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Abstract. Simulation driven development – the idea of using simulation models
as executable system specification in any phase of the system development process
[4] – depends on the performance of the simulation model and execution frame-
work. We study the performance issues of an existing large-scale simulation model
of the German toll system using a discrete-event simulation (DES) model. The arti-
cle first introduces the German toll system and the simulation framework developed
to analyze the systems’ behavior. To address the simulation performance the arti-
cle describes a number of common performance limitations of several commercial
and non-commercial DES simulation kernels. These performance limitations are ad-
dressed in kernel-level benchmarks. At the application-level a DES implementation
of the German toll system is used to compare two commercial DES tools and sev-
eral optimizations are introduced both on the simulation model and kernel level to
achieve the necessary performance for a detailed and realistic simulation of a fleet
of 750 000 trucks.
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1 Introduction

Software evolution is a fact of life. Software-intensive systems become ever larger
and to make matters worse include ever more distributed endpoints up to mobile
and ubiquitous computing [11]. Introducing changes and new features to an exist-
ing system is both time consuming and error prone – one study [17] claims that
the probability of critical problems due to poor design decisions is over 60% in the
specification phase. Simulations are a vital step in the design of systems or the as-
sessment of planned changes [3, 4] – reducing the inherent risk of ongoing system
development and allowing for a faster system deployment. In addition simulations
predict the dynamic system behavior which can become highly non-linear or chaotic
even for simple systems [25].

To specify and evaluate the German toll system, a simulation-driven design ap-
proach has been selected [5]. The approach is characterized by applying modeling
and simulation technologies in the early design stages, i.e. at at a time when most
of the important design decisions have to be made. As a result both the systems
and processes are specified in the form of executable models. The approach allows
to validate and optimize the overall system architecture already in the specification
phase – avoiding expensive integration issues in the subsequent implementation and
integration phases.

Consequently, specification speed and quality is considerably increased while the
system and product uncertainty is decreased. It is noteworthy that simulation-driven
design not only refers to the system under design but also includes the surrounding
design process, i.e. the process is also captured as an executable specification which
allows automating design steps like architecture optimization, validation against op-
erational scenarios and tracking of design decisions.

A prerequisite to applying executable models is a so called execution domain:
In our context Discrete Event Simulation (DES, [19]) has gained significance. We
choose DES as the execution domain of our simulation model (although in future
work the behavior of the user interaction might better be modeled in an agent-based
approach). DES is used in many industries, e.g. energy, telecommunications, pro-
duction, logistics, avionics, automotive, business processes and system design. Inter
alia DES is applied for dimensioning of resources, to answer questions about topol-
ogy, scalability and performance regarding operational scenarios, to predict system
behavior and to estimate risks.

Increasingly the performance in defining and executing models becomes vital
due to the increased complexity of systems and processes as well as the customer
requirement to create holistic, integrated, high accuracy models up to real world
scale. Several use cases of simulations are only possible once the simulation per-
formance is ‘good enough’: simulating the longterm dynamic behavior, iterative
optimization loops, automatic test batteries, real-time models (higher reactivity to
market demands and changes) and automated specification and modeling processes
(including model transformation/generation) [28].
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The outline of the article is as follows: Section 2 gives an overview of the
automatic German toll system, the corresponding simulation model and typical
simulation results. Section 3 introduces the performance properties of discrete event
simulations and discusses appropriate performance metrics and benchmarking mod-
els. This is followed in section 4 by a discussion of the simulation performance
and scaling of several DES tools for basic simulation operations. Using an existing
microscopic holistic execution specification of the automatic German toll system
[27] we describe several performance optimizations both on level of the simulation
model and the simulation kernel in section 5. Section 6 provides a brief discussion
of profiling a simulation run using internal or external profiler followed by the sum-
mary in section 7.

2 Executable Specification of the German Toll System

Toll Collect GmbH is the provider of the German electronic toll for heavy goods ve-
hicles (HGVs). The system automatically collects the toll fees on federal motorways
using an on-board-unit (OBU) installed in most of the trucks1. Currently there are
more than 750 000 OBUs deployed, each determining the toll fees according to an
up-to-date map of the chargeable roads using a GNSS receiver coupled to the vehi-
cles’ speed and directional data and communicating via GSM with the Toll Collect
data center. In total, the HGVs drove 26.6 · 109 km on the chargeable federal mo-
torways in 2012 [8] incurring a total of 4.36 bne [9]. For the application domain
we use an existing simulation model of the German toll system [6, 28], a large-scale
autonomous toll system [10].

Following the idea of simulation-driven design we use executable models to an-
alyze and evaluate the behavior of the IT systems of Toll Collect GmbH. The simu-
lation model of the Toll Collect system is used to predict the behavior of the current
system as well as effects of changes to the system, especially to maintain the high
level of accuracy (with an error rate of less than 1 in 1 000, [12, 36]) needed due
to service-level-agreements. Changes to the Toll Collect system occur every day –
in the past four years more than 15 major changes (releases) and more than 1 500
medium-sized changes were implemented.

