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Abstract. Modeling Business Processes has become a challenging issue of
today’s Knowledge Management. As such it is a core activity of Knowl-
edge Engineering. There are two principal approaches to modeling such
processes, namely Business Process Modeling and Notation (BPMN) and
Business Rules (BR). Both these approaches are to certain degree comple-
mentary, but BPMN seems to become a standard supported by OMG. In
this paper we investigate how to build a logical model of BPMN using logic,
logic programming and rules. The main focus in on logical reconstruction of
BPMN semantics which is necessary to define some formal requirements on
model correctness enabling formal verification of such models.

1 Introduction

Knowledge has become a valuable and critical resource of contemporary or-
ganizations. In fact, possession of valid, most complete, up-to-date and essen-
tial knowledge has become a decisive factor of success in the so competitive
market.

Unfortunately — or no — human possession and processing of knowledge
turns out to be fairly inefficient for a number of reasons. Some most obvious
ones include difficulties with knowledge sharing, storage, and efficient exe-
cution. Hence, Knowledge Management (KM) must be supported with tools
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and techniques coming from Software Engineering and Knowledge Engineer-
ing universe.

Design, development and analysis of progressively more and more complex
business processes require advanced methods and tools. Two generic modern
approaches to modeling such processes have recently gained wider popularity.
These are the Business Process Modeling and Notation [29, 32, 1], or BPMN
for short, and Business Rules [28, 2, 7]. Although aimed at a common target,
both of the approaches are rather mutually complementary and offer some-
what distinctive features enabling process modeling [9] and executing [20].

BPMN as such constitutes a set of graphical symbols, such as links mod-
eling workflow, various splits and joins, events and boxes representing data
processing activities. It forms a transparent visual tool for modeling complex
processes promoted by OMG [25]. What is worth underlying is the expressive
power of current BPMN. In fact it allows for modeling conditional operations,
loops, event-triggered actions, splits and joins of data flow paths and com-
munication processes [27]. Moreover, modeling can take into account several
levels of abstraction which enables hierarchical approach.

An important issue about BPMN is that it covers three important aspects
of any business process; these are:

• data processing or data flow specification; this includes input, output and
internal data processing,

• inference control or workflow control ; this includes diagrammatic specifi-
cation of the process with partial ordering, switching and merging of flow,

• structural representation of the process as a whole; this allows for a visual
representation at several levels of hierarchy.

BPMN as such can be considered as procedural knowledge representation;
a BPMN diagram represents in fact a set of interconnected procedures. On
the other hand, the workflow diagram, however, although it provides trans-
parent, visual picture of the process, due to lack of formal model semantics
makes attempts at more rigorous analysis problematic. Further, even rela-
tively simple inference requires a lot of space for representation; there is no
easy way to specify declarative knowledge, e.g. in the form of rules.

Business Rules (BR), also promoted by OMG [23, 24], offer an approach
to specification of knowledge in a declarative manner. The way the rules are
applied is left over to the user when it comes to rule execution. Hence, rules
can be considered as declarative knowledge specification; inference control is
normally not covered by basic rules.

Note that rules can fulfill different roles in the system [23]. Some three
most important ones cover:

• declarative knowledge specification for inference of new facts,

• integrity constraints for preserving consistency of the knowledge base, and
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• meta-rules i.e. rules defining how to use other rules; this may include
partial control knowledge specification for improving efficiency of the in-
ference process.

Some modern classifications cover the following types of rules:

• facts – rules defining true statement (no conditional part),
• definition rules – for defining terms and notions in use,
• integrity rules – rules defining integrity constraints,
• production rules – for derivation of new facts,
• reaction rules – rules triggered by events, reactive rules or ECA rules,
• transformation rules – rules defining possible transformations, term-

rewriting rules; they may include numerical recipe rules,
• data processing rules – rules defining how particular data are to be trans-

formed; these include numerical processing rules,
• control rules – in fact meta rules used for inference process control,
• meta rules – other rules defining how to use basic rules.

Rules, especially when grouped into decision modules (such as decision
tables) are easier to analyze, however, the possibility of analysis depends on
the accepted knowledge representation language, and in fact – the logic in use
[14]. Formal models of rule-based systems and analysis issues are discussed
in detail in [14].

