
Flexible Querying Using Criterion Trees:

A Bipolar Approach

Guy De Tré1, Jozo Dujmović2, Joachim Nielandt1, and Antoon Bronselaer1

1 Dept. of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

{Guy.DeTre,Joachim.Nielandt,Antoon.Bronselaer}@UGent.be
2 Dept. of Computer Science, San Francisco State University,

1600 Holloway Ave, San Francisco, CA 94132, U.S.A.
jozo@sfsu.edu

Abstract. Full exploration of databases requires advanced querying fa-
cilities. This is especially the case if user preferences related to expected
results are complex. Traditional query languages like SQL and OQL only
have limited facilities for expressing query criteria that are composed of
simple criteria. So, while searching for information, users often have to
translate their complex requirements (which are typical for human rea-
soning) into simpler queries, which in many cases can only partly reflect
what the user is actually looking for. As a potential solution, we recently
proposed a query language extension that is based on soft computing
techniques and supports the use of so-called criterion trees. In this paper,
we further extend criterion trees so that they can contain both manda-
tory and optional query conditions. More specifically, we study optional
query conditions from a bipolar point of view and propose and illustrate
a framework for handling them in query processing.

Keywords: Fuzzy querying, criterion trees, GCD, partial absorption.

1 Introduction

When users want to search for information in a database system, their needs
and preferences have to be specified in so-called WHERE-clauses of queries or
similar constructs. Traditional query languages like SQL [9] and OQL [2] only
support WHERE-clauses in which the query criteria are specified by a Boolean
expression that consists of simple expressions connected by logical connectives
(∧, ∨ and ¬). Parentheses can be used to alter the sequence of evaluation.

Such Boolean expressions do not offer the facilities and flexibility that are
required to fulfill complex information needs as often encountered in real-life
situations. Indeed, humans often tend to express criteria in a soft way. They
structure and group criteria, assign a different importance to different criteria
or subgroups of criteria, make a distinction between mandatory and optional
criteria, etc. For example, if somebody is searching for a house in a real estate
database, it is quite natural to require affordability (acceptable price and main-
tenance costs) and suitability (e.g., good comfort and a good location). Most

M. Jamshidi et al. (eds.), Advance Trends in Soft Computing WCSC 2013, 47
Studies in Fuzziness and Soft Computing 312,
DOI: 10.1007/978-3-319-03674-8_5, c© Springer International Publishing Switzerland 2014

48 G.D. Tré et al.

homebuyers require simultaneous satisfaction of affordability and suitability cri-
teria and would NOT accept homes where either affordability or suitability is
not satisfied, requiring a hard (partial) conjunction operator. If this is not the
case, then the aggregator must be a soft partial conjunction. In addition, for
some homebuyers affordability is more important than suitability; an opposite
criterion is also possible. If the query language criterion cannot express these
fundamental requirements, it is not going to be acceptable for most homebuy-
ers. Furthermore, good comfort might be further specified by living comfort and
basic facilities. Living comfort refers to at least two bathrooms, three bedrooms,
garage, etc., whereas basic facilities refer to gas, electricity, sewage, etc. Good
location might be subdivided by accessibility, healthy environment, nearby facil-
ities, etc. Some of these criteria (e.g., garage) might be mandatory, while others
(e.g., dentist at close distance) might be optional. Traditional query languages
have no specific facilities to deal with such complex search conditions.

Soft computing techniques help to overcome these shortcomings. Soft criteria
specifications and criteria preferences can be dealt with by using ‘fuzzy’ query-
ing techniques of which an overview is, among others, given in [12]. In order
to efficiently cope with queries where special aggregators are required or users
need to generalize or specialize their criteria for obtaining better insight in what
they are looking for, we recently proposed a hierarchically structured criteria
specification that is called a criterion tree [4]. As originally proposed, criterion
trees cannot cope with optional query criteria. Nevertheless, such a facility is
required if one wants to adequately support human consistent searching and de-
cision making [1,6]. It is currently subject to a more general research topic that
is commonly known as bipolarity in flexible querying (see, e.g., [5]).