2.1 Modeling of the Toll Collect System

The simulation model of the Toll Collect system consists of three blocks as shown
in fig. 1 and an additional model for the user interaction (scenario generator). The
model execution is controlled by a discrete event scheduler (in our example either
MSArchitect [2] or MLDesigner [24]), responsible to initialize the vehicle fleet and
to run the simulation. The vehicle fleet treats each OBU as an individuum with a
distinct configuration and internal state. This state changes according to the simu-
lation and the externally pre-calculated (statistically realistic) driving pattern of the

1 An alternate mode of operations is available which offers the ability of manual booking.
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OBUs [31, 32] containing their configuration (e.g. hardware and software versions),
their power cycles and the toll charging instants.

Starting with the OBU and its driving pattern the model simulates the automatic
communication between the OBU and the central systems either to transmit the
tolls collected or to update the OBU state, geo and tariff data or software. Due to
the arbitrary power cycles of the OBU and various resource restrictions (e.g. lim-
ited bandwidth, high latency, intentionally limited number of parallel connections
for the central systems) it is common for data transmissions to be interrupted and
subsequently recovered by application-level protocols.

Vehicle
Fleet

Mobile data
network

Central
System

Scenario
Generator

driving patterns

Fig. 1 High-Level simulation model of the Toll Collect
system (upper half) and the model for the user interac-
tion (scenario generator, lower half)

The mobile data network
includes provider specific
transmission properties (e.g.
bandwidth and latency) and
resource constraints (e.g. ac-
tively managed number of
simultaneous connections al-
lowed). On the network layer
the simulation includes the
bandwidths and latencies ob-
served for the various OBU
hardware platforms and mobile
network operators. The simula-
tion includes the GPRS connection handling, the authentication handshake and IP
address handling but does not include the IP network layer.

The block “Central System” includes the typical systems required to authenticate,
receive and validate data transmission (e.g. firewalls, proxy servers, load balancers,
database and application servers) each with their individual resource constraints.
From a service management perspective the system is a sizeable service value chain
spread across several service providers [26, 29, 30, 33].

To achieve realistic simulation results the model tries to include as many details
as possible. Accordingly the vehicle fleet should include as many individual OBUs
as in the real Toll Collect system (more than 750 000) with statistically realistic
driving patterns for several consecutive months. In that way it is possible to simulate
long-term behavior (e.g. a software update of the whole fleet) without resorting
to scaling. The behavior of each OBU is implemented at a high-level of detail up
to including the original source code of the OBU in the handling of internal state
transitions.

2.2 Application and Results

The simulation model is used to determine the effects of the systems’ configuration,
e.g. on the progress of software updates or on the return to normal operations after
outages of the central systems. This can be extended to determine the optimal system
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Fig. 2 Weekly driving pattern of a vehicle fleet of 140 000 HGVs. Each point represents the
chargeable kilometers driven within a 30 minute period.
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Fig. 3 Two consecutive map data updates of a fleet of 140 000 OBUs over a 15 week period,
the update is downloaded and activated only after the start of the validity period
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configuration e.g. considering the trade-off between operational costs and the cost
of financing (of not yet processed toll fees) [27, 28].

Fig. 4 Simulated software update from
the initial version (purple) to the new
version (orange) [31]

The execution of the Toll Collect model
using MLDesigner takes about 6 hours of
single-core CPU time (Intel Xeon X5670 at
2.93 GHz) to simulate 16 weeks with a fleet
size of 140 000 HGVs (corresponding to a 1:5
scaling). The pre-calculated driving pattern
changes according to the day of week (see
fig. 2) and is based on a statistical analysis of
the driving pattern over a 15 week period (in
early 2011). The weekend and Sunday truck
ban on German highways is clearly visible in
fig. 2.

Additional data from the Toll Collect test
fleet (> 2 000 HGVs) is used to parameter-
ize the number and duration of power cycles.
The example uses an average of 1112 power
cycles per OBU and year (with a minimum
duration of one minute per power cycle).

This microscopic simulation model is also
used to determine macroscopic effects, e.g.
the periodic update of map and tariff data
on the OBU. The update process is initiated
by the OBU which periodically checks for
the availability of updates and schedules the
download of new updates randomly prior to
the start of the validity period of the new data.
Fig. 3 shows the result of two consecutive up-
dates of the map data, where each OBU has
one version of the data installed and possibly
either knows about the existence of a new version or has it already downloaded (but
not yet activated). With the start of the validity period of the new version OBUs that
had it previously downloaded will immediately switch to the new version (provided
the OBU is powered on). OBUs that are unable to download the new data in time
(e.g. OBUs staying outside of the German mobile data network coverage) will try
to retrieve the update as soon as the power restored to the OBU and the OBU is
within reach of the German mobile data network. Across the whole vehicle fleet we
observe that about 10% of all OBUs do not connect to the data center within a given
15 week period.

Since [6] we have switched to use the MSArchitect simulation framework to
achieve simulation runs at a 1:1 scale: From the process perspective the simulation
model covers business and system processes differing at least 7 orders of magnitude
in time: All major technical processes with durations of one second and longer are
included in the model aiming to predict the dynamic system behavior of fleet-wide
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updates (taking weeks to months, fig. 4). In fact, the model includes some processes
with higher temporal resolution (down to 50 ms for the connection handling in the
DMZ) and is used to simulate all updates occurring over a whole year. Using the
Pearson correlation as metric to compare the simulation results with the observed
update rates between April 2012 and January 2013 we find the correlation to be
above (better than) 0,994 (see tab. 1). The current investigation is to validate the
simulation model using additional metrics and a time-scale of one hour [32] (instead
of one day).

