975 per column ratio of 8 active synapses to 39.80
receptive field pixels) compared to ASP (with a mean 1 : 11.39 per column ratio
of 13 active synapses to 148.10 receptive field pixels) allows ASP+M to encode
more specific features than ASP. Both ASP’s population kurtosis (47.80) and
lifetime kurtosis (60.85) are lower than ASP+M’s (73.79 and 98.43 respectively)
indicating that smaller and more densely clustered receptive fields produce codes
exhibiting greater sparseness and higher classification accuracies.

In contrast, ASP+G has approximately the same ratio of active synapses to
receptive field size as ASP (6 synapses to 61.30 pixels or 1 : 10.21), but achieves
this ratio using approximately half as many synapses covering a much smaller
mean receptive field. While the smaller more clustered receptive fields of ASP+M
are sensing more specific features than the larger receptive fields of ASP+G, the
denser synaptic connections of the ASP+M columns suggest insufficient infor-
mation is being sensed to uniquely encode the classes. However, ASP+G’s lower
population kurtosis of 65.48 and lower lifetime kurtosis of 83.86 compared to
ASP+M (the highest of the ASP methods) would lead us to expect ASP+G to
have lower accuracy than ASP+M, whereas the reverse is the case. This suggests
that kurtosis is not a perfect predictor of accuracy.

Comparison with ICA: Comparing the lifetime kurtosis of ASP+G and ICA
(83.86 and 4,864.19 respectively) to their population kurtosis (65.48 for ASP+G
and 48.13 for ICA) further supports the argument that using only kurtosis as a
performance indicator is inappropriate. The very high lifetime kurtosis of ICA
would lead us to expect a correspondingly high accuracy, whereas ASP+G ac-
tually outperforms ICA. This anomalous result led us to manually inspect the
binarised ICA response distributions, revealing that an average of 10 ICA CUs
had only responded to a single image and were therefore acting as instance detec-
tors rather than as members of a feature detector. In addition, ICA’s response
distributions had an average of 36 overly sparse codes (i.e. responses with 5
or less CUs) and were typically encoded by the same CUs within the distri-
bution, which explains the disproportionately high lifetime kurtosis. Response
distributions with CU behaviours of this nature are indicative of a model having
overfitted to the data.
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When we consider that ICA iteratively seeks to extract the most independent
signal, it is to be expected that it would extract instance detectors when applied
to the relatively simple images of handwritten digits. As ICA was designed to
perform sparse encoding of natural images, and is now overfitting this simpler
dataset, we consider ICA to be a less general sparse encoder than ASP, which
competitively encodes a wider range of image types.
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Fig. 1. Left: Coding unit (CU) participation counts for ASP+G and ICA.
Right: Dispersion area for ASP+G and ICA.

Next, we consider the degree of redundancy by measuring the mutual infor-
mation shared between CUs. It is reasonable to expect that CUs of an overfitted
model will have very low mutual information because they are active in isola-
tion or with very few other CUs. This goes against the theoretical expectation
that CUs should share minimal information so as to reduce redundancy. Clearly,
some mutual information is needed to ensure the CUs are acting as members of
feature detectors and not as instance detectors. We find that the mutual infor-
mation for ASP+G and ICA (at 0.0082 and 0.0063 respectively) supports this
interpretation of the response distributions, when considered together with the
high lifetime kurtosis and lower accuracy of ICA.

From our alternative dispersion measure using participation counts (see Figure
1), we find further support for overfitting by ICA. The high peak participation
for ICA is caused by a mean of 8 CUs which are active in more than 20,000
sparse codes. At the other end of the graph we notice a mean of 13 CUs which
fail to participate in any sparse code, which indicates that ICA has learned re-
dundant basis functions. The mean activity for ICA is 1,358.53, considerably
larger than that of ASP+G (365.16), showing that ASP+G produces more dis-
persed codes, as encoding is more evenly distributed. This is a result of the
underlying ASP algorithm’s competitive nature which is explicitly designed to
disperse the encoding. In contrast, the dispersion measure of [23] (graphed in
Figure 1) indicates the ICA response distributions (177.20) are more dispersed
than ASP+G (121.06).

When we measured the degree of information retained in the codes (by fitting
an exponential curve to the response distribution and calculating the RMSE of
the fit), the RMSE for ASP+G was 7.26 compared to 1,190.10 for ICA. This
indicates ASP+G is encoding more salient class features, whereas ICA’s high
RMSE demonstrates its loss of class specific information as it encodes instances.
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Finally, a t-test, with p-value of 0.05, performed on ASP+G and ICA classi-
fication accuracies rejects the null hypothesis, indicating that the difference in
mean accuracies between ASP+G and ICA is statistically significant.

As ASP runs 8.36 times faster than ICA (with a mean convergence time of 299
seconds compared with 2,582 seconds for ICA), and is simpler to implement than
the complex gradient descent approach of ICA (for which the neural mechanisms
have yet to be elucidated), we consider ASP a more plausible model of feature
detection activity within the mammalian neocortex.

6 Conclusions

In conclusion, the paper has made three main contributions:

1. We have given grounds for believing that ASP is a better sparse encoder than
ICA in the domain of character recognition. This is firstly because ASP is faster
(i.e. more efficient) than ICA at generating codes, which also suggests the ASP
strategy is more biologically plausible. Secondly, ASP produces better Näıve
Bayes classification accuracy, suggesting that, in practice, ASP is a more useful
feature detector than ICA for domains such as character recognition, where the
ICA basis functions can degenerate into simple instance detectors.
2. We have shown that kurtosis on its own is not necessarily the best way to
measure the statistical independence of sparse codes and that additional mea-
sures of dispersion and mutual information are needed to give a reliable picture
of the potential performance of an encoder.
3. We have shown there is an important relationship between the synapse initial-
isation strategy used for ASP and the subsequent classification accuracy of the
generated codes. Specifically we have shown that a Gaussian distribution that
strongly clusters synapses within a short distance of their associated column is
better than the alternative linear and linear multiplicative strategies tested.

In future work we plan to investigate both class-conditional ICA and ISA
approaches to character recognition by developing analogous class-conditional
and hierarchical ASP algorithms. We also plan to extend our work to the domain
natural images and, upon integration of a TP, to temporal data such as sound.
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Abstract. This paper introduces an information theoretic model se-
lection and ridge parameter estimation criterion for generalized linear
models based on the minimum message length principle. The criterion
is highly general in nature, and handles a range of target distributions,
including the normal, binomial, Poisson, geometric and gamma distribu-
tions. Estimation of the regression parameters, the ridge hyperparame-
ter and the set of covariates associated with the targets is all performed
within the same framework by minimisation of the message length. Ex-
periments on simulated and real data suggest that the criterion is com-
petetive with, and often superior to, the corrected Akaike information cri-
terion in terms of both parameter estimation and model selection tasks.

1 Introduction

In conventional Gaussian-linear regression modelling we make the assumption
that the targets y = (y1, . . . , yn)

′ ∈ Rn are normally distributed, with variance
τ , and mean μi given by

μi = x̄iβ + α, (1)

where x̄′
i ∈ Rk is a vector of features, β ∈ Rk is a vector of regression coeffi-

cients, and α ∈ R is the intercept parameter. It is typically the case that we
do not believe the targets to be normally distributed; for example, the targets
may be non-negative integers or binary variables. The generalized linear model
(GLM) [1] framework was developed to easily extend linear models to alterna-
tive target distributions. In this paper we restict attention to distributions which
satisfy

E [y|μ] = μ, (2)

var[y|μ, φ] = φ v(μ), (3)

where φ > 0 is a dispersion parameter which in many cases will simply be equal
to one, and v(·) is a variance function that depends only on the mean μ. Defining
ψ = (α,β′)′ as the vector of regression coefficients and ηi(ψ) ≡ ηi = x̄iβ + α
as the linear predictor, the GLM approach specifies f(μi) = ηi, where f(·) is
called a link function; that is, a GLM specifies the conditional mean as a suitable
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(monotic, isomorphic) function of the linear predictor. The function f−1(ηi) = μi

is usually known as the inverse-link function.
In general, the regression coefficients α and β are unknown, and we only have

access to the data y and the covariates X = (x̄′
1, . . . , x̄′

n)
′. The task is then to

estimate the regression coefficients on the basis of the data alone. There exists
a large range of estimation strategies available for GLMs, and a particularly
popular approach is ridge regression [2]. This is a regularisation procedure that
is known to improve estimation accuracy in the presence of colinearity in the
covariates. The (generalized) ridge regression procedure estimates α,β by solving

{
α̂, β̂

}
= argmin

α∈R,β∈S(c)

{
−

n∑
i=1

log p(yi|μi;φ)

}
(4)

where p(·) is the chosen target distribution and S(c) is the set of permissible
regression coefficients, defined by

S(c) =
{
β ∈ Rk : β′Σβ ≤ c

}
, (5)

with Σ ∈ Rk×k a positive-definite matrix. The hyperparameter c determines
the amount of “freedom” the estimator has to fit the data; for a sufficiently
large choice of c the ridge estimator reduces to the regular maximum likelihood
estimator, while smaller values of c result in estimates that are “shrunk” towards
the origin. It is usual to estimate c by minimisation of an information criteria such
as Akaike’s information criterion (AIC), or by a resampling procedure such as
cross-validation. It is also possible to interpret the ridge estimator in a Bayesian
manner, in which the regularisation term arises due to the choice of a multivariate
normal prior distribution over the regression coefficients β.

In this paper we exploit the Bayesian interpretation to use the minimum
message length (MML) principle to estimate the regularisation hyper-parameter;
furthermore, because of the nature of the MML principle, we can also use the
same criterion to perform feature selection, i.e., to choose which columns of X
are associated with the targets y. The result is a single, highly general criterion
for the statistical inference of generalized linear models that is applicable to a
wide range of target distributions, and has excellent performance in terms of
both parameter estimation and model selection.

2 Inference by Minimum Message Length

Minimum message length (MML) [3,4,5] is an information theoretic principle of
inductive inference based on the connections between statistical inference and
data compression. The key idea underlying the MML principle is that if a statisti-
cal model compresses data, then the model has (with high probability) captured
regularities and structure in the data. The MML principle advocates selecting
the model that most compresses the data (i.e., the one with the shortest “mes-
sage length”) as the most plausible explanation of the data. As any compressed
representation of data must also be decompressable, the details of the statistical
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model used to encode the data must also be part of the compressed data string.
Thus, more complex models inflate the message length by a greater amount, and
this acts to naturally balance model complexity against the goodness of fit of
the model, and automatically guards against the problem of overfiting the data.

In general, the calculation of the exact (strict) message length is an NP-
hard problem [6]. There exists a range of approximations to the exact message
length that are less computationally intensive [5]; the most widely used of these
is the Wallace–Freeman approximation (MML87) [4]. Let θ ∈ Θ denote the
continuous parameters of a statistical model, p(y|θ) denote the likelihood of the
data y conditional on the parameters θ, and let π(θ) denote a Bayesian prior
distribution over Θ that will be used to model the continuous parameters. The
MML87 message length for data y and model θ is given by

I(y, θ) = − log p(y|θ) + 1

2
log |J(θ)| − log π(θ) + c(k) (6)

where J(θ) is the Fisher information matrix, k is the number of continuous model
parameters and

c(k) = −k

2
log(2π) +

1

2
log(kπ)− 0.5772.

To estimate a model using MML87, we search for the θ that minimises (6). Under
certain regularity conditions of the likelihood p(y|θ) and prior distribution π(θ)
the MML87 message length is very close to the exact strict message length [5].
The aim of this paper is to apply the MML87 approximation to the problem of
ridge estimation and model selection in the context of generalized linear models.

Ridge estimation in the MML framework is equivalent to allowing the prior
distribution to depend on a hyperparameter, and extending the estimation pro-
cedure to include this new hyperparameter. Previous work [7] has shown that
inference of hyperparameters may be done within the MML87 framework, and
this technique has been applied to linear regression with a normal target dis-
tribution and a special choice of ridge prior in [8]. MML has been previously
applied to linear models with normal targets [5] and binomial targets [9], and
both these cases essentially depend on special types of ridge priors. To some ex-
tent, the MML criterion presented in this paper generalises this previous work, as
it allows for general ridge estimation and a large number of target distributions.

3 MML GLM Ridge Regression

To compute message lengths using the MML87 approximation (6) we require:
(i) the negative log-likelihood function; (ii) prior distributions over all parame-
ters; and (iii) an appropriate Fisher information matrix. Define the full vector
of parameters for a GLM as θ = (α,β′, φ)′, where φ may be constrained to
φ = 1 for some target distributions, and define ψ = (α,β′)′ as the vector of
regression parameters. It is usual to assume that the targets are independent



MML Ridge Regression for GLM 411

random variables, conditional on the features, so that the likelihood function
can be factorised into the product

p(y|θ;X) =

n∏
i=1

p(yi|θ; x̄i). (7)

To implement ridge regression within a Bayesian context the required prior
distribution for the β coefficients is a multivariate normal with mean 0k and
variance-covariance matrix (φ/λ)Σ−1. Scaling the covariance matrix by the dis-
persion parameter φ greatly simplifies the resulting estimates of α and β as they
become independent of the estimate of φ. As the origin holds no special meaning
for the intercept we choose a uniform distribution for α. The priors for α and β,
conditional on φ and λ are:

π(ψ|φ, λ) = πβ(β|φ, λ) · πα(α|φ), (8)

πβ(β|φ, λ) =

(
λ

2πφ

) k
2

· |Σ| 12 · exp
(
−λβ′Σβ

2φ

)
, (9)

πα(α|φ) ∝ 1√
φ

. (10)

Due to the fact that we condition on φ in (9) and (10), we may first estimate α,
β, and then subsequently estimate φ (if required). The prior for α is improper,
and must technically be restricted to some subset of R; the particular choice
of subset is not important as the α parameter is common to all GLMs and
the normalisation term will simply increase all message lengths by a constant
amount. Suitable priors for φ are discussed in Section 3.1.

In the ridge regression framework, the regularisation hyper-parameter λ is not
considered to be a a priori known; rather, it is estimated from the data along
with the other model parameters. This can introduce some problems into the
standard MML87 message length, as the assumption of a “flat” prior distribu-
tion is violated when λ becomes very large, and the resulting normal distribution
becomes tightly concentrated around the origin. To address this problem we use
the “corrected” form of the Fisher information matrix that takes into account
the curvature of the prior. To correct the Fisher information matrix, Wallace
proposed a clever procedure in the case of conjugate likelihood and prior dis-
tributions, in which the model parameters are treated as “fake” data, and the
Fisher information is calculated using both the real and “fake” data (see [5], pp.
236–237 for further details).

The likelihood (7) is not, in general, conjugate with the prior distribution
(9). However, it is well known that the likelihood of many common GLMs can
be approximated around some point, ψ0 = (α0,β′

0)
′, by a multivariate normal

distribution with appropriate mean and covariance matrix; such approximations
form the basis of the efficient iteratively reweighted least squares procedure for
maximum likelihood estimation of GLM regression coefficients. Define μ0 =
f−1(Xβ0+α01n); the approximate negative log-posterior for ψ, up to constants
independent of ψ, is then given by
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− log p(ψ|y, φ, λ) ≈
(

1

2φ

)
(z(μ0)−Xβ − α1n)

′W(μ0)(z(μ0)−Xβ − α1n)

+

(
λ

2φ

)
β′Σβ, (11)

where z(·) is a vector-valued function with entries

zi(μ) = f(μi) + (yi − μi)

(
∂f(μi)

∂μi

)
, (12)

and W(μ0) = diag(w(μ0)) is an (n×n) diagonal matrix, where w(·) is a vector
valued function with entries

wi,i(μ) =

(
1

v(μi)

)(
∂f(μi)

∂μi

)−2

. (13)

The functions f(μi), f−1(ηi) and ∂f(μi)/∂μi for several common choices of link
function are given in Table 1, and the variance function v(μi) for a range of
distributions is given in Table 2.

The likelihood term in the approximation (11) is conjugate with the normal
prior density for the coefficients, and we may now view the prior πβ(β|φ, λ) as
the posterior of some uninformative prior π0(β) and a likelihood of k “prior
samples”, all equal to zero, with design matrix X0 satisfying X′

0X0 = (λ/φ)Σ.
This yields a “corrected” Fisher information matrix for the regression parameters
ψ of the form

J(ψ|φ, λ) =

(
1

φ

)(
(1n,X)′ W(μ) (1n,X) + λS

)
, (14)

where

S =

(
0 0′

k

0k Σ

)
, (15)

and μ = f−1(Xβ + α1n). The “correction” has the effect of increasing the
determinant of (14) for increasing λ; that is, the tighter the prior becomes around
the origin, the larger the determinant of the corrected Fisher. In contrast, in the
limit as λ → 0 (and the normal prior (9) converges to a uniform distribution
over β) the corrected Fisher information reduces to the standard, “uncorrected”
Fisher information.

3.1 Coding φ

Some target distributions require the coding of an extra dispersion parameter
φ. This can be largely treated in a unified manner irrespective of the specific
details of the target distribution by choosing the prior distribution πφ(·) to be
the co-ordinate wise reference prior, i.e.,

πφ(φ) ∝
√

J(φ)/n, (16)
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Table 1. Commonly used link functions and their derivatives and inverses; ηj = x̄jβ+α
is the linear predictor

Link Function, f(μj) ∂f(μj)/∂μj Inverse Link, f−1(ηj)

Identity ηj = μj
∂ηj

∂μj

= 1 μj = ηj

Logit ηj = log

(
μj

1 − μj

)
∂ηj

∂μj

=
1

μj(1 − μj)
μj =

1

1 + exp(−ηj)

Log ηj = log (μj)
∂ηj

∂μj
=

1

μj
μj = exp (ηj)

where J(φ) is the Fisher information for φ. Due to the fact that the distributions
considered in Table 2 are parameterised in terms of orthogonal mean and disper-
sion parameters, the Fisher information for (ψi, φ) is zero for all i = 1, . . . , k+1.
The determinant of the full Fisher information matrix can then be written as
the product

|J(θ;λ)| = |J(ψ|φ;λ)| · J(φ). (17)

This decomposition, coupled with the choice of reference prior (16) dramatically
simplifies the MML87 codelength for φ by cancelling the J(φ) terms present in
the determinant of the Fisher information (17) and the prior (16).

3.2 Complete Message Length for a GLM

Two message length formulae are required: one for the case in which k > 0 (i.e.,
there is at least one covariate included in the model), and one for the special
case in which k = 0. We now cover these two cases seperately. It is important
to note that these formulae allow for the comparison of regression models with
different numbers of covariates, as long as all the models under consideration
have the same target distribution; to compare between models with different
target distributions, additional constants are required.

Message Length when k > 0. In this case, the model parameters are α, β
and φ (if required). The prior (9) for β depends on λ, which is treated as an
unknown hyperparameter that must be estimated from the data. Therefore, we
also need to transmit λ to the receiver. There exists a procedure to determine
the optimum codelength for hyperparameters in the MML framework [7], but it
is difficult to apply to generalized linear models; instead, the codelength for λ is
approximated by the usual asymptotic formula, i.e., I(λ) = (1/2) logn. As there
is only a single hyperparameter the suboptimal coding of λ is not expected to
have any large effect on the resulting MML inferences.

The total number of free parameters is equal to m = k + 2 if φ is a free
parameter, and m = k + 1 if φ is constrained to a constant for the target
distribution under consideration (see Table 2 for details). Using (9), (10), (14),
(16) and (17) in (6) yields
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Table 2. Commonly used distributions and their variance functions; μj is the appro-
priate mean function; we define yj ∈ {0, 1} and 00 = 1 for the binomial likelihood; κ is
the inverse of the shape parameter in the case of the Gamma distribution and ξ is the
inverse of the shape parameter in the case of the inverse-Gaussian distributions

Link PDF, p(yj |θ; x̄j) v(μj) φ

Normal Identity

(
1

2πτ

) 1
2
exp

(
− (yj − μj)

2

2τ

)
1 τ

Binomial Logit μ
yj
j (1 − μj)

(1−yj ) μj(1 − μj) 1

Poisson Log
μ
yj
j exp (−μj)

Γ (yj + 1)
μj 1

Geometric Log
μ
yj
j

(μj + 1)yj+1
μ2
j + μ 1

Gamma Log
y

1
κ

−1

j exp
(
− yj

κμj

)
(κμj)

1
κ Γ

(
1
κ

) μ2
j κ

Inverse-Gaussian Log

(
1

2πξy3
j

) 1
2

exp

(
− (yj − μj)

2

2ξμ2
jyj

)
μ3
j ξ

I(y, θ, λ;X) = − log p(y|θ;X) +
1

2
log |

(
(1n,X)′ W(μ) (1n,X) + λS

)
|

− 1

2
log |Σ|+ k

2
log

(
2π

λ

)
+

(
λ

2φ

)
β′Σβ + (1/2) logn + c(m) + const

(18)

where μ = f−1(Xβ+α1n), S is given by (15), W(μ) is given by (13) and const
denotes constant terms independent of θ, λ and y.

Message Length when k = 0. In this case, no covariates are being used
to model the data y and the model parameters are simply the intercept α and
the dispersion parameter φ (if required). The total number of parameters is
then m = 2 if φ is a free parameter, or m = 1 otherwise. As β is not being
transmitted, there is no requirement to transmit the hyperparameter λ, and the
message length simplifies to

I(y, α) = − log p(y|θ;X) +
1

2
log 1′

nW(μ)1n + c(m) + const, (19)

where μ = f−1(α1n).
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4 Estimating ψ, φ and λ

Finding the exact estimates for ψ̂ = (α̂, β̂′)′ that minimise (18) is computation-
ally expensive due to the presence of the log-determinant of the Fisher infor-
mation. To avoid this problem, the posterior mode, or maximum a posteriori
(MAP) estimates will be used as a surrogate for the exact MML estimates; for
moderate to large sample sizes, the difference between the MML and MAP es-
timates is expected to be small. Furthermore, for case of normal and gamma
target distributions, the MAP and MML estimators exactly coincide. This is
easy to verify by noting that the corrected Fisher information matrix (14) in
both of these cases is independent of ψ.

The posterior mode estimates may be obtained by using the well-known iter-
atively reweighted least-squares (IRLS) algorithm [10]. Although this algorithm
is usually used to obtain the maximum likelihood estimates, it is easily adapted
to find ridge estimates through the use of data augmentation. This is done by
defining a new, augmented, design matrix

XA =

(
1n X
0k diag(

√
v1, . . . ,

√
vk)E

′

)
, (20)

where v are the eigenvalues of Σ, and E is a matrix whose columns are the
eigenvectors of Σ. In the common case of Σ = Ik, we have v = 1k and E = Ik.

The algorithm begins by initialising the estimate of the conditional mean
vector with suitable starting values:

μ̂λ ←

⎧⎨⎩
y/2 + 1/4 (Binomial)
y + 1/4 (Poisson)
y (Otherwise)

(21)

The IRLS ridge algorithm then procedes as follows:

1. Form the augmented weight matrix and “data” vector using (12) and (13) :

WA(μ̂λ) ←
(
W(μ̂λ) 0n×k

0k×n λ Ik

)
, zA(μ̂λ) ←

(
z(μ̂λ)
0k.

)
(22)

2. Update the estimates of the regression coefficients:

ψ̂λ ← (X′
AWA(μ̂λ)XA)

−1
X′

AWA(μ̂λ)zA(μ̂λ) (23)

3. Update the estimate of the conditional mean vector:

μ̂λ ← f−1(Xβ̂λ + α̂λ1n)

4. If the change in estimates is sufficiently small, terminate. Otherwise, go to
Step 1.

An advantage of conditioning the prior (9) for β on φ is that the estimating
equation for ψ, given by (23), is independent of φ. As the choice of φ has no
effect on the MAP estimate of the coefficients ψ, we may first estimate ψ using
the above procedure, and once a suitable estimate has been obtained, we may
subsequently use it to estimate φ.
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4.1 Estimating φ

Once we have obtained the MAP estimate for the model coefficients, ψ̂λ, we may
estimate the dispersion parameter φ, if necessary. An initial estimate for φ can
then be obtained by minimising the approximate negative log posterior (11) for
φ, yielding

φ̂λ ≈
(
1

n

)[
(z(μ̂λ)− β̂λX− α̂λ1n)

′W(μ̂λ)(z(μ̂λ)− β̂λX− α̂λ1n) + λβ̂′
λΣβ̂λ

]
.

(24)

In the case of the normal distribution (φ ≡ τ), this estimate is the exact MML
estimate for the noise variance. In the case of the gamma and inverse Gaussian
distributions, this estimate may be close for large sample sizes, but will not in
general be equal to the exact MML estimate. We now detail how to find the
MML estimate in these two cases.

Gamma Regression. In this case, φ ≡ κ, which plays the role of the inverse
of the shape parameter found in the usual parameterisation of the gamma dis-
tribution. Let (μ̂λ)i denote the i-th co-ordinate of the conditional mean vector
estimate μ̂λ. The MML estimate of κ may be obtained by minimising(
1

κ

) n∑
i=1

(
yi

(μ̂λ)i
+ log(μ̂λ)i

)
+

(
κ − 1

κ

) n∑
i=1

log yi +
(n

κ

)
log κ + n logΓ

(
1

κ

)
.

(25)
Closed form solutions for the MML estimate do not exist, and they must be
found numerically. The approximate estimate (24) is a suitable starting point
for a numerical minisation procedure.

Inverse Gaussian Regression. In this case, φ ≡ ξ, which plays the role of
the inverse of the shape parameter found in the usual parameterisation of the
inverse Gaussian distribution. An exact estimate may be obtained by minimising
the message length; this is given by

ξ̂λ =

(
1

n

) n∑
i=1

(yi − (μ̂λ)i)
2

yi (μ̂λ)2i
, (26)

where (μ̂λ)i denotes the i-th component of the conditional mean estimate μ̂λ.

4.2 Estimating λ

The regularisation parameter λ may also be estimated from the data by minimi-
sation of the message length. Due to the use of the “corrected” Fisher information
matrix, the MML87 message length is valid even for very large λ, and the MML
estimate may be obtained by solving

λ̂ = argmin
λ∈R+

{
I(y, θ̂λ, λ;X)

}
,
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where θ̂λ = (ψ̂′
λ, φ̂λ)

′, and ψ̂λ and φ̂λ are the estimates for ψ and φ, conditional
on λ, obtained using the procedures described Sections 4 and 4.1.

5 Selecting Covariates

One of the strengths of MML is that minimisation of the message length can be
used to estimate both continuous model parameters, as well as perform model
selection. In the setting of GLMs, the most common model selection problem is
identifying which covariates from a design matrix are associated with the target.
The MML ridge scheme developed in this paper can easily be adapted to perform
model selection. Let X = (x1, . . . ,xq) denote the complete, (n×q) design matrix,
where xi ∈ Rn, let γ ⊂ {1, . . . , q} index a particular subset of covariates, and
let kγ = |γ| denote the number of covariates in the subset. We can then define a
sub-design matrix by

Xγ =
(
xγ1 , . . . ,xγkγ

)
.

For the message to be decodable, the particular subset γ being used must en-
coded; a prior over Γ is therefore required. If nothing is known a priori about
the likelihood of any covariate being included in the final model, a prior that
treats all subset sizes equally likely is appropriate [8]. This yields a codelength
of

I(γ) = log

(
q

kγ

)
+ log(q + 1).

The MML estimate of γ is then found by solving

γ̂ = argmin
γ∈Γ

{
I(y, θ̂λ, λ̂;Xγ) + I(γ)

}
,

where I(y, θ̂λ, λ̂;Xγ) is given by either (18) or (19), depending on kγ .