Note that the two approaches are to certain degree complementary: Busi-
ness Rules provide declarative specification of domain knowledge, which can
be encoded into a BPMN model. On the other hand, a careful analysis of a
BPMN diagram allows to extract certain rules governing the business. How-
ever, there is no consistent study on that possibility of mutual conversion.
The main problems seem to consist in lack of formal specification of KR
language. A some under-identification of BPMN.

The main common problem of BPMN is the lack of a formal declarative
model defining precisely the semantics and logic behind the diagram. Hence
defining and analyzing correctness of BPMN diagrams (e.g. in terms of termi-
nation or determinism) is a hard task. There are only few papers undertaking
the issues of analysis and verification of BPMN diagrams [5, 26, 27]. However,
the analysis is performed mostly at the structural level and does not take into
account the semantics of dataflow and control knowledge.

In this paper we follow the ideas initially presented in [15] and extend the
work described in [16]. An attempt at defining foundations for a more formal,
logical, declarative model of the most crucial elements of BPMN diagrams
is undertaken. We pass from logical analysis of BPMN components to their
logical models, properties and representation in Prolog. Some prototyped
procedures for checking correct data flow are also presented. The model is
aimed at enabling definition and further analysis of selected formal properties
of a class of restricted BPMN diagrams. The analysis should take into account
properties constituting reasonable criteria of correctness. The focus is on
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development of a formal, declarative model of BPMN components and its
overall structure. In fact, a combination of recent approaches to development
and verification of rule-based systems [21, 17, 19] seems to have potential
influence on BPMN analysis.

2 A Basic Structural Model for BPMN

In this section a simplified structural model of BPMN diagrams is put
forward. It constitutes a restricted abstraction of crucial intrinsic workflow
components. As for events, only start and termination events are taken into
account. Main knowledge processing units are activities (or tasks). Workflow
control is modeled by subtypes of gateways: split and join operations. Finally,
workflow sequence is modeled by directed links. No time/temporal aspect are
considered. The following elements will be taken into consideration:

• S — a non-empty set of start events (possibly composed of a single ele-
ment),

• E — a non-empty set of end events (possibly composed of a single element),
• T — a set of activities (or tasks); a task T ∈ T is a finite process with

single input and single output, to be executed within a finite interval of
time,

• G — a set of split gateways or splits, where branching of the workflow
takes place; three disjoint subtypes of splits are considered:

– GX — a set of exclusive splits where one and only one alternative paths
can be followed (a split of EX-OR type),

– GP — a set of parallel splits where all the paths of the workflow are to
be followed (a split of AND type or a fork), and

– GO — a set of inclusive splits where one or more paths should be
followed (a split of OR type).

• M — a set of merge gateways or joins node of the diagram, where two or
more paths meet; three further disjoint subtypes of merge (join) nodes are
considered:

– MX — a set of exclusive merge nodes where one and only one input
path is taken into account (a merge of EX-OR type),

– MP — a set of parallel merge nodes where all the paths are combined
together (a merge of AND type), and

– MO — a set of inclusive merge nodes where one or more paths influence
the subsequent item (a merge of OR type).

• F — a set of workflow links, F ⊆ O×O, where O = S ∪ E ∪ T ∪G ∪M is
the join set of objects. All the component sets are pairwise disjoint.

The splits and joins depend on logical conditions assigned to particular
branches. It is assumed that there is defined a partial function Cond:F → C

assigning logical formulae to links. In particular, the function is defined for
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links belonging to G×O∪O×M, i.e. outgoing links of split nodes and incom-
ing links of merge nodes. The conditions are responsible for workflow control.
For intuition, a simple BPMN diagram is presented in Fig. 1.

In order to ensure correct structure of BPMN diagrams a set of restrictions
on the overall diagram structure is typically defined; they determine the so-
called well-formed diagram [27].

Note however, that a well-formed diagram does not assure that for any
input knowledge the process can be executed leading to a (unique) solution.
This further depends on the particular input data, its transformation during
processing, correct work of particular objects, and correct control defined by
the branching/merging conditions assigned to links.

