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Preface

This volume of Springer-Verlag series on Studies in Fuzziness and Soft Computing rep-
resents the proceedings of World Conference on Soft Computing, held from December
16–18, 2013 in San Antonio, Texas, USA. This conference was jointly dedicated to:

Professor Lotfi A. Zadeh, “Father of Fuzzy Logic” and creator of Soft Computing
Methodologies, and to Mrs. Fay Zadeh for her life-long sacrifices and dedications to
the causes of Lotfi Zadeh and his career.

We welcomed over 80 attendees from 18 nations (Australia, Azerbaijan, Belgium,
Canada, Colombia, Finland, Hungary, India, Iran, Israel, Japan, Mexico, Poland, Rus-
sia, Spain, Turkey, Ukraine, USA) who contributed to this conference.

Eight keynote speakers presented recent advances in soft computing and cloud com-
puting, as follows:

1) Prof. Ron Yager, Iona College, USA under the title of “Intelligent Aggregation
Methods for Decision Making and Learning”.

2) Dr. Leila Meshkat, NASA/CALTECH JPL, USA under the title of “Uncertainty
Management for NASA Space Mission”.

3) Prof. Saeid Nahavandi, Deakin University, Australia under the title of “Knowledge
Management in Future Factories”.

4) Prof. Jerry Mendel, USC, USA, under the title of “General Type-2 Fuzzy Sets and
Systems: Where Are We Now and Where Are We Heading?”

5) Mr. Eli Karpilovski, Millanox Corp., USA, under the title of “High Performance
Cloud”.

6) Prof. Lotfi A. Zadeh, University of California at Berkeley, USA under the title of
“Bayesianism versus Fuzzy Logic”.

7) Prof. Rafik Aiev, Oil Academy, Azerbaijan, under the title of “Combined States-
Based Decision Theory with Z-restriction,”.

We wish to thank our co-editor Professor Janusz Kacprzyk of Polish Academy
of Sciences, Springer-Verlag Series Editor of this volume for facilitating and recom-
mending to print this volume. We wish to thank many members of the organizing and
program committee who helped us with the conference. We specially thank
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Dr. Leontina Di Cecco of Springer-Verlag Publishers, Candice Contreras of the Elec-
trical and Computer Engineering Department at the University of Texas at San Anto-
nio (UTSA), as well as Ramin and Amin Sahba, Patrick Benavidez, Azima Motaghi,
Maryam Ezell, Halid Kaplan and Yunus Yetis of ACE Laboratory, UTSA for helping
with both the conference and the volume that will be published based on the Confer-
ence.

We wish to thank all the authors for contributing to his volume.

October 15 2013 Mo Jamshidi
San Antonio, TX, USA

Vladik Kreinovich
El Paso, TX, USA

Janusz Kacprzyk
Warsaw, Poland
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Abstract. This paper presents the development of the neuro-fuzzy mathemati-
cal model of the ecopyrogenesis (EPG) complex multiloop circulatory system 
(MCS). The synthesis procedure of the neuro-fuzzy model, including its adap-
tive-network-based fuzzy inference system for temperature calculating 
(ANFISTC) training particularities with input variables membership functions 
of different types is presented. The analysis of computer simulation results in 
the form of static and dynamic characteristics graphs of the MCS as a tempera-
ture control object confirms the high adequacy of the developed model to the 
real processes. The developed neuro-fuzzy mathematical model gives the op-
portunity to investigate the behavior of the temperature control object in steady 
and transient modes, in particular, to synthesize and adjust the temperature con-
troller of the MCS temperature automatic control system (ACS). 

Keywords: ecopyrogenesis complex, multiloop circulatory system, neuro-fuzzy 
mathematical model, adaptive-network-based fuzzy inference system, member-
ship functions. 

1 Introduction 

The problem of industrial and domestic organic waste recycling is one of the main 
environmental problems caused by the development and growth of urbanization in 
many countries of the world. Quite a prospective method of this problem solution is 
the use of ecopyrogenesis technology, which allows complete utilization of the whole 
scope of the organic part of solid waste and low-grade coal in the environmentally-
friendly and energy-saving modes [1]. EPG technology provides a simplified sorting 
of organic solid waste into two categories: the first category - dried organic waste, 
which includes all of the polymer waste, including polyvinylchloride (PVC) but not 
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more than 2%, worn tires, rubber, oil sludge, paper, etc.; the second category - waste 
with high humidity, which include food waste, shredded wood, paper, cardboard, etc.. 
The first category of waste is disposed by a multi-loop circulatory pyrolysis (MCP) to 
obtain from the mass of raw materials up to 60-85% of the liquid fuel of light frac-
tions with characteristics comparable to diesel fuel. The second category of waste is 
utilized by the method of multi-loop bizonal circulatory gasification (MCG) with 
obtaining generator gas, which has a calorific value 1100-1250 kcal/m3 [1]. For reali-
zation of the EPG technology specific technological complexes are used, which are, 
in turn, complicated multi-component technical objects. Automation of such technol-
ogical complexes allows to significantly increase the operation efficiency and eco-
nomic parameters.   

Stabilization of the set temperature value on the outlet of the MCS is one of the 
important tasks of automatic control of the EPG process [1]. The possibility of tem-
perature control with high quality indicators allows controlling of the thermal destruc-
tion process in terms of various depth of hydrocarbon decay starting with petrol and 
up to diesel fuel. This allows obtaining of high-quality liquid fractions of alternative 
fuel on the outlet with the set molecular mass and, in turn, requires a special tempera-
ture ACS.  

To study the ACS effectiveness at the stage of its design it is reasonable to use the 
mathematical and computer modeling methods that are quite effective and low-cost, 
comparing with experimental and other approaches, especially while studying the 
behavior of thermal power objects and their control systems [2-5]. In particular, de-
velopment and adjustment of MCS ACS temperature controller requires an availabili-
ty of an adequate mathematical model. Also MCS temperature ACS quality indicators 
significantly depend on the accuracy of the synthesized model and its adequacy to the 
real processes.  

Therefore, the aim of this work is development and research of the mathematical 
model of the EPG complex MCS as a temperature control object. 

2 MCS Temperature Control System and Neuro-Fuzzy 
Mathematical Model Structure 

The principle diagram of the output (control) point of the temperature control system 
of the of the EPG MCS is shown in Fig. 1 [1], where the following indications are 
used: CB – control block; TS – temperature sensor; LFR – linear flow regulator; OC – 
output condenser; AF – air fan; SD – servodrive; V – valve; CA – cooling air; CW – 
cooling water; 1C, 2C, 3C – first, second and third MCS cooling circuits; OW – organ-
ic waste; GB – gas burner which heats the reactor; GT – gas tank with liquefied gas. 

The MCS task is to cool the gas-vapor mixture, obtained in the process of waste 
decay in the reactor, to the set temperature in its output point. The MCS system in-
cludes three sequentially connected circuits with various cooling types: the 1st – with 
non-regulated air cooling; the 2nd – with regulated air cooling; the 3rd – with non-
regulated water cooling. Thus, the temperature control in the output point on the MCS 
outlet can be performed due to the flow change of cooling air of the 2nd MCS circuit. 
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Fig. 1. Principle diagram of the output (control) point of the temperature control system of the 
of the EPG MCS 

The unregulated air fan delivers the constant value of cooling air through the 2nd 
circuit, which then can be changed using a linear air flow regulator. The air LFR, in 
turn, is a valve with a servodrive and has the linear characteristic of the dependence of 
the air consumption from the input voltage. In accordance with it the servodrive ro-
tates the valve to a certain angle, thus changing the consumption of the cooling air.  

Control unit contains the set device (SD), the summator, the temperature controller 
and allows to control the temperature of the MCS output point both in manual and in 
automatic modes [1]. 

As already mentioned above, temperature controller synthesis requires an availabil-
ity of a high-precision MCS mathematical model. The analysis of physical properties 
and technical characteristics of the thermal power objects as the complicated control 
objects with significant uncertainties and nonlinearities [5-8] shows reasonability of 
its mathematical model development on the basis of soft computing and artificial 
intelligence principles and algorithms [9-13]. The mathematical models and control 
systems based  on fuzzy logic, artificial neural networks etc. are developed and suc-
cessfully introduced in the following fields: technological processes control, transport 
control, medical and technical diagnostics, financial management, stock forecast, 
pattern recognition, etc. [14-19]. Especially effective are neuro-fuzzy hybrid mathe-
matical models and control systems that combine the advantages of fuzzy and neural 
networks based systems [20-22]. Thus, to consider special features of the MCS multi-
circuit structure, it is reasonable to develop MCS mathematical model on the basis of 
the adaptive-network-based fuzzy inference system for temperature calculating and 
approach, given in [23]. The MCS neuro-fuzzy mathematical model functional struc-
ture is presented Fig. 2. 
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Fig. 2. Functional structure of the MCS neuro-fuzzy mathematical model 

The following values are given to the input of this model: power value of the reac-
tor heating installation PHR, waste temperature value at the top of the reactor TTR, the 
flow of the cooling air of the 2nd circuit of the MCS QA and ambient temperature TA. 
The control point temperature value of the MCS TCP is formed on the output. The 
ANFISTC implements the dependence TCP = fANFISTC (PHR, TTR, QA, TA). Time con-
stants T1MCS, T2MCS, τMCS and n order are determined from the experimental characte-
ristic of the MCS control point heating transient process using the approach given in 
[23]. The well tested model developed and presented in [24] was chosen as the ma-
thematical model of the reactor. In turn, the LFR mathematical model represented as 
an oscillatory link, where uLFR – LFR control input, kLFR, TLFR, ζ – gain constant, time 
constant and damping coefficient, which are determined by the parameters of the 
servodrive and gas valve, which are the parts of the linear flow regulator. 

Let us consider the synthesis procedure particularities of the adaptive-network-
based fuzzy inference system for temperature calculating in detail. 

3 Synthesis Procedure of the ANFISTC 

Adaptive-network-based fuzzy inference system (ANFIS) is a variant of hybrid neu-
ro-fuzzy networks – neural network of direct signal propagation of particular type 
[20]. ANFIS implements the Sugeno type fuzzy inference system in the form of a 
five-layer neural network of the signal forward propagation. The neuro-fuzzy network 
architecture is isomorphic to the fuzzy knowledge base. In the neuro-fuzzy networks 
the differentiated implementation of triangular norms (multiplication and probabilistic 
OR) are used, as well as the smooth membership functions. This allows you to apply 
for adjustment of neuro-fuzzy networks fast algorithms for neural networks training, 
based on the method of back-propagation.  

Fuzzy rule with serial number r has the following form 

 
1 1, ,

0, 1, 1 ,

  If  and and 

then 
r n n r

r r n r n

x a x a

y b b x b x

= … =
= + +…+

, (1) 
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where r = 1,…, m – the number of rules; ai,r – fuzzy term with membership function 
μr(xi), that is used for the linguistic evaluation of variable xi in the r-th rule (r = 1,…, 
m; i = 1,…, n); bq,r – real numbers in conclusion of r-th rule (r = 1,…, m; q = 1,…, n).  

The functional structure of typical ANFIS with two inputs x1, x2 and one output y is 
presented in Fig 3. 

 

Fig. 3. Functional structure of typical ANFIS 

ANFIS-network functions as follows: 

Layer 1. Each node of the first layer is one term with certain membership function. 
Network inputs x1, x2,…, xn  are connected only with their terms. Nodes amount is 
equal to the sum of the terms of all variables. The node output is a membership degree 
of the input variable value to the corresponding fuzzy term 

 ( ) 2

1
   

1
r i d

i

x
x g

c

μ =
−+

, (2) 

where c, d, g  – adjustable parameters of the membership function. 

Layer 2. The number of nodes of the second layer is m.  Each node of this layer cor-
responds to one fuzzy rule. A node of the second layer is connected with the nodes of 
the first layer, which form the antecedents of the corresponding rule. Therefore, each 
node of the second layer can receive from 1 to n input signals. The node output is the 
degree of fulfillment of the rules, which is calculated as the product of the input sig-

nals. Let’s denote the nodes outputs of this layer as , 1,r r mτ = .  

Layer 3. The number of nodes of the third layer is also m. Each node in this layer 
calculates the relative degree of fulfillment of the fuzzy rule 
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 *

1,

  r
r

j
j m=

τ
τ =

τ
. (3) 

Layer 4. The number of nodes of the fourth layer is also m. Each node is connected to 
one node of the third layer and also with all network inputs (in Fig. 3 the connection 
with the inputs are not shown). The node of the fourth layer calculates the contribu-
tion of a fuzzy rule in the output of the network 

 ( )*
0, 1, 1 ,  y ...r r r r n r nb b x b x= τ ⋅ + + + . (4) 

Layer 5. The only node of this layer sums the contributions of all the rules 

 1  y ... ...r my y y= + + . (5) 

In this work the authors’ studies have shown, that the shape of input variables linguis-
tic terms membership functions significantly affect the training process of the 
ANFISTC and MCS model accuracy on the whole. So, to achieve the highest accura-
cy of the MCS neuro-fuzzy mathematical model, at the stage of its design the 
ANFISTC synthesis for the different types of linguistic terms membership functions 
(triangular, trapezoidal, Gaussian 2) of the input variables PHR, TTR, QA, TA is consi-
dered. 3 linguistic terms are chosen for the variable PHR: S – small, M – middle and 
B – big; for the variables TA and TTR 3 linguistic terms are also chosen for each one: L 
- Low, M – middle and H – High; for the variable QA – 5 terms: Z – Zero, S – small, 
M – middle, B – big and VB – Very Big. The ANFISTC knowledge base consists of 
135 rules, which correspond to all combinations of four input fuzzy variables. In this 
case the amount of rules coefficients bq,r is 540. 

During ANFISTC training, at different types of membership functions the input va-
riables linguistic terms parameters are found, as well as all rules coefficients bq,r.   

ANFISTC training was conducted with the help of training data with 12400 points 
and the hybrid training method, which combines the back-propagation method and the 
least square method. The training data is based on the experimental characteristics of 
the MCS output point heating transient processes of the real EPG complex in different 
operation modes.  

For the input variables linguistic terms membership functions of triangular type the 
ANFISTC training process lasted 3147 epochs, and the minimum training error is 
0,879.  

Linguistic terms membership functions of the input variable QA, as well as the 
coefficients bq,r of some rules are shown in Fig. 4 and Table 1, respectively (for input 
variables PHR and QA the range of values is determined in relative units). 
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Fig. 4. ANFISTC input variable linguistic terms membership functions of triangular type 

Table 1. ANFISTC rule base fragment for the input variables membership functions of triangu-
lar type  

 
№ of rule 

1 66 73 81 86 
PHR S M M M M 
TA L M M H H 
TTR L M H M H 
QA Z Z M Z Z 
b1,r 0 2,53 2,39 2,016 3,29 
b 2,r 0 0,232 0,194 0,198 0,643 
b 3,r 0 0,324 0,245 0,267 0,322 
b 4,r 0 0 -8,82 0 0 

 
№ of rule

126 130 131 133 135 
PHR B B B B B 
TA H H H H H 
TTR M M H H H 
QA Z VB Z M VB 
b1,r 2,426 2,53 4,231 4,01 3,455 
b 2,r 0,314 0,156 0,594 0,447 0,213 
b 3,r 0,315 0,127 0,478 0,331 0,226 
b 4,r 0 -3,23 0 -6,56 -2,79 

 
The characteristic surface of the developed ANFISTC for the input variables mem-

bership functions of triangular type at PHR = PHRmax and TA = 20 °С is presented in 
Fig. 5. 
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Fig. 5. ANFISTC characteristic surface for the input variables membership functions of trian-
gular type 

For the input variables linguistic terms membership functions of trapezoidal type 
the ANFISTC training process lasted 4725 epochs, and the minimum training error is 
0,0934.  

Linguistic terms membership functions of the input variable QA, as well as the 
coefficients bq,r of some rules are shown in Fig. 6 and Table 2, respectively.  

 

Fig. 6. ANFISTC input variable linguistic terms membership functions of trapezoidal type 

The characteristic surface of the developed ANFISTC for the input variables mem-
bership functions of trapezoidal type at PHR = PHRmax and TA = 20 °С is presented in 
Fig. 7. 
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Table 2. ANFISTC rule base fragment for the input variables membership functions of 
trapezoidal type 

 
№ of rule 

1 66 73 81 86 
PHR S M M M M 
TA L M M H H 
TTR L M H M H 
QA Z Z M Z Z 
b1,r 0 2,04 2,09 2,13 3,41 
b 2,r 0 0,182 0,204 0,212 0,627 
b 3,r 0 0,224 0,227 0,243 0,354 
b 4,r 0 0 -8,16 0 0 

 
№ of rule

126 130 131 133 135 
PHR B B B B B 
TA H H H H H 
TTR M M H H H 
QA Z VB Z M VB 
b1,r 2,42 2,03 4,81 4,02 3,85 
b 2,r 0,342 0,142 0,684 0,455 0,265 
b 3,r 0,313 0,103 0,426 0,327 0,22 
b 4,r 0 -3,14 0 -6,04 -2,45 

 

Fig. 7. ANFISTC characteristic surface for the input variables membership functions of trape-
zoidal type 

For the input variables linguistic terms membership functions of Gaussian 2 type 
the ANFISTC training process lasted 3012 epochs, and the minimum training error is 
1,443.  
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Linguistic terms membership functions of the input variable QA, as well as the 
coefficients bq,r of some rules are shown in Fig. 8 and Table 3, respectively. 

 

Fig. 8. ANFISTC input variable linguistic terms membership functions of Gaussian 2 type 

Table 3. ANFISTC rule base fragment for the input variables membership functions of 
Gaussian 2 type 

 
№ of rule 

1 66 73 81 86 
PHR S M M M M 
TA L M M H H 
TTR L M H M H 
QA Z Z M Z Z 
b1,r 0 2,12 2,144 2,21 3,523 
b 2,r 0 0,193 0,234 0,223 0,701 
b 3,r 0 0,298 0,267 0,225 0,315 
b 4,r 0 0 -8,02 0 0 

 
№ of rule

126 130 131 133 135 
PHR B B B B B 
TA H H H H H 
TTR M M H H H 
QA Z VB Z M VB 
b1,r 2,13 2,234 4,176 4,234 3,167 
b 2,r 0,3213 0,243 0,698 0,415 0,215 
b 3,r 0,354 0,096 0,478 0,369 0,224 
b 4,r 0 -3,985 0 -6,435 -2,198 
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The characteristic surface of the developed ANFISTC for the input variables mem-
bership functions of Gaussian 2 type at PHR = PHRmax and TA = 20 °С is presented in 
Fig. 9. 

 

Fig. 9. ANFISTC characteristic surface for the input variables membership functions of Gaus-
sian 2 type 

4 Computer Simulation of the MCS as the Temperature 
Control Object 

The computer modeling of the MSC output point heating was carried out for the expe-
rimental EPG complex with the following parameters: the displacement volume of the 
pyrolysis reactor of this complex is 14 liters, the maximum power of gas-burner is 
25kW, the nominal power of air fan of the second cooling MCS circuit is 800W. The 
parameters of transfer function have been defined in the identification process and 
they are:  T1MCS = 57 s; T2MCS = 24 s; τMCS = 12 s; n = 3.  The simulation was carried 
out at constant heating power of the gas-burner when PHR = PHRmax = 25 kW, at boil-
ing point of polymer wastes loaded into the reactor when Tb = 400° С, at constant 
temperature of ambient TA = 20° С and the flow of the cooling air of the 2nd circuit of 
the MCS QA = 0,1QAmax. Simulation results of the MSC output point heating transient 
processes, using the developed MCS neuro-fuzzy mathematical model with input 
variables linguistic terms of different types, are graphically shown in Fig.10. 

The detailed graphics of the MSC output point heating transient processes are 
graphically shown in Fig.11. 

After analyzing the simulation results we can confirm that the mathematical model 
has rather high level of adequacy as the nature of its transient processes with high 
accuracy repeat the character of real processes of MCS heating. The graphics of tran-
sient processes (Fig. 10 and Fig. 11) represent the processes of MCS heating, that 
proceed very slowly before waste start to boil and is carried mainly out at the cost of 
light evaporation when waste heating and melting. Then, after the waste boiling, at 
the cost of their intensive evaporation, the MCS heating rate significantly increases. 



12 Y.P. Kondratenko et al. 

 

 

Fig. 10. MSC output point heating transient processes 

 

Fig. 11. Detailed graphics of the MSC output point heating transient processes 

The highest adequacy to real processes has the neuro-fuzzy mathematical model 
with ANFISTC input variables linguistic terms of trapezoidal type (training error of 
its ANFISTC is 0,0934). Also high enough adequacy to real processes has the model 
with ANFISTC input variables linguistic terms of triangular type (training error of its 
ANFISTC is 0,879). And the lowest adequacy has the model with ANFISTC input 
variables linguistic terms of Gaussian 2 type (training error of its ANFISTC is 1,443), 
its output point heating transient process has a temperature drop on the time interval 
from 1000 to 1300 seconds, that does not correspond to the real processes of the MSC 
output point heating. 
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5 Conclusions 

In this work the neuro-fuzzy mathematical model of the EPG complex MCS as a tem-
perature control object is developed.  

The obtained model gives the opportunity to study the behavior of the given tem-
perature control object in the steady and transient modes, particularly to synthesize 
and adjust the temperature controller of the MCS ACS. The application of the ma-
thematical apparatus of the fuzzy logic and artificial neural networks under the devel-
opment of this model allows to take into account the specific features of the MSC 
multi-circuit structure and to display with quite high accuracy its basic features as the 
control object with essentially non-linear and undefined parameters.  

The analysis of the received results of the computer simulation in the view of 
graphics of the static and dynamic MSC characteristics as the temperature control 
object shows that the highest adequacy of the developed model to the real processes is 
achieved with ANFISTC input variables trapezoidal membership functions. 
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Abstract. The estimation of fuzzy validity (f-validity) of complex fuzzy objects 
(f-objects) by using fuzzy geometry (f-geometry) may be a useful tool in reveal-
ing unknown links or patterns e.g.  finger prints, shoe print, face sketch of a 
criminal etc. at crime site.  The Extended Fuzzy Logic (FLe) is a combination 
of Fuzzy Logic (FL) and Unprecisiated Fuzzy Logic (FLu). Whenever a precise 
solution of any problem is either impossible or bit costlier, then we opt for the 
concept of FLe. The f-geometry is an example of Unprecisiated Fuzzy Logic 
(FLu). The f-geometry has different f-objects like f-point, f-line, f-circle,                
f-triangle, etc. The aggregation models can be used for aggregating the compo-
nent of f-objects. The Minimizing Distance from extreme Point (MDP), which  
is a nonlinear ordered weighted averaging (OWA) objective model, is used to 
estimate f-validity of fuzzy objects. The results generated by the MDP model 
are found closer to degree of OR-ness. The objective of this paper is to lay the 
foundation and encourage further discussion on the development of` methods 
for defining as well as estimating f-validity of some more complex f-objects for 
forensic investigation services. 

1 Introduction 

Sometime forensic experts have to make decision on the basis of clues collected by 
crime site team e.g. face sketch of criminal drawn by expert on the basis of onlooker’s 
statement. Onlooker’s statement is based on perception. Practically, exact interpreta-
tion of these statements into a face is either impossible or bit costlier. Because face 
sketch is drawn by free hand without use of ruler and compass.  That may result in 
unclear face of criminal. This may help   criminal to escape from law. Computational 
forensics is an emerging research area focusing on the solution of forensic problems 
using algorithmic and software methods. Its primary goal is the discovery and  
advancement of forensic knowledge involving modeling, computer simulation, com-
puter based analysis and recognition [1]. Computer methods enable forensic profes-
sionals to reveal and identify previously unknown patterns in an objective and  
reproducible manners [2]. In forensic research field f-geometry may play a vital role.  
The f-geometry is a counterpart of Euclidian geometry in crisp theory. In f-geometry, 
objects are drawn by liberated hand without the use of geometric instruments. In FLu, 
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In equation (1) d << D, where d is the largest difference between the f-line and 

straight line. D is the length of the crisp line AB. Here c is some real number. 
From Fig. 2(b) we can conclude that the membership function increases with the 

decrease in the value of d. If the value of d is equal to 0 then we can conclude that 
given f-line is a straight line with validity index 1. 

2.2 fuzzy Triangle 

In f-geometry a closed shape is said to be f-triangle if its membership value is closer 
to the membership value of triangles. As shown in Fig.3. 

   

 

 

Fig. 3. f- Triangles 

2.3 fuzzy-Similarity and Fuzzy-Validity 

In f-geometry any two f-objects are said to be f-similar, if both of them have same 
shape. Very specifically, by uniform scaling one must be congruent to other. Con-
versely, f-similar polygons may be of same f-angles and scaling of f-sides may be 
proportionate. In section 2.4 we illustrate the concept of f-similarity. On the other 
hand f-validity is a measure of the degree of belongingness of any f-objects against 
the exact geometric object. 

2.4 fuzzy-Theorem  

The f-theorem in f-geometry is f-transform of a theorem in Euclidean geometry. In f-
theorem, we try to formalize the f-concept in f-geometry, generally in the form of 
membership functions, e.g. by application of any rules. Assuming a formal illustration 
of the concept of the f-theorem, let us consider the Fig.3. The f- triangles ABC and 
ADC constituted with three fuzzy lines and three fuzzy angles. 

 

 
c-d if   0≤ d≤ c 

     μ(f- line) =   c                                             (1) 
 
                 0       if    c ≤ d 
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2.4.1   Side Angle Side Postulates of Similar Triangle (SAS)  
In f-geometry, two triangles are said to be f-similar if their membership function has 
high validity index for the property of similar triangles (SAS). The membership value 
of similar triangles decreases as difference in corresponding angle and difference in 
the proportion of two corresponding sides’ increases.  Membership function is given 
by (2). 

 
μ(f-similar)=μS1∗μA2∗μS3                                                 (2) 

 
Where μS1  and  μS3   are membership functions of  f- proportions of f-sides. The  μA2 
is membership function of f-similar angle.  

Equation (3) shows   f- proportions of f-sides and (4) shows f-similar angle of           
f-triangle. In case of SAS, we assume that AB/DC’ *=BC/AD’ *= k (A constant) i.e. 
corresponding sides of the two triangles are in the same ratio as in geometry. Here 
AB/DC’ and BC/AD’ are in the same ratio as in geometry. Here AB/DC’ and 
BC/AD’ have taken the fuzzy proportion values k1and k2 respectively. The point  
to be noted here is AB/DC *= BC/AD means AB/DC’ is approximately equals to 
BC/AD’ [6,7]. The membership function of the difference in proportion is computed 
by (3).  Where the value of  j is given by k-k1 and k-k2  for AB/DC’ and BC/AD’ 
respectively. 

 
 

 

 

 

In the following equation membership function of difference in θ1 and θ2 angle is 
given .  

 
 

 

 

 

Here, h= θ1 - θ2 is the difference between the angles as shown in Fig. 4. 
 

   

 

 
Fig. 4. f-Angle 

                                         c-j      if    b≤ j ≤c 
μ(f-similar side)=           c-b                                                                             (3)   
                                          0            if      c ≤ j          

                                               c-h      if     b ≤h ≤c 
μ(f-similar angle)=      c-b                                                                  (4)   

                                                 0             if      c < h           
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Fig. 5. f-Rhombus 
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The μD is given by (7) 
μD =μd3∗μd4*μd5∗μd6                                                 (7) 

4 OWA Operator Weights Methods 

4.1 Minimizing Distances from Extreme Points Method  

This method is introduced by Byeong Seok Ahn. The MDP method has three steps, 
first step is identification of extreme points on the basis of degree of OR-ness (β) is  
given by the  user, second is generation of weights , and final step  is an aggregation 
of  MDP weights with inputs [10]. 

4.1.1   Identification of Extreme Points   
Any weighting vector w ϵK can be represented by a convex combination of the ex-
treme points E= (e1, e2…em) where ej is a unit vector with 1 in the jth position and 0 
elsewhere. A weight set KA-C can be constructed by combining attitudinal character 
constraint (β) with set K. 

 
(8) 

 
 

Where b= (1,β)′ is a 2-D vector and A is a 2xm matrix.  
 

 
 
 
 
 
 
 
 

In certain cases, however, a weighting vector w is negative due to wrong choice of 
index j and i. That is avoid deriving a legitimate index set such as 

j ≤ m(1-β)+β, 
 

i ≥ m(1-β)+β 

On the basis of  legitimate index, extreme points are given  below. 

extj
k= (β*(m-1)-(m-i))/(i-j)                            (10.1) 

 
exti

k= ((m-i)-β*(m-1))/(i-j)                           (10.2) 
 
Here β is a level of OR-ness, k denotes the number of extreme points, and m de-

notes the number of criteria. 

KA−C = {w: Aw =b, w≥0} 

A=(a1,a2,….am)  =
1 … 1 … 10  

                         Aji= (aj, ai) j < i, j=1….m 

 Aij
-1=    

/ 1 1/ 1 1                                          (9) 
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4.1.2   Generation of Weights 
The coordinates wise averaging of the extreme points results in the MDP OWA op-
erator weights. 

 
 
 

 

4.1.3   Aggregation of Weights and Inputs 
OWA determines the f-validity in f-objects by using (12). Where X=(x1, x2, x3,… xm) 
are input parameters with the multi-criteria of size m. The yi is the ith largest input 
parameter. 

 

 
 

5 Estimation of f-Validity Using OWA Operator 

In this section the f-validity of f-rhombus is estimated by using the MDP OWA  
method. 

5.1 Experiments and Results 

The computations of the f-validity are performed by applying the concept of f-
theorem on f-rhombus. The f-theorem1 is illustrated in Example1. The sample images 
used in experimental work are shown in Fig. 6. 

 
Example1: The f-rhombus shown in Fig.5 has f-transform distance for the f-lines AB, 
BC, CD and AD are 2, 25, 3, and 6 respectively. This results in µd as {0.97, 0.74, 
0.9681, 0.9309} by using (1). The f-transformation distance of f-lines AC and DB are 
5 and 6 respectively. The membership values of f-lines AC and DB are estimated by 
(1) is 0.95 and 0.93 respectively. The values of internal angles DEC and AEB are 
102.254 and 94.90173 respectively. The membership values of f-similarity of these 
angles from right angle calculated by (4) are 0.38, and 0.75. 

 

To compute the value of μD we have applied MDP OWA model. Here we consider 
four parameters as inputs i.e. m=4.The weight vector {0.816,0.1,0.05, 0.033} which 
is generated by (11)  with membership values {0.97, 0.74, 0.9681, 0.9309} produces 
results by (12) is 

      μD =μd1∗w1+μd2∗w2+μd3*w3+μd4∗w4 
                            =0.97*0.816+0.96*0.1+0.93*0.05+0.74*0.033 
                            = 0.95. 
Membership of f-rhombus is calculated by using MDP OWA methods. The weight 

vector for   m =5 by (11) is {0.79, 0.1, 0.05, 0.0325, 0.025}. For the degree of OR-
ness (β) 0.9 produces f-validity by (12) is  

wj=
∑

       j=1,..…m                        (11) 

OWA( x1,x2,x3……xm) =∑wjyi                                (12) 
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        μ (f-rhombus) =μD∗w1+μd5∗w2+μd6*w3+μIA2∗w4+μIA1*w5 

                =0.95*0.79+0.95*0.1+0.93*0.005+0.75*0.0325+0.38*0.025 

                         =0.92 

The f-validity is computed by the MDP OWA method for different values of de-
gree of the OR-ness (β) from 0.9 to 0.6 are shown in Fig.7. It can be clearly seen in 
Fig.7 the results are closer to degree of OR-ness. 

 

 
 
 
 
 
 
 

Fig. 6. Sample Images 

 

Fig. 7. f-validity generated MDP methods by f- theorem 1 for sample images of f-rhombus 

6  Conclusion and Future Directions 

In this paper we have proposed the definition of f-rhombus in f-geometry. Then we 
have estimated the f-validity of f-rhombus by transforming a crisp theorem to an f-
theorem. We have reviewed and applied MDP aggregation model for estimating the 
degree of OR-ness of the f- rhombus. The results generated by MDP are closer to 
degree of the OR-ness. This characteristic of MDP weights may be very helpful in 
drawing shape of f-objects with desire degree of OR-ness. This work may open the 
door for formalizing more complex f-objects. The proposed work may be considered 
as a first step in aggregating the component of complex f-objects. Further we can 
aggregate the different parts of face to make a complete face. The concept of  
f-similarity can be used for estimating the similarity of different faces, which may be 
useful in matching the face of criminal with existing face sketches. 
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Abstract. Measurements are never absolutely accurate; so, it is impor-
tant to estimate how the measurement uncertainty affects the result of
data processing. Traditionally, this problem is solved under the assump-
tion that the probability distributions of measurement errors are normal
– or at least are concentrated, with high certainty, on a reasonably small
interval. In practice, the distribution of measurement errors is sometimes
heavy-tailed, when very large values have a reasonable probability. In this
paper, we analyze the corresponding problem of estimating the tail of the
result of data processing in such situations.

1 Formulation of the Problem

Need for Data Processing. In many practical situations, we are interested in the
values of a quantity y which is not easy (or even impossible) to measure directly:
for example, we may be interested in tomorrow’s weather, in the distance to a
faraway planet, in the amount of oil in an oil well, etc. In such situations in
which we cannot measure y directly, we can often measure y indirectly, i.e.:

– measure the values of auxiliary quantities x1, . . . , xn which are related to the
desired quantity y by a known relation y = f(x1, . . . , xn), and then

– use the results x̃1, . . . , x̃n of measuring the quantities xi and the known
dependence to compute the estimate ỹ = f(x̃1, . . . , x̃n) for y.

The process of computing ỹ = f(x̃1, . . . , x̃n) is known as data processing.

Need to Estimating Uncertainty of the Result of Data Processing. Measurements
are never 100% accurate; so, in general, the measurement results x̃i are somewhat
different from the actual values xi of the corresponding quantities. Because of
these measurement errors, the estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different
from the desired value y = f(x1, . . . , xn) (often, there is an additional difference
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cause by the fact that the dependence between y and xi is only approximately
known). It is therefore important not just to generate an estimate ỹ, but also to
gauge how much the actual value y can differ from this estimate, i.e., what is
the uncertainty of the result of data processing; see, e.g., [7].

Estimating Uncertainty of the Result of Data Processing: Traditional Statistical
Approach. Usually, there are many different (and independent) factors which
contribute to the measurement error. In many such situations, it is possible to
apply the Central Limit Theorem (see, e.g., [9]), according to which, under rea-
sonable conditions, the distribution of the joint effect of numerous independent
factors is close to normal. In such situations, it is therefore reasonable to assume

that all the measurement errors Δxi
def
= x̃i − xi are independent and normally

distributed.
To describe a normal distribution, it is sufficient to know the mean μ and

the standard deviation σ. Thus, under the normality assumption, to gauge the
distribution of each measurement error Δxi, we must know the mean μi and the
standard deviation σi of this measurement error. If the known mean is different
from 0, this means that this measuring instrument has a bias; we can always
compensate for this bias by subtracting the value μi from all the measured
values. After this subtraction, the mean error will become 0. Thus, without losing
generality, we can assume that each measurement error is normally distributed
with mean 0 and known standard deviation σi.

The traditional way of estimating the resulting uncertainty Δy
def
= ỹ − y in y

is based on this assumption. Specifically, since the measurement errors Δxi are
usually relatively small, we can expand the expression

Δy = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃n)− f(x̃1 −Δx1, . . . , x̃n −Δxn)

in Taylor series in Δxi, ignore quadratic and higher order terms, and keep only
terms in Δxi in this dependence. As a result, we get an expression

Δy =
n∑

i=1

ci ·Δxi,

where ci
def
=

∂f

∂xi
. Based on this expression, we conclude that the linear combina-

tion Δy of n independent normally distributed random variables is also normally

distributed, its mean value of is 0, and its variance σ2 is equal to: σ2 =
n∑

i=1

c2i ·σ2
i

(see, e.g., [7]).

Heavy-Tailed Distributions. There are many practical situations in which the
probability distribution for the measurement error is drastically different from
normal. In many such situations, the variance is infinite; such distributions are
called heavy-tailed. Since then, similar heavy-tailed distributions have been em-
pirically found in many other application areas; see, e.g., [1,8].



Estimating Tails of the Results of Data Processing 27

Historical Comment: Heavy-Tailed Distributions and Fractals. Heavy-tailed dis-
tributions surfaced in the 1960s, when Benoit Mandelbrot, the author of fractal
theory, empirically studied the fluctuations of prices and showed [4] that large-
scale fluctuations follow the Pareto power-law distribution, where for some x0,
for all x ≥ x0, the probability density function has the form ρ(x) = A · x−α,
for some empirical constants A > 0 and α ≈ 2.7. For this empirical value α,
variance is infinite.

Mandelbrot studied not only the local price fluctuations, but also the global
geometry of the curves describing the dependence of price on time. It turned
out that this analysis is closely related to the notion of dimension. Indeed, for
sets S which are smooth curves and surfaces and for volumes surrounded by
smooth surfaces, dimension can be described as follows. For each ε > 0, we can
ε-approximate the set S by a finite set S′ = {s1, . . . , sn}, ε-approximate in the
sense that:

– every point s from the set S is ε-close to some point si ∈ S′, and
– vice versa, every point si ∈ S′ is ε-close to some point s ∈ S.

For each set S, we can have ε-approximating sets S′ with different number of
elements. For each ε, we can gauge the size of the given set S by finding the
number of elements Nε(S) in the smallest ε-approximating finite set.

For a 1-D smooth curve S, the smallest number Nε(S) is attained if we take
the points s1, . . . , sn ∈ S located at equal distance ≈ 2ε from each other. The

number of such points is asymptotically equal to Nε(S) ∼ const · L
ε
, where L is

the length of the curve S.
For a 2-D smooth surface S, the smallest number Nε(S) is attained if we take

the points on a rectangular 2-D grid with linear step ≈ ε. The number of such

points is asymptotically equal to Nε(S) ∼ const · A
ε2

, where A is the area of the

surface S.
For a 3-D body S, the smallest number Nε(S) is attained if we take the points

on a rectangular 3-D grid with linear step ≈ ε. The number of such points is

asymptotically equal to Nε(S) ∼ const · V
ε3

, where V is the volume of the 3-D

body S.

It turns out that for the price trajectory S, we have Nε(S) ∼ C

εa
for some

constant C and a fraction (non-integer) a. By analogy with the smooth sets, the
value a is called a dimension of the trajectory S. Thus, the trajectory S is a set
of a fractal dimension; Mandelbrot called such sets fractals.

The above empirical result, together with similar empirical discovery of heavy-
tailed laws in other application areas, has led to the formulation of fractal theory;
see, e.g., [5,6].

Comments

– Please note that Mandelbrot’s empirical observations only describe the prob-
ability density ρ(x) for values x ≥ x0; the values ρ(x) for x < x0 can be
different.
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– In general, the condition that
∫
ρ(x) dx = 1 implies that α > 1.

– One can easily check that the variance
∫
x2 · ρ(x) dx is infinite when α ≤ 3.

