
 

M. Jamshidi et al. (eds.), Advance Trends in Soft Computing WCSC 2013,  
Studies in Fuzziness and Soft Computing 312,  

105 

DOI: 10.1007/978-3-319-03674-8_10, © Springer International Publishing Switzerland 2014 
 

Topology Preservation in Fuzzy Self-Organizing Maps 

Mohammed Khalilia1 and Mihail Popescu2 

1 Computer Science 
University of Missouri 

Columbia, Missouri, USA 
mohammed.khalilia@gmail.com 

2 Health Management and Informatics 
University of Missouri 

Columbia, Missouri, USA 
PopescuM@missouri.edu 

Abstract. One of the important properties of SOM is its topology preservation 
of the input data. The topographic error is one of the techniques proposed to 
measure how well the continuity of the map is preserved. However, this 
topographic error is only applicable to the crisp SOM algorithms and cannot be 
adapted to the fuzzy SOM (FSOM) since FSOM does not assign a unique 
winning neuron to the input patterns. In this paper, we propose a new technique 
to measure the topology preservation of the FSOM algorithms. The new 
measure relies on the distribution of the membership values on the map. A low 
topographic error is achieved when neighboring neurons share similar or same 
membership values to a given input pattern. 

Keywords: Fuzzy self-organizing map, topology preservation, map continuity, 
relational data. 

1 Introduction 

Self-Organizing Maps (SOM) is an unsupervised neural network algorithm. SOM 
tries to map the s-dimensional input patterns to a 2-dimensional lattice, preserve the 
topology of the data, and cluster the neurons that represent similar input patterns, 
which can be visualized using a 2D or 3D map such as the Unified Distance Matrix 
(U-Matrix) [1]. Several formulations and modifications were proposed to the classical 
SOM algorithm, such as the Self-Organizing Semantic Maps [2], Ontological SOM 
[3], Relational Topographic Maps [4], and WEBSOM [5]. Another class of SOMs is 
the fuzzy SOM algorithms. The general idea of FSOM is to integrate fuzzy set theory 
into neural networks to give SOM the capabilities of handling uncertainly in the data.  
FSOM can also be divided into two categories: object FSOM [6–10] where input 
patterns are represented as feature vectors and the relational FSOM [11] which 
handles relational data. 

Regardless of the type of SOM algorithm they all share one important feature that 
is topology preservation. Topology preservation means that neighboring data points in 
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the input space are mapped to nearby neurons in the output space. Once a good 
mapping is established, SOM can represent the high dimensional input space in a 2-
dimensional output map that preserves the topology of the input data. This in turn 
yields better visualization and reveals more information about the structure and the 
clusters presented in high dimensional input space. To ensure that SOM has 
established good mapping, we need to measure or quantify the goodness of SOM. 
Different measures are proposed to accomplish this goal, such as the quantization 
error and the topographic error. Those errors are widely used in SOM and while the 
quantization error was adapted for the object and relational FSOM [11], no 
formulation is yet proposed to measure the topological preservation or continuity of 
the map in the FSOM algorithms. 

The topographic errors used in SOM are not directly applicable to FSOM due to 
the fact that FSOM does not assign a unique winning neuron for every object, instead 
every neuron is a winning a neuron of every object with a varying degree of 
membership. Therefore, in this work, we propose a technique to measure the 
topographic error in FSOM algorithms. 

The reminder of the paper is organized as follows: Section 2 gives an overview of 
the fuzzy relational SOM. Section 3 discusses some of the well-known methods to 
measure the goodness of SOM. Section 4 explains a new approach to measure the 
topographic error in FSOM. Section 5 presents experimental results and we conclude 
this paper with remarks and discussion in Section 6. 

2 Fuzzy Relational Self-Organizing Maps 

In this section we give a very brief overview of the fuzzy relational SOM algorithm 
(FRSOM) [11] on which the experimental results discussed in section 5 are based on. 
However, the same technique for evaluating the topology preservation can be used on 
object FSOM or any FSOM algorithm. For a complete analysis of FRSOM the reader 
is referred to [11]. 