6 Experiments

The MML GLM ridge criterion was compared to the corrected Akaike Informa-
tion Criterion (AICc) in both parameter estimation and model selection exper-
iments. The AICc has previously been shown to perform well when applied to
regression models, even in the case of small sample sizes [11]. Given a particular
λ, the AICc score for the model is

AICc(y;λ,X) = − log p(y|θ̂λ;X) + k̂λ

(
n

n − k̂λ − 1

)
, (27)

where
k̂λ = Tr

(
X (X′

AWA(μ̂λ)XA)
−1

X′W(μ̂λ)
)

is the degrees-of-freedom of the fitted regression model, XA is the augmented
design matrix given by (20), W(μ̂λ) is the weight matrix given by (13), WA(μ̂λ)

is given by (22), θ̂λ are the MAP estimates of θ and μ̂λ = f−1(Xβ̂λ + α̂λ1n).
The AICc estimate of λ is found by minimising (27).
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Table 3. Median ratios of the Kullback–Leibler (KL) divergences obtained by the
MML and AICc estimates over the KL divergence obtained by the maximum likelihood
estimates

ρ = 0.1 ρ = 0.5 ρ = 0.9
n AICc MML AICc MML AICc MML

25 0.66 0.47 0.57 0.45 0.31 0.35
Normal 50 0.91 0.70 0.86 0.71 0.64 0.62

100 0.96 0.85 0.95 0.84 0.83 0.79
250 0.98 0.94 0.98 0.94 0.93 0.90

25 0.03 0.05 0.02 0.06 0.02 0.03
Binomial 50 0.56 0.22 0.51 0.19 0.27 0.19

100 0.82 0.69 0.77 0.64 0.63 0.56
250 0.96 0.91 0.94 0.89 0.89 0.88

25 0.77 0.58 0.83 0.62 0.46 0.39
Poisson 50 0.94 0.96 0.96 0.95 0.92 0.89

100 1.00 1.00 0.99 0.98 0.97 0.97
250 1.00 1.00 1.00 1.00 1.00 1.00

6.1 Parameter Estimation Simulations

The performance of both the MML ridge estimates and the AICc ridge esti-
mates were compared to the maximum likelihood estimates on simulated data.
At each of the 1, 000 iterations of the simulation, a vector of k = 10 “true”
regression coefficients was sampled from a normal distribution, β∗

i ∼ N(0, 1),
and a design matrix of n = {25, 50, 100, 250} samples was generated from a
multivariate normal distribution with a mean of zero, and covariance structure
E [xi,jxi,k] = ρ|j−k|, where ρ = {0.1, 0.5, 0.9}. Targets of the chosen distribution
(normal, binomial, Poisson) were then generated using the regression coefficients
β∗ and generated design matrix. Maximum likelihood, MML and AICc were used
to estimate the regression coefficients, with Σ = Ik, and Kullback–Leibler (KL)
divergences [12] from the true model were calculated for all three estimates.

The median ratios of the KL divergence obtained by the MML and AICc es-
timates over the KL divergence obtained by the maximum likelihood estimates
are presented in Table 3. In all cases the ratio is less than or equal to one, and
in many cases is substantially smaller than one, indicating that ridge regression
offers an excellent alternative to maximum likelihood estimation. The improve-
ments are generally larger for higher levels of correlation, which is expected given
the nature of ridge regularisation. The MML estimates are competetive with, or
superior to, the AICc estimates in all cases, and in the case of normal regression
models MML is superior in all but one case.

6.2 Model Selection Experiments on Real Data

The MML and AICc ridge procedures were also tested in terms of model se-
lection on several real datasets. Three datasets were chosen (two from the UCI
machine learning repository [13], and one previously analysed in [14]): (i) the
Pima indians dataset (binary targets, q = 8 covariates, n = 768 samples); (ii)
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Table 4. Kullback–Leibler divergences for three real datasets estimated by cross-
validation

Pima Indians Diabetes Boston Housing
n AICc MML AICc MML AICc MML

25 3.775 1.063 1.659 1.404 5.991 3.895
50 1.552 0.641 1.281 1.233 3.692 3.370
100 0.542 0.528 1.151 1.144 3.200 3.181
250 0.501 0.501 1.101 1.103 3.057 3.099

the diabetes data (normal targets, q = 10, n = 442); and (iii) the Boston housing
data (normal targets, q = 14, n = 506). Each dataset was randomly split into
training and testing samples, and to make the task more difficult, four extra
noise covariates generated from a standard normal distribution were appended
to each training sample. MML and AICc were used to select a subset of the can-
didate regressors based on the training sample, with the potential subsets being
determined from the path generated by the Lasso procedure [15]. The testing
sample was subsequently used to assess the predictive performance of the cri-
teria, measured in terms of mean KL divergence. Each test was repeated 100
times. The results are presented in Table 4, and show that MML is competetive
with, or superior to, AICc for all three datasets, and for all sample sizes. The
performance difference is especially noticable for the Pima indians dataset.
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Abstract. The objective of Prototype Reduction Schemes (PRSs) and
Border Identification (BI) algorithms is to reduce the number of training
vectors, while simultaneously attempting to guarantee that the classifier
built on the reduced design set performs as well, or nearly as well, as
the classifier built on the original design set. In this paper, we shall push
the limit on the field of PRSs to see if we can obtain a classification
accuracy comparable to the optimal, by condensing the information in
the data set into a single training point. We, indeed, demonstrate that
such PRSs exist and are attainable, and show that the design and imple-
mentation of such schemes work with the recently-introduced paradigm
of Order Statistics (OS)-based classifiers. These classifiers, referred to
as Classification by Moments of Order Statistics (CMOS) is essentially
anti-Bayesian in its modus operandus. In this paper, we demonstrate
the power and potential of CMOS to yield single-element PRSs which
are either “selective” or “creative”, where in each case we resort to a
non-parametric or a parametric paradigm respectively. We also report
a single-feature single-element creative PRS. All of these solutions have
been used to achieve classification for real-life data sets from the UCI
Machine Learning Repository, where we have followed an approach that
is similar to the Näıve-Bayes’ (NB) strategy although it is essentially of
an anti-Näıve-Bayes’ paradigm. The amazing facet of this approach is
that the training set can be reduced to a single pattern from each of the
classes which is, in turn, determined by the CMOS features. It is even
more fascinating to see that the scheme can be rendered operational by
using the information in a single feature of such a single data point. In
each of these cases, the accuracy of the proposed PRS-based approach
is very close to the optimal Bayes’ bound and is almost comparable to
that of the SVM.

Keywords: Prototype Reduction Schemes, Classification using Order
Statistics (OS), Moments of OS.

1 Introduction

In traditional non-parametric classification, the training patterns play a signif-
icant role in the classification process. This is because a decision boundary is
obtained by considering all the samples in the training set. However, modern
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rapid advancements in this field have led to the development of efficient clas-
sification methods in which the schemes achieve the classification based on a
subset of the training patterns. A Prototype Reduction Schemes (PRS) is a
generic method for reducing the number of training vectors, without affecting
the performance of the classifier built on the reduced design set [1–4]. Instead of
considering all the training patterns for the classification, a subset of the whole
set is selected based on certain criteria. The training is then performed on this
reduced set, which is also called the “Reference” set. More recent advances have
involved the use of Border Identification (BI) algorithms [5–8] to choose these
prototypes from the so-called “border” points of the various classes.

Traditionally, a good PRS can reduce the size of the training set to a small
percentage (for example, 10%) of the original set. But how small can one make
this reduced set? Is it possible to, at least conceptually, reduce the set of proto-
types to contain only a single element from each class. The aim of this paper is to
investigate this issue both conceptually and from a practical perspective. Indeed,
we shall demonstrate that we can push and attain the limit on the field of PRSs
to obtain a classification accuracy comparable to the optimal, by condensing
the information in the data set into a single training point. Apart from showing
that such a PRS exists and is attainable, we shall also show that the design and
implementation of such a mechanism relies on the recently-introduced paradigm
of Order Statistics (OS)-based classifiers.

One should, of course, mention that the new point obtained by invoking the
PRS is not necessarily a member of the original data set. Rather, it can be an
artificially created point, representative of the training set, as perceived from
the perspective of the data sets OSs.

We now consider another facet of a typical PRS-based PR solution.Whenever a
practitioner designs a PRS, he works with the premise that all features are crucial
for the classification. The problem that is “dual” to the PRS problem is the follow-
ing: Apart from reducing the size of the “Reference” set, is it possible to also reduce
the number of features utilizedwithin the latter. This paper addresses both of these
issues simultaneously. To be specific, we state that the OS-based PRS scheme that
weproposehas the fascinatingproperty that it canbe renderedoperational byusing
the information in a single feature of the single data point obtained using an OS-
based computation. Indeed, in each of these cases, the accuracy of this approach
is very close to the optimal Bayes’ bound and is almost comparable to that of the
SVM. In a nutshell, this is the fundamental contribution of this paper, and we are
not aware of any reported comparable results.

To put this paper in the right context, a word about these OS-based classi-
fiers is not out of place [9–11]. Almost all the well-known classifiers involved in
pattern classification are based on a Bayesian principle which aims to maxi-
mize the a posteriori probability, where they have been characterized by their
respective indicators such as their means, variances etc.. In the field of PR, how-
ever, there are some families of indicators that have noticeably been uninvesti-
gated, specifically those related to its Order Statistics (OS). The interesting point
about these indicators is that some of them are quite unrelated to the traditional
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moments themselves, and in spite of this, have not been used in achieving PR.
The main question that has earlier excited our interest is whether these indica-
tors/indices possess any potential in PR.

The salient differences between the traditional Bayesian paradigm and the
newly-proposed OS-based anti-Bayesian paradigm can be highlighted as below.
Consider Figure 1, where for simplicity, we have used unit-lengthed intervals to
display the span of the two class-conditional distributions. Whenever a testing
sample comes from these distributions, the CMOS will compare the testing sam-
ple with the higher-order 2-OS, E[x2,2] of the first distribution, i.e., 2

3 , and with
with the lower-order 2-OS E[x1,2] of the second distribution, i.e., h + 1

3 , and
the sample will be labeled with respect to the class which minimizes the corre-
sponding quantity, as shown in Figure 1. We emphasize that the comparison is
not made with the means of the two distributions, but with certain non-central
outlier-like points, rendering it “Anti”-Bayesian. Observe that for the above rule
to work, we must enforce the ordering of the OS of the two distributions, and
this requires that 2

3 < h + 1
3 =⇒ h > 1

3 . The case when this condition is not
satisfied, and the details of CMOS have been explained in [9–11].

Fig. 1. A schematic of OS-based Anti-Bayesian Classification

This paper takes this concept to the next level, i.e., to that concerning PRSs.
From an overall perspective, we now discuss how we are to achieve our goal to

reduce the cardinality of the OS-based PRS to be unity for each class. First of all,
we know that PRSs can be broadly classified as being “selective” or “creative”
[12]. A “selective” PRS yields as its output a set of prototypes which are chosen
from the original training points. As opposed to this, a “creative” PRS creates
a set of artificial points which may not be found in the original training set, and
these points are thereafter used in the classification.

We first study the task of designing “selective” OS-based PRSs in Section
4. Since, at this juncture, we are not willing to assume a distributional form
for the corresponding features, we are forced to work with the non-parametric
representation that the training data captures. By working with the multi-
dimensional non-parametric form of the data, and by thereafter invoking an
OS-based paradigm, we are able to obtain a single prototype with which we can
accomplish efficient classification. This single prototype is, as a vector, a “cre-
ated” point, although, in every single dimension, the value is “selected” from
the actual training sample that is closest to the value specified by the OS value.

Two versions of this strategy have been proposed, namely, the first which
considers the entire vectorial form of the resultant prototype (in Section 4.1),
and the second which invokes a majority vote by considering the OS-based
classification of the individual features. The latter, which is a Scalar-Based
Selective PRS, has been described in Section 4.2. It is worth mentioning that
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the classification results obtained by both these methods – both of which involve
only a single prototype – are quite satisfactory, and are comparable, though un-
derstandably, marginally inferior, to those obtained from a NB or SVM strategy.

After investigating selective PRSs, we subsequently consider the task of de-
signing “creative” OS-based PRSs in Section 5. In this case, we assume a dis-
tributional form for the corresponding features, and so we proceed to work with
the parametric representation that the training data captures. By working with
a multi-dimensional parametric form of the data, and by thereafter invoking an
OS-based paradigm, we succeed in obtaining a single prototype in the “Refer-
ence” set, which can be used for classification. This process has been explained in
Section 5.1. As in the non-parametric case, we have also developed a Scalar-Based
Creative PRS in Section 5.2. Again, it is worth mentioning that the classification
results obtained from both these parametric strategies (i.e., the vector, and the
majority-voted individual-feature based) are quite satisfactory, and comparable,
though marginally inferior, to those obtained from a NB or SVM strategy.

The final concluding contribution is actually far more ambitious. It consists of
using only a single feature of a single prototype. In this case, in Section 6, we have
designed a “creative” PRS scheme which merely includes the OS-based points

of a single feature, where the n−k+1
n+1

th
percentile of this feature of the first class,

and the k
n+1

th
percentile of this feature of the second class, are the corresponding

“prototypes”. It is clear that the accuracy of this scalar-based OS will be inferior
to that of the corresponding vector-based OS. However, astonishingly enough,
the accuracy does not degrade significantly – the resultant classifier still yields
an accuracy that is acceptable considering the fact that one requires only a single
scalar comparison to achieve the classification.

The reader must observe that the intent of this paper is not to compare the
resultant classification accuracies with those obtained from an entire ensemble
of classification methodologies. Rather, our aim is to show that we can obtain
very efficient classification by merely using a single (vector or scalar) prototype
which is either selected or created. Thus, we have compared our proposed scheme
with only three standard algorithms which have been universally considered as
benchmarks. We believe that the results presented here conclusively demonstrate
the power of our contribution.

1.1 Contributions of This Paper

The novel contributions of this paper are:

– We propose a “selective” PRS which can be metaphorically perceived to be
the “Ultimate” selective PRS because, by using a non-parametric paradigm,
it reduces the size of the “Reference” set to be a single pattern from each
class, which is thereafter utilized in the classification;

– We also propose a “creative” PRS which can be considered to be the “Ul-
timate” creative PRS because, by invoking a parametric paradigm, it also
reduces the size of the “Reference” set to be a single pattern from each class;

– In both of the above cases, we have also shown that it is possible to derive
a majority-based PRS which fuses the classification results of the various
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features of the single d-dimensional prototype. The classification accuracies
of these fused scalar schemes are marginally worse than those of the corre-
sponding vector-based algorithms;

– We have also shown that it is possible to derive a single scalar prototype, i.e.,
one which involves only a a single feature of a single d-dimensional vector.
The classification accuracy of this single-scalar PRS is marginally worse than
that of the vector-based methods;

– In every case, we demonstrate, by testing the algorithms on real-life data sets
from the UCI repository, that the new PRS-based classification schemes yield
accuracies comparable to the traditional NB classifiers, and even the SVM,
even though the computations needed are, really, of an atomic magnitude.

In the interest of space, the formal algorithms for all these strategies cannot be
included here. But in the interest of completeness, as a representative example,
we have included the formal algorithm for for one of these strategies, namely for
the Ultimate Vector-based Creative PRS in Section 5.1.

We conclude this section by remarking that, to the best of our knowledge,
analogous results have been unreported in the literature.

2 CMOS-Based Classification: The Generic Classifier

The multi-dimensional OS-based classifier is based on its uni-dimensional coun-
terpart developed earlier. Since its understanding is crucial to this paper, it is
briefly explained here.

Consider a 2-class problemwith classesω1 and ω2, where their class-conditional
densities are f1(x) and f2(x) respectively (i.e, their corresponding distributions
are F1(x) and F2(x) respectively). If we perform a classification based on ν1 and
ν2, the medians of the distributions, this is equivalent to the strategy in which
the task is performed based on a single OS. For all symmetric distributions, this
classification accuracy attains the Bayes’ accuracy – which is not too astonishing
because the median is identical to the mean. But the intriguing aspect emerges
when we use higher order OS that are not located centrally (close to the means),
but rather distant from the means. Indeed, for uni-dimensional OS-based PR, our
methodology is based on considering the n-order OSs, and comparing the testing
sample with the n − k OS of the first distribution and the kth OS of the second.
By considering the entire spectrum of the possible values of k, the results in and
showed that the specific value of k is usually not so crucial. Further, if these sym-
metric pairs of the OS are used in PR, the classification based on these attains the
optimal Bayes’ bound for a large number of symmetric distributions of the expo-
nential family. The PR is near-optimal when the distributions are asymmetric.

Theses results were generalized for multi-dimensional distributions by invok-
ing a Näıve-Bayes’ approach, which essentially implies that that the first mo-
ments of the OS in each of the dimensions are uncorrelated.

With this as the background, we shall now consider how we can derive single-
element OS-based PRSs which can be used to design classifiers for real-life data.
Since our solutions have been tested on both artificial and real-life data-sets, we
shall, in the interest of continuity, briefly describe the sets that we have used.
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3 Experimental Data Sets

3.1 Artificial Data Sets

For a prima facie testing of artificial data, we generated two classes that obeyed
Gaussian distributions. To do this, we made use of a Uniform (0, 1) random
variable generator to generate data values that follow a Gaussian distribution.
The expression z =

√
−2ln(u1) cos(2πu2) is known to yield data values that

follow N(0, 1) [13]. Thereafter, by using the technique described in [14], one
can generate Gaussian random vectors which possess any arbitrary mean and
covariance matrix. The means of the classes were [2 2 2 2 2]T and [−2 −2 −
2 − 2 − 2]T respectively, and the covariances of the two classes were identical
and had the form1:

Σ =

⎡⎢⎢⎢⎢⎣
a2 b 0 a αab
b 2a + 3b 0 b a
0 0 1 0 0
a b 0 2a + 3b b

αab a 0 b b2

⎤⎥⎥⎥⎥⎦
This rendered the classes to have an optimal linear classifier. With regard

to the cardinality of the data set, each of the classes had 200 instances in the
corresponding 5-dimensional space.

3.2 Real-Life Setup

The data sets [15] used in this study have two classes, and the number of at-
tributes varies from 4 up to 32. The data sets are given in Table 1.

4 OS-Based “Selective” PRSs Using a Non-parametric
Perspective

In this section, we discuss the problem of designing a “Selective” OS-based PRS.
Since we are ultimately going to select a training sample, at this juncture, we
take the position that we are not willing to assume a distributional form for
the corresponding features. Consequently, we are forced to work with the non-
parametric representation that the training data captures. This implies that
one has to resort to a non-parametric avenue in which we are able to compute
the corresponding prototypes by approximating the distribution using a multi-
dimensional kernel. Although a generalized kernel could be used for this phase, in
the interest of simplicity, for a prima facie case, we have opted to use a simplistic
bin-based approach. Once the histogram of the features has been obtained in
each dimension, the training sample that lies closest to the point representing

the n−k+1
n+1

th
percentile of the first distribution and the k

n+1

th
percentile of the

1 In our experiments, we set a = 5, b = 4, and α = 0.4.
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Table 1. The Real-life data sets used in our experiments, where C, I and R represent
Categorical, Integer and Real Respectively

Data set No. Instances No. Attributes No. Classes Attribute Type

WOBC 699 9 2 I

WDBC 569 32 2 Real

WDBC 569 32 2 R

Diabetes 768 8 2 I, R

Hepatitis 155 19 2 C, I, R

Iris 150 4 3 Real

Mushroom 8124 22 2 C

Statlog (Heart) 270 13 2 C, R

Statlog (Australian Credit) 690 14 2 C, I, R

Vote 435 16 2 C, I

second distribution of the given data sets is selected to be the prototype of
interest. Indeed, by using these selected patterns as vector prototypes – a single
one from each class – one can now achieve classification. One should observe
that this single prototype is, as a vector, a “created” point, although, in every
single dimension, the value is “selected” from the actual training sample that is
closest to the value specified by the OS value.

Although the specific value of k is not so crucial [9–11], in this paper, as
mentioned earlier, we have set k = 1, implying that we have, in each dimension,
worked with the pattern that falls at the 2

3 percentile of the first distribution
and the pattern that falls at the 1

3 percentile of the second.
To obtain the final PRS, we can envision two methodologies, namely where

the computations are vector-based or scalar-based, which are described below.

4.1 The Vector-Based Selective OS-Based PRS

The Vector-based selective OS-based PRS is obtained by comparing the testing
sample with the prototype procured by the above process. Such a comparison
can be achieved using any metric, but for the sake of simplicity, we have utilized
the well-known Euclidean norm.

The proposed method has been rigorously tested on the various artificial and
real-life data sets obtained from the UCI repository [15] described above. It has
also been compared with other well-known schemes including the NB, SVM, and
the kNN. In order to obtain the results, the algorithms were executed 50 times
with the 10-fold cross validation scheme. The results are tabulated in Table 2.
To ensure standardization , the performance of the benchmark classifiers are
taken from [16–18]. By examining the table of results (see Column 6), we can
see that the proposed algorithm can achieve a comparable classification when
compared to the other traditional classifiers, which is particularly impressive
because once the single prototype has been computed after the training phase,
the testing is done by exactly two vector-based computations (one for each class),
comparing the testing sample with the resultant prototypes. For example, for
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the Breast Cancer data set, we can see that the new approach yielded a accuracy
of 95.06% which should be compared to the accuracies of the SVM (96.99%), NB
(96.40%) and the kNN (96.60%). The reader will observe that the classification
accuracies for all the data sets is commendable except for the “Diabetes” set.
This is because, for this data set, the approximation of the distributions using
simplistic histograms in the d-dimensional space is rather crude. Superior results
are obtained in this case when we resort to obtaining the OS-based points using
the criteria explained in Section 5.1.

4.2 The Scalar-Based Selective OS-Based PRS

In the Scalar-based selective OS-based PRS, the patterns are treated as a group
of scalars and a classification is performed for each dimension. Thereafter, the
final determination of the identity of the testing sample is achieved based on a
majority vote. The scalar-based selective CMOS has been tested on the various
artificial and real-life data sets and the results are tabulated in Table 2. If we
examine the table (see Column 8), one can see that the approach yields a near
optimal accuracy for the all the data sets except the Diabetes data set, which,
as before has a poor accuracy for all the classifiers, and for which the histogram
leads to a very crude approximation. For example, if we consider the Hepatitis
data set, the proposed approach yields an accuracy of 81% while the traditional
classifiers yields 84.54% (SVM), 82.58% (NN) and 83.19% (NB), which is still
quite astonishing considering that all the information in the entire training set
has been crystallized into a single prototype distant from the mean.

We now move on to present the vector and scalar-based “Creative” PRSs in
which the Reference set has only a single element.

5 A CMOS-Based “Creative” PRS Using a Parametric
Perspective

We now consider the task of designing a “creative” OS-based PRS, where we
again aim to attain the goal that the cardinality of the Reference set is unity.
Since we are now willing to permit the option of assuming a distributional form
for the corresponding features, we have chosen to resolve this fundamental issue
by invoking a strategy analogous to a Näıve-Bayes’ approach, although it, really,
is of an anti-Näıve-Bayes’ paradigm. As a Näıve-Bayes’ strategy requires the un-
correlation of the features, if we consider a k-OS CMOS, we need to determine,

for every feature, the n−k+1
n+1

th
percentile of the first distribution and the k

n+1

th

percentile of the second distribution. From an anti-Näıve-Bayes’perspective, we
can obtain the corresponding values of all of the features by assuming a Gaus-
sian2 distribution for all the features. The OS-based PRS that we thus propose

2 Any other member of the exponential family described in [9] could have just as
well been used. We have chosen to use the Gaussian distribution because it is more
general than the others, and involves the means and the variances of the features.
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here again consists of the single created point in the d-dimensional space char-

acterized by the location of the n−k+1
n+1

th
percentile of the first distribution and

the k
n+1

th
percentile of the second distribution. As shown in [9], for the value of

k = 1, the 2-OS CMOS positions for the classes that follow a Gaussian distri-
butions can be expressed as u1 = μ1 − σ√

2π
and u2 = μ2 +

σ√
2π

. We thus opt to

use these expressions to obtain the corresponding CMOS positions, whence the
vector and scalar-based PRS schemes are derived.

5.1 The Vector-Based “Creative” OS-Based PRS

For this approach also, we consider the possibility of perceiving the training set
as vectors or as scalars. The Vector-based “Creative” OS-based PRS considers
the final prototype as a vector, which has been artificially created as a new
pattern by resorting to the expressions for u1 and u2. The testing sample is then
compared with the single OS-based prototype, and the identity is determined
with regard to how distant it is from the latter. Since the individual variances
are known, this distance is computed using the Mahalanobis distance.

The formal algorithm for this approach is given in Algorithm 1.

Algorithm 1. Vector based Creative PRS(T , T P )
Input:

T : The training set, comprising of elements T1 and T2 from classes ω1 and ω2 respectively.
TP : the testing set

Output:

Classification for TP

Method:
Training

1: for i = 1 to d do
2: Estimate mean of T1 as μ1i and mean of T2 as μ2i

3: Estimate the standard deviations of T1 and T2 as σ1i and σ2i

4: end for
5: for i = 1 to d do
6: Determine the ith component of u1, u1i = μ1i − σ1i√

2π

7: Determine the ith component of u2, u2i = μ2i +
σ2i√
2π

8: end for

End Training

Testing

1: for all x ∈ TP do
2: if M Dist(u1,x) < M Dist(u2,x) then
3: Assign x to class ω1

4: else
5: Assign x to class ω2

6: end if
7: end for

End Testing

End Algorithm
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Table 2. Classification of Real-life data sets by CMOS

Data set Traditional Classifiers CMOS Classifier

NB NN SVM Vector Scalar

Creative Selective Creative Selective

WOBC 96.40 96.60 96.99 96.94 95.06 94.35 92.06

WDBC 92.97 96.66 97.71 93.43 90.07 89.25 86.82

Diabetes 73.11 71.90 73.84 73.76 65.74 76.74 43.41

Hepatitis 83.19 82.58 84.54 76.67 75.13 81.87 81.00

Iris 95.13 96.00 96.67 94.4 92.50 93.80 77.80

AU Credit 87.40 85.90 85.51 94.76 84.21 83.03 48.19

Heart 83.00 84.40 85.60 84.59 83.93 77.11 60.67

Vote 94.29 90.23 94.33 93.43 91.0 89.10 85.36

The vector-based Creative CMOS has been tested for the same data sets as be-
fore, and the results are tabulated in Table 2. From the table (see Column 5), we
can conclude that the new approach is comparable with the other well-used and
well-established classifiers. This approach achieves “almost” optimal classification
when compared to the traditional classifiers. For example, if we consider the clas-
sification of the Breast Cancer data set, we see that Algorithm achieves 96.94%
accuracy as opposed to the 96.99% of SVM, 96.40% of NB and 96.6% of NN. One
can see that the difference in the accuracies is almost negligible. For the other data
sets too, this approach attains a near-optimal classification when compared to the
traditional classifiers, even though there is only a single element in the Reference
set, and the testing involves only two vector comparisons.

5.2 The Scalar-Based “Creative” OS-Based PRS

In this approach, each pattern was considered as a vector, and the distance cal-
culations were based on the Mahalanobis metric. As in the case of the selective
scheme described in Section 4.2, a similar classification can be achieved by con-
sidering the various feature values as scalars and by accomplishing the task by
computing the majority vote.

The scalar-based creative CMOS has also been tested on the various artifi-
cial and real-life data sets and the results are tabulated in Table 2 (see Column
7). Again, an examination of the table shows that the classification results are
near-optimal. For example, if we consider the Vote data set, the proposed ap-
proach yields an accuracy of 93.43% while the traditional classifiers yields 94.33%
(SVM), 90.24% (NN) and 94.29% (NB). Observe that the prototype-based NN
performs even better than the traditional NN which involves the entire training
set, which is quite astonishing considering that all the information in the entire
training set has been crystallized into a single newly-created prototype.

6 Classification Based on One Selected Feature

In this section we have embarked on an even far more ambitious goal which
consists of seeing if we could do the classification by using only a single feature
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of a single prototype. To achieve this goal, we have operated with the philosophy
proposed in Section 5 and designed a “creative” vector PRS. But rather than use
all the components of the vector in the classification, we have merely chosen the

OS-based points of a single feature, where the n−k+1
n+1

th
percentile of this feature

of the first class, and the k
n+1

th
percentile of this feature of the second class, are

the corresponding “prototypes” (where we have, as usual, used k = 1).
The proposed approach of has been tested on the artificial and real-life data

sets described earlier, and the results are tabulated in Table 3. If we closely inves-
tigate the table, one can see that the method attains a comparable classification
when compared to the traditional classifiers. Specifically, for the Diabetes data
set, if the classification is performed based on the OS positions of the feature
Plasma Glucose Concentration, an accuracy of 73.63% is attained as opposed
to the accuracy of 73.84% attained by SVM . The reader should not be sur-
prised that the accuracies are not always so outstanding. However, astonishingly
enough, the accuracy does not degrade significantly – the resultant classifier still
yields an accuracy that is acceptable considering the fact that one requires only
two scalar comparisons to achieve the classification.