Problem. If the measurement errors Δxi of the inputs xi are distributed accord-
ing to the heavy-tailed distributions, then what can we conclude about Δy?

What We Do in This Paper. In this paper, we provide an answer to the above
question for the simplest cases when data processing consists of applying a single
arithmetic operation: addition, subtraction, multiplication, or division.

2 Main Results

Case of Addition y = f(x1, x2) = x1 + x2. For addition, Δy = Δx1 + Δx2.
When the measurement error Δx1 of the first input has a tail with asymptotics
ρ1(Δx1) ∼ A1 · |Δx1|−α1 and the measurement error Δx1 of the first input has
a tail with asymptotics ρ2(Δx2) ∼ A2 · |Δx2|−α2 , then the tail for Δy has the
asymptotics ρ(Δy) ∼ A · |Δy|−α with α = min(α1, α2).

Proof for the Case of Addition y = f(x1, x2) = x1 + x2. We know that ρ(Δy) =∫
ρ1(Δx1)·ρ2(Δy−Δx1) d(Δx1). Asymptotics mean that for any given accuracy,

for sufficiently large values Δx1 and Δx2, we have ρ1(Δx1) ≈ A1 · |Δx1|−α1 and
ρ2(Δx2) ≈ A2 · |Δx2|−α2 . What is the asymptotic expression for the probability
density ρ(Δy) for large values Δy?

A large value of Δy = Δx1 +Δx2 can come from three different situations:

1) when Δx1 is large (i.e., the asymptotic expression for ρ1(Δx1) holds) and
Δx2 is not large in this sense;

2) when Δx2 is large (i.e., the asymptotic expression for ρ2(Δx2) holds) and
Δx1 is not large in this sense; and

3) when both Δx1 and Δx2 are large in this sense.

The first situation leads to terms proportional to |Δx1|−α1 = |Δy − Δx2|−α1 .
Since in this case, Δx2 is limited by the threshold after which the values become
large, we have Δx2/Δy → 0 as Δy → ∞ and thus, |Δy −Δx2|−α1 ∼ |Δy|−α1 .
The second situation similarly leads to terms asymptotically equal to |Δy|−α2 .

In the third case, for some K > 1, the integral which describes ρ(Δy) (over
the whole real line) can be represented as a sum of the integral Iin(Δy) over
[−K · |Δy|,K · |Δy|] and the integral Iout(Δy) over the outside of this interval.

The inner integral Iin(Δ) is bounded by M · (2K · |Δy|), where M is the
maximum of the the product

ρ1(Δx1) · ρ2(Δy −Δx1) = A1 · (Δx1)
−α1 ·A2 · (Δy −Δx1)

−α2 .

Differentiating this expression w.r.t. Δx1 and equating derivative to 0, we con-

clude that Δx1 =
α1

α1 + α2
·Δy, hence the corresponding maximum is equal to

const · |Δy|−(α1+α2). Thus,

Iin(Δy) ≤M · (2K · |Δy|) = const · |Δy|−(α1+α2−1)
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for some positive constant.

Outside the interval, |Δy| ≤ 1

K
· |Δx1|, thus, |Δy −Δx1| ≤

(
1 +

1

K

)
· |Δx1|

and so,

ρ1(Δx1) · ρ2(Δy −Δx1) = A1 · |Δx1|−α1 · A2 · |Δy −Δx1|−α2 ≤

A1 · A2 ·
(
1 +

1

K

)−α2

· |Δx1|−α1 · |Δx1|−α2 = const · |Δx1|−(α1+α2)

for some positive constant. Integrating both sides of the resulting inequality, we
conclude that

Iout ≤
∫ −K·|Δy|

−∞
const · |Δx1|−(α1+α2) d(Δx1)+

∫ ∞

K·|Δy|
const · |Δx1|−(α1+α2) d(Δx1) = const · |Δy|−(α1+α2−1)

for some positive constant.
Both Iin(Δy) and Iout(Δy) are bounded by const · |Δy|−(α1+α2−1), so their

sum ρ(Δy) is also bounded by a similar expression.
Summarizing: the asymptotic expression for ρ(Δy) is the sum of three positive

terms of the type |Δy|−α: a term corresponding to α = α1, a term corresponding
to α = α2, and a term bounded by α = α1 + α2 − 1. Since αi > 1, we have
α1 + α2 − 1 > αi.

In general, when α < α′, then for large z, the ratio
z−α′

z−α
tends to 0. This means

in the sum of power-law asymptotic expressions, the term with the smallest value
of α dominates, in the sense that the asymptotics of the sum follows the power
law with the smallest possible exponent α. In our case, since α1 + α2 − 1 > αi,
this smallest exponent is min(α1, α2).

Case of a General Linear Combination. One can check that a similar formula
holds for the difference y = x1 − x2 and, more generally, for an arbitrary linear

combination y = a0 +
m∑
i=1

ai · xi. Namely, when the measurement error Δxi of

the the i-th input has a tail with asymptotics ρi(Δxi) ∼ Ai · |Δxi|−αi , then the
tail for Δy has the asymptotics ρ(Δy) ∼ A · |Δy|−α with α = min(α1, . . . , αm).

Case of Product y = f(x1, x2) = x1 · x2: Analysis of the Problem. For the
product, from y = x1 · x2 and y +Δy = ỹ = x̃1 · x̃2 = (x1 +Δx1) · (x2 +Δx2),
we conclude that Δy = Δx1 · x2 + x1 ·Δx2 +Δx1 ·Δx2.

We know the asymptotics of the probability distribution for Δx1 and Δx2, so
Δx1 · x2 and x1 ·Δx2 should have asymptotics with the same exponents α1 and

α2. Let us find the asymptotics for the product r
def
= Δx1 ·Δx2. Similarly to the

case of addition, the corresponding terms come from three cases:
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– when Δx1 is large and Δx2 is not large; this leads to terms ∼ |r|−α1 ;
– when Δx2 is large and Δx1 is not large; this leads to term ∼ |r|−α2 ;
– when both Δx1 and Δx2 are large; this leads to the term ∼ |r|−(α1+α2−1),

which (similarly to the case of addition) can be asymptotically ignored in
comparison with terms ∼ |r|−αi .

Thus, similarly to the case of addition, we have terms with exponent α1, we have
terms with exponent α2, and we have other terms which can be asymptotically
ignored. Hence, we arrive at the following conclusion.

Case of Product y = f(x1, x2) = x1 · x2: Result. When the measurement error
Δx1 of the first input has a tail with asymptotics ρ1(Δx1) ∼ A1 · |Δx1|−α1

and the measurement error Δx2 of the second input has a tail with asymptotics
ρ2(Δx2) ∼ A2 · |Δx2|−α2 , then ρ(Δy) ∼ A · |Δy|−α with α = min(α1, α2).

Case of Product or Ratio of Several Terms. One can check that a similar formula
holds for the ratio y = x1/x2 and, more generally, for an arbitrary combination

y = a0 ·
m∏
i=1

xai

i . Namely, when the measurement error Δxi of the the i-th input

has a tail with asymptotics ρi(Δxi) ∼ Ai · |Δxi|−αi , then the tail for Δy has the
asymptotics ρ(Δy) ∼ A · |Δy|−α with α = min(α1, . . . , αm).

Comment. The main objective of this paper is to deal with measurement (epis-
temic) uncertainty. However, the same formula can be used if we have aleatory
uncertainty. For example, we can use these formulas to analyze what happens if:

– we have a population of two-job individuals with first-salary distribution
ρ1(x1) and second-salary distribution ρ2(x2),

– we know that these distributions are independent, and
– we want to find the distribution of the total salary y = x1 + x2.

3 Future Work: From Asymptotics to a Complete
Description of the Corresponding Probability
Distributions

Asymptotics for a General Case Remains a Challenge. In the classical statistical
approach, it is natural to start with the case of linear functions. Once it is clear
how to deal with this case, we can extend our formulas to the case of a general
(smooth) function f(x1, . . . , xn): namely, as we have shown in Section 1, we can
expand the function f(x1, . . . , xn) into Taylor series and use the fact that in a
small vicinity of each point, quadratic (and higher order) terms in this expansion
can be safely ignored, and we can approximate the original function by the linear
terms in its Taylor expansion. In the classical statistical approach, restriction to a
small neighborhood makes perfect sense: for example, for a normal distribution,
the probability of the deviation Δx exceeding six standard deviations (6σ) is so
small (≈ 10−6%) that such deviations can be safely ignored.
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In contrast, for a heavy-tailed distribution, the probability density function
ρ(Δx) decreases slowly with Δx, as ρ(Δx) ≈ A · |Δx|−α. For example, for α = 2,
the probability ofΔx exceeding 6σ is ≈ 6−2 ≈ 3%, which is quite probable. Even
deviations of size 100σ are possible: they occur once every 10,000 trials. For such
large deviations, we can no longer ignore quadratic or higher order terms; so,
we can no longer reduce any smooth function to its linear approximation: each
linear function has to be treated separately.

Need to Go from Asymptotics to a Complete Description. In the above text, we
only find the exponent α corresponding to the asymptotics of the probability
distribution for the approximation error Δy = ỹ − y. It is desirable to find the
whole distribution for Δy. For that, in addition to the exponent α, we also need
to find the following:

– the coefficient A at the asymptotic expression ρ(Δy) ∼ A · |Δy|−α;
– the thresholdΔ0 after which this asymptotic expression provides an accurate

description of the probability density, and
– the probability density ρ(Δy) on the interval [−Δ0, Δ0] on which the asymp-

totic expression is not applicable.

Once we know a similar information for the input measurement errors Δx1 and
Δx2, we can use the formula (3) (or similar formulas corresponding to other data
processing algorithms) to estimate the corresponding characteristics for Δy.

What If We Only Have Partial Information about the Distribution of Errors of
Direct Measurements. In practice, we only have partial information about the
probability distributions ρi(Δxi) of the errors Δxi of direct measurements.

Usually, we consider situations in which we know an interval on which the ran-
dom variable is located with certainty. For example, for normal distribution with
mean μ and standard deviation σ, we can safely conclude that all possible values
are located within the six-sigma interval [μ − 6σ, μ + 6σ], since the probability
to be outside this interval is ≤ 10−8. For such distributions, uncertainty means,
e.g., that instead of the exact values of the corresponding cumulative distribu-

tion functions F (x)
def
= Prob(X ≤ x), we only know an interval [F (x), F (x)] of

possible values of F (x). The corresponding interval-valued function [F (x), F (x)]
is known as a probability box, or p-box, for short; see, e.g., [2,3].

Several algorithms are known for propagating p-boxes via data processing, i.e.,
for transforming the p-boxes corresponding to the input uncertainty Δxi to the
p-box for the output uncertainty Δy. It is desirable to extend these algorithms
so hat they will be able to also cover a similar interval uncertainty about the
values A, α, and Δ0 describing the heavy-tailed distributions.
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Abstract. In various works, L.A. Zadeh has introduced fuzzy quanti-
fiers, fuzzy usuality modifiers, and fuzzy likelihood modifiers. This paper
provides these notions with a unified semantics and uses this to define
a formal logic capable of expressing and validating arguments such as
‘Most birds can fly; Tweety is a bird; therefore, it is likely that Tweety
can fly’. In effect, these are classical Aristotelean syllogisms that have
been ‘qualified’ through the use of fuzzy quantifiers. It is briefly outlined
how these, together with some likelihood combination rules, can be used
to address some well-known problems in the theory of nonmonotonic
reasoning.

Keywords: Fuzzy quantification, fuzzy usuality, fuzzy likelihood, qual-
ified syllogisms.

1 Introduction

The notion of fuzzy quantifier as a generalization of the classical ‘for all” and
‘there exists’ was introduced by L.A. Zadeh in 1975 [12]. This provided a seman-
tics for fuzzy modifiers such as most, many, few, almost all, etc. and introduced
the idea of reasoning with syllogistic arguments along the lines of ‘Most men
are vain; Socrates is a man; therefore, it is likely that Socrates is vain’, where
vanity is given as a fuzzy predicate. This and numerous succeeding publications
[13–18] developed well-defined semantics also for fuzzy probabilities (e.g., likely,
very likely, uncertain, unlikely, etc.) and fuzzy usuality modifiers (e.g., usually,
often, seldom, etc.). In addition, Zadeh has argued at numerous conferences
over the years that these modifiers offer an appropriate and intuitively correct
approach to nonmonotonic reasoning.

The matter of exactly how these various modifiers are interrelated, however,
and therefore of a concise semantics for such syllogisms, was not fully explored.
Thus while a new methodology for nonmonotonic reasoning was suggested, it
was never developed. The present work grew initially out of an effort to realize
this goal. What follows here is a thumbnail sketch of a comprehensive reasoning
system that has previously been published as [11]. This work is being presented
here to give it visibility within the fuzzy community.

Since the publication of [11], two prominent threads related to nonmonotonic
reasoning have emerged. One is the subject of belief revision known as the AGM
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theory, being named after its originators [1]. A recent summary of the first twenty
five years of research in this area is [5]. The other is the study of Answer Set
Programming, for which the most well-known reference is [2]. Interest in this
subject has spawned eleven conferences, the most recent of which is [3]. Neither
of these threads consider anything even remotely resembling the approach being
proposed here.

2 Intuitive Motivation

We will define a system Q for reasoning with qualified syllogisms. In effect, these
are classical Aristotelean syllogisms that have been ‘qualified’ through the use of
fuzzy quantification, usuality, and likelihood. (The term ‘fuzzy likelihood’ is here
preferred over ‘fuzzy probability’, taking the latter to mean a probability that is
evaluated as a fuzzy number.) In contrast with the syllogisms originally consid-
ered by Zadeh, we here deal only with the case of fuzzy modifiers in application
to crisp (nonfuzzy) predicates. Some examples are

Most birds can fly.
Tweety is a bird.
It is likely that Tweety can fly.

Usually, if something is a bird, it can fly.
Tweety is a bird.
It is likely that Tweety can fly.

Very few cats have no tail.
Felix is a cat.
It is very unlikely that Felix has no tail.

From a common-sense perspective, such arguments are certainly intuitively cor-
rect. A more detailed analysis is as follows.

First, note that there is a natural connection between fuzzy quantification
and fuzzy likelihood. To illustrate, the statement

Most birds can fly.

may be regarded as equivalent with

If x is a bird, then it is likely that x can fly.

The implicit connection is provided by the notion of a statistical sampling. In
each case one is asserting

Given a bird randomly selected from the population of
all birds, there is a high probability that it will be able
to fly.

Suppose we express this equivalence as

(Most x)(Bird(x)→ CanFly(x))↔
(Bird(x)→ LikelyCanFly(x))



A Logic for Qualified Syllogisms 35

Table 1. Interrelations across the three kinds of modifiers

Quantification Usuality Likelihood

all always certainly
almost all almost always almost certainly
most usually likely
many/about half frequently/often uncertain/about 50-50
few/some occasionally/seldom unlikely
almost no almost never/rarely almost certainly not
no never certainly not

Then the first of the two syllogisms involving Tweety can be reduced to an
application of this formula, together with the syllogism

Bird(x)→ LikelyCanFly(x)
Bird(Tweety)
LikelyCanFly(Tweety)

This follows because the left side of the equivalence is the first premise of the
original syllogism, and the right side of the equivalence is the first premise of the
above syllogism. A key observation to be made here is that the latter syllogism
follows by instantiating x with Tweety and applying ordinary (classical) Modus
Ponens. This suggests that the desired formulation of fuzzy quantification and
fuzzy likelihood may be obtained by adjoining classical logic with an appropriate
set of modifiers. It also suggests that the modifiers of interest may be introduced
in the manner of either quantifiers or modal operators, and that the semantics
for such a system could be based on some version of probability theory.

A second observation is that there is a similar connection between the fore-
going two concepts and the concept of usuality. Based on the same idea of a
statistical sampling, one has that

Usually, if something is a bird, then it can fly.

is equivalent with the former two assertions. Thus one should be able to include
usuality modifiers along with quantifiers and likelihood modifiers in a similar
extension of classical logic.

The system Q is an outgrowth of these various insights and reflections. In
addition to the syllogisms given above, it allows for expression of all similar syl-
logisms as represented by the lines of Table 1 (where the two ‘Tweety’ examples
are given by the third line, and the ‘Felix’ example is given by first and last
entry of the sixth line).

3 Formal Syntax

We shall begin by defining the kind of languages to be employed. Let the modi-
fiers in Table 1, in top-down then left-right order, be represented byQ3, . . . ,Q−3,
U3, . . . ,U−3, L3, . . . ,L−3. As symbols select: an (individual) variable, denoted
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by x; countably infinitely many (individual) constants, denoted generically by
a, b, . . .; countably infinitely many unary predicate symbols, denoted generically
by α, β, . . .; seven logical connectives, denoted by ¬, ∨, ∧, →, →̇, ¬̈, and ∨̈; the
abovementioned modifiers Qi, Ui, and Li; and parentheses and comma, denoted
as usual. As will be seen, the dotted connectives are used to formalize part of
the metalanguage. Let the formulas be the members of the sets

F1 = {α(x)|α is a predicate symbol}
F2 = F1 ∪ {¬P, (P ∨Q), (P ∧Q)|P,Q ∈ F1 ∪ F2}1

F3 = {(P → Q)|P,Q ∈ F2}
F4 = {L3(P→̇LiQ),L3(P→̇QiQ),L3(P→̇UiQ),

Q3(P→̇LiQ),Q3(P→̇QiQ),Q3(P→̇UiQ),
U3(P→̇LiQ),U3(P→̇QiQ),U3(P→̇UiQ)|
P,Q ∈ F2 ∪ F3, i = −3, . . . , 3}

F5 = {LiP,QiP,UiP, |P,Q ∈ F2 ∪ F3, i = −3, . . . , 3}
F6 = F4 ∪ F5 ∪ {¬̈P, (P ∨̈Q)|P,Q ∈ F4 ∪ F5 ∪ F6}
F′
1 = {P (a/x)|P ∈ F1 and a is an individual constant}

F′
2 = {P (a/x)|P ∈ F2 and a is an individual constant}

F′
3 = {P (a/x)|P ∈ F3 and a is an individual constant}

F′
4 = {L3(P→̇LiQ)(a/x)|L3(P→̇LiQ) ∈ F4, a is an individual constant,

and i = −3, . . . , 3}
F′
5 = {LiP (a/x)|P ∈ F5, a is an individual constant, and i = −3, . . . , 3}

F′
6 = F′

4 ∪ F′
5 ∪ {¬̈P, (P ∨̈Q)|P,Q ∈ F′

5 ∪ F′
6}

where P (a/x) denotes the formula obtained from P by replacing every occur-
rence of the variable x with an occurrence of the constant a. As abbreviations
take

(P ∧̈Q) for ¬̈(¬̈P ∨̈¬̈Q)

(P→̈Q) for (¬̈P ∨̈Q)

(P↔̈Q) for ((P→̈Q)∧̈(Q→̈P ))

Formulas without modifiers are first- or lower-level formulas, and those with
modifiers are second- or upper-level. The members of the set F1 ∪ F′

1 are ele-
mentary first- or lower-level formulas, and the members of F4 ∪ F′

4 ∪ F5 ∪ F′
5

are elementary second- or upper-level formulas. A lower-level formula is open if
it contains the variable x, and closed if not.

1 This notation abbreviates the usual inductive definition, in this case the smallest
class of formulas containing F1 together with all formulas that can be built up from
formulas in F1 in the three prescribed ways.
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By a language L is meant any collection of symbols and formulas as described
above. Languages differ from one another essentially only in their choice of indi-
vidual constants and predicate symbols. As an example, the first of the foregoing
syllogisms can be written in a language employing the individual constant a for
Tweety and the predicate symbols α and β for Bird and CanFly—and, for clarity,
writing these names instead of the symbols—as

Q1(Bird(x)→ CanFly(x))
L3Bird(Tweety)
L1CanFly(Tweety)

In words: For most x, if x is a Bird then x CanFly; it is certain that Tweety is
a Bird; therefore it is likely that Tweety CanFly.

4 The Bayesian Semantics

This section and the next define two alternative semantics for Q, one Bayesian
and one non-Bayesian. The first will be the more general, but the second will be
more useful for certain kinds of applications. In both semantics, an interpreta-
tion I for a language L will consist of a likelihood mapping lI which associates
each lower-level formula with a number in [0, 1], and a truth valuation vI which
associates each upper-level formula with a truth value, T or F . The subscript I
will be dropped when the intended meaning is clear.

Here the definition of l is based on the Bayesian subjectivist theory of prob-
ability as described in [8], pp. 29–34. A key feature of Bayesian theory is that
it takes the notion of conditional probability as primitive. A likelihood mapping
lI for an interpretation I of a language L, will be any function defined on the
lower-level formulas P of L, and the ordered pairs (Q|P ) of lower-level formulas
of L, satisfying: for elementary P ,

l(P ) ∈ [0, 1]

for ordered pairs (Q|P ) of formulas (elementary or not),

l(Q|P ) ∈ [0, 1]

and, for any P and Q (elementary of not),

l(¬P ) = 1− l(P )

l(P ∧Q) = l(Q|P )l(P )

l(P ∨Q) = l(P ) + l(Q)− l(P ∧Q)

l(P → Q) = l(Q|P )

if l(P ) = r, then for any a, l(P (a/x)) = r

l(Q|P )l(P ) = l(P |Q)l(Q)

The value l(P ) is here taken to be the Bayesian degree of belief (in the truth) of
P . The value l(Q|P ) is taken to be the Bayesian conditional probability, which by
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definition is the degree of belief (in the truth) of P under the assumption that Q
is known (to be true) with absolute certainty. Under this interpretation common
sense would dictate that, if l(P ) = 0, then l(Q|P ) should be undefined. The
last of the above equations is a reconstrual of the familiar “inversion formula”
(see [8], p. 32) and ensures that ∧ and ∨ are commutative. The second from
the last line asserts that, if a formula P involving the variable x is held with
a certain degree of belief, then in the absence of any special information about
an individual a, the formula P (a/x) will be held to the same degree. The only
thing left to make any such l a Bayesian probability function is to agree that
‘absolute certainty’ will be represented by the value 1.

To define the valuation mapping v, one must first select, for each i = −3, . . . , 3,
a likelihood interval ιi ⊆ [0, 1] in the manner of

ι3 = [1, 1] (singleton 1)

ι2 = [ 45 , 1)

ι1 = [ 35 ,
4
5 )

ι0 = (25 ,
3
5 )

ι−1= (15 ,
2
5 ]

ι−2= (0, 1
5 ]

ι−3= [0, 0] (singleton 0)

These intervals then become associated with the corresponding modifiers. Their
choice is largely arbitrary, but should in principle be guided either by intuition
or experimental results based on psychological studies (see [11] for a discussion
and references). The only formal requirement is that they be nonoverlapping and
cover the interval [0, 1]. Given such a set of intervals, the mapping v is defined
by, for all i = −3, . . . , 3: for open lower-level P,Q, and with M being any of
L,Q, or U ,

v(M3(P→̇MiQ)) = T iff l(P → Q) ∈ ιi

for closed lower-level P and Q,

v(L3(P→̇LiQ)) = T iff l(P → Q) ∈ ιi

for open lower-level P andM being any of L,Q, or U ,
v(MiP ) = T iff l(P ) ∈ ιi

for closed lower-level P ,

v(LiP ) = T iff l(P ) ∈ ιi

and for open or closed upper-level P and Q,

v(¬̈P ) = T iff v(P ) = F

v(P ∨̈Q) = T iff either v(P ) = T or v(Q) = T

It is straightforward to verify that this provides a well-defined semantics for the
languages in concern. Note that a second-level formula is either T or F , so that
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this part of the system is classical. This justifies introducing ∧̈, →̈, and ↔̈ in
the manner that is customary for classical logic, i.e., via the abbreviations given
in Section 3. By contrast, at the lower level there is no similarly convenient
syntactical way to express the definition of l(P ∨Q) in terms of l(P ∧Q), so the
two connectives must be defined separately.

To illustrate this semantics, let us verify in detail that the foregoing syllogism
regarding Tweety is valid in any such interpretation I, i.e. that if the premises
of the syllogism are both T in I, then so also will be the conclusion. It will be
seen that validity in this example is a direct result of associating Q1 (most) and
L1 (likely) with the same likelihood interval. Suppose I is such that

v(Q1(Bird(x)→ CanFly(x)) = T

v(L3Bird(Tweety)) = T

From the latter we obtain by definition of v that

l(Bird(Tweety)) = 1

which means that Bird(Tweety) is absolutely certain. From the former we obtain
by definition of v that

l(Bird(x)→ CanFly(x)) ∈ ι1

By definition of l, this gives

l(Bird(Tweety)→ CanFly(Tweety)) ∈ ι1

whence

l(CanFly(Tweety)|Bird(Tweety)) ∈ ι1

In accordance with Bayesian theory, the latter means that the degree of belief
in CanFly(Tweety), given that Bird(Tweety) is absolutely certain, is in ι1. This,
together with the above certainty about Tweety being a bird, yields that the
degree of belief in CanFly(Tweety) is in ι1. Then, by definition of l,

l(CanFly(Tweety)) ∈ ι1

giving, by definition of v, that

v(L1CanFly(Tweety)) = T

This is what we were required to show.
In general, it can be shown that the upper-level validates all the axioms and

inference rules of classical propositional calculus, in particular, Modus Ponens :
From P and P→̈Q infer Q. In addition, it validates the Substitution Rule: From
P infer P (a/x), for any individual constant a, as well as equivalences of the form
discussed in Section 2, formally expressed here as

Qi(α(x)→ β(x))↔̈(L3α(x)→̈Liβ(x)) (*)

for all i = −3, . . . , 3. Verification of these items, together with additional formu-
las of interest validated by this semantics, can be found in [11].
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5 The Counting Semantics

Whenever one uses a quantifier in everyday conversation, there is an implicit ref-
erence to an underlying domain of discourse. This observation evidently served
as the basis for Zadeh’s original formulation of fuzzy quantification. For exam-
ple, ‘Most birds can fly’ refers to a domain of individuals which is presumed to
include a collection of birds, and an assertion to the effect that there is a ‘high
probability’ that a randomly chosen bird will be able to fly (Section 2) is rep-
resented mathematically by the condition that a ‘large proportion’ of birds are
able to fly.

Unfortunately, the semantics developed in the preceding section does not re-
flect this type of meaning, since it makes no direct reference to the underlying
objects (birds). As such, Bayesian theory does not say anything about how one’s
degrees of belief are to be determined; it says only that they must be chosen in
such a way that they conform to certain laws.

The present section develops an alternative semantics which explicitly por-
trays the role of the underlying domain. This counting semantics arises by re-
stricting Zadeh’s notion of ‘σ-count’ to crisp predicates (see the aforementioned
references).

An interpretation I for a language L will now consist of a universe UI of
individuals (here assume UI is finite), assignment of a unique individual aI ∈ UI

to each individual constant a of L, assignment of a unique unary predicate αI

on UI to each predicate symbol α of L, a likelihood mapping lI which associates
each lower-level formula with a number in [0, 1], and a truth valuation vI which
associates each upper-level formula with a truth value, T or F . As before, the
subscript I will be dropped when the intended meaning is clear.

Given assignments for the individual constants and predicate symbols, the
mappings l and v are defined in the following way. Observe that the assignments
αI induce the assignment of a unique subset PI of UI to each (open) formula P
in F2 according to

(¬P )I = (PI)
c

(P ∨Q)I = PI ∪QI

(P ∧Q)I = PI ∩QI

For subsets X ⊆ U , define a proportional size σ by

σ(X) = |X |/|U |
where | · | denotes cardinality. Then l is defined by: for P ∈ F2,

l(P ) = σ(PI)

for (P → Q) ∈ F3,

l(P → Q) = σ(PI ∩QI)/σ(PI)

with l undefined if σ(PI) = 0; and for P ∈ F2 ∪ F3,

if l(P ) = r, then l(P (a/x)) = r
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It is easy to see that σ is a probability function. These definitions merely replicate
the standard way of defining probability where events are represented as subsets
of a universe of alternative possibilities. The value σ(PI) is defined to be the
probability that a randomly selected aI in UI will be in PI . This means that,
for each a and each open P ∈ F2, and given no additional information about
a, l(P (a/x)) is the probability that aI ∈ PI . The definition of l(P → Q) is the
traditional (non-Bayesian) way of defining conditional probability in terms of
joint events (see [8], p. 31). Thus the value of this ratio is, by definition, the
probability that an individual aI will be in QI , given that aI is known to be
in PI .

Assuming this version of l, the corresponding v is defined exactly as in Sec-
tion 4. It is a routine matter to verify that this semantics validates all the same
syllogisms and formulas as were considered for the Bayesian semantics in [11].
(This is not to say, however, that the two semantics are necessarily equivalent
with respect to the given class of languages L, an issue which as yet remains un-
resolved.) To illustrate, the ‘Tweety’ syllogism can be established as follows. As
before, assume that both premises have value T . Letting Pr denote probability,
we have

v(Q1(Bird(x)→ CanFly(x)) = T

iff l(Bird(x)→ CanFly(x)) ∈ ι1 (def. v)

iff σ(BirdI ∩ CanFlyI) ∈ ι1 (def. l)

iff ∀aI ,Pr(aI ∈ BirdI) = 1 implies
Pr(aI ∈ CanFly) ∈ ιi (non-Bayes cond.)

iff ∀a, l(Bird(a)) = 1 implies
l(CanFly(a)) ∈ ιi (discussion above)

iff ∀a, v(L3Bird(a)) = T implies
v(L1CanFly(a)) = T (def. v)

Then taking the last line with Tweety as an instance of a and combining this with
the second premise of the syllogism gives the desired result. As with the Bayesian
semantics, the counting semantics also validates classical propositional calculus
at the upper level, as well as all of the same additional formulas discussed in
[11].

It would be easy to implement such a mapping σ in any database; one need
only scan records and perform counts wherever appropriate. In other types of
applications, however (e.g., many expert systems), the underlying universe will
be such that it is not possible to count the numbers of objects that satisfy
certain relations. For example, it is not known exactly how many birds there
are in the world, nor how many of them can fly. Hence instead of basing the
likelihood valuation l on actual counts, it would be more reasonable to define it
in terms of estimates of sizes of populations. Such estimates might be arrived
at by means of statistical samplings; alternatively, they might be subjective
estimates of relative sizes, essentially educated guesses, not necessarily based
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on any deeper methodology. In the latter case one is nearing a return to the
type of reasoning portrayed by the Bayesian semantics. The counting semantics
would nonetheless be useful in this context, inasmuch as the principles of set
theory can be used to help ensure that these estimates are selected in intuitively
plausible ways. For example, if A’s are known to always be B’s, then in any
valid interpretation the set of A’s should be a subset of the set of B’s. Such an
approach might be characterized as subjective, but non-Bayesian.

The restriction to finite universes was made in order to define the counting se-
mantics in terms of relative cardinalities. It seems reasonable, however, that one
could extend to infinite domains via an abstract measure-theoretic formulation
of probability as in Kolmogorov [7].

6 Application to Nonmonotonic Reasoning

In order to apply the logic Q to the tasks of nonmonotonic reasoning, sev-
eral additional components are required. First is needed a logic for likelihood
combination. For example, if by one line of reasoning one derives LikelyP , and
by another derives UnlikelyP , then one would like to combine these to obtain
UncertainP . In effect, one needs a set of inference rules covering all possible
likelihood combinations. Such a set of rules is described in Table 2, where the
numbers are subscripts for the likelihood modifiers. To illustrate, the foregoing
example is represented by the 0 in the cell at row 2, column −2. (The ∗ in the
upper right and lower left corners represent contradictory conclusions, which can
be handled by means of a special ‘reason maintenance’ process. This is a form
of nonmonotonic reasoning first identified by Doyle [4, 6]. A version of this can
be formulated via the notion of ‘path logic’ discussed below. Please see [11] for
details.)

Table 2. Rules for likelihood combination

3 2 1 0 -1 -2 -3

3 3 3 3 3 3 3 ∗
2 3 2 2 2 2 0 -3
1 3 2 1 1 0 -2 -3
0 3 2 1 0 -1 -2 -3
-1 3 2 0 -1 -1 -2 -3
-2 3 0 -2 -2 -2 -2 -3
-3 ∗ -3 -3 -3 -3 -3 -3

Second is needed a means for providing such inference rules with a well-
defined semantics. A problem arises in that simultaneously asserting LikelyP
and UnlikelyP requires that P have two distinct likelihood values. This cannot
be accommodated in a conventional formalism. To remedy this is introduced the
notion of a path logic, which explicitly portrays reasoning as an activity that
takes place in time. In effect, one distinguishes between different occurrences of
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P in the derivation path (i.e., the sequence of derivation steps normally regarded
as a proof) by labeling each of them with a time stamp indicating its position
in the path. In this manner the likelihood mapping can be defined on labeled
formulas, in which case each differently labeled occurrence of P can have its own
well-defined likelihood value.

A third needed component is a means of distinguishing between predicates
that represent kinds of things and those that represent properties of things. To
illustrate, in the ‘Tweety’ syllogism, ‘Bird’ represents a kind, whereas ‘CanFly’
represents a property. For this purpose [11] introduces the notion of a typed
predicate, indicated formally by superscripts as in Bird(k) and CanFly(p).

Last is needed a way of expressing a specificity relation between kinds of
things, together with an associated specificity rule. For example, if
‘All(Penguin(k)(x) → Bird(k)(x)’ is asserted in the derivation path, asserting
in effect that the set of penguins is a subset of the set of birds, then one needs to
make an extralogical record that Penguin(k) is more specific than Bird(k). Given
this, one can apply the principle that more specific information always takes
priority over less specific.

Collectively, these various components comprise a system for a style of non-
monotonic reasoning known as as default reasoning with exceptions. The prob-
lems associated with formulating this kind of reasoning have been illustrated by
a variety of conundrums, the most well-known being the situation of Opus as
illustrated in Figure 1, taken from Touretzky [9]. As the figure indicates, the
situation with Tweety is clear, namely, Tweety can fly; but the situation with
Opus is contradictory. By one line of reasoning, Opus is a penguin, penguins
are birds, and birds can fly, so Opus can fly, whereas by another line, Opus is a
penguin, and penguins cannot fly, so Opus cannot fly.

A way to resolve this conundrum can be shown in terms of Figure 2. The
diagram portrays the results of adding the following formulas into the derivation
path:

1) L3Bird(Tweety)
2) Q1(Bird(x)→ CanFly1(x))
3) L3Opus(Penguin)
4) Q1(Penguin(x)→ Bird(x))
5) Q1(Penguin(x)→ ¬CanFly2(x))

where the subscripts on CanFly indicate the first and second occurrences of
CanFly(x) in the path. Note first that one can obtain the Tweety syllogism
described earlier from (1) and (2) as follows. By (*) in Section 4, one can add

6) Q1(Bird(x)→ CanFly(x))↔̈
(L3Bird(x)→̈L1CanFly(x))

Then, by classical propositional calculus, (2) and (7) yield

7) (L3Bird(x)→̈L1CanFly(x))
From this, instantiation of Tweety for x gives

8) (L3Bird(Tweety)→̈L1CanFly(Tweety))
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Fig. 1. Tweety can fly, but can Opus?

Fig. 2. Tweety likely can fly, and Opus certainly cannot

Then, by Modus Ponens, (1) and (8) give

9) L1CanFly(Tweety))
For the case of Opus, one can similarly apply classical propositional calculus

to (3), (4), and (2) to derive

10) L1CanFly(Opus))
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and to (3) and (5) to derive

11) L3¬̈CanFly(Opus))

Then, by the specificity rule, since Penguin is more specific than Bird, its prop-
erties take priority, and one concludes

12) L3¬̈CanFly(Opus))

This makes use of the derivation path for allowing different occurrences of
CanFly to have different likelihood values, but it does not require likelihood
combination. A conundrum that employs likelihood combination rules and which
also is handled effectively by this reasoning system is the well-known Nixon
Diamond [10]. Again the reader is referred to [11] for details.
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Abstract. Full exploration of databases requires advanced querying fa-
cilities. This is especially the case if user preferences related to expected
results are complex. Traditional query languages like SQL and OQL only
have limited facilities for expressing query criteria that are composed of
simple criteria. So, while searching for information, users often have to
translate their complex requirements (which are typical for human rea-
soning) into simpler queries, which in many cases can only partly reflect
what the user is actually looking for. As a potential solution, we recently
proposed a query language extension that is based on soft computing
techniques and supports the use of so-called criterion trees. In this paper,
we further extend criterion trees so that they can contain both manda-
tory and optional query conditions. More specifically, we study optional
query conditions from a bipolar point of view and propose and illustrate
a framework for handling them in query processing.

Keywords: Fuzzy querying, criterion trees, GCD, partial absorption.

1 Introduction

When users want to search for information in a database system, their needs
and preferences have to be specified in so-called WHERE-clauses of queries or
similar constructs. Traditional query languages like SQL [9] and OQL [2] only
support WHERE-clauses in which the query criteria are specified by a Boolean
expression that consists of simple expressions connected by logical connectives
(∧, ∨ and ¬). Parentheses can be used to alter the sequence of evaluation.

Such Boolean expressions do not offer the facilities and flexibility that are
required to fulfill complex information needs as often encountered in real-life
situations. Indeed, humans often tend to express criteria in a soft way. They
structure and group criteria, assign a different importance to different criteria
or subgroups of criteria, make a distinction between mandatory and optional
criteria, etc. For example, if somebody is searching for a house in a real estate
database, it is quite natural to require affordability (acceptable price and main-
tenance costs) and suitability (e.g., good comfort and a good location). Most
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homebuyers require simultaneous satisfaction of affordability and suitability cri-
teria and would NOT accept homes where either affordability or suitability is
not satisfied, requiring a hard (partial) conjunction operator. If this is not the
case, then the aggregator must be a soft partial conjunction. In addition, for
some homebuyers affordability is more important than suitability; an opposite
criterion is also possible. If the query language criterion cannot express these
fundamental requirements, it is not going to be acceptable for most homebuy-
ers. Furthermore, good comfort might be further specified by living comfort and
basic facilities. Living comfort refers to at least two bathrooms, three bedrooms,
garage, etc., whereas basic facilities refer to gas, electricity, sewage, etc. Good
location might be subdivided by accessibility, healthy environment, nearby facil-
ities, etc. Some of these criteria (e.g., garage) might be mandatory, while others
(e.g., dentist at close distance) might be optional. Traditional query languages
have no specific facilities to deal with such complex search conditions.

Soft computing techniques help to overcome these shortcomings. Soft criteria
specifications and criteria preferences can be dealt with by using ‘fuzzy’ query-
ing techniques of which an overview is, among others, given in [12]. In order
to efficiently cope with queries where special aggregators are required or users
need to generalize or specialize their criteria for obtaining better insight in what
they are looking for, we recently proposed a hierarchically structured criteria
specification that is called a criterion tree [4]. As originally proposed, criterion
trees cannot cope with optional query criteria. Nevertheless, such a facility is
required if one wants to adequately support human consistent searching and de-
cision making [1,6]. It is currently subject to a more general research topic that
is commonly known as bipolarity in flexible querying (see, e.g., [5]).