Given ݊ input objects ܱ ൌ  ሼ݋ଵ, … , ܺ ௡ሽ described by feature vectors݋ ൌ ሼݔଵ, … , ௡ሽݔ ؿ   Թ௦or by a relational matrix ܴ ൌ ௝௞൧ݎൣ ൌ  ቂฮݔ௝ െ  ௞ฮଶቃ[4,11] SOMݔ 

constructs a lattice or map of ܿ number of neurons (similar to Fig. 1a), that are 
connected using a neighborhood kernel, ݄, such the neighborhood between neuron ݅ 
and ݆ is given by 

݄௜௝  ൌ   exp ൭െฮܽ௜ െ ௝ܽฮଶ2ߪଶሺݐሻ ൱, (1) 

where ܽ௜ is the coordinate of the ݅th neuron in the output space (two dimensional 
space) and ߪ is a monotonically decreasing neighborhood size. Every neuron has a 
corresponding s-dimensional weight vector, ݉ ൌ ሼ݉ଵ, … , ݉௖ሽ or an n-dimensional 
coefficient vector in the relational algorithm. One of the goals of the classical crisp 
SOM algorithm is to assign every s-dimensional input signal, ݋௞, a winning or a best-
matching unit (BMU), ݓ௞, according to 
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௞ݓ ൌ arg min ௜ԡ݉௜ െ 1׊  ௞ԡଶݔ  ൑ ݅ ൑ ܿ and 1 ൑ ݇ ൑ ݊ . (2)  

 
Effectively, SOM assigns a full membership of ݋௞ in neuron ݓ௞ , 
௜௞ݑ  ൌ ൜1, if ௞ݓ ൌ ݅0, otherwise . (3)  

An alternative to this approach is to assign a fuzzy membership for all objects in 
every neuron as described in [11]. The FRSOM proposed in [11] produces fuzzy 
partitions ܷ א  ௙௖௡ whereܯ 

 

௙௖௡ܯ ൌ ۔ۖەۖ 
א ܷۓ  Թ௖ൈ௡ተተ ௜௞ݑ א ሾ0,1ሿ,෍ ௜௞௡ݑ

௞ୀଵ ൐ 0, ෍ ௜௞௖ݑ
௜ୀଵ ൌ ׊,1 1 ൑ ݅ ൑ ܿ ܽ݊݀ 1 ൑ ݇ ൑ ݊ۙۘۖ

ۖۗ. (4)  

 
Introducing fuzzy memberships to SOM as in FRSOM adds another layer of 
complexity due to the fact that all neurons are winners of all objects to some degree. 
Thus, any error measurement made in FRSOM has to factor in all membership values 
of all input signals in all neurons. In [11] we showed that the quantization error in 
SOM can be easily adapted to the FRSOM, but this is not the case regarding the 
topographic error. In the next section we will briefly review two of the major SOM 
evaluation techniques followed by a new method to evaluate the topology 
preservation of FRSOM in section 4. 

3 Topology Preservation in SOM 

Several measures are proposed to measure the goodness of the map. Some measures, 
such as the quantization error, evaluate the fitness of SOM to the input data. This 
error calculates the average distance between the input patterns and their 
corresponding winning neurons [12]. Optimal map is expected to produce a smaller 
error, which means the input patterns are close to their winning neurons. Quantization 
error for SOM is shown in (5). 
௖݁ݍ  ൌ ∑ ฮݔ௞ െ ݉௪ೖฮ௡௞ୀଵ  . (5)  
 
Similarly, the FSOM quantization error is defined as [11] 
௙݁ݍ  ൌ  ∑ ∑ ௜௞௤ݑ ฮݔ௞ െ ݉௪೔ฮ௡௞ୀଵ௖௜ୀଵ  . (6) 
 
However, the crisp and fuzzy quantization errors in (5) and (6) may not accurately 
measure the topographic preservation of the map. Instead, one can quantify the 
relation between the codebook weight vectors and the associated neurons in the map 
as in the topographic product [12]. This gives a sense on how well the s-dimensional 
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space is mapped to a 2-dimensional lattice [13]. A different approach is to use the 
topographic error. 

