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Abstract. Both the fuzzy measure and integral have been widely stud-
ied for multi-source information fusion. A number of researchers have
proposed optimization techniques to learn a fuzzy measure from train-
ing data. In part, this task is difficult as the fuzzy measure can have
a large number of free parameters (2N − 2 for N sources) and it has
many (monotonicity) constraints. In this paper, a new genetic algorithm
approach to constraint preserving optimization of the fuzzy measure is
present for the task of learning and fusing different ontology matching
results. Preliminary results are presented to show the stability of the
leaning algorithm and its effectiveness compared to existing approaches.

Keywords: Fuzzy measure, fuzzy integral, genetic algorithm, ontology
matching.

1 Introduction

The fuzzy integral (FI), introduced by Sugeno [14], is a powerful tool for data
fusion and aggregation. The FI is defined with respect to a fuzzy measure (FM).
The FM encodes the worth of different subsets of sources. Successful uses of the
FI include, to name a few, multi-criteria decision making [6], image processing
[15], or even in robotics [12].

It is well-known that different FMs lead the FI, specially the Choquet FI, to
behave like various operators (max, min, mean, etc.) [15]. In some applications,
we can define the FM manually. However, in other settings, it may only be pos-
sible to define the densities (the measures on just the singletons) and a measure
building technique is used e.g., a S-Decomposable measure such as the Sugeno
λ-fuzzy measure. It is also very difficult, if possible at all, to specify a FM for
relatively small N (number of inputs), as the lattice already has 2N − 2 free pa-
rameters! (e.g., for N = 10 inputs, 210 − 2 = 1022 free parameters). Also, input
sources can be of different nature. For example, we may fuse values from sensors
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with algorithms outcomes. In such problems, it is hard to determine the impor-
tance of each input data source. Thus, many data-driven learning methods are
used to learn the measure. One method is to use a quadratic program (QP) to
learn the measure based on a given data set [6]. Although the QP is an effective
approach to build the measure using a data set, its complexity is relatively high
and it does not scale well [10]. Other optimization techniques have been used to
reduce the complexity and improve performance, e.g., genetic algorithms (GA)
[2]. The goal of this article is to design and implement a GA to learn the full FM
from ontology similarities. The main contribution of this article includes: the
investigation of new constraint preserving operators (crossover and mutation) in
a GA that overcome drawbacks of prior work. The application of this theory is
to learn a FM to fuse multiple similarity techniques in the context of ontology
matching.

2 Related Work in Ontologies

A number of works have been put forth in the literature regarding combining
several ontology matching techniques. In [18], Wang et al. used Dempster Shafer
theory (DST) to combine results obtained from different ontology matcher. Each
result is treated as a mass function and combined using the Dempster’s Com-
bination Rule. It is not clear that DST is the correct fit because in DST one
typically only has access to a limited amount of evidence in different focal sets.
However, the authors appear to have access to all information in the form of on-
tology term matching matrices. Other papers, such as [9,17], have used a GA to
learn the weight of each matching algorithm for an operator like a weighted sum.
Herein, an improved set of constraint preserving GA operators are put forth and
more powerful non-linear aggregation operator, the FI, is investigated.

3 Fuzzy Integral and Fuzzy Measure

For a set of N input sources, X = {x1, x2, ..., xN}, the discrete FI is:

∫
s

h ◦ g =

N∨
i=1

(
h(xπ(i)

) ∧G(xπ(i)
)
)
, (1)

where h is the partial support function, h : X → [0, 1], h(xπ(i)
) is the evidence

provided by source π(i), π is a re-permutation function such that h(xπ(1)
) ≥

h(xπ(2)
) ≥ ... ≥ h(xπ(N)

). The value G(xπ(i)
) = g({xπ(1)

, xπ(2)
, ..., xπ(i)

}) is

the measure of a set of information sources. Note,
∫
s
h ◦ g is bounded between[

N∧
i=1

h(xi),
N∨
i=1

h(xi)

]
and it can be explained in words as “the best pessimistic

agreement”.
The FM can be discussed in terms of its underlying lattice. A lattice is induced

by the monotonicity constraints over the set 2N . Each node or vertex in the
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lattice is the measure for a particular subset of sources, e.g., g({x1, x3}). Figure
1a is an illustration of the FM for N = 3. Formally, a FM, g, is a set-valued
function g : 2X → [0, 1], where g(∅) = 0, g(X) = 1, and for A,B ⊆ X , such that
A ⊆ B, g(A) ≤ g(B) (the monotonicity constraint).

(a) Lattice view of a FM.
(b) Interval view of a monotonicity con-
straint.