Table 3. Classification of Artificial and Real-life data sets using the Scalar-based
Creative CMOS involving only a single dimension

Data set SVM Dimension Feature CMOS

Artificial Set 98.75 3 A3 98.475

WOBC 96.99 2 Uniformity of Cell Size 93.04

WDBC 97.71 27 Worst Compactness 91.29

Diabetes 73.84 2 Plasma Glucose Concentration 73.63

Hepatitis 84.54 12 Ascites 83.93

Iris 96.67 4 Petal Width 95.5

AU Credit (Statlog) 92.1 7 A9 84.84

Heart (Statlog) 85.60 2 Chest Pain Type 78.52

Vote 94.33 4 Physician-fee-freeze 95.40

7 Conclusions

Almost all the well-known classifiers involved in pattern classification are based
on a Bayesian principle which aims to maximize the a posteriori probability.
Quite recently, a new paradigm, known as CMOS, the classification by moments
of Order Statistics, has been introduced to attain the same task, but with a
counter-intuitive philosophy as compared to the Bayesian principle. In [10], the
foundational theory of the CMOS was introduced, and a generic classifier that
can be used for any distribution was provided. The applications of CMOS on
various uni-dimensional distributions of the exponential family were included in
[9]. The results of [9] were extended for multi-dimensional distributions in [11].
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In this paper, we have demonstrated the power and potential of CMOS to
yield single-element PRSs which are either “selective” or “creative”, where in
each case we resort to a non-parametric or a parametric paradigm respectively.
We have derived a single-feature single-element creative PRS. All of these solu-
tions have been used to achieve classification for artificial and real-life data sets
from the UCI Machine Learning Repository. All of the reported algorithms yield
an acceptable accuracy when compared to many of the established benchmark
methods. It is even more fascinating to see that our paradigm performs favorably
by using the information in a single feature of such a single data point.
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Abstract. The recommendation framework based on precedence mining
as outlined in [3] is limited to personal recommendation and cannot
be trivially extended for group recommendation scenario. In this paper,
we extend the precedence mining model for group recommendation by
proposing a novel way of defining a virtual user by taking transitive

precedence relation into account. We obtained experimental results
for different combinations of parameter settings and for different group-
sizes on MovieLens data-set based on our virtual-user model. We show
that our framework has better performance in terms of precision and

recall when compared with other methods.

1 Introduction

Broadly speaking, recommender systems are based on one of two strategies
(1) Content-based filtering (2) Collaborative filtering. The content filtering ap-
proach [4,6] creates a profile for each user or product to characterize its nature.
On the other hand, collaborative filtering [4], relies only on past user behavior
without requiring the creation of explicit profiles and therefore certain patterns
of consumption of items exhibited by the whole set of users, U , is not captured.
The recent precedence mining model proposed by Parameswaran et.al. [3] gets
over this shortcomings and attempts to capture pairwise precedence relation oc-
curring frequently among all users. Recommender systems based on precedence
relations is concerned with mining precedence relations among items consumed
by users and thereafter recommends new items having high precedence proba-
bility score. Though precedence mining, as demonstrated by Parameswaran et.
al., can be an important approach for recommender systems, current research is
mostly limited to personal recommendation. In this work we extend the concept
of precedence probability to a group by introducing a virtual user that can more
effectively represent a group. Traditionally a virtual user represents all users of
the group and the profile of a virtual user contains the set of common items con-
sumed by members of the group wherein the items are considered in any order.
We argue that most often there can be very few items utilized by all members of
the group for non-cohesive group and therefore common item strategy may not
work well in such situations.

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 434–440, 2013.
� Springer International Publishing Switzerland 2013
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2 Precedence Mining

Let O = {o1, o2, . . . , on} be the set of items and U = {u1, u2, . . . , um} be the
set of users. profile(uj) is sequence of items known to have been consumed
previously by user uj. Oj is the set of items consumed by uj . For given O, U , k
and a target user u ∈ U , the Personal Recommender System (PRS) is concerned
with recommending k items for consumption by user u. The recommended items
are absent in profile(u), i.e., are not used previously by u. In the case of a Group
Recommender System(GRS) the idea is to recommend k items to a group G ⊆ U
of users based on past consumptions of members of the group for given O, U
and k. Any recommender system (personal or group) aims at selecting items for
recommendation such that these items are expectedly preferred to other items
by the user for whom it is recommended. Define supporti as the number of users
consumed item oi. We define pij as the number of users having consumed item
oi preceding oj in their profiles. The precedence probability for items oi and oj ,
denoted as P P (oi|oj) represents the probability of oi preceding oj . We define
P P (oi|oj) = pij

supporti
and Score(oi, uj) =

supporti
n ×

∏
ol∈Oj

P P (ol|oi) We introduce

the concept of transitive precedence relation. Intuitively, transitive precedence
relation attempts to capture the relationship between objects oi and oj based
on the oi preceding ol and ol preceding oj . In other words, oi preceding oj
transitively through ol.

3 Virtual User: Our Approach

There are several ways of extending a personal recommender system to a group
recommender system [1,2,5]. Common approaches of group recommendation are
either based on (1) Merging strategy (2) Virtual user strategy. Merging strategy
can be implemented in three ways- Merged profiles, merging recommendation

and merging score. For instance, a trivial way of computing the merged score
for a group G ⊆ U is to take the aggregated score of individual members of the
group. Thus ScoreM (oi, G) = Fuj∈G(Score(oi, uj)), where F is an aggregate
function. We take F to be AV G in this study. In Virtual user strategy [6] the
idea is to create a virtual user which in some way represents the group interests
mediated in an integrated profile. The virtual user v(G) represents the whole
group G. profile(v(G)) is generated from profile(uj), uj ∈ G. One popular ap-
proach to integrate individual user profile is to consider all the common items.
In this model, the profile of the virtual user, profile(v(G)), is computed from
the set ∩

uj∈G
Oj arranging its elements in any order. We compute the score for

every object using profile(v(G)). We discuss below our proposal of creating a
virtual user that can more effectively represent a group. In a group recommender
scenario an item could fall into one of the three categories (1) it is an item that
is used previously by each member of the group (2) it is an item that is used
previously by some (but not all) members of the group and (3) it is an item that
is not used by any member of the group. Items in first category are the common
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behavior exhibited by all members of the group. Diversity in the group is cap-
tured in usage of items in the second category. We define two ways of calculating
weights for virtual user. (1) Virtual User by thresholding: Define weight for
an item consumed by an individual user as

weight(oi, uj) =

{
1 if oi ∈ Oj

score(oi, uj) otherwise

Define weight of an item for group G as weight(oi, G) =
∑
uj∈G

weight(oi, uj)/|G|.

We construct profile for the virtual user v(G) of group G as follows. An item
oi ∈ profile(v(G)), if weight(oi, G) ≥ ν where ν is a predefined threshold.

Our proposal of construction of profile(v(G)) can also be viewed as an en-
hanced common item approach. The set of consumed items for group G is ∪

uj∈G
Oj

and the set of common items consumed by all members of the group is ∩
uj∈G

Oj .

The items of ∪
uj∈G

Oj \ ∩
uj∈G

Oj with high likelihood of consumption by members

of the group are appended to ∩
uj∈G

Oj constitutes the profile of the virtual user.

The effectiveness of this strategy is dependent on user-specified parameter ν and
proper tuning of value of ν for application in hand is crucial. For a very high value
of ν, our strategy is equivalent to common item strategy. And for very small val-
ues of ν, the method may yield erroneous result. (2) Virtual User by Weight:
In order to avoid parameter tuning, we propose another model of virtual user
strategy below. We define weighted-profile of a user as a sequence of items and
associated weights. The conventional definition of profile can be mapped to
weighted-profile in a straight forward manner by assigning weight 1, if the item
is previously consumed and 0 if it is not consumed. Given the weighted-profile(u)
for all users u ∈ U , we compute the weighted-profile(v(G)) of the virtual user
of group G by taking weight(o, v(G)) for o ∈ ∪

uj∈G
Oj . Define Score(oi, v(G)) =

supporti
n ×

∏
ol

weight(ol, v(G))×P P (ol|oi). Define transitive precedence prob-

ability between objects oa, ob and oc as P P (oa|ob)× P P (ob|oc).

Proposition 1. Virtual user with weight strategy considers transitive prece-
dence probability.

Consider the Score(ok, v(G)). It can be expanded as given below. In the
derivation we use c to denote common items and nc to denote non-common
items.

Score(ok, v(G)) =
supportk

n
×

∏
ol∈Oj

P P (ol|ok)× weight(ol, v(G))

=
supportk

n
×
∏
c

P P (ol|ok)︸ ︷︷ ︸
A

×
∏
nc

P P (ol|ok)× weight(ol, v(G))︸ ︷︷ ︸
B
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Term A is precedence probability of an unused item and common item. Term B
is defined as follows.

=
∏
l∈nc

P P (ol|ok)× weight(ol, v(G))

=
∏
l∈nc

X +
1

|G| ×
supportl

n

∑
u

∏
os∈u

P P (os|ol)× P P (ol|ok)

From the derivation, a different interpretation of Score for the proposed virtual
strategy emerges. For common items, the direct precedence probabilities are
taken in the product term. But for items in the second category, precedence
probabilities of two terms are paired together and these pair-terms are of the
form P P (oa|ob)P P (ob|oc), where oa, ob and oc are items of first, second and
third categories, respectively. This situation arises for those users who did not
consume ob. It is mentioned earlier that the items in the second category capture
the diversity in the group. In our proposed model of virtual user strategy, the
items in first category are treated exactly as these are for any user in the group.
It is natural to treat common items of the group in this manner. The precedence
probabilities between items in first and third categories are computed according
to the original definition. The items in the second category are used to compute
transitive precedence probabilities between items in first and third categories.
Similarly, if an item in second category is used then we take its direct pairwise
precedence probability with items in third category. But if the item is not used
then transitive precedence probability of items in first category with items in
third category are taken through such an item.

Considering all precedence probabilities in the product term for score com-
putation may yield misleading results as one instance of precedence probability
with small value will pull down the overall score. There can be two strategies to
compute score by neglecting small precedence probabilities.

(1) Fixed-I Model: The first strategy is to select top I of the precedence
probability values. Hence, the definition is modified as follows. Score(oi, uj) =
supporti

n ×
∏(I)

ol∈Oj

P P (ol|oi) where
∏(I)

of p numbers a1, a2, . . . , ap means multi-

plication of top I highest values of the set {a1, a2, . . . , ap}.
(2) Variable-I Model: The second strategy is to select a threshold value τ
such that the precedence probability values which exceed the threshold are
only selected for multiplication. Hence, the definition is modified as follows.

Score(oi, uj) = supporti
n ×

∏(τ)

ol∈Oj

P P (ol|oi). Similarly,
∏(τ) of p numbers a1, a2,

. . . , ap means selecting values of the set {a1, a2, . . . , ap} which exceed threshold
τ for multiplication.

4 Experimental Analysis

In this section we report our experimental analysis to study the performance
of different strategies introduced in the earlier sections. In our experiments we
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(a) Precision: top-I =2, ν = 0.6 (b) Recall: top-I = 2, ν = 0.6

Fig. 1. Precision and Recall comparison by varying group sizes for Fixed -I model

used the Movie-Lens dataset for the evaluation, which consists of 100,000 ratings
given by 943 users for 1682 movies. The range of ratings is in between 1(bad)and
5(excellent). For each experiment we vary the group size from 2 to 20 generated
randomly. For each group size 50 instances are randomly generated and for each
instance all the three methods are run and the performance is compared based
on the measures described above, namely precision and recall. These quantities
are averaged over 50 instances for fixed group sizes. For methods which require
threshold we experimented with different values of threshold. For the sake of
ease of comprehension we only give the graphs for some selected values of the
threshold. However our observation is that these values are representative sets for
entire domain of the threshold. In order to calculate the accuracy we used 50%
of the data as user history and compute the recommendation for the remaining
50% of the movies. We compare recommendation of proposed algorithms with
actual usage for the last 50% of the movies. In our experiments we have taken
k value as 10. In previous sections we introduced two different ways of comput-
ing scores for resulting profile of virtual user. These scores are based on Fixed
-I and Variable -I model. Simple computation of score by taking into account
precedence probabilities of all pairs will not yield correct recommendation and
hence are not considered in our experiment. In the foregoing discussion, it is seen
that none of these four strategies of score computation can be directly preferred
over others. There can be situations where one way computing score may turn
out to be preferable over any other. In the first round of our experiments we
study the performance of merging score with virtual user strategies for each of
the two methods of score computation. In other words for a problem instance
we run merging score algorithm with Fixed -I model and Variable -I model.
We do the same for Virtual user with threshold and Virtual user with weights.
The output of all these three methods with two models of score computation
are compared by taking 50 instances generated randomly for different values of
group size. Figure 1 compares the precision and recall values with Fixed -I model
(top-I). It can be seen that the precision and recall for virtual user strategy is
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(a) Precision: τ = 0.64, ν = 0.6 (b) Recall: τ = 0.64, ν = 0.6

Fig. 2. Precision and Recall comparison by varying group sizes for Variable-I model

always better than merging scores strategy. Figure 2 depicts the precision (2(a))
and recall (2(b)) comparison of three strategies for Variable-I model. It can be
seen from the graphs that precision and recall for a Virtual user with weight is
better than Merging score strategy at smaller group sizes. But as the group size
increases performance of Merging score increases over the other two approaches.

5 Conclusions

The main result of this paper is a new way of creating a virtual-user that
can more effectively represent a group. To achieve this end we proposed two
methods based on virtual-user strategy called virtual user by weight and virtual
user by thresholding. Virtual user by weight strategy takes care of the transitive
precedence relationship among a group of items. On the other hand virtual-user
by thresholding takes care of items that are usually ignored by the traditional
virtual-user-model. In order to efficiently calculate the score of items so as to
recommend the item with the highest score for a target group we outline two
models called Fixed-I and Variable-I. We experimented our models extensively
for different combinations of parameter settings and for different group sizes on
Movie-Lens data. We show that our framework has better performance in terms
of precision and recall when compared with other methods.
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Abstract. There are many paradigms for pattern classification. As op-
posed to these, this paper introduces a paradigm that has not been re-
ported in the literature earlier, which we shall refer to as the Nearest
Border (NB) paradigm. The philosophy for developing such a NB strat-
egy is as follows: Given the training data set for each class, we shall first
attempt to create borders for each individual class. After that, we advo-
cate that testing is accomplished by assigning the test sample to the class
whose border it lies closest to. This claim is actually counter-intuitive,
because unlike the centroid or the median, these border samples are often
“outliers” and are, really, the points that represent the class the least.
However, we have formally proven this claim, and the theoretical results
have been verified by rigorous experimental testing.

Keywords: Pattern Classification, Border Identification, SVM.

1 Introduction

The problem of classification in machine learning can be quite simply described
as follows: If we are given a limited number of training samples, and if the class-
conditional distributions are unknown, the task at hand is to predict the class
label of a new sample with minimum risk. Within the generative model, one
resorts to modeling the class-conditional distributions p(x|wi) and priors p(wi)

and p(x), and then computing the a posteriori distribution p(wi|x) = p(x|wi)p(wi)
p(x)

after the testing sample arrives. The strength of this strategy is that one obtains
an optimal performance if the assumed distributions are the same as the actual
one. The limitation, of course, is that it is often difficult, if not impossible, to
compute. The alternative is to directly approximate the posterior distribution
itself. This paper advocates such a philosophy.

The goal of this paper is to present a new paradigm in pattern recognition,
which we shall refer to as the Nearest Border (NB) paradigm. This archetype
possesses similarities to many of the well-established methodologies in pattern
recognition, and can also be seen to include many of their salient facets/traits.
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There are four family algorithms that are most closely related to our NB
paradigm. They include i) Prototype Reduction (PR) schemes [6], ii) Border
Identification (BI) algorithms [6], iii) “Anti-Bayesian” Order-Statistics (OS)
based algorithms [6], and iv) Support Vector Machines (SVMs) [8].

The novel contributions of this paper are the following:

1. We propose a new pattern recognition paradigm, the Nearest Border
paradigm, in which we create borders for each individual class, and where
testing is accomplished by assigning the test sample to the class whose border
it lies closest to.

2. Our paradigm falls within the family of PR schemes, because it yields a
reference set which is a small subset of original training patterns. The testing
is achieved by only utilizing the latter.

3. Our paradigm falls within the family of BI methods.
4. The Nearest Border paradigm is essentially “anti-Bayesian” in its salient

characteristics. This is because the testing is not done based on central con-
cepts such as the centroid or the median, but by comparisons using these
border samples, which are often “outliers” and which, in one sense, represent
the class the least.

5. The Nearest Border paradigm is closely related to the family of SVMs, be-
cause the computations and optimization used are similar to those involved
in deriving SVMs.

2 Method

2.1 The Theory of the Nearest Border (NB) Paradigm

We assume that we are dealing with a classification problem involving g classes:
{ω1, · · · , ωg}. For any specific class ωi, we define a region Ri that is described
by the function fi(x) = 0 (which we shall refer to as its “border”), where Ri =
{x|fi(x) > 0}. We describe Ri in this manner so that it is able to capture
the main mass of the probability distribution pi(x) = p(x|ωi). All points that lie
outside of Ri, are said to fall in its “outer” region, R̄i, where R̄i = {x|fi(x) < 0}.
These points are treated as outliers as far as class ωi is concerned. The function
fi(x) is crucial to our technique because it explicitly defines the region Ri.
Formally, the function fi(x) must be defined in such a way that:

1. fi(x) is the signed distance from the point x to the border such that fi(x) >
0 if x ∈ Ri, and fi(x) < 0 if x ∈ R̄i;

2. If fi(x1) > fi(x2), then pi(x1) > pi(x2);
3. If fi(x) > fj(x), then p(wi|x) > p(wj |x).

In order to predict the class label of a new sample x, we calculate its signed
distance from each class, and thereafter assign it to the class with the minimum
distance. In other words, we invoke the softmax rule: j = argmaxgi=1 fi(x).

The main challenge that we face in formulating, designing and implementing
such a NB theory lies in the complexity of conveniently and accurately procuring
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such borders. The reader will easily see that this is equivalent to the problem of
identifying functions {fi(x)} that satisfy the above constraints. Although a host
of methods to do this are possible, in this paper, we propose one that identifies
the boundaries using the one-class SVM.

2.2 NB Classifiers: The Implementations of the NB Paradigm

The basic Nearest Centroid (NC) approach only uses the means of the class-
conditional distribution, and this is the reason why it is not effective for the
scenario when the variances of the various classes are very different. The NC
scheme can be extended to allow different class variance by using, for example,
Gaussian Mixture Model. The difficulty of extending any linear model, e.g. SVM,
from its two-class formulation to its corresponding multi-class formulation, lies
in the fact that a hyperplane always partitions the feature space into two “open”
subspaces, implying that this can lead to ambiguous regions that may be gen-
erated by some extensions of the two-class regions for the multi-class case. The
most popular schemes to resolve this are the one-against-all (using a softmax
function) and one-against-one solutions.

As an one-class model, the work based on Tax and Duin’s Support Vector Do-
main Description (SVDD or one-class SVM) [5] aims to find a closed hypersphere
in the feature space that captures the main part of the distribution. By examining
the corresponding SVM, we see that the hypersphere obtained by the SVDD is
the estimate of the features’ Highest Density Region (HDR). In particular, for the
univariate distribution, the estimation of the Highest Density Interval (HDI) in-
volves searching for the threshold p∗ that satisfies:

∫
x:p(x|D)>p∗ p(x|D)dx = 1−α.

The (1 − α)% HDI is defined as Cα(p
∗) = {x : p(x|D) ≥ p∗}. If we now define

the Central Interval (CI) by the interval:

Cα(l, u) = {x ∈ (l, u)|P (l ≤ x ≤ u|D) = 1− α, P (x ≤ l) =
α

2
, P (x ≥ u) =

α

2
},

one will see that, for symmetric unimodal univariate distribution, HDI coincides
with the CI. However, for nonsymmetric univariate distributions, the HDI is
smaller than the CI. For known distributions, the CI can be estimated by the
corresponding quantile. However, for unknown distributions, the CI can be es-
timated by a Monte Carlo approximation (or by the histogram, or the Order
Statistics). However, in the context of this paper, we remark that by virtue of
Vapnik’s principle, it is not necessary to estimate the density by invoking a non-
parametric method. For multivariate distributions, we can estimate the (1−α)%
HDR Cα(f) by using the equation:

min
f

∫
f(x)≥0

1dx, s.t.

∫
x:f(x)≥0

p(x|D)dx = 1− α. (1)

We shall refer to this optimal contour f∗(x) = 0 as the (1− α)-border/contour.
Our idea for classification is the following: We can learn a hypersphere using

SVDD for each class in the feature space in order to describe the border of this
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class. We then calculate the distance from a unknown sample to the border of
each class and assign it to the class with the minimum distance. The training
phase of our approach is to learn the hypersphere fi(x) = 0 for each class. The
prediction phase then involves assigning the unknown sample x using the rule:
j = argmaxgi=1 fi(x). In particular, we note that:

1. fi(x) ∈ R is the signed distance of x from the corresponding boundary;
2. For points inside the ith hypersphere, fi(x) > 0;
3. For points outside the hypersphere, fi(x) < 0. Further, the larger fi(x) is,

the closer it is to class ωi, and the higher the value of p(wi|x) is. From the
parameters of fi(x), we can see that fi(x) considers both mean and variance
of the distribution. It can be further enhanced by the normalized distance
through the operation of dividing it by Ri (the radius of the hypersphere),

that is fi(x)
Ri

.

We refer to this approach as the Nearest Border approach based on Hyper-
Sphere (NB-HS). Hereafter, the hypersphere based NB using the un-normalized
and normalized decision rules will be denoted by ν-NB, and ν-NBN, respectively,
where ν is the upper bound of the fraction of outliers and the lower bound of
the fraction of the support vectors in SVDD. As the number of training samples
increases to infinity, these two bounds converge to ν. However, in practice, we
usually have a very limited number of training samples. In order to obtain ν
which corresponds to the α fraction of outliers, firstly, we need to let ν = α,
and then reduce ν gradually until the α fraction of outliers are obtained. This
variant of NB will be named the α-NB in the subsequent sections.

3 Experimental Results

The NB schemes were rigorously tested. Our computational experiments can
be divided into two segments. First, we verify the capability of our method on
three artificial data sets. Then, we statistically compared our approach with
benchmark classifiers on 17 well-known real-life data sets.

Accuracy on Synthetic Data: We verified our methods on three synthetic
data sets described as follows and shown in Fig. 1. Each data set has four classes
and 100 two-dimensional points in each class. In the SameVar data, all classes
have the same variance, while in DiffVar, the classes have different variances.
NonLinear is a nonlinear data set.

For the artificial data, we compared our method with the Naive Bayes [2],
1-NN [2], NC [7], and SVM [4] classifiers. Linear kernel was used for the NBs,
NC, and SVM on the first two data sets, and the Radial Basis Function (RBF)
kernel was used on the last one. We ran a 3-fold cross-validation on each data
set 20 times. The mean accuracies and standard deviations are shown in Fig. 2a.

On the SameVar data, first, we can see that there is no significant differ-
ence between the ν-NB and ν-NBN, and α-NB. All of them yielded an almost-
equivalent accuracy as the Naive Bayes. Second, it can be seen from Fig. 1a that
the NB was able to identify the centers of each class accurately. The borders
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Fig. 1. Plots of the synthetic data sets

have the same volume, which demonstrates that the NB can identify the borders
consistent with the variances. The NB approaches yielded an accuracy similar
to the NC, which is reasonable because the identical variance of all classes is of
no consequence to the NB. Third, the NN and SVM do not obtain comparable
results, because the distance measure of the NN is affected by noise, and the
SVM is not able to “disentangle” each class well using an one-versus-all scheme.

On the DiffVar data, first, we see that the results again confirm that the NB
can identify the borders consistent with the variances (see Fig. 1b). The mean
accuracies of all the NB approaches were very close to the Naive Bayes classifier.
However, the NC yielded worse results than the NB. This is because the variance
information helped the NB, while the NC scheme did not consider it.

Finally, for the NonLinear data, first, we affirm that all our NB methods and
the SVM yielded comparably good results. Second, the Naive Bayes did not work
well this time, because the data is not Gaussian. Further, the kernel NC was not
competent either, because the data in the high-dimensional feature space have
different variances for all the classes.
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Fig. 2. Performance on synthetic and real-life data

Statistical Test on Real-Life Data: In order to test the performance of our
NB methods, we compared them with benchmark classifiers on 17 real-life data
sets. The benchmark methods included were the 1-NN, NC, Nearest Subspace
(NS) [3], and the SVM. We used the RBF kernel in our classifiers. We applied the
Friedman test with Nemenyi test as a post-hoc test [1] on the accuracies of 3-fold
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cross-validation. We set the significance level to α = 0.05. Consequently the null
hypothesis (all classifiers are equivalent) was rejected. The Crucial-Difference
(CD) diagram of the Nemenyi test is illustrated in Fig. 2b.

First, as can be seen from the results, the difference between the ν-NB and
the ν-NBN is negligible. However, ν-NB has a marginally higher rank than the
ν-NBN. Second, the SVM obtained the highest rank. However, there is no sig-
nificant difference among the SVM, the NN, and the ν-NB under the current
significant level. This is quite a remarkable conclusion. Third, the performances
of NC and NS are very close. Last, if we examine the accuracies of the classifiers,
we can clearly identify two distinct groups: {SVM, NN, ν-NB, ν-NBN}, and {NC,
NS}, demonstrating that our newly-introduced NB schemes are competitive to
the best reported algorithms in the literature.

4 Conclusions and Future Work

In this paper, we introduced a new paradigm for classification which has not
been reported in the literature. We refer to it as the Nearest Border paradigm.
We emphasize that our methodology is actually counter-intuitive, because unlike
the centroid or the median, these border samples are often “outliers” and are,
indeed, the points that represent the class the least. The theoretical results
have been verified by rigorous experimental testing. We preliminarily assume
that the class-conditional distribution is unimodal and homoscedastic in feature
space. We will focus on a method which is able to learn the border of complex
distributions, for example using hyperellipse, local learning, or mixture models.

Acknowledgments. We acknowledge the valuable suggestions from the review-
ers. This research is support by Canadian NSERC Grants #RGPIN228117-2011.
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Abstract. Chow and Liu [2] has shown that learning trees that max-
imize likelihood score given data can be done in polynomial time. A
generalization of directed trees are polytrees. However, Dasgupta [3]
has proved that learning maximum likelihood polytrees from data (and
even approximation of the optimal result with a constant ratio) is NP-
Hard. Therefore, researchers have focused on learning maximum likeli-
hood polytrees with a constant number of roots. Gaspers et al. [5] have
presented such an algorithm with complexity O(mn3k+4) using matroid
theory. We present a direct combinatorial algorithm with complexity
O(mn3k+1).

1 Introduction

The problem of learning Bayesian networks from data has been studied exten-
sively. Chickering [1] has shown that learning a Directed Acyclic Graph (DAG)
that maximizes the Bayesian score given data is NP-complete, even when the
number of parents for each node is at most two. Research has concentrated
on finding types of DAGs for which the learning problem is polynomially solv-
able. In their seminal work, Chow and Liu [2] showed that learning maximum
likelihood (ML) trees from data is polynomial by proposing an algorithm with
complexity O(mn2 + n2 log(n)), where m is the number of data set vectors and
n the number of variables or vertices of the DAG. Edmonds [4] independently
proposed a similar algorithm referring to this problem as the optimal branching
problem, and the resulting directed tree as a branching. Tarjan [6] improved the
complexity of this learning algorithm to O(mn2).

Dasgupta [3] studied another type of DAGs, polytrees, i.e., directed graphs
with no undirected loops, and showed that learning maximum likelihood poly-
trees is also an NP-complete problem, even if each node has at most two parents.
In addition, he showed that finding approximation with a constant ratio of the
optimal solution is also NP-complete. A natural question is whether this prob-
lem becomes tractable if we restrict number of polytree roots. Gaspers et al. [5]
define an optimization problem in that from a decomposable scoring function a
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k-branching polytree should be learned, where a k-branching polytree is a poly-
tree that with at most k arc removals is transferred to a directed forest. It is
easy to observe that k-branching problem is equivalent with learning polytrees
with up to k + 1 roots. Gaspers et al. [5] have reduced this problem to the Ma-
troid intersection problem and show it can be solved in O(n3k+4). In the setting
of maximum likelihood optimization based on data, this complexity becomes
O(mn3k+4), where m is the size of data. As our main result, we give a different
algorithm for this problem, which works in time O(mn3k+1).