3 An Example of BPMN Diagram with Rules

In order to provide intuitions, the theoretical considerations will be illus-
trated with a simple example process. The process goal is to establish the
so-called set-point temperature for a thermostat system [22]. The selection
of the particular value depends on the season, whether it is a working day or
not, and the time of the day.

Consider the following set of declarative rules specifying the process. There
are eighteen inference rules (production rules):

Rule 1 : aDD ∈ {monday , tuesday ,wednesday , thursday , friday} −→ aTD = wd.
Rule 2 : aDD ∈ {saturday , sunday} −→ aTD = wk.
Rule 3 : aTD = wd ∧ aTM ∈ (9, 17) −→ aOP = dbh.
Rule 4 : aTD = wd ∧ aTM ∈ (0, 8) −→ aOP = ndbh.
Rule 5 : aTD = wd ∧ aTM ∈ (18, 24) −→ aOP = ndbh.
Rule 6 : aTD = wk −→ aOP = ndbh.
Rule 7 : aMO ∈ {january , february , december} −→ aSE = sum.
Rule 8 : aMO ∈ {march , april ,may} −→ aSE = aut.
Rule 9 : aMO ∈ {june, july , august} −→ aSE = win.
Rule 10 : aMO ∈ {september , october ,november} −→ aSE = spr.
Rule 11 : aSE = spr ∧ aOP = dbh −→ aTHS = 20.
Rule 12 : aSE = spr ∧ aOP = ndbh −→ aTHS = 15.
Rule 13 : aSE = sum ∧ aOP = dbh −→ aTHS = 24.
Rule 14 : aSE = sum ∧ aOP = ndbh −→ aTHS = 17.
Rule 15 : aSE = aut ∧ aOP = dbh −→ aTHS = 20.
Rule 16 : aSE = aut ∧ aOP = ndbh −→ aTHS = 16.
Rule 17 : aSE = win ∧ aOP = dbh −→ aTHS = 18.
Rule 18 : aSE = win ∧ aOP = ndbh −→ aTHS = 14.

Let us briefly explain these rules. The first two rules define if we have
today (aTD) a workday (wd) or a weekend day (wk). Rules 3-6 define if the
operation hours (aOP) are during business hours (dbh) or not during business
hours (ndbh); they take into account the workday/weekend condition and the
current time (hour). Rules 7-10 define the season (aSE ) is summer (sum),
autumn (aut), winter (win) or spring (spr). Finally, rules 11-18 define the
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Determining
season

Determining
workday

Determining
operat ion hours

Determining
thermostat

sett ings

Fig. 1 An example BPMN diagram — top-level specification of the thermostat
system

precise setting of the thermostat (aTHS ). Observe that the set of rules is flat;
basically no control knowledge is provided.

Now, let us attempt to visualize a business process defined with these rules.
A BPMN diagram of the process is specified in Fig. 1.

After start, the process is split into two independent paths of activities.
The upper path is aimed at determining the current season1 (aSE; it can take
one of the values {sum, aut, win, spr}; the detailed specification is provided
with rules 7-10 below). A more visual specification of this activity with an
appropriate set of rules is shown in Fig. 2.

month in {1,2,12}

month in {3,4,5}

month in {6,7,8}

month in {9,10,11}

set season
to summer

set season
to autumn

set season
to spring

set season
to winter

Fig. 2 An example BPMN diagram — detailed specification a BPMN task

The lower path activities determine whether the day (aDD) is a workday
(aTD = wd) or a weekend day (aTD = wk), both specifying the value of
today (aTD ; specification provided with rules 1 and 2), and then, taking
into account the current time (aTM ), whether the operation (aOP) is dur-
ing business hours (aOP = dbh) or not (aOP = ndbh); the specification is
provided with rules 3-6. This is illustrated with Fig. 3 and Fig. 4.
1 For technical reasons all attribute names used in this example start with lower-

case ’a’.
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day in {mon,tue,wed,thu,fri}

day in {sat,sun}

set today
to workday

set today
to weekend

Fig. 3 An example BPMN diagram — detailed specification of determining the
day task

today =  workday &
hour >  17

today =  weekend &
hour =  any

today =  workday &
hour <  9

today =  workday &
hour in [9;17]

set operat ion
to nbizhrs

set operat ion
to bizhrs

Fig. 4 An example BPMN diagram — detailed specification of working hours task

Finally, the results are merged together and the final activity consists in
determining the thermostat settings (aTHS ) for particular season (aSE ) and
time (aTM ) (the specification is provided with rules 11-18). This is illustrated
with Fig. 5.

