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Abstract. In climate science, knowledge about the system mostly relies on 
measured time series.  A common problem of highest interest is the analysis of 
high-dimensional time series having different phases.  Clustering in a multi-
dimensional non-stationary time series is challenging since the problem is ill- 
posed.  In this paper, the Finite Element Method of non-stationary clustering is 
applied to find regimes and the long-term trends in a temperature time series.  
One of the important attributes of this method is that it does not depend on any 
statistical assumption and therefore local stationarity of time series is not neces-
sary.  Results represent low-frequency variability of temperature and spati-
otemporal pattern of climate change in an area despite higher frequency  
harmonics in time series.  

Keywords: Non-stationary time series, Time series clustering, spatiotemporal 
pattern. 

1 Introduction 

Complexity of climate change limits the knowledge about it and therefore decreases 
its predictability even over a few days.  It is complex because many nonlinear va-
riables within the Earth’s atmosphere such as temperature, barometric pressure, wind 
velocity, humidity, clouds and precipitation are interacting.  Analyzing climate sys-
tem in longer timescales and larger areas and also other parameters which influence 
climate (Earth’s surface, Sun, etc.) is complex too.  All of climatic variables are ob-
served in limited number of measurement stations and few times per day and limited 
accuracy, thus our knowledge is restricted to limited time series.  Therefore, methods 
of time series analysis are important in climate [1].  An important characteristic of 
climatic time series is the non-stationarity.  It means that their statistical properties 
are changing during time and a unique model cannot represent the time series.  A 
common problem in this field is the analysis of high-dimensional time series contain-
ing different phases [2].  We assume that the time series has a dynamical model with 
some time dependent parameters.  Then, define a phase (cluster, regime or segment) 
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as a period of time such that during each of these phases, the model parameters are 
constant.  In fact, temporal changes of model parameters take place at a much slower 
speed than the changes in the system variables themselves.  The problem of non-
stationary time series clustering is defined to find these regimes numerically [3]. 

There are many approaches such as Gaussian Mixture Model (GMM) and the Hid-
den Markov Model (HMM) in literature to detect the phases numerically [4], [5], [6]. 
In these approaches, one statistical model is assumed for each regime and then the 
best change points are found by minimizing a cost function in the form of Maximum 
Likelihood.  The cost function is solved by the Expectation Maximization approach. 

In this paper, we use a newly developed method based on Finite Elements to find 
regime changes [7].  The advantage of the FEM method is that it doesn’t require any 
statistical assumption on time series (such as Markovian or Gaussian).  It also has 
intrinsic flexibility to change the persistence of detected regimes.  It means it can 
have longer or shorter regimes by changing some parameters in its procedure.  An 
important characteristic of climatic time series is existence of a linear trend that shows 
whether variables (for example temperature) are rising or falling.  In this work, those 
regimes are detected in the time series that have different linear trends.  When data 
has a linear trend in each cluster, time series is not locally stationarity and other clus-
tering methods can’t solve this problem. 

2 Finite Element Method for Clustering 

FEM clustering is an approach developed to detect regimes in a non-stationary time 
series.  The basic idea is to assume a model for the time series in each regime, and 
then find the best switching times and model parameters by solving an optimization 
problem.  This is common in other clustering approaches too.  The difference is that 
the model in each regime can be a non-statistical model.  Including additional as-
sumption to the cost function makes it possible to solve this problem using the finite 
element method.  Finally, the minimization problem converted to a linear quadratic 
programming (LQP) which is solved iteratively to determine the parameters of inter-
est that include the slope and intercept in each regime. 

Let ݔ௧ be an observed n-dimensional time series defined over period of time ሾ0, ܶሿ.  
Assuming that we want to fit a first degree polynomial in each regime in the form of  ߠ଴௜ ൅ .ଵ௜ߠ  :we can define model distance functional ,(where i is the regime index) ݐ

 ݃ሺݔ௧, ௜ሻߠ ൌ ԡݔ௧ െ ሺߠ଴௜ ൅ .ଵ௜ߠ ݐ ሻԡଶ (1) 

Since time series has K regimes with unknown switching times, the overall cost func-
tion can be defined as:  