Table 1 Comparing fleet-wide
updates (simulation results vs.
data from Apr 2012 to Jan
2013)

correlation
software 0.99963
geo data 0.99572

tariff data 0.99475

Even on the application level the user interaction
(scenario generator) creates a large number of events
to be processed by the simulation logic. On average
each OBU will be powered-on for 16% of the time
and process tolls for 32 000 km annually ([7], one
toll event per 4.2 km on average [12]) spread across
some 1 300 power cycles (including three times as
many periods of mobile data network). Of course,
many more events are created from within the appli-
cation logic, e.g. to forward tolls to the central sys-
tems or to run error recovery protocols in the case of
network unavailability.

2.3 Simulation Performance

To achieve realistic simulation results we decided against the use of a simplified
simulation model (as compared to the real-world system) and aim for a 1:1 scale, i.e.
more than 750 000 individual OBUs within the simulation and a realistic behavior
on the network layer. Therefore the typical time-scales within the simulation are on
the order of 100 ms. However, the business processes of interest have a typical time-
scale of one to two months: e.g. map and software updates are intentionally spread
over many weeks to be able to reach HGVs that are operating outside of the German
mobile network coverage.

As a consequence the simulation performance must allow to simulate at least
three consecutive months of a realistic driving pattern with a full-size vehicle fleet.
Using the simulation as part of the design process or to validate changes to the sys-
tems’ configuration necessitates that a typical simulation run delivers results within
the business day. Unfortunately, the tools used do not yet allow the automatic distri-
bution of the simulation across several CPUs (or even CPU cores).

The initial implementation of the simulation model with MLDesigner led to vari-
ous performance bottlenecks due to the large number of OBU objects and scheduled
events within the simulation. The extraction of the OBU logic from the simulation
model to conventional C++ classes alleviated the performance degradation and the
memory usage. Changing the model implementation and switching to the MSAr-
chitect simulation framework we were able to increase the fleet-size to realistic
scales. A prerequisite is a detailed understanding of the performance issues present
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in the simulation model and the tools used for execution. Therefore the remainder of
the article focuses on benchmarking of simulation tools or identifying performance
hotspots in a given simulation model.

3 Evaluation of Discrete Event Simulation Performance

3.1 Importance of Performance

It is well known [20, 21] that software-intensive systems evolve towards ever in-
creasing complexity – fulfilling more user requirements, interfacing with additional
other systems and of course requiring ever more lines of code. Modeling and simula-
tion methodologies and technologies [5] can be applied to design, analyze, evaluate,
validate and optimize such systems – far in advance of the actual implementation.
Executable models are created as blueprints of the new system and are used as func-
tional (“virtual”) prototype. At an early stage of the design process these virtual
prototypes give insight into the systems’ behavior e.g. regarding the scaling prop-
erties, the advantages and disadvantages of the system topology. At any time simu-
lations can be used to explore operational scenarios (especially those exceeding the
systems’ specification) and the inherent risks (operational and procedural).

In this context simulation performance needs to keep up with the enormous com-
plexity increase of executable models, which in turn follows the complexity increase
of systems and processes. In addition, executable models should include a high level
of detail. Together with systems including a large number of active components (e.g.
users, machine-to-machine networks) this results in a complex simulation model –
both from a static and dynamic perspective.

In a business context, the simulation is often part of an optimization process, i.e.
the optimal solution is determined by iterative optimization loops. In that case many
steps consisting of a complete simulation run (possibly including test batteries) need
to be evaluated to determine the optimal solution. Of course this approach is ben-
eficial only if the simulation results are both reliable and available well in advance
of traditional software engineering approaches. Hence simulation performance in
terms of speed and memory consumption and its benchmarking became a critical
aspect in system design.

3.2 Performance Benchmarking

There exist several approaches for benchmarking simulation performance, espe-
cially kernel benchmarks and application benchmarks are common [34, 35]. A ker-
nel benchmark consists of several, typically smaller test cases where each test case
stresses a single elementary function of the simulation kernel (see fig. 5). There-
fore kernel benchmarks are useful to analyze the built-in performance of low-level
mechanisms. The results are typically weighted according to their importance for a
given application domain – however, the predictive power of kernel benchmarks for
real-world application performance is limited. To compare application performance,
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the benchmark measurements include a number of real-world examples from the ap-
plication domain. The selected applications should exhibit different characteristics
and represent typical challenging workloads.

Source Sinkfunction

Fig. 5 Basic test model for kernel-level bench-
marks used to test elementary functions

In the Toll Collect example we
started with an existing simulation
model using a given simulation tool
(MLDesigner). To achieve the neces-
sary performance (as outlined in sec-
tion 2.3) both kinds of benchmarks
were used: A low-level analysis of the
simulation kernel allows to identify
performance bottle-necks in the exist-
ing simulation model and tool. In ad-
dition the kernel benchmark is easily
adopted toward different simulation tools. Section 4.2 gives a description of the ker-
nel benchmarks used to benchmark a total of five different DES simulation tools,
followed by a comparison and discussion of the kernel benchmark test results.

As a consequence of the kernel benchmark results the Toll Collect simulation
model was ported to a second simulation tool – requiring considerable effort and
expertise (both of the simulation model and tool). Having the same simulation model
implemented for two different simulation tools allows for direct comparison and
benchmark at the application-level (as shown in section 5.1).