The topographic error measures the continuity of the map or how well an input 
signal preserves the local continuity of the map [12]. When the first and second best-
matching units to object ݋௞ are adjacent in the map space, then ݋௞ is said to preserve 
local map continuity and if they are not adjacent then there is a topological error. To 
evaluate the overall topology of the map the proportion of input signals for which the 
first and second best-matching units are not adjacent is measured (7) [12]. A lower 
error yields a better map and topology.   
௖݁ݐ  ൌ ∑ ݆ܽ݀ሺ݋௞ሻ௡௞ୀଵ , (7)  
where 
 ݆ܽ݀ሺ݋௞ሻ ൌ ൜1, ,0ݐ݆݊݁ܿܽ݀ܽ ݐ݋݊ ݁ݎܽ ݏܷܯܤ ݀݊݋ܿ݁ݏ ݀݊ܽ ݐݏݎ݂݅ ݄݁ݐ ݂݅  .                                                                         ݁ݏ݅ݓݎ݄݁ݐ݋

 
Another matric for measuring topology preservation in crisp SOM is discussed in 
[14]. The metric is said to be topology preserving if for any ݔ௜, if ݔ௝ is the ݇th nearest 
neighbor of  ݔ௜, then ݓ௝  is the ݇th nearest neighbor of ݓ௜ . 

The concept of first and second BMUs is not applicable to FSOM since every unit ݅ is a BMU of every object ݋௞ with a degree ݑ௜௞. A possible workaround is to harden 
the fuzzy partition produced by FSOM to find the BMU then compute the topographic 
error as in (7). Another approach is to consider the two neurons in which ݋௞ has the 
highest membership as the first and second BMUs. However, neither of these two 
approaches exploits the membership grade of FSOM. Therefore, a new formulation to 
measure the local continuity of the map in FSOM is needed to evaluate its goodness 
and the topology preservation, which is the topic of the next section. 

4 Topology Preservation in FRSOM 

In FRSOM every neuron is a BMU of every object with a varying degree of 
membership. Regardless, both the crisp and fuzzy SOM should preserve the topology. 
Therefore, every pattern presented to FRSOM is also expected to preserve the local 
continuity of the map. One can consider the first and second neuron with the highest 
membership to ݋௞ as best and second winning neurons, ݓ௞ and ݓ௝ . However, this 
flawed strategy uses only two neurons and discards all other neurons despite the fact 
other neurons might have high membership to ݋௞ . Relying on two neurons can only 
give us a false sense of the map continuity. Consider a scenario where the first and 
second neurons with the highest memberships to ݋௞, ݓ௞ and ݓ௝  are immediate 
neighbors, but the neuron with the third highest membership to ݋௞ is distant from ݓ௞  
and ݓ௝ . A better approach is to use the membership values and utilize all neurons 
when measuring the topology preservation of FRSOM. More specifically, by looking  
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at the differences of the membership values between the neurons and their immediate 
neighbors we can make a conclusion on how well the local topology of the map is 
preserved. 

For any given object ݋௞ in FRSOM, we expect neurons with high firing strength to ݋௞ to be concentrated in one region (H region). Also, not all neurons have the same 
firing strength, as we go further away from the H region, the membership values start 
to diminish gradually. If the correct data topology is discovered by FRSOM, the H 
region corresponds to the catchment basin or part of it where ݋௞ belongs the most. In 
such case, we say that ݋௞ preserves the local continuity of the map. On the other hand, 
if the neurons of high membership to object ݋௞ are scattered throughout the map or if 
no H region is identified then the object fails to preserve the topology of the map. For 
demonstration, Fig. 1a shows the topographic map for Hepta dataset [15] and Fig. 1b 
shows the H region for some input pattern. 

In order to assess how well an object ݋௞ preserves the local continuity of the map 
we first need to compute the HL-matrix. HL-matrix has the same dimensions as the 
topographic map and ܿ neurons. A topology preserving HL-matrix includes two main 
regions, the H region which contains the neurons with high membership to object ݋௞ and the L region containing the rest of the neurons which have low membership 
values to ݋௞, as shown in Fig. 1c. Observe that the HL-matrix of ݋௞ represents a 
snapshot of the U-matrix (Fig. 1a). Adjacent neurons in regions H and L should have 
similar membership values to ݋௞. Hence, the difference in the membership values 
between a neuron ݅ and its immediate neighbors ܰሺ݅ሻ should be very small with 
exception to the bordering neurons that separate the H and L regions as shown in Fig. 
1c. For a given object ݋௞ we first compute its HL-matrix where the value at every 
neuron’s coordinate is computed as follows  
ሺ݅ሻܮܪ  ൌ ∑ หݑ௜௞ െ ேሺ௜ሻא௝௞ห௝ݑ  . (8)  
 ௜௞ and theݑ ሺ݅ሻ corresponds to the sum of differences between the membershipܮܪ 
memberships of ݋௞ in ܰሺ݅ሻ. Then that difference is projected on top of the grid 
position of every neuron. This process is performed for every input pattern. For a 
small topographic error the value for every neuron ܮܪሺ݅ሻ should be as small as 
possible, which means that the neuron ݅ and its neighbors ܰሺ݅ሻ have very similar 
memberships to the given input pattern. 