෍ න .ሻݐ௜ሺߛ ݃ሺݔ௧, ௜ሻ்ߠ
଴

௄
௜ୀଵ ݐ݀ ୻ሺ୲ሻ,஀ሱۛ ۛۛ ۛۛ ۛۛ ۛሮ ݉݅݊ 

 
(2) 

where Θ is the time-independent set of unknown parameters and ߛ௜ሺݐሻ is the cluster 
affiliation function which are convex and positive.  In (2), we have: 
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 Θ ൌ ሾߠଵ, … ,  ௄ሿߠ
 

෍ ሻݐ௜ሺߛ ൌ 1௄
௜ୀଵ  (3) 

 Γሺݐሻ ൌ ሾߛଵሺݐሻ, … , ሻሿݐ௄ሺߛ ሻݐ௜ሺߛ  ൒ 0  

If all of ߛ௜ሺݐሻ are 0 or 1 in different times, clusters are deterministic.  On the other 
hand if it can have other values between 0 and 1, clusters are fuzzy.  This can be de-
fined based on application.  As stated in [3], numerical solution for this optimization 
problem is difficult since the number of unknown can be much more than number of 
known parameters and also no information is available about function Γሺtሻ.  There-
fore, the problem is ill-posed in the sense of Hadamard and thus requires adding addi-
tional assumptions to solve the problem. This process is known as regularization [8].  
For example in Tikhonov regularization, additional assumption (called regularization 
term) is included in the minimization problem.  Here, it is assumed that the cluster 
affiliations functions ߛ௜ሺݐሻare smooth and their derivative are bounded.  

෍ න ൥ߛ௜ሺݐሻ. ݃ሺݔ௧, ௜ሻߠ ൅ ߳ଶ ቆ߲ߛ௜ሺݐሻ߲ݐ ቇଶ൩்
଴

௄
௜ୀଵ ݐ݀ ୻ሺ୲ሻ,஀ሱۛ ۛۛ ۛۛ ۛۛ ۛሮ ݉݅݊ 

 
(4) 

 
In the above equation, ߳ is called regularization term.  To solve the above prob-

lem numerically, it must be converted from continuous time domain to discrete-time 
domain.  For this reason, Galerkin discretization is utilized here.  Galerkin methods 
can convert a continuous operator problem (such as a differential equation) to a dis-
crete problem.  It is widely used in FEM literature for solving differential equations 
[9].  In our problem, the FEM basis function defined in the form of N triangular func-
tions which are called hat functions.  A set of continuous functions is defined with 
the local support on ሾ0, ܶሿ as in Figure 1.  Applying discretization procedure to Γሺtሻ 
yields: ߛ௜ሺݐሻ ൌ ሻݐ෤௜ሺߛ ൅ ݎ݋ݎݎ݁ ൌ ෍ .෤௜ሺ௞ሻߛ ሻேݐ௞ሺݒ

௞ୀଵ ൅  ݎ݋ݎݎ݁
 

(5) 
෤௜ሺ௞ሻߛ  ൌ න .ሻݐ௜ሺߛ ்ݐሻ݀ݐ௞ሺݒ

଴  (6) 

where ߛ෤௜ሺ௞ሻ are scalars called Galerkin coefficient.  After some mathematical simpli-
fication and using the locality of finite elements basis function support, one can find 
an optimization in the form of linear quadratic programming.  

෍ൣܽሺߠ௜ሻ்ߛҧ௜ ൅ ߳ଶߛҧ௜்ܪ ഥ௜൧௄ߛ
௜ୀଵ ఊഥ,஀ሱۛ ۛۛ ۛۛ ۛሮ ݉݅݊ (7) 

ҧ௜ߛ ൌ ,෤௜ሺଵሻߛൣ … , ,෤௜ሺ௞ሻߛ … . ,  ෤௜ሺேሻ൧ (8)ߛ
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Fig. 1. Finite element basis functions in the form of hat function 

 ܽሺߠ௜ሻൌ ቈන ,௧ݔሻ݃ሺݐଵሺݒ ,ݐ௜ሻ݀ߠ … , න ,௧ݔሻ݃ሺݐ௞ሺݒ ,ݐ௜ሻ݀ߠ … ,௧ೖశభ௧ೖషభ
௧మ௧భ න ,௧ݔሻ݃ሺݐேሺݒ ௧ಿశభ௧ಿషభݐ௜ሻ݀ߠ ቉  

(9) 
 

 
 
 
 
 
 