In this paper, we propose to extend criterion trees with facilities for handling
optional query criteria. The paper is further structured as follows. In Section 2,
some preliminaries of criterion trees and bipolar querying are given. Next, we
study the aggregation of mandatory and optional query criteria in Section 3.
Two aggregation operators ‘and optionally’ and ‘or optionally’ are proposed.
The main advantage of these operators is that they assign a bonus, resp. penalty
(or malus), to the query satisfaction depending on the satisfaction, resp. dissatis-
faction, of the optional criterion. Next, in Section 4, the extension and evaluation
of criterion trees is presented, considering the novel operators. An illustrative ex-
ample is given in Section 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Criterion Trees

A criterion tree is a tree structure of which each node can be seen as a container
for information. Each leaf node contains an elementary query criterion cA, which
is defined on a single database attribute A and expresses the user’s preferences
with respect to the acceptable values for that attribute while computing the
answer set of the query. In general, a fuzzy set with membership function μA

over the domain domA of A can be used to define the criterion. The membership
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grade μA(v) ∈ [0, 1] of a domain value v ∈ domA then expresses the extent to
which v is preferred by the user.

All non-leaf nodes of a criterion tree contain a symbol representing an ag-
gregation operator. Moreover, each child node ni of a non-leaf node n has an
associated weight wi, reflecting its relative importance within the subset of all
child nodes of the non-leaf node. Hereby, for a non-leaf node with k child nodes
it must hold that

∑k
i=1 wi = 1. With this choice, we follow the semantics of

weights as used in the LSP methodology [7]. The supported basic aggregators
are conjunction (C), hard partial conjunction (HPC), soft partial conjunction
(SPC), neutrality (A), soft partial disjunction (SPD), hard partial disjunction
(HPD) and disjunction (D). This set is in fact a selection of seven special cases
from the infinite range of generalized conjunction/disjunction (GCD) functions
and can be easily extended when required [7].

Once specified, criterion trees can be used in the specification of the WHERE-
clause of a query. This is illustrated in Section 4. Their evaluation for a relevant
database record r results in a criterion satisfaction specification, which can then
be used in the further evaluation and processing of the query. Criterion trees
are evaluated in a bottom-up way. This means that, when considering a relevant
database tuple r, the elementary criteria ci of the leaf nodes are first evaluated.
When specified by a membership function μA, the evaluation γci(r) of ci boils
down to determining the membership value of the actual value r[A] of A for r,
i.e., γci(r) = μA(r[A]). Next, non-leaf nodes (if any) are evaluated in a bottom-
up fashion. A non-leaf node n can be evaluated as soon as all its child nodes
ni, i = 1, . . . , k have been evaluated. For evaluation purposes, the following
implementation of GCD is used [8]:

M(x1, . . . , xn; q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
∑n

i=1 wix
q
i )

1/q , if 0 < |q| < +∞∏n
i=1 x

wi

i , if q = 0

min(x1, . . . , xn) , if q = −∞
max(x1, . . . , xn) , if q = +∞

(1)

where xi ∈ [0, 1], 1 ≤ i ≤ n are the input values which represent query satisfac-
tion degrees (hereby, 0 and 1 respectively denote ‘not satisfied at all’ and ‘fully
satisfied’). The normalized weights 0 < wi ≤ 1, 1 ≤ i ≤ n,

∑n
i=1 wi = 1 specify

the desired relative importance of the inputs. Furthermore, the computed expo-
nent q ∈ [−∞,+∞] determines the logic properties of the aggregator. Special
cases of exponent values are: +∞ corresponding to full disjunction D, −∞ corre-
sponding to full conjunction C and 1 corresponding to weighted average A. The
other exponent values q allow to model other aggregators, ranging continuously
from full conjunction to full disjunction, and can be computed from a desired
value of orness (ω). For aggregation in criterion trees, we used the following
numeric approximation for q [7]:

q =
0.25 + 1.89425x+ 1.7044x2 + 1.47532x3 − 1.42532x4

ω(1− ω)
(2)
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where
x = ω − 1/2.

Suitable orness-values are the following: ω = 1/6 for HPC, ω = 5/12 for SPC,
ω = 7/12 for SPD and ω = 5/6 for HPD, assuming that partial disjunction is
modeled as the De Morgan dual of partial conjunction.

Considering a database record r, the query satisfaction degree γn(r) corre-
sponding to n is computed using Eq. (1) and the following arguments: γni(r),
i = 1, . . . , k, wi being the weight that has been associated with ni, i = 1, . . . , k,
and q being the value that models the aggregator that is associated with n. The
overall satisfaction degree for a record r using a criterion tree is obtained when
the root node nroot of the tree is evaluated, i.e., by computing γnroot(r).

2.2 Bipolar Querying

An important issue in bipolar querying concerns the handling of constraints and
wishes (see, e.g., [10,5,1]). Bipolarity hereby refers to the fact that users might
distinguish between mandatory and desired criteria while specifying their query
preferences. For handling desired criteria, two aggregators ‘and if possible’ and
‘or else’ have been proposed in [1] and defined as follows (with k ∈ [0, 1]):

γc1 and if possible c2(r) = min(γc1(r), kγc1(r) + (1− k)γc2(r)) (3)

and
γc1 or else c2(r) = max(γc1(r), kγc1(r) + (1− k)γc2(r)). (4)

In what follows, we propose a generalization of these operators which uses slightly
different semantics and is based on the conjunctive and disjunctive partial ab-
sorption operators as originally proposed and studied in [6].

3 Aggregation of Optional Criteria

The behavior and aggregation of optional criteria has been studied and ana-
lyzed in [6] and resulted in the following ‘and optionally’ (conjunctive partial
absorption) and ‘or optionally’ (disjunctive partial absorption) operators [3].

γ(c1 and optionally c2)(r) = w2γc1(r)Δ(1 − w2)[w1γc1(r)∇(1 − w1)γc2(r)] (5)

where Δ ∈ {C,HPC} and ∇ ∈ {D,SPD,HPD,A}, and
γ(c1 or optionally c2)(r) = w2γc1(r)∇(1 − w2)[w1γc1(r)Δ(1 − w1)γc2(r)] (6)

where ∇ ∈ {D,HPD} and Δ ∈ {C, SPC,HPC,A}. Both operators are asym-
metric.

Using weighted power means as in Eq. (1), both operators can be implemented
by

M(x1, x2; q1, q2) = [(1 − w2)[w1x
q2
1 + (1 − w1)x

q2
2 ]q1/q2 + w2x

q1
1 ]1/q1 (7)
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where x1 ∈ [0, 1] is the mandatory input, x2 ∈ [0, 1] is the desired input and the
exponents q1 and q2 are those reflecting the selected aggregators for Δ and ∇
(being computed as described in Section 2).

The weights w1 and w2 are computed so as to reflect as adequately as possible
the impact of the mean penalty P and mean reward R percentages provided by
the user. Hereby the underlying semantics of P andR are defined by the following
border conditions [6] (and their dual counterparts for ‘or optionally’):

∀ 0 < x ≤ 1 : (x and optionally 0) = x(1− p), 0 ≤ p < 1 (8)

(hence if the optional condition is not satisfied at all, then criterion satisfaction
is decreased with a penalty of p)

∀ 0 < x < 1 : (x and optionally 1) = x(1 + r), 0 ≤ r < 1/x− 1 (9)

(hence if the optional condition is fully satisfied, then criterion satisfaction is
increased with a reward of r). Note that p and r can be zero. The values P
and R are (approximately) the mean values of p and r and usually expressed as
percentages. Decision-makers select desired values of P and R and use them to
compute the corresponding weights w1 and w2. More details on this computation
can be found in [6].

By taking Δ = C and ∇ = A, Eq. (3) is obtained as a special case of Eq. (5).
Likewise, with ∇ = D and Δ = A, Eq. (6) yields Eq. (4). The main advantage of
the ‘and optionally’ and ‘or optionally’ operators is that they enable the use of
both a reward and a penalty, whereas Eq. (3) and (4) by definition only assign a
reward in case of (partial) satisfaction of the optional condition. Such a penalty
facility is however required if we want to adequately reflect human reasoning.
Consider for example two house descriptions in a database where a mandatory
condition ‘proximity of bus stop’ is perfectly satisfied for both. If an optional
condition ‘proximity of dentist’ is only satisfied for the first house and there is no
penalty facility available, then it would not be possible to distinguish between
the overall satisfaction of both houses. However, humans would naturally assign
a penalty to the second house and prefer the first one.

4 Extended Criterion Trees

Criterion trees can be extended with the ‘and optionally’ (ANDOP ) and ‘or
optionally’ (OROP ) operators. This can be described using Extended BNF
(EBNF) [11] by:

nabla_conjunction = "D" | "SPD" | "HPD" | "A"

delta_conjunction = "C" | "HPC"

nabla_disjunction = "D" | "HPD"

delta_disjunction = "C" | "SPC" | "HPC" | "A"

aggregator = "C" | "HPC" | "SPC" | "A" | "SPD" | "HPD" | "D"

criterion tree = elementary criterion | composed criterion

composed criterion = aggregator "(" criterion tree":"weight","
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criterion tree":"weight {"," criterion tree":"weight}")" |

"ANDOP("nabla_conjunction"," delta_conjunction"," P"," R")

(Mandatory:" criterion tree", Optional:" criterion tree")" |

"OROP("nabla_disjunction"," delta_disjunction"," P"," R")

(Sufficient:" criterion tree", Optional:" criterion tree")"

elementary criterion = attribute "IS {("min value"," suitability")"

{",(" value"," suitability")" } ",("max value"," suitability")}"

where { } means ‘repeat 0 or more times’.
The values in the specification of an elementary criterion must form a strictly

increasing sequence. Together they specify the piecewise linear membership func-
tion μA of a fuzzy set that reflects the user’s preferred values (suitability) for
the attribute A under consideration.

For the asymmetric ANDOP and OROP operators, the first criterion tree re-
flects the mandatory/sufficient criterion whereas the second criterion tree defines
the optional criterion.

Once specified, extended criterion trees can be used in the specification of the
WHERE-clause of a query. Extended criterion trees are evaluated bottom-up,
by first evaluating the elementary criteria. For a database record r this is done
by determining the membership value μA(r[A]) of the actual value r[A] of A
in r. The composed criteria are evaluated as soon as all their components have
been evaluated. Eq. (7) is used for the evaluation of the ANDOP and OROP
operators, whereas Eq. (1) is used for the evaluation of the other aggregators.

5 An Illustrative Example

Specifying search criteria for a house in a real estate database is often a complex
task. It boils down to specifying weighted criteria and subcriteria, followed by
carefully considering penalties and rewards that might result from the satisfac-
tion and dissatisfaction of optional criteria. Assume that the user is looking for
an affordable house with good comfort, condition and location. Such a search can
be specified using the following SQL statement for regular relational databases.

SELECT id, address, price, TREE(c_suitability) AS satisfaction

FROM real_estates r, location l

WHERE (r.location_id=l.id) AND satisfaction>0.5

ORDER By satisfaction

The query uses a predefined function TREE which takes an extended criterion
tree as argument and computes the overall satisfaction degree (satisfaction) of
the database records being processed by the query. The criterion tree c suitability
is specified by

c_suitability=HPC(c_comfort:0.4, c_condition:0.4, c_location:0.2)

with subtrees c comfort, c condition and c location. It specifies that a house
is considered to be suitable if it is comfortable, the overall condition of the house
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is good and its location is adequate. For the aggregation, hard partial conjunction
(HPC) is used and comfort and condition are considered to be more important
than comfort and location. Typically, users will then specify in more detail what
they expect with respect to comfort, condition and location. This is done by
specifying each of the three subtrees in more details. For example, c location =

ANDOP(A,C,15,10)(Mandatory:

A(SPC(c_railway_station:0.3, c_road:0.5, c_highway:0.2):0.5,

HPC(c_sport:0.4, c_doctor:0.2, c_restaurant/bar:0.4):0.5),

Optional:green_area)

This specification reflects that according to the user, a good location is deter-
mined by two mandatory criteria and one optional criterion. The mandatory
criteria respectively reflect good accessibility and proximity of facilities which
are of equal importance to the user. Good accessibility is in this case expressed
by proximity of a railway station, proximity of a regional road and proximity of
a highway. These three subcriteria are aggregated with a soft partial conjunc-
tion operator (SPC) and proximity of a regional road is considered to be more
important than the other two criteria. Proximity of facilities is further specified
as proximity of sport facilities, proximity of medical practitioners and proximity
of bars and restaurants. Hard partial conjunction (HPC) is used for the aggre-
gation. Proximity of green area is considered to be optional. Hence, the ‘and
optionally’ operator (ANDOP ) is used to combine the mandatory and optional
criteria. A penalty of 15% is considered for houses with a complete lack of green
area in their environment. Houses that fully satisfy the green area criterion will
earn a reward of 10%.

The remaining criteria in the specification of c location are all examples of
elementary criteria. Elementary criteria are specified by a membership function.
For example, c doctor can be specified by

r.distance_to_doctor IS {(5,1), (20,0)}

which denotes that travel distances of more than 20 minutes to reach a doctor
are unacceptable.

Evaluation of c suitability for a given record r is done with the function
TREE. This function first evaluates the elementary criteria and then evaluates
the internal nodes of the criterion tree in a bottom-up approach. Hereby, an
internal node can be evaluated as soon as all of its child nodes have been eval-
uated. The satisfaction degree resulting from the evaluation of the root node
(c suitability) is returned by the function TREE. In the query, only records
with a satisfaction degree larger than 0.5 will be returned. Of course, in practice,
criterion trees can be much more complex than the one given in this example.

6 Conclusions

Criterion trees offer flexible facilities for specifying complex query conditions. In
this paper we extended criterion trees with ‘and optionally’ and ‘or optionally’
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operators which allow to properly deal with optional query criteria. These oper-
ators consistently reflect human reasoning and enable the use of both a reward
and a penalty for cases where the optional criteria are satisfied, resp. dissatisfied.

The proposed work is currently being implemented within the framework
of the open source PostgreSQL object-relational database system. In further
research, we plan to focus on performance and optimization issues.
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Abstract. In climate science, knowledge about the system mostly relies on 
measured time series.  A common problem of highest interest is the analysis of 
high-dimensional time series having different phases.  Clustering in a multi-
dimensional non-stationary time series is challenging since the problem is ill- 
posed.  In this paper, the Finite Element Method of non-stationary clustering is 
applied to find regimes and the long-term trends in a temperature time series.  
One of the important attributes of this method is that it does not depend on any 
statistical assumption and therefore local stationarity of time series is not neces-
sary.  Results represent low-frequency variability of temperature and spati-
otemporal pattern of climate change in an area despite higher frequency  
harmonics in time series.  

Keywords: Non-stationary time series, Time series clustering, spatiotemporal 
pattern. 

1 Introduction 

Complexity of climate change limits the knowledge about it and therefore decreases 
its predictability even over a few days.  It is complex because many nonlinear va-
riables within the Earth’s atmosphere such as temperature, barometric pressure, wind 
velocity, humidity, clouds and precipitation are interacting.  Analyzing climate sys-
tem in longer timescales and larger areas and also other parameters which influence 
climate (Earth’s surface, Sun, etc.) is complex too.  All of climatic variables are ob-
served in limited number of measurement stations and few times per day and limited 
accuracy, thus our knowledge is restricted to limited time series.  Therefore, methods 
of time series analysis are important in climate [1].  An important characteristic of 
climatic time series is the non-stationarity.  It means that their statistical properties 
are changing during time and a unique model cannot represent the time series.  A 
common problem in this field is the analysis of high-dimensional time series contain-
ing different phases [2].  We assume that the time series has a dynamical model with 
some time dependent parameters.  Then, define a phase (cluster, regime or segment) 
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as a period of time such that during each of these phases, the model parameters are 
constant.  In fact, temporal changes of model parameters take place at a much slower 
speed than the changes in the system variables themselves.  The problem of non-
stationary time series clustering is defined to find these regimes numerically [3]. 

There are many approaches such as Gaussian Mixture Model (GMM) and the Hid-
den Markov Model (HMM) in literature to detect the phases numerically [4], [5], [6]. 
In these approaches, one statistical model is assumed for each regime and then the 
best change points are found by minimizing a cost function in the form of Maximum 
Likelihood.  The cost function is solved by the Expectation Maximization approach. 

In this paper, we use a newly developed method based on Finite Elements to find 
regime changes [7].  The advantage of the FEM method is that it doesn’t require any 
statistical assumption on time series (such as Markovian or Gaussian).  It also has 
intrinsic flexibility to change the persistence of detected regimes.  It means it can 
have longer or shorter regimes by changing some parameters in its procedure.  An 
important characteristic of climatic time series is existence of a linear trend that shows 
whether variables (for example temperature) are rising or falling.  In this work, those 
regimes are detected in the time series that have different linear trends.  When data 
has a linear trend in each cluster, time series is not locally stationarity and other clus-
tering methods can’t solve this problem. 

2 Finite Element Method for Clustering 

FEM clustering is an approach developed to detect regimes in a non-stationary time 
series.  The basic idea is to assume a model for the time series in each regime, and 
then find the best switching times and model parameters by solving an optimization 
problem.  This is common in other clustering approaches too.  The difference is that 
the model in each regime can be a non-statistical model.  Including additional as-
sumption to the cost function makes it possible to solve this problem using the finite 
element method.  Finally, the minimization problem converted to a linear quadratic 
programming (LQP) which is solved iteratively to determine the parameters of inter-
est that include the slope and intercept in each regime. 

Let  be an observed n-dimensional time series defined over period of time 0, .  
Assuming that we want to fit a first degree polynomial in each regime in the form of  .  (where i is the regime index), we can define model distance functional: 

 , . (1) 

Since time series has K regimes with unknown switching times, the overall cost func-
tion can be defined as:  

. , ,  
 

(2) 

where Θ is the time-independent set of unknown parameters and  is the cluster 
affiliation function which are convex and positive.  In (2), we have: 
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 Θ , … ,  
 

1 (3) 

 Γ , … ,  0  

If all of  are 0 or 1 in different times, clusters are deterministic.  On the other 
hand if it can have other values between 0 and 1, clusters are fuzzy.  This can be de-
fined based on application.  As stated in [3], numerical solution for this optimization 
problem is difficult since the number of unknown can be much more than number of 
known parameters and also no information is available about function Γ t .  There-
fore, the problem is ill-posed in the sense of Hadamard and thus requires adding addi-
tional assumptions to solve the problem. This process is known as regularization [8].  
For example in Tikhonov regularization, additional assumption (called regularization 
term) is included in the minimization problem.  Here, it is assumed that the cluster 
affiliations functions are smooth and their derivative are bounded.  

. , ,  
 

(4) 
 

In the above equation,  is called regularization term.  To solve the above prob-
lem numerically, it must be converted from continuous time domain to discrete-time 
domain.  For this reason, Galerkin discretization is utilized here.  Galerkin methods 
can convert a continuous operator problem (such as a differential equation) to a dis-
crete problem.  It is widely used in FEM literature for solving differential equations 
[9].  In our problem, the FEM basis function defined in the form of N triangular func-
tions which are called hat functions.  A set of continuous functions is defined with 
the local support on 0,  as in Figure 1.  Applying discretization procedure to Γ t  
yields: .  

 
(5) 

 .  (6) 

where  are scalars called Galerkin coefficient.  After some mathematical simpli-
fication and using the locality of finite elements basis function support, one can find 
an optimization in the form of linear quadratic programming.  

,  (7) 

, … , , … . ,  (8) 
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Fig. 1. Finite element basis functions in the form of hat function 
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(10) 
 

 

H is a tri-diagonal matrix called stiffness matrix.  Convexity conditions on model 
distance functional are converted to constrain on Galerkin coefficients: 

1 1, … ,  (11) 

 0 
1, … ,   

 

The optimization problem above should be solved with respect to  and  itera-
tively.  After finding Galerkin coefficient, we can build  using FEM basis  
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function and Eq. (5).  Initially, some random initial  is assumed such that it 
fulfills the convexity conditions and then  is found.  After that, the iterative 
procedure is ran for enough iteration numbers.  First, the problem is solved with re-
spect to  for a fixed  and second it is solved with respect to  for a fixed   and 
so on.  The solution with respect to  is found analytically based on the defined 
distance functional as: ∑ . ∑ . .∑ . . ∑ .∑ ∑ .∑ . ∑ .  

 
 
 

(12) 

∑ ∑ .∑ . ∑ . .∑ ∑ .∑ . ∑ .  

 
(13) 

 

For solving the optimization with respect to , all the  are augmented in a vector  and the problem is converted to one linear quadratic programming. 12  (14) , … , , . ,  (15) 0 00 00 … 0  (16) 

 
and the new constraints become 

 

                         0 1, … ,  (17) 

 .  
 

(18) …  (19) 

 1 1 … 1  
 

(20) 
 
There are three parameters that should be set at the start of the procedure: number 

of clusters K , regularization parameter  and the number of hat functions N (or width 
of hat functions ∆).  Decreasing N reduces the order of LQP and consequently com-
plexity of calculations.  On the other hand, it decreases accuracy of clustering and it 
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may result in losing some very short regimes.  A challenging problem arises when 
choosing K.  A trivial solution exists when every data point is a cluster; and as a re-
sult, it is not possible to find the optimal number of clusters.  By increasing K, the 
value of the cost function always decreases and when      , 
this value approaches to zero. Since the number of clusters is unknown in advance, 
trial and error along with human judgment is used to select K subjectively.  A crite-
rion for choosing K is based on the value of the cluster affiliation functions when it 
becomes about 1 or 0.  If we assume clusters are deterministic, when the cluster affil-
iation at time t for cluster i is 1, it means the datum at t completely belongs to that 
cluster (cluster affiliation equal to 0 means that data does not belong to cluster i at 
all).  Increasing  leads to an increase in the length of regimes.  To find the optimal 
parameters,  and K should be changed simultaneously.  In the beginning, we set K 
equals to a sufficiently large number and then decrease K and run the algorithm for 
different  to find acceptable results, this means the value of  is about 0 or 1 in 
all of the time period [3].  After finding the trends, their statistical significance 
should be tested using Mann-Kendall approach [10]. 

3 Application in Climate Data Analysis 

In this paper, temperature time series in North Carolina is studied as a case study.  A 
data set of the average temperatures in 249 stations across NC are analyzed from the 
beginning of 1950 until the end of October 2009.  The data is converted from daily to 
monthly in order to decrease the complexity of calculations.  The dimension of re-
sulting time series is 249 ×718.  Temperature time series has a dominant harmonics 
with the period of one year which is called seasonality.  This annual cycle has been 
removed by subtracting the multi-year monthly means.  This is done, by subtracting 
the mean that is built over all values corresponding to the same month. 

 
 (21) 

where  is the deseasonalized value for month i (say for the month of January),  is original value for the same month (January) and  is the average monthly value 
in month i for the entire period of data (i.e. average of all January’s data).  Next, the 
FEM clustering applied to time series.  Initially the value of K was assumed to be 10 
and the algorithm was executed for different values of the regularization parameter 
( ).  For each , the algorithm ran several times to find best answer for constrained 
optimization problem.  The regularization parameter is a real value between 0 and 
approximately 30.  In this application, we are looking for deterministic clusters.  
When we reach a K where all the  are about 0 or 1, an optimal solution is found.  
For the time series in this study, we found six regimes with different length and 
trends.  

Figure 2 shows deseasonalized monthly time series in one of the dimensions and 
the linear trends detected by the FEM.  In this figure, narrow lines show deseasona-
lized temperature time series in one of the stations and bold lines are linear trends  
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Fig. 2. Time series in one dimension and its regimes/trends 

 

 
Fig. 3a-3f. Linear trend in NC for six regimes 
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found by the FEM algorithm.  Figure 3a-f shows the value of trend for six regimes in 
the North Carolina’s map.  Therefore, FEM clustering can reveal spatial in addition 
to temporal pattern of climate change.  In Figure 3a-f, it is clear that there are two 
notable decreasing trends between 1965-1964 and 1990-1998.  There is a remarkable 
increase in 1964-1976.  Also, the 2nd and the 4th regimes show the warmest and cool-
est trend, respectively.  Warming and cooling in eastern parts of the state in regime 2 
and 5 are interesting.  Different climatic phenomena may cause these patterns of 
change in NC, such as El-Nino, Atlantic Multidecadal Oscillation (AMO) and etc. [1].  
We can compare these climatic indices with the results.  For example comparison of 
these trends shows a correlation with AMO.  Therefore we may infer that NC tem-
perature is mostly affected by AMO.    

4 Conclusion 

In this paper, finite element method for clustering a multi-dimensional time series is 
used to find regimes in a climatic time series where each regime has a different linear 
trend.  An appropriate cost function was defined and using Tikhonov regularization 
and Galerkin discretization, the cost function is converted to a familiar linear quadrat-
ic problem.  There is a trade-of between number of Finite Elements Basis Function, 
volume of computation and consequently accuracy.  Also, the regularization parame-
ter can change the length of detected regimes.  By trial and error, an optimal number 
of regimes can be estimated.  A climatic time series of North Carolina is analyzed by 
this method.  The results represent spatiotemporal pattern of climate change corres-
ponding to areas of studies. 
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Abstract. Fuzzy community detection in social networks has caught researchers’
attention because, in most real world networks, the vertices (i.e., people) do not
belong to only one community. Our recent work on generalized modularity moti-
vated us to introduce a generalized fuzzy t-norm formulation of fuzzy modularity.
We investigated four fuzzy t-norm operators, Product, Drastic, Lukasiewicz and
Minimum, and the generalized Yager operator, with five well-known social net-
work data sets. The experiments show that the Yager operator with a proper pa-
rameter value performs better than the product operator in revealing community
structure: (1) the Yager operator can provide a more certain visualization of the
number of communities for simple networks; (2) it can find a relatively small-
sized community in a flat network; (3) it can detect communities in networks
with hierarchical structures; and (4) it can uncover several reasonable covers in
a complicated network. These findings lead us to believe that the Yager operator
can play a big role in fuzzy community detection. Our future work is to build a
theoretical relation between the Yager operator and different types of networks.

1 Introduction

Community detection in graphs has a long history. It can be widely applied to many
modern complex networks, such as biological networks, social networks, information
networks, to better understand how vertices function in those networks and the possible
patterns in the networks. Modularity, introduced by Newman and Girvan [1], triggered
a vast array of work on modularity-based community detection. Our recent work [2]
on generalizing Newman and Girvan’s modularity inspires our proposal to replace the
product operator in modularity with a generalized t-norm operator. Following this di-
rection, we give the conjecture that different operators might be able to detect different
types of communities and demonstrate this by doing experiments on five commonly
used test data sets. Our results show that the product operator is not the best choice for
all networks, and that the Yager operator [3] with a proper parameter choice gives a
better result.

The rest of paper is organized as follows. Section 2 talks about fuzzy communities
and recent related research; section 3 starts from Girvan and Newman’s modularity, and
then derives the generalized modularity in detail. Section 4 shows how to extend the
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fuzzy modularity with a fuzzy t-norm to interpret the multiplication of two selection
variables, and also introduces basic fuzzy t-norm operators, such as the Yager operator.
Experiments are done in section 5 and section 6 summarizes.

2 Fuzzy Communities

Community structure or cliques are a property of many graph-based networks. They
can provide invaluable information on important trends in networks; thus, community
structure can provide efficient solutions for hard problems. For example, in a network
of on-line shopping markets, a proper grouping of customers with similar interests can
improve on-line recommendation systems and bring more business opportunities to re-
tailers. Technically, cliques are groups of vertices in a network that have denser con-
nections with each other than they do with the rest of the network [1]. Traditionally,
community structure detection is called a partitioning [4]. That is, each vertex either
belongs to a community or not. We call these types of partition, crisp partitions.

Crisp partitions of a network cannot represent community structure well in some
real networks, especially those that are (similar to) social networks. Generally speak-
ing, one person plays different roles in a society and thus could link to many kinds
of communities, such as school, friend circle, and groups based on similar interest. So
crisp partitions would not uncover important people who play the role of intermediation
between different communities. From this consideration, the notion of fuzzy commu-
nity arises. The detection of fuzzy communities in a network results into a cover [4]. In
a cover, the belongingness of a vertex to a community is valued as a degree of truth, of
the extent that a vertex belongs to a community.

Based on the idea that vertices in one community are more likely to form a clique,
Palla et al. [5] came up with the Clique Percolation Method, one of the most popular
methods used in detecting overlapping communities. They define the term, k-clique, as
a complete graph with k vertices. The k-clique communities that are found can share
vertices, but the method fails to reach some vertices, like vertices with degree one.
Zhang et al. [6] proposed another method for detecting overlapping communities, which
can be summarized as three steps: spectral mapping, fuzzy clustering, and optimization
of a quality function for each cover. Liu [7] presented another quality function (which is
proven to be equivalent to Zhang’s in [2]) to find fuzzy communities under a simulated
annealing strategy. Havens et al. [2] proposed a generalized modularity-based quality
function for fuzzy community detection that shows better performance than both Zhang
and Liu’s functions on the well-known Karate Club data set [8] and American College
Football data set [1]. Havens also provides an analytical argument that his generalized
modularity is theoretically valid, while Zhang and Lui’s modularities are not.

Usually, in community detection, a network is represented by a graphG = (V,E,W ),
where V is the set of vertices in the network, E is the set of existing edges in the net-
work, and W is an n × n matrix, where n is the number of vertices in G. Every entry
wij in W indicates the edge-weight between vertex i and vertex j. The graph may be
directed or not, weighted or not. Here, we focus on undirected and weighted graphs,
meaning that W is symmetric.
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3 Modularity

In [2, 6, 7], different quality functions, also named modularity, are used to optimally
select a cover for a network in a cover space that is established by detecting covers
along a given range of community numbers using the fuzzy c-means (FCM) clustering
method [9]. Every cover generated by FCM is actually represented by a c × n matrix
U , where c is the number of communities; every entry uij denotes the membership of
vertex j in community i. Thus, any cover of a network with a given c is an element of a
set called a fuzzy partition set, denoted by Mfcn [2],

Mfcn = {U ∈ Rc×n; 0 ≤ uij ≤ 1, ∀i, j; 0 <

n∑
j=1

uij < n, ∀i;
c∑

i=1

uij = 1, ∀j}. (1)

Modularity was introduced by Newman and Girvan and is used to evaluate the good-
ness of the results of community detection. The higher the value of the modularity is,
the better quality the partition/cover is. Modularity is built on the notion of a null model
that assumes that no community structure exits in a random graph [1]. So the degree
of an existence of structure in a community can be measured by comparing actual edge
density of a detected community to the expected edges density of the same community
in the null model. By summing over all communities, modularity judges the validity
(or quality) of the partition or cover. For a crisp partition of an undirected graph, the
Newman and Girvan modularity is defined as:

Q =

c∑
i=1

(
eii − a2i

)
, (2)

where eii is the fraction of all edges in the graph that are in community i, and ai is de-
fined as the fraction of edges that begin or end in community i. An extended modularity
for a weighted and undirected graph is given in [6], as:

Q =
1

‖W‖
c∑

k=1

∑
i,j∈Vk

(
ωij − mimj

‖W‖
)
, (3)

where Vi is the set of the vertices that are in the ith community, mi is the degree of
vertex i (or mi =

∑
j wij ), and ‖W‖ is the sum of all the elements in W . By introduc-

ing entries of the c × n partition matrix U as selection variables, we can go one step
further and produce the generalized modularity, which can work for any type of graph
partition (crisp, fuzzy, probabilistic, or possibilistic). The generalized modularity of U
w.r.t G = (V,E,W ) is [2]

Qg =
tr(UBUT )

‖W‖ , U ∈Mpcn, (4)

where Mpcn is the set of all possibilistic partitions. The generalized modularity at (4)
more explicitly shows the role of U in the calculation of modularity.
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4 Generalized Fuzzy T-norm Modularity

By extending Qg further, we can see how selection variables play a part in modularity.

Q =
1

‖W‖
c∑

k=1

∑
i,j∈Vk

(
ωij − mimj

‖W‖
)
ukiukj , (5)

where uki and ukj are the membership of vertex i and vertex j in the kth community
respectively. So, in equation (5), the multiplication of uki and ukj indicates the degree
of truth to which both vertex i and vertex j are in the kth community. The multiplication
here can be interpreted as a fuzzy t-norm, namely the product.

Let C = {1, . . . , c} be the set of community indices, then uki and ukj are the mem-
berships of vertices i and j in the kth community, respectively. We can extend this no-
tation and say that ui(k) and uj(k) are the associated membership functions (actually
the fuzzy set of communities for each vertex), where

ui = {ui(k)|0 ≤ ui(k) ≤ 1, k ∈ C}, (6)

uj = {uj(k)|0 ≤ uj(k) ≤ 1, k ∈ C}. (7)

Then, the intersection of fuzzy sets ui and uj , denoted by B, can be written as [10]

B = (ui ∩ uj)(k), k ∈ C, (8)

where (ui ∩ uj)(.) is the membership of the communities in the intersection of ui and
uj or

(ui ∩ uj)(k) = i(ui(k), uj(k)), k ∈ C. (9)

In generalized modularity, the binary operator i(, ) is a product (or can generalized
thereof as a product). However, because of our interpretation that u is a fuzzy set, then
this product can be generalized to any fuzzy t-norm. Other than product, there are three
other common fuzzy t-norm operators: drastic, Lukasiewicz, and minimum. The flexi-
bility of fuzzy t-norm operators imply that product might not be good for all problems
and a better operator might exist for a given type of community. Thus, we extend the
generalized modularity at (5) to

Qi =
1

||W ||
c∑

k=1

∑
i,j∈Vk

(
wij − mimj

||W ||
)
i(uki, ukj). (10)

We examine this possibility in the context of Qg by a comparison of generalized mod-
ularity (viz., modularity using the product t-norm) and the fuzzy t-norm modularity Qi

using the Yager t-norm operator [3]

iY (x, y) = max(0, 1− ((1 − x)p + (1− y)p)
1
p ), p ≥ 0. (11)

For p = 0, Yager reduces to drastic; for p = 1, Yager becomes Lukasiewicz; and,
for p = +∞, Yager represents minimum. We now turn to experiments that show how
the Yager t-norm can produce superior community detection results for several social
network data sets.
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5 Experiments

To demonstrate our generalized fuzzy t-norm modularity, we show how modularity
can be used to detect the number of communities in real social networks. We show
the difference in performance by using Qi by adjusting the parameter p in the Yager
operator for five commonly used real networks: Karate Club [8], Sawmill [11], Dolphin
Network [12], Political Books [13] and American College Football [1]. For each data
set, five different values of p were used. We compared Yager-t-normQi with the varying
p parameter to the generalized modularity at (5) and Qi using the min fuzzy t-norm. The
basic experiment environment setting is the same as that in [2]: MULTICUT spectral
clustering with FCM is used to partition the graph; the FCM fuzzifier is 2; 100 trials
are carried out on each data set for each value c in a range of different community
numbers (nominally [2, 3, . . . , 10]). Two visualizations are produced to show the quality
of detection result. One visualization plots the normalized average modularity value
(over the 100 trials) versus community number c. This visualization shows the number
of communities by the peak of the graph. The other visualization shows an image of the
number of trials (out of 100) in which each operator maximized for a given number of
communities c. This shows the number of communities by white blocks in the image.

Karate Club Network, collected by Zachary, is a well-known benchmark used to
evaluate community detection algorithms. It has 34 vertices and the weight of an edge
indicates the strength of association of two club members who interact with each other
outside of the club environment. A grouping, suggested by Zachary, is to partition the
club around the president and the instructor, separating into two clusters. But Newman
and Girvan argue that three communities exist in the club. The third community contains
five members who only have connection with the instructor in the club, and not the
president. In our experiment, this argument is confirmed. Figure 1(a) demonstrates that
the Yager t-norm Qi with p = 0.5 shows a stronger peak at c = 3 than the other
modularity formulations, which suggests that the fuzzy t-norm modularity is effective
at improving the confidence of the validity of the c = 3 community partition. Figure
1(b) shows that each modularity index strongly prefers the notion that there are c = 3
communities in the Karate Club network, which is expected.

Sawmill is a communication network within a small enterprise. All employees were
asked to rate his or her contact with every other person in a week as a score on a five-
point scale. Two employees were linked in the network if they rated their contact no
less than 3 each. The number of employees or vertices in Sawmill is 36. The suggested
number of communities is 4, since there are two major sections, the mill and the planner
sections, and two languages are used, English and Spanish. As shown in Fig. 2(a),
Yager operator with the parameter of p = 1.0 gives the sharpest peak at c = 4. This
is especially noteworthy because the other curves are not as explicit in their choice of
c = 4; this is most noticeable in the Minimum and Yager p = 10 indices, which also
seem to suggest that c = 3 is a possibility.

Dolphin Network is a social network of 62 bottle-nose dolphins living in Doubtful
Sound, New Zealand. These data were collected by Lusseau from 7 years of observa-
tion and each edge of the network represents the presence or absence of a statistically
strong association between each two pair of dolphins. The network can be divided into
two large communities in term of the age of dolphins. Within the young community,
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Fig. 1. Karate Club Data

dolphins may also be clustered into three sub-communities. One of them contains all
female dolphins. So, for a coarse detection, the suggested number of communities is 2;
for a finer-grained detection, the suggested number of communities is 4. As shown in
Fig. 3, the product operator (or standard generalized modularity) and the Yager t-norm
Qi with p = 20 prefers the coarse partition of c = 2, but the Yager t-norm Qi with
p ≥ 50 finds c = 4 communities. Interestingly, the min t-norm Qi also finds c = 4.
This experiment demonstrates that the flexibility of the Yager t-norm allows us to find
different community configurations in a hierarchical network.

Political Books is a network of 105 books on American politics, complied by Valdis
Krebs and recreated and published by Mark Newman. Nodes represent political books
sold by the on-line bookseller, Amazon.com. Edges represent frequent co-purchasing
of books by the same buyers, as indicated by the “customers who bought this book also
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(b) Choice of community number

Fig. 2. Sawmill Data

bought these other books” feature on Amazon. So, finding communities in this network
is to find groups of people who have similar taste in political books. After reading the
descriptions and reviews of these books posted on Amazon, Newman marked each book
as liberal, neutral or conservative. The number of books in the neutral community is
much smaller than that in each of the other two communities. The suggested number of
communities is three. As seen in Fig. 4, the product t-norm (or generalized modularity)
suggest there are only c = 2 communities, liberal and conservative communities, while
the Yager t-norm with p = 300 and p = 500 prefers the suggested c = 3 communities.

Americal College Football is a network of competing relations of 115 Division I
college football teams during the 2000 regular season. If two teams played against each
other, the weight on the edge connecting the corresponding two vertices is 1; otherwise,
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Fig. 3. Dolphin Network Data

it is 0. The 115 teams belong to 11 conferences; teams in one conference usually play
more games against teams within the same conference. Hence, a naturally suggested
number of communities is 11. But it has also been suggested that c = 10 is an appro-
priate choice as there is one conference that plays teams from several other conferences
(it is a small conference). As shown in Fig. 5, all the indices prefer 10 communities,
but the Yager t-norm Qi with p = 2.0 gives the highest value of modularity among all
operators at c = 11. So, it is more likely to infer that 11 community is also a reasonable
result.
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Fig. 4. Political Books Data
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6 Conclusion

Inspired by generalized modularity, we adapted the product of two selection variables
(which become fuzzy for the case of fuzzy community detection) as a t-norm to produce
a generalized fuzzy t-norm modularity. Our conjecture was that the product t-norm may
not be the best choice for community detection in all networks, and that a flexible fuzzy
t-norm operator could allow better community detection results. To verify our conjec-
ture, we adopted the Yager t-norm, one of several 1-parametric t-norms. The results of
our experiment lead to four preliminary conclusions and confirm our conjecture.