For an object to preserve the local topology it is imperative that we identify a 
single region labeled H. Failure in identifying a single region H will cause the 
topographic error to increase and possibly reaching its maximum value. This 
technique is stricter than the topographic error in (7). Here we want to ensure that two 
adjacent neurons have similar membership to ݋௞ , which is somewhat similar to (7), 
but in addition we would like to ensure that ݋௞ preserves the local continuity within a 
specific region of the map. 
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(a) (b) (c) 

Fig. 1. (a) FRSOM topographic map of the Hepta dataset, (b) H region for some input pattern ݋௞ and (c) HL-matrix of same input pattern 

 
For more accurate evaluation of the topology preservation it is recommended that 

we normalize the HL-matrix as follows ܰܮܪሺ݅ሻ ൌ ு௅ሺ௜ሻ∑ ு௅ሺ௝ሻ೎ೕసభ  . (9) 

Two important reasons for this normalization: first, it sets an upper bound on the 
topographic error, similar to (7) the maximum error is 1. Second, normalization is 
crucial when comparing the topographic errors across different maps. Once the 
normalized HL-matrix is computed, the final topographic error of a single object ݋௞ 
will depend on the neurons identified in the region labeled H. The error is simply the 
sum of values enclosed in the H region of the NHL-matrix (10). As the values in the 
H region get smaller, so does the topographic error. Meaning that adjacent neurons in 
the H region share similar memberships to ݋௞. 
ݐ  ௙݁ሺ݇ሻ ൌ ∑ ுאሺ݅ሻ௜ܮܪܰ  . (10)  
 
The final topographic error of the map is computed as the average topographic error 
overall the objects as 
ݐ  ௙݁ ൌ 1݊ ෍ ݐ ௙݁ሺ݇ሻ௡

௞ୀଵ . (11)  

 
Few remarks to point out about the proposed measure (11): first, the only way for a 
map to result in a zero topographic error is when the values in the H region are zeros. 
In other word, when neuron ݅ א  and its neighbors ܰሺ݅ሻ have an identical ܪ
membership to ݋௞. Second, an HL–matrix may not contain a unique H region. In this 
situation the topographic error can reach its maximum, which is the sum of all values 
in the NHL-matrix (ݐ ௙݁ ൌ 1). 
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5 Experimental Results 

5.1 Fuzzy Topographic Error on O3G 

The overlapping three Gaussian (O3G) dataset contains three clusters of size 500 each 
(Fig. 2a). Clusters in O3G have larger variance which causes overlapping. We setup 
FRSOM with initial ሺߪ଴ሻ, final neighborhood radius ൫ߪ௙൯, initial fuzzifier ሺݍ଴ሻ, final 
fuzzifier ൫ݍ௙൯, map dimensions and number of epochs to be 2, 0.5, 1, 2, 15x15 and 10, 
respectively. The resulting topographic map is shown in Fig. 2b. 

From Fig. 2c it is clear that the HL-matrix for some given pattern contains the two 
H and L regions, which is an indication that it preserves the local continuity of the 
map. 

 

 
 

(a) (b)

  

(c) (d)

Fig. 2. (a) O3G dataset, (b) topographic map produced by FRSOM when σ଴ ൌ 2,  
(c) HL-matrix for some object ݋௞ and (d) topographic map produced by FRSOM when σ଴ ൌ 4 

 

In a topology preserving map, such as the one in Fig. 1c, the membership ݑ௜௞ is 
expected gradually increase while approaching the H region and neurons with the 
highest membership should be located within the H region as demonstrated in Fig. 3a. 
On the other hand, a non-topology preserving map as in Fig. 2d we see a more chaotic  
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(a) (b)

Fig. 3. (a) Behavior of membership values of ݋௞ in a topology preserving map (membership vs. 
neuron index), (b) behavior of the membership in a non-topology preserving map (σ଴ ൌ 4) 

membership values among the neurons (Fig. 3b) causing ݐ ௙݁ to increase. It could also 
mean that the four regions or corners in Fig. 2d are wrapped around to form one 
region representing all input patterns, failing to preserve the topology. 

