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Abstract. Measurements are never absolutely accurate; so, it is impor-
tant to estimate how the measurement uncertainty affects the result of
data processing. Traditionally, this problem is solved under the assump-
tion that the probability distributions of measurement errors are normal
– or at least are concentrated, with high certainty, on a reasonably small
interval. In practice, the distribution of measurement errors is sometimes
heavy-tailed, when very large values have a reasonable probability. In this
paper, we analyze the corresponding problem of estimating the tail of the
result of data processing in such situations.

1 Formulation of the Problem

Need for Data Processing. In many practical situations, we are interested in the
values of a quantity y which is not easy (or even impossible) to measure directly:
for example, we may be interested in tomorrow’s weather, in the distance to a
faraway planet, in the amount of oil in an oil well, etc. In such situations in
which we cannot measure y directly, we can often measure y indirectly, i.e.:

– measure the values of auxiliary quantities x1, . . . , xn which are related to the
desired quantity y by a known relation y = f(x1, . . . , xn), and then

– use the results x̃1, . . . , x̃n of measuring the quantities xi and the known
dependence to compute the estimate ỹ = f(x̃1, . . . , x̃n) for y.

The process of computing ỹ = f(x̃1, . . . , x̃n) is known as data processing.

Need to Estimating Uncertainty of the Result of Data Processing. Measurements
are never 100% accurate; so, in general, the measurement results x̃i are somewhat
different from the actual values xi of the corresponding quantities. Because of
these measurement errors, the estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different
from the desired value y = f(x1, . . . , xn) (often, there is an additional difference
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cause by the fact that the dependence between y and xi is only approximately
known). It is therefore important not just to generate an estimate ỹ, but also to
gauge how much the actual value y can differ from this estimate, i.e., what is
the uncertainty of the result of data processing; see, e.g., [7].

Estimating Uncertainty of the Result of Data Processing: Traditional Statistical
Approach. Usually, there are many different (and independent) factors which
contribute to the measurement error. In many such situations, it is possible to
apply the Central Limit Theorem (see, e.g., [9]), according to which, under rea-
sonable conditions, the distribution of the joint effect of numerous independent
factors is close to normal. In such situations, it is therefore reasonable to assume

that all the measurement errors Δxi
def
= x̃i − xi are independent and normally

distributed.
To describe a normal distribution, it is sufficient to know the mean μ and

the standard deviation σ. Thus, under the normality assumption, to gauge the
distribution of each measurement error Δxi, we must know the mean μi and the
standard deviation σi of this measurement error. If the known mean is different
from 0, this means that this measuring instrument has a bias; we can always
compensate for this bias by subtracting the value μi from all the measured
values. After this subtraction, the mean error will become 0. Thus, without losing
generality, we can assume that each measurement error is normally distributed
with mean 0 and known standard deviation σi.

The traditional way of estimating the resulting uncertainty Δy
def
= ỹ − y in y

is based on this assumption. Specifically, since the measurement errors Δxi are
usually relatively small, we can expand the expression

Δy = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃n)− f(x̃1 −Δx1, . . . , x̃n −Δxn)

in Taylor series in Δxi, ignore quadratic and higher order terms, and keep only
terms in Δxi in this dependence. As a result, we get an expression

Δy =
n
∑

i=1

ci ·Δxi,

where ci
def
=

∂f

∂xi
. Based on this expression, we conclude that the linear combina-

tion Δy of n independent normally distributed random variables is also normally

distributed, its mean value of is 0, and its variance σ2 is equal to: σ2 =
n
∑

i=1

c2i ·σ2
i

(see, e.g., [7]).

Heavy-Tailed Distributions. There are many practical situations in which the
probability distribution for the measurement error is drastically different from
normal. In many such situations, the variance is infinite; such distributions are
called heavy-tailed. Since then, similar heavy-tailed distributions have been em-
pirically found in many other application areas; see, e.g., [1,8].
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Historical Comment: Heavy-Tailed Distributions and Fractals. Heavy-tailed dis-
tributions surfaced in the 1960s, when Benoit Mandelbrot, the author of fractal
theory, empirically studied the fluctuations of prices and showed [4] that large-
scale fluctuations follow the Pareto power-law distribution, where for some x0,
for all x ≥ x0, the probability density function has the form ρ(x) = A · x−α,
for some empirical constants A > 0 and α ≈ 2.7. For this empirical value α,
variance is infinite.