1. For simple networks, like Karate Club and Sawmill, the Yager t-norm modular-
ity with a proper parameter value gives a sharper visualization of the number of
communities when compared with the product-based modularity;

2. For networks composed of both relatively small- and large-sized communities, e.g.,
the Political Books network, the product-based modularity can fail to detect the
small communities, but the Yager t-norm modularity is able to detect them;

3. For networks with hierarchical structures, like the Dolphin Network, the product-
based modularity is only able to uncover a coarse community structure, while the
Yager-based modularity with varied parameter settings detects the multiple levels
of community structure;

4. For complicated networks, like the American College Football network, the Yager
t-norm modularity can provide more information to infer the complicated commu-
nity structure.

Although these conclusions are based on only a small sample of data sets, we can
conclude that the product t-norm is not an all-encompassing best choice for all net-
works. And we can see that different types of communities could be revealed more
easily by using our generalized fuzzy t-norm modularity. Furthermore, our empirical
results suggest two open questions:1) how to optimally determine the Yager parameter
value in community detection? And 2) what kind of parametric t-norm is the best for
community detection of a given network type or configuration? In the future, address-
ing the first question, we will examine methods by which Yager’s t-norm parameter can
be chosen automatically to search for different types of communities in a network, e.g.,
by some computational intelligence method. For the second question, a possible way to
start an investigation is to analyze how the characteristics of other parametric t-norms
can affect the community detection of a given network.
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Abstract. In this paper we present a decision support system that uses soft 
computing models for evaluation, selection and pricing of homes. The system 
(called LSPhome) is based on the Logic Scoring of Preference (LSP) evaluation 
method and implemented in the context of online real estate. The goal of this 
system is to use weighted compensative logic models that can precisely express 
user needs, and help both buyers and sellers of homes. The design of such a sys-
tem creates specific logic and computational challenges. Soft computing logic 
problems include the use of verbalized importance scales for derivation of and-
ness, penalty-controlled missingness-tolerant logic aggregation, detailed and 
verbalized presentation of evaluation results, and development of optimum pric-
ing models. Computational problems include fast and parallel collection of he-
terogeneous information from the Internet, and development of user interface 
for fast and simple creation of customized soft computing decision criteria by 
nonprofessional decision makers. 

Keywords: Evaluation, selection, real estate, missing data, verbalization. 

1 Introduction 

Real estate is an area that includes a spectrum of soft computing decision problems. In 
this paper we present a survey of the most important soft computing models that are 
used in online real estate (ORE). The first such a problem is the development of crite-
ria for evaluation and selection of homes. The home evaluation criteria are based on 
weighted compensative logic functions that can model adjustable degrees of simul-
taneity and replaceability, mandatory, sufficient, and optional requirements, as well as 
adjustable degrees of importance of various home attributes. The aggregation of home 
quality and home affordability is also a soft computing logic problem. Similarly, the 
problem of optimum home pricing can also be solved using soft computing models. In 
ORE we frequently encounter problems of decision making with incomplete (miss-
ing) inputs, and the need to expand aggregation models with missingness-tolerant 
aggregators. Finally, the users of ORE decision models are not decision experts, but 
nonprofessionals who need simple verbalized approach to specifying soft computing 
decision models. These seemingly heterogeneous problems are closely related in the 
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context of ORE. Thus, the goal of this paper is to show all fundamental components 
of the soft computing decision infrastructure in ORE. 

In the USA the real estate market data and procedures are governed by the National 
Association of Realtors [11]. Full information about homes on sale and other mar-
keted properties can be found in the Multiple Listing Service (MLS) [14]. ORE web 
sites (e.g. [13],[16]) use MLS data and provide application programming interfaces 
(API) that can be used to access data about available homes and their characteristics. 
These data can be used as inputs for evaluation and selection process based on soft 
computing criteria.  

The paper is organized in three main sections. Section 2 describes soft computing 
models for home evaluation in the context of buying and selling a home. Section 3 
surveys the penalty-controlled missingness-tolerant aggregation, and the verbalization 
problems. Section 4 presents experimental results generated by the LSPhome system. 

2 LSP criterion Function for Home Evaluation 

The LSP method [5] provides soft computing evaluation criteria built in three basic 
steps. The first step develops a list of attributes 1,..., na a , , 1,...,ia R i n∈ =  that cha-

racterize relevant properties of evaluated homes. The second step is to provide re-
quirements for each attribute in the form of elementary criteria functions 

: , [0,1]ig R I I→ = ; they assign degrees of satisfaction to attribute values 

( ), 1,...,i i ix g a i n= = . The third step generates an overall degree of satisfaction 

(overall suitability) as an aggregate of attributes’ degrees of satisfaction: 

1( ,..., )nS L x x= . The mapping : nL I I→   is based on weighted compensative logic 

functions [1],[10],[3],[12] that are implemented as specific forms of means [9], [2]. 

2.1 Attribute Tree 

The home evaluation attribute tree based on data that can be retrieved from the Inter-
net is shown in Fig. 1. The attributes are grouped in two main groups: the quality of 
home location, and the quality of the home. The quality of home location is based on 
an analysis of points of interest that are available from Google. The attributes that 
affect the home quality come from ORE web sites. 

2.2 Elementary Criteria 

The number of home evaluation attributes in the attribute tree in Fig 1. is 36. For each 
of these attributes we provide an attribute criterion function that reflects the require-
ments of a specific user. Some of attribute criteria are specific for each user and oth-
ers can be shared by all users. Two such examples are shown in Fig. 2. The criterion 
#112 uses data obtained from the LSPhome user interface shown in Fig.3. 
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Fig. 1. The home evaluation attribute tree 

The presented interface provides a limited capability for homebuyers to specify 
their requirements. This is necessary to avoid too much detail that would discourage 
the majority of general population users. In all cases the users are expected to specify 
the ideal location of their desired home and the maximum allowable distance maxD  

from the ideal location. The evaluation of homes using the attribute criterion #112 
(Fig. 2) is based on the relative distance 100D/ maxD . The presented attribute crite-

rion shows a relatively high tolerance for all distances except those close to maxD . By 

selecting maxD (see Fig. 3) the users can customize the attribute criterion function.  

 1 HOME SUITABILITY  
 
   11 QUALITY OF LOCATION  
      111 Suitability of neighborhood 
         1111 Walkability 
         1112 Shopping and dining 
         1113 Health support 
         1114 Suitability for children 
         1115 Suitability for seniors 
      112 Walking distance from the ideal location 
 
   12 QUALITY OF HOME  
      121 Available space 
         1211 Area belonging to home 
            12111 Total internal living area of home 
            12112 Outer usable area belonging to home 
         1212 Rooms and other designated areas 
            12121 Primary rooms 
               121211 Number of bedrooms 
               121212 Number of bathrooms 
               121213 Kitchen 
               121214 Dining room/area 
               121215 Living/family room 
            12122 Additional space and storage 
               121221 Additional space 
                  1212211 Breakfast room/area 
                  1212212 Home office 
                  1212213 Laundry 
               121222 Storage and auxiliary areas 
                  1212221 Walk-in closets 
                  1212222 Pantry 
                  1212223 Auxiliary utility areas 
         1213 Parking space 
            12131 Reserved parking 
               121311 Garage 
                  1213111 Private garage 
                  1213112 Shared garage 
               121312 Reserved uncovered parking space 
            12132 Public parking (first-come, first-served) 
               121321 Free public parking 
                  1213211 Street parking next to home 
                  1213212 Street parking close to home 
               121322 Paid public parking 
      122 Home features 
         1221 Home organization/layout 
            12211 Type of home 
            12212 Number of floors 
         1222 Home construction features 
            12221 External wall material 
            12222 Type of floor 
            12223 Type of roof 
         1223 Home energy supply 
         1224 Home temperature regulation 
            12241 Source of energy for heating 
            12242 Type of heating system  
            12243 Type of cooling system 
         1225 Home age and maintenance 
            12251 Home age 
            12252 Last modification/improvement 
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112  Walking distance from the ideal location  

Value %  The ideal location is a user-specified location selected as a point 
that completely satisfies all user requirements. The distance can 
be expressed as (1) walking, (2) car, (3) public transport, or  
(4) bicycle distance. We use  the normalized relative walking  
distance x = 100D/Dmax, where  
D    = walking distance between an evaluated home and 
       the ideal location (miles or km) 
Dmax = The maximum acceptable walking distance from the ideal 
       location (miles or km). Dmax must be selected by each user 
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12222  Type of floor  

  Value %  The type or material of the walking surface of the primary  
living areas of the home. The main options are: 
ST = stone                 HW = hardwood          SW = softwood 
L  = laminate floor       V  = vinyl/linoleum    P  = parquet  
SL = slate                 T  = tile (ceramic)    C  = carpet  
Evaluation method: 
1 = ST/SL/T,   2 = V,   3 = SW/C,   4 = L,   5 = HW,   6 = P 
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Fig. 2.  Sample elementary criteria 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. LSPhome interface for specifying user requirements 

Other user supplied elementary criteria are the available area, the number of bed-
rooms and the number of bathrooms. All of them are specified in the range from the 
minimum acceptable value mina  to the maximum (sufficient) value maxa . The sim-

plest form of such elementary criteria is the following: max( ) min[1, ( / )]x g a a a= = . 
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An alternative more flexible version can be obtained by assigning the minimum de-
fault suitability minx  to the minimum acceptable value mina  as follows: 

( ) ( )( )
min

min min max max min min

0 ,                                                                              
( )

min 1, ( ) / ,

a a
x g a

a a x a a a a a a

<= =  − + − − ≥
 

To simplify the use of LSPhome, only the essential user requirements are custo-
mizable. All user-shareable and less specific elementary criteria are not customizable 
and one such example is the criterion #12222 shown in Fig.2. That criterion is a fixed 
scoring system that reflects an average standpoint acceptable for the majority of users. 
E.g., if the ORE web site provides a home with hardwood floor, then, for all  
homebuyers, the corresponding floor satisfaction degree is 85%. The use of fixed 
elementary criteria significantly reduces the number of necessary user inputs and 
simplifies the communication with users. 

2.3 Logic Aggregation Structure 

Aggregation of all attribute suitability degrees yields the overall suitability of the 
evaluated home. The aggregation is based on the superposition of several basic aggre-
gators that are implemented using the generalized conjunction/disjunction function 
(GCD) [4]. The soft computing suitability aggregation structure (SAS), in the form of 
a “shade diagram,” [5] is shown in Figs. 4 and 5. The suitability aggregation structure 
uses a spectrum of weighted compensative logic functions. In the case of GCD we use 
the system of 17 distinct degrees of ornessω 0, 1/16,...,1= , (or andness α 1 ω= − ) 

symbolically denoted C, C++, C+, C+-, CA, C-+, C-, C--, A, D--, D-, D-+, DA, D+-, 
D+, D++, D, described in [3]. The aggregators starting with letter C denote various 
forms of conjunction (pure and hard or soft partial) and aggregators starting with let-
ter D denote various forms of disjunction (pure and hard or soft partial) [4]. The hard 
partial conjunction function is a model of mandatory requirements 
( 1( ,..., ) 0, 0c k if x x x= = , {1,..., }, 1i k k∈ > ) and the hard partial disjunction is a 

model of sufficient requirements ( 1( ,..., ) 1, 1, {1,..., }, 1d k if x x x i k k= = ∈ > ). Soft 

versions provide a positive output if a single input is positive. The aggregator A de-
notes the neutrality (the arithmetic mean). E.g., to evaluate the suitability of neigh-
borhood (#111) we first identify the locations of all relevant points of interest for 
evaluation of walkability, shopping and dining, health support, and suitability for 
children and seniors, and then we aggregate these suitability degrees using a weighted 
soft partial conjunction C- (andness α 5 / 8= ), with the highest relative importance 
(weight) assigned to walkability and to suitability for children. Such weights reflect 
the fact that most homebuyers are young families. In Figs. 4 and 5 “+” in the first 
column denotes mandatory attributes and “-“ denotes optional attributes. 

The SAS shown in Fig. 4 includes a user-supplied final aggregator F of location 
suitability and home quality. The user is requested to specify in verbal form the over-
all importance of location suitability and house quality (Fig. 3) and the parameters of 
the resulting GCD aggregator are then computed as shown in Section 3 and [7]. The 
resulting overall suitability scores for N competitive homes are , 1,...,iS i N= . 
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Attribute name 
Node number 
Attribute type 

Aggregated block # and name 
Aggregation operator 
Weight (% relative importance) 

GCD aggregator: 
Soft partial conj. 

Conjunctive partial absorption: 12211=mandatory, 12212 = optional input 
                                                                                                                 Penalty = 20% 
                                                                                                                 Reward = 15% 

Disjunctive partial absorption: 1213111=sufficient, 1212112 = optional input 
                                                                                                                 No penalty 
                                                                                                                 Reward = 70% 

Disjunctive partial absorption 
12131 = sufficient input  
12132 = optional input 
Mean penalty for not having public parking = 20% 
Mean reward for having the best public parking = 40% 

 

Fig. 5. Explanation of fields in the shade diagram 

We also express the soft computing logic relationships by using the conjunctive 
partial absorption aggregators that aggregate mandatory and optional inputs and the 
disjunctive partial absorption aggregators that aggregate sufficient and optional inputs 
[3],[5]. In both cases the properties of these aggregators are determined using the 
desired level of penalty (decrease of output in the case of unsatisfied optional input) 
and reward (increase of output in the case of perfectly satisfied optional input). E.g., 
in the case of parking space (#1213) it is sufficient to have a reserved parking place 
and the availability of public parking is optional with the mean penalty of -20% and 
the mean reward of +40%. An obvious advantage of shade diagrams is their rectangu-
lar form: similarly to Nassi-Shneiderman structured flow charts, a new shade diagram 
can be inserted in each rectangular space, making easily readable aggregation struc-
tures. Shading of diagrams facilitates the perception of grouping of inputs. 

If home costs are 1,..., NC C  then logic aggregation also includes a hard partial 

conjunction ( Δ ) for aggregating the overall home quality 1/ max( ,..., ) [0,1]i i NQ S S S= ∈  

and the home affordability 1min( ,..., ) / [0,1]i N iA C C C= ∈  yielding (in the case of 

equal weights) the overall home values , 1,...,i i iV Q A i N= Δ = . In the case of home sale 

this model can be used to find the maximum price of our home *
iC , so that (even with 

that price) the home is still the most attractive in a selected area (attains the maximum 
value *

1 1min( ,..., ) / min( ,..., ) / ,i i N i j N jV Q C C C Q C C C j i= Δ ≥ Δ ∀ ≠ ). 
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3 Missingness-Tolerant Aggregation and Verbalization 

The LSP criterion function consists of attribute criteria and the suitability aggregation 
structure and assumes the availability of all n input attribute values. In reality, howev-
er, the ORE web sites regularly offer incomplete data about available homes. For 
example, our experiments with homes available through ORE API in San Francisco 
show on the average the availability in the range from 50% to 70% of input attributes, 
as illustrated in Fig. 6. For each of ten zip codes we averaged the availability of 
attributes for all marketed homes providing reliable insight into the missingness prob-
lem. The home attribute data come from various sources: home owner/seller, county 
records, and broker listing feeds, and some of them are frequently incomplete. So, we 
have two options: to abandon the idea of home evaluation and selection using ORE 
data, or to use techniques for penalty-controlled missingness-tolerant aggregation. We 
use the method presented in [8] where the user can select the degree of penal-
ty [0,1]P ∈  (or [0,100%]P ∈ ) for missing data, as shown in Fig. 3. Then nonnegative 

inputs 0ix ≥  correspond to known attributes, and negative inputs denote unknown 

attributes defined as 1ix P= − . So, 0ix =  denotes either no satisfaction of the cor-

responding elementary criterion or the maximum penalty assigned to an unknown 
attribute. In the case of negative suitability we have 0 1, 1 0iP x≤ < − ≤ < and the 

zero penalty yields 1ix = − . Our missingness-tolerant aggregation structure maps 

[ 1,1] [0,1]n− → ; for details, see [8]. 

 

Percent of available data for zip codes in San Francisco
Average = 61.83 %
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Fig. 6. ORE data availability for ten zip codes in San Francisco 

The aggregation of suitability degrees is related to the perception of the impor-
tance of inputs. For example, if a homebuyer requires a high degree of simultaneity of 
the home quality and the home location quality, that requirement necessarily yields a 
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perception that both the home quality and the location quality are (for that specific 
homebuyer) very important. Thus, a high andness is a consequence of high overall 
importance of inputs. Similar situation also holds in the case of high orness. However, 
while the concepts of andness and orness are familiar to professional decision-makers, 
the concept of overall importance is familiar to everybody. This fact can be used to 
derive the andness/orness and other parameters of partial conjunction and partial dis-
junction from the verbalized perception of the overall importance of inputs. This idea 
was introduced in [7] and implemented in the LSPhome interface shown in Fig. 3 
where users can select verbalized degrees of importance of home location, home qual-
ity, and home price. Using the method presented in [7] the selected degrees of impor-
tance of home location and home quality are used to derive the andness and weights 
for the final suitability aggregation block ( , ,L HW W F , Fig. 4). Then, the mean impor-

tance of location and home quality and the importance of price are used to derive the 
andness and the weights of the aggregator that aggregates the overall suitability and 
the overall affordability and provides the overall home value. 

If the user wants a simultaneous satisfaction of k inputs and has the perception that 
their levels of overall importance (selected from the verbalized importance scale with 
L+1 levels) are 1,... , {0,..., }k iS S S L∈ , 1,..., , 1i k k= > , then, according to [7], the 

corresponding andness is interpreted as the mean relative overall importance: 

1α ( ... ) /kS S kL= + + . Indeed, the perception of importance and the value of andness 

increase simultaneously and the above model is based on the linear relationship be-
tween the andness and the mean overall importance. The verbalized overall impor-
tance scale can also be used to derive the degrees of relative importance of inputs. 
Among three linear models proposed in [7] for computing weights 1,... kW W , the sim-

plest is the proportional scaling model 1/( ... ), 1,...,i i kW S S S i k= + + = .  

4 Experimental Results 

Using the LSP methodology presented in previous sections we developed a web ap-
plication called LSPhome that helps users to find the most suitable home according to 
their specific criteria. Traditional ORE web sites offer searches of available real estate 
inventory in the style of the traditional SQL SELECT-FROM-WHERE statement. 
The user is only allowed to specify a few crisp conditions in the WHERE clause. 
Such conditions are used as a filter, i.e. as a strictly binary selector that rejects all 
homes that do not satisfy any of the filtering conditions selected by the user. In a typi-
cal case the ORE web sites offer the filter conditions from the following list: (1) home 
type, (2) price range, (3) minimum number of bedrooms, (4) minimum number of 
bathrooms, (5) square feet range, (6) lot size range, (7) home age range, (8) time on 
market, (9) keywords used to select desired features (e.g. pool, patio), and (10) de-
sired location/neighborhood. The filtering method considers all selected filtering  
conditions as the binary mandatory requirements. For example, if the home type is 
specified as condo/apartment, then all single family and multi family homes will be 
rejected. Obviously, the filtering process is useful, but it is not the home evaluation. 
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The home filtering is merely the partitioning of inventory in two basic groups: homes 
that are not acceptable and homes that might be acceptable. At this time the customers 
of ORE web sites do not have the possibility to determine the degree of acceptability 
(suitability) according to their specific needs. Evaluation and ranking of potentially 
suitable homes is left to the user and it is done intuitively. Of course, the number of 
attributes is too big for easy intuitive evaluation, and the process of home selection is 
usually stressful and time consuming.  

The primary advantages of the soft computing approach and the LSP method with 
respect to the traditional filtering process are the evaluation and ranking of homes 
according to user needs, the reduction of search/decision time, and the justification of 
proposed decisions; that increases the confidence and improves the experience of 
homebuyer (and/or home seller). Of course, the central problem is how to define the 
user needs. The number of home attributes that we used (36) is a typical value and it 
is difficult to reduce it without losing the credibility of evaluation results. On the other 
hand, it is not reasonable to ask an average homebuyer to specify 36 elementary crite-
ria (or fuzzy set membership functions) followed by an advanced aggregation struc-
ture. Thus, we proposed a hybrid approach: the user specifies 9 crucial requirements 
using the LSPhome interface shown in Fig. 3 and the remaining parts of the LSP cri-
terion are prefabricated (fixed, reflecting average general requirements). In this way 
we combine the simplicity of specification of requirements and the breadth of cover-
ing relevant attributes. In particular, a significant advantage of our method is the inte-
gration of the home quality and the location quality attributes, with the possibility to 
conveniently adjust the relative importance of home quality versus the location quali-
ty. The location quality analysis is based on data about all points of interest provided 
by Google using techniques developed in [6] and [15]. 

 

 

Fig. 7. An example of typical LSPhome evaluation results 
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A typical example of the summarized home evaluation and selection results gener-
ated by the LSPhome system is shown in Fig. 7 (“score” denotes the overall suitabili-
ty). The user looking for a home in the vicinity of the 19th Avenue in San Francisco is 
given the ranking of 10 homes selected by LSPhome. The first four homes satisfy 
more than 2/3 of user requirements and other have too low suitability scores. The 
overall value is computed as a hard partial conjunction of the normalized suitability 
and normalized affordability: 1 1(min( ,..., ) / ) (1 )( / max( ,..., )) [0,1]i N i i NV W C C C W S S S= Δ − ∈ , 

1,...,i N= . The weight W denotes the relative importance of affordability compared 
to the relative importance of home quality. It is computed from the importance of low 
price selected by the homebuyer using the LSPhome interface (Fig. 3). The results in 
Fig. 7 show the normalized relative value ( )

1100 / max( ,..., )) , 1,...,norm
i NiV V V V i N= = , so 

that the top ranking home is rated 100%. In our example the four leading homes differ 
for less than 3%, while others have significantly lower values. Consequently, in this 
case the user is expected to focus on the four best options, compare homes using the 
values and the suitability of attributes (Fig. 8 and Fig. 9) and expand the investigation 
using suitability maps or a detailed analysis of the quality of urban location. 

 

 

 

Fig. 8. Attributes of ten competitive homes showing typical cases of missing data 
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Fig. 9. A fragment of evaluation results showing the missing attribute and subsystem data 

A typical problem of missing data is visible in Fig. 8 (obtained using the “show all 
competitive systems” option in Fig. 7) and in Fig 9 (obtained using the “show all 
evaluation results” option in Fig. 7). Out of ten competitive homes only two homes 
have the complete attribute data. All other data are incomplete. Furthermore, the miss-
ing attribute data propagate through the aggregation tree and some subsystems (e.g. 
garage and reserved parking) have missing values shown in Fig. 9.  

In order to deal with missing data evaluators must decide about the most suitable 
value of the missingness penalty parameter. The effects of missingness penalty are 
shown in Fig. 10. In all cases increasing the missingness penalty causes a decrease of 
the overall suitability. For the maximum penalty the overall suitability for missing 
nonmandatory attributes is positive, and for missing mandatory attributes it is zero. 
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Fig. 10. Overall suitability as a function of missingness penalty 
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The selection of missingness penalty is based on the decision maker missingness 
tolerance level. Indeed, the missing data can be intentionally hidden because they are 
inconvenient, or they can be unknown to all data providers. In the case of suspected 
inconvenient data it is justifiable to apply the highest penalty. In the case where we 
have reasons to believe that the unknown attributes are satisfied (e.g. the house with 
missing parking data is in a residential district that is known to have free public park-
ing space) we may select a lower penalty value. To decide about the most appropriate 
missingness penalty it is suitable to first plot and analyze the overall suitability curves 
similar to those shown in Fig. 10. The suitability functions in Fig. 10 are strictly con-
cave and the penalty of 80% should be applied if we want to get the overall suitability 
that is approximately halfway between the extreme values. 

The evaluation results (Fig. 7) offer the possibility for detailed investigation of the 
suitability of home location and its neighborhood. The evaluation tools [6], [15] (also 
available at www.seas.com) provide suitability maps, which are geographic maps 
with an overlay showing the distribution of suitability degrees. Fig. 11 shows the 
suitability map for walkability (possibility to access selected points of interest by 
walking) where the suitability degrees are presented as numeric values on top of a 
Google map with selected points of interest. We define walkability as a conjunctive 
partial absorption of a set of mandatory points of interest and a set of optional points 
of interest. For the best home proposed in Fig. 7, the walkability is 53%. The potential 
homebuyer can also investigate the suitability of selected neighborhood for business, 
children, entertainment, shopping, etc., or make his/her own suitability map. 

 

 

Fig. 11. Suitability map on top of a Google map in the vicinity of the selected home  
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Suitability maps based on points of interest provided by Google give useful infor-
mation about the suitability of neighborhood, but they do not include physical, envi-
ronmental, and safety aspects of the neighborhood. Such information can be collected 
from other sources (e.g. government) and used for additional analysis of the suitabili-
ty of location. Fig. 12 shows a sample of such an analysis (based on the analyzer of 
the quality of urban locations developed in [15] and activated as an option in Fig. 7). 
The quality of urban locations is analyzed using suitability maps based on 11 diverse 
attributes presented in Fig. 12. In the given point of the best home reported by 
LSPhome the quality of location is 64%. This value can be compared with the pre-
sented distribution of the location quality in the whole city (the best values around 
70% and the mean value of 55.41%). Thus, the neighborhood of the selected home is 
notably above the city average and not too far from the best locations in the city. 

 

                  

Fig. 12. Quality of urban locations based on 11 diverse attributes 

5 Conclusions 

Evaluation and selection of homes is essentially a soft computing logic problem. ORE 
web sites offer data that enable the use of customized compensative logic criteria for 
fast ranking of available homes. This paper shows a way such criteria can be designed 
using the LSP method, and implemented in a software tool available over the Internet. 
Specific problems related to online buying and selling of homes include the missing-
ness-tolerant aggregation and the use of the verbalized concept of overall importance 
to derive the andness/orness and weights of partial conjunction and partial disjunction 
aggregators. Soft computing decision methods are a way to significantly improve both 
the efficiency and the customer experience in online real estate. 



 Soft Computing Models in Online Real Estate 91 

References 

1. Beliakov, G., Pradera, A., Calvo, T. (eds.): Aggregation Functions: A Guide for Practition-
ers. STUDFUZZ, vol. 221. Springer, Heidelberg (2007) 

2. Bullen, P.S.: Handbook of means and their inequalities. Kluwer (2003) 
3. Dujmović, J.J.: Preference logic for system evaluation. IEEE Transactions on Fuzzy Sys-

tems 15(6), 1082–1099 (2007) 
4. Dujmović, J.J., Larsen, H.L.: Generalized conjunction/disjunction. International J. Approx. 

Reas. 46, 423–446 (2007) 
5. Dujmović, J.J., Nagashima, H.: LSP method and its use for evaluation of Java IDE’s. In-

ternational J. Approx. Reas. 41(1), 3–22 (2006) 
6. Dujmović, J.J., De Tré, G.: Multicriteria Methods and Logic Aggregation in Suitability 

Maps. International Journal of Intelligent Systems 26(10), 971–1001 (2011) 
7. Dujmović, J.J.: Andness and Orness as a Mean of Overall Importance. In: Proceedings of 

the IEEE World Congress on Computational Intelligence,-Brisbane, Brisbane, Australia, 
June 10-15, pp. 83–88 (2012) 

8. Dujmović, J.: The Problem of Missing Data in LSP Aggregation. In: Greco, S., Bouchon-
Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R., et al. (eds.) IPMU 2012, 
Part III. CCIS, vol. 299, pp. 336–346. Springer, Heidelberg (2012) 

9. Gini, C., Barbensi, G., Galvani, L., Gatti, S., Pizzetti, E.: Le Medie. Unione Tipografico-
Editrice Torinese, Torino (1958) 

10. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge  
Univ. Press (2009) 

11. National Association of Realtors, NAR Fact Sheet (2013),  
http://www.realtor.org/for-the-media/nar-fact-sheet 

12. Torra, V., Narukawa, Y.: Modeling Decisions. Springer (2007) 
13. Trulia (2013), http://www.trulia.com/ 
14. Wikipedia, Multiple listing service (2013),  

http://en.wikipedia.org/wiki/Multiple_Listing_Service 
15. Yokoohji, R.: LSP Suitability Maps for the Quality of Urban Locations. MS thesis. San 

Francisco State University, Department of Computer Science, Culminating Experience 
Report SFSU-CS-CE-12.09 (2012) 

16. Zillow (2013), http://www.zillow.com/ 
 
 



Constraints Preserving Genetic Algorithm for

Learning Fuzzy Measures with an Application to
Ontology Matching

Mohammad Al Boni1, Derek T. Anderson2, and Roger L. King1

1 Center for Advanced Vehicular Systems
Mississippi State University, MS 39762 USA

mma201@msstate.edu, rking@cavs.msstate.edu
2 Electrical and Computer Engineering Department

Mississippi State University, MS 39762 USA
anderson@ece.msstate.edu

Abstract. Both the fuzzy measure and integral have been widely stud-
ied for multi-source information fusion. A number of researchers have
proposed optimization techniques to learn a fuzzy measure from train-
ing data. In part, this task is difficult as the fuzzy measure can have
a large number of free parameters (2N − 2 for N sources) and it has
many (monotonicity) constraints. In this paper, a new genetic algorithm
approach to constraint preserving optimization of the fuzzy measure is
present for the task of learning and fusing different ontology matching
results. Preliminary results are presented to show the stability of the
leaning algorithm and its effectiveness compared to existing approaches.

Keywords: Fuzzy measure, fuzzy integral, genetic algorithm, ontology
matching.

1 Introduction

The fuzzy integral (FI), introduced by Sugeno [14], is a powerful tool for data
fusion and aggregation. The FI is defined with respect to a fuzzy measure (FM).
The FM encodes the worth of different subsets of sources. Successful uses of the
FI include, to name a few, multi-criteria decision making [6], image processing
[15], or even in robotics [12].

It is well-known that different FMs lead the FI, specially the Choquet FI, to
behave like various operators (max, min, mean, etc.) [15]. In some applications,
we can define the FM manually. However, in other settings, it may only be pos-
sible to define the densities (the measures on just the singletons) and a measure
building technique is used e.g., a S-Decomposable measure such as the Sugeno
λ-fuzzy measure. It is also very difficult, if possible at all, to specify a FM for
relatively small N (number of inputs), as the lattice already has 2N − 2 free pa-
rameters! (e.g., for N = 10 inputs, 210 − 2 = 1022 free parameters). Also, input
sources can be of different nature. For example, we may fuse values from sensors
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with algorithms outcomes. In such problems, it is hard to determine the impor-
tance of each input data source. Thus, many data-driven learning methods are
used to learn the measure. One method is to use a quadratic program (QP) to
learn the measure based on a given data set [6]. Although the QP is an effective
approach to build the measure using a data set, its complexity is relatively high
and it does not scale well [10]. Other optimization techniques have been used to
reduce the complexity and improve performance, e.g., genetic algorithms (GA)
[2]. The goal of this article is to design and implement a GA to learn the full FM
from ontology similarities. The main contribution of this article includes: the
investigation of new constraint preserving operators (crossover and mutation) in
a GA that overcome drawbacks of prior work. The application of this theory is
to learn a FM to fuse multiple similarity techniques in the context of ontology
matching.

2 Related Work in Ontologies

A number of works have been put forth in the literature regarding combining
several ontology matching techniques. In [18], Wang et al. used Dempster Shafer
theory (DST) to combine results obtained from different ontology matcher. Each
result is treated as a mass function and combined using the Dempster’s Com-
bination Rule. It is not clear that DST is the correct fit because in DST one
typically only has access to a limited amount of evidence in different focal sets.
However, the authors appear to have access to all information in the form of on-
tology term matching matrices. Other papers, such as [9,17], have used a GA to
learn the weight of each matching algorithm for an operator like a weighted sum.
Herein, an improved set of constraint preserving GA operators are put forth and
more powerful non-linear aggregation operator, the FI, is investigated.

3 Fuzzy Integral and Fuzzy Measure

For a set of N input sources, X = {x1, x2, ..., xN}, the discrete FI is:∫
s

h ◦ g =

N∨
i=1

(
h(xπ(i)

) ∧G(xπ(i)
)
)
, (1)

where h is the partial support function, h : X → [0, 1], h(xπ(i)
) is the evidence

provided by source π(i), π is a re-permutation function such that h(xπ(1)
) ≥

h(xπ(2)
) ≥ ... ≥ h(xπ(N)

). The value G(xπ(i)
) = g({xπ(1)

, xπ(2)
, ..., xπ(i)

}) is

the measure of a set of information sources. Note,
∫
s
h ◦ g is bounded between[

N∧
i=1

h(xi),
N∨
i=1

h(xi)

]
and it can be explained in words as “the best pessimistic

agreement”.
The FM can be discussed in terms of its underlying lattice. A lattice is induced

by the monotonicity constraints over the set 2N . Each node or vertex in the
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lattice is the measure for a particular subset of sources, e.g., g({x1, x3}). Figure
1a is an illustration of the FM for N = 3. Formally, a FM, g, is a set-valued
function g : 2X → [0, 1], where g(∅) = 0, g(X) = 1, and for A,B ⊆ X , such that
A ⊆ B, g(A) ≤ g(B) (the monotonicity constraint).

(a) Lattice view of a FM.
(b) Interval view of a monotonicity con-
straint.

Fig. 1. (a) FM lattice for N = 3 and (b) possible values for g({x1, x3}) for a given
g({x1}) and g({x3})

4 Preserving FM Constraints in a Genetic Algorithm

Many previous attempts exist to address constraint satisfaction in a GA. Typ-
ically, a penalty function is used to reduce the fitness of solutions that violate
constraints [11]. However, even if infeasible solutions are close to an ideal mini-
mum, it is not clear why or how to really balance the cost function to eventually
help it converge to a quality valid solution. In the FM, we have an exponentially
increasing number of constraints in N . It is a highly constrained problem. It is
not likely that we will end up obtaining a valid FM for such a heavy constrained
problem (or that one such infeasible solution could simply be made a quality
feasible solution at the end). Therefore, penalty function strategy becomes very
risky to use and will restrain the search space. Many researchers avoid dealing
with the FM constraints by designing a GA that learn only the densities. Then,
the rest of the lattice is populated using a measure deriving technique such as
the Sugeno λ-fuzzy measure. However, a better solution is to design a more intel-
ligent set of GA operators for the constraints in a FM so we can efficiently search
just the valid FM space and operate on valid FMs. Since all chromosomes in a
population are always valid (started and remained valid by using our crossover
and mutation operators), we did not have to modify the selection process. Only
crossover and mutation need be defined to preserve the monotonicity constraints.
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4.1 Constraint Preserving Crossover for the FM

In this subsection, a new GA crossover operation is described that preserves the
monotonicity property of the FM. First, g(∅) and g(X) need not be considered
as they are 0 and 1 by definition. It is the remaining 2N − 2 lattice elements
that we are concerned with. In order to ensure a valid FM after crossover, we
decompose the FM into a set of interval relations that present the allowable
bounds for crossover. For example, consider a set {x1, x3} of sources, {x1} and
{x3}, such that g({x1}) = a, g({x3}) = b and g({x1, x3}) = c. We know from
the FM that max(a, b) ≤ c. Figure 1b illustrates the valid interval ranges that
a, b and c can posses in order to remain a valid (credible) FM.

Definition 1 (Intersected and non-inclusive intervals). Let d = [d1, d2],
e = [e1, e2] be two intervals such that d ∩ e �= ∅. Let d be the smaller of the
two intervals, i.e., d2 − d1 < e2 − e1. If d1 ≤ e1 or d2 ≥ e2 then we call d and e
intersected and non-inclusive intervals.

Note, this property is needed herein in order to identify candidate chromo-
somes to perform crossover on.

Definition 2 (Random density crossover). Let g1 and g2 be two FMs. Let
↔ denote the random selection and swapping of one density from g1, b1 = g1(xi),
and g2, b2 = g2(xj), where i,j are random numbers in {1, 2, .., N}.

Note, by itself, ↔ does not guarantee a valid FM.

Definition 3 (Repair operator for ↔). Let ⇔ (explained in Prop 1) de-
note an operation to repair a violation of the monotonicity constraint caused by
↔.

Even though we discuss crossover of densities (↔), ⇔ has the result that it
impacts multiple layers in the FM. As such, while we only cross two densities,
we are in fact changing many values in a FM. It is important to note that our
⇔ makes use of existing values in the FM to repair any violations in the other
FM. This means no “new” information is injected, rather the values in two FMs
are swapped (in the classical theme of crossover).

Proposition 1: Let g1 and g2 be two FMs withN input sources and let the mea-
sure on the densities {{x1}, {x2}, ..., {xN}} be {g11 , g21, ..., gN1 } and {g12, g22 , ..., gN2 }
respectively. Furthermore, let each measure be sorted individually such that

g
π1(1)
1 ≤ g

π1(2)
1 ≤ ... ≤ g

π1(N)
1 and g

π2(1)
2 ≤ g

π2(2)
2 ≤ ... ≤ g

π2(N)
2 where π1,π2 are

re-permutation functions. Furthermore, we make the assumption that each cor-
responding sorted sub-interval is intersected and non-inclusive between g1 and
g2 (Def.1). Then, all admissible ↔ (Def.2), followed by ⇔ (Def.3), operations
are guaranteed to not violate the FM monotonicity property.

Proof: This proposition is proved by considering all possible enumerable cases.
First, we divide the problem into identical sub-problems, and we prove the
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Fig. 2. Two FMs with possible range conditions for swapping values across measures

proposition for the case of one interval pair. Next, this single case is extended
to the case of multiple corresponding interval pairs.

First, g1 and g2 are individually sorted. Then, the intervals [g
π1(1)
1 , g

π1(N)
1 ] and

[g
π2(1)
2 , g

π2(N)
2 ] are divide into sub-intervals, each with two sources i.e., {[gπ1(1)

1 ,

g
π1(2)
1 ],[g

π1(2)
1 , g

π1(3)
1 ], ..., [g

π1(N−1)
1 , g

π1(N)
1 ]} and {[gπ1(1)

2 , g
π1(2)
2 ],[g

π1(2)
2 , g

π1(3)
2 ],

..., [g
π1(N−1)
2 , g

π1(N)
2 ]}. Next, we look at the case of a single corresponding interval

pair between g1 and g2. Let a1 = g
π1(1)
1 , b1 = g

π1(2)
1 , a2 = g

π2(1)
2 and b2 = g

π2(2)
2 .