In this paper, we propose to extend criterion trees with facilities for handling
optional query criteria. The paper is further structured as follows. In Section 2,
some preliminaries of criterion trees and bipolar querying are given. Next, we
study the aggregation of mandatory and optional query criteria in Section 3.
Two aggregation operators ‘and optionally’ and ‘or optionally’ are proposed.
The main advantage of these operators is that they assign a bonus, resp. penalty
(or malus), to the query satisfaction depending on the satisfaction, resp. dissatis-
faction, of the optional criterion. Next, in Section 4, the extension and evaluation
of criterion trees is presented, considering the novel operators. An illustrative ex-
ample is given in Section 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Criterion Trees

A criterion tree is a tree structure of which each node can be seen as a container
for information. Each leaf node contains an elementary query criterion cA, which
is defined on a single database attribute A and expresses the user’s preferences
with respect to the acceptable values for that attribute while computing the
answer set of the query. In general, a fuzzy set with membership function μA

over the domain domA of A can be used to define the criterion. The membership

Flexible Querying Using Criterion Trees: A Bipolar Approach 49

grade μA(v) ∈ [0, 1] of a domain value v ∈ domA then expresses the extent to
which v is preferred by the user.

All non-leaf nodes of a criterion tree contain a symbol representing an ag-
gregation operator. Moreover, each child node ni of a non-leaf node n has an
associated weight wi, reflecting its relative importance within the subset of all
child nodes of the non-leaf node. Hereby, for a non-leaf node with k child nodes
it must hold that

∑k
i=1 wi = 1. With this choice, we follow the semantics of

weights as used in the LSP methodology [7]. The supported basic aggregators
are conjunction (C), hard partial conjunction (HPC), soft partial conjunction
(SPC), neutrality (A), soft partial disjunction (SPD), hard partial disjunction
(HPD) and disjunction (D). This set is in fact a selection of seven special cases
from the infinite range of generalized conjunction/disjunction (GCD) functions
and can be easily extended when required [7].

Once specified, criterion trees can be used in the specification of the WHERE-
clause of a query. This is illustrated in Section 4. Their evaluation for a relevant
database record r results in a criterion satisfaction specification, which can then
be used in the further evaluation and processing of the query. Criterion trees
are evaluated in a bottom-up way. This means that, when considering a relevant
database tuple r, the elementary criteria ci of the leaf nodes are first evaluated.
When specified by a membership function μA, the evaluation γci(r) of ci boils
down to determining the membership value of the actual value r[A] of A for r,
i.e., γci(r) = μA(r[A]). Next, non-leaf nodes (if any) are evaluated in a bottom-
up fashion. A non-leaf node n can be evaluated as soon as all its child nodes
ni, i = 1, . . . , k have been evaluated. For evaluation purposes, the following
implementation of GCD is used [8]:

M(x1, . . . , xn; q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∑n

i=1 wix
q
i)

1/q , if 0 < |q| < +∞
∏n

i=1 x
wi

i , if q = 0

min(x1, . . . , xn) , if q = −∞
max(x1, . . . , xn) , if q = +∞

(1)

where xi ∈ [0, 1], 1 ≤ i ≤ n are the input values which represent query satisfac-
tion degrees (hereby, 0 and 1 respectively denote ‘not satisfied at all’ and ‘fully
satisfied’). The normalized weights 0 < wi ≤ 1, 1 ≤ i ≤ n,

∑n
i=1 wi = 1 specify

the desired relative importance of the inputs. Furthermore, the computed expo-
nent q ∈ [−∞,+∞] determines the logic properties of the aggregator. Special
cases of exponent values are: +∞ corresponding to full disjunction D, −∞ corre-
sponding to full conjunction C and 1 corresponding to weighted average A. The
other exponent values q allow to model other aggregators, ranging continuously
from full conjunction to full disjunction, and can be computed from a desired
value of orness (ω). For aggregation in criterion trees, we used the following
numeric approximation for q [7]:

q =
0.25 + 1.89425x+ 1.7044x2 + 1.47532x3 − 1.42532x4

ω(1− ω)
(2)

50 G.D. Tré et al.

where
x = ω − 1/2.

Suitable orness-values are the following: ω = 1/6 for HPC, ω = 5/12 for SPC,
ω = 7/12 for SPD and ω = 5/6 for HPD, assuming that partial disjunction is
modeled as the De Morgan dual of partial conjunction.

