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Abstract.  We introduce a new structure for fuzzy cognitive maps (FCM) 
where the traditional fan-in structure involving an inner product followed by a 
squashing function to describe the causal influences of antecedent nodes to a 
particular consequent node is replaced with a weighted mean type operator.  In 
this paper, we employ the weighted power mean (WPM).  Through appropriate 
selection of the weights and exponents in the WPM operators, we can both ac-
count for the relative importance of different antecedent nodes in the dynamics 
of a particular node, as well as take a perspective ranging continuously from the 
most pessimistic (minimum) to the most optimistic (maximum) on the norma-
lized aggregation of antecedents for each node.  We consider this FCM struc-
ture to be more intuitive than the traditional one, as the nonlinearity involved in 
the WPM is more scrutable with regard to the aggregation of its inputs.  We 
provide examples of this new FCM structure to illustrate its behavior, including 
convergence. 

1 Introduction 

Fuzzy cognitive maps (FCM) [1-4] are fuzzy signed di-graphs whose nodes corres-
pond to high-level descriptive concepts and whose links have weights corresponding 
to the causal relationships (positive or negative) between these concepts.  Associated 
with each node is a fuzzy value indicating the degree to which the corresponding 
concept is activated as a function of the activations of the other nodes that link into it.  
FCMs are implemented as dynamical systems that enable the modeling of first-order 
feedback relationships in complex networks.  Typically, certain nodes are initialized 
and held to fixed activation strengths, and then the network is iterated to determine 
the evolution of activations of the remaining nodes.  The asymptotic behavior of these 
activations reflects the coupling of causal relationships among the nodes.  FCMs have 
been the subject of a great deal of research interest in recent decades and have proven 
useful in modeling numerous applications, as surveyed in [4]. 

The dynamic structure of traditional FCMs is based upon a neural network model, 
where at each iteration the activation level of a given node is computed as a weighted 
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sum of the activations of its antecedent nodes at the previous iteration, which is then 
normalized by a sigmoid-type “squashing function” that maps this sum into either the 

interval [ ]1,1−  or the interval [ ]0,1   Starting from an initial state, repeated iteration of 

the node activations of FCMs employing this structure are known to follow trajecto-
ries resulting in either a fixed point, a periodic limit cycle, an aperiodic attractor or a 
chaotic attractor [2,5]. 

Aside from this variable convergence (or in some instances, non-convergence) be-
havior associated with the traditional FCM architecture, there is a more fundamental 
issue that detracts from its use in models of real-world conceptual relationships.  The 
simple, biologically-inspired neuronal model employed in this architecture is a serial 
combination of two functions: 1) a linear weighted arithmetic average to aggregate 
antecedent node activations, and 2) a nonlinear mapping of this aggregate output back 

into the interval [ ]1,1− or [ ]0,1 .  The serial combination of these two functions results 

in a somewhat inflexible and inscrutable mathematical transformation, as it imposes 
the limitation of a linear combination of the input activations, followed by a nonli-
nearity that is chosen primarily for its normalization properties rather than for its logi-
cal significance.  The entanglement between these two operations complicates the 
cognitive interpretation of the overall transformation. 

While this neuronal model has proven useful in many neural network applications 
involving the processing of relatively low-level features such as those derived from 
time series or pixel values, where a cognitive interpretation of the operation is perhaps 
of less concern, we question its efficacy in modeling the relationships between node 
activations involving the higher-level conceptual features typically encountered in 
FCM models.  A more intuitive and scrutable aggregation operator is desirable in 
these applications. 

This has led us to investigate alternative FCM architectures.  We are especially in-
terested in the class of mean operators [6,7] for use as the aggregation operator for the 
antecedent activations in the nodes of the FCM, and in this paper we consider in par-
ticular the weighted power mean (WPM) operator [8-11] acting separately on the 
positively and negatively causal antecedents to a given node, followed by taking the 
difference between the positive and negative aggregates, which is then simply shifted 

and scaled to produce a resulting node activation in [ ]0,1 .  