2 Background

In this section, we will introduce all necessary concepts and results required to
formally define the problem and state our results. We start with a description
of the input: the data set and the optimal model, and finish with tree models.

2.1 Data Set Form

The data set D is a set of vectors D = {D1, D2, . . . , Dm}, where each vector has
exactly n dimensions. The data set can be represented as an m × n matrix D,
where dj,i is the value of the j-th vector at dimension i. For each 1 ≤ i ≤ n,
the i-th component of the vectors represents a random variable Xi that takes a
distinct value x with probability P(Xi = x). A joint probability distribution over
data can be written as P(X = x), where X = {X1, X2, . . . , Xn} is the vector of
random variables, and x = {x1, x2, . . . , xn} is a vector of values. We call P the
empirical probability distribution if we estimate it from data as follows:

P(Xi = x) =

∑m
j=1〈dj,i = x〉

m
, P(X = x) =

∑m
j=1〈Dj = x〉

m
, (1)

where 〈〉 is the indicator function returning 1 if condition holds, and 0 otherwise.

2.2 Maximum Likelihood Model Scoring for DAGs

In this paper, we use maximum likelihood scoring for Bayesian networks, as
follows:

→
G

∗
= argmax

→
G

P (D|
→
G), (2)

where
→
G is a DAG and

→
G

∗
is the set of all maximum likelihood DAGs. If we

consider the input vectors in the data set D independently, then the likelihood
probability P (D|

→
G) can be written as:

P (D|
→
G) =

m∏
j=1

P (Dj|
→
G), (3)
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The probability of a data given a DAG
→
G on n nodes is defined as:

P (Dj |
→
G)

def
= P→

G
(Dj)

def
=

n∏
i=1

P(Xi = dj,i|Πi = πj,i) (4)

where Πi denotes the set of all parents of the node Xi in
→
G, and πj,i is a set

of all their values in the vector Dj . P→
G

(Dj) is also called factorized form of

distribution P with respect to
→
G.

2.3 Tree Models and Directionality

Chow and Liu [2] in their seminal work showed that if we limit DAGs to trees,
then the maximum likelihood tree is equal to the maximum weighted spanning
tree, MST, of the complete graph with vertex set X and edges weighted by
mutual information of their end points, which can be found in time O(n2(log n+
m)). To learn maximum likelihood polytree, we need to distinguish merging edges
from other edges. Formally, merging nodes in a DAG are nodes with more than
one parent, and merging edges are all incoming edges to a merging node. Let
ME(

→
G) denote the set of all merging edges of

→
G. Skeleton of a directed graph

→
G

is the undirected graph that contains all edges of
→
G without directionality, and

we denote it by Ḡ.

Proposition 1. (Root Selection in DAGs, [7]) If two different DAGs
→
G,

→
G′

have the same skeleton (i.e., Ḡ = Ḡ′) and the same set of merging edges (i.e.,

ME(
→
G) = ME(

→
G′)), then P→

G
(X) = P→

G′(X).

We will use Proposition 1, later in the next section to show that after picking
merging edges, the orientation of the remaining edges (as long as they do not
introduce any new merging edges) does not affect the likelihood of any dataset
given the polytree.

3 Learning Polytrees with a Constant Number of Roots

If a polytree has k roots, the number of merging nodes can vary from 1 to k− 1.
Without loss of generality, we may assume that X1, . . . , XL are all and only
merging nodes, where L < k. Let XM = {X1, X2, . . . , XL}, and ΠM =

⋃L
�=1 Π�,

where each Π� is the parent set of node X�. We have the following proposition
for these sets.

Proposition 2. In a polytree
→
F with k > 1 roots the following properties hold:

2 ≤ |Π�| ≤ k,
L∑

�=1

|Π�| = L + k − 1 (5)



450 J. Safaei, J. Maňuch, and L. Stacho

Our algorithm enumerates all possible combinations of the merging nodes
and their parents, i.e., all possible sets of merging edges. These edges will form a
forest, which is a subset of all edges in the polytree, and we will also refer to it as
a sub-polytree forests (of nodes XM and ΠM ). For each such selection of merging
edges, we will run the MST algorithm on the remaining edges, similar to the one
used by [2], with one exception: we do not allow components in the subgraph
without merging edges that contain merging nodes to merge together. This will
guarantee that we can orient these newly added edges so that no new merging
edges are created. There might be multiple ways how to orient edges produces by
MST algorithm, but by Proposition 1, they all yield the same likelihood score.

To determine the complexity of our algorithm, we need to upper bound the
number of sub-polytree forests. First, we will bound the number of valid size vec-
tors (|Π1|, |Π2|, . . . , ), i.e., vectors satisfying Equations (5), and then we bound
the number of merging edges selections yielding the desired sizes of parents sets.
The number of valid vectors is exactly the number pL(k − L − 1) of unordered
partitions a1 + · · ·+ aL = k−L− 1, where a� = |Π�|− 2. Since there is no exact
formula for pL(k − L − 1), we will upper bound it by the number of ordered
partitions qL(k − L − 1) =

(
k−2
L−1

)
, cf. [8].

For each such partition of parents set sizes, we have several choices how to pick
the merging nodes and their parents from all n nodes. Let us denote the total
number of sub-polytree forests for polytrees with n nodes and k roots by T (n, k).
Since there are

(
n
L

)
ways to choose the merging nodes and

(
n−1
|Π�|

)
=

(
n−1
a�+2

)
ways

to choose the parents of node X�, we have:

T (n, k) ≤
k−1∑
L=1

∑
a1+···+aL=k−L−1

(
n

L

)(
n − 1
a1 + 2

)(
n − 1
a2 + 2

)
. . .

(
n − 1
aL + 2

)

≤
k−1∑
L=1

qL(k − L − 1, L)n2L+k−1 (by Proposition 2)

≤ nk+1
k−1∑
L=1

(n2)L−1

(
k − 2
L − 1

)
= nk+1(1 + n2)k−2

∈ O
(
n3k−3

)
(for a constant k)

(6)

Equation (6) overcounts the number of valid sub-polytree forests. In partic-
ular, it is possible that selected merging edges E = ∪L

�=1Π� × {X�} create a
loop, i.e., the selection is not valid, but it is still included in the count T (n, k).
Proposition 2 can be used to prune some of the invalid cases.

Theorem 1. (Maximum Likelihood Polytree with k + 1 Roots) A polytree with
k +1 roots that maximizes log likelihood scoring function, Equation (3), for data
set D can be found in time O(mn3k+1).

The main result in Gaspers et al. [5] can be summarized as follows:
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Theorem 2. (Learning k-branching, [5]) Learning a k-branching that maxi-
mizes any decomposable function that can be computed in time O(n) for each
polytree, can be solved in time O(n3k+4).

The assumption of Theorem 2 is that decomposable objective function can
be computed in time O(n) for each polytree, while in our case the log likelihood
function is decomposable but requires O(nm) time to be computed for each
polytree. Therefore, if we apply Theorem 2 to our log likelihood scoring function
(cf. Equation (3)), we get an algorithm running in time O(mn3k+4).

It is easy to see that learning k-branching is equivalent to learning all polytrees
from one, two, and up to k+1 roots. More precisely, each polytree with one root
is a branching, and a polytree with k + 1 roots has L ≤ k merging nodes with
L + k merging edges (by Proposition 2), and by deleting k of them (|Π�| − 1
of them for each merging node X�), all merging nodes become ordinary nodes
(with one parent) and we obtain a directed tree, or a branching. It follows that
we can solve k-branching problem with the maximum likelihood function in time
O(mn3k+1) which improves the results in [5] by a factor O(n3).

4 Experiments

We run our proposed algorithm with k = 2, 3 roots on a data set of peptides to
analyze dependencies of different amino acids in these peptides. This data set
is curated with the help of Kinexus Bioinformatics Corporation1. In our case
peptides are subsequences of 20 different amino acids of length 9. We run our
experiment on two different set of peptides:

1. 803 peptides that are phosphorylated by protein kinase PKC (uniprot key
P17252).

2. 1000 randomly selected peptides that are phosphorylated by some protein
kinase.

For each of these two data sets different polytrees are generated. Table 1
shows their maximum natural log likelihood scores normalized by the number
of peptides. Table shows results for 5 different methods: “MWST” algorithm by
Chow and Liu [2] which computes a directed tree, “MWST skeleton” heuristic
methods for 2 and 3 roots and “optimal” method is our algorithm. In “MWST
skeleton” heuristic method, we first fixed the skeleton of the tree by MWST
and then tested all 2 (3) possible roots polytrees with this skeleton. The results
show that increasing number of roots from two to three does not increase the
log likelihood score significantly, while training time and number of trees that
needs to be checked increases exponentially. This experiment, was run on a 64
bit PC, with a processor of four i5 2.67 GHz CPUs and 6 GB of RAM.

Note that normalized log likelihood score for PKC protein kinase is higher
than the one for random peptides, which is expected since the peptides phos-
phorylated by PKC are more similar to each other and they are better fitted in
1 www.kinexus.ca
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Table 1. Natural log likelihood scores of two data sets with respect the polytree
computed by different methods. The first column for each data set, contains the log
likelihood score normalized by number of peptides used in the data set. The second
column shows the computation time in seconds. The third column shows the number
of examined polytrees.

Algorithm 803 peptides for PKC kinase 1000 randomly selected peptides
Score Time # polytrees Score Time # polytrees

MWST 1 root -19.15 0.14 1 -21.46 0.04 1
MWST skeleton 2 roots -18.14 1.06 9 -20.40 1.12 8
MWST skeleton 3 roots -17.26 2.86 23 -19.34 2.76 18
Optimal 2 roots -18.02 27.47 252 -20.37 35.97 252
Optimal 3 roots -16.96 2551.49 23184 -19.29 3235.37 23184

any tree dependency model (e.g. undirected or directed with 2 or 3 roots) than
the randomly selected peptides set which are more divergent.
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Abstract. Guaranteeing the quality of extracted features that describe
relevant knowledge to users or topics is a challenge because of the large
number of extracted features. Most popular existing term-based feature
selection methods suffer from noisy feature extraction, which is irrelevant
to the user needs (noisy). One popular method is to extract phrases
or n-grams to describe the relevant knowledge. However, extracted n-
grams and phrases usually contain a lot of noise. This paper proposes
a method for reducing the noise in n-grams. The method first extracts
more specific features (terms) to remove noisy features. The method
then uses an extended random set to accurately weight n-grams based
on their distribution in the documents and their terms distribution in n-
grams. The proposed approach not only reduces the number of extracted
n-grams but also improves the performance. The experimental results
on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics
show that the proposed method significantly outperforms the state-of-art
methods underpinned by Okapi BM25, tf*idf and Rocchio.

Keywords: Feature selection, relevance feedback, terms weight, n-gram
extraction.

1 Introduction

With the explosive growth of information sources available on the Web, search
engines return large numbers of documents based on a term-matching approach,
but most of the results are not relevant to what the user needs. It is becoming
essential to provide users with tools that more effectively filter huge amounts of
streamed text data in order to extract a set of features from feedback documents.

Various effective studies have been conducted on term-based and pattern-
based approaches to solve this issue. Most of the studies involving term-based
methods present an efficient method for improving the retrieval and performance
of useful information needed by users. However, many terms or keywords can
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be extracted from the feedback documents. Phrases (n-gram) have also been
studied in many information retrieval models since phrases carry more semantic
information and are easy to obtain using pattern-mining algorithms. Phrases are
also useful in building effective ranking functions [1].

Traditional information retrieval (IR) models usually represent documents
with bags-of-words assuming that words occur independently [2]. Phrases and
n-grams have also a special meaning; however, this meaning relies on the topic
that user wants. For example, “Apple TV” has a special meaning beyond the
appearance of its individual words that can be found in the documents that
talk about the technology, not fruit. Thus, documents are represented based on
the phrases or n-grams assumption, which are independent of what users want.
Therefore, n-grams consist of specific features. Selecting theses features is essen-
tial in mining text and retrieving information. This process involves selecting the
subset of features based on some criteria to remove the irrelevant, redundant,
noisy features [3].

In this paper, we propose a new method for extracting n-grams, which uses
different term-based models and features and compares the results using Rele-
vance Feature Discovery (RFD) features to remove the noisy features. We, also
try to enhance the n-gram extraction by extending the random set to calculate
the n-gram weight accurately based on distribution in the documents and their
terms distribution in the n-grams. The experimental results illustrate that the
proposed method significantly outperforms the state-of-art methods.

2 Related Work

With the growing volume of published research and documents on the web, and
therefore the underlying knowledge in these texts, data mining and IR assist
researchers in extracting useful knowledge from a collection of texts and satisfy
user needs [4].

Therefore, researchers have focused on extracting knowledge such as key-
words from documents automatically to suggest keywords for researchers to use
in their studies. Researchers focus on two types of statistics: corpus-oriented
and documents-oriented [5]. Early studies focused on evaluating corpus-oriented
statistics of individual words. For instance, in 1972, Jones [6], proposed funda-
mental study describing the positive results of selecting keywords as discrimi-
nating words over a collection.

In corpus-oriented statistics, however, a word that occurs in many documents
in the corpus is not selected as a keyword. Therefore, documents-oriented statis-
tics tries to avoid the limitation of corpus-oriented statistics by extracting the
same keywords from a document in spite of the state of a corpus [5]. Recently,
studies have compared the effectiveness of three approaches for selecting terms:
noun-phrase (NP) chunks, n-grams, and POS tags, with four different features
of these terms as inputs for automatic keyword extraction using a supervised
machine-learning algorithm [7].

N -gram extraction has been have been used extensively in many areas related
to data mining such as language modelling, information retrieval, information
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filtering, and information extraction. The n-gram is a sequence of characters or
words generated from a document as a result of moving a window of n size [8].

Wei et al. [9] used n-grams with feature selection and extraction methods.
Their study compared the use of different feature selection methods on Chinese
text classification using n-grams. They performed two-step feature selection.
First, they reduced the number of features in the created class (inter-class) which
uses two methods: the relative text frequency method and the absolute frequency
method. Second, they selected the best features among all the classes (cross-
class) in the training set by assigning a weight to the feature based on the
occurrence of the feature within the different document classes.

Evaluating the extracted terms or n-grams is an important task in the infor-
mation extraction and retrieval system. Term weighting evaluates the terms by
assigning a significant weight based on statistical information and indicates the
importance of the term to a topic. The n-gram weights calculate the probability
of the extracted features based on a probabilistic function [10].

Many different proposed weighting methods for estimating and evaluating the
weight of the extracted features start with document frequency idf combine it
with term frequency tf to be tf*idf [11]. In addition, a probabilistic weighting
technique uses different probabilistic functions to estimate the probability of the
extracted feature [8]. Some n-gram studies instead provide probabilities based
on smoothed language models [12].

These studies showed useful and interesting results and conclusions; however,
either a number of noisy features are extracted or an inaccurate weights are
assigned to the features. These issues must be resolved. Compared with famous
term-based methods, we aim to solve these issues to reduce the amount of noise
by selecting suitable extracted features to extract the n-gram and give them an
accurate weight.

3 Definitions

For a given topic, the objective of discovering relevant features in text documents
is to find a set of useful features, including patterns, terms or keywords and
their weights, in a training set D, which consists of a set of relevant documents,
D+, and a set of irrelevant documents, D−. In this paper, we assume that all
documents are split into paragraphs. Therefore, a given document d yields a set
of paragraphs P S(d). These definitions can also be found in [13].

3.1 Pattern Mining

Let T1 = {t1, t2, ..., tn} be a set of terms or keywords extracted from positive
documents D+. Given a termset X, a set of terms, in document d, coverset(X )
is used to denote the covering set of X for d, which includes all paragraphs
dp∈PS (d) such that X⊆dp, and its absolute support (suppa) is the number of
occurrences of X in PS (d), that is:

suppa(x) = |coverset(X)| (1)
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Moreover, its relative support (suppr) is the fraction of the paragraphs that
contain the pattern, that is:

suppr(x) =
suppa(x)

|P S(d)| (2)

Therefore, termset X is called a frequent pattern if its suppa(x) or suppr(x) is
greater than or equal to the minimum support (min sup) [14]. However, given
a set of paragraphs Y ⊆ PS(d), we can define its termset, which satisfies:

termset(Y ) = {t|∀dp ∈ Y =⇒ t ∈ dp} (3)

and the closure of X is defined as

Cls(X) = termset(coverset(X)) (4)

Therefore, the pattern X is called closed if and only if X = Cls(X) [13].
In addition, The sequential pattern X is called a frequent pattern if its suppr �

min sup. A frequent sequential pattern X is called a closed sequential pattern if
there exists no frequent sequential pattern Y , such that X 	 Y and suppa(X) =
suppa(Y ) [14], where the relation 	 represents the strict part of subsequence
relation -.

Furthermore, For term-based approaches, weighting the usefulness of a given
term or keywords is based on its appearance in documents. However, for pattern-
based approaches, weighting the usefulness of a given term is based on its ap-
pearance in discovered patterns.

To improve the efficiency of the pattern taxonomy mining, an algorithm, SP-
Mining(D+, min sup) [13], was proposed to find closed sequential patterns SPi,
for all documents ∈ D+, based on a given min sup. For example, let SP1, SP2,
..., SP|D+| be the sets of discovered closed sequential patterns for all documents
di ∈ D+(i = 1, · · · , n), where n = |D+|. For a given term t, its d support in
discovered patterns can be described as follows:

d sup(t, D+) =

n∑
i=1

supi(t) =

n∑
i=1

|{p|p ∈ SPi, t ∈ p}|∑
p∈SPi

|p| (5)

where |p| is the number of terms in p.

3.2 Term Weighting

In this section, we introduce the RFD model as a term weighting technique for
relevance feature discovery [13], which describes the relevant features in relation
to three groups, namely: positive specific terms, general terms and negative
specific terms based on their appearances in a training set.

In the RFD model, the specificity of a given term t in the training set D =
D+ ∪ D− was defined as follows:

spe(t) =
|coverage+(t)| − |coverage−(t)|

n
(6)

where coverage+(t) = {d ∈ D+|t ∈ d}, coverage−(t) = {d ∈ D−|t ∈ d}, and
n = |D+|. spe(t) > 0 means that term t is used more frequently in relevant
documents than in irrelevant documents.
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Based on the spe function, the following are the classification rules for de-
termining its general terms G, positive specific terms T+, and negative specific
terms T−:

G = {t ∈ T |θ1 ≤ spe(t) ≤ θ2},

T+ = {t ∈ T |spe(t) > θ2}, and

T− = {t ∈ T |spe(t) < θ1}.

where θ2 is an experimental coefficient, the maximum boundary of the specificity
for the general terms, and θ1 is also an experimental coefficient, the minimum
boundary of the specificity for the general terms. It is assumed that θ2 > 0 and
θ2 ≥ θ1.

To improve the effectiveness, the RFD used irrelevant documents in the train-
ing set to remove the noise. The first issue in using irrelevant documents is how
to select a suitable set of irrelevant documents. Most models can rank docu-
ments using a set of extracted features. If an irrelevant document gets a high
rank, the document is called an offender [4] because it is a false discovery. Of-
fenders are normally defined as the top-K ranked irrelevant documents. The
basic hypothesis is that the relevance features should be mainly discovered from
the relevant documents. Therefore, RFD sets K = n

2 , as half of the number of
relevant documents.

Once the top-K irrelevant documents are selected, the set of irrelevant docu-
ments D− is reduced to include only K offenders (irrelevant documents); there-
fore, we have |D+| ≥ 2|D−|.

The spe function can get its maximum value, 1, if there is a term t such that
coverage−(t) = ∅, and its minimum value, − 1

2 , if there is a term t such that
coverage+(t) = ∅.

The RFD model uses the terms’ support and the terms’ specificity to define
the terms’ weights as follows:

w(t) =

⎧⎪⎪⎨⎪⎪⎩
d sup(t, D+)(1 + spe(t)) t ∈ T+

d sup(t, D+) t ∈ G
d sup(t, D+)(1 − |spe(t)|) t ∈ T1

−d sup(t, D−)(1 + |spe(t)|) otherwise

where the d sup function is defined in Equation 5.

4 Feature Selection and N -Gram Extraction

Due to the increasing amount of data available today on the Web, user queries
usually return with results that are irrelevant for the user needs. In information
retrieval, the retrieval models use the documents index to retrieve the documents
relevant to the user based on the keyword-matching approach. Each retrieved
document is ranked based on the score of each document that will be presented
to the user [15].

One of the objective of knowledge extraction is to find a set of features from
feedback documents [4]. This issue has received attention from data mining and
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information retrieval researchers. Feature selection is the simplest way to solve
this issue as it reduces the number of irrelevant terms. This method selects a set
of terms as features in the training set to improve the efficiency and quality of
n-gram extraction by decreasing the number of noisy features that cause errors
in the new data [10]. As many n-grams are extracted from different datasets,
n-gram extraction on a large corpus yields a large number of extracted n-grams.
Only some will be interesting to the user; the others will be noisy or irrelevant to
the user. Therefore, extracting n-grams from selected features will improve the
quality of constructing the n-gram [16]. Therefore, we need a specific features
for n-grams extraction which are interested for the topics.

This research requires two stages to extract and weight the n-gram in selected
features. In the first step, we try to reduce the number of features and select
the best specific ones to extract the n-gram. In the second step, we extend the
random set of n-gram probability to include the terms’ probability.

4.1 Extracting N -grams Using Feature Selection

The extracting stage includes two steps: first, selecting the best features and
then extracting the n-gram based on the selected features. Selecting good fea-
tures attempts to improve the quality of extracting the n-gram and reduce the
computational complexity and noisy features. Feature selection is a crucial issue
in data mining and has long been studied in data mining and machine learning
[17].

To test the proposed method, different features have been tested in different
feature selection methods, such as the n-gram, BM25, Rocchio, and RFD meth-
ods. As previously mentioned, in this experiment we attempted to select the best
extraction method and features to enhance n-gram extraction. We found that
the RFD model extracted good features for use in extracting n-grams[13].

Two reasons make the RFD model the best model. First, RFD features achieve
the best performance compared with the different patterns (phrases) methods
and term-based methods. The overall results for RFD compared with different
pattern-based methods showed better performance with a maximum of 12.30%
and a minimum of 6.92% in all five used measures. Furthermore, RFD also
has good results compared with other term-based methods. It has achieved best
results with a maximum of 17.50% and a minimum of 9.25% in all five measures.
Second, the RFD results are closed to the real definition of the spe function as
will be explained more in section 5.4. Therefore, we can conclude that, RFD
shows a significant improvement in all five measures in both pattern-based and
term-based methods [13] and extracted the best features that can be selected
for extracting the n-gram in this experiment.

The next step in this experiment is to extract the n-grams. An n-gram is
a sequence of n words over a sequence of given words. Fürnkranz [18] showed
that using word sequences of 2 or 3 words usually improves the performance
compared with using n > 3, which reduces the performance.
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4.2 Weighting Extracted N -Grams

In this experiment, after the n-grams have been extracted from the documents,
it is time to calculate the probability of the extracted n-grams. The n-grams are
usually selected based on the sliding window technique, and the probability of a
n-gram = {w1w2...wn} is calculated using the following equation [19]:

P (w1w2...wn) = P (w1)P (w2|w1w2)...P (wn|w1w2...wn−1)

It is hard to calculate this probability because of the noisy terms and the
complex relationship between terms. As we described before, feature selection
can largely reduce the number of noisy terms; however, it is still very difficult
to understand the relationship between terms. The only information for the
relationship is the term weighting function that uses to select the top features.
We also observe in experiments, that the distribution of term weights in an n-
gram could influence the probability of the n-gram. For example, let n-gram1 =<
w1, w2, w3 >, if the w2 in the n-gram has a very low weight (e.g., low frequency);
that might lead to the decreased probability of the n-gram1 and vice versa. Thus,
if the search for “Apple TV” most of the retrieved documents will be about
information technology, while if the search is for “Apple Fruit,” the retrieved
documents will be about food and fruit. Thus, we see that the words “TV” and
“Fruit” affect the results, which affects the probability of the gram. Therefore,
in this paper, we use extended random set (ERS) [20] to provide an alternative
method for calculating the probability of n-grams.

Let the training set D = D+∪D−, G be the set of n-grams and T be the set of
selected terms (or features). The relationship ξ between terms can be described
based on their appearers in n-grams:

ξ : T → 2G×[0,1]

where ξ(t) = {(g, tf(g))|t ∈ g, tf(g) =
tf(g,D+)
tf(g,D) }.

The prior probability of terms can be described by the weighting function
used for the phase of feature selection, which satisfies

p(t) = w(t)/
∑
tj∈T

w(tj)

for all term t ∈ T .
Based on the above definitions, we then can calculate the probability of n-

grams using the following equation:

pr : G → [0, 1]

such that,

pr(g) =
∑

t∈T,(g,tf(g))∈ξ(t)

(p(t)× tf(g)) = tf(g)×
∑
t∈g

p(t) (7)

for all n-grams g ∈ G.
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5 Evaluation

The main objective of this research is to extract a high-quality n-gram from
text documents by introducing a new method for weighting n-grams. The new
method uses RFD features initially to extract the n-gram and then calculates the
probability of the extracted n-grams. To support this idea, this section describes
the experiment environment, including dataset, baseline models and the results
and discussion of the experiment:

5.1 Data

To conduct the experiment, the Reuters Corpus Volume 1 (RCV1) have been
used, which consists of all and only 100 topics; each topic contains different num-
bers of documents with relevance judgements in training and testing sets. These
100 topics from English language news stories produced by Reuters journalists
between 1996 and 1997, comprising a total of 806,791 documents. The docu-
ments were structured in XML. The first 50 topics were developed by humans
and the rest by the intersections of pairs of Reuters categories.

Before our method was applied, different operations were conducted on the
data, such as preprocessing the documents and removing a given stop-words list.
In addition, the terms were stemmed by applying the Porter stemmed algorithm
for suffix stripping [13].

5.2 Baseline Models

In this experiment, we used well-known term-based methods: Rocchio and BM25,
including the tf*idf terms .

The Rocchio model uses a centroid to describe a topic as follows:

α
1

|D+|
∑

−→
d ∈D+

−→
d

||−→d ||
− β

1

|D−|
∑

−→
d ∈D−

−→
d

||−→d ||
(8)

There are two recommendations for setting parameters α and β in the Rocchio
model [21]: α = 16 and β = 4; and α = β = 1.0. Both recommendations were
tested on RCV1, and α = β = 1.0 gave the best result. Therefore, α = β = 1.0
in Equation 8 [13].

Okapi BM25 [22] is a state-of-the-art term-based model. The term weights
are estimated as follows:

W (t) =
tf · (k1 + 1)

k1 · ((1 − b) + b DL

AVDL) + tf
· log

(r+0.5)
(n−r+0.5)

(R−r+0.5)
(N−n−R+r+0.5)

where N is the total number of documents in the training set; R is the number
of relevant documents in the training set; n is the number of documents that
contain the term t; r is the number of relevant documents that contain the term
t; tf is the term frequency; DL and AVDL are the document length and average
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document length, respectively; and k1 and b are the experimental parameters
(the values of k1 and b are set at 1.2 and 0.75, respectively, in this paper).

In addition, in this experiment we used the Term Frequency Inverse Document
Frequency (TF-IDF) weighting scheme [23], the most widely used measure for
weighting terms. T F − IDF is the combination of the exhaustive statistic (TF),
which stands for term frequency, and the specificity statistic (IDF) is the inverted
document frequency of a term.

T F − IDF (t) = T F (d, t) ∗ IDF (t)

5.3 Evaluation Methods

To evaluate the effectiveness of this study, different means have been used, specif-
ically precision p , the average precision of the top 20 return documents, the
F 1 − score measure, and the break-even point (b/p). Also, to evaluate the whole
system, interpolated Precision on 11-points is used for comparison of the perfor-
mance of different systems by averaging precisions at 11 standard recall levels
which called Interpolated Average Precision (IAP). Moreover, Mean Average
Precision (MAP) is used which is the average of precision of all experiment top-
ics. These evaluation metrics are widely used in information retrieval research
(for more information about these measures see [15]).