Considering a database record r, the query satisfaction degree γn(r) corre-
sponding to n is computed using Eq. (1) and the following arguments: γni(r),
i = 1, . . . , k, wi being the weight that has been associated with ni, i = 1, . . . , k,
and q being the value that models the aggregator that is associated with n. The
overall satisfaction degree for a record r using a criterion tree is obtained when
the root node nroot of the tree is evaluated, i.e., by computing γnroot(r).

2.2 Bipolar Querying

An important issue in bipolar querying concerns the handling of constraints and
wishes (see, e.g., [10,5,1]). Bipolarity hereby refers to the fact that users might
distinguish between mandatory and desired criteria while specifying their query
preferences. For handling desired criteria, two aggregators ‘and if possible’ and
‘or else’ have been proposed in [1] and defined as follows (with k ∈ [0, 1]):

γc1 and if possible c2(r) = min(γc1(r), kγc1(r) + (1− k)γc2(r)) (3)

and
γc1 or else c2(r) = max(γc1(r), kγc1(r) + (1− k)γc2(r)). (4)

In what follows, we propose a generalization of these operators which uses slightly
different semantics and is based on the conjunctive and disjunctive partial ab-
sorption operators as originally proposed and studied in [6].

3 Aggregation of Optional Criteria

The behavior and aggregation of optional criteria has been studied and ana-
lyzed in [6] and resulted in the following ‘and optionally’ (conjunctive partial
absorption) and ‘or optionally’ (disjunctive partial absorption) operators [3].

γ(c1 and optionally c2)(r) = w2γc1(r)Δ(1 − w2)[w1γc1(r)∇(1 − w1)γc2(r)] (5)

where Δ ∈ {C,HPC} and ∇ ∈ {D,SPD,HPD,A}, and
γ(c1 or optionally c2)(r) = w2γc1(r)∇(1 − w2)[w1γc1(r)Δ(1 − w1)γc2(r)] (6)

where ∇ ∈ {D,HPD} and Δ ∈ {C, SPC,HPC,A}. Both operators are asym-
metric.

Using weighted power means as in Eq. (1), both operators can be implemented
by

M(x1, x2; q1, q2) = [(1 − w2)[w1x
q2
1 + (1 − w1)x

q2
2]q1/q2 + w2x

q1
1]1/q1 (7)

Flexible Querying Using Criterion Trees: A Bipolar Approach 51

where x1 ∈ [0, 1] is the mandatory input, x2 ∈ [0, 1] is the desired input and the
exponents q1 and q2 are those reflecting the selected aggregators for Δ and ∇
(being computed as described in Section 2).

The weights w1 and w2 are computed so as to reflect as adequately as possible
the impact of the mean penalty P and mean reward R percentages provided by
the user. Hereby the underlying semantics of P andR are defined by the following
border conditions [6] (and their dual counterparts for ‘or optionally’):

∀ 0 < x ≤ 1 : (x and optionally 0) = x(1− p), 0 ≤ p < 1 (8)

(hence if the optional condition is not satisfied at all, then criterion satisfaction
is decreased with a penalty of p)

∀ 0 < x < 1 : (x and optionally 1) = x(1 + r), 0 ≤ r < 1/x− 1 (9)

(hence if the optional condition is fully satisfied, then criterion satisfaction is
increased with a reward of r). Note that p and r can be zero. The values P
and R are (approximately) the mean values of p and r and usually expressed as
percentages. Decision-makers select desired values of P and R and use them to
compute the corresponding weights w1 and w2. More details on this computation
can be found in [6].

By taking Δ = C and ∇ = A, Eq. (3) is obtained as a special case of Eq. (5).
Likewise, with ∇ = D and Δ = A, Eq. (6) yields Eq. (4). The main advantage of
the ‘and optionally’ and ‘or optionally’ operators is that they enable the use of
both a reward and a penalty, whereas Eq. (3) and (4) by definition only assign a
reward in case of (partial) satisfaction of the optional condition. Such a penalty
facility is however required if we want to adequately reflect human reasoning.
Consider for example two house descriptions in a database where a mandatory
condition ‘proximity of bus stop’ is perfectly satisfied for both. If an optional
condition ‘proximity of dentist’ is only satisfied for the first house and there is no
penalty facility available, then it would not be possible to distinguish between
the overall satisfaction of both houses. However, humans would naturally assign
a penalty to the second house and prefer the first one.