The WPM operator provides a scrutable aggregation of antecedent activations, in-
corporating both importance weighting of the antecedents and the ability to take a 
continuously variable perspective on the input contributions to the aggregation, rang-
ing from the most pessimistic (corresponding to the minimum activation amongst the 
input antecedents) to the most optimistic (corresponding to the maximum activation).  
This perspective is determined by the selection of the power exponent p  used in the 

WPM.  Various choices for p  correspond to well-known aggregation operators, e.g., 

min ( p = −∞ ), harmonic mean ( 1p = − ), geometric mean ( 0p = ), arithmetic mean     

( 1p = ), root-mean-square ( 2p = ), and max ( p = +∞ ).   

The normalization of the output of the WPM operator is implicit in its structure,  
resulting in values lying in the unit interval.  Thus the use of the WPM as an  
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aggregation operator for the positively (negatively) causal antecedents to a given node 
in an FCM enables us more intuitively to specify how the activations of these antece-
dent nodes exert a corresponding positive (negative) influence on the activation of the 
subject node.   

Another advantage of the WPM is that, using our results in [10], one can feasibly 
compute type-2 fuzzy WPM aggregations of type-2 fuzzy inputs.  This enables the 
FCM architecture employing the WPM to be generalized to the perceptual computing 
paradigm of [12], in similar fashion to that described in [13] for social networks.  
Indeed, our interest in the application of the WPM aggregator to FCM structure was 
originally motivated by the insights gained from its application to social network 
analysis.  In this case, rather than using scalar values for the WPM weights, exponents 
and activation values of the nodes in the FCM, we can use interval type-2 (IT2) fuzzy 
membership functions corresponding to a set of vocabulary words as in [12,13], 
which enables us to account for imprecise knowledge of these parameters. 

In Section II of this paper, we first describe the FCM architecture constructed from 
mean operators in general terms.  We then detail this structure in the case of the WPM 
operator and illustrate convergence behavior.  Section III provides examples of this 
new FCM architecture, and Section IV concludes.  We stress that our research in this 
area is ongoing, and thus the results in this paper are preliminary. 

2 FCMs Constructed from Mean Operators 

2.1 General Structure 

For a traditional FCM, at time k , the state of the thi  node attribute is given by 

 
1

( ) ( 1)
n

i i j j
j

A k f W A k
=

= − 
 
 
 ,                                           (1) 

where 0i iW ≠  admits the case of self-feedback and ( )f x  is a transfer or ‘squashing’ 

function that maps the inner product back into the interval [ ]1,1− , e.g., 

( ) ( )2 2( ) tanh( ) 1 1cx cxf x cx e e= = − +  or into the interval [ ]0,1 ,  e.g., 

( ) 1
( ) 1 cxf x e

−−= + . 

In this paper we consider updating node states using the shifted and scaled aggre-
gations of positively and negatively causal antecedent node states obtained through a 

weighted mean-type aggregation operator ( )xL , which for all points ( )1,..., nx x=x  

in the state n-cube [ ]0,1
n

 satisfies 

( ) ( ) ( )1 1min ,..., max ,...,n nx x L x x≤ ≤x .                                    (2) 

Such mean aggregation operators include the familiar weighted power means (WPM), 
the exponential means and the ordered weighted averages.  They also include new 
classes of thresholding mean type aggregation operators introduced in [14,15]. 
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Specifically, we consider dynamic systems for which the state at node i  at the thk  
time interval is given by 

 ( )( ) ( )( )( ) 1 0k

i i ix k L k L= − = =x x                             (3) 

for some mean aggregation operator [ ] [ ]: 0,1 0,1
n

iL →  and for ( )kx  the vector of 

node states ( )ix k   at time k . 