4 Kernel-Level Benchmarks

DES simulations are typically split into the simulation environment and the simu-
lation model. The simulation environment itself is used to create models (using an
interactive and graphical user interface), to execute existing simulation models and
possibly also to visualize the progress and results of a simulation run. The simula-
tion model itself contains all static model entities, their relationships and methods
to handle events during the model execution. Thus the simulation model determines
the dynamic properties of a simulation run, e.g. the number of entities present during
the model execution and the number of events created.

4.1 Simulation Kernel Benchmark Tests

Since the execution control resides with the simulation kernel, the implementation
of event handling (especially the future event list (FEL) and its update mechanism),
the data and memory handling (e.g. pass-by-reference vs. pass-by-value, garbage
collection) and the use of caches determines the simulation kernel performance.
Similar to [13] we include the following elementary factors in our kernel-level
benchmarks:
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• FEL management: The event scheduling mechanism is the core of any discrete
event simulation determining the dynamic behavior of the simulation. At any
given time the model entities create new events scheduled to take place in the
future and sometimes cancel existing future events as well. The crucial perfor-
mance factor of a DES simulation kernel is therefore the handling of the fu-
ture event list. Its management can be more time consuming than the actual data
manipulation.

• Memory and data type management: The allocation and maintenance of tokens
and memory for dynamic model entities is an important issue. The event han-
dling will inevitably deal with the creation and deletion of a large number of
events, events passed between model entities usually need to transport additional
(application-level) data between the entities, possibly necessitating the casting
between data types (incurring an additional overhead). The efficient storage of
the information will directly affect the simulation performance. A pass-by-value
approach will incur additional overhead (due to the necessity of duplicating the
data). A pass-by-reference implementation of the FEL management algorithms
processing the tokens representing an events should yield better performance
– especially if the simulation entities are only referenced from the event to-
kens. Dealing with memory allocations can be improved by the use of caching
mechanisms.

• Pseudo-random number generator performance: A basic requirement of DES
simulation execution is the ability to use random numbers to achieve a “non-
deterministic” behavior. A typical DES tool includes generators for several dif-
ferent random number distributions. It is critical to be able to use large streams
of pseudo random numbers.

• Arithmetic operations: The actual data manipulation is given by arithmetic opera-
tions either in an imperative or functional language. This programming language
needs to be executed at runtime and can become a performance bottleneck if
the chosen programming language does not allow compilation to the underlying
CPU architecture.

In addition the ability to generate reports or to export reporting data is a basic
requirement for any DES simulation. Creating the reports and the underlying data
can incur considerable additional computational expense. However, the reporting
requirements are typically driven by the application domain. Therefore we do not
include reporting in our kernel-level benchmark.

4.2 Simulation Kernel Performance Tests

We present five different test models for DES simulation kernel benchmarks, ad-
dressing all elementary factors presented in section 4.1. These models are applied
later to investigate and compare DES kernel performance. The models have been
kept simple in order to assure universality regarding different kernels/tools and to
avoid possible side effects.
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4.2.1 Simulation Scaling

Source
Sink

Hierarchy
Levels

Fig. 6 Test model for simulation scaling

A simulation model with several hi-
erarchy levels (fig. 6) is simulated in
a sequence increasing the total num-
ber of events, while the size of the
future event list remains fixed. This
test determines whether the FEL per-
formance is affected by the FEL size.
The test used a clock interval of one
and the number of events processed
increased from 0.1 ·106 to 10000 ·106

events.

4.2.2 FEL Size Scaling

The second test uses the generic simulation model of fig. 5 with a delay-function.
The delay is used to easily configure the (average) number of events waiting in the
future events list with minimal variance, while the total number of events processed
remains constant. This test examines the overall performance of the FEL algorithm
and data management. We used a uniform distribution of events in the FEL list. Of
course, the test can be extended toward non-uniform events distributions, in order to
check adaptability of the FEL algorithm on different events densities.

For this test we use a clock interval of one, a fixed number of processed events
(300 · 106) and configure the delay-function to produce a given size of the future
events list (between 106 to 107 events, constant over single experiment).

4.2.3 FEL Adaption

This test extends the future events list size during one test run by changing the
parameter of the delay-function dynamically during the simulation execution. The
test extends the previous test model by additional single events used to change the
parameter of the delay-function (see fig. 7). As a consequence the size of the FEL
changes during the test run forcing the simulation kernel to adapt the FEL size (e.g.
allocating and deallocating memory) during the simulation run.

The test uses a clock interval of one and a dynamic delay-function parameterized
to give a dynamic FEL size of 1000 – 106 – 100 – 107 – 10 events during the
simulation run. In total one test run consists of 200 ·106 processed events.

4.2.4 Memory and Data Type Management

The test creates large data arrays of different sizes and passes the data through
the simulation model in sequential or parallel order as depicted in figure 8. When
executing the model the memory management of the simulation kernel should
recognize the passing of unmodified data and use references to this data. Ideally
only one datum should be created and send as reference through the model. As
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Source SinkDelay

SE

SE

Fig. 7 Test model for FEL adaption with additional single events (SE)

long as the delays are set to zero, no difference between serial and parallel passing
should be recognizable. The test uses a fixed number of nodes (delay blocks) either
in a parallel or serial configuration and data arrays with 1, 0.5 . . .2 ·106 entries.