Since [a1, b1], [a2, b2] are intersected and non-inclusive intervals (Def.1), then we
have two cases (see Figure 2):

a2 ≤ a1 ≤ b2 ≤ b1 (2)

a1 ≤ a2 ≤ b1 ≤ b2 (3)

For case 2, there are four admissible crossover operations:
(1) a1 ↔ a2: no need to swap c1 and c2 and the new intervals are [a2, b1], [b1, c1]
and [a1, b2], [b2, c2].
(2) a1 ↔ b2: Since b2 ≤ b1, the new intervals are [b2, b1], [b1, c1] and [a2, a1],
[a1, c2]. No need to swap c1 and c2.
(3) b1 ↔ a2: Swap c1 ⇔ c2. The new intervals are [a2, a1], [a1, c2] and [b2, b1],
[b1, c1].
(4) b1 ↔ b2: Swap c1 ⇔ c2. The new intervals are [a1, b2], [b2, c2] and [a2, b1],
[b1, c1].
Case 3 is proved the same way i.e., perform↔ then check the resulted intervals
and apply ⇔ when required. Because ↔ is applied on one density in each FM,
the proof of the first sub-interval case is easily generalized to the other cases.
Since Def.1 holds, we randomly select one density in g1 to be swapped with a
different randomly swapped density in g2. Then,⇔ is iteratively repeated up the
lattice to fix all violations resulting from the ↔ operator. At each layer in the
lattice, which means for all measure values on sets of equal cardinality, intervals
are compared and ⇔ is applied when required.
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4.2 Constraints Preserving Mutation

In mutation, a random value in the lattice will be changed. In order not to violate
the monotonicity constraint, the new value of a randomly selected node, should
be greater than or equal the maximum measure of the nodes coming into it and
less than or equal the minimum measure of those it goes into at the next layer.
This is the only required modification to the traditional mutation by restricting
the new value between a minimum and maximum thresholds.

5 Application: Ontology Matching with the Fuzzy
Integral

Ontologies are used in different knowledge engineering fields, for example the
semantic web. Because it is widely used, many redundant ontologies have been
created and many ontologies may fully, or partially, overlap. Matching these
redundant and heterogeneous ontologies is an on-going research topic. A good
survey is presented in [1]. However, the no-free-lunch theorem was proven, i.e., no
algorithm can give the optimal ontology matching among all knowledge domains,
due to the complexity of the problem [1]. In this section, we implement an
algorithm to combine results from different similarity matching techniques using
the FI. So is the claim, if we cannot outright solve it, then aggregate multiple
methods to help improve the robustness of our approach.

Ontology matching is a process, applied on two ontologies, that tries to find,
for each term within one ontology (the source), the best matched term in the sec-
ond ontology (the destination). This problem can be approached using several
mechanisms based on: string normalization, string similarity, data-type com-
parison, linguistic methods, inheritance analysis, data analysis, graph-mapping,
statistical analysis, and taxonomy analysis [9]. In this paper, we fused results
from existing matchers: FOAM ([4]), FALCON ([7]) and SMOA ([13]).

5.1 Genetic Algorithm Implementation

Encoding: Each chromosome is a vector of [0,1]-valued numbers that map
lexographically to a FM e.g., (g1, g2, ..., gN , g1,2, ..., g1,...,N−1). The length of a
chromosome is 2N − 2 (where there are N similarity matching algorithms).
Fitness Function: Semantic precision and recall are widely used to evaluate
the performance of ontology matching algorithms [5].They are an information
retrieval metrics [16] that have been used for ontology matching evaluation since
2002 [3]. Fmeasure is a compound metric that can reflect both precision and
recall, and it is given by the formula:

Fmeasure =
2 ∗ precision ∗ recall
precision+ recall

, (4)

where precision is given by:

precision =
|A ∩R|

A
, (5)
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and recall is given by:

recall =
|A ∩R|

R
, (6)

R is the reference ontology and A is the alignment resulted from the match-
ing technique. First, the most fitted chromosome (FM) is used with the FI to
calculate A. Then, A is used in computing precision and recall. Lastly, Fmea-
sure is obtained from the resulted precision and recall. The goal of our GA is to
maximize the Fmeasure. We linearly scaled the plot (Fig 3) to aid visual display.

Crossover: Crossover is performed in two phases. The first phase checks the
intersection property between the parents’ chromosomes so they will result in a
valid offspring. The second phase performs Def.2 and 3.

Selection: We adopted traditional roulette wheel selection.

Stop Condition: A maximum number of iterations is used as the stopping
condition.

5.2 Experimental Results and Evaluation

Several tests were conducted on the I3CON [8] data set. We compared the per-
formance of our tool with existing tools using the precision, recall and Fmeausre
(see figures 5a, 5b, 5c). Although our approach gives lower precision than FOAM,
FALCON and SMOA individually, it gives a better Fmeasure. This occurs be-
cause we combine several results which reduces precision but increases recall
considerably. Our tool provides a precision of 1 if and only if the precision of all
combined sources is 1. Also, our tool tends to give better results than GOALS.
GOALS uses an OWA operator to combine results from different matchers. We
conducted two experiments on the ”AnimalsA.owl” and ”AnimalsB.owl” using
different OWAs. With an OWA = [0.3, 0.4, 0.3] (OWA = [0.7, 0.2, 0.1] respec-
tively) we get an Fmeasure of 0.8571 (0.875 respectively) while our tool returns
a value of 0.8936. Inconsiderate (underestimated or overestimated) selection of
OWA values dose affect the performance of the system. Since different matchers
give different results on different domains, it is difficult to choose the optimal
selection of OWA that gives the best results. Our system solves this problem by
using the GA to learn the weights. We can learn an OWA if its needed, or any
other aggregation operators, but it does not need to be decided up front.

Also, figures 3a, 3b, 3c, show the convergence of the GA using 10,20, and
30 iterations with crossover rate of 0.1, 0.2 and 0.3. Each graph is the average
fitness value of the population at each iteration. We also report, at each x-
location, the full range bounds (max and min). By comparing the results from
different configurations, we found that a 10% crossover rate with 10 iterations
was enough to achieve the desired results herein. With such configurations, the
GA reached convergence with minimal computational effort. Also, we found that
the range bounds decreases, which reflects convergence over time. Moreover, we
found that all of the plots decrease at some point. This is caused by mutation, in
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which we are exploring a bigger space which may not have a high fitness value. To
determine the performance of the constraint preserving crossover, we conducted
two studies. Study 1 shows the average number of chromosomes that have a

(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a)(b)(c) Analysis of GA behavior and performance for different number of
epochs (10,20,30) and different crossover rates (10%, 20%, 30%.) (d)(e)(f) Average num-
ber of chromosomes with a valid interval property.
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(a) (b)

(c)

Fig. 4. (a)(b)(c) Average number of attempts to find a chromosome with a valid in-
terval property

(a) (b) (c)

Fig. 5. (a)(b)(c) Ontology matching evaluation metrics: precision, recall, Fmeasure

valid interval property (see figures 3d, 3e, 3f). This reflects the applicability of
our crossover model. We notice that the average number of suitable mates tend
to decrease at each iteration. That happens because chromosomes will converge
more at each iteration and will likely violate the interval property. Study 2 is
conducted on the average number of attempts to find a suitable mate to crossover
with (see figures 4a, 4b, 4c). We found that this number tends to increase in
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average at each iteration because fewer chromosomes will have a valid interval
property. Thus, we have less of a chance to find a valid candidate pair and the
number of attempts increases.

6 Conclusion and Future Work

In this paper we propose a new constraint preserving GA for learning FMs.
Specifically, we proposed a new crossover and mutation operation and different
ontology matching algorithms were fused using the FI learned by the GA. We
showed that our framework can give satisfactory results on different study do-
mains. However, a few challenges need to be extended for future work, e.g., we
would like to explore the use of the shapely index to determine the importance of
each matching algorithm. Also, we will study the use of more than two ontologies
to support the matching between ontologies. Also, the decreasing trend of the
average number of matches raises an important question. What if we had to run
the algorithm for a long time, would we reach a starvation (a case in which we
can’t find a valid candidate to crossover with)? If yes, do we need to relax our
constraints? If we could not, could we design a new operator that can insert new
valid candidates to keep the algorithm moving? Passing multiple populations?
Point being, need to revisit the harsh constraints on learning. Likewise, we would
like to explore the use of island GAs on different populations which may help
increase the chance of success and diversity.

Acknowledgments. The first author would like to acknowledge and thank the
Fulbright scholarship program for its financial support of the work performed
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Abstract. One of the important properties of SOM is its topology preservation 
of the input data. The topographic error is one of the techniques proposed to 
measure how well the continuity of the map is preserved. However, this 
topographic error is only applicable to the crisp SOM algorithms and cannot be 
adapted to the fuzzy SOM (FSOM) since FSOM does not assign a unique 
winning neuron to the input patterns. In this paper, we propose a new technique 
to measure the topology preservation of the FSOM algorithms. The new 
measure relies on the distribution of the membership values on the map. A low 
topographic error is achieved when neighboring neurons share similar or same 
membership values to a given input pattern. 

Keywords: Fuzzy self-organizing map, topology preservation, map continuity, 
relational data. 

1 Introduction 

Self-Organizing Maps (SOM) is an unsupervised neural network algorithm. SOM 
tries to map the s-dimensional input patterns to a 2-dimensional lattice, preserve the 
topology of the data, and cluster the neurons that represent similar input patterns, 
which can be visualized using a 2D or 3D map such as the Unified Distance Matrix 
(U-Matrix) [1]. Several formulations and modifications were proposed to the classical 
SOM algorithm, such as the Self-Organizing Semantic Maps [2], Ontological SOM 
[3], Relational Topographic Maps [4], and WEBSOM [5]. Another class of SOMs is 
the fuzzy SOM algorithms. The general idea of FSOM is to integrate fuzzy set theory 
into neural networks to give SOM the capabilities of handling uncertainly in the data.  
FSOM can also be divided into two categories: object FSOM [6–10] where input 
patterns are represented as feature vectors and the relational FSOM [11] which 
handles relational data. 

Regardless of the type of SOM algorithm they all share one important feature that 
is topology preservation. Topology preservation means that neighboring data points in 
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the input space are mapped to nearby neurons in the output space. Once a good 
mapping is established, SOM can represent the high dimensional input space in a 2-
dimensional output map that preserves the topology of the input data. This in turn 
yields better visualization and reveals more information about the structure and the 
clusters presented in high dimensional input space. To ensure that SOM has 
established good mapping, we need to measure or quantify the goodness of SOM. 
Different measures are proposed to accomplish this goal, such as the quantization 
error and the topographic error. Those errors are widely used in SOM and while the 
quantization error was adapted for the object and relational FSOM [11], no 
formulation is yet proposed to measure the topological preservation or continuity of 
the map in the FSOM algorithms. 

The topographic errors used in SOM are not directly applicable to FSOM due to 
the fact that FSOM does not assign a unique winning neuron for every object, instead 
every neuron is a winning a neuron of every object with a varying degree of 
membership. Therefore, in this work, we propose a technique to measure the 
topographic error in FSOM algorithms. 

The reminder of the paper is organized as follows: Section 2 gives an overview of 
the fuzzy relational SOM. Section 3 discusses some of the well-known methods to 
measure the goodness of SOM. Section 4 explains a new approach to measure the 
topographic error in FSOM. Section 5 presents experimental results and we conclude 
this paper with remarks and discussion in Section 6. 

2 Fuzzy Relational Self-Organizing Maps 

In this section we give a very brief overview of the fuzzy relational SOM algorithm 
(FRSOM) [11] on which the experimental results discussed in section 5 are based on. 
However, the same technique for evaluating the topology preservation can be used on 
object FSOM or any FSOM algorithm. For a complete analysis of FRSOM the reader 
is referred to [11]. 

Given  input objects  , … ,  described by feature vectors  , … ,   or by a relational matrix   [4,11] SOM 

constructs a lattice or map of  number of neurons (similar to Fig. 1a), that are 
connected using a neighborhood kernel, , such the neighborhood between neuron  
and  is given by 

   exp 2 , (1) 

where  is the coordinate of the th neuron in the output space (two dimensional 
space) and  is a monotonically decreasing neighborhood size. Every neuron has a 
corresponding s-dimensional weight vector, , … ,  or an n-dimensional 
coefficient vector in the relational algorithm. One of the goals of the classical crisp 
SOM algorithm is to assign every s-dimensional input signal, , a winning or a best-
matching unit (BMU), , according to 
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arg min    1 and 1  . (2)  

 
Effectively, SOM assigns a full membership of  in neuron , 
 1, if0, otherwise . (3)  

An alternative to this approach is to assign a fuzzy membership for all objects in 
every neuron as described in [11]. The FRSOM proposed in [11] produces fuzzy 
partitions  ∈   where 

 

  ∈  ∈ 0,1 ,0, 1,1 1 . (4)  

 
Introducing fuzzy memberships to SOM as in FRSOM adds another layer of 
complexity due to the fact that all neurons are winners of all objects to some degree. 
Thus, any error measurement made in FRSOM has to factor in all membership values 
of all input signals in all neurons. In [11] we showed that the quantization error in 
SOM can be easily adapted to the FRSOM, but this is not the case regarding the 
topographic error. In the next section we will briefly review two of the major SOM 
evaluation techniques followed by a new method to evaluate the topology 
preservation of FRSOM in section 4. 

3 Topology Preservation in SOM 

Several measures are proposed to measure the goodness of the map. Some measures, 
such as the quantization error, evaluate the fitness of SOM to the input data. This 
error calculates the average distance between the input patterns and their 
corresponding winning neurons [12]. Optimal map is expected to produce a smaller 
error, which means the input patterns are close to their winning neurons. Quantization 
error for SOM is shown in (5). 
 ∑  . (5)  
 
Similarly, the FSOM quantization error is defined as [11] 
  ∑ ∑  . (6) 
 
However, the crisp and fuzzy quantization errors in (5) and (6) may not accurately 
measure the topographic preservation of the map. Instead, one can quantify the 
relation between the codebook weight vectors and the associated neurons in the map 
as in the topographic product [12]. This gives a sense on how well the s-dimensional 
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space is mapped to a 2-dimensional lattice [13]. A different approach is to use the 
topographic error. 

The topographic error measures the continuity of the map or how well an input 
signal preserves the local continuity of the map [12]. When the first and second best-
matching units to object  are adjacent in the map space, then  is said to preserve 
local map continuity and if they are not adjacent then there is a topological error. To 
evaluate the overall topology of the map the proportion of input signals for which the 
first and second best-matching units are not adjacent is measured (7) [12]. A lower 
error yields a better map and topology.   
 ∑ , (7)  
where 
 1,         0,                                                                          . 

 
Another matric for measuring topology preservation in crisp SOM is discussed in 
[14]. The metric is said to be topology preserving if for any , if  is the th nearest 
neighbor of  , then  is the th nearest neighbor of . 

The concept of first and second BMUs is not applicable to FSOM since every unit 
 is a BMU of every object  with a degree . A possible workaround is to harden 

the fuzzy partition produced by FSOM to find the BMU then compute the topographic 
error as in (7). Another approach is to consider the two neurons in which  has the 
highest membership as the first and second BMUs. However, neither of these two 
approaches exploits the membership grade of FSOM. Therefore, a new formulation to 
measure the local continuity of the map in FSOM is needed to evaluate its goodness 
and the topology preservation, which is the topic of the next section. 

4 Topology Preservation in FRSOM 

In FRSOM every neuron is a BMU of every object with a varying degree of 
membership. Regardless, both the crisp and fuzzy SOM should preserve the topology. 
Therefore, every pattern presented to FRSOM is also expected to preserve the local 
continuity of the map. One can consider the first and second neuron with the highest 
membership to  as best and second winning neurons,  and . However, this 
flawed strategy uses only two neurons and discards all other neurons despite the fact 
other neurons might have high membership to . Relying on two neurons can only 
give us a false sense of the map continuity. Consider a scenario where the first and 
second neurons with the highest memberships to ,  and  are immediate 
neighbors, but the neuron with the third highest membership to  is distant from  
and . A better approach is to use the membership values and utilize all neurons 
when measuring the topology preservation of FRSOM. More specifically, by looking  
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at the differences of the membership values between the neurons and their immediate 
neighbors we can make a conclusion on how well the local topology of the map is 
preserved. 

For any given object  in FRSOM, we expect neurons with high firing strength to 
 to be concentrated in one region (H region). Also, not all neurons have the same 

firing strength, as we go further away from the H region, the membership values start 
to diminish gradually. If the correct data topology is discovered by FRSOM, the H 
region corresponds to the catchment basin or part of it where  belongs the most. In 
such case, we say that  preserves the local continuity of the map. On the other hand, 
if the neurons of high membership to object  are scattered throughout the map or if 
no H region is identified then the object fails to preserve the topology of the map. For 
demonstration, Fig. 1a shows the topographic map for Hepta dataset [15] and Fig. 1b 
shows the H region for some input pattern. 

In order to assess how well an object  preserves the local continuity of the map 
we first need to compute the HL-matrix. HL-matrix has the same dimensions as the 
topographic map and  neurons. A topology preserving HL-matrix includes two main 
regions, the H region which contains the neurons with high membership to object  and the L region containing the rest of the neurons which have low membership 
values to , as shown in Fig. 1c. Observe that the HL-matrix of  represents a 
snapshot of the U-matrix (Fig. 1a). Adjacent neurons in regions H and L should have 
similar membership values to . Hence, the difference in the membership values 
between a neuron  and its immediate neighbors  should be very small with 
exception to the bordering neurons that separate the H and L regions as shown in Fig. 
1c. For a given object  we first compute its HL-matrix where the value at every 
neuron’s coordinate is computed as follows  
 ∑ ∈  . (8)  
 

 corresponds to the sum of differences between the membership  and the 
memberships of  in . Then that difference is projected on top of the grid 
position of every neuron. This process is performed for every input pattern. For a 
small topographic error the value for every neuron  should be as small as 
possible, which means that the neuron  and its neighbors  have very similar 
memberships to the given input pattern. 

For an object to preserve the local topology it is imperative that we identify a 
single region labeled H. Failure in identifying a single region H will cause the 
topographic error to increase and possibly reaching its maximum value. This 
technique is stricter than the topographic error in (7). Here we want to ensure that two 
adjacent neurons have similar membership to , which is somewhat similar to (7), 
but in addition we would like to ensure that  preserves the local continuity within a 
specific region of the map. 
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(a) (b) (c) 

Fig. 1. (a) FRSOM topographic map of the Hepta dataset, (b) H region for some input pattern 
 and (c) HL-matrix of same input pattern 

 
For more accurate evaluation of the topology preservation it is recommended that 

we normalize the HL-matrix as follows 

∑  . (9) 

Two important reasons for this normalization: first, it sets an upper bound on the 
topographic error, similar to (7) the maximum error is 1. Second, normalization is 
crucial when comparing the topographic errors across different maps. Once the 
normalized HL-matrix is computed, the final topographic error of a single object  
will depend on the neurons identified in the region labeled H. The error is simply the 
sum of values enclosed in the H region of the NHL-matrix (10). As the values in the 
H region get smaller, so does the topographic error. Meaning that adjacent neurons in 
the H region share similar memberships to . 
 ∑ ∈  . (10)  
 
The final topographic error of the map is computed as the average topographic error 
overall the objects as 
 1 . (11)  

 
Few remarks to point out about the proposed measure (11): first, the only way for a 
map to result in a zero topographic error is when the values in the H region are zeros. 
In other word, when neuron ∈  and its neighbors  have an identical 
membership to . Second, an HL–matrix may not contain a unique H region. In this 
situation the topographic error can reach its maximum, which is the sum of all values 
in the NHL-matrix ( 1). 
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5 Experimental Results 

5.1 Fuzzy Topographic Error on O3G 

The overlapping three Gaussian (O3G) dataset contains three clusters of size 500 each 
(Fig. 2a). Clusters in O3G have larger variance which causes overlapping. We setup 
FRSOM with initial , final neighborhood radius , initial fuzzifier , final 
fuzzifier , map dimensions and number of epochs to be 2, 0.5, 1, 2, 15x15 and 10, 
respectively. The resulting topographic map is shown in Fig. 2b. 

From Fig. 2c it is clear that the HL-matrix for some given pattern contains the two 
H and L regions, which is an indication that it preserves the local continuity of the 
map. 

 

 
 

(a) (b)

  

(c) (d)

Fig. 2. (a) O3G dataset, (b) topographic map produced by FRSOM when σ 2,  
(c) HL-matrix for some object  and (d) topographic map produced by FRSOM when σ 4 

 

In a topology preserving map, such as the one in Fig. 1c, the membership  is 
expected gradually increase while approaching the H region and neurons with the 
highest membership should be located within the H region as demonstrated in Fig. 3a. 
On the other hand, a non-topology preserving map as in Fig. 2d we see a more chaotic  
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(a) (b)

Fig. 3. (a) Behavior of membership values of  in a topology preserving map (membership vs. 
neuron index), (b) behavior of the membership in a non-topology preserving map (σ 4) 

membership values among the neurons (Fig. 3b) causing  to increase. It could also 
mean that the four regions or corners in Fig. 2d are wrapped around to form one 
region representing all input patterns, failing to preserve the topology. 

Now, let us compare   and   for the maps in Fig. 1b and Fig. 1d. If we 
compute  for the map in Fig. 2b (Table 1), where the two neurons with the highest 
membership value to an input pattern are used as the first and second BMU, we find it 
higher than the   in Fig. 2d (Table 1). On the contrary,  has increased from 0.32 
in Fig. 1b to 1 in Fig. 1d. In this scenario  reveals more information about 
the goodness of the map resulted from FRSOM since we probably expect Fig. 2b to 
be more topology preserving than Fig. 2d. 
 

Table 1. Behaviour of   and  when varying  

Map    

Fig. 2b 2 0.021 (0.006) 0.32 (0.03) 
Fig. 2d 4 0.004 (0.004) 1 (0) 

5.2 Fuzzy Topographic Error and Map Dimensions 

In this experiment we will use the Two Diamonds dataset from the Fundamental 
Clustering Problem Suite (FCPS), which contains 800 data points [15] as shown in 
Fig. 4a. On this dataset we will show how the map dimensions can have an influence 
on the topographic error. Same parameters used on the O3G dataset will be used for 
the Two Diamonds with exception to the map dimensions which is set it be 20x20. 
The resulting topographic map is shown in Fig. 4b. 

A smaller map of size 10x10 was also produced for the Two Diamonds dataset. It 
is not shown since it is very similar to the map in Fig. 4b. We found the overall 
topological error of the 20x20 map measured to be 0.33. As the map size increases it 
is likely that the H region increases which in some cases causes an increase in the 
membership variance among adjacent neurons. On the contrary, 10x10 map might 
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have lower variance in the memberships among neighboring neurons in the H region 
and hence a lower topographic error (overall topographic error is 0.28). Overall, as 
the map size increased the topographic error increased (Fig. 3c). Therefore, it is 
important to choose a map size suitable for the dataset. 

 

 
 

(a) (b) (c) 
   

Fig. 4. (a) Two diamonds dataset, (b) topographic map produced by FRSOM and (c) map size 
vs.  for 5x5, 7x7, 10x10, 15z15, 20x20, 25x25, 30x30, 35x35, 40x40 map dimensions as 
shown along the x-axis 

6 Conclusion 

In this paper we presented preliminary results for measuring the topology preservation 
in fuzzy self-organizing maps. The newly proposed topographic error relies on the 
membership distribution on the map and in some sense is an extension to the crisp 
topographic error. The assumption is that adjacent neurons should have similar 
memberships to a given object . In addition, we presented the HL-matrix. A 
topology preservation HL-matrix for a given  contains two regions, the H region 
that encompasses the neurons with high membership to  and the L region which 
contains the low membership neurons to . In the results different scenarios were 
presented to demonstrate how the topographic error behaves when varying the map 
dimensions. We observed that the topographic error in FSOM tends to be higher than 
the standard topographic error used in SOM.  

One drawback of the proposed measure is its dependence on the map dimensions. 
For instance, as the map dimensions or size increases so does the topographic error. 
To overcome this problem, one is expected to specify a map dimension that is suitable 
to the input dataset. The dependency of the topographic error on the SOM parameters 
is not necessarily a bad thing. On the contrary, a high topographic error is an 
indication that the map is not optimal and the parameters require tuning. However, 
additional experiments are needed to study the influence of other parameters such as 
the neighborhood size and the fuzzifier, in addition to the map dimensions, on the 
proposed topographic error. 

Furthermore, a more theoretical approach for determining the H region is needed; 
contrary to the current approach of thresholding the membership values and 
employing image segmentation to determine the H and L regions. 
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Abstract. The paper presents the design of type-2 fuzzy controllers
using the fuzzy Lyapunov synthesis approach in order to systematically
generate the rule base. To construct the rule base, the error signal and
the derivative of the error signal are considered. It also presents the per-
formance analysis to determine the value of the separation interval ξ
between the upper and lower membership functions of the type-2 fuzzy
set used. The controllers are implemented via simulation to solve tra-
jectory tracking problem for angular position and angular velocity of a
servo trainer equipment. Simulation results are successful for both cases
and shown better performance than those of classical controllers.

1 Introduction

The fuzzy sets were introduced by L. A. Zadeh in the mid-sixties in order to pro-
cess data affected by non-probabilistic uncertainty [1]. The type-1 fuzzy systems
can handle the linguistic variables and experts reasoning and also reproduce the
knowledge of systems to control, however, it can not handle uncertainties such
as dispersions in linguistic distortion measurements and expert knowledge [2].
On the other hand, type-2 fuzzy systems can handle such kinds of uncertain-
ties and also have the ability to model complex nonlinear systems. In addition,
controllers designed using type-2 fuzzy systems achieve better performance than
those of type-1. The type-2 fuzzy sets were also originally proposed by Zadeh in
1975 [3].

In [4] a fuzzy logic type-2 based controller using genetic algorithms is per-
formed to control the shaft speed of a DC motor. Genetic algorithms are used
to optimize triangular and trapezoidal membership functions. The controller is
implemented in a FPGA and its performance is compared with fuzzy logic type-1
and PID controllers.

A type-2 fuzzy controller (T2FC) is designed for an automatic guided vehicle
for wall-following in [5]. In this case, T2FC has more robustness to sensor noise
and better guidance performance than one of type-1. Another application of
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T2FC to mobile robots is presented in [6]. Trajectory tracking is applied first at
simulation level and then on a Digital Signal Controller (DSC) of a experimental
platform. The reported results show that performance of type-1 controller is poor
comparing to type-2 controller.

Some applications of type-2 fuzzy controller in real-time can be also found
in literature. For example, the classical inverted pendulum and the magnetic
levitation system which are both highly non-linear. In [7], a low-cost microcon-
troller is used to validate the performance of T2FC for the inverted pendulum.
For magnetic levitation system, [8] compared performance of type-1 and type-2
fuzzy controllers and a PID controller. Given that the system is unstable and
non-linear, T2FC is showed better performance. Finally, position and velocity
type-1 controller are designed in [9]. In this case, stability of both controllers are
assured by means of Fuzzy Lyapunov Approach [10]. Results are presented in
real time and are compared with classic controllers.

The paper is organized as follows. In section 2 we describe the servo trainer
equipment. Then, section 3 presents the control design methodology using the
fuzzy Lyapunov approach. Simulation results are presented in section 4. Finally,
concluding remarks are presented in section 5.

2 Servo Trainer Equipment

The equipment used as plant to control in this paper is the CE110 Servo Trainer
from TQ Education and Training Ltd [11]. This apparatus is used to help in
teaching linear control theory and to implement validate some control algorithms
(classical and non classical) in real-time. The equipment have a variable load
which is set using a current direct generator, by changes of different inertial
load and using the engage a gearbox or by set all of them together. Besides, the
apparatus have three modules to introduce some typical nonlinearities.

The mathematical model of servotrainer is set by equations [9]:

ẋ1 = x2

ẋ2 = − 1
T x2 +

G1G2

T u
(1)

where x1 = θ and x2 = ω are the angular position and angular velocity, respec-
tively. The gains G1 and G2 are defined by G1 = kikω and G2 = kθ/30kω where
ki = 3.229 (rev/sec-Volts) is the motor constant, kω = 0.3 (Volts/(rev/sec)) is
the velocity sensor constant and kω = 20 (Volts/rev) is the angle sensor con-
stant. The time constant T change according to size of load: T = 1.5 (sec) for
small load (one inertial disc); T = 1 (sec) for medium load (two inertial discs);
T = 0.5 (sec) for large load (three inertial discs).

3 Controller Design

3.1 Fuzzy Lyapunov Approach

The goal is to design a control law u such that the velocity and position of servo
trainer follows a reference signal yref . One way of achieving this goal is to choose
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a Lyapunov function candidate V (x). Then, this Lyapunov function must meet
the following requirements [10]:

V (0) = 0 , (2)

V (x) > 0, x ∈ N\{0}, (3)

V̇ (x) =

n∑
i=1

∂V

∂xi
ẋi < 0, x ∈ N\{0}. (4)

where N\{0} ∈ Rn is some neighborhood of {0} excluding the origin {0} itself,
and ẋi (i = 1, 2, . . . , n). If {0} is an equilibrium point of (1) and such V (x) exist,
then {0} is locally asymptotically stable.

The conditions (2) and (3) are satisfied by taking such Lyapunov function
candidate V = 1

2

(
e2 + ė2

)
where e is the tracking error. Differentiating V we

have V̇ = eė+ ėë. Substituting w = ë, is required then:

V̇ = eė+ ėw < 0 (5)

Analyzing the equation (5), we can establish four basic fuzzy rules for w such
that conditions (4) is satisfied:

– IF e is positive AND ė is positive THEN w is negative big
– IF e is negative AND ė is negative THEN w is positive big
– IF e is positive AND ė is negative THEN w is zero
– IF e is negative AND ė is positive THEN w is zero

3.2 Type-2 Fuzzy Systems

A fuzzy type-2 system denoted by ≈A, is characterized by a membership function
type-2 μ≈A = (x, u) , where x ∈ X , u ∈ Ju

x ⊆ [0, 1] and 0 < μ≈A = (x, u) < 1.
It is defined as follows [12]

≈A = {(x, μA(x) | x ∈ X)} =
[∫

x∈X

[∫
u∈Ju

x⊆[0,1]

fx(u)/u

]
/x

]
(6)

If fx(u) = 1, ∀u ∈ [Ju
x, J

u

x] ⊆ [0, 1], membership function type-2 μ≈A is ex-
pressed by a lower membership function type-1 Ju

x = μ
A
(x) and upper member-

ship function type-1 J
u

x = μA(x). Then, μ≈A is called an fuzzy type-2 interval,
denoted by equation (7)

≈A =

[∫
x∈X

[∫
u∈[μ

A
(x),μA(x)]⊆[0,1]

1/u

]
/x

]
(7)

If ≈A is a fuzzy type-2 singleton, then the membership function is defined by
equation (8)

μ≈A(x) =

{
1/1, if x = x

′

1/0, ifx �= x
′ (8)
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Fig. 1. (a) Control scheme; (b) Components of a type-2 fuzzy system

The type-2 fuzzy systems consist of a fuzzyfier which converts a value from real
world into a fuzzy value, a fuzzy inference engine that applies a fuzzy reasoning to
obtain a fuzzy output, an output processor comprising a reducer that transforms
a fuzzy set type-2 into a fuzzy set type-1 and defuzzyfier which converts a fuzzy
value into a precise value (see Fig. 1a).

As mentioned above, membership functions in type-2 fuzzy systems are char-
acterized by having two membership functions of type-1; an upper and a lower
membership function. The interval ξ between these two functions can be varied
in order to obtain optimal performance. Figure 2a shows such type-2 membership
function.

In this paper we have used the Matlab Toolbox developed and described in
[12] to implement the type-2 fuzzy system in order to generate values of w.
Figures 2b-c shows fuzzy sets for error e, for the derivative of error ė and for
variable w, respectively.

Fig. 2. Type-2 fuzzy sets: (a) Definition of type-2 fuzzy set; (b) Fuzzy set for e; (c)
Fuzzy set for ė; (d) Fuzzy set for w
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3.3 Mamdani Velocity Controller

The goal is to design a control signal u such that the angular velocity x2 follows
a desired reference signal yω. That is eω → 0 as t → ∞ where eω = x2 − yω.
According to (5), ëω is related to w by ëω = w = ẍ2− ÿω and taking into account
equation (1), the expression for w is wω = − 1

T ẋ2 +
G1G2

T u̇− ÿω. Finally, solving
this equation for control signal u we obtain:

u =
T

G1G2

∫ (
1

T
ẋ2 + wω + ÿω

)
dt. (9)

3.4 Mamdani Position Controller

The goal is to design a control signal u such that the angular position x1 follows
a desired reference signal yθ. That is, eθ → 0 as t → ∞ where eθ = x1 − yθ. In
this case, ëθ is related to w by ëθ = w = ẍ1 − ÿθ. From equation (1), we have
that ẍ1 = ẋ2 and the expression for w is w = − 1

T x2 +
G1G2

T u − ÿθ. Then, the
control signal u for position tracking is

u =
T

G1G2
(wθ + ÿθ) +

1

G1G2
x2 (10)

4 Simulation Results

In this section the integral of the absolute value of the error (IAE ) and the inte-
gral square error (ISE ) are used as performance criteria of proposed controllers.

4.1 Velocity Controller

The reference signal that is used is a sinusoidal yω = 1000 sin0.4t RPM and
small load conditions are considered. Ten values of parameter ξ for type-2 fuzzy
membership functions vary from 0 to 1 with increments of 0.1. The Table 1
present the ten values obtained for each performance criteria. These results are
compared with classic PI controller uPI = kpe + ki

∫
edt with kp = 0.9 and

ki = 2.4 [11].

Table 1. Performance for different values of separation ξ

ξ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IAE 1.2840 3.6240 5.275 6.597 8.374 7.894 10.38 10.16 12.15 12.92

ISE 0.1022 0.6108 1.271 2.013 3.266 3.204 5.267 5.711 7.904 9.217

Figure 3(Left) shows the trajectory tracking of T2FC designed. Reference
signal is well tracked by both controllers. However, PI controller is lagged and
its tracking error holds about ±100 RPM while tracking error obtained with
T2FC is bounded by ±20 RPM and its maximum value is 60 RPM. Is worth
mentioning that both control signal is not saturated (see graph on the Up-Right
of Fig. 3). In Table 2 the performance of both controller is evaluated by error
criterions mentioned above .
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4.2 Position Controller

The same loading conditions were considered in the position tracking and the
reference signal is the sine signal yθ = 108 sin0.3t degrees is used. Again, pa-
rameter ξ for type-2 fuzzy sets is set to 0.1. Performance of our controller is
compared to those of a classical controller with a proportional controller for x1

(kp = 10) combined with a velocity feedback loop gain with kv = 0.01 [11].
In Figure 4(Left) we can observe the trajectory tracking. Both controllers

have acceptable performance in tracking the velocity trajectory. But looking the
tracking errors (Up-Right side of Fig. 4) we can observe that at the beginning
of the simulation the classical controller oscillate during four seconds whereas
the T2FC error converges quickly and smoothly to steady state error value. We
can also observe that the signal control from T2FC still bounded and it has not
oscillations.

Finally, the Table 2 shows the performance in terms of IAE and ISE error cri-
terions. In both tracking applications, our type-2 fuzzy controllers had proved a
good performance of the proposed approach and surpass performance of classical
controllers.
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Fig. 3. Velocity Tracking: yω (blue line), T2FC (solid line), PI controller (dashed line).
Left: Trajectory tracking; Up-Right: error signal; Down-Right: control signal
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Fig. 4. Position Tracking yθ (blue line), T2FC (solid line), classical controller (dashed
line). Left: Trajectory tracking; Up-Right: error signal; Down-Righ: control signal

Table 2. Performance of trajectory tracking

Controller IAE ISE

Type-2 (ξ = 0.1) 1.025 0.065
Position Tracking

PI (kp = 10, ki = 0.01) 1.409 0.111

Type-2 (ξ = 0.1) 1.284 0.1022
Velocity Tracking

PI (kp = 0.9, kv = 2.4) 6.177 1.871

5 Conclusions

In this paper we have design two type-2 fuzzy controllers using the fuzzy
Lyapunov synthesis approach in order to systematically generate the rule base.
Controllers are designed to solve the position and velocity trajectory tracking
problems in a servo trainer system. To tuning the type-2 fuzzy controllers, the
separation between upper and lower membership functions is commanded by pa-
rameter ξ in steps of 0.1 units. For both controllers, the best tuning was obtained
with ξ = 0.1.

The performance of our proposed controllers are compared to classical con-
trollers under same simulations conditions for the servo trainer. The IAE and
ISE are used as performance criterions. Simulation results had proved good
performances of our proposed approach in position and velocity tracking appli-
cations and surpass performances of classical controllers.
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Actual research is conducted to test our controllers in medium and full load
conditions and also to include nonlinearities that are already available in the
servo trainer equipment. In order to demostrate the effectiveness of our approach,
authors are motivated to compare performances of type-2 fuzzy controller with
performance of type-1 fuzzy controller.
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Abstract. In this work it is presented the design of a decentralized
adaptive fuzzy control. In this scheme it is suppose a system with un-
known parameters and on-line fuzzy identifier, which uses an adaptive
law to adjust the unknown parameters in order to build a model of an
assumed unknown nonlinear system. The applicability of the proposed
approach is illustrated via simulations by trajectory tracking control of
a two degrees-of-freedom robot manipulator.

1 Introduction

Robotics and mechatronics represent strategic areas for every country with as-
pirations to modernity. The scientific development has been growing not only
in the amount of products coming to market every day, it also has increased
in complexity, this gives its place to the development of new intelligent control
techniques because in some cases, classic control theory is not enough to get ad-
equate results in the control of these devices, or simply Intelligent control solves
the problem in a better manner.

Fuzzy control is a technique developed based on fuzzy logic and linguistic
statements generated from the experience of the system operator to be controlled
and not necessarily requires of a mathematical model.

Moreover, adaptive control consist in a control with adjustable parameters and
a mechanism for its adjustment on-line [2]. This technique can be combined with
fuzzy control obtaining a better performance because the control adjustment is
done during the execution of the process and responds to its variations, it also
requires less knowledge about the process since the adaptive mechanism could
help to find the appropriate fuzzy sets or the fine adjustment automatically, in
other words, it helps to learn the plant dynamics.

Fuzzy adaptive control is based on the input-output feedback linearization
technique, which is often used in fuzzy systems with adaptive parameters either
as a function approximator or in order to compute the control law with minimum
knowledge of the plant.
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Finally, there is another technique known as decentralized control which main
feature is that once identified the stages of the process, we design n controllers
corresponding to each stage; making this, we give robustness to the process
because the responsibility is not only for one single controller but is distributed
in each one of them. Another advantage is the flexibility on the system because
if we need to increase or decrease the number of process or degrees-of-freedom
of the system, we only need to add a proportional number of stages of control
without affecting the stages already working at the time.