5.4 Results and Discussion

This experiment introduce a novel method of extracting the n-gram using RFD
features and extending the random set by calculating the n-gram weight con-
sidering the n-gram content distribution. Thus, this experiment consists of two
stages: extracting the n-gram using different features and extending the random
set of n-grams to calculate their weight.

Extract n-Grams Based on Different Feature Select Methods: In this
experiment, we test different term-based methods with tf*idf and RFD features
to select the best features between these methods. Four different extracted fea-
tures were tested: tf*idf, RFD, MB25 and Rocchio. We found that the RFD
features show a significant improvement in performance compared with differ-
ent baseline models. As mentioned in section 3.2, RFD extracted three different
features(positive, general, negative), in this study, we excluded the negative fea-
tures to focus only on positive and general features as tf*idf use positive features
only.

Comparing the average number of extracted features, we observe that RFD
extracted a small specific number of features, about 46 keywords in positive and
general features, while the tf*idf extracted more than 600 features. However, if
we compare the performance of these two methods, we found that using RFD
features to extract the n-gram yielded an excellent improvement as shown in
Table 2, which illustrates an excellent improvement in performance compared
with tf*idf and other term-based methods in all five factors over the 50 topics.
Thus, using RFD features has 23% maximum and 9% minimum percentage
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changes on average for all used measures. Even more, if we compare the use
of tf*idf features with other used term-based methods in their performance
compared with using RFD features, we found that RFD still beat them, which
means that RFD features are more specific and relevant to the user while the
tf*idf features contain noisy features.

In summary, the experiment results in this section show that RFD features
are more suitable for extracting n-grams than using other features.

Extended Random Set (ERS)to Calculate n-Gram Probability: Es-
timating the probability of the extracted n-gram is based on calculating the
n-gram frequency. However, the distribution of the extracted n-gram content
could affect the results of calculating the probability. Thus, in addition to using
the RFD features to extract the n-gram, we also revise the method for calcu-
lating the probability of n-grams by extending the random set based on their
distribution in the documents and their terms distribution in n-grams as shown
in Equation 7.

In this experiment, we extend the weighting function and run all the methods
again to show the differences. As presented in Table 1, the performance of all
methods has increased, especially the Rocchio and BM25 methods. RFD features
is still the best method used in this experiment with 11% maximum and 5%
minimum percentage changes on average over all five measures.

Table 1. Comparison of All Term-based Methods for Assessing Topics with an Ex-
tended Random Set (ERS)

Method top-20 b/p MAP Fβ=1 IAP

RFD+ERS 0.539 0.467 0.484 0.460 0.506
tf*idf+ERS 0.484 0.425 0.444 0.437 0.467
Rocchio+ERS 0.524 0.442 0.461 0.449 0.482
BM25+ERS 0.521 0.437 0.462 0.450 0.484

%change +11% +10% +9% +5% +8%

In the overall results, as shown in Table 2, using the extended random set to
accurately weight n-grams with RFD features improves the performance of the
extracted n-gram significantly. Table 2 shows 29% maximum and 12% minimum
percentage changes in the results. In addition, Figure 1 illustrates the 11 points,
which indicates the improvement in performance between the proposed method
and the other methods.

In summary, extending the random set to consider the n-gram’s terms based
on their distribution in the documents and their terms distribution in n-grams
with RFD features would significantly improve the extraction performance of
the n-gram compared with other term-based methods.
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Table 2. Comparison of All Term-based Methods for Assessing Topics

Method top-20 b/p MAP Fβ=1 IAP

RFD+ERS 0.539 0.467 0.484 0.460 0.506
RFD 0.515 0.444 0.462 0.451 0.482
tf*idf 0.419 0.396 0.398 0.412 0.423
Rocchio 0.444 0.340 0.406 0.420 0.434
BM25 0.449 0.400 0.406 0.419 0.432

%change +29% +18% +22% +12% +19%

Fig. 1. 11’s point for n-gram method on all assessing topics with features of other
methods

6 Conclusion

This paper presents a new method for enhancing n-gram extraction in two stages.
The first stage is to extract the n-gram using different features in various term-
based methods. The second stage is to extend the random set to weight the
extracted n-gram accurately.

The proposed method was also tested in a standard data collection (RCV1)
for 50 TREC topics and compared with four up-to-date baseline models. The
experimental results show that the proposed method can significantly enhance
the n-gram extraction in the two stages. More than 14% percentage changes on
average of of the five measures if RFD features are used. It also shows that the
proposed method can significantly improve the performance when we extend the
probability function for n-gram to consider both their distribution in the docu-
ments and their terms distribution in n-grams (the average percentage change
is 20% for five measures).
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Abstract. This paper presents a novel approach for generating context tem-
plates for the task of word sense disambiguation (WSD). Context information 
of an ambiguous word, in form of feature vectors, is first classified into coarse-
grained semantic categories by topic features using the latent dirichlet alloca-
tion (LDA) algorithm. To further refine the sense tags, all feature vectors of the 
ambiguous word, under the same topic, are recast into a network. Various cen-
trality measures are derived to figure out the features or context words in the 
context templates, which are highly influential in the disambiguation. The WSD 
is achieved by identifying the maximum pairwise similarities between the con-
text encoded in the templates and the sentence. The correct sense of an ambi-
guous word is resolved by distinguishing the most activated template without 
being trapped in a subjective linguistic quagmire. The approach is assessed in a 
corpus of more than 1,000,000 words. Experimental result shows the best 
measures perform comparably to the state-of-the-art. 

Keywords: Sense tagging; network-based approach; latent dirichlet allocation. 

1 Introduction 

Word sense disambiguation (WSD) tackles the problem of sense tagging and is per-
haps one of the most challenging tasks in the area of natural language processing. It is 
also recognized as one of the foremost steps in sentence parsing [1,11]. Latest devel-
opments in WSD have been beneficial from the availability of large scale lexicons or 
sense-tagged corpus. A wide variety of techniques have been suggested, ranging from 
supervised methods in which a classifier is heavily trained for each distinct word in a 
sense-tagged corpus, to completely unsupervised methods that cluster occurrences of 
words in order to induce their senses. Although most current supervised approaches 
outperform their unsupervised counterparts, the importance of lexical semantic re-
sources in WSD is well recognized. Even large lexical databases, such as WordNet 
[7], do not include all the words encountered in broad-coverage NLP applications. 
Meanwhile, the quality of these resources depends certainly, to a large degree, on the 
considerable efforts of lexicographers, who must keep pace with both language evolu-
tion and knowledge development. As a result, updating the resources, both lexicons 
and sense-tagged corpora, is an expensive and labor-intensive endeavor.  
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On the other hand, words rarely work alone, but rather appear in tandem, forming 
various kinds of clusters or bundles. The recurrence of these bundles represents a 
meaningful chunk in a language, also called a listeme, that has to be memorized as 
part of a list for that particular context [6]. Based on collocation and colligation, 
words with similar meanings tend to be bundled with the same words to form similar 
listemes. In other words, given two words, the more comparable their collocations of 
the words in a listeme, the higher similarity the meanings of the two words in the 
context. In this paper, we propose a semi-supervised approach with less demand of 
lexical resources and address the WSD problem by clustering the context vectors of 
ambiguous words using a network-based model. Topic features are first constructed 
from an unlabeled corpus using the latent Dirichlet allocation (LDA) algorithm. Un-
der the bag-of-word assumption, the algorithm produces coarse-grained clusters for 
different senses of the ambiguous words. Different network-based models are ex-
plored to refine the clusters and preserve the word order as well as the shallow seman-
tic knowledge which are the prominent linguistic devices for sentence interpretation 
in all languages. Specifically, various measures of network centrality will be com-
pared and contrasted. Our experiments try to attest these centrality measures are com-
petent to discriminate the senses. We also attempt to unveil the relative contribution 
of each context word during the WSD. The contribution of this paper is three-fold. 
First, we demonstrate the LDA algorithm in topic modeling can significantly segre-
gate different senses of an ambiguous word using our proposed context vectors. 
Second, we suggest a framework to fine-grain the sense tags using a network-based 
model. Third, we conduct an empirical experiment to compare a broad range of net-
work centralities in the WSD problem. The organization of the paper is as follows. In 
Section 2, we first provide a review of the related work. The system architecture is 
also outlined. We then describe, in Section 3, the construction of context feature vec-
tors as well as the topic modeling using the LDA which is an unsupervised technique. 
The technique produces a coarse-grained sense classification by imposing necessary, 
even not sufficient, constraints on their features. Section 4 presents in detail the net-
work construction and different measures of centrality. Context templates for different 
senses of ambiguous words are generated. The templates unfold the fine-grained 
sense tags of ambiguous words by relying on the most prominent words with large 
centralities. In order to demonstrate the capability of the approach, the system is expe-
rimentally evaluated using an unlabeled corpus of more than 1,000,000 words. Every 
context template produced is calibrated with a sense tagged mini-corpus of 200,000 
words. The detailed results are given in Section 5, followed by a conclusion.  

2 Related Work and System Architecture 

Primarily, all WSD methods can be sub-divided into two categories, namely super-
vised and unsupervised techniques. One of the state-of-the-art supervised WSD me-
thods is the SenseLearner which uses a relatively small amount of training data [13]. 
Several semantic models are constructed for all predefined word categories. The  
word categories are defined as groups of words that share some common syntactic or 
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semantic properties. First, the models are trained using the TIMBL memory based 
learning algorithm. It then makes generalizations of concepts learned from the train-
ing data. The best result reported is 66% on Senseval-2 data. GAMBL is another su-
pervised approach using so-called word experts [5]. The word expert module consists 
of two cascaded memory-based classifiers: the sense predicted by the first classifier is 
used as a feature in the second classifier. The first classifier is trained on keywords 
selected according to a statistical criterion, and the second one is trained on the pre-
diction of the first and on the local context of the ambiguous word-lemma-POS-tag 
combination. Genetic algorithm is deployed to optimize local context features and the 
output of a separate keyword classifier. The system incorporates both grammatical 
relations and chunk features into their learning. The best result reported is 65.2% on 
Senseval-3 data. Supervised WSD methods always outperform their unsupervised 
counterparts, in the expense of requiring a lexicon with high integrity as well as a 
reasonable size of sense tagged corpus, which may be difficult to come by in most 
other languages. Recently, unsupervised techniques have gained momentum, simply 
because the accuracy gap between the two major techniques gets closer. An example 
of unsupervised WSD model is the Structural Semantic Interconnections [14]. Their 
approach is to disambiguate words by identifying the sense with the highest similarity 
with its context, i.e., the senses of the words surrounding the current word. The con-
text of a word can be the sentence that the word appears in, but also the paragraph or 
document in which the word is used. They introduce a graph construction method in 
which all candidate senses are connected and consequently ranked using network 
algorithms. Buoyed by the WordNet sense inventory [7], the graph is expanded by 
adding semantic edges and nodes from the thesaurus. Their approach is to maximize 
the degree of mutual interconnection among a set of senses defined under the Word-
Net. The WSD is determined by ranking each node in the network according to its 
importance. Tsatsaronis et al. [17] conduct an experiment in like manner using P-
Rank which has an assumption that two nodes in an information network are similar if 
they are referenced by similar nodes. 

In this paper, inspired by the work above, we propose and implement a mechanism to 
WSD based on one important concept: distributionally similarity. Distributional similari-
ty suggests the more semantically similar two words are, the more distributionally similar 
they will be, and thus the more that they will tend to occur in similar linguistic contexts 
[4]. In other words, words that occur within similar neighbors are semantically similar. 
The architecture of the system is shown in Figure 1. We first extract all the context fea-
ture vectors of ambiguous words from a corpus after the text preprocessing. The vectors 
are subject to the topic classification under the LDA. The algorithm produces a coarse 
categorization and assigns a topic to each feature vector. In other words, words with the 
same bag of features will be delegated into the same topic. However, words in a piece of 
text are certainly not random. Their senses are highly influenced by their sequential or-
der. At the same time, words with mono-sense always provide a good hint for the WSD. 
In addition, not all features in the vector play the same role or contribution in identifying 
the sense. It is mandatory to provide a mechanism to represent this sequential, well-
connected and coherence characteristics among the features in the vector. We recast all 
feature vectors of the ambiguous word w, under the topic t, into networks and derive  
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various centrality measures to figure out the words or features which are highly influenti-
al in the disambiguation using network analysis. As a result, features with large connec-
tivity, or centrality, are distinguished and they are imperative for the sense tagging. The 
resulting network representation, or context template CTw

t, are then used to disambiguate 
any unseen polysemous words. The context templates function as coalitions of concepts 
which can pinpoint the meaning of the words corporately through the saliency and cohe-
rence of its adjacent neighbors. 

 

 

Fig. 1. System architecture for constructing context templates for WSD 

3 Identifying Different Context of an Ambiguous Word 

In this section, we first explain the linguistic features that are extracted for differen-
tiating the context of the ambiguous words and then present a brief review of the la-
tent dirichlet allocation (LDA) algorithm.  

3.1 Text Preprocessing and Linguistic Feature Extraction 

The preprocessing consists of the sequential application of two major components in a 
pipeline. The components include tokenization and part-of-speech (POS) tagging. The 
output of preprocessing is the words that contain the most important information in 
the sentences. In English, while punctuation marks, such as periods, may suggest the 
end of a sentence, they also signal the end of an abbreviation, or used in the specifica-
tion of dates, times, initials, e-mail addresses or URLs. Similarly, spaces delimit Eng-
lish words and do not necessarily identify word boundaries, as in the case of many 
named entities such as The Australian. In other languages, such as in Chinese, the 
situation is even more taxing. Each Chinese morpheme or character carries meaning, 
new words can be simply constructed by the concatenation of morphemes, and there 
is no delimiter between words. As a result, the number of words in Chinese is huge. 
Both tokenization and POS tagging are the challenging tasks in Chinese NLP. In this 
research, we employ the segmenter and POS tagger developed by the Peking Univer-
sity [18]. At the same time, we eliminate all the rare and irrelevant terms in the  
sentences. While rare terms are commonly accepted as the words with occurrence 
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frequency less than a threshold and irrelevant terms, in a stoplist, usually refer to the 
words with less indexing power, we adopt the tf-idf scheme to filter the rare terms and 
remove all words that do not fall under the categories of noun, verb, adjective and 
adverb. After the preprocessing, for each ambiguous word w in a corpus C, a set of 
features from its neighbor is elicited. The assumption is that the sense of any word in 
the sentence S in C is not independent but rather mutually related. One can model this 
dependence implicitly by including information about the preceding and subsequent 
words. Table 1 shows the composition of our context feature vector f extracted in the 
neighborhood of the ambiguous word w after the preprocessing. 

Table 1. Composition of linguistic features vector f around the ambiguous word w 

 Composition of context feature vector 
(a) A neighborhood, with window size of ± 4 words, around the ambi-

guous word w is selected. 
(b) POSi-1, POSi-2 and POSi-3, part-of-speech tags of three preceding 

words, wi-1, wi-2 and wi-3 
(c) POSi+1, POSi+2 and POSi+3, part-of-speech tags of three subsequent 

words, wi+1, wi+2 and wi+3 
(d) Sense tag of two mono-sense words, if any, which lie within the 

neighborhood of w  
(e) Pointwise mutual information in quantifying the collocation of the 

neighbor words of w 
 
All these feature vectors are then subject to an unsupervised clustering as de-

scribed in the following section.  

3.2 Latent Dirichlet Allocation 

Latent dirichlet allocation (LDA), first introduced by Blei et al [2], is a probabilistic 
generative model for discovering underlying topic structures of any discrete data. It 
has been applied extensively in text modeling as well as classification. LDA is usually 
represented as a hierarchical Bayesian model, in the format of a plate notation, as 
shown in Figure 2 [16,3]. The notation is used to represent repeated variables. The 
boxes in Figure 2 indicate the repeated variables. The number of iterations is shown at 
the right hand corner of the boxes. All the directed edges between the variables in the 
figure indicate the conditional dependencies between them. At the same time, the 
shaded and unshaded bubbles indicate observed and latent variables respectively. 
Given a corpus consisting of M documents, LDA models each document using a mix-
ture over K topics, which are in turn characterized as distributions over words. Simply 
speaking, the outermost box represents all the variables related to a document i, over 
the topic distribution θi estimated from a Dirichlet prior with parameter α. The va-
riables inside the outermost box are repeated iteratively for M times, as shown in the 
lower right hand corner of the box.  
 



 Generating Context Templates for Word Sense Disambiguation 471 

 

Fig. 2. Graphical model for LDA 

The inner box represents the variables associated with each of the words in docu-
ment i. A topic zij is first drawn from a multinomial distribution for wij, the j-th word 
in document i with the parameter θi. The word wij not only relies on the topic zij, but 
also a parameter β that is another uniform Dirichlet prior on the per-topic word distri-
bution. During the inference, while it is intractable to solve the posterior distribution 
of the hidden variables, say the topic zij for all the word wij, Blei et al [2] has shown a 
lower bound on the log likelihood of the probability, p(θ,z|w,α,β), can be estimated. 
Interested readers can refer to the literature above for the detailed mathematical for-
mulation and discussion. Instead of identifying the latent topic of a document as in 
other applications, all context feature vectors of the ambiguous word w are then sub-
ject to the classification using the LDA algorithm. LDA models each features vectors 
using a mixture over K topics, in the assumption that the maximum number of  
possible senses of any ambiguous word w is limited to K. The LDA algorithm also 
produces p(fi|zj) which represents the probability of a feature vector fi given a topic zj. 
Basically, under each topic, the algorithm congregates all feature vectors that tend to 
occur in similar linguistic contexts and they are distributionally similar in meaning. 
The extraction of the context feature vectors from a large unlabeled corpus, as shown 
below, and the unsupervised clustering try to relieve the scarcity problem induced 
from any manually sense tagged corpus. 

4 Construction of Context Templates Using Network Centrality 

The LDA approach is akin to the standard bag of words model and has a strong as-
sumption of exchangeability. That is, the words in a document are exchangeable. A 
document {w1, w2, ..., wN} is exchangeable if the joint distribution wi is invariant to 
any possible permutations. In this research, we alleviate the strong assumption im-
posed by LDA into WSD since word order obviously has a pivotal role and is the 
most fundamental syntactic device in any language understanding. We propose a 
network approach which could incorporate both the word order information and shal-
low semantic knowledge into the WSD. The mechanism is described as follows. 

4.1 Construction of the Network  

Given an ambiguous word w, all context feature vectors under the topic t are used to 
construct a network, or called context template CTw

t. The nodes in the network are the 
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neighbor words located adjacent to w. First, a sliding window, size equal to three, 
slips through every feature vectors, as described in Table 1, under the topic. For each 
word tagged with its POS in the sliding window, if it is first found in the vectors, it is 
recorded as a new node in CTw

t. The link between two nodes will only be reinforced 
whenever the two words co-occur in the sliding windows of the relevant vectors. The 
network is a directed graph in which the left and right words in the sliding window 
are the source and target nodes of the network respectively. In other words, we in-
scribe the word order information into the network. Each link is based on the proximi-
ty of the words in the feature vectors. The strength of the link between two nodes 
relies on how frequent the two words can be found in the sliding window across all 
feature vectors under the topic t. This approach translates the linear structure of the 
feature vectors into a network and allows us to visualize the proximity of the words 
by means of the intensity of the connections between the nodes in the network. In 
addition, shallow semantic knowledge could also be amalgamated into the network as 
described below.   

4.2 Inclusion of Shallow Semantic Knowledge 

While the collocations of words are being secured in above sliding window, the num-
ber of nodes in the network can be enormous. As a result, the main gist underlined in 
the network can be easily disregarded. Not every word in a sentence is ambiguous. As 
the statistics shown in Section 5, more than 90% of words in a sense tagged corpus 
have a unique sense. These mono-sense words certainly provide the anchor points in 
the WSD. The network will be restructured using the following criteria: 

─ Words with the same mono-sense are collapsed into a single sense node in the 
above network construction. The strength of the link between the sense node to 
other nodes is the sum of the links from all the individual words under the sense. 

─ All other mono-sense words with high semantic similarity will also be merged into 
a single sense node as above. However, the link will suffer from a depreciation of 
its strength. 

─ Jiang & Conrath [9] approach is adopted to measure semantic similarity/distance 
between words in the network. It combines a lexical taxonomy structure with cor-
pus statistical information. The semantic similarity between nodes in the network is 
quantified with the computational evidence derived from a distributional analysis 
of corpus data as well as the taxonomy. 

During the implementation, the network is not constructed in two different phases 
as perceived. The description in two separate sections only serves for clarification 
purpose. In sum, in lieu of using the LDA inference during the prediction for any 
unseen feature vectors, our aim is to generate, for each ambiguous word w, the con-
text templates that anticipate the most appropriate sense of w. The network demon-
strates all the possible collocations with some minimal senses, without a demand to 
manually tag the sense for each word in a large corpus. Even at this stage, the network 
may be too enormous to yield any conclusive predictions for the WSD. In this re-
search, we take advantage of the ranking of each node in the CTw

t according to its 
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centrality, in the hope to unveil the relative contribution of the context words or sense 
nodes in the context template. In next section, we discuss in general several measures 
that operationalize centrality in graph-theoretic terms. We introduce some global 
measures which estimate the overall degree of connectivity of the network and ex-
plain how they can be exerted to identify the main gist of the context templates. 

4.3 Measures of Network Centrality 

We outline the general concepts of some measures of centrality of a network. Inter-
ested readers should refer more details in the literature [15]. 
 
Degree Centrality: Perhaps the simplest centrality measure in a network is just the 
degree of a node, the number of edges connected to it. Degree centrality of a node 
refers to the number of edges attached to the node. In directed networks, nodes have 
both an in-degree and an out-degree, and both may be useful as measures of centrality 
in the appropriate circumstances. In order to know the standardized score, we usually 
divide each score by n-1 where n is equal to the number of nodes. 
 
Eigenvector Centrality and its Derivative: A natural extension of the simple degree 
centrality is eigenvector centrality which gives each node a score proportional to the 
sum of the scores of its neighbors. The centrality of the nodes can be represented in a 
matrix notation, Ax = kx where x is the vector with element centrality xi of each node 
i, A is the adjacency matrix of the network and k is the largest eigenvalue of A.  
One of its most popular derivatives is the PageRank (PR) which is a link analysis 
algorithm, used by the Google web search engine. Different from the eigenvector 
centrality, PR includes an additive constant term in their definition and normalized by 
dividing by the out-degrees of its neighboring nodes. The PR centrality of the nodes 
can be represented in a matrix notation, x = D(D - αA)-11, where D is a diagonal ma-
trix with elements Dii =max(Ki

out, 1),  1 being the vector (1,1,1, ..), and α is the 
damping factor. 

 
HITS: There are two other different types of centrality for directed networks, the au-
thority centrality and the hub centrality. The authority centrality indicates how often a 
node is being pointed by other hubs. Similarly, a node is a high hub centrality if it 
points to many nodes with high authority centrality. That is, a good hub is a node that 
points to many good authorities, whereas a good authority is a node that is pointed by 
many good hubs. The algorithm is also called as hyperlink-induced topic search or 
HITS.  The centralities can be represented in matrix notations, AATx = λx, ATAy = 
λy, where A is the adjacency matrix of the network, x, y being vectors which 
represent the authority and hub centrality of each node respectively. In other words, 
the centralities are given by eigenvectors of AAT and ATA with the same eigenvalue 
λ.    

 
Betweenness Centrality: An entirely different approach to centrality is betweenness 
centrality, which measures how often a node appears on shortest paths between nodes 
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in the network. The idea of betweenness is usually attributed to Freeman [8]. Nodes 
with high betweenness centrality may have considerable influence within a network 
by virtue of their control over information passing between others. The nodes with 
highest betweenness are also the ones which will produce the most disaster effect in 
communication when they are removed from the network. It is a popular centrality 
measure used in the study of social networks. Mathematically, the betweenness cen-
trality xi of a node i are defined as: 

                                                                 1  

where  be the number of shortest paths from node s to t that pass through i and 
gst be the total number of shortest paths that can be found from node s to t.  

The context template of an ambiguous word w is a network in which the nodes of 
the network are the words or sense nodes at the adjacency of w under the same topic. 
Each node has its own centralities which are best described using various network-
based centrality measures. For an unseen feature vector, its sense is resolved by the 
template which will return the maximum centrality score for all the words found in 
the feature vector. 

5 Empirical Experimental Setup and Results 

A large and accurate sense-tagged corpus provides a reliable resource for all kinds of 
computational linguistics research. Unfortunately, the construction of a large-scale 
Chinese sense tagged corpus is still underway [10]. In this empirical experiment, we 
employed a sense tagged Chinese mini-corpus that is originally from Harbin Institute 
of Technology. It contains more than 200,000 Chinese words in which POS and sense 
are manually tagged. The sense tags from a Chinese thesaurus called Cilin are 
adopted [12]. The number of senses of the words in the corpus is shown in Table 2.  

Table 2. Percentage of ambiguous words in a sense-tagged corpus with 200,000 words 

# of senses % of words in the corpus 
1 90.33% 
2 6.94% 
3 1.80% 
4 0.60% 
5 0.17% 

≥6 0.16% 

 
In our experiment, the words with more than one sense in the mini-corpus are all 

shortlisted. However, the number of feature vectors from the mini-corpus is far from 
sufficient to bring about the context templates. Instead, an unlabeled corpus of more 
than 1,000,000 words is used to produce the feature vectors and develop the context 
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templates. The unlabeled corpus is then subject to the preprocessing as discussed in 
Section 3.1. During the preprocessing, we just point to the words with their POS tags 
that fall under the categories of noun, verb, adjective or adverb. A neighborhood, with 
window size of ± 4 words, around the ambiguous word is used to devise the feature 
vectors. As the result, the total number of context feature vectors produced from the 
unlabeled corpus and mini corpus are 93,500 and 19,000 respectively. All the feature 
vectors from the unlabeled corpus are used to yield the context templates as described 
in Sections 3.2 and 4. The feature vectors are first subject to the LDA algorithm. The 
choice of topic number K in the model can affect the interpretability of the results. A 
model with fewer topics may have a poor generalization while it may be over-fitting 
if the number of topics is too large. Another approach to estimation of the number is 
the measure of perplexity which is equivalent to the inverse of the geometric mean 
per-word likelihood [2]. A lower perplexity score indicates better generalization per-
formance. Different from all previous topic model approaches that identify the hidden 
topics in a collection of documents, our intention is to differentiate the senses of an 
ambiguous word using their feature vectors. In this empirical study, we take a simple 
assumption that there are at most three different senses for each ambiguous word. All 
feature vectors of the word are then subject to train using 10,000 iterations of the 
Gibbs sampling. Hyper-parameter optimization, which allows the LDA model to bet-
ter fit the vectors by allowing some topics to be more prominent than others, is also 
applied. The feature vectors are assigned to the topics with largest topic proportions 
under the iterations. All feature vectors under the LDA-assigned topics are used to 
construct the context templates under different centrality measures. As a result, more 
than 9,850 templates are produced from the unlabeled corpus for all 3,300 ambiguous 
words found in the mini-corpus. Feature vectors from the mini-corpus are reserved for 
the calibration and the test purpose. To evaluate the performance of the context tem-
plates, we reserve 85% of the feature vectors generated from the mini-corpus, with all 
known sense tags, for the calibration and the remaining 15% for the test purpose. The 
calibration is accomplished by feeding the feature vectors to the context templates. 
The known sense tag of the feature vector from the mini-corpus will be assigned to 
the template which is activated most. Similarly, during the test, the sense of an ambi-
guous word will be resolved by the context template with highest activation. Five 
centrality scores of the reserved 15% feature vectors for testing are recorded.  

All network-based algorithms are compared against a naive baseline model that 
selects the most frequent sense of the ambiguous word in the mini-corpus. Our empir-
ical results are summarized in Table 3 which reports the performance on ambiguous 
words only. The table demonstrates the accuracy of the six methods for four major 
POS tags in the feature vectors. As can be seen in the table, all the centrality ap-
proaches perform much better than the baseline model. The approaches have at least 
10% increases in the overall performance and the differences are all significant. All 
the eigenvector approaches, described in Section 4.3, come by the overall accuracy 
more than 50%. The high similarity in their overall performances may be due to they 
all come from the same family. The HITS method, among all others, shows an im-
pressive gain in accuracy close to 60%. While the performance between the HITS and 
PageRank is not significant difference, PageRank performs consistently well across 
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all the POS tags. In fact, it is the best approach to disambiguate verbs which are noto-
riously difficult in WSD. Verbs usually have more polysemous than other POS. How-
ever, the betweenness centrality does not seem to perform equally well against the 
rest in sense tagging, even though it is a popular measure used in most social network 
analysis. 