 =ܪ 

1Δ 
െ1Δ  

െ1Δ 0 0 ڮ 0  
2Δ 

 0 0 0 ڰ

െ1Δ ڰ ڰ 0  
 ڭ 0

0 0 െ1Δ  
2Δ 

െ1Δ ڰ ڰ 0 0 ڭ 0 ڰ  

െ1Δ 0 ڮ 0 0  
1Δ 

 
 
 
 
 
 

(10) 
 

 

H is a tri-diagonal matrix called stiffness matrix.  Convexity conditions on model 
distance functional are converted to constrain on Galerkin coefficients: 

෍ ෤௜ሺ௞ሻߛ ൌ 1௄
௜ୀଵ  ݇ ൌ 1, … , ܰ (11) 

෤௜ሺ௞ሻߛ  ൒ 0 
݅ ൌ 1, … ,   ܭ

 

The optimization problem above should be solved with respect to ߛҧ and ߠ itera-
tively.  After finding Galerkin coefficient, we can build ߛ௜ሺݐሻ using FEM basis  
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function and Eq. (5).  Initially, some random initial ߛҧ௜௜௡௜௧௜௔௟  is assumed such that it 
fulfills the convexity conditions and then ߠ௜௜௡௜௧௜௔௟  is found.  After that, the iterative 
procedure is ran for enough iteration numbers.  First, the problem is solved with re-
spect to ߛҧ௜ for a fixed ߠ௜ and second it is solved with respect to ߠ௜ for a fixed  ߛഥ௜ and 
so on.  The solution with respect to ߠ௜  is found analytically based on the defined 
distance functional as: 

௜଴ߠ ൌ ฬ ∑ .௧ݔ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .ݐ .௧ݔ ∑ሻ௧்ୀ଴ݐ௜ሺߛ .ݐ .௧ݔ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .௧ଶݔ ሻ௧்ୀ଴ݐ௜ሺߛ ฬ
ቤ ∑ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .ݐ ∑ሻ௧்ୀ଴ݐ௜ሺߛ .ݐ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .ଶݐ ሻ௧்ୀ଴ݐ௜ሺߛ ቤ  

 
 
 

(12) 

௜ଵߠ ൌ ฬ ∑ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .௧ݔ ∑ሻ௧்ୀ଴ݐ௜ሺߛ .ݐ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .ݐ .௧ݔ ሻ௧்ୀ଴ݐ௜ሺߛ ฬ
ቤ ∑ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .ݐ ∑ሻ௧்ୀ଴ݐ௜ሺߛ .ݐ ሻ௧்ୀ଴ݐ௜ሺߛ ∑ .ଶݐ ሻ௧்ୀ଴ݐ௜ሺߛ ቤ  

 
(13) 

 

For solving the optimization with respect to ߛҧ௜, all the ߛҧ௜ are augmented in a vector ߣ and the problem is converted to one linear quadratic programming. 12 ߣܩ்ߣ ൅ ߣ்ܣ ఒሱۛ ۛۛ ۛሮ ܣ (14) ݊݅݉ ൌ ሾܽሺߠଵሻ, … , ܽሺߠ௜ሻ, . , ܽሺߠ௄ሻሿ (15) 

ܩ ൌ ߳ଶ ൦ܪ 0 ڮ 00 ܪ ڰ ڭڭ ڰ ڰ 00 … 0 ܪ ൪ (16) 

 
and the new constraints become 

 

௦ߣ                          ൒ ݏ׊ 0 ൌ 1, … , ܰ ൈ  (17) ܭ

.ܨ  ߣ ൌ ܳ 
 

ܨ (18) ൌ ሾܫேൈே ேൈேܫ … ேൈேሿᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ௄ܫ ௧௜௠௘௦  (19) 

 ܳ ൌ ሾ1 1 … 1ሿ்ேൈଵ 
 

(20) 
 