Fig. 1. (a) FM lattice for N = 3 and (b) possible values for g({x1, x3}) for a given
g({x1}) and g({x3})

4 Preserving FM Constraints in a Genetic Algorithm

Many previous attempts exist to address constraint satisfaction in a GA. Typ-
ically, a penalty function is used to reduce the fitness of solutions that violate
constraints [11]. However, even if infeasible solutions are close to an ideal mini-
mum, it is not clear why or how to really balance the cost function to eventually
help it converge to a quality valid solution. In the FM, we have an exponentially
increasing number of constraints in N . It is a highly constrained problem. It is
not likely that we will end up obtaining a valid FM for such a heavy constrained
problem (or that one such infeasible solution could simply be made a quality
feasible solution at the end). Therefore, penalty function strategy becomes very
risky to use and will restrain the search space. Many researchers avoid dealing
with the FM constraints by designing a GA that learn only the densities. Then,
the rest of the lattice is populated using a measure deriving technique such as
the Sugeno λ-fuzzy measure. However, a better solution is to design a more intel-
ligent set of GA operators for the constraints in a FM so we can efficiently search
just the valid FM space and operate on valid FMs. Since all chromosomes in a
population are always valid (started and remained valid by using our crossover
and mutation operators), we did not have to modify the selection process. Only
crossover and mutation need be defined to preserve the monotonicity constraints.
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4.1 Constraint Preserving Crossover for the FM

In this subsection, a new GA crossover operation is described that preserves the
monotonicity property of the FM. First, g(∅) and g(X) need not be considered
as they are 0 and 1 by definition. It is the remaining 2N − 2 lattice elements
that we are concerned with. In order to ensure a valid FM after crossover, we
decompose the FM into a set of interval relations that present the allowable
bounds for crossover. For example, consider a set {x1, x3} of sources, {x1} and
{x3}, such that g({x1}) = a, g({x3}) = b and g({x1, x3}) = c. We know from
the FM that max(a, b) ≤ c. Figure 1b illustrates the valid interval ranges that
a, b and c can posses in order to remain a valid (credible) FM.

Definition 1 (Intersected and non-inclusive intervals). Let d = [d1, d2],
e = [e1, e2] be two intervals such that d ∩ e 
= ∅. Let d be the smaller of the
two intervals, i.e., d2 − d1 < e2 − e1. If d1 ≤ e1 or d2 ≥ e2 then we call d and e
intersected and non-inclusive intervals.

Note, this property is needed herein in order to identify candidate chromo-
somes to perform crossover on.

Definition 2 (Random density crossover). Let g1 and g2 be two FMs. Let
↔ denote the random selection and swapping of one density from g1, b1 = g1(xi),
and g2, b2 = g2(xj), where i,j are random numbers in {1, 2, .., N}.

Note, by itself, ↔ does not guarantee a valid FM.

Definition 3 (Repair operator for ↔). Let ⇔ (explained in Prop 1) de-
note an operation to repair a violation of the monotonicity constraint caused by
↔.

Even though we discuss crossover of densities (↔), ⇔ has the result that it
impacts multiple layers in the FM. As such, while we only cross two densities,
we are in fact changing many values in a FM. It is important to note that our
⇔ makes use of existing values in the FM to repair any violations in the other
FM. This means no “new” information is injected, rather the values in two FMs
are swapped (in the classical theme of crossover).

Proposition 1: Let g1 and g2 be two FMs withN input sources and let the mea-
sure on the densities {{x1}, {x2}, ..., {xN}} be {g11 , g21, ..., gN1 } and {g12, g22 , ..., gN2 }
respectively. Furthermore, let each measure be sorted individually such that

g
π1(1)
1 ≤ g

π1(2)
1 ≤ ... ≤ g

π1(N)
1 and g

π2(1)
2 ≤ g

π2(2)
2 ≤ ... ≤ g

π2(N)
2 where π1,π2 are

re-permutation functions. Furthermore, we make the assumption that each cor-
responding sorted sub-interval is intersected and non-inclusive between g1 and
g2 (Def.1). Then, all admissible ↔ (Def.2), followed by ⇔ (Def.3), operations
are guaranteed to not violate the FM monotonicity property.

Proof: This proposition is proved by considering all possible enumerable cases.
First, we divide the problem into identical sub-problems, and we prove the
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Fig. 2. Two FMs with possible range conditions for swapping values across measures

proposition for the case of one interval pair. Next, this single case is extended
to the case of multiple corresponding interval pairs.