Table 3. Performance of different centralities in various POS tags during the testing of WSD  

Noun Verb Adj. Adv. Overall 

Baseline model 25.8% 16.3% 27.7% 29.3% 22.80% 

Degree 60.6% 36.2% 57.9% 62.2% 51.77% 

Eigenvector 61.6% 37.2% 58.3% 66.4% 52.83% 

HITS 69.8% 42.2% 64.4% 69.7% 59.43% 

PageRank 66.5% 45.7% 61.5% 75.2% 58.90% 

Betweenness 34.6% 28.1% 35.1% 37.7% 32.47% 

6 Conclusion 

In this paper, we have proposed a semi-supervised approach for the WSD with less 
demand of manually tagged lexical resources. The approach first makes use of a large, 
but unlabeled, corpus to generate the context templates and, subsequently, calibrate 
with a mini sense tagged corpus. This semi-supervised approach bridges the gap be-
tween the unsupervised and supervised paradigms in WSD. We have conducted an 
empirical experiment to attest the approach is competent to discriminate the senses. 
Certainly, further research should be investigated on how to uncover the ambiguous 
words that are present in the unlabeled corpus, but absent in the mini sense tagged 
corpus. Although we conduct the empirical experiment using a Chinese corpus, this 
does not mean the idea can only be applied in the language. The approach is applica-
ble to all other languages.  
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Abstract. This paper focuses on Order Acceptance and Scheduling
(OAS) problems in make-to-order manufacturing systems, which handle
both acceptance and sequencing decisions simultaneously to maximise
the total revenue. Since OAS is a NP-hard problem, several heuristics
and meta-heuristics have been proposed to find near-optimal solutions
in reasonable computational times. However, previous approaches still
have trouble dealing with complex cases in OAS and they often need
to be manually customised to handle specific OAS problems. Develop-
ing effective and efficient heuristics for OAS is a difficult task. In order
to facilitate the development process, this paper proposes a new genetic
programming (GP) method to automatically generate dispatching rules
to solve OAS problems. To improve the effectiveness of evolved rules, the
proposed GP method incorporates stochastic behaviours into dispatching
rules to help explore multiple potential solutions effectively. The exper-
imental results show that evolved stochastic dispatching rules (SDRs)
can outperform the tabu search heuristic especially customized for OAS.
In addition, the evolved SDRs also show better results as compared to
rules evolved by the simple GP method.

1 Introduction

Order Acceptance and Scheduling (OAS) is an important planning activity
within make-to-order manufacturing systems. OAS often occurs in manufactur-
ing systems with limited capacities while the customer demand is high. In this
situation, these manufacturing systems cannot accept all customer orders. The
goal of OAS is to determine the set of accepted orders and decide how these
accepted orders can be processed in order to effectively utilise the available
capacity. This paper focuses on the OAS problem in a single machine environ-
ment with sequence dependent setup times [2,10,11]. In this problem, we need
to determine which orders within the n customer orders are accepted (must be
processed and delivered) and how the accepted orders are scheduled to maximise
the total obtained revenue. Each order j is characterised by a release time rj , a
processing time pj , a due date dj , a weight/penalty wj , a maximum revenue ej ,

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 478–489, 2013.
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and a deadline d̄j . A specific setup time sij for order j is incurred if order j is
processed immediately after order i (i = 0 if order j is processed first). When
an order j is accepted, the manufacturing system will gain a maximum revenue
ej . However, if the order j is delivered after its due date dj , a penalty wjTj will
occur, where Tj = max(0, Cj − dj) is the tardiness and Cj is the completion
time of order j. The actual total obtained revenue or profit from an order j is
revj = ejIj − wjTj in which Ij is 1 if order j is accepted; and 0 otherwise. If
orders are finished after their deadline d̄j , no revenue is gained (revj = 0). In
this paper, we try to maximise the total obtained revenue

∑
j∈A(revj), where A

is the set of accepted orders.
Due to its practical applications and computational challenges, OAS has been

studied over the past two decades in the literature. Many optimisation methods
have been proposed for OAS problems. Ghosh [6] showed that the OAS problem
is NP-hard, and proposed pseudo-polynomial time and approximation meth-
ods for specific instances of the problem. Slotnick and Morton [16] developed a
branch-and-bound algorithm to find an exact solution for OAS in a single ma-
chine environment with static arrival times, and also proposed two heuristics for
this problem. The two heuristics were significantly faster than the branch-and-
bound algorithm, although they performed poorly for certain instances. Rom and
Slotnick [13] proposed a hybrid genetic algorithm with a local search heuristic to
handle the same problem and showed very promising results. Some studies have
also focused on OAS with sequence dependent setup times [2,10,11]. Oguz et al.
[11] developed a simulated annealing based method (ISFAN) and showed that it
can effectively solve large-scale OAS problem instances that cannot be solved by
mixed-integer linear programming (MILP). Cesaret et al. [2] developed a tabu
search (TS) heuristic that outperforms the ISFAN algorithm in many different
scenarios. Nguyen et al. [10] developed a multi-objective GP (MOGP) method
to discover Pareto efficient scheduling rules for multi-objective OAS problems.
The GP method is employed in a two-stage learning/optimising system where
GP is used to evolve rules that can be reused to initialise the population of an
evolutionary multi-objective optimisation method (EMO). They showed that us-
ing GP in conjunction with EMO is superior to a pure EMO method. However,
their work did not consider other representations in GP to enhance the perfor-
mance of evolved rules. OAS problems in the job shop environment have also
been investigated by Wester et al. [17] and Roundy et al. [14]. A comprehensive
review of OAS is covered by Slotnick [15].

As compared to conventional scheduling problems, OAS is more complicated
because we have to deal with acceptance and sequencing decisions simultaneously.
Therefore, designing effective heuristics for OAS is difficult and time-consuming.
Genetic programming based hyper-heuristics (GPHH) have been recently devel-
oped to automatically generateheuristics [1] for schedulingproblems [3,8,7,4,5] and
achieved very promising results. Nguyen et al. [10] made the first attempt to use
GP for evolving scheduling rules for OAS. However, there are two major limita-
tions with this GP method. First, the representation and the evaluation scheme of
evolved rules are the same as those employed for conventional scheduling problems,
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and therefore, have not taken into account special characteristics of OAS (e.g. ac-
ceptance decisions) to enhance the quality of solutions generated by evolved rules.
Second, evolved rules are restrictive in that they can only return a single solution
for a problem instance, which make these rules less competitive compared to the
state-of-the-art meta-heuristics such as tabu search (TS) [2].

1.1 Goals

The goal for this paper is to develop a new GP method to handle the two
limitations discussed above. The novelty of the new GP method is the introduc-
tion of a new evaluation scheme which helps incorporate stochastic behaviours
into evolved dispatching rules to generate effective stochastic dispatching rules
(SDRs). The new GP method (GPSR) aims to evolve rules which can intelli-
gently sample quality solutions by embedding some randomness into the order
selection process. Three research objectives in this paper are:

(a) Developing a new GP method (GPSR) to evolve SDRs for OAS.
(b) Comparing GPSR and the simple GP method for OAS.
(c) Comparing the evolved SDRs evolved by GPSR and the TS heuristic.

1.2 Organisation

The organisation of the paper is as follows. Section 2 provides details about the
proposed SDRs and the GPSR method to evolve SDRs. Section 3 describes the
experimental setup used to evolve and evaluate the SDRs. Section 4 presents
experimental results of GPSR and compares the performance of evolved SDRs
to those of simple evolved rules and the TS heuristic. Finally, Section 5 provides
conclusions and future research directions.

2 Genetic Programming for Evolving Stochastic Rules

This section describes how dispatching rules can be represented by GP programs.
Then, details about the evaluation scheme for SDRs are provided. Finally, the
fitness function used to evaluate the quality of evolved SDRs is presented.

2.1 GP Representation

To represent SDRs, we use a tree-based GP where the non-terminals represent
the operators and terminals represent parameters and constants. An example of
a GP program (dispatching rule) is shown in Fig. 1. Similar to the non-terminals
that were previously used to evolve rules in OAS [12], we use basic arithmetic
operators +, −, ×, and protected division ÷ (returns one when the denominator
is zero). We also use a ternary operator If, where If returns the value of the
second term if the first term is greater than or equal to zero; otherwise it returns
the value of the third term. The terminals that we use are the features of an
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Table 1. Terminal and function sets for SDRs

Symbol Description Symbol Description

R release time rj P processing time pj
E maximum revenue ej W penalty wj

S setup time sij d due date dj
D deadline d̄j t current time
# random number from 0 to 1

Function set +,−,×, % (protected division), If

+

P %

E S

Fig. 1. An example dispatching rule P+ E%S

order j such as processing time pj or sequence dependent setup time sij (where
i is the previous processed order). We also use current time t, which is the
decision moment when the machine becomes idle. A complete list of terminals
and functions are given in Table 1. Basically, a GP program is a priority function
f(·). When we need to assign a priority for a particular order j, the GP program
is evaluated with the terminal values extracted from order j. The output from
the GP program f(j) will be the priority assigned to order j.

2.2 Evaluation Scheme for Stochastic Dispatching Rule

The goal of SDRs is to generate multiple schedules instead of generating a single
schedule (solutions) like simple dispatching rules. Algorithm 1 shows how SDRs
can iteratively generate m schedules for a particular OAS problem instance.
From each iteration (from step 3 to step 18), a new schedule S is generated.
In an iteration, we start with an empty schedule S and a set of all available
orders Ω, and incrementally add a new order into the schedule (from step 8 to
step 14) until Ω is empty. Given a temporary set Ω, the procedure will first
calculate the earliest completion time C′

j for each order in Ω. Any order j with

C′
j ≥ dj will be removed from Ω because these orders are not able to help in-

crease the total obtained revenue (step 8). Also, we are only interested in active
orders in Ω (step 9) because non-active orders will result in a waste of man-
ufacturing capacity (some orders can be completed before the release time of
non-active orders). Then, the priority function f(·) evolved by GP is used to
assign priorities for all orders in the set of active orders V (step 10). A stochas-
tic selection scheme (described in Section 2.3) is used to select an order from V
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Algorithm 1. Schedule construction procedure for a stochastic rule f(·)
1: let Sbest be the best schedule where initially revenue(Sbest) = 0
2: for count = 1 to m do
3: let Ω ← {1, 2, . . . , n} be the available orders
4: let S be the output schedule, initially empty
5: let t ← 0 be the current time
6: let i ← 0 be the previous processed order
7: while Ω is not empty do
8: remove any order with projected completion time C′

j ≥ dj from Ω
9: obtain the set of active orders V = {j ∈ Ω : rj < mink∈Ω C′

k}
10: compute priority f(j) for ∀j ∈ V where f(·) is a priority function
11: let j ← stochastic selection(V ) (refer to Section 2.3)
12: append j to S
13: update t ← max{rj , t}+ sij + pj
14: update i ← j
15: end while
16: if revenue(S) > revenue(Sbest) then
17: Sbest ← S
18: end if
19: end for
20: return Sbest

(step 11) to add into the schedule S (steps 12 to 14). These steps will be applied
until Ω becomes empty. If the total revenue from the new schedule S is better
than the best schedule Sbest, it will replace Sbest.

The stochastic selection scheme is the main difference between SDRs and
simple dispatching rules [10,12]. In a simple dispatching rule, only the order
with the highest priority will be selected to be processed next. Because of the
stochastic selection scheme, SDRs can select orders with worse priorities; and
therefore, they able to generate different potential schedules following the pattern
governed by the priority function f(·).

2.3 Stochastic Selection Scheme

The stochastic selection is an important step in Algorithm 1. The key idea is that
the probability of selecting an order will be a function of the priority assigned to
that order. Orders with higher priorities are more likely to be selected. Assuming
that the priority function can determine which orders are more suitable (higher
priorities) to be processed next, this selection scheme helps explore potential
schedules from combinations of potential orders selected at different decision
moments.

Given a set of candidate orders V that can be selected to process next, a
subset W ⊆ V of orders with the highest priorities is obtained. Priority values of
orders in W are then converted into their corresponding selection probabilities.
Because the priority value f(j) for each order j is an unbounded real number, a
function g that uses the inverse tangent function, as shown by equation (1), is
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Fig. 2. An example of stochastic selection scheme with W of size 3

applied to transform the priorities into values in the fixed interval (0, π). This
ensures that higher priorities still give higher probabilities.

g : R → (0, π)

g ◦f(j) = arctanf(j) + π/2 (1)

After applying the transformation, the probability of selecting order j from W
can be calculated by:

Pselect(j) =
arctanf(j) + π/2∑

k∈W (arctan f(k) + π/2)
(2)

The size of W is an important factor in the proposed selection scheme. If
W only contains the order with the highest priority, SDRs are the same as
conventional (deterministic) dispatching rules. If W contains more orders, SDRs
will generate a more diverse set of schedules which depend less on the priority
function f(·). However, if W is too large, SDRs are similar to random schedule
generators because orders can be selected randomly at each decision moment.
In order to achieve good results, the size of W should be chosen such that SDRs
can take advantage of the priority function while exploring potential solutions.

Figure 2 gives an example to show how the stochastic selection scheme is used
to select an order from W . In this example, W consists of the top three orders
with the highest priorities from V . In this case, W contains orders 5, 10 and
4. Then, an order in W is randomly selected based on Pselect(j) of each order
(similar to roulette wheel selection). Although order 5 has the highest probability
of being selected, order 10 is chosen in the example because of the stochastic
selection procedure.
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2.4 Fitness Function

In order to measure the quality of an evolved SDR, it is applied to solve a
set I = {I1, I2, . . . , IK} of training instances. In some previous works [10,12],
the total revenue T RIk(S) =

∑
j∈A(revj) obtained from a schedule S for each

instance in I is directly used to evaluate the quality of the schedule. However, due
to the stochastic characteristic of SDRs, we need to make a modification when
calculating the total revenue in the training process. In this case, a penalty is
applied to an accepted order j in S if it is the order with the highest priority in W
(see Section 2.3) and has the probability Pselect(j) > 0.999. This modification is
made to promote rules which are able to generate diverse schedules. The modified
total revenue T R′

Ik
(S) for a problem instance Ik is then given by:

T R′
Ik(S) =

∑
j∈A

((1− 0.05× 1{Pselect(j)>0.999})× revj) (3)

Because there are m schedules S1, S2, . . . , Sm generated by an evolved SDR,
the average T R′

Ik
of the modified total revenues obtained by all generated sched-

ules will be used to calculate the fitness of an evolved SDR. The average T R′
Ik

is used to assess the quality of a SDR here instead of T R′
Ik
(Sbest) from the

best schedule Sbest because we want the evolved SDR to robustly sample quality
schedules rather than accidentally find a good (best) solution. After we obtain
T R′

Ik
for all training instances, the fitness value of an evolved SDR can be cal-

culated as follows:

fitness =
1

|I| ×
∑
Ik∈I

dev′(Ik) (4)

where dev′(Ik) = (UBIk − T R′
Ik
)/UBIk is the relative deviation between T R′

Ik
and the upper bound UBIk (determined by MILP and relaxed LP [2]) of instance
Ik. The fitness reflects the average performance of the evolved SDR across all
training instances. Better SDRs will result in lower fitness values.

3 Experimental Design

This section describes the dataset used for training/testing and the parameter
settings of GPSR and evolved SDRs.

3.1 Dataset

For training and testing, we use the dataset introduced by Oguz et al. [11].
This dataset has been used in the literature to evaluate the performance of
optimisation heuristics for OAS with sequence dependent setup times [11,2,12].
The dataset is divided into different subsets by three parameters: the number of
orders n, the tardiness factor τ and due date range R. With a fixed n, each subset
〈τ, R〉 contains ten randomly generated problem instances. Release times and due
dates of orders j are randomly generated such that rj ∈ [0, pT ] with pT =

∑n
i=1 pi

being the total processing time. Due dates are dj = rj + maxi=0,1,...,n{sij} +
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Table 2. Parameters used for evolving rules

Parameter Value

Population size 1024
Crossover rate 80%
Mutation rate 10%
Reproduction rate 10%
Generations 51
Max-depth 8
Selection method tournament selection
Initialisation ramped-half-and-half

max{slack, pj}, where slack is generated from [pT (1−τ −R/2), pT (1−τ+R/2)].
This means that instances generated with high τ and R values have very high
volatility, and different decisions made early in the schedule can result in widely
different total revenue values. On the other hand, early scheduling decisions do
not affect the total revenue as much for instances generated with low τ and R
values. We also use the maximum number of orders n = 100 for all experiments
in this paper, as this is the most difficult category of problem instances to solve.
The training sets are the first five instances of either the 〈0.1, 0.1〉, 〈0.5, 0.5〉 or
〈0.9, 0.9〉 subsets. Each training instance only contains five instances in order to
save the computational cost. All 250 instances (25 subsets from combinations of
five values of τ and five values of R) in the dataset with n = 100 are used to
test the performance of rules by GP.

3.2 Parameter Settings

The GP system for learning SDRs is developed based on the ECJ20 library [9].
This paper also compares the performance of GPSR and the simple GP method
for OAS (GPOAS) [12]. In all experiments, both GPSR and GPOAS use the
parameters in Table 2 and the terminal/function sets introduced in Section 2.1.
For each GP method, 30 independent runs are performed and the best evolved
rules are recorded for the comparison.

For SDRs, two important factors are the size of the set of orders W used in the
stochastic selection scheme and the number of schedules m generated by SDRs,
as shown in Algorithm 1. Preliminary experiments show that W of size 3 and
m = 30 provide good results within reasonable computation times. Therefore,
we will apply these two parameters for SDRs in our experiments.

4 Results

This section shows results of GPSR and compares GPSR with GPOAS. To show
the effectiveness of evolved rules, we also compare the performance of a typical
SDR evolved by GPSR with that from TS [2], an effective optimisation heuristic
for OAS with sequence dependent setup times. The details of this TS heuris-
tic was described in Cesaret et al. [2]. When solving an instance, the stopping
condition of TS is when there is no improvement made in 50 iterations [2].
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4.1 GPSR and GPOAS

Table 3 shows the performance of SDRs evolved by GPSR and dispatching
rules evolved by GPOAS for each OAS subset. In order to evaluate the per-
formance of a rule on a subset D of 10 instances, total revenue T RIk(Sbest)
obtained by the rule for each instance Ik is recorded to calculate the aver-
age relative deviation %devavg = 100 × (

∑
Ik∈D

dev(Ik))/10, where dev(Ik) =
(UBIk − T RIk(Sbest))/UBIk is the relative deviation between T RIk(Sbest) and
the upper bound UBIk . This method is commonly used in the literature [2,10,12].
The average relative deviation is similar to the fitness used for training SDRs but
the total revenue T RIk(Sbest) is used in the calculation instead of the average
modified total revenue T R′

Ik
.

Means and standard deviations of %devavg for each subset from evolved rules
obtained by 30 independent runs of GPSR and GPOAS are presented in Table
3. In this table, column GPSR-x and GPOAS-x represents the results of SDRs
and simple rules evolved by GPSR developed in this paper and GPOAS [12]
with the training set 〈x, x〉. For each subset, the highlighted results indicate
whether GPSR is significantly better than GPOAS. The results show that GPSR

Table 3. Performance of GPSR and GPOAS

τ R GPSR-0.1 GPOAS-0.1 GPSR-0.5 GPOAS-0.5 GPSR-0.9 GPOAS-0.9
0.1 0.1 1.7± 0.2 2.1± 0.5 3.2± 0.4 5.1± 0.6 3.1± 0.4 5.7± 0.6

0.3 2.7± 0.4 4.1± 0.5 2.1± 0.4 2.9± 0.6 2.7± 0.5 4.3± 0.6
0.5 2.9± 0.3 5.4± 0.6 2.2± 0.3 2.6± 0.4 2.0± 0.3 3.3± 0.4
0.7 2.9± 0.6 6.8± 0.9 2.0± 0.5 2.2± 0.5 1.3± 0.3 2.2± 0.5
0.9 3.0± 0.5 7.4± 0.8 1.9± 0.4 2.1± 0.3 0.9± 0.3 1.6± 0.4

0.3 0.1 2.9± 0.5 4.6± 0.7 4.7± 1.0 6.7± 1.0 4.1± 0.7 7.4± 0.7
0.3 4.5± 0.9 6.9± 1.0 3.2± 0.9 4.4± 1.3 4.0± 1.0 6.1± 1.2
0.5 5.4± 0.9 9.7± 0.9 3.4± 0.5 4.1± 0.8 3.5± 0.7 5.2± 0.9
0.7 5.3± 0.8 10.8 ± 1.2 3.3± 0.7 3.6± 0.6 2.5± 0.6 3.9± 0.8
0.9 5.3± 1.2 11.5 ± 1.7 2.9± 0.8 3.2± 0.8 1.9± 0.7 3.2± 1.1

0.5 0.1 6.1± 0.8 8.6± 0.9 8.8± 1.1 10.3± 1.4 6.8± 1.0 10.4± 1.0
0.3 6.7± 0.6 10.4 ± 0.6 4.8± 0.7 7.0± 0.8 6.0± 0.9 8.7± 0.9
0.5 8.0± 0.8 13.3 ± 0.9 4.9± 0.8 5.8± 0.8 5.7± 0.9 8.2± 1.3
0.7 7.9± 1.0 15.4 ± 1.0 4.5± 0.8 5.3± 1.0 4.0± 1.0 5.9± 1.4
0.9 8.6± 1.3 16.9 ± 1.5 4.9± 1.0 5.8± 1.1 4.0± 1.2 5.8± 1.7

0.7 0.1 8.4± 1.3 11.1 ± 1.3 10.8± 1.9 12.0± 1.7 7.9± 1.1 11.6± 1.1
0.3 9.6± 2.3 13.3 ± 2.4 8.1± 2.9 10.6± 2.9 8.3± 2.4 11.2± 2.6
0.5 11.9 ± 3.1 18.2 ± 2.9 8.3± 3.4 11.0± 3.7 9.1± 3.5 11.7± 3.6
0.7 14.4 ± 2.5 22.4 ± 2.6 10.5 ± 2.3 13.4± 3.0 10.2 ± 2.3 13.0± 2.8
0.9 15.4 ± 2.7 24.3 ± 3.1 11.4 ± 2.3 14.3± 2.9 10.5 ± 2.5 13.4± 3.1

0.9 0.1 14.5± 1.7 17.3 ± 1.9 16.0± 1.9 17.7± 2.2 12.5 ± 1.7 16.0± 2.0
0.3 18.7 ± 2.0 24.2 ± 2.0 17.2 ± 1.9 21.0± 1.6 15.8 ± 2.1 19.3± 1.9
0.5 22.0 ± 2.6 28.0 ± 2.7 19.2 ± 2.9 23.5± 3.3 18.3 ± 2.5 21.5± 3.0
0.7 22.7 ± 2.1 30.3 ± 2.0 18.9 ± 2.3 23.4± 2.1 17.8 ± 2.5 21.1± 2.2
0.9 23.0 ± 3.6 30.1 ± 3.8 19.0 ± 4.1 22.8± 4.4 17.5 ± 4.0 19.4± 4.6

* x± s represents the mean and standard deviation of %devavg.
** Highlighted cell means the GPSR is better than GPOAS trained over particular
training set is better with Z-test of 5% significance level, or vice versa.
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Table 4. Performance of the best evolved rules and TS

τ R SDR-0.1 SDR-0.5 SDR-0.9 TS GPOAS

0.1 0.1 1.7 ± 0.1 1.9± 0.1 2.9± 0.1 4.1 ± 0.2 2.7± 0.0
0.3 1.7 ± 0.1 1.8± 0.0 2.2± 0.1 3.5 ± 0.3 2.5± 0.0
0.5 1.4 ± 0.1 1.2± 0.1 1.7± 0.1 2.2 ± 0.3 1.8± 0.0
0.7 0.8 ± 0.1 0.6± 0.0 1.1± 0.1 1.3 ± 0.2 1.1± 0.0
0.9 0.4 ± 0.0 0.2± 0.0 0.8± 0.0 0.5 ± 0.1 0.7± 0.0

0.3 0.1 2.9 ± 0.1 2.9± 0.1 3.4± 0.1 4.9 ± 0.3 3.5± 0.0
0.3 3.6 ± 0.1 3.3± 0.1 3.2± 0.1 4.8 ± 0.3 4.6± 0.0
0.5 3.4 ± 0.1 3.0± 0.1 2.6± 0.1 4.2 ± 0.3 3.4± 0.0
0.7 2.1 ± 0.1 1.8± 0.1 1.6± 0.1 3.1 ± 0.2 2.6± 0.0
0.9 1.6 ± 0.1 1.1± 0.1 1.2± 0.1 2.2 ± 0.2 1.7± 0.0

0.5 0.1 4.5 ± 0.1 5.0± 0.1 6.2± 0.2 6.9 ± 0.3 6.3± 0.0
0.3 5.3 ± 0.1 5.1± 0.1 5.0± 0.1 7.0 ± 0.4 6.2± 0.0
0.5 5.5 ± 0.1 5.1± 0.1 4.8± 0.1 6.6 ± 0.4 6.4± 0.0
0.7 3.8 ± 0.1 3.5± 0.1 3.1± 0.1 5.3 ± 0.3 4.5± 0.0
0.9 3.7 ± 0.1 3.3± 0.1 2.8± 0.1 4.7 ± 0.3 4.3± 0.0

0.7 0.1 6.0 ± 0.1 6.6± 0.2 7.2± 0.2 8.2 ± 0.3 7.5± 0.0
0.3 7.3 ± 0.1 7.4± 0.2 7.7± 0.2 9.0 ± 0.4 8.9± 0.0
0.5 8.6 ± 0.2 8.5± 0.1 8.9± 0.2 10.1 ± 0.5 9.6± 0.0
0.7 10.5 ± 0.2 10.0± 0.2 9.5± 0.2 11.9 ± 0.6 11.9 ± 0.0
0.9 10.9 ± 0.2 10.3± 0.2 9.6± 0.1 12.7 ± 0.6 12.6 ± 0.0

0.9 0.1 12.4 ± 0.3 12.7± 0.2 11.3 ± 0.2 11.8 ± 0.5 13.3 ± 0.0
0.3 16.0 ± 0.2 15.9± 0.3 15.4 ± 0.2 16.7 ± 0.6 17.6 ± 0.0
0.5 19.2 ± 0.3 18.5± 0.3 17.7 ± 0.2 18.6 ± 0.6 21.2 ± 0.0
0.7 19.5 ± 0.3 18.1± 0.2 17.6 ± 0.3 18.5 ± 0.7 20.7 ± 0.0
0.9 19.6 ± 0.2 18.4± 0.2 16.8 ± 0.2 18.1 ± 0.5 18.9 ± 0.0

* x± s represents the mean and standard deviation of %devavg.
** Highlighted cell means the SDR trained over particular training set is better
than TS and GPOAS under Z-test with 5% significance level.

is significantly better than GPOAS in most subsets. When rules are evolved with
〈0.9, 0.9〉, GPSR is significantly better than GPOAS in all subsets. These results
confirm the effectiveness of the proposed GPSR as compared to GPOAS. Similar
to previous studies [10,12], the training set has a large impact on the performance
of evolved SDRs. For example, GPSR evolved with 〈0.1, 0.1〉 provides very good
results with the instances with low τ and R. However, the effectiveness of GPSR-
0.1 reduces as τ and R increase as compared to GPSR-0.5 and GPSR-0.9. In
general, GPSR-0.9 shows good performance in most subsets. The reason is that
the subset 〈0.9, 0.9〉 is more complicated (especially for acceptance decisions),
which help SDRs trained with instances from this subset deal with complicated
situations better.