2.2 FCM Using the Weighted Power Mean 

Consider a FCM in which the state of the thi  node at time k  is given by the follow-
ing expression using the WPM: 

 

( )

1

1

1

1

( )

( 1) 0.5 ,

( ) 1 ( )

i
i

i
i

n p
p

i j j
j

i

n p
p

i j j i i i
j

W x k

x k

W x k x kδ δ

+
+

−
−

+

=

−

=

+ =

− + + −

      
 
       





                  (4) 

where 0,i jW + ≥  0i jW − ≥ , 0i j i jW W+ − = , and where 
1
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The conditions insure that a given antecedent node may be positively or negatively 
causal (or neither) for a consequent node, but not both, while setting 0

i
δ =  covers 

cases where a node’s activation is fixed at its initial value, since then  

 ( )
1

( 1) 0.5 ( ) ( )i i
p p

i i ix k x k x k
+ + 

+ = + 
  

( )ix k= . 

The two WPM operators in (4) admit separate sets of importance weights on their 
respective antecedents and also admit separate exponents in the WPMs, which yields 
separate perspectives on the aggregations of positively and negatively causal antece-
dents.  Thus (4) provides a very general and logically intuitive inferencing structure 
for specifying the FCM node dynamics. 

Note further from (4) that if a node’s activation is not fixed and if all of its posi-
tively causal antecedent nodes have unity activations and all of its negatively causal 
antecedent nodes have zero activations, then the two WPM terms within the brackets 
take the values 1 and 0, respectively, and ( )ix k  takes the value 1.  On the other hand, 
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if all positively causal antecedent nodes have zero activation and all negatively causal 
antecedent nodes have unity activation, then ( )ix k  takes the value zero.  Finally, if 

the two WPM terms produce equal values then ( )ix k  takes the neutral value of 0.5.  

Thus our FCM structure exhibits intuitively desired behaviors at both the contra ex-
tremes and the equal-valued activations of the positively and negatively causal  
aggregations. 

We observe that the matrices i jW +  and i jW −  in some instances are right stochastic 

matrices, i.e., when they have at least one positive entry in each row, since then all of 
their row sums are equal to unity [16-18].  This type of matrix is also termed a proba-
bility matrix, transition matrix or Markov matrix, and is ubiquitous in the analysis of 
Markov chains. However, this is not always the case, particularly as the FCM node 
interconnections become more sparsely populated.  In the latter instances, there may 

be one or more rows in either i jW +  or i jW −  having only zero entries.   

Another feature to note from (4) is that, when all rows of both i jW +  and i jW −  have at 

least one positive entry and none of the node values is held fixed (i.e., there is an off-
diagonal positive entry in at least one of the matrices for each row), then the statio-

nary value of this equation is lim ( ) 0.5i i
k

x k
→∞

∀ = .  Under these assumptions, since all 

row sums of i jW +  and i jW −  then equal unity, the first two terms in the brackets in (4) 

cancel each other when ( ) 0.5j jx k∀ = .  This leaves only 1
i

δ =  within the brackets, 

and thus results in the identity ( ) 0.5i ix k∀ = .  Since in most applications of FCMs 

we are interested in their dynamics when one or more node activations are fixed, this 
case is of little practical interest. 

2.3 Convergence Properties 

The convergence properties for nonlinear iterations of the form in (4) can be noto-
riously difficult to prove in the absence of being able to demonstrate that the nonli-
nearity represents a contraction mapping.  There are certain cases where the WPM 
FCM cycles repeatedly between values, so (4) clearly is not a contraction mapping.  A 

simple example of this is seen by choosing the following matrices for i jW +  and i jW − : 

 
0 1 1 0

,
1 0 0 1

W W
   + −= =   
   

,                                       (5) 

in which case each ( ), 1,2ix k i =  in (4) cycles between two values.  One can artifi-

cially construct other FCMs in higher dimensions that also exhibit this cyclical  
behavior. 