4 Extended Criterion Trees

Criterion trees can be extended with the ‘and optionally’ (ANDOP) and ‘or
optionally’ (OROP) operators. This can be described using Extended BNF
(EBNF) [11] by:

nabla_conjunction = "D" | "SPD" | "HPD" | "A"

delta_conjunction = "C" | "HPC"

nabla_disjunction = "D" | "HPD"

delta_disjunction = "C" | "SPC" | "HPC" | "A"

aggregator = "C" | "HPC" | "SPC" | "A" | "SPD" | "HPD" | "D"

criterion tree = elementary criterion | composed criterion

composed criterion = aggregator "(" criterion tree":"weight","

52 G.D. Tré et al.

criterion tree":"weight {"," criterion tree":"weight}")" |

"ANDOP("nabla_conjunction"," delta_conjunction"," P"," R")

(Mandatory:" criterion tree", Optional:" criterion tree")" |

"OROP("nabla_disjunction"," delta_disjunction"," P"," R")

(Sufficient:" criterion tree", Optional:" criterion tree")"

elementary criterion = attribute "IS {("min value"," suitability")"

{",(" value"," suitability")" } ",("max value"," suitability")}"

where { } means ‘repeat 0 or more times’.
The values in the specification of an elementary criterion must form a strictly

increasing sequence. Together they specify the piecewise linear membership func-
tion μA of a fuzzy set that reflects the user’s preferred values (suitability) for
the attribute A under consideration.

For the asymmetric ANDOP and OROP operators, the first criterion tree re-
flects the mandatory/sufficient criterion whereas the second criterion tree defines
the optional criterion.

Once specified, extended criterion trees can be used in the specification of the
WHERE-clause of a query. Extended criterion trees are evaluated bottom-up,
by first evaluating the elementary criteria. For a database record r this is done
by determining the membership value μA(r[A]) of the actual value r[A] of A
in r. The composed criteria are evaluated as soon as all their components have
been evaluated. Eq. (7) is used for the evaluation of the ANDOP and OROP
operators, whereas Eq. (1) is used for the evaluation of the other aggregators.

5 An Illustrative Example

Specifying search criteria for a house in a real estate database is often a complex
task. It boils down to specifying weighted criteria and subcriteria, followed by
carefully considering penalties and rewards that might result from the satisfac-
tion and dissatisfaction of optional criteria. Assume that the user is looking for
an affordable house with good comfort, condition and location. Such a search can
be specified using the following SQL statement for regular relational databases.

SELECT id, address, price, TREE(c_suitability) AS satisfaction

FROM real_estates r, location l

WHERE (r.location_id=l.id) AND satisfaction>0.5

ORDER By satisfaction

The query uses a predefined function TREE which takes an extended criterion
tree as argument and computes the overall satisfaction degree (satisfaction) of
the database records being processed by the query. The criterion tree c suitability
is specified by

c_suitability=HPC(c_comfort:0.4, c_condition:0.4, c_location:0.2)

with subtrees c comfort, c condition and c location. It specifies that a house
is considered to be suitable if it is comfortable, the overall condition of the house

Flexible Querying Using Criterion Trees: A Bipolar Approach 53

is good and its location is adequate. For the aggregation, hard partial conjunction
(HPC) is used and comfort and condition are considered to be more important
than comfort and location. Typically, users will then specify in more detail what
they expect with respect to comfort, condition and location. This is done by
specifying each of the three subtrees in more details. For example, c location =

ANDOP(A,C,15,10)(Mandatory:

A(SPC(c_railway_station:0.3, c_road:0.5, c_highway:0.2):0.5,

HPC(c_sport:0.4, c_doctor:0.2, c_restaurant/bar:0.4):0.5),

Optional:green_area)

This specification reflects that according to the user, a good location is deter-
mined by two mandatory criteria and one optional criterion. The mandatory
criteria respectively reflect good accessibility and proximity of facilities which
are of equal importance to the user. Good accessibility is in this case expressed
by proximity of a railway station, proximity of a regional road and proximity of
a highway. These three subcriteria are aggregated with a soft partial conjunc-
tion operator (SPC) and proximity of a regional road is considered to be more
important than the other two criteria. Proximity of facilities is further specified
as proximity of sport facilities, proximity of medical practitioners and proximity
of bars and restaurants. Hard partial conjunction (HPC) is used for the aggre-
gation. Proximity of green area is considered to be optional. Hence, the ‘and
optionally’ operator (ANDOP) is used to combine the mandatory and optional
criteria. A penalty of 15% is considered for houses with a complete lack of green
area in their environment. Houses that fully satisfy the green area criterion will
earn a reward of 10%.