Even in this simple example, answers to the following important questions
are not obvious:

1. data flow correctness : is any of the four tasks/activities specified in a
correct way? Will each task end with producing the desired output for
any admissible input data?

2. split consistency : will the workflow possibly explore all the paths after a
split? Will it always explore at least one?

3. merge consistency: will it be always possible to merge knowledge coming
from different sources at the merge node?

4. termination/completeness : does the specification assure that the system
will always terminate producing some temperature specification for any
admissible input data?

5. determinism: will the output setting be determined in a unique way?
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operat ion =  nbizhrs &
season =  summer

set thermostat
sett ings to 27

operat ion =  bizhrs &
season =  summer

set thermostat
sett ings to 24

operat ion =  nbizhrs &
season =  spring

set thermostat
sett ings to 15

operat ion =  bizhrs &
season =  spring

set thermostat
sett ings to 20

operat ion =  bizhrs &
season =  winter

set thermostat
sett ings to 18

operat ion =  nbizhrs &
season =  winter

set thermostat
sett ings to 14

operat ion =  nbizhrs &
season =  autumn

set thermostat
sett ings to 16

operat ion =  bizhrs &
season =  autumn

set thermostat
sett ings to 20

Fig. 5 An example BPMN diagram — detailed specification of the final thermostat
setting task

Note that we do not ask about correctness of the result; in fact, the rules,
embedded into a BPMN diagram, provide a kind of executable specification,
so there is no reference point to claim that the final output is correct or not.

4 Logical Analysis of BPMN Diagrams

A BPMN diagram can model quite complex processes. Apart from external
consistency validation (i.e. whether or not the diagram models correctly the
external system in a complete way, does not introduce any non-existent fea-
tures, and there is an isomorphism between those two), an important issue is
the internal consistency requirement for correct structure of the diagram and
correct workflow specification. The first one refers to the static specification
of components and their connections. The second one consists in correct work
of the structure for all admissible input data specification.

The structural correctness is defined by requirements for well-formed
BPMN diagram. However, even having correct structure, the process can
go wrong due to unserved data or wrong workflow control, for example. Be-
low, an attempt is made at specification of some minimal requirements for
(i) correct work of process components (tasks), (ii) assuring data flow, (iii)
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correct work of splits, (iv) correct work of merge nodes, and finally — (v)
termination of the overall process.

A more complex issue consists in verification of internal workflow correct-
ness. The analysis must take into account, at least the following aspects:

1. Local correctness requirements:

a. Correct specification and work of process components performing ac-
tivities,

b. Correct specification of data flow,
c. Correct specification and work of splits,
d. Correct specification and work of joins.

2. Global correctness requirements:

a. No deadlocks — the system must work for all admissible input data,
b. Termination — the system must terminate work within a finite period

of time,
c. Determinism — the results should be repeatable for repeated input data

(ambiguous rules, hazards, races).

Further requirements may refer to features such as minimal representation,
optimal decomposition, robustness, and optimal results and optimal execution.
In order to answer these questions one must (i) assure the correct work of all
the components (activities/processes), (ii) assure the correctness of data flow
between components, (iii) assure correct inference control (w.r.t. split and
join operations), (iv) check if the static structure of the diagram is correct
and, finally (v) check if all this combined together will work, i.e. the inference
process is not blocked at some point (e.g. due to a deadlock).

4.1 Component Correctness

In this section we put forward some minimal requirements defining correct
work of rule-based process components performing BPMN activities. Each
such component is composed of a set of inference rules, designed to work
within a the same context; in fact, preconditions of the rules incorporate the
same attributes. In our example we have four such components: determining
workday (rules 1-2), determining operation hours (rules 3-6), determining
season (rules 7-10) and determining the thermostat setting (rules 11-18).