4.2 Evolved SDRs and Tabu Search Heuristic

In this section, we pick the best evolved SDRs evolved with the three training
sets and compare them with TS [2]. The average relative deviation %devavg
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is used to measure the performance of these heuristics for each OAS subset.
Since SDRs and TS are all stochastic heuristics, we will perform 30 independent
runs of SDRs and TS to find %devavg for each subset. The mean and standard
deviation values of %devavg from 30 runs for each subset will help us assess
the effectiveness and the robustness of these heuristics. The results for these
experiments are presented in Table 4. In this Table, SDR-x is the best SDR
(based on its overall performance across all subsets) evolved with the training
set 〈x, x〉. The last column in the table shows the best rule evolved by GPOAS. A
highlighted result indicates that the corresponding rule/heuristic is significantly
better than other rules/heuristics for the particular subset.

Within the group of the best evolved SDRs, SDR-0.9 shows superior perfor-
mance in most subsets. SDR-0.1 and SDR-0.5 are able to dominate SDR-0.9 in
a few subsets with low τ and low R. It is also easy to see that evolved SDRs
are better than TS in most subsets. Only in the subsets with R = 0.9, SDR-0.1
and SDR-0.5 are slightly worse than TS. This is understandable because TS can
handle acceptance decisions better in these subsets. Because SDR-0.9 is trained
from these situations, it still shows its dominance here. It is also noted that
the standard deviation values from the best evolved SDRs are lower than TS in
all cases. This suggests that SDRs are more robust than TS. The best evolved
SDRs also show their dominance against the best rule evolved by GPOAS. Al-
though the evolved SDRs are m times slower than the rule evolved by GPOAS,
we believe this is a good trade-off to significantly improve the performance of
rules evolved by GP. Moreover, evolved SDRs are still much faster than TS (the
average computational times of SDRs and TS are respectively 0.15 seconds and
6 seconds per instance).

5 Conclusions

Overall, this paper has shown that evolving stochastic dispatching rules using
GP is an effective alternative to meta-heuristics in OAS. By introducing some
randomness into the order selection process, evolved rules can explore more
potential solutions. Such rules can provide superior performance as compared
to the highly customised TS heuristic [11,2] and they are still very efficient.
These results are very encouraging and show that automatic heuristic design
methods such as GPSR in this paper are capable of generating very effective
rules as compared to optimisation heuristics/meta-heuristics in the literature.
These rules can be used either to quickly generate good solutions for OAS or to
initialise solutions to reduce the computational effort of optimisation heuristics.

For future work, it would be interesting to extend the GP representation to
take into account multiple conflicting objectives [10]. With the ability to explore
multiple solutions, stochastic dispatching rules can be a good approach to explore
non-dominated solutions in multi-objective problems. Moreover, future works
could also focus on developing smarter stochastic selection schemes, which can
help reduce the computational effort of stochastic dispatching rules and improve
their effectiveness.
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Abstract. In the context of state space planning, a mutex pair is a pair
of variable-value assignments that does not occur in any reachable state.
Detecting mutex pairs is a problem that has been addressed frequently
in the planning literature. In this paper, we present the Missing Mass
Method (MMM)—a new efficient and domain-independent method for
mutex pair detection, based on sampling reachable states. We exploit a
recent result from statistical theory, proven by Berend and Kontorovich
in [1], that bounds the probability mass of missing events in a sample of a
given size. We tested MMM empirically on various sizes of four standard
benchmark domains from the planning and heuristic search literature.
In many cases, MMM works perfectly, i.e., finds all and only the mutex
pairs. In the other cases, it is near-perfect: it correctly labels all mutex
pairs and more than 99.99% of all non-mutex pairs.

1 Introduction

The aim of heuristic search and planning systems is to find a path (sometimes
a least-cost path) from a given start state to a given goal using a given set of
operators. The set of possible states is defined by specifying a set of variables
and the possible values for each variable, and a particular state is specified by
assigning a specific value to each variable. For example, in the familiar 8-puzzle
(3 × 3-sliding-tile puzzle), there might be 9 variables, one for each position of
the puzzle (e.g. variable UL might refer to the upper-left corner position), and
the value of each variable indicates which tile (or “no tile”) is in that position.
We use the phrase “variable-value assignment” to refer to the assignment of a
specific value to a specific variable, for example, UL=“no tile” is a variable-value
assignment. Some planning systems use propositional variables which we treat
as variables that can take on one of two values (true and false).

The term “mutually exclusive pair” (of facts), or mutex pair for short, refers
to a pair of variable-value assignments that do not co-occur in any valid state.
By “valid state” one typically means a state that is reachable from a given
start state. For instance, in the 8-puzzle, an example of a mutex pair would be

S. Cranefield and A. Nayak (Eds.): AI 2013, LNAI 8272, pp. 490–501, 2013.
c© Springer International Publishing Switzerland 2013
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(UL=“no tile” and BR=“no tile”), where BR is the variable saying what is in
the bottom-right position. In the 8-puzzle, there is only one empty position, so
there cannot simultaneously be two variables that have the value “no tile”.

Mutex pair detection was first addressed by Dawson and Siklóssy [6], and
has been in use for improving the performance of planning systems since the
development of Graphplan [2]. In Graphplan, two actions or two facts at the same
level of reasoning are mutex if there is no valid plan allowing both actions or both
facts at the same time. The original success of mutex detection in Graphplan
[2] led to the development of many efficient planners using mutex detection,
such as temporal planners, different SAT-based planners and planners based on
constraint programming. State-of-the-art techniques for detecting mutexes in
binary domain representation often use invariants, i.e., properties that hold true
in all reachable states of a state space. Using an invariant synthesis algorithm,
HSP [3] is tailored to detect a certain type of mutex that Graphplan misses.
Constrained abstraction [8] uses particular types of invariants to detect some
mutexes in the description of an abstract state. For more background on domain
analysis and examples of constrained abstractions using invariants the reader is
referred to [7], where mutex pairs are discussed as a special case of “at-most-one”
invariants consisting of only two atoms. In this work, Haslum also introduces the
h2 heuristic, which is a state-of-the-art method for finding mutex pairs.

One use of mutex detection is to translate propositionally encoded planning
domains into representations with multi-valued state variables; e.g., FD [9] can
thus reveal intuitive dependencies between variables which helps to explicate
some of the implicit constraints of propositional planning tasks.

Another application of mutex detection is search space pruning. In regression
planning, nodes in the search space are partial assignments of state variables,
and edges are actions. Search proceeds backward from the goal until reaching a
node consistent with the start state. To reduce search effort, one prunes nodes
that contain the assignment of some previously encountered node. Further, one
often prunes nodes that are “impossible” because they contain mutex pairs.

Mutex detection can also be applied for improving the quality of heuristic
functions derived from abstractions. Heuristic functions estimate, for any state
s, the distance from s to a goal state. Heuristic search algorithms like A* and
IDA* are guaranteed to find optimal solutions when using admissible heuristics ,
i.e., heuristic functions that never overestimate the true distances. One popular
method for obtaining admissible heuristics is to create an abstract version of the
original state space and to use the true distances in the abstract state space as
heuristic values. The key to the efficiency of A* and IDA* is the quality of the
heuristic values: the closer the heuristic values are to the true distances, the more
effective they will be in speeding up search. Unfortunately, standard efficient
methods known for enumerating abstract state spaces, most notably pattern
databases (PDBs) [5], may include abstract states to which no reachable original
state is mapped by the abstraction. Such abstract states are called spurious; they
may create short-cuts in the abstract space and thus lower heuristic values [15].
In many cases, spurious states contain mutex pairs. Hence, by removing some of



492 M. Sadeqi, R.C. Holte, and S. Zilles

the shortcuts created by spurious abstract states, mutex detection can help to
improve the quality of heuristics, and thus to speed up search.

Unfortunately, there are no known efficient methods for detecting all mutex
pairs. Existing algorithms usually make a compromise in the number of detected
mutex constraints for the computational complexity of the algorithm. Various
methods differ in the number and type of mutex constraints they detect.

In this paper, we propose the Missing Mass Method (MMM)—a new algorithm
for detecting mutex pairs, based on sampling reachable states. We exploit a
recent result from statistical theory, proven by Berend and Kontorovich in [1],
that would allow us to bound the probability of missing a reachable pair (i.e.,
a non-mutex pair) in an i.i.d. sample of a given size. The main advantages of
MMM over existing methods are the following.

– It is very simple to describe and to implement.
– As opposed to many state-of-the-art mutex detection techniques, MMM does

not systematically restrict itself to detecting only a subclass of the mutex
pairs.

– For several standard benchmark domains, MMM is perfect on reasonable
domain sizes, i.e., it detects mutex pairs with 100% accuracy. For the same
domains, it scales very well, mostly yielding perfect accuracy even for very
large domain sizes, e.g., for Scanalyzer with 100 batches, Blocks World with
26 blocks, or the 10× 10-Sliding-Tile Puzzle.

– While most of our experiments on MMM were on detecting mutex pairs,
exactly the same method can be used to detect higher order mutexes. For
instance, a mutex of order 3 in the BlocksWorld would be a triple of variable-
value assignments that represents the facts Block a is on top of Block b, Block
b is on top of Block c, and Block c is on top of Block a.

– MMM does not require backward reasoning, depending on the application
for which it is used. Technically, MMM can be used with any kind of sam-
pling method. (Theoretical guarantees only hold though for special sampling
methods that will typically not be available in practice.)

All existing mutex detection methods err on one side: they might consider
mutex pairs as reachable but they will never flag a reachable pair as mutex. As
opposed to that, our method errs on the other side. It never considers a mutex
pair as reachable, but it may consider reachable pairs as mutex. Depending on
the application, this might be an advantage or disadvantage— we will discuss
that below. Our experimental results will illustrate that MMM is very reliable
in a large variety of state spaces, suggesting that it can be safely applied even
in cases when it is crucial not to consider reachable pairs as mutex. In some
such cases, we will demonstrate empirically that MMM can clearly outperform
state-of-the-art mutex detection methods.

2 The Missing Mass Method for Mutex Detection

Assume that states are represented as variable-value pairs in m variables. We
denote the variables with x1, . . . , xm, so that the state vector (a1, . . . , am) cor-
responds to the assignment vector (x1 = a1, . . . , xm = am). Propositional logic
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variables, such as those commonly used in planning, are treated as variables that
can take on one of two values (true and false). With this convention, we define
the notions of reachable state and mutex pair formally.

Definition 1. Let s∗ be any fixed state.
Since s∗ is fixed, we will simply call a state reachable if it is reachable from

s∗. For any i, j with 1 ≤ i < j ≤ m and any ai, aj, the partial original state
(xi = ai, xj = aj) is a reachable pair if there are ak, for k ∈ {1, . . . , m} \ {i, j}
such that (a1, . . . , am) is a reachable state; otherwise (xi = ai, xj = aj) is a
mutex pair.

Our approach to detecting mutex pairs in large problem domains is based on
sampling. The general scheme of our method, which we will call the Missing
Mass Method (MMM) for reasons detailed below, is quite simple:

1. Determine a number N of pairs of variable-value assignments to be sampled.
2. Determine the smallest integer Ns such that Ns ·

(
m
2

)
≥ N . (Thus, sampling

Ns states results in sampling at least N pairs of variable-value assignments.)
3. Sample Ns reachable states and extract all pairs of variable-value assign-

ments from them.
4. Any pair of variable-value assignments not encountered this way is consid-

ered a mutex pair.

The two details that need to be defined are (i) how the sampling of reach-
able states is done, and (ii) how to fix the number N of pairs of variable-value
assignments to be sampled.

Concerning (i), let us first assume we have fixed a method for sampling reach-
able states, which induces a probability distribution D over all possible pairs of
variable-value assignments. (We experiment with a variety of sampling methods,
as described in the following section.)

Statistical theory provides us with tools for addressing question (ii) under
these circumstances. Berend and Kontorovich [1] give an upper bound on the
expected probability mass of the elements not seen after taking N i.i.d. sam-
ples from any fixed distribution. This bound depends on the total number z of
elements in the (finite) universe and is given by the following inequality.

ED[MN ] ≤ z

eN
for N > z . (1)

Here MN is the total probability mass of the elements not seen after sampling
N times from the distribution D that results from the sampling method (called
the sampling distribution), and ED[MN ] is its expected value with respect to D.

We deploy this bound by choosing a number N of samples that is large enough
for ED[MN ] to be below a fixed threshold. The required number z may not be
available, but an upper bound on z is obtained by computing the total number
of possible pairs of variable-value assignments in the given representation of
the state space. For example, if each of the m state variables can take one of
k possible values, then there are

(
m
2

)
many variable pairs, each with k2 many
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possible value assignments, and thus a total of
(
m
2

)
k2 possible pairs of variable-

value assignments. We use this upper bound of
(
m
2

)
k2 in lieu of z, since this

never makes us sample less than when using the exact value of z.
Given this method for computing the sample size, we still need to fix a method

for choosing the samples. The sampling process itself may be of crucial impor-
tance to the success of the scheme depicted above. Inequality (1) does not provide
us with a sample size that bounds the probability of missing a pair, but with a
sample size that bounds the probability mass of the non-seen pairs with respect
to the sampling distribution. If some pairs of variable-value assignments have too
small a probability of being sampled, then even with a sample resulting from
a very low threshold for ED[MN ] we might be missing these reachable pairs,
because their cumulative probability mass with respect to the sampling distri-
bution is too small. Consequently, if a poor sampling method is used, MMM
might flag reachable pairs as mutex.

Designating reachable pairs as mutex could have positive or negative effects,
depending on the problem that mutex detection is applied to. Hence, to min-
imize the risk of missing reachable pairs, it is desirable to use a near-uniform
sampling process, so that no pairs of variable-value assignments have too small
a probability of being sampled. Unfortunately, there is no known method for
sampling states in a way that creates a near-uniform sample of the contained
pairs of variable-value assignments, and further one does in general not sample
pairs i.i.d. when sampling states. Because of the latter problem, Berend and
Kontorovich’s bound does not even yield theoretical guarantees in our case. We
nevertheless use their bound to decide how many states to sample. Note that
even with uniform sampling there would be no guarantee that our method finds
all reachable pairs; however, we would have a guaranteed minimum probability of
finding all reachable pairs. Our experiments suggest that for typical benchmark
domains, even in large sizes, this probability is very high. In our experiments we
tested a variety of sampling methods, which we will describe in Section 3.1.

2.1 Does MMM Err on the Wrong Side?

An important property distinguishing MMM from existing mutex detection
methods is that it errs “on the other side”. While existing methods never con-
sider a reachable pair mutex, MMM never considers a mutex pair reachable, but
might consider a reachable pair mutex.

In the case of state space pruning in regression planning, falsely considering
a reachable pair as mutex might lead to the elimination of reachable states and
thus to the elimination of paths from goal to start, in the worst case disconnecting
the goal from the start state. The effect could be devastating, but a closer look
at our experimental results will show that in many cases this would not be a
major concern when applying MMM.

Considering the problem of improving heuristic values when a PDB contains
spurious abstract states, the one-sided error of MMM may even have a positive
effect. To address this problem with MMM, one (i) builds a PDB as usual,
then (ii) uses MMM backwards from the goal in the original state space to find
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mutex pairs, (iii) builds an auxiliary PDB in the usual way with the exception
that abstract states containing a mutex pair are not added to the open list, but
are considered deadends. (This means one will find paths to abstract states that
do not pass through abstract states suspected of being spurious.) Finally, (iv)
one replaces entries in the PDB with those from the auxiliary PDB as long as
the latter are not infinite. The resulting PDB would be used to guide the search.
Since our method can flag reachable pairs as mutex, the resulting heuristic might
be inadmissible and inconsistent, causing A* or IDA* to find only suboptimal
solutions, but it may potentially find them much faster than with an admissible
heuristic obtained before removing abstract states that contain mutexes.1 The
reader is referred to [14] for recent work on efficient suboptimal search with
inadmissible heuristics.

We claim that MMM will be a very useful method for mutex detection, mainly
because our experimental results demonstrate that for a large variety of state
spaces, MMM is 100% accurate (it does not flag any reachable states mutex). In
some cases, it outperforms all existing methods in terms of accuracy, while still
being very efficient. The trade-off between efficiency and accuracy seems to be
much less substantial for MMM than it is for existing mutex detection methods.
(For a comparison of MMM with h2 in terms of accuracy, see Section 4.)

3 Experimental Setup

Four planning and search benchmark problem domains, represented using pro-
duction system vector notation (PSVN) [11], were selected for this study. All
operators in all domain representations are invertible. While we describe the
representations of the domains below, we omit a general description of the do-
mains themselves, due to space constraints.

The particular representations were intentionally chosen so that many mutex
pairs exist; hence they are not necessarily the most natural or the most compact.

In our experiments, we fix the choice of the state s∗ with respect to which we
consider states reachable, instead of running MMM on a variety of choices for s∗.
In all the spaces we use for testing, operators are invertible, so that within any
connected component, every state is reachable from every other state. Hence, the
set of reachable pairs is the same no matter which s∗ in a connected component
we use. However, the distance from one choice of s∗ to all the reachable pairs
might be different than the distance from another s∗, and that could affect the
success rate of some of the sampling methods. We believe that the standard
goal state for each space is a good, representative choice for s∗, to measure the
success of a sampling method. Hence, for any domain, we always chose s∗ to be
the standard goal state.

1 We have initial empirical results supporting this claim for one representation of the
Towers-of-Hanoi domain. Further, the described method can be implemented by
flagging states considered spurious in the original PDB without actually building a
separate PDB.
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Domain 1: Towers of Hanoi. We encode a state of the n-Disks Towers of Hanoi
with p pegs as a vector of length p(n + 1), where for every peg a sequence of
n + 1 components encodes the number of disks and the names of disks stacked
on this peg (starting from the bottom of the peg); for a stack of k disks, the last
n − k components for this peg contain a 0.

This domain illustrates why we choose seemingly “unnatural” domain repre-
sentations. A “natural” approach for representating the n-Disk Towers of Hanoi
with p pegs would be to encode every state as a vector of n components. Each
component corresponds to a disk; its value in {1, 2, ..., p} represents the peg on
which the disk is located. However, this representation does not yield any mutex
pairs, because every one of the possible pn vectors corresponds to a reachable
original state. Hence this domain representation is not useful for our studies.
(In addition, the number of operators in the “natural” representation described
above is also exponential in the number of disks when p > 3, making this repre-
sentation inconvenient for other reasons as well.)

Domain 2: Blocks World with Table Positions. We consider two PSVN repre-
sentations of the n-Blocks World with p named table positions. In the first one,
called the top representation, a state vector has 1 + p + n components, each
containing either the values 0 or one of n possible block names: (i) the value of
the first component is the name of the block in the hand or 0 if the hand is free,
(ii) the values of the next p components are the names of the blocks immediately
on table positions 1 through p, (iii) the values of the last n components are the
names of the blocks immediately on top of blocks a, b, c, . . ..

In the stack representation, a state is encoded as a vector of length p(n+1)+1,
where for every table position a sequence of n+1 components encodes the number
of blocks and the names of blocks stacked on this position (starting from the
bottom); for a stack of k blocks, the last n−k components for this block contain
a 0. The final component encodes the content of the hand. Note the similarity of
this domain in this representation to our representation of the Towers of Hanoi.

The state s∗ has all blocks stacked up in increasing lexicographical order,
starting with block a, on table position 1.

Domain 3: Sliding-Tile Puzzle. In the standard representation of n × �-Sliding-
Tile Puzzle, states are represented as vectors of length n·�, where each component
corresponds to a grid position and contains a value in {1, 2, . . . , n · � − 1, B},
representing the number of the tile in this position (B, if the position is blank).
In the dual representation, a vector component corresponds to either the blank
or one of the tiles. The value of a vector component is an integer in {1, . . . , n ·�},
representing the grid position at which the corresponding tile is located.

The state s∗ contains the blank in the bottom right corner of the grid, while
the remaining grid positions contain tiles with increasing numbers, row by row
from top to bottom, each row being filled from left to right.

Domain 4: Scanalyzer. In the PSVN representation of the n-Belt Scanalyzer [10]
(for even n), a state is encoded as a vector of length 2n in which each belt
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corresponds to two components: the name of the batch on that belt and a flag
indicating whether that batch is analyzed. The state s∗ corresponds to having
all plant batches analyzed and placed on their original conveyor belts.

3.1 Sampling

In our experiments, we used a fixed threshold of 0.00001 by which to bound the
estimated missing probability mass. For example, for the 4×5-puzzle in standard
representation, the resulting number of pairs to be sampled was 2, 795, 883, 753.
Since there are 190 pairs of variable-value assignments in every state, this cor-
responds to sampling 14, 715, 178 states (note again that the pairs are then not
sampled i.i.d., but our experiments will show that the missing mass bound is still
effective). Similar calculations for various sizes of the domains we experimented
with shows this approach to be scalable (e.g., the number of states to be sampled
for the 10 × 10-puzzle is 367, 879, 441). In other words, the sample size used in
our approach is small enough for our sampling method to be feasible.

We tested a variety of sampling processes, in particular we report our exper-
iments on single random walks (RW), and Frontier Sampling (FS) [12], always
beginning at s∗. Furthermore, we tested uniform sampling of reachable states
(USS). Note that USS does not necessarily mean uniform sampling of the reach-
able pairs of variable-value assignments. While USS is not a domain-independent
method, RW and FS are.

For RW we conducted basic random walks without parent pruning and with-
out restarts; thus the length of a random walk was the number of states we
wanted to sample. FS conducts r dependent random walks in a search tree by
keeping a list of r nodes [12]. Initially, some r nodes are sampled at random.
From the joint list of all children of these r nodes, one child c is chosen uniformly
at random as the next sampled node; c then replaces its parent in the list of r
nodes. In our experiments, we set r = 100; the initial r nodes are chosen by
100 independent random walks conducted from s∗. The lengths of these random
walks are chosen uniformly at random from {0, 1, . . . , 1000}.

4 Experimental Results

We first tried MMM on small sizes of the domains described above. Here we
enumerated the state space exhaustively and directly compared the true set of
reachable pairs to those found by MMM, which, using any of USS, FS, and
RW, found all reachable pairs and thus was perfect at mutex pair detection. For
larger domains, we calculated the actual number of reachable pairs for every
representation and compared it to the number of pairs MMM found.

For illustration, we show how to compute the actual number of reachable
pairs for the 28-belt Scanalyzer, which is 331, 184. In the representation we use,
any batch can occur in any location independent of where any other batch is
located; any batch can be analyzed/not-analyzed independent of the status of
any other batch; and the location of any batch is independent of the anlayzed
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status of any batch (including itself). Thus a pair of variables can take one of
three possible forms: (i) Both variables represent batches; there are 28 · 27/2
such pairs of variables, each with 28 · 27 possible value assignments, resulting
in 285, 768 = (28 · 27/2) · 28 · 27 reachable pairs. (ii) Both variables represent
an “analyzed” status; there are 28 · 27/2 such pairs of variables, each with 2 · 2
possible value assignments, resulting in 1, 512 reachable pairs. (iii) One variable
represents a batch, the other represents an “analyzed” status. This results in
43, 904 = (28·28)·28·2 pairs. These numbers sum up to 331, 184. We do not show
the calculations for the other domains, but report the resulting numbers below.
Note that we do not use these numbers to calculate the bound in Inequality (1);
instead in our experiments we assume that we only have the knowledge of how
to compute the total number of pairs of variable-value assignments that can be
expressed in the given domain representation language.

With any of the sampling methods USS, FS, and RW, MMM was perfect in
the following testbeds: Blocks World with 12, 15, 18, 21, and 26 blocks, for 3
table positions in the top representation; 5× 5-, 5× 6-, and 10× 10-Sliding-Tile
Puzzle in the standard and 5× 5-Sliding-Tile Puzzle in the dual representation;
Scanalyzer with 12, 16, and 20 belts. For Scanalyzer with 28 and 100 belts, FS
and USS were perfect, while RW missed a very small percentage of the reachable
pairs. For Towers of Hanoi with 12 disks on 4 pegs, USS and RW were perfect,
while FS missed a very small percentage of pairs. All methods missed a few pairs
for the 26-Blocks World with 3 table positions in the stack representation.

Table 1 gives a representative sample of our results on larger domain ver-
sions. For each domain (in a particular representation and size), it shows the
actual number of reachable pairs (“#Pairs”), the number of samples suggested
by Inequality (1) (“Bound”), the percentage of reachable pairs that remained
undetected after sampling as many states as suggested by the bound (“Missing
Pairs”), and the actual number of samples after which all reachable pairs were
found (“Minimum Sample Size”). The “Missing Pairs” number is averaged over
1000 repetitions of the whole sampling process. The “Minimum Sample Size”
was obtained by repeating the whole sampling process 1000 times and record-
ing the smallest multiple α of 100,000 such that all reachable pairs were always
found when sampling α many states. The domains are the 12-disk Towers of
Hanoi (ToH) with 4 pegs, the 26-Blocks World (BW) with 3 table positions,
both in top and in stack (stk) representation, the 5×5-Sliding-Tile Puzzle (SP),
both in standard (std) and in dual (du) representation, the 10×10-Sliding-Tile
Puzzle in standard representation, and Scanalyzer (SCN) with 28 and 100 belts.
Missing entries for RW on the Scanalyzer domain mean that even after sampling
100,000,000 (for 28 belts) and 1,000,000,000 (for 100 belts) reachable states, not
all reachable pairs had been found.

MMM is very efficient in terms of running time. On a standard modern com-
puter, MMM with FS for 1,000,000 sampled states takes on the order of one
second for the 5×5-Sliding-Tile Puzzle in standard representation, less than one
minute for the 10× 10-Sliding-Tile Puzzle in standard representation or for the
28-belt Scanalyzer, and a few minutes for the 100-belt Scanalyzer. When taking
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Table 1. MMM results for three different sampling methods, using a threshold of
0.00001 ≥ ED[MN ]. Minimum Sample Sizes are given as multiples of 1,000.

Missing Pairs Minimum Sample Size
Domain #Pairs Bound USS FS RW USS FS RW

ToH (12,4) 51,642 6,217,162 0 0.005% 0 4,000 10,000 6,000
BW top (26,3) 285,551 26,818,411 0 0 0 30 2,200 2,700
BW stk (26,3) 1,547,049 26,818,411 0.0001% 0.006% 0.005% 35,000 70,000 70,000
SP std (5×5) 180,000 22,992,465 0 0 0 14 800 800
SP du (5×5) 180,000 22,992,465 0 0 0 14 900 1,100

SP std (10×10) 49,005,000 367,879,441 0 0 0 300 12,000 12,000
SCN (28) 331,184 33,261,751 0 0 0.004% 16 200 -
SCN (100) 51,024,800 382,890,408 0 0 0.0007% 300 7,000 -

as many samples as suggested by the bound, this would result in a time of less
than half a minute for the 5× 5-Sliding-Tile Puzzle (std), about half an hour for
the 28-belt Scanalyzer, and a few hours for the 10×10-Sliding-Tile Puzzle (std).
For the 100-belt Scanalyzer, sampling the full number suggested by the bound
would take on the order of 1 day, but after less than half an hour actually all
reachable pairs would have been found.2 In general, the difference between the
bound and the minimum sample sizes suggest that, in practical applications, one
may set the threshold for ED[MN ] substantially higher than 0.00001 and still
obtain perfect results in many domains.

USS seems to be perfect whenever a feasible such sampling method exists,
with the exception of Blocks World in the stack representation, where it misses
on average 2 out of 1,547,049 reachable pairs. In many cases when a uniform
method of sampling reachable states is not available, we can still expect that FS
will work, though it probably needs to sample more before finding all reachable
pairs and thus might not scale as well as USS. The simplest sampling method
we tried, RW, works remarkably well. It is perfect on the top representation of
Blocks World and on the Sliding-Tile Puzzle, and misses on average only 82 out
of the 1,547,049 reachable pairs in the stack representation of Blocks World, 13
out of the 331,184 reachable pairs for the 28-belt Scanalyzer, and 350 out of the
51,024,800 reachable pairs for the 100-belt Scanalyzer.

When RW was missing a few pairs in the Scanalyzer domains, increasing
the number of samples well beyond the bound (100,000,000 for 28 belts and
1,000,000,000 for 100 belts) still did not make the sampling perfect. The latter
indicates that in these cases there were reachable pairs whose probability of being
sampled by RW is so low that their cumulative weight under the probability
distribution induced by the sampling procedure lies well below our threshold of
0.00001. Note that in some cases the percentages of missing pairs are slightly
higher than 0.00001 = 0.001%, but the cumulative probability of the pairs under
the distribution resulting from the sampling may still be lower than 0.00001.