4.2.5 Random-Number Generator Performance

A large number of random values is generated using different distributions. The
model uses a constant function as a reference to measure relative performance of
the built-in pseudo-random-number generators. The test computes 20 · 106 random
numbers of different random number distributions (normal distribution, Poisson dis-
tribution and exponential distribution).

Source SinkDelay Delay Delay

Source SinkDelay

Delay

Delay

Fig. 8 Test model for memory and data type management for sequential (top) and parallel
(bottom) processing



Evaluation and Enhancement of Simulation Performance 13

4.3 Evaluation of Simulation Kernel

Each test model is simulated with a set of simulation parameters using different
system design tools. Currently more than 80 tools listed for DES [1]. We selected six
system design tools for evaluation: Ptolemy II, Omnet++, AnyLogic, MLDesigner,
SimEvents and MSArchitect. All tools were run in serial mode (DES, not PDES) on
an Intel Core i7 X990 at 3.47 GHz with 24 GiByte RAM using either Windows 7
Enterprise (64 bit) or openSuse 11.4 (32 bit, kernel 2.6.37.6). Performance data was
recorded with Perfmon on Windows and sysstat and the Gnome System Monitor on
the Linux system.

Fig. 9 gives the results of the Runtime Scaling test. The upper chart shows the
event processing performance for different simulation lengths and the bottom chart
the private memory consumed during simulation. The tests show that neither the

Fig. 9 Runtime performance (top) and memory usage (bottom) scaling of different DES
tools
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memory consumption nor the event processing performance is affected by increas-
ing the simulation runtime. Looking at the sensitivity of running the tests with ad-
ditional hierarchy levels we find that only OMNeT++ is sensitive to the additional
hierarchy levels. However, from the test results it is already obvious that the different
tools vary in event processing performance by an order of magnitude: MSArchitect
provides the highest speed. MLDesigner, AnyLogic and OMNeT++ provide 25% of
the speed (compared to [6] the MSArchitect performance improved by more than
30%). Ptolemy II is twenty times slower. Looking at the memory usage during the
simulation the difference between the tools is again more than an order of magnitude
– the slowest tool using the most memory and the fastest tool using the least. Two of
the tools (Ptolemy II and AnyLogic) are based on the Java programming language,
where explicit memory deallocation is not possible. Apparently the Ptolemy II test
run triggers the JVM garbage collection during the simulation run and is able to free
90% of its memory. As a result Ptolemy II memory consumption is then compara-
ble to the next three simulation tools. The AnyLogic test run starts already with a
much lower memory consumption than Ptolemy II and no effect of JVM garbage
collection is visible.

Fig. 10 gives the results of the FEL Size Scaling test. As expected, a system-
atic performance decrease can be observed with increasing FEL size, due to the
increasing overhead for FEL management. Most of the tools tested initially start
with relative constant performance (on a log-log scale). With increasing FEL size
three of the five tools develop drastic performance degradation. This coincides with
a rapid grow of memory consumption with increasing FEL size. We propose that the
performance reduction is correlated with increased FEL memory usage due to a per-
formance penalty of calendar queue based schedulers for large queue sizes. Again,
Ptolemy II has the lowest performance in this test. OMNeT++ is nearly not affected
in the considered FEL size interval. In absolute numbers, MSArchitect has the best
test performance and the lowest memory usage until FEL size 106. Subsequently
the memory usage of MLDesigner is lower since MSArchitect runs in 64 bit mode
which in fact means a higher memory demand due to larger address ranges. But in
our benchmark MLDesigner stops working for FEL sizes above 15 ·107. We tested
MSArchitect successfully with a FEL size of 108.

In the FEL Adaption test the simulation kernel is subjected to a varying demand
to its FEL. Beyond the runtime needed for the test the main result is the memory
consumption during the test run as given in fig. 11. The simulation took 2 276s
with MLDesigner, 673s with AnyLogic, 192s with MSArchitect, 395s with OM-
NeT++ and over 2 hours with Ptolemy II. During that time the dynamically changing
memory usage varies widely between the different tools. Most tools tend to allocate
memory in chunks visible as steps in fig. 11. Again, Ptolemy II is the slowest tool in
comparison and also requires more memory than any other tool in the benchmark.
The memory usage of OMNeT++ indicates the ability to dynamically free already
allocated memory. However, this simulation tool also allocates considerably more
memory than any of the other tools for a brief period of time during the test run.
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Fig. 10 Future event list size scaling test results for runtime performance (top) and memory
usage (bottom) scaling of different DES tools

The Data Type Management test passes large arrays of data through the simula-
tion running either in a parallel or serial configuration. The memory consumption
during the test run is shown in fig. 12. Most tools handle serial and parallel passing
of token data in a different way, which can be recognized by the gap in memory
consumption between both serial and parallel versions. Ptolemy II and MSArchitect
do not show a difference between the parallel and serial version, only references are
passes when only delays are used. However, Ptolemy II requires more memory and
shows a different behavior according to the memory allocation: a large portion of
the memory is allocated at initialization time with standard modeling elements.

The last test is the Random Number Generation test. As depicted in fig. 13 the
performance does not depend on the type of the generated distribution, since there
are only minor differences to the generation of constant numbers. Again, Ptolemy II
is an order of magnitude slower than OMNeT++, AnyLogic and MLDesigner in this
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Fig. 11 Test results for future events list adaption

Fig. 12 Test results for the memory consumption during Data Type Management test case

test. MSArchitect gives the highest performance compared to the other tools. It is
not clear whether the pseudo-random number generator (PRNG) algorithm differs
between the five simulation tools or if the PRNG performance is adversely affected
by event management overhead. Since this test relies on the correct implementation
of the PRNG, i. e. we do not check the statistical quality of the random numbers
generated, the test results might not be fair if one of the tools were to use low-quality
but high-speed generators.