In general, the outermost logical model of a component T performing some
activity/task can be defined as a triple of the form:

T = (ψT , ϕT ,A), (1)

where ψT is a formula defining the restrictions on the component input, ϕT

defines the restrictions for component output, and A is an algorithm which for
a given input satisfying ψT produces an (desirably uniquely defined) output,
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satisfying ϕT . For intuition, ψT and ϕT define a kind of a ’logical tube’ —
for every input data satisfying ψT (located at the entry of the tube), the
component will produce and output satisfying ϕT (still located within the
tube at its output). The precise recipe for data processing is given by an
algorithm A.

The specification of a rule-based process component given by (1) is consid-
ered correct, if and only if for any input data satisfying ψT the algorithm A
produces an output satisfying ϕT . It is further deterministic (unambiguous)
if the generated output is unique for any admissible input.

For example, consider the component determining operation hours. Its
input restriction formula ψT is the disjunction of precondition formulae ψ3 ∨
ψ4 ∨ ψ5 ∨ ψ6, where ψi is a precondition formula for rule i. We have ψT =
((aTD = wd) ∧ (aTM ∈ [0, 8] ∨ aTM ∈ [9, 17] ∨ aTM ∈ [18, 24])) ∨ (aTD =
wk). The output restriction formula is given by ϕT = (aOP = dbh)∨(aOP =
ndbh). The algorithm is specified directly by the rules; rules are in fact a kind
of executable specification.

In order to be sure that the produced output is unique, the following
mutual exclusion condition should hold:

�|= ψi ∧ ψj (2)

for any i �= j, i, j ∈ {1, 2, . . . , k}. A simple analysis shows that the four rules
have mutually exclusive preconditions, and the joint precondition formula ψT

covers any admissible combination of input parameters; in fact, the subset of
rules is locally complete and deterministic [14].

4.2 Correct Flow of Data

In our example we consider only rule-based components. Let φ define the
context of operation, i.e. a formula defining some restrictions over the cur-
rent state of the knowledge-base that must be satisfied before the rules of a
component are explored. For example, φ may be given by ϕT ′ of a compo-
nent T ′ directly preceding the current one. Further, let there be k rules in
the current component, and let ψi denote the joint precondition formula (a
conjunction of atoms) of rule i, i = 1, 2, . . . , k. In order to be sure that at
least one of the rules will be fired, the following condition must hold:

φ |= ψT , (3)

where ψT = ψ1 ∨ψ2 ∨ . . .∨ψk is the disjunction of all precondition formulae
of the component rules. The above restriction will be called the funnel prin-
ciple. For intuition, if the current knowledge specification satisfies restriction
defined by φ, then at least one of the formula preconditions must be satisfied
as well.



AI Approach to Formal Analysis of BPMN Models 79

For example, consider the connection between the component determining
workday and the following it component determining operation hours. After
leaving the former one, we have that aTD = wd ∨ aTD = wk. Assuming
that the time can always be read as an input value, we have φ = (aTD =
wd ∨ aTD = wk) ∧ aTM ∈ [0, 24]. On the other hand, the disjunction of
precondition formulae ψ3 ∨ ψ4 ∨ ψ5 ∨ ψ6 is given by ψT = (aTD = wd) ∧
(aTM ∈ [0, 8] ∨ aTM ∈ [9, 17] ∨ aTM ∈ [18, 24])) ∨ aTD = wk. Obviously,
the funnel condition given by (3) holds.

4.3 Correct Splits

An exclusive split GX (q1, q2, . . . qk) ∈ GX with k outgoing links is modeled
by a fork structure assigned excluding alternative of the form:

q1 � q2 � . . . � qk,

where qi ∧ qj is always false for i �= j. An exclusive split can be considered
correct if and only if at least one of the alternative conditions is satisfied. We
have the following logical requirement:

|= q1 ∨ q2 ∨ . . . ∨ qk, (4)

i.e. the disjunction is in fact a tautology. In practice, to assure (4), a pre-
defined exclusive set of conditions is completed with a default q0 condition
defined as q0 = ¬q1∧¬q2∧. . .∧¬qk; obviously, the formula q0∨q1∨q2∨. . .∨qk
is a tautology.