Trajectory tracking is a very common problem for the control engineers not
only in industry but also in educational institutions, several methods have been
developed through the years but in this section only some examples with the
adaptive fuzzy method will be mentioned: in [3] it is designed a centralized
adaptive fuzzy controller for trajectory tracking and its performance is tested in
a two degrees-of-freedom robot manipulator in simulation; the main objective in
the mentioned work is to prove the adaptive part of the controller by changing
parameters during the operation of the plant simulating the possible variations
in a real robot. Another contribution in this field is shown in [4], where the
controller designed in [3] is implemented in a real robot manipulator and the
testing is done in real-time obtaining favorable results in trajectory tracking.
In [5] it is combined the adaptive fuzzy control with neural networks and other
techniques, for designing a decentralized adaptive fuzzy applied to a 2DOF robot
manipulator, the main difference between the 2 works mentioned before is an
identification block with a neural network to learn on-line the dynamics for the
plant.

In the first section of this work, it is presented an introduction of decentralized
adaptive fuzzy control and the reasons why it is interesting its study. In the
second section is described a type of decentralized system which is applied in
the testing of the controller designed. In section 3, the mathematical sustenance
for the decentralized adaptive fuzzy control is presented. In section 4 this control
is applied to a two DOF robot manipulator and the results in trajectory tracking
are presented in section 5.

2 Decentralized Systems

Let consider a large-scale system which is constituted of nonlinear subsystems in
the nonlinear block-controllable (NBC) form with disturbance term consisting
of r blocks [6]:
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where q=3,...,r=1

ẋr
i = fir(xi) +Bir(xi)ui + Γirk(x̄i) (2)

where xi = [x1T
i x2T

i . . . xrT
i ]T , xq

i ∈ Rniqx1, x̄ is the state vector of the k-th
subsystem (i = 1, . . .N, 1 ≤ k ≤ N, k �= i) and the rank of Biq = niq, ∀xq

i ∈
Dxq

i
⊂ Rniq . The interconnection terms

Γi1k =
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k=1,k �=i

γi1k(x̄
1
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N∑

k=1,k �=i
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1
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q
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γirk(x̄)

(3)

reflect the interaction between the i-th and k-th subsystem; they are bounded by
nonlinear functions γirk and enter the system as no matching condition distur-
bances, fir and Bir are smooth and bounded functions, fir(0) = 0 and Bi(0) = 0.
The integers ni1 ≤ ni2 ≤ ... ≤ nir define the different subsystem structures, and∑r

q=1 niq = ni.

3 Design of the Decentralized Adaptive Fuzzy Control

An indirect adaptive fuzzy controller consists in an input-output linearization
scheme which starts by finding a direct relation between the output y and the
control signal u. For this, there is a methodology described in [7], [8], [9], among
others, where it is specified the necessary conditions to obtain an input-output
linearization and so, guarantee that the system is linear and controllable, from
a coordinate transformation and a state feedback. For the case of the decentral-
ized adaptive fuzzy controller it will be considered a n order nonlinear system
described by

ẋ1
i = x2

i

ẋ2
i = x3

i
...

ẋn−1
i = fn−i(x

n−1) + gi(x
n−1)xn−1

ẋn
i = fn(x

n) + gi(x
n)u

y = x

(4)
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which has input-output linearization, is in the normal form and has relative
degree r=n. Applying the control law

ui =
1

gi(xi)

[
−fi(xi) + ki

T ei + y(n)m

]
(5)

with ki = [kin...ki1]
T and the error ei = yim − xi and ei = [e1i e

2
i ...e

n
i ]

T =

[eiėi...e
(n−1)

i ]T , then the equation in closed-loop turns to

e
(n)
i + ki1e

(n−1)
i + ...+ kinei = 0 (6)

e
(n)
i + ki

T ei = 0 (7)

We suppose the functions fi(xi) and gi(xi) are unknown, so the adaptive fuzzy

controller will approximate them using the functions f̂i(xi) and ĝi(xi) making
this, the control law in (5) become

ui =
1

ĝi(xi)

[
−f̂i(xi) + ki

T ei + y(n)m

]
(8)

Due to these functions are universal approximators and they can approximate
uniformly the nonlinear function with an arbitrary precision, we use fuzzy sys-
tems to obtain the necessary functions f̂i(xi) and ĝi(xi) in the control law, where
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The fuzzy systems in (9) and (10) have singleton fuzzifier, max-prod inference
and center of area defuzzifier. In order to improve the approximations results,
some free parameters are proposed, these parameters can change on-line with
the operation of the system. These free parameters replace the output fuzzy
sets which normally are fixed in a non adaptive scheme. Replacing ȳl1...lnif with

the free parameter θif ∈
∏n

r=1 pm in f̂i(xi); and replacing ȳl1...lnig with the free

parameters θig ∈
∏n

i=1 qi in ĝi(xi), then (9) and (10) can be written as

f̂i(xi|θ if ) = |θ T
if ξi(xi) (11)

ĝi(xi|θ ig) = |θ T
ig ηi(xi) (12)

with the vectors ξi(xi) of dimension
∏n

r=1 prx1, and ηi(x) of dimension
∏n

r=1 qrx1
which elements are

ξi l1 ... ln
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ηi l1 ... ln
(xi) =
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r=1 μBlr

r
(xr)∑q1
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ln

(∏n
r=1 μBlr

r
(xr)

) (14)

so, the control law for the decentralized adaptive fuzzy control is defined for the
i-th subsystem by

ui =
1

ĝi(xi |θig )
[
−f̂i(xi|θ if ) + ki

T ei + y
(n)
im

]
(15)

3.1 Adaptive Law

The mentioned free parameters θif and θig are obtained with the methodology
described in [2]. Substituting equation (15) in (4), it is obtained the closed-loop
equation for the i-th subsystem, described by

e
(n)
i = −kiT ei +

[
f̂i(xi|θ if )− fi(xi)

]
+ [ĝi(xi |θig )− gi(xi)]ui (16)

Let consider

Λi =
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...

...
...

. . .
...
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⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ (17)

so (16) is written in vectorial form as

ėi = Λiei + bi

{[
f̂i(xi|θ if )− fi(xi)

]
+ [ĝi(xi |θig )− gi(xi)]ui

}
(18)

for n=1, the optimal parameters are

θ∗if = arg
θif∈

min∏n
r=1

pi

[
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∣∣∣f̂i(xi|θ if )− fi(xi)
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X ∈ R
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θ∗ig = arg
θig∈

min∏n
r=1 qi

[
sup |ĝi(xi |θig )− gi(xi)|

X ∈ R

]
(20)

So f̂i

(
xi

∣∣∣θ∗if ) and ĝi
(
xi

∣∣θ∗ig ) are the best max-min approximators among all

the ones obtained from (9) and (10). Defining the approximation error for the
i-th subsystem as

wi =
[
f̂i(xi

∣∣θ∗if )− fi(xi)
]
+
[
ĝi(xi

∣∣θ∗ig )− gi(xi)
]
ui (21)
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so, the equation (18) can be written as

ėi = Λiei + bi

{[
f̂i(xi|θ if )− f̂i(xi

∣∣∣θ∗if )]+ [
ĝi(xi |θig )− ĝi(xi

∣∣θ∗ig )]ui

}
ėi = Λiei + bi

[(
θif − θ∗if

)
ξi(xi) +

(
θig − θ∗ig

)
ηi(xi)ui + wi

] (22)

In Fig.1 it is presented the block diagram for a decentralized adaptive fuzzy
control scheme.

Fig. 1. Block Diagram for the Decentralized Adaptive Fuzzy Control
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4 Application to a Two Degrees-of-Freedom Robot
Manipulator

4.1 Description of the Robot Manipulator

In order to evaluate in simulation the performance of the proposed control algo-
rithm, we use a two DOF robot manipulator moving in the vertical plane. This
robot is armed with two electromechanical actuators whose allow the robot to
move and also indicate the angular position of the joints. The dynamic model
for a n degrees-of-freedom robot is given by the equation [10].

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) + τf (q̇) (23)

whereM(q) is the inertia matrix which is positive defined and symmetric, C(q, q̇)
is the matrix of Centripetal Forces and Coriolis, g(q) is the gravitational torque
vector, τf (q̇) is the vector of friction including the viscous friction,τ is the vector
of external torque applied to the robot and q, q̇, q̈ are the vectors of position,
velocity and acceleration, respectively. Accelerations vector is as follows

q̈ = −M(q)−1[C(q, q̇)q̇ + g(q) + τf (q̇)] +M(q)−1τ (24)

which is in the form (4), this system has input-output linearization and the
decentralized adaptive fuzzy control can be expressed as

q̈i = Fi(q, q̇) +Gi(q, q̇)τi (25)

where Fi(q, q̇) = −M(q)−1[C(q, q̇)q̇ + g(q) + τf (q̇)] and Gi(q, q̇) = −M(q)−1,
then the control law by input-output linearization in (5) applied to a two DOF
robot manipulator is

τ = Gi(qi, q̇i)
−1
[
q̈di + kv ¨̃qi + kp ˙̃qi − Fi(qi, q̇i)

]
(26)

τ = M(q)
[
q̈di + kv ¨̃qi + kp ˙̃qi − Fi(qi, q̇i)

]
+ C(q, q̇)q̇ + τf (q̇) + g(q) (27)

The equation (27) is known as “Computed Torque Control” [11]. The functions
fi(xi) and gi(xi) are unknown, replacing them with the fuzzy systems described
in (11) and (12), we obtain the control law for the i-th link of the robot

τ = Ĝi(qi, q̇i)
−1
[
q̈di + kv ¨̃qi + kp ˙̃qi − F̂i(qi, q̇i)

]
(28)

for i=1,2 the approximators are

F̂1(q, q̇
∣∣θ1f ) = f̂1(q1, q̇1 |θ1f )

F̂2(q, q̇
∣∣θ2f ) = f̂2(q2, q̇2 |θ2f ) (29)

Ĝ1(q1, q̇1 |θ1g ) =
[
ĝ11(q1, q̇1 |θg11 ) ĝ12(q1, q̇1 |θg12 )

]
Ĝ2(q2, q̇2 |θ2g ) =

[
ĝ21(q2, q̇2 |θg21 ) ĝi22(q2, q̇2 |θg22 )

] (30)
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4.2 Design Parameters

Applying the decentralized adaptive fuzzy control, the closed-loop system for
each link of the robot reduces to linear equations where kip and kiv determine
the pole placement, which are selected on the left side of the plane S so the
system is stable. In this case, the position and velocity constants are selected as:

kip1 = 13264[1/seg2] kiv1 = 230[1/seg2]
kip2 = 16074[1/seg2] kiv2 = 240[1/seg2]

Finally applying the control law to a two DOF robot we obtain

¨̃qi = −kiv ˙̃qi − kipq̃i + F̂i(qi, q̇i |θif ) + Ĝi(qi, q̇i |θig )τi − Fi(qi, q̇i) +Gi(qi, q̇i)τi

which can be represented as

d

dt

[
q̃i
˙̃qi

]
= ėi = Aiei +Bi where ei =

[
q̃i
˙̃qi

]
=

[
qdi − qi
q̇di − q̇i

]
,

and Ai =

[
0 I

−diag (kip) −diag (kiv)
]

with I =

[
1 0
0 1

]
, 0 =

[
0 0
0 0

]
,

and Bi =

[
0

F̂i(qi, q̇i |θif )− F̂i(qi, q̇i
∣∣θ∗if ) +

[
Ĝi(qi, q̇i |θig )− Ĝi(qi, q̇i

∣∣θ∗ig )
]
τi + wi

]
The decentralized adaptive fuzzy control scheme applied to a two degrees-of-

freedom robot manipulator is summarized in the Fig.2.

4.3 Desired Trajectories

For simulation, the following trajectories were selected [11].[
q1d(t)
q2d(t)

]
=

[
b1(1− e−d1t

3

) + c1(1 − e−d1t
3

) sin(w1t)

b2(1− e−d2t
3

) + c2(1 − e−d2t
3

) sin(w2t)

]
(31)

where b1 = π/4[rad], c1 = π/18[rad], d1 = 2 and w1 = 15[rad/s] are parameters
for the desired position in the first joint of the robot; b2 = π/3[rad], c2 =
25π/36[rad], d2 = 1.8 and w2 = 1.75[rad/s] are parameters for the desired
position in the second joint.

5 Simulation Results

In Fig.3(a) and Fig.3(b), the trajectory tracking results for the robot with the
decentralized adaptive fuzzy control are presented. In Fig.4(a) and Fig.4(b), the
tracking error for each joint of the robot manipulator are presented. Finally, in
Fig.5(a) and Fig.5(b) the applied torques to each joint are shown.
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Fig. 2. Block diagram of the Controller applied to a 2 DOF robot manipulator
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Fig. 5. Applied torque to joints 1 and 2
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Fig. 7. Approximations of ĝi(xi)
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The fuzzy system in the controller is used to approximate the unknown pa-
rameters in the functions f̂i(xi) and ĝi(xi). The approximations computed for
each joint by the fuzzy systems are presented in Fig.6(a) and Fig.6(b) corre-

sponding to the approximations of the elements of f̂i(xi) and Fig.7(a), Fig.7(b);
Fig.8(a) and Fig.8(b) corresponding to the elements of ĝi(xi).

A performance analysis for the controller using the Euclidean norm or L2
norm, is defined by

L2[e] =
√

1

T − t0

∫ T

t0

eT e dt (32)



134 R.C. Canul et al.

0.5724

0.2619

0.0249

1.6325

0.7186

0.2012

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

CTC CAFC DAFC

Joint 1 Joint 2

Fig. 9. L2 norm for each joint with different control techniques

this norm was applied to the tracking error in each joint of the robot manipulator.
For this case, L2 norm is computed as

L2[ei] =
√

1

T − t0

∫ T

t0

ei2 dt (33)

where ei = qid − qi
Equation (33) was used for testing the performance of the designed controller,

we compare the results obtained applying the L2 norm to the Decentralized adap-
tive fuzzy control (DAFC) with the results obtained with another 2 techniques:
“Computed Torque Control” (CTC) and “Centralized adaptive fuzzy control”
(CAFC). The results in Fig.9 how that tracking errors for the controller designed
in this paper decreases to 20% in comparison with the other controllers.

6 Conclusions

In this work a decentralized adaptive fuzzy control was designed. The results
for trajectory tracking applied to a two DOF robot manipulator were presented,
obtaining satisfactory results. The fuzzy part of the controller is responsible of
estimate the internal parameters of the robot whose are supposed unknown. This
approach allows us to control the plant even without prior knowledge. These
estimations may differ from the real parameters without affecting the control
objective.
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Abstract. The use of proposed technology is oriented for persons, who
want to interact with systems to make relevant decisions in real-time,
fuzzy conditions, heterogeneous subject areas and multi-lingual commu-
nication, where the situations are unknown in advance, fuzzy structured
and not clearly regulated. The essence of the technology consists in the
situational control of fuzzy data, information and knowledge, extracted
from texts in different natural languages, dissimilar subject areas for sit-
uational fuzzy control of the object in Intelligent real-time system. The
technology is formalized using Fuzzy Logic, Situational Control theories
and is defined by methods of knowledge representation, situational data
control, fuzzy logic inference, knowledge modeling, generalization and ex-
planation knowledge, dialogue control, machine translation and others.

1 Introduction

In order to control an object it is required to know its structure, the purpose
of its existence and its control criteria [5]. The task becomes more complicated
when there is a need to control objects in real time, in situations unexpected
in advance, using data, information and knowledge, presented in a variety of
natural languages and subject areas. In these circumstances, arises a problem
of decision making in fuzzy environment [3] based on the data, information and
knowledge.

The solution to this problem in this article is focused on the approach of
modeling, planning and controlling of linguistic and subject area data, infor-
mation, knowledge, fuzzy inference and others, by mapping the objectives and
constraints in fuzzy environment.

The novelty of the technology consists in using of:

– fuzzy modeling and situational fuzzy control of fuzzy data, information and
knowledge for implementing an automatic fuzzy inference and finding on that
basis a correct, accurate, timely and adequate solution, taking into account
the current situation and impact of fuzzy environment;

– the conclusion for planning of control actions on the controlled object and
realizing in such way of fuzzy control of the object in the fuzzy environment;

– the processors for creating and synthesis of images, concepts and meaning,
extracted from texts in various natural languages and subject areas, and
serialization them in bases of data, information and knowledge;
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– the bases for organizing of multi-lingual human communication through
fuzzy dialogue, generalization and explanation of knowledge in the Intel-
ligent fuzzy control system.

There are a lot of interested ideas, methods and algorithms for decision-
making in a fuzzy environment, as example in:

– [12] are described two models and methods of Decision-making in one par-
ticular subject area of Power Engineering;

– [13] are considered adjustable autonomous agents, that possess partial knowl-
edge about the environment. In a complex environment and unpredictable
situations these agents are asked the help of human on base of the model,
called HHP-MDP (Human Help Provider MDP) and requests, which are set
in advance;

– [14] are reviewed the basic concepts, related to decision-making in fuzzy
environments, ontological control for system of systems (SoS) engineering
applications, and use ModelSim to simulate such process.

The comparative analysis of these and other works, associated with our work,
showed, that there is no integrated linguistic approach to the problem of situ-
ational fuzzy control in a fuzzy environment, including the techniques of situ-
ational control of fuzzy data, information and knowledge, modeling, planning,
decision-making and situational fuzzy control of the object, based on the achieve-
ments of Fuzzy Logic, Situational Control, Artificial Intelligence, Linguistics and
others.

2 Main Results

Modeling decisions is defined as construction of a new conceptual situation and
a state of controlled objects (fuzzy data, information, knowledge, inference and
others), which meets the criteria in the internal and external levels of fuzzy
environment. Planning decisions is defined as a use of modeling results to create
a sequence of alternative decisions that are suitable to the situation and a state
of these environments. Decision-making is defined as a process of modeling fuzzy
logic inference [7] for selecting the relevant decision from a limited number of
alternative fuzzy decisions. Control is the process of using the modeling results
of planning and decision-making in fuzzy environment, in order to implement
a control action on the objects (data, information, knowledge, solutions and
others) to shift them and their control system to a new state that matches a
specified criterion.

To realize targets of Manager (and/or system) to control of organizational
object KR on base of chosen relevant and pertinent decision AN from a large
number of alternatives A, the control task, which is defined by formula [4]

〈A,E, S, T 〉, (1)

can be represented by model (2), [5], [6], (Figure 1, Figure 2),

T = 〈AN ,KR, (Si : Qj
u,x,z
=⇒ Qi; I)〉, (2)
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where:

E: Environment of task of decision-making and control (a set of alternatives);

S: System of preferences of the decision maker (DM) (objectives and criteria);

T : The actions of the DM over A of the selection and ordering of alternatives
AN (identification of objective and criterion).

This action of DM is considered as modeling and control data process , which
realizes the modeling and generalization of knowledge [8], [9] fuzzy logic inference
[7], control dialog [10] and other means and methods of situational control of
fuzzy data using natural language (NL) and other languages.

In this case, the approach of knowledge modeling is the process of forming,
processing and actualization of a semantic network of frames – concepts, which
are units of knowledge and data organized in a databases (DB) and knowledge
bases (KB), and formally are presented by the module AN (GD, GZ , GY ) and the
model KR(RD, RZ , RY , AN ).

The components in these rations are indexed by i, j, k, and are, respectively,
the ordinal numbers of: modulated generalized linguistic variables (i = 1, . . . , l),
serialized in DBs and KBs on the extensional level H of modeling knowledge;
terms of subject, linguistic and other knowledge about indicators (j = 1, . . . , s)
on the intentional level I of modeling knowledge; DBs and KBs (k = I, . . . , r)
on the reformative level P of knowledge modeling. D, Z, and Y , respectively,
identifiers of modulated data information and knowledge frames.

GD, GZ , and GY , respectively, identifiers of accumulation segments of subject,
linguistic, behavioral and others data, information and knowledge.

RD, RZ , and RY , respectively, identifiers of the rules of modeling subject,
linguistic, behavioral and other frame-based representations of data, information
and knowledge about indicators and mentioned linguistic variables (situations).

AN are modulated indicators and mentioned linguistic variables (generalized
situations).

KR is a formal system of data, information and knowledge modeling, a model
of generalized knowledge module, working on base of rules RD, RZ , RY and
relations RH , RI , RP in the considered segments GD, GZ , GY of DBs (KBs).

The set of modules are implemented on H , I, and P levels of modeling data,
information and knowledge in subject areas by considered methods.

H is the level of purposeful modeling, organized by the use of fuzzy relations
RH on the set of components (terms) GLV (corteges in DBs and KBs).

I is the level of purposeful modeling, organized by use of fuzzy relations RI ,
allowing to determine the membership of the GLV to the certain concept of a
particular subject area.

P is the level of purposeful modeling, organized by use of fuzzy relations RP on
the set of fuzzy relations RH , RI , allowing them to determine compliance of set
of components GLV (selection of certain concepts) to a particular subject area.
The modeling of fuzzy logic inference [7] is realized on basis of fuzzy fragments
(parcels) of natural and other languages. For this are developed heuristic algo-
rithms, realized by modules KR of modeling knowledge using rules RD, RZ , RY ,



140 B. Khayut, L. Fabri, and M. Abukhana

facts (situations) and their subsets (segments) GD, GZ , GY , RD, RZ , RY , ex-
tracted from the considered BDs and KBs.

According [6], the ratio

T = 〈AN ,KR, μR
L , (Si : Qj

u,x,z
=⇒ Qi; I)〉 (3)

represents a formalized model of modeling of fuzzy logic inference in the decision
making system, where μR

L is the characteristic (logical) function of Fuzzy Logic.
The result of the reference is a multi-dimensional generalized rule - relation

R (computational generalized frame) with the area of values μR : x → Lx. The
R is defined on H, I and P levels as chain of parcels μR each of which forms the
group of coded (computing) values. These values are used by the algorithms of
the systems for resolution inductive and deductive fuzzy inference in each of the
observed levels.

Thus, the multi-dimensional relations (generalized rules) RD, RZ , RY and the
values bH , bI , bP of functions μH , μI , μP , mapped by the DM and his support
group, respectively, on the considered levels are the result of modeling fuzzy logic
inference in the Situational Data Control system [6].

This system, interactively interacts with DM or/and Decision Making Sys-
tem (DMS) (2), to generate the fuzzy relevant decision from the number of the
selected alternatives (Figure 2).

The process of generalization and explanation of knowledge [9] is considered
as a search process for a target logical function (situation) by DMS, which uses
for that the mentioned logic inference and semantic knowledge network. Conse-
quently, the ration of (3) can be represented as

T = 〈AN ,KR, μR
L(μ

R
G), (Si : Qj

u,x,z
=⇒ Qi; I)〉 (4)

The extents of compliance of the numerical and verbal estimates for concepts
x from X are determined by fuzzy sets Aα = {x, μA(x) ≥ αA} and relations
Rα = {x, μA(x) ≥ αR} on the level of knowledge modeling and fuzzy logic
inference.

In this case, μP (x) =
∨
(μH(x)

∧
μI(x))

∧
Poss(a/aα) is a composite rule of

generalization and knowledge explanation in the considered Situational Data,
Information and Knowledge Control (SDIKC) system, where the rule μP (x)
is interpreted as a desired logic function, which identifies the disjunction of
conjunctions of modulated logical functions μH(x), μI(x) and Poss(a/aα).

Establishing the values of α - level for Aα (in certain, and various distributive
lattices L), “nearest” to the top of the curves μA at each of the considered
levels of the modeling of knowledge, - leads (using μP ) to unite all of “tops” α-
slices and to the formation of the resulting fuzzy set of unique (generalized) and
relevant data, information and knowledge.

Similarly, the Dialog control is based on the ended operations of fuzzy logic
inference, generalization of knowledge and control actions of SDIKC. His model
is presented in [10] by (5) as
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T = 〈AN ,KR, μR
L(μ

R
G(μ

R
D)), (Si : Qj

u,x,z
=⇒ Qi; I)〉, (5)

where μR
D = f(((μR

L(μ
R
G)), u, x, w).

The μR
G depends on other fuzzy logic functions μR

D, μR
L and managed of en-

vironmental influences u,x,w on the object with the target to make relevant
decisions on control, respectively, at the P , I, and H levels of their modeling [6],
[7].

Si : Qj
u,x,z
=⇒ Qi; I - determines the elementary act of control in the process of

modeling and selecting the relevant decision, that transforms the control system
in the new situation Si, which characterizes its new state Ql, after the state Qj

was shifted to Ql (Figure 1, Figure 2).

The systems R and C (Figure 2) are using the Principle of situational control
and are, respectively, control systems for modeling and planning decisions.

Together with the Manager they represent the Decision Making System. The
R (analyst, reviewer) and C (expert, approver) together with Manager (decision
maker) define a Organizational Object Management System (OOMS).

The Manager interacts with C using Natural Language (NL), sends control
actions and receives in response to the situation a few number of relevant alter-
natives. The result of the interaction between C and R - is obtaining by C (in
response to the situation) a few number of improved alternatives.

The C and R are implementing the process of modeling and chosen relevant
decisions [7] using SDIKC system.

The x,w were fuzzy influences, where the first of them is accessible for esti-
mation, but the second is not.

The formula (5) represents the OOMS in heterogeneous subject fields by using
the multi-lingual communication.

The mentioned above KR is a model of generalized knowledge module K
(Figure 1), which is functioning on base of RD, RZ , RY rules and knowledge
segments AN , represented in DBs and KBs.
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I - is a SDIKC system. The main its function in the modelM - is interpretation
by using K the feed-back reactions from the environment influences x, w and
control object U(x, u).

M - is Intellectual Interface of data, information, knowledge, decisions and
control dialog. It contains procedures for recognition of reasons, regularities,
fixing the facts and their interpretation.

D and R - components of Linguistic Processor (LP). The first is the Inter-
preter and the second is the Synthesizer. The LP realizes transformation target’s
actions, which are expressed in NL and other languages. The method of the LP
realization is represented in [11].

Each Manager’s action me be interpreted as Data, Information and Knowledge
Modeling processes [8], fuzzy logic inference [7], dialogue control [10], general-
ization knowledge [9] and other methods, which are support the processes of
modeling, planning and control decisions in fuzzy environment.

3 Conclusions

The proposed methods and technology are oriented for using in the autonomous
(Smart) Information Management Systems, which are operating in a fuzzy en-
vironment, interacting with people and other systems in different languages and
dissimilar subject areas, where the situations and factors of influence on the
control object cannot be determined and structured in advance.
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Abstract. Knowledge integration is based upon gathering and aggre-
gating all available data, information, and knowledge from theory, ex-
perience, computation and similar applications. Such a ”waste nothing”
approach becomes important when the underlying theory is difficult to
model, when observational data are sparse or difficult to measure, or
when uncertainties are large. An inference approach is prescribed, pro-
viding common ground for many kinds of uncertainties arising from the
sources of data, information and knowledge. These sources are integrated
using a modified Saaty’s Analytic Hierarchy Process (AHP). A fusion
physics application illustrates how to manage the uncertainties in the
inference-based integration approach. Zadeh membership functions and
possibility distributions contribute to this management.

Keywords: Knowledge integration, Uncertainty management, Analytic
hierarchy process (AHP), Possibility distribution, Membership function.

1 Introduction

Scientific and engineering applications have traditionally relied upon repeated
test, experimental and observational data for the formulation and confirmation
of theory, and for making predictions. Recently complex computational physi-
cal models have provided an additional source of knowledge for those activities
especially when data are difficult to obtain. However, computations rely on the
strength of the theory from which they are constructed and on the field data from
which they are validated. Additional knowledge can be gained from considering
similar applications, related studies, experience and expertise.

Data, information and knowledge form an interdependent foundation upon
which prediction is built, and decisions are made. All these sources and their un-
certainties can be combined at a macro (or system) level using Saaty’s AHP [1]
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to supply the combining weights. Implementing AHP requires pairwise compar-
isons of the sources. Evaluating the utility and relevance of each source relative
to others is a manageable task for experts. The knowledge integration approach
is a user-friendly method for uncertainty management, applicable to a wide vari-
ety of problems. The elegance of this integration approach is best described using
an application, one involving inertial confinement fusion (ICF) experiments.

ICF experiments were designed to establish overall reproducibility of a ther-
monuclear fusion reaction yield from imploding glass capsules. The ICF ther-
monuclear reaction (1) is for deuterium (D) and tritium (T ) ion-reactants, and
neutron (n) and alpha (α) particles are output. However, according to theory
and historical experimental studies, there are other potential reaction outputs,
with rare occurrence. Instead of producing n and α, 5He and gamma rays (γ) are
produced in approximately every 105 reactions. Despite their rare occurrence,
the γ’s carry more reaction-history information than n’s because n-velocity is
variable whereas γ-velocity is not variable. This is an uncertainty management
issue: quantity versus quality of information.

D + T → n+ α
D + T → 5He+ γ.

(1)

Of interest is the ratio of occurrence of the two reactions in (1), called the
branching ratio (BR). DT BR testing is not necessarily considered data sparse,
and it has a long history of studies using diverse experimental protocols. Re-
cently published results [2] conducted two additional relevant test programs to
confirm their DT BR results: i) a similar reaction using D with 3He instead of
T, and ii) an experimental configuration inserting ”pucks” of differing materi-
als in the beam in front of the DT capsules. These experiments were designed
to minimize some of the high uncertainty issues arising from experimental pro-
tocols, measurements, diagnostics, and inferences being made to determine the
BR. The large variability in the historical studies is partially due to these issues.

The first two columns of Table 1 show the DT BR recent experimental results
of [2]. The first two left columns, labeled as DT BR data, differ according to
two different diagnostic measuring protocols: gas Cherenkov detector (GCD) and
gamma reaction history (GRH). The next two columns, D3He and ”Puck” data,
contain the results from the confirmation studies i) and ii). These four columns
indicate large variability although not as large as the two columns of historical
data. The far right column has the single theoretical value from experts.

The question is: can the integration of the all the values in Table 1 be beneficial
for managing the large uncertainties in the DT BR determination, even though
those uncertainties originate from a lack of knowledge rather than from a lack
of tests? The answer is yes, as demonstrated in the next section.

2 Knowledge Integration Applied to DT Branching Ratio

The first step in knowledge integration is to identify all available sources of
relevant data, information and knowledge. Five different sources are represented
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Table 1. Values of DT branching ratio contents of the 5 boxes in Figure 1

DT BR DT BR D3He ”Puck” History History Theory
data (GCD) data (GRH) data data data data cont.

3.88e-05 3.65e-05 3.29e-05 5.59e-05 9.81e-06 5.7e-05 5.0e-05
3.64e-05 3.73e-05 3.35e-05 7.26e-05 2.3e-05 5.9e-05
3.54e-05 3.65e-05 3.26e-05 7.09e-05 9.52e-05 7e-05
3.90e-05 3.43e-05 5.13e-05 4.08e-05 1.92e-04 5.6e-05
3.89e-05 3.61e-05 4.36e-05 4.02e-05 2.66e-04 7.6e-05
4.01e-05 3.31e-05 7.28e-05 2.13e-05 7.8e-05
4.05e-05 3.15e-05 5.32e-05 2.1e-04 1.06e-04
3.50e-05 3.11e-05 4.78e-05 7.1e-05 1.2e-04
3.80e-05 3.28e-05 5.43e-05 5.3e-05 2.11e-04
3.70e-05 3.06e-05 5.71e-05 5e-05 6.9e-05
3.49e-05 5.08e-05 4.4e-05 4.5e-05
3.75e-05

by boxes for the DT BR application in Figure 1. The recent DT BR experiments
[2] are represented by the upper right (UR) box. Similar, analogous, or relevant
experiments to the UR box are represented by the upper left (UL) and lower
right (LR) boxes. These are the D3He and ”puck” relevant test programs listed
in Section 1 as i) and ii). Other knowledge, theory, expertise, history, and first
principles are represented by historical studies in the bottom central (BC) box,
and a theoretical value is lower left (LL) box.

The integration is not restricted by the number, contents, or type of knowledge
in the boxes. For example, the 5-box configuration in Figure 1 differs from the ”4-
box paradigm” [3] designed for data-sparse applications. Those four boxes were
the test data, computations for those tests, a data-rich similar application, and
the computations for those. In Figure 1, computer code outputs from physical
models are shown as interior boxes for the UR, LR and UL boxes, indicating
that the outputs are not at the same macro level (or the same units) as the 5
boxes, but are used instead in the DT BR determination.

To integrate the data, information, and knowledge contents in the 5 boxes
requires understanding about making inferences and the uncertainties induced
from those inferences. As defined in [3], Inference is the difference between what is
desired to know or obtain (unobservable or unmeasured) and what can be known
or obtained (observable or measured). When evaluating the degree of similar-
ity of the other boxes to the UR box, the expert must have an understanding
of inferences being made, that is, an understanding of the degree of similarity
attached to the arrow connecting each box to the UR box (i.e., arrows a, b, d
and i). Arrows a, b and i represent analogical inference: the process of inferring
the DT BR data from the D3He, ”puck” and historical experiments. Arrow d
represents theory inference: the process of inferring the DT BR data from the-
ory or first principles. The degree of similarity must also be evaluated for the
inferences being made between all the other pairs of boxes. Arrows c, g and j are
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Fig. 1. DT BR 5-box configuration with inference arrows

analogical inference, and arrows e, f, and h are theory inference. Again, under-
standing inferences represented by these arrows is important.

As shown in Figure 1, inferences can be inside boxes. The most common one is
statistical inference: the process of inferring the population of value from a rep-
resentative sample (the experiments). Because some computations are involved
in calculating DT BR from experiments, these induce validation inference: the
process of inferring the data from the model outputs. Often quantities that can
be observed or measured are not the ones of interest. The process of inferring
the desired, but unobservable quantities, from observable quantities is proxy
inference. BR is not directly observable, but is inferred from observables.

The next step is to specify factors, issues, models, etc. that affect the degree
of similarity between box pairs. For example, differing experimental protocols
and diagnostics are important for evaluating arrows out of the History box. The

μ

Fig. 2. Fuzzy membership functions for 9-point AHP scale



Knowledge Integration for Uncertainty Management 149

degree of similarity is then scored using a linguistic-numerical scale based upon
Saaty’s original 9-point scale [1]. The modification of this scale for similarity can
be expressed as Zadeh membership functions in Figure 2. Once the score for each
arrow in Figure 1 is determined using formal expert knowledge elicitation [4],
the scores are used to construct the upper and lower triangles of a 5x5 triangular
matrix, A5,5, shown in (2). The lower triangular values in (2) are the inverses of
the upper triangular values, and the diagonals are defined as 1.

A5,5 =

⎛⎜⎜⎜⎜⎝
1 1.20 3.33 2.50 4.00

0.83 1 3.00 2.90 3.80
0.30 0.33 1 4.50 3.20
0.40 0.35 0.22 1 5.50
0.25 0.26 0.31 0.18 1

⎞⎟⎟⎟⎟⎠ (2)

The eigenvector for the principal eigenvalue from the decomposition of A5,5

provides the five weights assigned to the boxes. Studies [5] have shown that
using a singular value decomposition (SVD) produces weights with less scaling
and consistency problems. The SVD decomposition of the 5x5 matrix A5,5 is
according to (3), whereD5,5 is a diagonal matrix whose elements are the singular
values, di, and matrices U5,5 and V5,5 contain the left and right singular vectors.
Matrices U5,5 and V5,5 are orthonormal having the property: UTU = I and
V TV = I.

A5,5 = UDV T =

5∑
i=1

diuiv
T
i (3)

The first singular value for A5,5 is d1 = 10.83. The 5 weights, wi, are calculated
from the first columns of U5,5 and V5,5, u1 and v1, as

wj = uj,1 + 1/vj,1. (4)

After normalization of the weights in (4), they are applied to the box contents to
produce the integrated estimate. The weights can be rescaled so that the contents
of the UR box have a weight of 1.0. Regardless of scaling, the AHP weights
inherently contain information about the inferences being made in combining
the contents of the other boxes with the UR box.

A convenient way to summarize the contents of the boxes is to use summary
statistics, e.g., the mean or median for central measures. The weights can also
be applied to combine uncertainties internal to the boxes. Uncertainties such as
the standard deviation or range of values are convenient to use for data. For the
case of little or no data in the UR box, the inferences being made in using the
other boxes is of primary importance.

For the application here where the UR box contains a reasonable number of
experimental results, the confirmatory studies, historical studies and theoretical
value are directly incorporated into the DT BR estimation and its uncertainty
estimation according to their degree of similarity to the UR box. Using a different
weight determination, e.g. determine the weights to minimize the uncertainty,
loses the information about the inferences being made.
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3 Box Integration and Uncertainty Management

Table 2 contains the results of the box knowledge integration for the DT BR
application. Only the statistical inference uncertainty is considered and quan-
tified as standard deviations. Analyzing other inference uncertainties is beyond
the scope of this paper. While both eigenvector and SVD weights are shown in
Table 2, the integrated box means and standard deviations are calculated using
the SVD weights. The integrated mean (IM ) is the weighted average of all the
data in Table 1 according to

IM =

61∑
i=1

wixi/

61∑
i=1

wi. (5)

Similarly, an integrated uncertainty (IU ) estimate can be calculated from the
uncertainties in the boxes, which are quantified as standard deviations in the
last column of Table 2. IU is a weighted combination of the standard errors of
the box means,S, using the SVD weights in (6). There are other ways to combine
the standard deviations in the boxes, and some are featured in Table 3.

IU =

√√√√ 5∑
i=1

wiS2
i /

5∑
i=1

wi where Si = si/
√
ni. (6)

Table 2. AHP weights and box statistics

Box Eigen Normalized SVD Normalized Mean, ni Standard
Weights Weights mi Deviation, si

DT BR data 0.33 0.37 3.60e-05 22 0.28e-05
D3He data 0.30 0.33 3.88e-05 5 0.84e-05
”Puck” data 0.20 0.14 5.60e-05 11 1.17e-05
Theory 0.12 0.10 5.00e-05 1 0
Historical data 0.05 0.06 9.01e-05 22 6.87e-05

Integrated 4.44e-05 0.44e-05

In Table 3, approach 1 is a simple combination (equal weights) of all 61 values
in Table 1. The large standard deviation divided by the mean results in an 80%
error. However, if one were to consider the standard error of the mean of the
61, 0.61e-05, then the % error is a little more than 10%. The problem with this
approach is that the data and theory values in the other boxes are not identical in
physics or experimental implementation to those in the UR box. So this approach
is not adequate. Approach 2 is a variance reduction attempt using statistical
analysis of variance (ANOVA) with box as the grouping variable. Some reduction
is gained because box-to-box variability is significant at the 1% level, accounting
for about one quarter of the total variability from the first row. Approach 3 is
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Table 3. Comparison of 5 box knowledge integration to alternative methods

Analysis Approach Mean or π=1 Standard %
Deviation or Error Error

1. Equal weights, all boxes’ contents 5.96e-05 4.76e-05 80%
2. ANOVA, box grouping 5.95e-05 4.25e-05 71%
3. Weighted ANOVA, box grouping 4.44e-05 1.06e-05 24%
4. Box integration, SVD weights 4.44e-05 0.44e-05 10%
5. Possibility distribution function 4.02e-05 - 4.05e-05 NA NA
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Fig. 3. 5-box π-df (left) and historical data π-df (right)

another ANOVA applying the SVD weights to each datum. With the weights,
about one third of the total variability is explained with the boxes, indicating the
importance of the weights. The root mean square errors for approaches 2 and 3
are listed in Table 3. Notice the downward shift in the weighted mean compared
to the unweighted mean. Again, the weights represent the degree of applicability
of the other boxes to the UR box. Approach 4 is the 5-box integration resulting
in a 10% error, the ratio of the integrated uncertainty (6) to the integrated
mean (5).