It can be concluded, that Ptolemy II is inferior in all simulation kernel bench-
marks performed. MLDesigner is equal to or better than AnyLogic in all categories
but FEL adoption. Due to the utilization of the JVM, AnyLogic requires more mem-
ory in equivalent models and therefore scales worse with increasing FEL size. Both,
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Fig. 13 Test results for random number generator scaling

MSArchitect as well as OMNeT++ show the best performance in some categories.
MSArchitect is the fastest simulation kernel in most categories and requires least
memory for data handling.

5 Enhancing Simulation Performance of the Toll System Model

While section 4 focused on the performance evaluation of DES kernels we now
focus on the application-level performance, i.e. how to specify efficient executable
DES models.

5.1 Evaluation of Model Architecture

A simulation model can be thought of as a (simplified) copy of an existing or imag-
inary system, created for a certain purpose. The model and the process of creating
the model are a key to learning and communicating about the system itself. This
implies that the right level of abstraction needs to be found so as to include only the
system behavior relevant to the models’ purpose. Bearing this in mind the most im-
portant rule in designing efficient models can be derived: The level of detail always
follows the model purpose. For instance it makes a huge difference for choosing
the appropriate level of detail when designing a data transmission model compared
to modeling a rather abstract business process. Of course, any useful model must
be connected in some way to the reality. A second point directly connected to that
rule is to focus on measurable system behavior. Otherwise the model could become
worthless when using it for analyzes and optimization.
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Designing the simulation model directly affects the runtime properties (e.g. per-
formance and memory consumption). From a technical point of view the perfor-
mance of a model can be improved considerably by addressing several issues:

• the number of simulation entities present during the simulation run,
• the data transport between model components to reduce the number of DES

events and
• the execution time and memory consumption of the model components.

Hence whenever possible, highly interacting model components should be merged
together to avoid the time consuming data exchange via the simulation kernel. In
addition data should always be transmitted in form of references/pointers (pass-by-
reference). References are values that enable indirect access to a particular datum,
indistinct from the data itself. They are used to efficiently pass large or mutable data.
In that way the time-consuming and unnecessary copying of data is avoided.

The simulation kernel benchmarks in the previous section identified the future
events list as a key factor in the kernel performance. The tests were designed to
continuously create new events leading to different FEL sizes. Creating, scheduling
and passing events is certainly the key feature of DES simulation kernels. However,
a simulation model sometimes needs to be able to cancel scheduled future events
before they are executed. Many simulation tools lack a good implementation for
canceling events from the FEL, possibly needing to traverse the whole FEL in the
search of the canceled event and possibly triggering memory reorder after removing
the canceled event from the FEL. Obviously, simulation runs with a large FEL are
more affected.

The performance of simulation models can be improved by transferring part of
the simulation model to existing standardized model components or even extending
the simulation tools’ existing catalog of standard components.

5.2 Performance Enhancement to Our Solution

As the project of modeling the German toll system was launched our team had
no clear picture of the coming performance issues: Existing simulation models of
HGV tolling systems both at Toll Collect and in the literature were limited to a
few thousand simulated HGVs [16, 22] and reaching 500 000 HGVs over a 4 week
period [23]. Our model aimed to include a more detailed behavior and a vehicle fleet
almost two orders of magnitude larger (comparable but still larger than simulations
of metropolitan car traffic, e.g. [14] using 200 000 drivers with a shorter simulated
time frame).

After putting together and validating the basic DES model in MLDesigner, in-
cluding the dynamic behavior of the vehicle fleet, mobile providers and central sys-
tem we tried to scale up to the real world situation. This meant to run simulations
of vehicle sizes of up to 750 000 HGVs over a simulated time period of at least 3
months. The disappointing simulation performance results are shown in the second
column of table 2. The desired scenario took about 49 million seconds, over 6 times
slower than reality, an unacceptable result.
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Table 2 Simulation performance for the Toll
Collect example with a simulated time period
of three months

Runtime [s]
fleet size MLDesigner MSArchitect
70 000 0.25 M 900

700 000 49.00 M 8 700

By transferring the model from
the system design tool MLDesigner
to MSArchitect the simulation per-
formance could be increased dramat-
ically. On the one hand the through-
put of events is about 3.5 to 4 times
higher in MSArchitect (as confirmed
by the kernel benchmarks in section
4). On the other hand we recognized
huge performance issues in the man-
agement of complex data structures in MLDesigner. We analyzed the differences by
comparing the simulation performance of using MLDesigner data structures versus
using pointers to external C++ classes for data transport (the default in MSArchi-
tect). In total the transfer of our simulation model from MLDesigner to MSArchitect
brought a 120-fold speed increase.

On top we redesigned our model architecture. First of all removing all “cancel
event” operations from the model – being rather expensive operations in both sim-
ulation tools. The canceling of events was replaced by introducing an additional
boolean tag to store whether the next receiving event is ignored or not. By doing so
the overall amount of events in the FEL is increased and more memory is needed
but time consuming cancel operations can be avoided.