The remaining criteria in the specification of c location are all examples of
elementary criteria. Elementary criteria are specified by a membership function.
For example, c doctor can be specified by

r.distance_to_doctor IS {(5,1), (20,0)}

which denotes that travel distances of more than 20 minutes to reach a doctor
are unacceptable.

Evaluation of c suitability for a given record r is done with the function
TREE. This function first evaluates the elementary criteria and then evaluates
the internal nodes of the criterion tree in a bottom-up approach. Hereby, an
internal node can be evaluated as soon as all of its child nodes have been eval-
uated. The satisfaction degree resulting from the evaluation of the root node
(c suitability) is returned by the function TREE. In the query, only records
with a satisfaction degree larger than 0.5 will be returned. Of course, in practice,
criterion trees can be much more complex than the one given in this example.

6 Conclusions

Criterion trees offer flexible facilities for specifying complex query conditions. In
this paper we extended criterion trees with ‘and optionally’ and ‘or optionally’

54 G.D. Tré et al.

operators which allow to properly deal with optional query criteria. These oper-
ators consistently reflect human reasoning and enable the use of both a reward
and a penalty for cases where the optional criteria are satisfied, resp. dissatisfied.

The proposed work is currently being implemented within the framework
of the open source PostgreSQL object-relational database system. In further
research, we plan to focus on performance and optimization issues.

References

1. Bosc, P., Pivert, O.: On Four Noncommutative Fuzzy Connectives and their Ax-
iomatization. Fuzzy Sets and Systems 202, 42–60 (2012)

2. Cattell, R.G.G., Barry, D.K.: The Object Data Standard: ODMG 3.0. Morgan
Kaufmann, San Francisco (2000)

3. De Tré, G., Dujmović, J.J., Bronselaer, A., Matthé, T.: On the Applicability of
Multi-criteria Decision Making Techniques in Fuzzy Querying. Communications in
Computer and Information Sciences 297, 130–139 (2012)

4. De Tré, G., Dujmović, J., Nielandt, J., Bronselaer, A.: Enhancing flexible query-
ing using criterion trees. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., An-
dreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS (LNAI), vol. 8132, pp.
364–375. Springer, Heidelberg (2013)

5. Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing.
In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in
Databases, pp. 97–114. IGI Global, Hershey (2008)

6. Dujmović, J.J.: Partial Absorption Function. Journal of the University of Belgrade,
EE Dept. Series Mathematics and Physics 659, 156–163 (1979)

7. Dujmović, J.J.: Preference Logic for System Evaluation. IEEE Transactions on
Fuzzy Systems, vol 15(6), 1082–1099 (2007)

8. Dujmović, J.J.: Characteristic Forms of Generalized Conjunction/Disjunction. In:
IEEE World Congress on Computational Intelligence, Hong Kong (2008)

9. ISO/IEC 9075-1:2011: Information technology – Database languages – SQL – Part
1: Framework, SQL/Framework (2011)

10. Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In:
VLDB 1987 Conference, Brighton, UK, pp. 217–225 (1987)

11. Wirth, N.: What Can We Do About the Unnecessary Diversity of Notation for
Syntactic Definitions. Communications of the ACM 20(11), 822–823 (1977)

12. Zadrozny, S., De Tré, G., De Caluwe, R., Kacprzyk, J.: An Overview of Fuzzy
Approaches to Flexible Database Querying. In: Galindo, J. (ed.) Handbook of
Research on Fuzzy Information Processing in Databases, pp. 34–54. IGI Global,
USA (2008)

	Flexible Querying Using Criterion Trees:A Bipolar Approach
	1 Introduction
	2 Preliminaries
	3 Aggregation of Optional Criteria
	4 Extended Criterion Trees
	5 An Illustrative Example
	6 Conclusions
	References