Note that in case when an input restriction formula φ is specified, the
above requirement given by (4) can be relaxed to:

φ |= q1 ∨ q2 ∨ . . . ∨ qk. (5)

An inclusive split GO(q1, q2, . . . qk) ∈ GO is modeled as disjunction of the
form:

q1 ∨ q2 ∨ . . . ∨ qk,
An inclusive split to be considered correct must also satisfy formula (4), or
at least (5). As before, this can be achieved through completing it with the
q0 default formula.

A parallel split GP(q1, q2, . . . qk) ∈ GP is referring to a fork-like structure,
where all the outgoing links should be followed in any case. For simplicity, a
parallel split can be considered as an inclusive one, where all the conditions
assigned to outgoing links are set to true.

Note that, if φ is the restriction formula valid for data at the input of the
split, then any of the output restriction formula is defined as φ ∧ qi for any
of the outgoing link i, i = 1, 2, . . . , k.
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4.4 Correct Merge

Consider a workflow merge node, where k knowledge inputs satisfying restric-
tions φ1, φ2, . . . , φk respectively meet together, while the selection of partic-
ular input is conditioned by formulae p1, p2, . . . , pk, respectively.

An exclusive merge MX (p1, p2, . . . , pk) ∈ MX of k inputs is considered
correct if and only if the conditions are pairwise disjoint, i.e.

�|= pi ∧ pj (6)

for any i �= j, i, j ∈ {1, 2, . . . , k}. Moreover, to assure that the merge works,
at least one of the conditions should hold:

|= p1 ∨ p2 ∨ . . . ∨ pk, (7)

i.e. the disjunction is in fact a tautology. If the input restrictions φ1, φ2, . . . , φk
are known, condition (7) might possibly be replaced by |= (p1 ∧ φ1) ∨ (p2 ∧
φ2) ∨ . . . ∨ (pk ∧ φk).

Note that in case a join input restriction formula φ is specified, the above
requirement can be relaxed to:

φ |= p1 ∨ p2 ∨ . . . ∨ pk, (8)

and if the input restrictions φ1, φ2, . . . , φk are known, it should be replaced
by φ |= (p1 ∧ φ1) ∨ (p2 ∧ φ2) ∨ . . . ∨ (pk ∧ φk).

An inclusive merge MO(p1, p2, . . . , pk) ∈ MO of k inputs is considered
correct if one is assured that the merge works — condition (7) or (8) hold.

A parallel merge MP ∈ MP of k inputs is considered correct by default.
However, if the input restrictions φ1, φ2, . . . , φk are known, a consistency
requirement for the combined out takes the form that φ must be consistent
(satisfiable), where:

φ = φ1 ∧ φ2 ∧ . . . ∧ φk (9)

An analogous requirement can be put forward for the active links of an in-
clusive merge.

|= p1 ∧ p2 ∧ . . . ∧ pk, (10)

i.e. the conjunction is in fact a tautology, or at least

φ |= p1 ∧ p2 ∧ . . . ∧ pk. (11)

In general, parallel merge can be made correct in a trivial way by putting
p1 = p2 = . . . = pk = true.

Note that even correct merge leading to a satisfiable formula assure only
passing the merge node; the funnel principle must further be satisfied with
respect to the following-in-line object. To illustrate that consider the input
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Fig. 6 An example BPMN diagram — top-level specification of thermostat system
with the additional Prolog annotations

of the component determining thermostat setting. This is the case of parallel
merge of two inputs. The joint formula defining the restrictions on combined
output of the components for determining season and determining operation
hours is of the form:

φ = (aSE = sum ∨ aSE = aut ∨ aSE = win ∨
aSE = spr) ∧ (aOP = dbh ∨ aOP = ndbh).

A simple check of all possible combinations of season and operation hours
shows that all the eight possibilities are covered by preconditions of rules
11-18; hence the funnel condition (3) holds.

5 BPMN Model in Prolog

In this section a Prolog model for the example BPMN diagram is presented.
It enables logical analysis of the diagram. Below, samples of Prolog code are
listed.

A BPMN diagram is represented as a complex graph with different types
of nodes. Each specific component of BPMN is mapped into a Prolog fact.
In order to model the structure of a BPMN diagram in a declarative way it
is proposed to use a set of Prolog facts. A generic form can be as follows:

component_type(<id>,
<input_node>,<input-formula>,
<output_node>,<output-formula>).