Next we removed several retry processes between vehicle fleet and mobile data
network providers and merged heavily interacting model components to minimize
data transport across the simulation kernel. In addition we switched to the data struc-
ture mechanism of MSArchitect which automatically uses references when sending
or receiving unchanged data tokens.

In total a further significant performance increase could be achieved. The right-
most column of table 2 shows the results of two different scenarios executed with
MSArchitect. Simulating the scenario stated above (750 000 HGVs over a three
months period) took about 8 700 seconds. Thus the simulation speed could be in-
creased by a factor of 5 630 compared to the initial runs using MLDesigner. It is
noteworthy that the model used with MSArchitect also includes additional addi-
tional functionality of the German toll system.

6 Profiling of the Simulation Model

To evaluate the application-level simulation performance of our model of the Ger-
man toll system, we use both the kernel logging capabilities of MSArchitect and
an external profiling application (Intel VTune). Kernel logging allows to count the
number of calls of atomic models as well as the total number of samples (corre-
sponding to a processor cycle). The external profiler allows measuring the space
complexity (memory), the time complexity (duration, CPU time) and the usage of
particular instructions of a target program by collecting information on their exe-
cution. The most common use of a profiler is to help the user evaluate alternative
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implementations for program optimization. Based on their data granularity, on how
profilers collect information, they are classified into event based or statistical profil-
ers [15]. We’ve selected the statistical profiler Intel VTune Amplifier XE and con-
nected it to the generated C++ runtime representation of our model. As test envi-
ronment, an Intel Core i7 K875 at 2.93 GHz with 8 GiByte RAM and Windows 7
Professional (64 bit) installed has been used. To profile the simulation model we
take the simulation scenario used to verify the simulation model against real-world
data (Apr 2012 to Jan 2013).

6.1 Profiling with MSArchitect

In a first step we apply the kernel logging capabilities of MSArchitect resulting in
a file with profiling information at the end of the simulation run. Tab. 3 shows an
excerpt of the file, containing all atomic blocks relevant to analysis (15 out of 65).
Since during simulation all composite blocks are resolved to directly communicat-
ing atomic blocks, the table only contains atomic blocks of the simulation model.
For each atomic block the table shows the number of calls, the accumulated count of
samples, the time required in relation to other atomic blocks and the samples needed
for one call.

First of all, the atomic block AccessSessionStateSwitch is striking,
since it consumes a large amount of time due to the high number of calls. The
block is responsible for switching OBU data structures in response to its state to one
of the output ports. As the block switches between 34 states, 539 samples per call
are acceptable. Nevertheless the number of calls could be reduced for performance

Table 3 MSArchitect kernel performance logging results

Atomic Block Calls Samples Time Samples
[M] [G] [%] per Call

AccessSessionStateSwitch 19 980 10 760 10,89 539
ExternDStxt 0,0007 9 565 9,68 13 665 M
StaHandling 482 6 503 6,58 13 483
EinzelbuchungsHandling 4 660 6 442 6,52 1 382
IpAutomat 7 323 5 749 5,82 785
Delay (Standard) 8 874 5 522 5,59 622
CheckComponentState 7 363 3 859 3,91 524
NetzverlustHandling 3 020 3 479 3,52 1 152
AccessSessionStateWrite 5 841 3 215 3,26 551
MfbSwitch 5 525 3 196 3,24 579
Nutzdaten 3 563 2 694 2,73 756
TcmessageCopy 2 030 2 010 2,03 990
TcpAutomat 1 291 1 533 1,55 1 187
TimedAllocate 2 570 1 484 1,50 578
SimOutObuVersions 0,017 1 509 1,53 89 M
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improvement by changing the model architecture – especially once the model is
ported to the parallel DES core, it is an obvious block for introducing parallelism.

The next conspicuous atomic block is ExternDStxt, reading the pre-generated
files provided by the scenario generator model as ASCII file. The block consumes
13 665 M samples/call and is rarely executed (700 times, i.e. twice per simulated
day) resulting in a time consumption of 9,681% of the time. In order to reduce the
load, scenarios should be computed on the fly. The atomic block StaHandling
is responsible for generating and controlling status requests, which may result in
update processes. The block consumes 6,581% of simulation time. We see potential
for improvements in changing the implementation (e.g. conversion of formulas to
save operations, replacing divisions by multiplications with reciprocal and using of
compare functions from standard libraries).

With 4 660 M calls EinzelbuchungsHandling is a frequently executed
atomic block. After analyzing the implementation we find 1 382 samples/call ac-
ceptable. The block depends on the random number generator and would benefit
from faster random number generation algorithms. The atomic block SimOutObu
Versions cyclically writes the software, region and tariff version of all OBUs to
an output file. In our scenario we simulate 50 weeks and write data every 30 min-
utes, resulting in 16801 calls. 89 M samples/call seems to be quite costly and offers
room for improvement.

In summary the simulation of the scenario took 98 811 263 M calls. Of these, the
model components consumed 84,51% and the simulation kernel (logical processor)
15,49%.

6.2 Profiling with Intel VTune

In the second step we apply the profiling application Intel VTune [18]. The external
profiler catches the activities of both the simulation kernel and the simulation model
(denoted as “K” or “M” in tab. 4).

An excerpt of the results is shown in tab. 4. For each function the CPU time
in percent, the amount of needed instructions (instructions retired), the estimated
instruction call count, the instructions per call on average and the last level cache
miss rate (0,01 means one out of one hundred accesses takes place in memory) is
shown.