Mandelbrot studied not only the local price fluctuations, but also the global
geometry of the curves describing the dependence of price on time. It turned
out that this analysis is closely related to the notion of dimension. Indeed, for
sets S which are smooth curves and surfaces and for volumes surrounded by
smooth surfaces, dimension can be described as follows. For each ε > 0, we can
ε-approximate the set S by a finite set S′ = {s1, . . . , sn}, ε-approximate in the
sense that:

– every point s from the set S is ε-close to some point si ∈ S′, and
– vice versa, every point si ∈ S′ is ε-close to some point s ∈ S.

For each set S, we can have ε-approximating sets S′ with different number of
elements. For each ε, we can gauge the size of the given set S by finding the
number of elements Nε(S) in the smallest ε-approximating finite set.

For a 1-D smooth curve S, the smallest number Nε(S) is attained if we take
the points s1, . . . , sn ∈ S located at equal distance ≈ 2ε from each other. The

number of such points is asymptotically equal to Nε(S) ∼ const · L
ε
, where L is

the length of the curve S.
For a 2-D smooth surface S, the smallest number Nε(S) is attained if we take

the points on a rectangular 2-D grid with linear step ≈ ε. The number of such

points is asymptotically equal to Nε(S) ∼ const · A
ε2

, where A is the area of the

surface S.
For a 3-D body S, the smallest number Nε(S) is attained if we take the points

on a rectangular 3-D grid with linear step ≈ ε. The number of such points is

asymptotically equal to Nε(S) ∼ const · V
ε3

, where V is the volume of the 3-D

body S.

It turns out that for the price trajectory S, we have Nε(S) ∼ C

εa
for some

constant C and a fraction (non-integer) a. By analogy with the smooth sets, the
value a is called a dimension of the trajectory S. Thus, the trajectory S is a set
of a fractal dimension; Mandelbrot called such sets fractals.

The above empirical result, together with similar empirical discovery of heavy-
tailed laws in other application areas, has led to the formulation of fractal theory;
see, e.g., [5,6].

Comments

– Please note that Mandelbrot’s empirical observations only describe the prob-
ability density ρ(x) for values x ≥ x0; the values ρ(x) for x < x0 can be
different.
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– In general, the condition that
∫

ρ(x) dx = 1 implies that α > 1.
– One can easily check that the variance

∫

x2 · ρ(x) dx is infinite when α ≤ 3.

Problem. If the measurement errors Δxi of the inputs xi are distributed accord-
ing to the heavy-tailed distributions, then what can we conclude about Δy?

What We Do in This Paper. In this paper, we provide an answer to the above
question for the simplest cases when data processing consists of applying a single
arithmetic operation: addition, subtraction, multiplication, or division.

2 Main Results

Case of Addition y = f(x1, x2) = x1 + x2. For addition, Δy = Δx1 + Δx2.
When the measurement error Δx1 of the first input has a tail with asymptotics
ρ1(Δx1) ∼ A1 · |Δx1|−α1 and the measurement error Δx1 of the first input has
a tail with asymptotics ρ2(Δx2) ∼ A2 · |Δx2|−α2 , then the tail for Δy has the
asymptotics ρ(Δy) ∼ A · |Δy|−α with α = min(α1, α2).

Proof for the Case of Addition y = f(x1, x2) = x1 + x2. We know that ρ(Δy) =
∫

ρ1(Δx1)·ρ2(Δy−Δx1) d(Δx1). Asymptotics mean that for any given accuracy,
for sufficiently large values Δx1 and Δx2, we have ρ1(Δx1) ≈ A1 · |Δx1|−α1 and
ρ2(Δx2) ≈ A2 · |Δx2|−α2 . What is the asymptotic expression for the probability
density ρ(Δy) for large values Δy?

A large value of Δy = Δx1 +Δx2 can come from three different situations:

1) when Δx1 is large (i.e., the asymptotic expression for ρ1(Δx1) holds) and
Δx2 is not large in this sense;

2) when Δx2 is large (i.e., the asymptotic expression for ρ2(Δx2) holds) and
Δx1 is not large in this sense; and

3) when both Δx1 and Δx2 are large in this sense.

The first situation leads to terms proportional to |Δx1|−α1 = |Δy − Δx2|−α1 .
Since in this case, Δx2 is limited by the threshold after which the values become
large, we have Δx2/Δy → 0 as Δy → ∞ and thus, |Δy −Δx2|−α1 ∼ |Δy|−α1 .
The second situation similarly leads to terms asymptotically equal to |Δy|−α2 .