First, g1 and g2 are individually sorted. Then, the intervals [g
π1(1)
1 , g

π1(N)
1 ] and

[g
π2(1)
2 , g

π2(N)
2 ] are divide into sub-intervals, each with two sources i.e., {[gπ1(1)

1 ,

g
π1(2)
1 ],[g

π1(2)
1 , g

π1(3)
1 ], ..., [g

π1(N−1)
1 , g

π1(N)
1 ]} and {[gπ1(1)

2 , g
π1(2)
2 ],[g

π1(2)
2 , g

π1(3)
2 ],

..., [g
π1(N−1)
2 , g

π1(N)
2 ]}. Next, we look at the case of a single corresponding interval

pair between g1 and g2. Let a1 = g
π1(1)
1 , b1 = g

π1(2)
1 , a2 = g

π2(1)
2 and b2 = g

π2(2)
2 .

Since [a1, b1], [a2, b2] are intersected and non-inclusive intervals (Def.1), then we
have two cases (see Figure 2):

a2 ≤ a1 ≤ b2 ≤ b1 (2)

a1 ≤ a2 ≤ b1 ≤ b2 (3)

For case 2, there are four admissible crossover operations:
(1) a1 ↔ a2: no need to swap c1 and c2 and the new intervals are [a2, b1], [b1, c1]
and [a1, b2], [b2, c2].
(2) a1 ↔ b2: Since b2 ≤ b1, the new intervals are [b2, b1], [b1, c1] and [a2, a1],
[a1, c2]. No need to swap c1 and c2.
(3) b1 ↔ a2: Swap c1 ⇔ c2. The new intervals are [a2, a1], [a1, c2] and [b2, b1],
[b1, c1].
(4) b1 ↔ b2: Swap c1 ⇔ c2. The new intervals are [a1, b2], [b2, c2] and [a2, b1],
[b1, c1].
Case 3 is proved the same way i.e., perform ↔ then check the resulted intervals
and apply ⇔ when required. Because ↔ is applied on one density in each FM,
the proof of the first sub-interval case is easily generalized to the other cases.
Since Def.1 holds, we randomly select one density in g1 to be swapped with a
different randomly swapped density in g2. Then, ⇔ is iteratively repeated up the
lattice to fix all violations resulting from the ↔ operator. At each layer in the
lattice, which means for all measure values on sets of equal cardinality, intervals
are compared and ⇔ is applied when required.
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4.2 Constraints Preserving Mutation

In mutation, a random value in the lattice will be changed. In order not to violate
the monotonicity constraint, the new value of a randomly selected node, should
be greater than or equal the maximum measure of the nodes coming into it and
less than or equal the minimum measure of those it goes into at the next layer.
This is the only required modification to the traditional mutation by restricting
the new value between a minimum and maximum thresholds.

5 Application: Ontology Matching with the Fuzzy
Integral

Ontologies are used in different knowledge engineering fields, for example the
semantic web. Because it is widely used, many redundant ontologies have been
created and many ontologies may fully, or partially, overlap. Matching these
redundant and heterogeneous ontologies is an on-going research topic. A good
survey is presented in [1]. However, the no-free-lunch theorem was proven, i.e., no
algorithm can give the optimal ontology matching among all knowledge domains,
due to the complexity of the problem [1]. In this section, we implement an
algorithm to combine results from different similarity matching techniques using
the FI. So is the claim, if we cannot outright solve it, then aggregate multiple
methods to help improve the robustness of our approach.

Ontology matching is a process, applied on two ontologies, that tries to find,
for each term within one ontology (the source), the best matched term in the sec-
ond ontology (the destination). This problem can be approached using several
mechanisms based on: string normalization, string similarity, data-type com-
parison, linguistic methods, inheritance analysis, data analysis, graph-mapping,
statistical analysis, and taxonomy analysis [9]. In this paper, we fused results
from existing matchers: FOAM ([4]), FALCON ([7]) and SMOA ([13]).

5.1 Genetic Algorithm Implementation

Encoding: Each chromosome is a vector of [0,1]-valued numbers that map
lexographically to a FM e.g., (g1, g2, ..., gN , g1,2, ..., g1,...,N−1). The length of a
chromosome is 2N − 2 (where there are N similarity matching algorithms).
Fitness Function: Semantic precision and recall are widely used to evaluate
the performance of ontology matching algorithms [5].They are an information
retrieval metrics [16] that have been used for ontology matching evaluation since
2002 [3]. Fmeasure is a compound metric that can reflect both precision and
recall, and it is given by the formula:

Fmeasure =
2 ∗ precision ∗ recall
precision+ recall

, (4)

where precision is given by:

precision =
|A ∩R|

A
, (5)
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and recall is given by:

recall =
|A ∩R|

R
, (6)

R is the reference ontology and A is the alignment resulted from the match-
ing technique. First, the most fitted chromosome (FM) is used with the FI to
calculate A. Then, A is used in computing precision and recall. Lastly, Fmea-
sure is obtained from the resulted precision and recall. The goal of our GA is to
maximize the Fmeasure. We linearly scaled the plot (Fig 3) to aid visual display.