There are three parameters that should be set at the start of the procedure: number 

of clusters K , regularization parameter ߳ and the number of hat functions N (or width 
of hat functions ∆).  Decreasing N reduces the order of LQP and consequently com-
plexity of calculations.  On the other hand, it decreases accuracy of clustering and it 
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may result in losing some very short regimes.  A challenging problem arises when 
choosing K.  A trivial solution exists when every data point is a cluster; and as a re-
sult, it is not possible to find the optimal number of clusters.  By increasing K, the 
value of the cost function always decreases and when ܭ ൌ  ,ݐ݊݅݋݌ ܽݐܽ݀ ݂݋ ݎܾ݁݉ݑ݊ 
this value approaches to zero. Since the number of clusters is unknown in advance, 
trial and error along with human judgment is used to select K subjectively.  A crite-
rion for choosing K is based on the value of the cluster affiliation functions when it 
becomes about 1 or 0.  If we assume clusters are deterministic, when the cluster affil-
iation at time t for cluster i is 1, it means the datum at t completely belongs to that 
cluster (cluster affiliation equal to 0 means that data does not belong to cluster i at 
all).  Increasing ߳ leads to an increase in the length of regimes.  To find the optimal 
parameters, ߳ and K should be changed simultaneously.  In the beginning, we set K 
equals to a sufficiently large number and then decrease K and run the algorithm for 
different ߳ to find acceptable results, this means the value of ߛ௜ሺݐሻ is about 0 or 1 in 
all of the time period [3].  After finding the trends, their statistical significance 
should be tested using Mann-Kendall approach [10]. 

3 Application in Climate Data Analysis 

In this paper, temperature time series in North Carolina is studied as a case study.  A 
data set of the average temperatures in 249 stations across NC are analyzed from the 
beginning of 1950 until the end of October 2009.  The data is converted from daily to 
monthly in order to decrease the complexity of calculations.  The dimension of re-
sulting time series is 249 ×718.  Temperature time series has a dominant harmonics 
with the period of one year which is called seasonality.  This annual cycle has been 
removed by subtracting the multi-year monthly means.  This is done, by subtracting 
the mean that is built over all values corresponding to the same month. 

௜௡௘௪ݔ  ൌ ௜ݔ െ ҧ௜ݔ  (21) 

where ݔ௜௡௘௪ is the deseasonalized value for month i (say for the month of January), ݔ௜ is original value for the same month (January) and ݔҧ௜ is the average monthly value 
in month i for the entire period of data (i.e. average of all January’s data).  Next, the 
FEM clustering applied to time series.  Initially the value of K was assumed to be 10 
and the algorithm was executed for different values of the regularization parameter 
 the algorithm ran several times to find best answer for constrained ,ߝ For each  .(ߝ)
optimization problem.  The regularization parameter is a real value between 0 and 
approximately 30.  In this application, we are looking for deterministic clusters.  
When we reach a K where all the ߛ௜ሺݐሻ are about 0 or 1, an optimal solution is found.  
For the time series in this study, we found six regimes with different length and 
trends.  

Figure 2 shows deseasonalized monthly time series in one of the dimensions and 
the linear trends detected by the FEM.  In this figure, narrow lines show deseasona-
lized temperature time series in one of the stations and bold lines are linear trends  
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Fig. 2. Time series in one dimension and its regimes/trends 

 

 
Fig. 3a-3f. Linear trend in NC for six regimes 
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found by the FEM algorithm.  Figure 3a-f shows the value of trend for six regimes in 
the North Carolina’s map.  Therefore, FEM clustering can reveal spatial in addition 
to temporal pattern of climate change.  In Figure 3a-f, it is clear that there are two 
notable decreasing trends between 1965-1964 and 1990-1998.  There is a remarkable 
increase in 1964-1976.  Also, the 2nd and the 4th regimes show the warmest and cool-
est trend, respectively.  Warming and cooling in eastern parts of the state in regime 2 
and 5 are interesting.  Different climatic phenomena may cause these patterns of 
change in NC, such as El-Nino, Atlantic Multidecadal Oscillation (AMO) and etc. [1].  
We can compare these climatic indices with the results.  For example comparison of 
these trends shows a correlation with AMO.  Therefore we may infer that NC tem-
perature is mostly affected by AMO.    

4 Conclusion 

In this paper, finite element method for clustering a multi-dimensional time series is 
used to find regimes in a climatic time series where each regime has a different linear 
trend.  An appropriate cost function was defined and using Tikhonov regularization 
and Galerkin discretization, the cost function is converted to a familiar linear quadrat-
ic problem.  There is a trade-of between number of Finite Elements Basis Function, 
volume of computation and consequently accuracy.  Also, the regularization parame-
ter can change the length of detected regimes.  By trial and error, an optimal number 
of regimes can be estimated.  A climatic time series of North Carolina is analyzed by 
this method.  The results represent spatiotemporal pattern of climate change corres-
ponding to areas of studies. 
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