Approach 5 represents an alternative way of combining the contents of the 5
boxes and their uncertainty. The constructed possibility distribution function,
π-df, represents uncertainty as possibility (π) rather than probability (as when
using standard deviations). The π-df on the left side of Figure 3 is constructed
from (maximum - minimum) ranges of values in the 5 boxes [6]. The theory range
was elicited as ±20% of the theoretical value. Only the interval where π=1 in
the π-df is listed in Table 3. The long right tail is due to the large range of re-
sults from the diverse historical experiments. Uncertainty management dictates
further investigation of the large uncertainty in the various historical studies.
Again, the use of a π-df is appropriate as shown on the right side of Figure 3.
Here π=1 for values [4.4e-05, 9.4e-05]. The box integration approach could be
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applied to the historical data to obtain an integrated mean and uncertainty for
the History (BC) box. The number of boxes for the historical studies would be
determined by the experimental physicists, but could be as simple as having a
box for each of the 22 studies or for the 9 different experimenters.

4 Concluding Remarks

The box integration approach was originally developed as a ”waste nothing”
analysis tool in data-sparse applications; however it also performs well as an un-
certainty management tool as illustrated in Table 3. Uncertainty management
is not only uncertainty reduction, which may not be practical; it involves un-
derstanding the nature and sources of uncertainty. By defining the relationships
between the sources of data, information and knowledge in the boxes as infer-
ences, a commonality is established for handling the uncertainties associated
with these inferences. Establishing all uncertainties as inference uncertainties
is also part of uncertainty management. The task of quantifying the inference
uncertainties is manageable using an appropriate mathematical theory, e.g. prob-
ability or possibility theory and relying upon the inferences being made between
and within the boxes. That complete task is a work in progress.

The box knowledge integration approach serves as an inference and uncer-
tainty estimation tool [3], and as a knowledge integration method. The number
and contents of the boxes is flexible enough to handle a variety of sources of
data, information and knowledge. Examples of additional boxes include, differ-
ent computer models covering subsets of applicable domains, subsets of obser-
vational data including isolation of outliers, and subsets of experts’ knowledge
from differing areas of expertise. The AHP weight determination is convenient
to use by experts relying upon their comparisons of degrees of similarity between
pairs of boxes to characterize the inferences between then. The use of AHP per-
mits expandability to problems with hierarchical structures, which would involve
hierarchical box configurations. The DT BR application box structure can be
expanded to include integration of the studies inside the History box (BC).

Other benefits from the box approach include the recovery of information
from incomplete tests, and the analysis of multiple quantities of interest. The
DT BR application has quantities of interest from observables embedded within
the four data boxes. In some cases, these intermediate quantities were available
for tests which are not listed in Table 1. Because important information for BR
determination was missing, these additional tests were incomplete and omit-
ted. A hierarchical structure permits analysis of the multiple and intermediate
quantities, recovering the information content of any incomplete tests.

This document is released to the public as Los Alamos National Laboratory
report, LA-UR-13-26617.
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Abstract. Natural Language Processing (NLP) includes Tasks such as Informa-
tion Extraction (IE), text summarization, and question and answering, all of 
which require identifying all the information about an entity exists in the dis-
course. Therefore a system capable of studying Co-reference Resolution (CR) 
will contribute to the successful completion of these Tasks. In this paper we are 
going to study process of Co-reference Resolution and represent a system capa-
ble of identifying Co-reference mentions for first the time in Farsi corpora. So 
we should consider three main steps of Farsi Corpus with Co-reference annota-
tion, system of Mention Recognition and its domain, and the algorithm of pre-
dicting Co-reference Mentions as the basis of our study. Therefore, in first step, 
we prepare a Corpus with suitable labels, and this Corpus as first Farsi corpus 
having Mention and Co-reference labels can be the basis of many researches re-
lated to mention Detection (MD) and CR. Also using such corpus and studying 
rules and priorities among the mentions, we present a system that identifies the 
mentions and negative and positive examples. Then by using learning algorithm 
such as SVM, Neural Network and Decision Tree on extracted samples we have 
evaluated models for predicting Co-reference mentions in Farsi Language. Fi-
nally, we conclude that the performance of neural network is better than other 
learners. 

Keywords: Co-reference Resolution, Mention Detection, SVM, Neural Net-
work and Decision Tree, Farsi Corpus. 

1 Introduction 

One of the characteristics of the discourse is that you can talk about one or more enti-
ties freely in a context and use different kinds of phrases to mention each entities, 
such as pronoun (he), Nominal (scientist), Name (Lotfali Askarzadeh), or a noun 
phrase (founder of fuzzy logic), so that the replication of phrases is reduced and  
Eloquence of the subject is increased. 
                                                           
* Corresponding author. 
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This property leads to the creation of potential chains of all noun phrases that refer 
to a same entity in the text (e.g. he, scientist, Lotfali Askarzadeh, founder of fuzzy 
logic which all refer to Professor Zadeh). One of the important goals of Extracting 
Information is the identification of these chains in the text which are performed under 
a process called Co-reference Resolution [1]. Information Extraction is one of the 
most important applications of NLP that is under the attention of researchers in two 
recent decades. The task of Information Extraction (IE) is such that, at first raw texts 
are received as input and finally processed data are returned as output. The frame 
obtained from IE can be useful for tasks such as data mining, question and answering, 
language understanding, summarizing, and information retrieval. Each IE system can 
be consisted of modules respectively such as Tokenization, POS tagger, Parser, 
Named Entity Recognition (NER), MD and CR. For instance, consider the following 
sentence: 

[Professor Lotfali Askarzadeh] is [founder of fuzzy logic], [he] enters human logic 
and nature language in mathematics. 

Using the term entity in Co-reference Resolution proposes the question that what 
are considered as entities? Various categorizing have been presented for different 
entities; e.g. AEC1 has suggested a 7-entities Type for Person, Organization, Loca-
tion, GPE2, Facilities, Weapon, and Vehicle, with many Sub-Type (e.g. Individual, 
Group) and a class for each entity[2], and most of the researchers take all these enti-
ties or sometimes some of them as their policies. 

The term co-reference was used for the first time by Hirschman and Chinkor in 
MUC3 conference [3,4]. Many other researchers and they consider two phrases as Co-
reference when both of the expressions exactly refer to a same entity in real world. 
Then, Co-reference Resolution task was the base of many researchers’ works. So that 
some of researchers such as Lee [5], Kobdani [6], and Bunescu [7] have obtained over 
80% of accuracy in English language. 

Generally, proposed methods for detection of co-referential mentions are divided 
into 2 total groups of linguistics and machine learning. So we need linguistic know-
ledge in linguistic methods. Extracting this knowledge from text is a timely process 
and with error. First linguistic algorithms related to Co-reference Resolution were 
proposed in late of 1970s, in which semantic linguistics has been used [8, 9]. Then, 
over the time and development of linguistic corpus, these methods were substituted by 
statistical methods. In statistical methods, required knowledge is obtained by great 
corpus and statistical methods, and needs less linguistic knowledge than previous 
method, and also leads to better results [10]. 

2 Lotus Corpus 

Labelling a corpus by Co-reference information is important linguistically and  
computationally. From linguistic view, a Corpus which is marked by Co-reference 
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2 Geo political. 
3 Message Understanding Conference. 
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information, provide knowledge about the kind of relationship between 2 Co-
reference mention and frequency of different kinds of Co-reference relations. From 
computational view, such corpus are appropriate for developing and examining auto-
matically trained systems. Samples of applying such corpus to develop and assess 
presented systems are [10..20]. In addition to mentioned applications, the corpus with 
Co-reference information can be useful for assessing systems that are only based on 
linguistic information and do not use statistical information. 

The number of corpus marked by co-reference noun phrases and is available for 
everyone is limited. MUC and ACE are corpus that languages like English, Arabic, 
and Chinese have been marked extensively in training and test systems of determining 
noun phrases. On the other side, since there was no such statue for Farsi language, we 
prepare a proper corpus called Lotus in order to utilize machine learning techniques in 
Co-reference Resolution. For this purpose, we consider 50 quite long texts from Bijan 
Khan4 Corpus as the base and marked given noun phrases. 

 

Fig. 1. Example of lotus corpus 

                                                           
4 http://ece.ut.ac.ir/dbrg/bijankhan/ 
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In Lotus corpus, which is a partly expansion of Bijan Khan, it is sufficient to speci-
fy main references related to Persons, Locations, Organizations, and GPE entities.  
In order to specify the mention type, entity type, entity sub-type, entity class, and 
referential code, we follow a series of certain laws. These laws are presented accord-
ing to information of [4,20] Which customized regarding to the Farsi language prop-
erties. A section of one of these corpus’ texts has been shown in fig.1. 

3 Determination of Appropriate Feature Vectors 

Generally, before application of machine learning techniques in the process of Co-
reference Resolution, wide range of linguistic properties is considered in this process. 
Extraction of some of properties like semantic properties and knowledge-domain 
properties is a timely with error process. 

After development the application of machine learning techniques in Co-reference 
Resolution, the properties need much linguistics were replaced by simple linguistic 
properties and statistical properties. Reported results about rich languages like English 
are obtained well through statistical methods. But since existing linguistic statistical 
tools in Farsi are very limited, only the properties have been used in this research that 
can be calculated simply by existing tools and are appropriate for training algorithms. 
Some of the properties used in this research are in accordance with presented proper-
ties in [10]. The list of selected properties can be observed with their description for 
each pair of mentions in table1 that shows our feature vectors. 

4 Extracting Positive and Negative Examples 

After determining feature vectors, now we should determine needed positive and 
negative examples for machine learning algorithm. Positive examples are created by 
pairing Co-referenced mentions and negative examples refer to the pairs that are not 
co-referenced. The number of extracted negative examples was more than positive 
one and it leads to an imbalance in training data. So, the number of negative examples 
reduced by applying some limitations; for instance, when both mentions are pronoun 
and pronominal, they wouldn’t be pair. Or in long texts, we consider the limitation of 
pairing up to 100 words domain. Finally, about 19% of extracted examples are posi-
tive and about 81% of them are negative. 

5 Determining an Appropriate Learning Algorithm 

Performed theoretical studies on machine learning show that none of deductive algo-
rithms works usually better than another. In order to choose an appropriate learner for 
learning a language (you can refer to[22]), the more learner is proper for the proper-
ties of that certain area, inferred model by the learner will be expand well to the new 
data of the area. In languages like English, Arabic, and Chinese the ground for such 
comparisons have been provided by creating comprehensive research corpuses like 
MUC, ACE, OntoNote etc. on which different methods have been examined. But 
such comparison has not been found for Farsi. Therefore, to choose an appropriate 
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learner to learn a Farsi problem, different learning methods should be tested practical-
ly for a unique statue. For this purpose, all samples obtained from previous stage are 
divided into 2 training group (80%) and experimental group (20%). Then, 3 basic 
learning algorithms were trained in  two environments of Clementine and Mallet by 
training group. And finally, models obtained by experimental group are assessed. 

Table 1. Feature vector of the mention pair 

 feature values description

1 
Num-I-

RepeatD 
1,2,3,… 

The number of repeated of 1st mention in the docu-
ment? 

2 Num-I-RepeatS 1,2,3,… 
The number of repeated of 1st mention in the last 
sentence?

3 
Num-J-
RepeatD 

1,2,3,… 
The number of repeated of 2nd mention in the doc-
ument? 

4 Num-J-RepeatS 1,2,3,… 
The number of repeated of 2nd mention in the last 
sentence?

5 I-Length 1,2,3,… The number of word forming 1st mention? 

6 J-Length 1,2,3,… The number of word forming 2nd mention? 

7 DIST-S 1,2,3,… Distance between two mentions (sentences)? 

8 DIST-W 1,2,3,… Distance between two mentions (words)? 

9 I-Pronoun T/F Is first mention pronoun? 

10 J-Pronoun T/F Is second mention pronoun? 

11 STR-Match T/F Is the head of first mention match with the second? 

12 Number T/F 
Is the number of first mention match with the 
second? 

13 Proper-Name T/F Is the first mention Name? 

14 Proper-Name T/F Is the second mention Name? 

15 APP-Match T/F Is the second mention the alias of the first one? 

16 Entity-Match T/F 
Is the entity type of first mention match with the 
second? 

17 
Sub-Entity-

Match 
T/F 

Is the entity subtype of first mention match with the 
second? 
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6 Evaluation 

6.1 Evaluation Criteria 

To assess learning machine, the comparison of 2 learners is needed to investigate their 
performance. In this regard, there are different assessment tools including MUC, B3, 
CEAF, Balance etc. Each of these measures can reflect different behaviour or results 
for a system [23]. 

Since the aim is that learning machine identifies Co-referenced mentions correctly, 
the results of the experiments are examined in the form of criteria of precision (1), 
recall (2) and F1 measure (3) for positive data[24]. These criteria examine the ability 
of the system to identify positive examples.  

 

 

(1) 

 

(2) 

 

(3) 

6.2 Evaluation’s Results 

Each of basic algorithms under different conditions have been examined and com-
pared to select the most appropriate learner. Learning machine of support vector ma-
chine (SVM) has been investigated with different cores (RFB, circle, and polynomial 
with degree 2 to 8). The results of investigating this algorithm indicate that both crite-
ria of precision and recall will increase in the core of polynomial by increasing the 
degree of polynomial. And consequently F1 criteria will goes up. Generally, SVM 
learner has core polynomial with degree 8 at the best conditions. 

On the other side, methods based on neural network like Perceptron have different 
layers, and finally the units will be connected to each other by different weights. In 
this research, 6 methods of building neural network models were examined and com-
pared (include rapid, dynamic, multiple, pruning, full pruning, and RFBN methods). 
RBFN method has better performance than others. 

At last, the comparison of assessment results from 2 methods have been said and 
decision tree has been shown in table2. 
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Table 2. Result of models 

 Precision Recall F1 
NN36.3934.66 39.40 

SVM29.3831.44 30.38 
DT39.5522.41 28.60 

7 Conclusion and Recommendations 

Unlike languages with rich sources like English, Farsi needs a few resources in addi-
tion to its special uncertainties. For instance, one of important challenges for Co-
reference resolution is the absence of statistical analyst and NER in Farsi. So, we 
introduce a new statue which has Co-reference resolution labels. Then, with regarding 
to the 17 introduced properties, existing negative and positive examples in Lotus cor-
pus are extracted and stored in our relational database. As it was mentioned above, the 
performance of learning algorithms implementation is no such that we can prefer one 
to another. Thus, in order to select an appropriate learner for Co-reference resolution 
in Farsi, the results from several basic learning algorithms were examined and com-
pared on extracted samples. Finally, we conclude that the performance of neural net-
work is better than other learners. 
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Abstract. This paper presents the real-time application of a discrete-
time inverse optimal control to a three-phase linear induction motor
(LIM) in order to achieve trajectory tracking of a position reference.
A recurrent high-order neural network (RHONN) is employed on-line to
determine the model of the motor. The equipment and software employed
are described as well as real-time trajectory tracking results.

1 Introduction

To implement a control law for a given system, its mathematical model is usually
needed. In real-time applications, this control law may not behave as desired be-
cause the mathematical model is not usually exact; there are always internal and
external disturbances, uncertain parameters and unmodelled dynamics. Neural
networks can be employed for nonlinear system identification [1].

Recurrent high-order neural networks (RHONN) are a generalization of the
first-order Hopfield network [2]. A RHONN model is able to adjust is parameters
on-line and allows to incorporate a priori information about the system structure
[1]. This fact motivates to employe the RHONN for identification of the plant to
be controlled. The Extended Kalman Filter (EKF) form the basis of a second-
order neural network training method [3], where the network weights become
the states to be estimated.

Inverse optimal control deals with the problem of determining a control law
for a given system such that a cost function is minimized and solving the as-
sociated Hamilton-Jacobi-Bellman (HJB) equation, needed in regular optimal
control design, is not required [4], [5]. For the inverse approach, a stabilizing
feedback control law, based on a priori knowledge of a Control Lyapunov Func-
tion (CLF), is designed first and then it is established that this control law
optimizes a cost functional.

The inverse optimal control algorithm requires that the full state vector is
available. This is not always the case, and then an observer must be implemented.
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High order siliding modes observers, as the Super Twisting-based observer, are
widely used because of their atractive features as high robustness and finite-time
convergence [6].

The linear induction motor (LIM) is a linear electric actuator on which the
electrical energy is turned into mechanical translational movement. LIMs present
advantages with respect to other types of motors. They develop magnetic forces
directly between the mobile element and the stationary element, without the
need of physical contact between both elements, which would restrict the sys-
tem dynamics. Then, LIM can reach higher speed and reduces undesirables vi-
brations [8]. For these reasons the LIM has been employed widely in industrial
applications such as the transportation, steel, textile, nuclear and space indus-
tries [9].

Different kinds of neural network-based controllers have been designed for
applications in linear induction motors, as in [10], [11], [12], [13] and many others,
where multi-layer perceptrons are employed for the control design. In this paper,
the main advantages of the proposed scheme are the employment of the neural
weights in a controller with an optimal approach and a significant reduction of
the quantity of neural weights required for the system identification, by means
of the employment of a RHONN.

In the following, Section 2 present mathematical preliminaries for the neural
identification and the inverse optimal control. Sections 3 and 4 describe the
application of these algorithms to the linear induction motor. Section 5 presents
the procedure and results of the real-time implementation and Section 6 exposes
the conclusions of the work.

2 Linear Induction Motor Identification

To identify the LIM model, a RHONN identifier [1], [14] is proposed as:

x1,k+1 = w11S(vk) + w12S(λα,k) + w13S(λβ,k)− w14(S(λα,k)ρ1

+S(λβ,k)ρ2)iα,k + w15(S(λα,k)ρ2 − S(λβ,k)ρ1)iβ,k

x2,k+1 = w21S(λα,k)
2 + w22S(λβ,k)

2 + w23wfS(vk)
2 + 2wf (w21S(λα,k)ρ2

−w22S(λβ,k)ρ1)iα,k + 2wf (w21S(λα,k)ρ1 + w22S(λβ,k)ρ2)iβ,k

x3,k+1 = w31S(vk) + w32S(λα,k) + w33S(λβ,k) + w34S(iα,k) + w35uα,k

x4,k+1 = w41S(vk) + w42S(λα,k) + w43S(λβ,k) + w44S(iβ,k) + w45uβ,k

x5,k+1 = w51S(qk) + w52vk (1)

where wij are the online adjustable network weights, except wf = 0.001, w14 =
0.001, w15 = 0.001, w35 = 0.02178, w45 = 0.02178 and w52 = 0.001 which are
fixed weights. qk is the motor position, vk is the velocity, λα,k and λβ, k are the
magnetic fluxes and iα,k and iβ,k are the motor currents.

The model (1) is represented in the Nonlinear Block Controllable (NBC) form
[14], with three different blocks:

x1
k = x5,k, x2

k =

[
x1,k

x2,k

]
, x3

k =

[
x3,k

x4,k

]
(2)
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The system is transformed into the error variables as

z1k+1 = K1z
1
k +W ′1

k z2k

z2k+1 = K2z
2
k +W ′2

k (χk)z
3
k

z3k+1 = f3(χk)− χ3
δ,k+1 +W ′3,ku(χk)

(3)

where z1k = χ1
k − χ1

δ,k, z
2
k = χ2

k − χ2
δ,k, χ

1
δ,k χ2

δ,k are the desired dynamics of
the first and the second block respectively, K1 and K2 are constant diagonal
matrices, and

W ′1
k = w52, W ′3

k =

[
w35 0
0 w45

]
W ′2

k =

[
−w14S(λα,k)ρ1 − w14S(λβ,k)ρ2 w15S(λα,k)ρ2 − w15S(λβ,k)ρ1

2wf (w21S(λα,k)ρ2 − w22S(λβ,k)ρ1) 2wf (w21S(λα,k)ρ1 + w22S(λβ,k)ρ2

]
f3 =

[
w31S(vk) + w32S(λα,k) + w33S(λβ,k) + w34S(iα,k)
w41S(vk) + w42S(λα,k) + w43S(λβ,k) + w44S(iβ,k)

]
(4)

The procedure to make this change of variables is fully explained in [14].
Trajectory tracking can now be achieved for the position reference χ1

δ,k.

3 Inverse Optimal Control for the LIM

In (3) z1k and z2k will have stable dynamics if the third block state z3k tends to zero
when k → ∞. Then, a control law has to be synthesized such that it stabilizes
z3k+1 in (3). The inverse optimal control law [4], [14] can now be applied. It takes
the following form:

uk = −1

2
(R+

1

2
W ′3TPW ′3)−1W ′3TP (f3(χk)− χ3

δ,k+1) (5)

where R = I2, I2 is the 2× 2 identity matrix, W ′3 and f3(χk) are defined in (4)
and T denotes the transpose matrix.

Fig. 1 represents the proposed identification and control scheme. The RHONN
model block is parallel to the unknown real LIM model and calculates the cor-
responding weights for identification. The neural inverse optimal control uses
these weigths to compute the inptut signal for the LIM model which stabilizes
the error with respect to the reference signal and minimizes the cost functional.
This control law is neural in the sense that it employes the neural weights to
syntesize the input vector.

3.1 Magnetic Fluxes Observer

In order to observe the magnetic fluxes of the LIM and use them in the control
law synthesis, the following Super Twisting observer is employed



166 V.G. Lopez, E.N. Sanchez, and A.Y. Alanis

Fig. 1. Identification and control scheme

λ̂α,k+1 = (1− k6T )λ̂α,k + k4Tvkρ1iα,k − k4Tρ1iα,k + k5Tρ2iα,k + k4Tρ2iβ,k
−k4Tvkρ2iβ,k + k5Tρ1iβ,k + a5Tsign(̃iα,k) + a6T ĩα,k

λ̂β,k+1 = (1− k6T )λ̂β,k + k4Tvkρ2iα,k − k4Tρ2iα,k − k5Tρ1iα,k − k4Tρ1iβ,k
+k4Tvkρ1iβ,k + k5Tρ2iβ,k + a7Tsign(̃iβ,k) + a8T ĩβ,k

îα,k+1 = (1 + k9T )̂iα,k − k7T λ̂α,kρ2 − k8T λ̂α,kvkρ1 + k7T λ̂β,kρ1

−k8T λ̂β,kvkρ2 − k10Tuα,k + a1T
∣∣̃iα,k∣∣1/2 sign(̃iα,k) + a2T ĩα,k

îβ,k+1 = (1 + k9T )̂iβ,k + k8T λ̂α,kvkρ2 − k7T λ̂α,kρ1 − k7T λ̂β,kρ2

−k8T λ̂β,kvkρ1 − k10Tuβ,k + a3T
∣∣̃iβ,k∣∣1/2 sign(̃iβ,k) + a4T ĩβ,k

(6)

where λ̂α,k, λ̂β,k, îα,k e îβ,k are the estimations of λα,k, λβ,k, iα,k and iβ,k respec-

tively, and ĩα,k = îα,k − iα,k and ĩβ,k = îβ,k − iβ,k are the available estimation
errors.

4 Real Time Implementation

For the real-time application of the control law described above, the following
equipment was employed:

DS1104 Board. DS1104 is a data acquisition and control board (trademark
of dSPACE GmbH). It has its own processor and memory where the control
algorithm is saved. In figure 2 (a) the top view of the DS1104 is shown.

This board has 6 PWMs drivers, a slave DSP, analog-to-digital converter,
digitalo-to-analog converter, incremental encoder and 20 digital input/outputs.
It allows to download applications directly from Simulink.

The DS1104 contains a processing unit MPC8240, which is conformed with:
microprocessor PowerPC603e, where the control model is implemented, inter-
ruption controller, DRAM synchronized controller, 4 general purpose timers, 32
bits, PCI interface (5v, 33Mhz, 32 bit).



Real-Time Implementation of a Neural Inverse Optimal Control 167

PMW Driver. The PMW driver is employed for the power stage. It is especially
designed for motor applications. It has six inputs which are exited by PWMSV
for sinusoidal signal reconstruction. These signales must have TTL levels and
they correspond to three signals, one for each phase, and their respective inverse.
The PMW driver presents short circuit protection, which is activated when the
IGBT rasie their temperature. In figure 2 (b) the PMW driver employed is
shown.

The main features of the PMW driver are: triphasic signal rectifier, high
speed IGBT (50GB123D), polarity-change speed of 5μs, SKHI22 drivers with
high speed CMOS excitation and isolation between the logic electronic stage
and the power electronic stage.

State Measuring. For the control algorithm, we have available the motor cur-
rents and position measuring. In order to obtain the currents measuring, we
employed the LEM HX-10P transducers. This sensor presents high measuring
precision, small size and space saving, and high immunity to external interfer-
ence. The sensor output voltage is directly sent to the analog-to-digital converter
of the DS1104.

The position of the motor is measured by a linear encoder KA-800M, which
send its output signals directly to the board. The motor velocity can be calcu-
lated by means of the position change in the sample time.

Linear Induction Motor. The plant where the control law is applied is a
linear induction motor LabVolt model 8228. This motor consists in a moveable
vehicle and a stationary rail. The moveable vehicle, which is mounted on four
bearing rollers, contains what is usually named as the stator of a conventional
induction motor. The stationary rail is referred to as the rotor in a conventional
induction motor. Two thumb screws on the moveable vehicle previde adjustment
of the air gap between the pole faces and the stationary rail surface. Figure 2 (c)
shows the moveable vehicle in the rail, with the linear encoder above the motor.

a) b) c)

Fig. 2. DS1104 board (a), PMW driver (b) and linear induction motor (c)
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Software. Matlab R2007b and Simulink 7 are the programming software in
which the control algorithm is implemented, while the Real-Time Workshop
transforms these programs into the programming language C and then links it
to the DSpace software. Matlab and Simulink are trademarks of the MathWorks
Inc.

DSpace R4 is the software which works as the link tool between the control
programm in Simulink and the DS1104 board. The ControlDesk tool allows to
display the information recieved from the board in order to clarify the visualiza-
tion of the experiment. DSpace is a trademark of dSPACE GmbH.

Figure 3 shows the connection scheme between the devices employed for the
control system. The computer has the necessary software to program the control
algorithm and to transmit the information to the data acquisition board. The
corresponding signals travel through the PMW driver which transform them into
the control inputs for the linear induction motor. The position and the currents
measuring are also transmited to the board for the closed loop system.

DS1104

Board
PC

PMW

Driver

Encoder and

current

sensors

Motor

Fig. 3. Control system scheme

4.1 Implementation Results

The neural inverse optimal control algorithm is implemented in real-time employ-
ing the board data and the observer outputs as the system states. The voltage
vector computed by the control programm are transmitted to the board for its
application to the linear induction motor.

In this algorithm, the sample time is T = 0.0003s and the matrices Ki of
the equation (3) are defined as K1 = 0.9 and K2 = 0.9. For the Kalman filter
algorithm, the matrices are defined as

Q =

[
0.63759 0

0 0.63759

]
, R = 0.006729 (7)

and the Super Twisting observer parameters are defined as a1 = a3 = 50, a2 =
a3 = 500, a5 = a7 = 1 y a6 = a8 = 0.1. Finally, the matrix P for inverse optimal
control is

P =

[
15 0.1
0.1 15

]
(8)

The position reference is taken as a sinusoidal signal with an amplitude of
20 cm. The control law applied to the motor is shown in the Figure 4 and the
trajectory traching result is presented in the Figure 5.
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Fig. 4. Input signals for trajectory tracking in real-time application
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Fig. 5. Real-time motor position with a sinusoidal reference signal

5 Conclusions

A neural inverse optimal controller for nonlinear discrete-time systems is ap-
plied in real-time to a linear induction motor. The neural identifier, trained with
the extended Kalman filter algorithm, adjusts its parameters in order to repro-
duce the system dynamics and provides the corresponding neural weights, which
are used for the control law. A Super Twisting-based observer was designed
to dispose of the flux magnitude of the motor. The proposed scheme achieves
trajectory tracking for a sinusoidal position reference with an amplitude of
20 cm.

References

1. Alanis, A.Y., Sanchez, E.N., Loukianov, A.G., Chen, G.: Discrete-time output tra-
jectory tracking by recurrent high-order neural network control. In: Proceedings
of the Conference on Decision and Control 2006, San Diego, California (December
2006)

2. Hopfield, J.: Neurons with graded responses have collective computational proper-
ties like those of two state neurons. Proc. Nat. Acad. Sci. 81, 3088–3092 (1984)



170 V.G. Lopez, E.N. Sanchez, and A.Y. Alanis

3. Haykin, S.: Kalman filtering and neural networks. John Wiley and Sons, Inc., New
York (2001)

4. Ornelas, F., Loukianov, A.G., Sanchez, E.N.: Discrete-time nonlinear systems in-
verse optimal control: A control Lyapunov approach. In: IEEE Multiconference on
Systems and Control (MSC 2011), Denver, CO, USA, September 28-30 (2011)

5. Freeman, R.A., Kokotovic, P.V.: Robust nonlinear control design. State space and
Lyapunov Techniques. Birkhauser, Boston (1996)

6. Salgado, I., Fridman, L., Camacho, O., Chairez, I.: Discrete Time Super-Twisting
Observer for 2n dimensional systems. In: 8th International Conference on Electrical
Engineering Computing Science and Automatic Control (CCE), Merida, Yucatan,
Mexico (2011)

7. Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode
controllers and observers. In: Proceddings of the 47th IEEE Conference on Decision
and Control (CDC), Cancun, Q. Roo, Mexico (2008)

8. Wildi, T.: Electrical machines, drives and power systems, 5th edn. Prentice Hall,
Upper Saddle River (2002)

9. Toliyat, H., Kliman, G.B.: Handbook of electric motors, 2nd edn. CRC Press, Boca
Raton (2004)

10. Abbasian, M., Soltani, J., Salarvand, A.: Control of high speed Linear Induction
Motor using Artificial Neural Networks. In: 2008 Conference on Human System
Interactions, Krakow, Poland (May 2002)

11. Hassan, A.A., Mohamed, Y.S., Elbaset, A.A., Hiyama, T., Mohamed, T.H.: A
neural network based speed control of a linear induction motor drive. In: 2010
IEEE Region 10 Conference (November 2010)

12. Lin, F.J., Wai, R.J., Chou, W.D., Hsu, S.P.: Adaptive backstepping control using
recurrent neural network for linear induction motor drive. IEEE Transactions on
Industrial Electronics 49, 134–146 (2002)

13. Lin, F.J., Huang, P.K., Chou, W.D.: Recurrent-Fuzzy-Neural-Network-Controlled
Linear Induction Motor Servo Drive Using Genetic Algorithms. IEEE Transactions
on Industrial Electronics 54, 1449–1461 (2007)

14. Lopez, V.G., Sanchez, E.N., Alanis, A.Y.: PSO Neural inverse optimal control for a
linear induction motor. In: IEEE Congress on Evolutionary Computation, Cancun,
Q. Roo, Mexico (2013)



 

M. Jamshidi et al. (eds.), Advance Trends in Soft Computing WCSC 2013,  
Studies in Fuzziness and Soft Computing 312,  

171 

DOI: 10.1007/978-3-319-03674-8_17, © Springer International Publishing Switzerland 2014 
 

Preliminary Results on a New Fuzzy  
Cognitive Map Structure 

John T. Rickard1, Janet Aisbett2, Ronald R. Yager3, and Greg Gibbon2 

1 Distributed Infinity, Inc. Larkspur, CO, USA 
terry.rickard@reagan.com 

2 The University of Newcastle, Callaghan, NSW, Australia 
{janet.aisbett,greg.gibbon}@newcastle.edu.au 

3 Machine Intelligence Institute, Iona College, New Rochelle, NY, USA 
yager@panix.com 

Abstract.  We introduce a new structure for fuzzy cognitive maps (FCM) 
where the traditional fan-in structure involving an inner product followed by a 
squashing function to describe the causal influences of antecedent nodes to a 
particular consequent node is replaced with a weighted mean type operator.  In 
this paper, we employ the weighted power mean (WPM).  Through appropriate 
selection of the weights and exponents in the WPM operators, we can both ac-
count for the relative importance of different antecedent nodes in the dynamics 
of a particular node, as well as take a perspective ranging continuously from the 
most pessimistic (minimum) to the most optimistic (maximum) on the norma-
lized aggregation of antecedents for each node.  We consider this FCM struc-
ture to be more intuitive than the traditional one, as the nonlinearity involved in 
the WPM is more scrutable with regard to the aggregation of its inputs.  We 
provide examples of this new FCM structure to illustrate its behavior, including 
convergence. 

1 Introduction 

Fuzzy cognitive maps (FCM) [1-4] are fuzzy signed di-graphs whose nodes corres-
pond to high-level descriptive concepts and whose links have weights corresponding 
to the causal relationships (positive or negative) between these concepts.  Associated 
with each node is a fuzzy value indicating the degree to which the corresponding 
concept is activated as a function of the activations of the other nodes that link into it.  
FCMs are implemented as dynamical systems that enable the modeling of first-order 
feedback relationships in complex networks.  Typically, certain nodes are initialized 
and held to fixed activation strengths, and then the network is iterated to determine 
the evolution of activations of the remaining nodes.  The asymptotic behavior of these 
activations reflects the coupling of causal relationships among the nodes.  FCMs have 
been the subject of a great deal of research interest in recent decades and have proven 
useful in modeling numerous applications, as surveyed in [4]. 

The dynamic structure of traditional FCMs is based upon a neural network model, 
where at each iteration the activation level of a given node is computed as a weighted 
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sum of the activations of its antecedent nodes at the previous iteration, which is then 
normalized by a sigmoid-type “squashing function” that maps this sum into either the 

interval [ ]1,1−  or the interval [ ]0,1   Starting from an initial state, repeated iteration of 

the node activations of FCMs employing this structure are known to follow trajecto-
ries resulting in either a fixed point, a periodic limit cycle, an aperiodic attractor or a 
chaotic attractor [2,5]. 

Aside from this variable convergence (or in some instances, non-convergence) be-
havior associated with the traditional FCM architecture, there is a more fundamental 
issue that detracts from its use in models of real-world conceptual relationships.  The 
simple, biologically-inspired neuronal model employed in this architecture is a serial 
combination of two functions: 1) a linear weighted arithmetic average to aggregate 
antecedent node activations, and 2) a nonlinear mapping of this aggregate output back 

into the interval [ ]1,1− or [ ]0,1 .  The serial combination of these two functions results 

in a somewhat inflexible and inscrutable mathematical transformation, as it imposes 
the limitation of a linear combination of the input activations, followed by a nonli-
nearity that is chosen primarily for its normalization properties rather than for its logi-
cal significance.  The entanglement between these two operations complicates the 
cognitive interpretation of the overall transformation. 

While this neuronal model has proven useful in many neural network applications 
involving the processing of relatively low-level features such as those derived from 
time series or pixel values, where a cognitive interpretation of the operation is perhaps 
of less concern, we question its efficacy in modeling the relationships between node 
activations involving the higher-level conceptual features typically encountered in 
FCM models.  A more intuitive and scrutable aggregation operator is desirable in 
these applications. 

This has led us to investigate alternative FCM architectures.  We are especially in-
terested in the class of mean operators [6,7] for use as the aggregation operator for the 
antecedent activations in the nodes of the FCM, and in this paper we consider in par-
ticular the weighted power mean (WPM) operator [8-11] acting separately on the 
positively and negatively causal antecedents to a given node, followed by taking the 
difference between the positive and negative aggregates, which is then simply shifted 

and scaled to produce a resulting node activation in [ ]0,1 .  

The WPM operator provides a scrutable aggregation of antecedent activations, in-
corporating both importance weighting of the antecedents and the ability to take a 
continuously variable perspective on the input contributions to the aggregation, rang-
ing from the most pessimistic (corresponding to the minimum activation amongst the 
input antecedents) to the most optimistic (corresponding to the maximum activation).  
This perspective is determined by the selection of the power exponent p  used in the 

WPM.  Various choices for p  correspond to well-known aggregation operators, e.g., 

min ( p = −∞ ), harmonic mean ( 1p = − ), geometric mean ( 0p = ), arithmetic mean     

( 1p = ), root-mean-square ( 2p = ), and max ( p = +∞ ).   

The normalization of the output of the WPM operator is implicit in its structure,  
resulting in values lying in the unit interval.  Thus the use of the WPM as an  
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aggregation operator for the positively (negatively) causal antecedents to a given node 
in an FCM enables us more intuitively to specify how the activations of these antece-
dent nodes exert a corresponding positive (negative) influence on the activation of the 
subject node.   

Another advantage of the WPM is that, using our results in [10], one can feasibly 
compute type-2 fuzzy WPM aggregations of type-2 fuzzy inputs.  This enables the 
FCM architecture employing the WPM to be generalized to the perceptual computing 
paradigm of [12], in similar fashion to that described in [13] for social networks.  
Indeed, our interest in the application of the WPM aggregator to FCM structure was 
originally motivated by the insights gained from its application to social network 
analysis.  In this case, rather than using scalar values for the WPM weights, exponents 
and activation values of the nodes in the FCM, we can use interval type-2 (IT2) fuzzy 
membership functions corresponding to a set of vocabulary words as in [12,13], 
which enables us to account for imprecise knowledge of these parameters. 

In Section II of this paper, we first describe the FCM architecture constructed from 
mean operators in general terms.  We then detail this structure in the case of the WPM 
operator and illustrate convergence behavior.  Section III provides examples of this 
new FCM architecture, and Section IV concludes.  We stress that our research in this 
area is ongoing, and thus the results in this paper are preliminary. 

2 FCMs Constructed from Mean Operators 

2.1 General Structure 

For a traditional FCM, at time k , the state of the thi  node attribute is given by 

 
1

( ) ( 1)
n

i i j j
j

A k f W A k
=

= − 
 
 
 ,                                           (1) 

where 0i iW ≠  admits the case of self-feedback and ( )f x  is a transfer or ‘squashing’ 

function that maps the inner product back into the interval [ ]1,1− , e.g., 

( ) ( )2 2( ) tanh( ) 1 1cx cxf x cx e e= = − +  or into the interval [ ]0,1 ,  e.g., 

( ) 1
( ) 1 cxf x e

−−= + . 

In this paper we consider updating node states using the shifted and scaled aggre-
gations of positively and negatively causal antecedent node states obtained through a 

weighted mean-type aggregation operator ( )xL , which for all points ( )1,..., nx x=x  

in the state n-cube [ ]0,1
n

 satisfies 

( ) ( ) ( )1 1min ,..., max ,...,n nx x L x x≤ ≤x .                                    (2) 

Such mean aggregation operators include the familiar weighted power means (WPM), 
the exponential means and the ordered weighted averages.  They also include new 
classes of thresholding mean type aggregation operators introduced in [14,15]. 
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Specifically, we consider dynamic systems for which the state at node i  at the thk  
time interval is given by 

 ( )( ) ( )( )( ) 1 0k

i i ix k L k L= − = =x x                             (3) 

for some mean aggregation operator [ ] [ ]: 0,1 0,1
n

iL →  and for ( )kx  the vector of 

node states ( )ix k   at time k . 