In the third case, for some K > 1, the integral which describes ρ(Δy) (over
the whole real line) can be represented as a sum of the integral Iin(Δy) over
[−K · |Δy|,K · |Δy|] and the integral Iout(Δy) over the outside of this interval.

The inner integral Iin(Δ) is bounded by M · (2K · |Δy|), where M is the
maximum of the the product

ρ1(Δx1) · ρ2(Δy −Δx1) = A1 · (Δx1)
−α1 ·A2 · (Δy −Δx1)

−α2 .

Differentiating this expression w.r.t. Δx1 and equating derivative to 0, we con-

clude that Δx1 =
α1

α1 + α2
·Δy, hence the corresponding maximum is equal to

const · |Δy|−(α1+α2). Thus,

Iin(Δy) ≤ M · (2K · |Δy|) = const · |Δy|−(α1+α2−1)
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for some positive constant.

Outside the interval, |Δy| ≤ 1

K
· |Δx1|, thus, |Δy −Δx1| ≤

(

1 +
1

K

)

· |Δx1|
and so,

ρ1(Δx1) · ρ2(Δy −Δx1) = A1 · |Δx1|−α1 · A2 · |Δy −Δx1|−α2 ≤

A1 · A2 ·
(

1 +
1

K

)−α2

· |Δx1|−α1 · |Δx1|−α2 = const · |Δx1|−(α1+α2)

for some positive constant. Integrating both sides of the resulting inequality, we
conclude that

Iout ≤
∫ −K·|Δy|

−∞
const · |Δx1|−(α1+α2) d(Δx1)+

∫ ∞

K·|Δy|
const · |Δx1|−(α1+α2) d(Δx1) = const · |Δy|−(α1+α2−1)

for some positive constant.
Both Iin(Δy) and Iout(Δy) are bounded by const · |Δy|−(α1+α2−1), so their

sum ρ(Δy) is also bounded by a similar expression.
Summarizing: the asymptotic expression for ρ(Δy) is the sum of three positive

terms of the type |Δy|−α: a term corresponding to α = α1, a term corresponding
to α = α2, and a term bounded by α = α1 + α2 − 1. Since αi > 1, we have
α1 + α2 − 1 > αi.

In general, when α < α′, then for large z, the ratio
z−α′

z−α
tends to 0. This means

in the sum of power-law asymptotic expressions, the term with the smallest value
of α dominates, in the sense that the asymptotics of the sum follows the power
law with the smallest possible exponent α. In our case, since α1 + α2 − 1 > αi,
this smallest exponent is min(α1, α2).

Case of a General Linear Combination. One can check that a similar formula
holds for the difference y = x1 − x2 and, more generally, for an arbitrary linear

combination y = a0 +
m
∑

i=1

ai · xi. Namely, when the measurement error Δxi of

the the i-th input has a tail with asymptotics ρi(Δxi) ∼ Ai · |Δxi|−αi , then the
tail for Δy has the asymptotics ρ(Δy) ∼ A · |Δy|−α with α = min(α1, . . . , αm).

Case of Product y = f(x1, x2) = x1 · x2: Analysis of the Problem. For the
product, from y = x1 · x2 and y +Δy = ỹ = x̃1 · x̃2 = (x1 +Δx1) · (x2 +Δx2),
we conclude that Δy = Δx1 · x2 + x1 ·Δx2 +Δx1 ·Δx2.

We know the asymptotics of the probability distribution for Δx1 and Δx2, so
Δx1 · x2 and x1 ·Δx2 should have asymptotics with the same exponents α1 and

α2. Let us find the asymptotics for the product r
def
= Δx1 ·Δx2. Similarly to the

case of addition, the corresponding terms come from three cases:
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– when Δx1 is large and Δx2 is not large; this leads to terms ∼ |r|−α1 ;
– when Δx2 is large and Δx1 is not large; this leads to term ∼ |r|−α2 ;
– when both Δx1 and Δx2 are large; this leads to the term ∼ |r|−(α1+α2−1),

which (similarly to the case of addition) can be asymptotically ignored in
comparison with terms ∼ |r|−αi .

Thus, similarly to the case of addition, we have terms with exponent α1, we have
terms with exponent α2, and we have other terms which can be asymptotically
ignored. Hence, we arrive at the following conclusion.