Crossover: Crossover is performed in two phases. The first phase checks the
intersection property between the parents’ chromosomes so they will result in a
valid offspring. The second phase performs Def.2 and 3.

Selection: We adopted traditional roulette wheel selection.

Stop Condition: A maximum number of iterations is used as the stopping
condition.

5.2 Experimental Results and Evaluation

Several tests were conducted on the I3CON [8] data set. We compared the per-
formance of our tool with existing tools using the precision, recall and Fmeausre
(see figures 5a, 5b, 5c). Although our approach gives lower precision than FOAM,
FALCON and SMOA individually, it gives a better Fmeasure. This occurs be-
cause we combine several results which reduces precision but increases recall
considerably. Our tool provides a precision of 1 if and only if the precision of all
combined sources is 1. Also, our tool tends to give better results than GOALS.
GOALS uses an OWA operator to combine results from different matchers. We
conducted two experiments on the ”AnimalsA.owl” and ”AnimalsB.owl” using
different OWAs. With an OWA = [0.3, 0.4, 0.3] (OWA = [0.7, 0.2, 0.1] respec-
tively) we get an Fmeasure of 0.8571 (0.875 respectively) while our tool returns
a value of 0.8936. Inconsiderate (underestimated or overestimated) selection of
OWA values dose affect the performance of the system. Since different matchers
give different results on different domains, it is difficult to choose the optimal
selection of OWA that gives the best results. Our system solves this problem by
using the GA to learn the weights. We can learn an OWA if its needed, or any
other aggregation operators, but it does not need to be decided up front.

Also, figures 3a, 3b, 3c, show the convergence of the GA using 10,20, and
30 iterations with crossover rate of 0.1, 0.2 and 0.3. Each graph is the average
fitness value of the population at each iteration. We also report, at each x-
location, the full range bounds (max and min). By comparing the results from
different configurations, we found that a 10% crossover rate with 10 iterations
was enough to achieve the desired results herein. With such configurations, the
GA reached convergence with minimal computational effort. Also, we found that
the range bounds decreases, which reflects convergence over time. Moreover, we
found that all of the plots decrease at some point. This is caused by mutation, in
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which we are exploring a bigger space which may not have a high fitness value. To
determine the performance of the constraint preserving crossover, we conducted
two studies. Study 1 shows the average number of chromosomes that have a

(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a)(b)(c) Analysis of GA behavior and performance for different number of
epochs (10,20,30) and different crossover rates (10%, 20%, 30%.) (d)(e)(f) Average num-
ber of chromosomes with a valid interval property.
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(a) (b)

(c)

Fig. 4. (a)(b)(c) Average number of attempts to find a chromosome with a valid in-
terval property

(a) (b) (c)

Fig. 5. (a)(b)(c) Ontology matching evaluation metrics: precision, recall, Fmeasure

valid interval property (see figures 3d, 3e, 3f). This reflects the applicability of
our crossover model. We notice that the average number of suitable mates tend
to decrease at each iteration. That happens because chromosomes will converge
more at each iteration and will likely violate the interval property. Study 2 is
conducted on the average number of attempts to find a suitable mate to crossover
with (see figures 4a, 4b, 4c). We found that this number tends to increase in



102 M. Al Boni, D.T. Anderson, and R.L. King

average at each iteration because fewer chromosomes will have a valid interval
property. Thus, we have less of a chance to find a valid candidate pair and the
number of attempts increases.

6 Conclusion and Future Work

In this paper we propose a new constraint preserving GA for learning FMs.
Specifically, we proposed a new crossover and mutation operation and different
ontology matching algorithms were fused using the FI learned by the GA. We
showed that our framework can give satisfactory results on different study do-
mains. However, a few challenges need to be extended for future work, e.g., we
would like to explore the use of the shapely index to determine the importance of
each matching algorithm. Also, we will study the use of more than two ontologies
to support the matching between ontologies. Also, the decreasing trend of the
average number of matches raises an important question. What if we had to run
the algorithm for a long time, would we reach a starvation (a case in which we
can’t find a valid candidate to crossover with)? If yes, do we need to relax our
constraints? If we could not, could we design a new operator that can insert new
valid candidates to keep the algorithm moving? Passing multiple populations?
Point being, need to revisit the harsh constraints on learning. Likewise, we would
like to explore the use of island GAs on different populations which may help
increase the chance of success and diversity.
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