However, in hundreds of thousands of simulations of WPM FCMs having a more 
realistic structure, we have observed overall exponential convergence with only a tiny 
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fraction, i.e. ( )410O −  exceptions.  These simulations were conducted by generating 

uniform random entries lying in [0,1]  for the initial vector ( )0x  and the matrices 

i jW +  and i jW − , along with uniform random entries lying in [ ]10,10−  for the individual 

values of jp+  and jp−  in (4).  We then randomly zeroed out entries in i jW +  and i jW −  

with varying probabilities, ranging up to 0.5, which produced sparser non-zero entries 
in these matrices, including instances where one or more entire rows of either matrix 
had all zero entries.  We then iterated (4) for a maximum of 1500 iterations or until 
the squared norm of the successive differences 

2
( 1) ( )k k+ −x x  was less than 

1210 .−   Figure 1 is a histogram of the number of iterations taken, drawn from 100,000 
WPM FCMs using such randomly generated weight matrices, WPM exponent vectors 
and initial activations.  The highest count to achieve convergence in this particular 
simulation was 667 iterations, but this obviously was an outlier.  In other simulations, 
we have observed, in the above-noted tiny fraction of cases, periodic cycling between 
two values for ( 1) and ( )k k+x x  . 

 

 

Fig. 1.  Histogram of number of iterations required to reach the convergence criterion of a 
squared norm difference between successive activations of less than 10-12.  Horizontal axis is 
iteration count.  Data from 100,000 simulations. 

For an 8-node FCM, convergence from arbitrary initial node activations to “inter-
esting” final values that are dependent only upon the system parameters and the val-

ues of any fixed node activations generally occurs in ( )10O  iterations (excepting the 

previously mentioned case where no node activations are fixed and all rows of i jW +  

and i jW −  have at least one non-zero entry, whereupon all node activations converge  

to 0.5).  
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We also tested the extreme cases where all exponents in the WPMs take values of 
positive or negative infinity, and observed similar results.  Thus the WPM FCM sys-
tem appears to be quite stable for a wide range of realistic parameter values, unlike 
the traditional FCM structure, which exhibits variable and generally unpredictable 
limiting behaviors.   

We have further work to do on the WPM FCM, both in determining possibly stric-
ter analytical conditions on convergence and in the analysis of the logical implications 
of the converged values.  However, we believe that the initial results obtained rec-
ommend themselves to exploitation of this more scrutable structure for modeling the 
causal relationships between higher-level concepts. 

3 Examples 

We present some examples in this section that illustrate the behaviors of the WPM 
FCM for various system parameters and initial states.  The examples are chosen to 
illustrate the effects of successive constraints on the initial node activations, begin-
ning with the unconstrained case.  For these examples, we could have selected a par-
ticular FCM from the numerous ones that have been studied in the literature (e.g., see 
4).  However, our purpose in this series of examples is to illustrate the impact of in-
cremental changes in the WPM FCM structure in order to demonstrate the intuitive 
logical consistency of this structure, which is one of its primary benefits relative to the 
traditional structure.  In future work, we shall perform comparisons between these 
two structural alternatives on previously studied applications. 

3.1 Example 1 

Let the transposes of the WPM exponent vectors ±p  be given by 

 9.651 0.271 7.961 -3.471 1.416 -3.037 -4.197 8.456

6.14 3.734 5.337 4.435 -3.169 -0.314 6.764 0.812

T

T

  

  

+ =
− =

p

p

 (6) 

and consider the matrices i jW +  and i jW −  given by 

0.393 0 0 0 0 0.455 0.152 0

0.219 0 0.7 0 0 0 0.08 0

0.37 0 0.184 0 0 0 0 0.446

0 0.055 0 0 0 0 0 0.945

0 0.983 0 0.017 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

W + =

 
 
 
 
 
 
 
 
 
 
 
                        

(7) 
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0 0 0 0 0 0 0 1
0 0 0 0.891 0 0.109 0 0
0 0 0 0.244 0.756 0 0 0
0 0 0.342 0.131 0.172 0 0.355 0
0 0 0 0 0.108 0.265 0.387 0.24

0.402 0.221 0 0 0 0.377 0 0
0.407 0.055 0.159 0.057 0 0.323 0 0
0.537 0.454 0 0 0 0 0 0.009

W −

 
 
 
 
 
 
 
 
 
 
 
  

=

                        

(8) 

 
Note that row 7 of W +  in (7) has all zeroes, indicating no positively causal inputs to 
node 7, whereas all other nodes have both positively and negatively causal inputs.   