Case of Product y = f(x1, x2) = x1 · x2: Result. When the measurement error
Δx1 of the first input has a tail with asymptotics ρ1(Δx1) ∼ A1 · |Δx1|−α1

and the measurement error Δx2 of the second input has a tail with asymptotics
ρ2(Δx2) ∼ A2 · |Δx2|−α2 , then ρ(Δy) ∼ A · |Δy|−α with α = min(α1, α2).

Case of Product or Ratio of Several Terms. One can check that a similar formula
holds for the ratio y = x1/x2 and, more generally, for an arbitrary combination

y = a0 ·
m
∏

i=1

xai

i . Namely, when the measurement error Δxi of the the i-th input

has a tail with asymptotics ρi(Δxi) ∼ Ai · |Δxi|−αi , then the tail for Δy has the
asymptotics ρ(Δy) ∼ A · |Δy|−α with α = min(α1, . . . , αm).

Comment. The main objective of this paper is to deal with measurement (epis-
temic) uncertainty. However, the same formula can be used if we have aleatory
uncertainty. For example, we can use these formulas to analyze what happens if:

– we have a population of two-job individuals with first-salary distribution
ρ1(x1) and second-salary distribution ρ2(x2),

– we know that these distributions are independent, and
– we want to find the distribution of the total salary y = x1 + x2.

3 Future Work: From Asymptotics to a Complete
Description of the Corresponding Probability
Distributions

Asymptotics for a General Case Remains a Challenge. In the classical statistical
approach, it is natural to start with the case of linear functions. Once it is clear
how to deal with this case, we can extend our formulas to the case of a general
(smooth) function f(x1, . . . , xn): namely, as we have shown in Section 1, we can
expand the function f(x1, . . . , xn) into Taylor series and use the fact that in a
small vicinity of each point, quadratic (and higher order) terms in this expansion
can be safely ignored, and we can approximate the original function by the linear
terms in its Taylor expansion. In the classical statistical approach, restriction to a
small neighborhood makes perfect sense: for example, for a normal distribution,
the probability of the deviation Δx exceeding six standard deviations (6σ) is so
small (≈ 10−6%) that such deviations can be safely ignored.
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In contrast, for a heavy-tailed distribution, the probability density function
ρ(Δx) decreases slowly with Δx, as ρ(Δx) ≈ A · |Δx|−α. For example, for α = 2,
the probability ofΔx exceeding 6σ is ≈ 6−2 ≈ 3%, which is quite probable. Even
deviations of size 100σ are possible: they occur once every 10,000 trials. For such
large deviations, we can no longer ignore quadratic or higher order terms; so,
we can no longer reduce any smooth function to its linear approximation: each
linear function has to be treated separately.

Need to Go from Asymptotics to a Complete Description. In the above text, we
only find the exponent α corresponding to the asymptotics of the probability
distribution for the approximation error Δy = ỹ − y. It is desirable to find the
whole distribution for Δy. For that, in addition to the exponent α, we also need
to find the following:

– the coefficient A at the asymptotic expression ρ(Δy) ∼ A · |Δy|−α;
– the thresholdΔ0 after which this asymptotic expression provides an accurate

description of the probability density, and
– the probability density ρ(Δy) on the interval [−Δ0, Δ0] on which the asymp-

totic expression is not applicable.

Once we know a similar information for the input measurement errors Δx1 and
Δx2, we can use the formula (3) (or similar formulas corresponding to other data
processing algorithms) to estimate the corresponding characteristics for Δy.

What If We Only Have Partial Information about the Distribution of Errors of
Direct Measurements. In practice, we only have partial information about the
probability distributions ρi(Δxi) of the errors Δxi of direct measurements.

Usually, we consider situations in which we know an interval on which the ran-
dom variable is located with certainty. For example, for normal distribution with
mean μ and standard deviation σ, we can safely conclude that all possible values
are located within the six-sigma interval [μ − 6σ, μ + 6σ], since the probability
to be outside this interval is ≤ 10−8. For such distributions, uncertainty means,
e.g., that instead of the exact values of the corresponding cumulative distribu-

tion functions F (x)
def
= Prob(X ≤ x), we only know an interval [F (x), F (x)] of

possible values of F (x). The corresponding interval-valued function [F (x), F (x)]
is known as a probability box, or p-box, for short; see, e.g., [2,3].

Several algorithms are known for propagating p-boxes via data processing, i.e.,
for transforming the p-boxes corresponding to the input uncertainty Δxi to the
p-box for the output uncertainty Δy. It is desirable to extend these algorithms
so hat they will be able to also cover a similar interval uncertainty about the
values A, α, and Δ0 describing the heavy-tailed distributions.
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