In practice, such facts can be of different structure for different
components.

The Thermostat example presented in Fig. 6 is defined with the Prolog
code in Listing 1.
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Algorithm 1. BPMN example coding in Prolog

%%%%% BPMN Knowledge Base %%%%%
%%% Star t & end nodes de c l a ra t i on
in it_node ( s t a r t ) .
end_node( end ) .
nodes ( [ n1 , n2 , n3 , n4 , n5 , n6 ] ) .
%%% Tasks
% ta s k (<id >,<input_node >,
% <input_formula >,
% <output_node >,
% <output_formula >).
task ( ds , n1

[ [ mspr ] , [msum] , [ maut ] , [ mwin ] ] ,
n3 , [ [ spr ] , [ sum ] , [ aut ] , [ win ] ] ) .

task (dw, n2 , [ [ d15 ] , [ d67 ] ] , n4 ,
[ [ twr ] , [ twe ] ] ) .

task (do , n4 , [ [ twr , t18 ] , [ twr , t8 ] ,
[ twr , t917 ] , [ twe ] ] , n5 ,
[ [ nonbiz ] , [ b i z ] ] ) .

task ( dt , n6 , [ [ nonbiz , spr ] , [ nonbiz , sum ] ,
[ nonbiz , aut ] , [ nonbiz , win ] ,
[ b iz , spr ] , [ b iz , sum ] , [ b iz , aut ] ,
[ b iz , win ] ] , end ,
[ [ t14 ] , [ t15 ] , [ t16 ] , [ t18 ] , [ t20 ] ,
[ t24 ] , [ t27 ] ] ) .

% s p l i t 2 (<id >,<sp l i t_ type >,
% <input_node >,
% (<output_node >,
% <log i ca l_cond i t i on >) ,
% (<output_node >,
% <log i ca l_cond i t i on >)).
s p l i t 2 ( s1 , and , s tar t , ( n1 , true ) ,

( n2 , true ) ) .
% merge2(<id >,<merge_type >,
% <input_node >,
% <input_node >,
% <output_node >).
merge2 (m1, and , n3 , n5 , n6 ) .

There are four tasks defined:

ds define season with input node n1, output node n3, input formula being a
DNF - disjunction of all four precondition formulas of the four rules, and
output formula being DNF - a disjunction of the conclusions of the rules,
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dwdefine workday with input node n2, output node n4, input formula being
a DNF - disjunction of all two precondition formulas of the two rules, and
output formula being DNF - a disjunction of the conclusions of the rules,

dodefine operation with input node n4, output node n5, input formula being
a DNF - disjunction of all four precondition formulas of the four rules, and
output formula being DNF - a disjunction of the conclusions of the rules,

dt define temperature with input node n1, output node n3, input formula
being a DNF - disjunction of all eight precondition formulas of the eight
rules, and output formula being DNF - a disjunction of the conclusions of
the rules.

There are also one split node, from start to n1 and n2, and one merge
node, from n3 and n5 to n6.

As an example of analysis let us present a code for verification of data flow
(the funnel condition) between tasks dw and do; the intuition behind is that
any output generated by dw should be accepted and further processed by do.
The sample code is presented in Listing 2.

After calling the funnel check for the internal node n4 the system proves
that the output formula of task dw implies the input formula of task do. The
output of the program, confirming the result of the check is given below.

Other static checks for data flow have been implemented and tested as
well.

6 Related Works

To the best of our knowledge, there are no related works which define BPMN
model in the Prolog language. The only one approach that uses Prolog by
Andročec [4] significantly differs from our work. Andročec used Prolog for
specification of business processes, however, he used it to assess the cost and
time of running a process and to identify potential problems with resources.
Thus, he defined the model for simulation purposes.

Similar attempts to formalization of BPMN models were carried out by
Lam [12], Andersson et al. [3], Wong and Gibbons [33] as well as Dijkman and
Van Gorp [6]. Other attempts to formalization of process models, however
not concerning BPMN, were carried out by Gruhn and Laue [8].

The BPMN model defined by Lam in [12] was used to check the diagrams
against the properties specified by a user for a particular model [13]. In our
case, the properties, which are correctness requirements, can be used for any
BPMN model.