From an initial activation state (0)x , the WPM FCM converges in 56 iterations to 

the final state shown below: 

 (0) 0.99 0.037 0.761 0.054 0.813 0.344 0.648 0.294
T

  =x                   (9) 

 (56) 0.619 0.529 0.476 0.426 0.626 0.368 0.223 0.324
T

  =x  (10) 

Note from (6) that 7p−  for the negatively causal WPM is relatively large and positive, 

so this WPM tends toward the maximum of its inputs.  Since there is zero contribu-
tion from the positively causal WPM for this node, this causes the converged value of 
node 7 to be relatively small (0.223).   

This value also happens to be the sole positively causal input for node 8, whereas 
its primary negatively causal inputs from nodes 1 and 2 have activations above the 
neutral value of 0.5, and their corresponding WPM has a positive exponent (0.812).  
This causes the converged activation for node 8 also to be relatively small.  Examin-
ing the other converged activations, we conclude that they appear to be consistent 
with the system parameters. 

3.2 Example 2 

Suppose that we now replace the first rows of i jW +  and i jW −  in Example 1 with all 

zeroes, i.e., so that the activation of node 1 is held fixed, with the remaining rows of 
these matrices, the WPM exponents and the initial activations unchanged.  The FCM 
now converges in 19 iterations to: 

 
 (19) 0.99 0.647 0.568 0.275 0.778 0.271 0.066 0.122 

 =x  (11) 

The activation of node 1 remains constant as expected, and its high value (virtually 

the maximum of 1) coupled with its significant weight in 7,1W −  and the large positive 

WPM exponent 7p−   for the negatively causal inputs to node 7 (with no positively 

causal input) results in a very low converged activation for node 7, exactly as would 
be anticipated. 
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3.3 Example 3 

Suppose now that both the first and fourth nodes’ activations are held fixed in Exam-

ple 1, so that the corresponding rows in i jW +  and i jW −  are all zero, with the WPM ex-

ponents and initial activations unchanged.  Then the FCM activations converge in 25 
iterations to: 

 (25) 0.99 0.705 0.555 0.054 0.806 0.267 0.065 0.108 
 =x  (12) 

Comparing this vector with the converged activations (11) of the previous example, 
we see that fixing the activation of node 4 at its low initial value of 0.054 has caused 
only minor rebalancing of the free nodes’ activations.  On examining the fourth col-
umn of W +  in (7), we see that node 4’s activation contributes nothing in the way of 
positively causal influence to any node except node 5, and to this one only to a very 

small degree since 5,4 0.017W + = . Thus virtually all of the effect of fixing node 4’s 

activation is accounted for in the negatively causal inputs, which is most prominent 
for node 2.  Again, the results are consistent with what would be expected of the  
logic. 

4 Conclusion 

We introduced a new FCM structure in this paper that has a more scrutable interpreta-
tion of the aggregations that go into the activations of its nodes, by employing the 
WPM as the aggregation operator in place of the traditional approach using a linear 
weighted average followed by a non-linear squashing function.  While purely periodic 
cycling between values of the activations can occur, individual components con-
verged in simulations of realistic structures. 

We illustrated this new FCM structure using examples both where the node activa-
tions are unconstrained and where one or two of the initial activations are held fixed.  
We demonstrated that the converged activations obtained from the iterations are con-
sistent with the implied logic of the WPM aggregations of the positively and negative-
ly causal inputs to the nodes, which lends empirical evidence to the utility of this new 
structure. 

In addition to its scrutability, this new structure can be extended to IT2 representa-
tions of both the linkage weights and the node activations using the results in [10] and 
[13], which enables us to compute the successive IT2 membership functions of the 
node activations as the iterations proceed. Thus we can employ the “perceptual com-
puting” paradigm of [12] to account for imprecise word-based descriptions of the 
causal relationship strengths, WPM exponents and initial activation levels in the 
FCM.  This represents a major extension to the modeling capability of FCMs. 

There obviously remains much work to do on both the analytical and practical as-
pects of this new FCM structure.  Given the preliminary and ongoing nature of our 
research, we have not yet applied it to specific modeling problems, nor have we yet 
compared our results to traditional FCM structures.  However, we intend to do so in 
future work. 
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