Now, let us compare  ݁ݐ௖ and  ݐ ௙݁ for the maps in Fig. 1b and Fig. 1d. If we 
compute ݁ݐ௖ for the map in Fig. 2b (Table 1), where the two neurons with the highest 
membership value to an input pattern are used as the first and second BMU, we find it 
higher than the  ݁ݐ௖ in Fig. 2d (Table 1). On the contrary, ݐ ௙݁ has increased from 0.32 
in Fig. 1b to ݐ ௙݁ ൌ 1 in Fig. 1d. In this scenario ݐ ௙݁ reveals more information about 
the goodness of the map resulted from FRSOM since we probably expect Fig. 2b to 
be more topology preserving than Fig. 2d. 
 

Table 1. Behaviour of  ݁ݐ௖ and ݐ ௙݁ when varying ߪ଴ 

Map ߪ଴ ݁ݐ௖ ݐ  ௙݁ 

Fig. 2b 2 0.021 (0.006) 0.32 (0.03) 
Fig. 2d 4 0.004 (0.004) 1 (0) 

5.2 Fuzzy Topographic Error and Map Dimensions 

In this experiment we will use the Two Diamonds dataset from the Fundamental 
Clustering Problem Suite (FCPS), which contains 800 data points [15] as shown in 
Fig. 4a. On this dataset we will show how the map dimensions can have an influence 
on the topographic error. Same parameters used on the O3G dataset will be used for 
the Two Diamonds with exception to the map dimensions which is set it be 20x20. 
The resulting topographic map is shown in Fig. 4b. 

A smaller map of size 10x10 was also produced for the Two Diamonds dataset. It 
is not shown since it is very similar to the map in Fig. 4b. We found the overall 
topological error of the 20x20 map measured to be 0.33. As the map size increases it 
is likely that the H region increases which in some cases causes an increase in the 
membership variance among adjacent neurons. On the contrary, 10x10 map might 
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have lower variance in the memberships among neighboring neurons in the H region 
and hence a lower topographic error (overall topographic error is 0.28). Overall, as 
the map size increased the topographic error increased (Fig. 3c). Therefore, it is 
important to choose a map size suitable for the dataset. 

 

 
 

(a) (b) (c) 
   

Fig. 4. (a) Two diamonds dataset, (b) topographic map produced by FRSOM and (c) map size 
vs. ࢌࢋ࢚ for 5x5, 7x7, 10x10, 15z15, 20x20, 25x25, 30x30, 35x35, 40x40 map dimensions as 
shown along the x-axis 

6 Conclusion 

In this paper we presented preliminary results for measuring the topology preservation 
in fuzzy self-organizing maps. The newly proposed topographic error relies on the 
membership distribution on the map and in some sense is an extension to the crisp 
topographic error. The assumption is that adjacent neurons should have similar 
memberships to a given object ݋௞. In addition, we presented the HL-matrix. A 
topology preservation HL-matrix for a given ݋௞ contains two regions, the H region 
that encompasses the neurons with high membership to ݋௞ and the L region which 
contains the low membership neurons to ݋௞. In the results different scenarios were 
presented to demonstrate how the topographic error behaves when varying the map 
dimensions. We observed that the topographic error in FSOM tends to be higher than 
the standard topographic error used in SOM.  

One drawback of the proposed measure is its dependence on the map dimensions. 
For instance, as the map dimensions or size increases so does the topographic error. 
To overcome this problem, one is expected to specify a map dimension that is suitable 
to the input dataset. The dependency of the topographic error on the SOM parameters 
is not necessarily a bad thing. On the contrary, a high topographic error is an 
indication that the map is not optimal and the parameters require tuning. However, 
additional experiments are needed to study the influence of other parameters such as 
the neighborhood size and the fuzzifier, in addition to the map dimensions, on the 
proposed topographic error. 

Furthermore, a more theoretical approach for determining the H region is needed; 
contrary to the current approach of thresholding the membership values and 
employing image segmentation to determine the H and L regions. 
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