In the case of declarative model presented in [3], they introduced the notion
of activity dependency model, which identifies, classifies, and relates activities
needed for executing and coordinating value transfers. In particular, in their
model, relations between activities can be specified in terms of notions like re-
source flow, trust, coordination, and reciprocity. The four types of dependen-
cies which can be identified (flow, trust, trigger, and duality dependencies) are
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Algorithm 2. BPMN example coding in Prolog: funnel between tasks

%%% Funnel cond i t i on check ing f o r
%%% nodes among ta s k s
funne l (N) :−

task (IDOUT,_,_,N,FOUT) ,
task ( IDIN ,N, FIN ,_,_) ,
imp l i e s (FOUT, FIN) ,
write (IDOUT) , write ( ’−−>’ ) , write (N) ,

write ( ’−−>’ ) , write ( IDIN) , nl .

%%% De f i n i t i on o f imp l i c a t i on
%%% for two DNF
imp l i e s ( true ,_) :− ! .
imp l i e s ( [ ] ,_) :− ! .
imp l i e s ( [MIN|T] ,DNF) :−

imply (MIN,DNF) ,
imp l i e s (T,DNF) .

%%% De f i n i t i on o f imp l i c a t i on
%%% DNF |= MIN
imply ( [ ] ,_) :− ! .
imply (MIN,DNF) :−

member (M,DNF) , subse t (M,MIN) , ! .
imply (MIN,DNF) :−

f ind_subsets (DNF,SDNF) ,
reduce (SDNF,RSDNF) ,
member (M,RSDNF) ,
subse t (M,MIN) .

f ind_subsets ( [ ] , [ ] ) :− ! .
f ind_subsets ( [G|T ] , [G|T2]) : −

f ind_subsets (T,T2 ) .
f ind_subsets ( [_|T] ,T2):−

f ind_subsets (T,T2 ) .

Algorithm 3. BPMN example coding in Prolog: funnel between tasks

?− funne l ( n4 ) .
dw−−>n4−−>do
true
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not a part of the BPMN style, thus their model is not completely BPMN com-
pliant and has another goals then ours.

Dijkman and Van Gorp [6] formalized the BPMN model using graph
rewrite rules. However, their goal was also different from ours. They fo-
cused on execution semantics. Thus, their approach is suitable for simulation,
animation and execution of BPMN models.

Wong and Gibbons [33] defined the semantics of BPMN models using Com-
municating Sequential Processes, in which a process is a pattern of behav-
ior. They provide only verification of such issues as: hierarchical refinement,
partial refinement and hierarchical independence.

7 Concluding Remarks

Our work is a part of an approach in the area of of business processes and rules
integration [10]. It constitutes an attempt at providing a logical, declarative
model for well-defined BPMN diagram [15]. The model is aimed at defining
formal semantics of diagram components and the workflow operation. The
main focus is on the specification of correct components and correct dataflow.
Global termination conditions are specified in a recursive way. Summarizing,
in the paper we:

• formulated a formal model for a subset of BPMN,
• defined local and global correctness requirements,
• specified the detailed logic that stems from the diagram.

The original contribution of our work consists in:

• presenting open issues corresponding to the BPMN diagrams, such as con-
sistency of elements,

• specifying a BPMN model in the declarative Prolog language, which helps
to check the defined correctness requirements.

Note that the logical analysis can be performed off-line, on the base of
logical requirements φ, ψ and ϕ of data. However, if such specifications are
data-dependent (e.g. in case of loops or more complex non-monotonic data
processing) the analysis may be possible only in on-line form, separately for
any admissible input data.

As future work, a more complex modeling, verification and execution ap-
proach is considered. In the case of modeling issue, we plan to implement this
approach by extending one of the existing BPMN tools in order to integrate
it with the HeKatE Qt Editor (HQEd) for XTT2-based Business Rules [9].
The XTT2 rules [21] (and tables) can be formally analyzed using the so-called
verification HalVA framework [10] or using Petri net approach [31]. Although
table-level verification can be performed with HalVA [18], the global verifica-
tion is a more complex issue [11]. Our preliminary works on global verification
have been presented in [30].
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