Most of the CPU time is consumed by kernel functions responsible for data
transport. These functions are grouped by component (resp. namespace msa.sim.
core, denoted as “K” in the first column of tab. 4). In total these functions con-
sume 61,1% of the CPU time. Conspicuous is the relative high last level cache miss
rate of function EventManager.enqueueEventwith 3,2% and the number of
instructions needed per call LogicalProcessor.mainLoopFastwith 2 379.
However, the number of calls depends on the dispatch of data within atomic model
components, which are grouped in form of user libraries. In our model we have two
user libraries: GPRSSimulation (GPRSSimulation.Components.Atomics,
denoted as “M” in the first column of tab. 4) and Standard (msa.Standard.
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Table 4 VTune profiling results for simulation kernel (K) and model (M) ordered by CPU
time. Shown are the CPU instructions retired (IR), estimated call count (eCC), instructions
per call (IPC) and last level cache miss rate (MR).

Function Time IR eCC IPC MR
[%] [G] [M] [%]

K Port.send 9,0 44 689 65 0,4
K EventManager.enqueueEvent 7,7 21 92 237 3,2
K LogicalProcessor.mainLoopFast 7,0 17 7 2 379 0,3
K EventManager.dequeueEvent 6,3 104 2 517 41 1,1
K big. mul<unsigned int> 5,0 103 2 611 40 0,3
M StaHandling.Dice 4,8 12 11 1 097 0,1
K EventManager.scheduleEvent 3,5 53 1 286 42 0,2
K Any.extractToken 3,0 70 1 805 39 1,7
K Pin.popFrontToken 2,8 49 1 234 40 0,2
K EventManager.bucketOf 2,7 17 327 55 0,0
K Any.operator= 2,5 54 1 403 39 0,2
K Any.create 2,3 64 1 689 38 0,4
K random.tr1.UniformRng.getNextV 2,2 39 961 41 0,2
K Any.doClear 2,1 22 497 45 0,2
K Tokenizer.nextToken 1,8 22 606 36 0,3
K TemplatePort<Tcmessage>.receiveToken 1,7 29 726 40 0,3
K TemplateTypeInfo<EventData>.createToken1,6 84 2 326 36 2,1
M AccessSessionStateSwitch.run 1,5 13 287 48 0,2
M EinzelbuchungsHandling.run 1,4 5 66 87 7,2
M IpAutomat.run 1,4 7 103 70 3,4
K Pin.popFront 1,3 6 89 74 0,3

Control). The latter is a support library included in MSArchitect. Combined they
are responsible for 20,1% of CPU time consumption. Performance critical and start-
ing point for improvement is the function StaHandling.Dice with 1 097 in-
structions per call and a CPU time consumption of 4,80%.

Both, kernel logging and profiling showed that most of the resources are utilized
by functions responsible for data input/output (data mining) and functions respon-
sible for transmission and processing of tolling information. By doing the analy-
sis we located multiple components with potential for optimization, e.g. Access
SessionStateSwitch and StaHandling. Furthermore we came to the con-
clusion to generate scenarios on the fly since the reading of pre-generated scenario
files is as time consuming. Relating the resource utilization of model components
to real-word applications we could recognize a weak correlation. Model compo-
nents like STAHandling, EinzelbuchungsHandling and IPAutomat are
abstractions of important real word system applications and crucial to performance
in both worlds.
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7 Summary and Outlook

Extending [6] we have shown how to analyze the performance of DES simulations:
Generic benchmark test-cases allow a simple and direct comparison of different
simulation tools. Not surprisingly the tools differ vastly as to their time and memory
consumption. However, the benchmark results cannot be transferred to the appli-
cation domain: The workload generated by a given simulation model determines
in large part its performance. Taking an existing simulation model of a large-scale
technical system we performed an in-depth performance analysis for one simulation
tool using both the performance analysis methods provided by the simulation kernel
and an external profiler with access to the CPU hardware profiling support.

Both profilers immediately identify the same bottleneck: Reading the ASCII-
formatted pre-calculated driving patterns from disk. Further analysis showed that
calculating the driving patterns is less time-consuming than storing them on disk.
Consequently the simulation model is now integrated with the scenario generator.
This in turn will allow implementing an optimization algorithm to fit the driving
patterns to the observed system behavior – a feature that we expect to drastically
improve the accuracy of the simulation results for the short-term behavior [32].

The hardware profiler catches both the application-level methods as well as the
atomics provided by the simulation kernel (with or without access to its source
code). Taking the workload generated by this application we can start to tune the
behavior of the atomics to improve the overall performance. Looking e.g. at the
cache miss rate we find some simulation kernel routines and several application-
level methods with a considerable probability of needing access to the main mem-
ory. We take this as starting point for future improvements.

MSArchitect, the simulation kernel used in the application benchmark, is cur-
rently extended to allow the automatic model reduction and (semi-) automatic par-
allelization of simulation runs. The single-core benchmark performed here will be
the baseline to measure the improvements against.
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[28] Pfitzinger, B., Baumann, T., Jestädt, T.: Network resource usage of the german
toll system: Lessons from a realistic simulation model. In: 46th Hawaii Inter-
national Conference on System Sciences (HICSS), pp. 5115–5122. IEEE (2013),
doi:10.1109/HICSS.2013.415
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