2 The time used for mutex detection could be amortized when solving a large number
of search or planning problem instances in the same reachable component of the
state space. Further, to the best of our knowledge, there are no methods that can
solve an average instance of the 100-belt Scanalyzer in time on the order of a day.
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4.1 Comparison with h2

h2 is a state-of-the-art method for mutex pair detection in planning [7] that
errs on the opposite side when compared to MMM, i.e., it will never consider
a reachable pair mutex. h2 is very effective for a large number of domains, for
example, it perfectly detects all mutex pairs for Scanalyzer, the Blocks World
with Table Positions, and for almost all sizes of the Sliding-Tile Puzzle, in the
representations we experimented with.

However, it systematically fails to detect mutexes of certain types in some
domains in which MMM is perfect or almost perfect. Firstly, in the 2×2-Sliding-
Tile Puzzle, h2 misses a special kind of mutex pair, namely some of the pairs
that state that two specific distinct tiles reside in two specific distinct locations.
This amounts to 20% (12 out of 60) of the existing mutex pairs being missed by
h2. Such pairs are never mutex in larger versions of the puzzle [13]. Secondly,
in the stack representation of the n-Blocks World with p table positions, h2 will
systematically miss all mutex pairs that state, for some i < n and some j > i,
that n−i blocks are on position a while a specific block is at height j on position
b �= a. Such a pair of variable-value assignments is mutex as it would require the
existence of more than n blocks. For n = 26 and p = 3, h2 misses 81% (711,291
out of 873,960) of the existing mutex pairs. Similarly, in our representation of
the n-Disk Towers of Hanoi with p pegs, h2 will miss all mutex pairs stating that
there are n − i disks on peg a while a specific disk is at height j on peg b �= a.

This demonstrates that in many domains MMM has an advantage due to
sampling at random as opposed to being constructed in a way that systematically
misses certain types of mutex pairs.

5 Conclusions

We presented MMM, a sampling-based approach for detecting mutually exclu-
sive pairs of variable-value assignments that is applicable to any kind of domain
representation. The method is easy to implement, very efficient, and, if a reason-
ably good sampling procedure is used, also very effective in detecting mutexes.
It does not systematically restrict itself to detecting only a subclass of the mutex
pairs, finds mutexes with perfect accuracy in almost all of the domains we tested,
and is very near perfect in all other domains tested, when using either of the
two domain-independent sampling method we tried (FS, RW). MMM scales very
well to large domain sizes. Initial empirical results (not reported here) suggest
that MMM may even be successful at detecting higher-order mutexes.

We have demonstrated that h2, a state-of-the-art mutex detection method,
systematically misses certain mutex pairs in some domains. In a small experiment
on binary domain representations (not reported here), we showed that the same is
true for LONDEX [4] , another state-of-the-art method. MMM outperforms both
methods in the domains we experimented with, thanks to not being restricted
to specific classes of mutex pairs a priori. In fact, all mutex detection methods
we know of suffer from systematically missing certain pairs, and we are aware
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of only one method for which in some special kinds of domain completeness has
been proven to be guaranteed (the CA method, see [13]).

Overall, we believe that MMM can improve the performance of planning sys-
tems and heuristic search without affecting runtime efficiency. MMM might fur-
ther be of use when combined with a method that errs on the opposite side.
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Abstract. We investigate the problem of scheduling tasks of structured
workflows, given a stochastic arrival of workflow instances, which gives
rise to a queue. Each workflow conforms to a known structure expressed
by a directed acyclic graph. However, within this model, the precise ex-
ecution time of each atomic task and the delay of each communication
edge are non-deterministic. Unlike in most scheduling approaches that
minimize the schedule length, we additionally aim at minimizing the to-
tal time spent by a workflow instance in the system, as perceived by the
end user on whose behalf the workflow is executed, i.e., the expected
response time. Moreover, we do not make any restrictive assumptions on
the nature of the involved distributions. We propose a novel risk-gain lo-
cal trade-off mechanism to determine priorities at runtime that optionally
can be made even more accurate by employing of conditional means for
running activities instead of marginal mean execution times. Finally, the
tasks that are unlikely to affect the makespan of an instance are delayed
with a local look-ahead to allow incoming new instances to start earlier.
We show that adding these features leads to a significant improvement in
response time, particularly in situations of scarce processing resources.

1 Introduction

Workflows are collections of coordinated tasks designed to carry out a well-
defined complex process [1]. Both in the business and scientific communities a
range of workflow management systems, i.e., generic information systems that
support modeling, execution and monitoring of workflows [2], have been devised,
and languages and tools made available. Yet from the point of view of any possi-
ble end user, what matters most are not the internal workings or the provider-side
efficiency of the system, but the accomplishment, in the best possible manner, of
the complex task represented by the workflow specification when it is enacted on
behalf of the user. To achieve this goal, the optimality of this execution must be
targeted with respect to a set of objectives that describe measurable resources
(time, money) needed or consumed during the execution.

In a dynamic environment, workflow instances can be executed following dif-
ferent actual workflows, even given a common workflow schema. Depending on
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the use case, the enacted workflow will be parametrized differently and the pro-
cessing times of the tasks within it as well as the delays required for the commu-
nication between the subtasks will vary. The arrival of these workflow instances
is governed by a stochastic process, which results in a queue of instances.

We investigate the problem under the assumption that the workflow schema
be restricted in structure to an arbitrary directed acyclic graph (DAG). The
DAG model is expressive enough to represent any combination of series-parallel
groups of tasks and thus, even with this restriction, many real-life workflows can
be represented, especially with non-deterministic activity execution times. DAG
scheduling problems, with or without structural restrictions, have been the topic
of a substantial body of work in the area of deterministic scheduling in parallel
processing systems. Drozdowski [3] offers a complete monograph, discussing work
such as the taxonomy developed by Graham et al. [4] and extended by Allahverdi
et al. [5]. Kwok and Ahmad [6] provided an extensive survey for the determinis-
tic DAG scheduling problem, including exact solutions for certain very restricted
cases, heuristics with a performance guarantee under certain assumptions and,
finally, state-of-the-art algorithms which are applicable to a wide range of ar-
bitrary DAG structures with non-unitary communication delays. As it is well
known, the last of these approaches do not provide a performance guarantee for
any non-trivial instance, but have proved successful experimentally. The Critical
Fast Path Duplication algorithm CPFD by Kwok and Ahmad [7] is an example
of an algorithm that shortens the makespan by duplicating a preceding task to
achieve the earliest possible start time for the succeeding task. For task priority
determination, it uses what is termed a dominant sequence (DS). The DS is a
total order of all task nodes, constructed around the critical path nodes (CPNs),
with an addition of the in-branch nodes (IBNs), which are the parents of the
CPNs not belonging to the CP, and of out-branch nodes (OBNs), which are nei-
ther CPNs nor IBNs and are added last. The authors later ported the algorithm
(HCPFD, [8]) to a Q|vi, cij , prec|Cmax (heterogeneous) setting with a bounded
number of uniform processors. The most common benchmark in this kind of
environments, however, is the much simpler Heterogeneous Earliest Finish Time
heuristic by Topcuoglu et al. [9], which uses b- or t-level task priority lists. It in-
spired many other algorithms, such as the Critical Path on a Processor (CPOP,
[10]), PETS [11] or Push-Pull [12]. None of these algorithms supports any of the
distinctive features of the problem herein considered: workflows of stochastic na-
ture and a queuing system. One of the very few algorithms for static scheduling
of a single stochastic DAG, i.e., the Q|vi, cij ∼ stoch, prec|E[Cmax] problem, is
SHEFT [13]. It is in practice an upward-rank HEFT where the activity times
are expressed by means and standard deviations of the (exclusively exponential)
probability distributions.

Research in the stochastic scheduling has yielded results in the form of opti-
mal or near-optimal online policies for a set of objective functions, formulated as
expectations on random variables such as makespan [14] or weighted completion
time of a set of jobs [15]. It is argued by authors in this field (e.g., Pinedo [16],
Moehring et al. [17] and Skutella and Uetz [18]) that in stochastic settings the
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problem naturally reduces to finding policies for online scheduling decisions, and
should not be treated as a combinatorial optimization problem. For precedence-
constrained job set scheduling problems stochastic scheduling algorithms provide
even guarantees (e.g., [19]), however such solutions are far from optimal. Addi-
tionally, none of them support problem settings with communication delays.

All algorithms discussed so far schedule single sets of jobs, with or without
precedence constraints, in an off-line or on-line fashion. In common workflow
enactment scenarios, however, the processing resources form a continuously op-
erated system that processes a periodic inflow of such jobs. Iverson and Ozguner
[20] propose an algorithm for the minimization of the average schedule length
in a heterogeneous environment that processes DAG-type workflows arriving ac-
cording to a Poisson process. The DAGs are assumed to be deterministic and
identical, and the solution is based on the low-complexity off-line heterogeneous
Dynamic Level Scheduling heuristic [21]. Bender and Rabin [22] provide an on-
line scheduler for multiple “competing” task graphs, under several structural
restrictions, and optimize the utilization of the processor pool. In addition, their
scheduler takes advantage of preemption. Grid-oriented approaches typically also
target a system optimum (resource utilization or fairness, [23,24]), instead of a
workflow-centric criterion, like makespan or throughput. This perspective has be-
come predominant in the recent years in cloud-targeted approaches, with focus
on resource utilization, energy efficiency or provisioning cost. While very chal-
lenging resource models are proposed, the application models considered there
are oversimplified and rudimentary: mostly trivially parallel tasks (TPTs) that
are hardly “workflows” [25,26]. Surprisingly few approaches share their objective
function with the current work, while also confronting a problem setting similar
with respect to the application model. Gallet et al. [27] provide a static (off-
line) deployment algorithm that determines task allocations which are fixed for
all workflow instances, while maximizing the throughput of the system, which
strictly corresponds to minimizing the response time. Notably, their algorithm is
based on the assumption of deterministic processing and communication times.

This paper is structured as follows. Section 2 presents the problem formal-
ization. Section 3 formulates a general online scheduling algorithm structure by
decomposing the problem into the sub-problems of choosing the highest priority
task to be scheduled, choosing the machine assignment and determining when
low-priority tasks can be scheduled. Novel approaches to these sub-problems are
developed and combined into two alternative policies, evaluated experimentally
against comparable algorithms in Section 4. For this purpose, in addition to
the classical benchmarks, two novel parametrized ones are proposed. Section 5
presents conclusions and directions for future work.

2 Problem Formulation

As in all problems of the class |prec|Cmax, let G = (V,E), with V the set of nodes
and E the set of edges connecting them, be a single directed acyclic graph (DAG)
representing a process model, or workflow schema. The nodes represent atomic
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tasks and the directed edges represent precedence constraints between them.
Each task has an associated execution time and each edge between two tasks
has an associated communication delay. A delay is only caused when an actual
transfer of data between two separate processing units is required, i.e., when two
task nodes connected by an edge are scheduled to two different processors.

In addition, let all the execution times w(vi) and communication times w(eij)
be described by random variables w(·), with arbitrary probability distributions,
having a finite mean and a known cumulative distribution function (CDF). In
particular, it is irrelevant whether the distributions are part of any specific family
and whether they are continuous or discrete.

Let G be a stochastic process describing the arrival of new DAG instances
into the system: it is not required to follow any specific distribution.

Let Q with |Q| < ∞ be a set of uniform parallel processors and Q × Q a set
of uniform communication channels connecting them. As in the reported work
on scheduling in parallel processing, we term the processors identical, if the
processing times of the same tasks are equal across all processors, and uniform,
if the processing times of the same tasks are equal across all processors when
multiplied by a factor (speed), that is constant for any given processor. The
atomic tasks of the instances in the system are allocated to idle time slots of
these processors and executed without preemption. A task, once its execution
has commenced on a processor, cannot be interrupted and later resumed.

We assume the existence of a monitoring system that reports the completion
of a task and the arrival of a new job instance to the scheduler in real time. Sim-
ilarly, the centralized scheduler can dispatch tasks instantaneously. The sched-
uler is not required to generate schedules for tasks that are not yet ready for
execution. As there is no reward nor requirement for advance scheduling, the
scheduling policies considered are fully online.

As outlined in the introduction, such a system can be described as a queue.
In particular, in the Kendall notation [28], it is a G/G/c queue, in which the
jobs are the DAG instances, there are c = |Q| homogeneous processors and both
the job arrival and departure processes are described by arbitrary distributions.

Finally, let the objective function to minimize be the expected total response
time of the system E[W ], where W is the sum of the in-queue waiting time
Wq (queuing theory notation) and the service time, which is equivalent to the
makespan of the instance Cmax (scheduling notation), as Equation 1 shows.

E[W ] = E[Wq + Cmax] = E[Wq ] + E[Cmax] (1)

We investigate the performance of different scheduling policies for the given
objective as a whole, but design the policies considering the relationship in the
above equation to take advantage of the objective’s structure.

3 Scheduling Policies

In this Section, we propose two online scheduling policies, Loss-Gain Marginal
Mean (LG/MM) and Loss-Gain Conditional Mean (LG/CM). They both provide
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at their core novel solutions for both the task priority list determination and
machine assignment phases in a list scheduler. At the same time, they implement
different levels of accuracy in dynamic priority list refinement, which result in
different levels of complexity.

In an online scheduling algorithm, whenever a new job instance arrives or the
monitor reports the completion of a task at an instant in time τ , for all processors
that are idle, a decision has to be made which task to assign to that processor.
Let S be the state of the system at τ . Algorithm 1 provides a generic (common)
list scheduling algorithm called in a loop by an execution monitor, in accordance
with the above approach to the problem. The variable π stands for any possible
policy that determines the task priority list and machine assignment and thus
shapes the behavior of the algorithm as a whole.

Algorithm 1. Schedule(π, S)

1 U ← UnscheduledTasks(S); tmax ← PrioTask(π, U)
2 qmax ← TopSpeed(Q)
3 if tmax is available and qmax is idle then
4 schedule tmax on qmax and remove it from U and S

5 while U not empty do
6 t ← PrioTask(π, U) � consider the next task
7 M ← {} � temporary set of potential task mappings
8 foreach processor q ∈ Q in non-decreasing order of speed do
9 (ST, FT ) ← EstimateTime(π, t, q, S,M)

10 M ← M ∪ {(t, q, ST, FT )} � cache a new potential mapping for t to M

11 m∗ ← ReMap(π, t, S,M) � m∗ = (t∗, q∗, ST∗, FT∗)
12 if m∗ exists and ST∗ = CurrentT ime(S) then
13 schedule t according to m∗ � saves m∗ in the system state
14 remove t from U and S and all mappings for t from M

15 else
16 remove t from U � consider another task

To initialize the priority list (PrioTask, Algorithm 1, Line 1) we employ two
straightforward methods: the workflow instances currently present in the sys-
tem are prioritized according to their arrival time (i.e., to the FIFO discipline),
whereas, within the instances, the dominant sequence method is used, as the
most accurate task graph analysis-based prioritizing strategy (refer to Sect.
1). This list is rearranged dynamically by the call (Line 11) to the subroutine
ReMap, outlined in Algorithm 3. Lines 3-4 of Algorithm 1 implement a short-
circuit strategy to immediately schedule the highest priority task tmax, if ready
for execution, on the fastest processor qmax, if it is idle at the moment of the call.
Starting with tmax if it could not be scheduled, otherwise with the next task in
the list, in decreasing priority order, for all the processors, the estimated start
and finish times (ST, F T ) of that task on the given processor are computed
(EstimateTime, Line 9) and cached (Line 10).

Unlike all static scheduling algorithms, that are unable to estimate distributed
start/finish times and are not designed to take advantage of information available
at runtime, the proposed scheduler with ReMap does not follow a strict priority
list and is able to exploit runtime information, with different accuracy levels. To
this end, we provide a mechanism to compute such an estimate that incorporates
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the actual task execution and inter-task communication times when available.
In each subsequent call (Algorithm 1, Line 9; Algorithm 3, Lines 10-11, 18) to
the corresponding function EstimateTime typically more actual values become
available. Due to lack of space we omit the listing of this straightforward function,
instead hinting at the fact that, to handle probabilistically distributed times of
possibly ongoing activities, EstimateTime calls a subroutine Weight(π, S, w(·)),
where π is the policy selector, S is the system state, (·) ∈ V ∪ E is a task or
edge, w(·) is the corresponding stochastic variable. We propose and evaluate here
two different specific implementations of Weight, that distinguish LG/MM and
LG/CM. Note that the initial priority list (Algorithm 1, Line 1) and the way it
is dynamically refined (Line 6) are also affected by the different values returned
by the two implementations of Weight.

Algorithm 2. Weight(π, S, w(·))
1 τ ← CurrentT ime(S)
2 if ST (·) = null or π=LG/MM then � (·) has not started yet or LG/MM
3 return E[w(·)] � marginal mean of the distribution

4 else
5 vq ← Speed(Processor(S, (·))) � processor speed for normalization
6 if FT (·) < τ then � (·) is complete

7 return FT (·)−ST (·)
vq

� the actual execution time, normalized

8 else � (·) has not started but not completed

9 τn ← τ−ST (·)
vq

� normalized runtime until τ

10 return E[w(·)|w(·) ≥ τn] � conditional mean of the distribution

The implementation of Weight in LG/MM is based on the known marginal
means of the involved probability distributions (Algorithm 2, Lines 2-3): it has
thus the advantage of relatively low complexity. By contrast, in LG/CM, for
running activities (Line 8), conditional means are derived from the known cu-
mulative distribution functions, which mathematically is illustrated in Equation
2: F (x) is the original known (continuous) CDF for w(·); the discrete equivalents
are straightforward.

E[w|w ≥ τn] =

∫∞
0 F (τn + r)dr

1− F (τn)
(2)

Both algorithms use either mean values in the absence of information about
actual execution times, that is otherwise available through the execution mon-
itor (Lines 6-7). As we compare means of intrinsic activity weights (process-
ing/communication times) with actual running times on a set of processors with
different speeds, a normalization step is necessary (Lines 5,7,9).

The idea of a trade-off-based mechanism is motivated by the properties of the
makespan objective that are particularly relevant in a stochastic setting. As the
minimization of the global makespan is an NP-complete problem, most heuristics
minimize a single local objective instead: the earliest finish time (EFT) of the
highest priority task considered for scheduling at a given step. In the general case,
this approach results in leaving (wasted) idle time on the processors, as tasks of
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Algorithm 3. ReMap(π, t, S, M)

1 FTmin ← ∞; mmin ← null
2 foreach mapping m = (t, q, ST, FT ) ∈ M do
3 if FT < FTmin then
4 foreach mapping m′ = (t′, q, ST ′, FT ′) ∈ M \ {m} do
5 l ← Priority(t); l′ ← Priority(t′)
6 if l ≥ l′ then
7 FTmin ← FT ; mmin ← m

8 else
9 schedule t according to m in a copy of the state S∗

10 (ST∗, FT∗) ← EstimateTime(π, t, q, S∗,M)

11 (ST ′∗, FT ′∗) ← EstimateTime(π, t′, q, S∗,M)

12 ΔFT ← (FT∗ − FT ); ΔFT ′ ← (FT ′∗ − FT ′)
13 θ ← l′ΔFT ′

lΔFT

14 if θ < ε then
15 FTmin ← FT ; mmin ← m

16 if IsOBN(t, S) then
17 CP ← CriticalPath(Instance(t), S)
18 (ST∗, FT∗) ← maxtCP ∈CPEstimateTime(π, tCP , q, S,M)

19 mmin ← (t, q(mmin), ST∗, FT∗)

20 return mmin

high priority that are not ready for execution may cause the scheduler to wait. On
the other hand, schedules with less interleaved idle time are obviously closer to
the optimum, which suggests to simultaneously minimize a second local objective:
the amount of unused idle time. In the “classical” deterministic setting, assuming
that the priority list is accurate, the only sensible strategy is to optionally insert
a lower priority task into an idle time slot, if that slot is not smaller than the
task’s execution time on that processor: otherwise it is guaranteed that a higher
priority task will be delayed. In the herein considered stochastic setting, however,
the activity execution times are probabilistic. Therefore it is possible to compute
a probability distribution of the delay potentially caused (i.e., of the risk to the
EFT objective) and, conversely, the distribution of the gain in terms of the
idle time recovered. The trade-off mechanism balances these two local objectives
based on measures outlined below and, in more technical detail, works as follows.

In Algorithm 1, Lines 9-10, the estimate start and finish times for the currently
considered task were cached, without direct regard for previous estimates for all
the higher priority tasks that were not ready for execution and thus could not be
scheduled.For each casewhere a task t is readyat themomentof the call (Algorithm
3, Lines 1-2), but scheduling it might cause a conflict with a future mapping for a
task t′ of higher priority (Line 8), a new estimate of the finish time of t′ is computed
under the assumption that t would be scheduled now (look-ahead for t′: Line 11).
ΔF T ′ is the estimated difference of the finish times for t′, between the case when t
is greedily scheduled now and the case when the given processor is left idle waiting
for t′ to be ready. Conversely, the potential gain is expressed by the improvement
ΔF T in the finish time of t, should it be scheduled now. The original priorities
l, l′ act as a discount factors to compute the priority-discounted gain and loss risk,
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respectively, where the loss is a potential delay of the higher priority task t′. The
trade-off is expressed by θ, which is compared to a fixed threshold value ε.

Unlike in makespan-centric online and offline algorithms, we also exploit the
known decomposition of the expected response time objective into expected
schedule length and waiting time (Equation 1). In a simplified formulation, the
tasks that do not impact the critical path of a workflow instance, and thus are
less relevant for the expected makespan of that instance, need not be scheduled
to minimize their earliest finish time. This is reflected in Lines 16-19 of Algo-
rithm 3. It is sufficient that these tasks (typically the out-branch nodes (OBNs)
of the graph) be scheduled to finish at or slightly before (Algorithm 3, Line 19)
the estimated finish time of the latest critical-path task (obtained in Line 18).
Deferring these tasks does not harm the makespan sub-objective of the more
privileged workflow instance (the instance that arrived into the system earlier)
but, by allowing to schedule the highest priority task(s) of another (less privi-
leged) instance sooner, reduces the waiting time of the less privileged instance.

The worst-case complexity of both policies is: O(p(vO(E))3), where p is the
number of processors, v the number of unscheduled tasks in the system and,
conventionally, O(E) is the complexity of the mean determination (simply equal
to one for LG/MM and, for LG/CM, linear in the number of the support points
in the discrete representation of the CDF).

4 Experimental Results

For evaluation purposes, we created a set of 500 graphs and, for each single
graph from the above set, 100 realizations, totaling 50000 different workflow
instances. Each graph has an arbitrary structure, randomly generated by a pro-
cedure adapted from Topcuoglu et al. [9] and parametrized as follows:

– number of tasks v ∈ N, chosen randomly from the interval [10, 25],
– maximum alpha αmax of 0.1, 0.25, 1, 4, 10; the actual values of α uniformly

distributed in the interval (0, αmax], where α
√

v is the mean graph height,
– maximum out-degree of a node of 10 and actual out-degree uniformly dis-

tributed in the interval [1, max],
– mean activity execution times E[w(·)] uniformly random in [1, 10],
– computation-to-communication ratio (CCR) of 0.1, 0.2, 1, 5, 10.

The generated activity execution times are used to extrapolate arbitrary con-
tinuous four-parameter Beta distributions, which are capable of emulating many
common continuous distribution families, symmetric and asymmetric. Each such
distribution has a mean μ = E[w(·)] and is extrapolated as follows: the support
is defined to be in [μ2 , 10μ] and a normalized standard deviation σ

μ is prescribed

with different values, taken from the set {0.1, 0.25, 0.5, 0.75, 0.9}. Thus each
instance has the same structure and precedence constraints, but different ac-
tivity execution times. For each graph and number of processors, an estimate
λmax of the critical arrival rate is computed in the pre-simulation phase and
the actual values of the average arrival rate λ are calculated as λ = λmulλmax,
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where the factor λmul is chosen from {0.25, 0.5, 0.75, 1}. Similarly, the number
of processors |Q| is defined as a set of multipliers pmul ∈ {0.25, 0.5, 0.75, 1}
of the nodes v of the task graphs as |Q| = /pmulv0. The processor speeds are
chosen as uniform random values in the interval (0,1], as are the speeds of the
processor-to-processor physical channels.

The proposed scheduling policies LG/MM and LG/CM are evaluated by
means of simplified competitive analysis (CA) [18]. We apply, for each policy
π, a performance measure EN

nπ
[W ], expressed by the ratio of the total response

time W (for all the N=100 instances) to the total processing time required for all
the task realizations in each simulation run, i.e., we apply the following formula:

EN
nπ

[W ] =

∑N
i=1 Wπi∑N

i=1

∑
v∈V ri(w(v))

(3)

To evaluate the effectiveness of both LG/MM and LG/CM, we run the above
defined set of simulations applying three other online scheduling algorithms.
All of these, in the same way as LG/MM and LG/CM, employ the natural
FIFO instance ordering in accordance with the arrival process. The first one
is a multi-instance version of HEFT [9], which uses a static task priority list
(identical across the instances). Given the stochastic setting, in this case, the
priority list is computed by using the means of the distributions of the activities’
durations, hence the designation mHEFT-M. The second one is mSHEFT, a
multi-instance version of SHEFT [13]: as in the original, for the appropriate
rank and priority calculations the sums of the means and standard deviations
are used. For reference, a policy RND was added, which randomly assigns the
highest priority to one of the tasks in the set of unscheduled tasks.

Overall, LG/CM performed best across almost all parameter ranges. The av-
erage measured total response time, normalized by the processing time required
for all task realizations at the speed of the fastest processor, was approx. 12%
shorter when scheduled by LG/CM compared to both mHEFT-M and mSHEFT,
considering that mSHEFT only outperformed mHEFT-M by 0.3% in our simu-
lation. Of the two proposed algorithms, LG/CM outperformed LG/MM by 4%.
The improvement over a random strategy (RND) for LG/CM was around 22%.

As Figure 1 shows, LG/MM and LG/CM, perform clearly better than the
competitors, notably in settings with scarce processing power (lower multiplier
or at higher arrival rates). As the availability of processing power grows, the dif-
ferences between all algorithms naturally disappear. In the range of arrival rates
examined, LG/CM is almost insensitive to the change of the rate, whereas the
response times grow for all other policies. However, with growing uncertainty as
expressed by a larger standard deviation, all algorithms face similar problems,
although LG/MM and LG/CM slightly outperform the reference algorithms,
while RND falls well behind. LG/CM performs better than LG/MM at high stan-
dard deviations and small computation-to-communication ratios (CCR); growing
CCR values give rise to longer response times for all algorithms.
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(a) (b)

(c) (d)

Fig. 1. Average total response times En[W ], normalized to the total processing time
required for all the task realizations, as a function: (a) of the processor multiplier
pmul, given |P | = �vpmul�; (b) of the multiplier λmul of the critical arrival rate, given
λ = λmulλmax; (c) of the normalized standard deviation of the task execution and
inter-task communication times; (d) of the computation-to-communication ratio

5 Conclusions and Future Work

In this work, we investigated online policies for the scheduling of workflow task
graphs to a heterogeneous set of processors connected by physical communication
channels of different speeds, a problem that typically arises in a cloud comput-
ing environment. The task graphs are precedence-constrained and have uncertain
communication delays as well as non-deterministic computation times. Addition-
ally, we assumed the existence of a queue of workflows, with a prescribed FIFO
discipline; the job instances are processed in the order they arrive. Minimizing
the total response time is the objective of the tested policies, which, in summary,
leads to a G/G/|Q| : Q|vi, cij ∼ stoch, prec|E[W ] problem formulation.

We have evaluated two new alternative policies that both extend static priority
assignment methods with novel ways of handling information available at run-
time. The algorithms combine a sophisticated trade-off-based mechanism which
determines when tasks of lower priority should be scheduled greedily in the pres-
ence of higher priority tasks with a look-ahead mechanism designed to schedule
new workflow instances in advance. The algorithms outperform the state-of-the
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art policies particularly in situations of scarce processing power, when schedule
optimization is most important, and under heavy load.

Future directions of study should include applications with multiple different
coexisting task graphs, executed with different frequency, and more expressive
workflow models, e.g., with a conditional control flow.

Acknowledgment. The authors wish to thank Smart Services CRC for par-
tially funding this work.
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