2.2 FCM Using the Weighted Power Mean 

Consider a FCM in which the state of the thi  node at time k  is given by the follow-
ing expression using the WPM: 

 

( )

1

1

1

1

( )

( 1) 0.5 ,

( ) 1 ( )

i
i

i
i

n p
p

i j j
j

i

n p
p

i j j i i i
j

W x k

x k

W x k x kδ δ

+
+

−
−

+

=

−

=

+ =

− + + −

      
 
       





                  (4) 

where 0,i jW + ≥  0i jW − ≥ , 0i j i jW W+ − = , and where 
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. 

The conditions insure that a given antecedent node may be positively or negatively 
causal (or neither) for a consequent node, but not both, while setting 0

i
δ =  covers 

cases where a node’s activation is fixed at its initial value, since then  

 ( )
1

( 1) 0.5 ( ) ( )i i
p p

i i ix k x k x k
+ + 

+ = + 
  

( )ix k= . 

The two WPM operators in (4) admit separate sets of importance weights on their 
respective antecedents and also admit separate exponents in the WPMs, which yields 
separate perspectives on the aggregations of positively and negatively causal antece-
dents.  Thus (4) provides a very general and logically intuitive inferencing structure 
for specifying the FCM node dynamics. 

Note further from (4) that if a node’s activation is not fixed and if all of its posi-
tively causal antecedent nodes have unity activations and all of its negatively causal 
antecedent nodes have zero activations, then the two WPM terms within the brackets 
take the values 1 and 0, respectively, and ( )ix k  takes the value 1.  On the other hand, 
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if all positively causal antecedent nodes have zero activation and all negatively causal 
antecedent nodes have unity activation, then ( )ix k  takes the value zero.  Finally, if 

the two WPM terms produce equal values then ( )ix k  takes the neutral value of 0.5.  

Thus our FCM structure exhibits intuitively desired behaviors at both the contra ex-
tremes and the equal-valued activations of the positively and negatively causal  
aggregations. 

We observe that the matrices i jW +  and i jW −  in some instances are right stochastic 

matrices, i.e., when they have at least one positive entry in each row, since then all of 
their row sums are equal to unity [16-18].  This type of matrix is also termed a proba-
bility matrix, transition matrix or Markov matrix, and is ubiquitous in the analysis of 
Markov chains. However, this is not always the case, particularly as the FCM node 
interconnections become more sparsely populated.  In the latter instances, there may 

be one or more rows in either i jW +  or i jW −  having only zero entries.   

Another feature to note from (4) is that, when all rows of both i jW +  and i jW −  have at 

least one positive entry and none of the node values is held fixed (i.e., there is an off-
diagonal positive entry in at least one of the matrices for each row), then the statio-

nary value of this equation is lim ( ) 0.5i i
k

x k
→∞

∀ = .  Under these assumptions, since all 

row sums of i jW +  and i jW −  then equal unity, the first two terms in the brackets in (4) 

cancel each other when ( ) 0.5j jx k∀ = .  This leaves only 1
i

δ =  within the brackets, 

and thus results in the identity ( ) 0.5i ix k∀ = .  Since in most applications of FCMs 

we are interested in their dynamics when one or more node activations are fixed, this 
case is of little practical interest. 

2.3 Convergence Properties 

The convergence properties for nonlinear iterations of the form in (4) can be noto-
riously difficult to prove in the absence of being able to demonstrate that the nonli-
nearity represents a contraction mapping.  There are certain cases where the WPM 
FCM cycles repeatedly between values, so (4) clearly is not a contraction mapping.  A 

simple example of this is seen by choosing the following matrices for i jW +  and i jW − : 

 
0 1 1 0

,
1 0 0 1

W W
   + −= =   
   

,                                       (5) 

in which case each ( ), 1,2ix k i =  in (4) cycles between two values.  One can artifi-

cially construct other FCMs in higher dimensions that also exhibit this cyclical  
behavior. 

However, in hundreds of thousands of simulations of WPM FCMs having a more 
realistic structure, we have observed overall exponential convergence with only a tiny 
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fraction, i.e. ( )410O −  exceptions.  These simulations were conducted by generating 

uniform random entries lying in [0,1]  for the initial vector ( )0x  and the matrices 

i jW +  and i jW − , along with uniform random entries lying in [ ]10,10−  for the individual 

values of jp+  and jp−  in (4).  We then randomly zeroed out entries in i jW +  and i jW −  

with varying probabilities, ranging up to 0.5, which produced sparser non-zero entries 
in these matrices, including instances where one or more entire rows of either matrix 
had all zero entries.  We then iterated (4) for a maximum of 1500 iterations or until 
the squared norm of the successive differences 

2
( 1) ( )k k+ −x x  was less than 

1210 .−   Figure 1 is a histogram of the number of iterations taken, drawn from 100,000 
WPM FCMs using such randomly generated weight matrices, WPM exponent vectors 
and initial activations.  The highest count to achieve convergence in this particular 
simulation was 667 iterations, but this obviously was an outlier.  In other simulations, 
we have observed, in the above-noted tiny fraction of cases, periodic cycling between 
two values for ( 1) and ( )k k+x x  . 

 

 

Fig. 1.  Histogram of number of iterations required to reach the convergence criterion of a 
squared norm difference between successive activations of less than 10-12.  Horizontal axis is 
iteration count.  Data from 100,000 simulations. 

For an 8-node FCM, convergence from arbitrary initial node activations to “inter-
esting” final values that are dependent only upon the system parameters and the val-

ues of any fixed node activations generally occurs in ( )10O  iterations (excepting the 

previously mentioned case where no node activations are fixed and all rows of i jW +  

and i jW −  have at least one non-zero entry, whereupon all node activations converge  

to 0.5).  
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We also tested the extreme cases where all exponents in the WPMs take values of 
positive or negative infinity, and observed similar results.  Thus the WPM FCM sys-
tem appears to be quite stable for a wide range of realistic parameter values, unlike 
the traditional FCM structure, which exhibits variable and generally unpredictable 
limiting behaviors.   

We have further work to do on the WPM FCM, both in determining possibly stric-
ter analytical conditions on convergence and in the analysis of the logical implications 
of the converged values.  However, we believe that the initial results obtained rec-
ommend themselves to exploitation of this more scrutable structure for modeling the 
causal relationships between higher-level concepts. 

3 Examples 

We present some examples in this section that illustrate the behaviors of the WPM 
FCM for various system parameters and initial states.  The examples are chosen to 
illustrate the effects of successive constraints on the initial node activations, begin-
ning with the unconstrained case.  For these examples, we could have selected a par-
ticular FCM from the numerous ones that have been studied in the literature (e.g., see 
4).  However, our purpose in this series of examples is to illustrate the impact of in-
cremental changes in the WPM FCM structure in order to demonstrate the intuitive 
logical consistency of this structure, which is one of its primary benefits relative to the 
traditional structure.  In future work, we shall perform comparisons between these 
two structural alternatives on previously studied applications. 

3.1 Example 1 

Let the transposes of the WPM exponent vectors ±p  be given by 

 9.651 0.271 7.961 -3.471 1.416 -3.037 -4.197 8.456

6.14 3.734 5.337 4.435 -3.169 -0.314 6.764 0.812

T

T

  

  

+ =
− =

p

p

 (6) 

and consider the matrices i jW +  and i jW −  given by 

0.393 0 0 0 0 0.455 0.152 0

0.219 0 0.7 0 0 0 0.08 0

0.37 0 0.184 0 0 0 0 0.446

0 0.055 0 0 0 0 0 0.945

0 0.983 0 0.017 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

W + =

 
 
 
 
 
 
 
 
 
 
 
                        

(7) 
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0 0 0 0 0 0 0 1
0 0 0 0.891 0 0.109 0 0
0 0 0 0.244 0.756 0 0 0
0 0 0.342 0.131 0.172 0 0.355 0
0 0 0 0 0.108 0.265 0.387 0.24

0.402 0.221 0 0 0 0.377 0 0
0.407 0.055 0.159 0.057 0 0.323 0 0
0.537 0.454 0 0 0 0 0 0.009

W −

 
 
 
 
 
 
 
 
 
 
 
  

=

                        

(8) 

 
Note that row 7 of W +  in (7) has all zeroes, indicating no positively causal inputs to 
node 7, whereas all other nodes have both positively and negatively causal inputs.   

From an initial activation state (0)x , the WPM FCM converges in 56 iterations to 

the final state shown below: 

 (0) 0.99 0.037 0.761 0.054 0.813 0.344 0.648 0.294
T

  =x                   (9) 

 (56) 0.619 0.529 0.476 0.426 0.626 0.368 0.223 0.324
T

  =x  (10) 

Note from (6) that 7p−  for the negatively causal WPM is relatively large and positive, 

so this WPM tends toward the maximum of its inputs.  Since there is zero contribu-
tion from the positively causal WPM for this node, this causes the converged value of 
node 7 to be relatively small (0.223).   

This value also happens to be the sole positively causal input for node 8, whereas 
its primary negatively causal inputs from nodes 1 and 2 have activations above the 
neutral value of 0.5, and their corresponding WPM has a positive exponent (0.812).  
This causes the converged activation for node 8 also to be relatively small.  Examin-
ing the other converged activations, we conclude that they appear to be consistent 
with the system parameters. 

3.2 Example 2 

Suppose that we now replace the first rows of i jW +  and i jW −  in Example 1 with all 

zeroes, i.e., so that the activation of node 1 is held fixed, with the remaining rows of 
these matrices, the WPM exponents and the initial activations unchanged.  The FCM 
now converges in 19 iterations to: 

 
 (19) 0.99 0.647 0.568 0.275 0.778 0.271 0.066 0.122 

 =x  (11) 

The activation of node 1 remains constant as expected, and its high value (virtually 

the maximum of 1) coupled with its significant weight in 7,1W −  and the large positive 

WPM exponent 7p−   for the negatively causal inputs to node 7 (with no positively 

causal input) results in a very low converged activation for node 7, exactly as would 
be anticipated. 
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3.3 Example 3 

Suppose now that both the first and fourth nodes’ activations are held fixed in Exam-

ple 1, so that the corresponding rows in i jW +  and i jW −  are all zero, with the WPM ex-

ponents and initial activations unchanged.  Then the FCM activations converge in 25 
iterations to: 

 (25) 0.99 0.705 0.555 0.054 0.806 0.267 0.065 0.108 
 =x  (12) 

Comparing this vector with the converged activations (11) of the previous example, 
we see that fixing the activation of node 4 at its low initial value of 0.054 has caused 
only minor rebalancing of the free nodes’ activations.  On examining the fourth col-
umn of W +  in (7), we see that node 4’s activation contributes nothing in the way of 
positively causal influence to any node except node 5, and to this one only to a very 

small degree since 5,4 0.017W + = . Thus virtually all of the effect of fixing node 4’s 

activation is accounted for in the negatively causal inputs, which is most prominent 
for node 2.  Again, the results are consistent with what would be expected of the  
logic. 

4 Conclusion 

We introduced a new FCM structure in this paper that has a more scrutable interpreta-
tion of the aggregations that go into the activations of its nodes, by employing the 
WPM as the aggregation operator in place of the traditional approach using a linear 
weighted average followed by a non-linear squashing function.  While purely periodic 
cycling between values of the activations can occur, individual components con-
verged in simulations of realistic structures. 

We illustrated this new FCM structure using examples both where the node activa-
tions are unconstrained and where one or two of the initial activations are held fixed.  
We demonstrated that the converged activations obtained from the iterations are con-
sistent with the implied logic of the WPM aggregations of the positively and negative-
ly causal inputs to the nodes, which lends empirical evidence to the utility of this new 
structure. 

In addition to its scrutability, this new structure can be extended to IT2 representa-
tions of both the linkage weights and the node activations using the results in [10] and 
[13], which enables us to compute the successive IT2 membership functions of the 
node activations as the iterations proceed. Thus we can employ the “perceptual com-
puting” paradigm of [12] to account for imprecise word-based descriptions of the 
causal relationship strengths, WPM exponents and initial activation levels in the 
FCM.  This represents a major extension to the modeling capability of FCMs. 

There obviously remains much work to do on both the analytical and practical as-
pects of this new FCM structure.  Given the preliminary and ongoing nature of our 
research, we have not yet applied it to specific modeling problems, nor have we yet 
compared our results to traditional FCM structures.  However, we intend to do so in 
future work. 
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Abstract. We present a sport skill data analysis with time series image
data retrieved from motion pictures, focused on table tennis. We do
not use body nor skeleton model, but use only hi-speed motion pictures,
from which time series data are obtained and analyzed using data mining
methods such as C4.5 and so on. We identify internal models for technical
skills as evaluation skillfulness for forehand stroke of table tennis, and
discuss mono and meta-functional skills for improving skills.

1 Introduction

As for human action and skill, internal structure of technical skill is layered
with mono-functional skill which is generated by human intention, and meta-
functional skill which is adjusted with environmental variation [13,8].

Matsumoto et al. discuss that highly skilled workers in companies have inter-
nal models of the layered skill structures and they select an action process from
internal models in compliance with situations [8].

It is even difficult, however, for skilled workers to understand internal models
completely by himself. They usually observe objectively their own represented
actions, and achieve highly technical skills with internal models. High level skill
is emerged with the refinement of internal models, where some processes are
smoothly collaborated such as a bottom-up process from mono-functional skill
into meta-functional skill, and as a top-down process of arrangement from rep-
resenting actions into mono and meta-functional skills [2]. On the contrary, in
the field of sport skill analysis, many researches are based on the body structure
model and/or skeleton structure model introduced from activity measurement
or biomechatronical measurement [10,3,9].

In our research, we assume that forehand strokes [3,9] of table tennis play
exemplify sport action, and then identify internal models using data mining
methods without body structure model nor skeleton structure model. We focus
on technical skill of table tennis [6], and analyze forehand strokes from motion
pictures. We evaluate those into three play levels as high/middle/low, and iden-
tify internal models using data mining methods [7].

2 Related Works

In [4], on the basis of laboratory research on self-regulation, it was hypothesized
that positive self-monitoring, more than negative self-monitoring or comparison
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and control procedures, would improve the bowling averages of unskilled league
bowlers (60 subjects). Conversely, negative self-monitoring was expected to pro-
duce the best outcome for relatively skillful league bowlers (67 subjects). In par-
tial support of these hypotheses, positive self-monitors significantly improved
their bowling averages from the 90-game baseline to the 9- to 15-game post-
intervention assessment (Ximprovement = 11 pins) more than all other groups
of low-skilled bowlers; higher skilled bowlers’ groups did not change differently.
In conjunction with other findings in cognitive behavior therapy and sports psy-
chology, the implications of these results for delineating the circumstances under
which positive self-monitoring facilitates self-regulation is discussed.

In [1], comparison of initial and terminal temporal accuracy of 5 male top
table tennis players performing attacking forehand drives led to the conclusion
that because of a higher temporal accuracy at the moment of ball/bat contact
than that at initiation the players did not fully rely on a consistent movement
production strategy. Functional trial-to-trial variation was evidenced by negative
correlations between the perceptually specified time-to-contact at the moment
of initiation and the mean acceleration during the drive; within-trial adaptation
was also evident in two of the subjects. It is argued that task constraints provide
the organizing principles of perception and action at the same time, thereby
establishing a mutual dependency between the two. Allowing for changes in
these parameters over time, a unified explanation is suggested that does not
take recourse to large amounts of (tacit) knowledge.

In [15], in the present studies, the Leuven Tennis Performance Test (LTPT),
a newly developed test procedure to measure stroke performance in match-like
conditions in elite tennis players, was evaluated as to its value for research pur-
poses. The LTPT is enacted on a regular tennis court. It consists of first and
second services, and of returning balls projected by a machine to target zones
indicated by a lighted sign. Neutral, defensive, and offensive tactical situations
are elicited by appropriately programming the machine. Stroke quality is deter-
mined from simultaneous measurements of error rate, ball velocity, and preci-
sion of ball placement. A velocity/precision (VP) and a velocity/precision/error
(VPE) indices are also calculated. The validity and sensitivity of the LTPT were
determined by verifying whether LTPT scores reflect minor differences in tennis
ranking on the one hand and the effects of fatigue on the other hand. Compared
with lower ranked players, higher ones made fewer errors (P < 0.05). In addition,
stroke velocity was higher (P < 0.05), and lateral stroke precision, VP, and VPE
scores were better (P < 0.05) in the latter. Furthermore, fatigue induced by a
prolonged tennis load increased (P < 0.05) error rate and decreased (P < 0.05)
stroke velocity and the VP and VPE indices. It is concluded that the LTPT is
an accurate, reliable, and valid instrument for the evaluation of stroke quality
of high-level tennis players.

[16] describes a method for the measurement of sports form. The data obtained
can be used for quantitative sports-skill evaluation. Here, they focus on the golf-
driver-swing form, which is difficult to measure and also difficult to improve. The
measurement method presented was derived by kinematical human-body model
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analysis. The system was developed using three-dimensional (3-D) rate gyro sen-
sors set of positions on the body that express the 3-D rotations and translations
during the golf swing. The system accurately measures the golf-driver-swing form
of golfers. Data obtained by this system can be related quantitatively to skill
criteria as expressed in respected golf lesson textbooks. Quantitative data for
criteria geared toward a novice golfer and a midlevel player are equally useful.

In [14], the ability to recognize patterns of play is fundamental to performance
in team sports. While typically assumed to be domain-specific, pattern recog-
nition skills may transfer from one sport to another if similarities exist in the
perceptual features and their relations and/or the strategies used to encode and
retrieve relevant information. A transfer paradigm was employed to compare
skilled and less skilled soccer, field hockey and volleyball players’ pattern recog-
nition skills. Participants viewed structured and unstructured action sequences
from each sport, half of which were randomly represented with clips not previ-
ously seen. The task was to identify previously viewed action sequences quickly
and accurately. Transfer of pattern recognition skill was dependent on the par-
ticipant’s skill, a sport practised, the nature of the task and degree of structure.
The skilled soccer and hockey players were quicker than the skilled volleyball
players at recognizing structured soccer and hockey action sequences. Perfor-
mance differences were not observed on the structured volleyball trials between
the skilled soccer, field hockey and volleyball players. The skilled field hockey
and soccer players were able to transfer perceptual information or strategies be-
tween their respective sports. The less skilled participants’ results were less clear.
Implications for domain-specific expertise, transfer and diversity across domains
are discussed.

3 Analysis for Table Tennis Forehand Strokes

In researches of sports motion analysis, [12] records excited active voltage of
muscle fiber using on-body needle electromyography, and [11] uses a marking
observation method with on-body multiple marking points, where their objects
are to clarify body structure and skeleton structure.

In our research, we assume that technical skills consist of internal models of
layered structure as;

– Mono-functional skills corresponding to each body part, and

– Meta-functional skills as upper layer.

We thus identify internal models from observed motion picture data and skill
evaluation with represented actions, without discussing the body structure or
the skeleton structure. Figure 1 shows our system structure.

In this paper, we focus on table tennis among various sports, and analyze
table tennis skills of forehand strokes from observed motion picture data and
skill evaluation with represented actions.
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Fig. 1. Conceptional model system

3.1 Experiments

In our experiments, there are 15 subjects who are university male students. At
first, we have recorded moving pictures of 15 subjects who are 7 high / 3 middle
/ 5 low-level university students. As skill evaluation of representing action, We
classify as;

– Expert class: members of table tennis club at university,
– Intermediate class: student who used to be members of table tennis club at

junior high or high school, and
– Novice class: inexperienced students.

Each player is marked 9 points on the right arm as;

1. Acromioclaviclar joint point,
2. Acromiale point,
3. Radiale,
4. Ulna point,
5. Stylion,
6. Stylion ulnae,
7. Inner side of racket,
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8. Outer side of racket, and
9. Top of racket.

Figure 2 shows positions of marking setting.

Fig. 2. Measurement markings

The ball delivery machine (TSP52050, YAMATO Table Tennis Inc.) is in-
stalled around 30 cm from the end line of the table on the extension of the
diagonal line. Balls are delivered on 20 degree elevation angle, 25 of speed levels,
and 30 of pitch level at that machine. A subject player returns the delivered ball
in a fore-cross way, where the ball is bounded 75 cm inside from the end line.
We have recorded the moving traces of forehand strokes using a high-speed cam-
corder (VCC-H300 by Digimo Inc., resolution: 512× 512 pixel and frame-rate:
90 fps) installed 130 cm tall and 360 cm ahead of the player.
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While returning the player in 10 minutes, several forehand strokes are recorded
for each player (See Figure 3).

Fig. 3. Pictures of subject

4 Skill Class Identification Using Data Mining Techniques

4.1 Three-Class Identification

In our experiments, technical skills of table tennis depend on trajectories rather
than axes of observed making points. The skill evaluation of representing ac-
tion consists of three classes such as Expert, Intermediate, and Novice. Each
marking position is represented two dimensional and so the observed data are
reconstructed in 90-input / 3-class output. As for expert players, data on two
players, which have a high correlation coefficient, are used as learning data, and
the rest (one player) for the evaluation.

For applying observed data of forehand strokes of 9 subject players, we re-
construct time series data from the original data. One datum is a set of 90-tuple
numbers (9 markings × 2 axis (x, y)× 5 frames), and each datum is overlapped
with 3 frames data (from third to fifth frame) of the next datum for presenting
linkage of each datum (See Fig 4).
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Fig. 4. Data structure from isolated pictures

We use an integrated data-mining environment “weka” [17] and analyze the
data by C4.5, Native Bayes Tree (NBT), Random Forest (RF). Table 1 shows
the recognition rate of modified data sets. Table 2 also shows the discrimination
of classes for each analyzing method for evaluation data.

Table 1. Recognition rate of modified data sets for three classes

Recognition Rate(%)
Learning data Evaluation data

C4.5 98.1 43.3

NBT 100.0 32.8

RF 100.0 25.4

In those results, recognition rates of NBT and RF for learning data are 100%,
which may be over-learned. The rates for evaluation data are not so good, though
C4.5 makes good results for both learning and evaluation data. On the contrary,
the result of the number of class recognition for each method in Table 2 implies
that NBT and RF tend to recognize Expert as Intermediate as well as Novice
as Intermediate, and furthermore, fail to evaluate Intermediate for Expert and
Novice evaluation data. C4.5 recognizes Expert as Novice, and Novice as Inter-
mediate. All recognition methods tend to select Intermediate in general.

We thus make new data sets which consist of differences of marking data
for each frame of the modified data, and apply C4.5 into the new data. Figure
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Table 2. Discrimination of classes

Number of classes for learning data
Output class Expert Intermediate Novice

Expert 14 0 2
C4.5 Intermediate 2 0 23

Novice 11 0 15

Expert 1 0 2
NBT Intermediate 14 0 17

Novice 12 0 21

Expert 6 0 4
RF Intermediate 13 0 25

Novice 8 0 11

Table 3. Recognition rate of differential data sets

Recognition Rate(%)
Learning data Evaluation data

C4.5(Difference) 97.1 48.9
C4.5(Original) 98.1 43.3

3 shows the result. This difference data can be regarded as acceleration rate
approximately. This result shows a little improvement for recognition rate, which
may suggest that the acceleration value is more important to recognize than the
time series data.

4.2 Two-Class Identification

As mentioned above, one reason for decreasing the classification rate may be the
existence of Middle class, as the features are not specific rather than the other
two classes. The skill evaluation of representing action consists of two classes
(expert / novice). Each marking position is represented two dimensional and so
the observed data are reconstructed in 90-input / 2-class output. As for expert
players, data on two players, which have a high correlation coefficient, are used
as learning data, and the rest (one player) for the evaluation.

In those results, recognition rates of NBT for cross validation and learning
data are not so good. The recognition rate for evaluation data on C4.5 is quite
good, though NBT makes poor results as for all data.

Table 4. Recognition rate of modified data sets for two classes

Recognition Rate(%)
Cross Validation Learning data Evaluation data

C4.5 95.6 98.1 81.2

NBT 58.9 58.9 52.8
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Table 5. Discrimination of classes on C4.5

Number of classes for learning data
Output class Expert Novice

C4.5 Expert 40 0
Novice 26 72

We investigate further for C4.5 analysis so that novice player classification is
perfect, though some of expert players are classified into novice, which might be
because of some subtle differences of swings, though they should be investigated
more.

5 Conclusion

This paper addresses analysis and identification for internal models for technical
skills as evaluation skillfulness for forehand stroke motion pictures of table tennis,
and discuss mono and meta-functional skills for improving skills. We had some
experiments and some results imply that expert or intermediate players can make
some categorical groups for technical skills, but there seems not to be a category
for novice players because of various individual technical skills. Futhremore, for
applying observed data of forehand strokes of players, we reconstruct time series
data from the original data and analyze the new data by data mining techniques
such as C4.5, NBT, RF, where the recognition rate for evaluation data is not so
good, though C4.5 makes good results for both of learning and evaluation data.

As future plans, we have to progress further evaluation, and measure more
precise data and then analyze if needed.
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Abstract. Graph search based path planning is popular in mobile robot applica-
tions and video game programming. Previously, we developed the A-r-Star 
pathfinder, a suboptimal variant of the A-Star pathfinder with performance that 
scales linearly with increasing the resolution (size) and hence sparseness of the 
grid map of a given continuous world. This paper presents the study of the di-
rect acyclic graph (tree structure) formed by the A-r-Star and outlines steps to 
developing an incremental version of the A-r-Star. The incremental version of 
A-r-Star is able to replan faster using information from previous searches to 
speed up subsequent searches.  

Keywords: Graph and tree search strategies, Heuristic methods. 

1 Introduction 

Graph search based path planning is popular in mobile robot applications and video 
game programming. Search-based planning techniques usually operate on occupancy 
grids [1]. The configuration space is represented as a tessellation of regularly sized 
grid cells with the start location of the robot and the goal location within the grid. A 
search is then performed on the grid to solve the point-to-point problem by finding a 
chain of free cells (grid cells that are free of obstacles) linking them. Usually these 
cells form the shortest possible path. The  algorithm, one of the pioneer pathfind-
ers (graph search algorithms), is most popular for path planning in mobile robot and 
video games [2]. Among the challenges facing  and its counterparts is the fact that 
they are offline search algorithms and that limits their applicability to static environ-
ments. Incremental search algorithms are more powerful in handling path planning in 
dynamic environments; since they reuse information from previous searches to speed 
up subsequent path planning tasks. Such incremental pathfinders include   [3],   [4] and Lifelong Planning ( ) [5] algorithms have been developed 
and presented in literature. Previously we developed   (pronounced “A-r-Star”) 
pathfinder [6], a suboptimal variant of the A-Star pathfinder with performance that 
scales linearly with increasing the resolution (size) and hence sparseness of the grid 
map of a given continuous world. Informal proofs and simulation experiments have 
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demonstrated that, the   algorithm is faster than the  algorithm running in a 
uniform and sparse grid. Also, the performance of   can scales linearly with in-
creasing the gridding resolution of a given world. This paper presents the study of the 
direct acyclic graph (tree structure) formed by the A-r-Star and outlines steps to de-
veloping an incremental version of the A-r-Star. The incremental version of A-r-Star 
is able to replan faster using information from previous searches to speed up subse-
quent searches. The rest of the paper is organized as follows, Section 2 gives a back-
ground of the directed acyclic graph (DAG) formed by search algorithms, Section 3 
describes the   and steps to developing the incremental  , Section 4 gives some 
results and discussion and Section 5 gives the conclusion and some possible research 
extensions.  

2 Background 

2.1 The Direct Acyclic Graph 

The planning algorithms maintain two main lists namely the OPEN list and the 
CLOSED list [1]. The CLOSED list comprises of all the nodes that have been ex-
plored already, and the OPEN list comprises of all the nodes that have at least one of 
their neighbours explored and are therefore potential candidates for the next explora-
tion. The path planning algorithms essentially take the regular grid and build a DAG; 
specifically a tree rooted at the node from which the search starts (NB: this node may 
be different from the start node). A DAG is a graph with directed edges which has no 
directed cycles. Table 1 lists some of the planning algorithms and their root nodes. 
Fig. 1 is an example DAG built by  searching from node (1,1) to node (6,6) on an 
obstacle free 6x6 grid world.  

Table 1. Root Nodes for the DAG Built by the Various Pathfinders 

Path Finder Root Node 

  Start Node 
/ ,  Goal Node 

Incremental  (  Start Node  Goal Node 
 
It can be shown that, after each complete search, all the nodes on the CLOSED list 

(explored nodes) are roots of sub-graphs in the DAG and the nodes on the OPEN list 
are the leaves of DAG. Thus, blocking of a single node on the CLOSED list means 
that node has been discontinued from the main DAG. Hence, the system has to find a 
systematic way of reconnecting all the sub-graphs (and leaves) rooted at that blocked 
node to the graph where possible. In some circumstance, the blocked node will put all 
the leaf nodes beyond a lower bound of the path cost to the goal (i.e. the new optimal 
goal distance ), and that means that all the leaves on the sub-graph cannot 
become part of the main graph anymore. Under such circumstances, the system will 
take the goal and place it as part of another sub-graph. 
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Fig. 1. An example of the DAG built by A* on a  grid while searching from ,  to ,  

This idea of discontinuous sub-branches and reconnection of sub-branches has 
been exploited in the developing of incremental search algorithms such 
as  ,  ,  and  , and etc.  ,  uses the concept of 
RAISED (nodes whose edge costs have increased due to the change in edge cost) and 
LOWERED (nodes whose edge costs have decreased by the change in edge cost) to 
propagate the cost changes to all the sequences that contain the edges whose costs 
have changed [1]. 

 exploits this knowledge by using consistency evaluation (over-consistent 
and under-consistent nodes) to propagate the edge cost changes to the affected se-
quences of back-pointers (sub-graphs) [2].  [3]operates in a way similar to 

 except that it starts searching from the goal and so implements a routine to 
prevent cycles in the graph when propagating the cost changes. The subsequent sec-
tions illustrate how this knowledge has been used to develop an incremental version 
of  . 
3 Methodology 

3.1 The A-r-Star Pathfinder 

The  algorithm is a modified version of the  algorithm that interweaves node 
decimation with path-finding in a uniform grid/mesh. For a given node,  counts 
only immediate nodes (4- or 8- connected nodes) as its neighbors. Thu, even when all 
the nodes in a particular area are similar, it will still do some computation for all of 
them. Consequently, if an obstacle blocks the direct line of sight close to the goal, the 
number of nodes that need to be explored increases by a factor of two or more. This 
translates into increasing the search time. Fig. 2 illustrates this phenomenon and 
shows how this contributes to ‘kinks’ in the path returned by . The circles indicate 
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The overall effect is a reduction in the number of nodes needed to be explored, 
computation cost and increased search speed in a sparse uniform gridded world. The 
‘star’ in the name does not suggest that it always finds an optimal path, it is just in-
tended to retain its resemblance to its namesake, . The r stands for radius (range) 
defined as the maximum allowable radius (in node distance) of a ‘ball’ of nodes that 
can be counted as the neighbors of a given node (see Fig. 3) Thus, only Level-R-
Neighbors are considered during the search where  1 .  

Let the node distance from the closest obstacle node to a given node  be  , 
then at the end of the search:    ∈ . Implementation-wise, this is 
achieved by searching for the minimum R, such that, at least one of the Level-R-
Neighbors of a node being expanded belongs to the set of blocked nodes. Then all 
nodes in the neighborhood of   such that  are tagged as skip nodes 
( . ) and nodes such that  are returned as the Level-R-
neighbors. The pseudo code for the algorithm is similar to that of  with two  
modifications. The first modification is by replacing the Expand subroutine in the 

algorithm [1, 2] with a modified version whose the pseudo-code shown in  
Algorithm 1. 

This modification will not allow a node to be placed on the OPEN list once it is 
tagged as skip (Algorithm 1 line L.10) However, the nodes that get placed on the 

 list before being tagged as skip will be explored. Thus, after the first modifica-
tion, tag open dominates/overwrites tag skip. The second modification is to switch the 
tag dominance so that skip dominates open. This suppresses nodes that make it to the 

 list from one node before being tagged as skip from another node from being 
expanded (i.e., they will stay on the  list till the algorithm terminates).  

L.01: Expand , ,   , ,  
L.02:  R:=1; 
L.03:  skipflag:=true 
L.04: while R≤r 
L.05:   levelrneighbor :=LRNG ,  
L.06:   foreach  s' ∈ levelrneighbor  
L.07:    if s' ∉  
L.08:     skipflag:=false 
L.09:     continue 
L.10:    Elseif  s'.tag≠skip and  s'∉  
L.11:     lrneighbors:=lrneighbors ∪ s' 
L.12:   if not(skipflag) 
L.13:    return lrneighbors 
L.14:   Foreach s' ∈ lrneighbors 
L.15:    s'.tag≔skip; 
L.16:    r++ 
L.17:  return lrneighbors 
L.18: end 

Algorithm 1. First modification resulting in the Basic A-r-Star 
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The resulting algorithm after the last modification is called the      algorithm. 
The  pseudo code can be derived after the first modification by including in the 
main code a ‘tag inspector’ to ensure that nodes that are tagged skip are not expanded, 
the price to be paid is in the form of storage memory requirement. An alternative way, 
which trades off memory for computational power, is to immediately delete a node 
from the OPEN list once it is tagged skip. 

3.2 Multiple Goal Path Planning 

The  algorithm, like the other pathfinders, builds a DAG during a path search. The 
only major difference is that the DAG build by   has many ‘silent’ nodes. These 
are the nodes tagged as skip and therefore doesn’t appear on the graph. Consequently, 
very less information is available about these nodes. The DAG developed by  can 
be harnessed in subsequent path searches. This is the case if the environment remains 
unchanged and the given subsequent path search task starts from the same root node. 
Multiple-destination path planning is applicable to multiple agent based applications 
wherein a single planner plans paths to send agents from a single point (base station) 
to multiple destinations.  Conversely, it can be applied to scenarios wherein a planner 
dispatches agents from multiple destinations to a single point, to accomplish a single 
goal that may be beyond the capability of a single agent.  

To derive the validity usability of previous DAG for subsequent searches, consider 
the general cost function used in most the heuristic graph search algorithms shown in 
Equation (1).  

  1  

Here,  is the start distance-defined as the best discovered distance from the root 
node to the node ; and  is the user defined heuristic estimate of the distance 
between the node  and the destination/goal node. Therefore, the cost function  
is the estimated cost from the root node to the goal node passing through node . As-
suming that the environment is static, it is expected that after the search, the cost func-
tion will become Equation (2) for all the nodes which are on the CLOSED list. The 
‘star’ in  indicates an optimal distance. 

  2  

This implies that, the same structure can be used to plan the path to any point in the 
environment from the same root node. Since the nodes on the CLOSED node have 
optimal g(s), they do not need further expansion. To prove this, consider the expan-
sion of Equation (1) for the static environment as shown in (3). 

 ,  3  

Since ,  remains constant for a static environment; for every node on 
the OPEN list, there exists a parent on the CLOSED list and thus 

). Note however that, this parent might not be the optimal parent for 
that particular node on the OPEN list. The task of planning a suboptimal path from 
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the root node to another node with parent on the CLOSED list is trivial 
cause  . Thus, it reduces to path planning from the 
parent to the child (NB: there is a direct line of sight between every child and the 
parent) and the path planning between the root node and the parent which exists al-
ready in the previous structure. This approach is similar to the ROADMAP [1] ap-
proach to path planning. The task of planning from the root node to another node 
beyond the reach of the previous search can be done by changing the heuristic for all 
the nodes in the OPEN list to conform to the current goal node. That is, ,  
becomes  , ; here  is the new destination. This will naturally 
extend the previous graph towards that new goal. 

3.3 Incremental A-r-Star 

The incremental  algorithm consists of essentially two main procedures namely 
PROCESS-STATE and PRUNE-BRANCH. The PROCESS-STATE procedure handles 
the computation of the DAG either from scratch or by extending an existing DAG 
from previous search to cover the current goal node as described in subsection 3.2. 
Therefore, the PROCESS-STATE procedure is the same as the  pathfinder pre-
sented earlier except that it starts its search from the goal node. This implies that, the 
DAG that will be built will be rooted at the goal node. Secondly, we introduce an 
array that keeps track of the parent-child relationships. The PRUNE-BRANCH proce-
dure effects edge cost changes and prunes the sub-graphs and/or leaves from the main 
DAG by dissolving all the sub-graphs centered at the parent of the blocked node. 
Note: the dissolution starts from the parent and not the current node because the cur-
rent node is blocked and need to be removed from the tree along with all its siblings. 
The pseudo code for the algorithm for the PRUNE-BRANCH procedure is shown in 
Algorithm 2.  

L01:  PRUNE-BRANCH  
L02:    s_p=parent  
L03:   PNodes=∅ 
L04:   PNodes.Insert  
L05:   while PNodes≠∅ 
L06:    s_c=PNodes.pop  
L07:    if TAG =closed 
L08:     Branches=RootBranches  
L09:     PNodes.Insert  
L10:     CLOSED.Remove  
L11:    esleif TAG open 
L12:     OPEN.Remove  
L13:    TAG =NEW 
L14:    g =∞ 
L15:    OPEN.Insert  
L16: end 

Algorithm 2. The pseudo code for PRUNE-BRANCH 
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The algorithm first looks forward for the parent of the node affected, and saves that 
in . This node is placed on the  array. The system then enters into the loop-
ing mode until  becomes empty. At every loop, the system pops a node from  

 and stores it in  which is the current node under consideration. 
Next, the system accrues all its children using  and puts them 

on PNodes and set  to free the node for subsequent re-planning. 
NB: If s  belongs to the CLOSED or OPEN list, it must be removed from it. For 
example, Fig. 4 shows a DAG built by  pathfinder planning from node (1,1) to the 
node (3,10) in an obstacle free grid. After planning the path, if the robot start navigat-
ing from the starts node (3,10) towards the root node (1,1) and it discovers that node 
(1,5) is blocked, the first 10 iterations will proceed as shown in Table 2. Iterations 11 
to the end only involve the freeing of the leaf nodes. In effect, the other sub-graphs 
rooted at (1,3) and those which are not rooted at (1,3) are left. The information stored 
in these sub-graphs can therefore be reused for the replanning.  

 

Fig. 4. A Sample DAG built by the A-r-Star for a 10 x10 grid world without obstacle, when 
searching from node (1,1) to (3,10) 
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Table 2. First Ten Iterations of PRUNE-BRANCH Acting on the Sample DAG in Fig. 4 When 
Blocked at the Node (1,5) 

Iteration   
1 (1,4) (1,4) (1,5) 
2 (1,5) (1,5) (1,6),(2,6) 

3 (1,6), (2,6) (1,6)  
4 (2,6) (2,6) (4,7), (1,8), (2,8), (3,8), (4,8) 
5 (4,7), (1,8), (2,8), (3,8), (4,8) (4,7)  
6 (1,8), (2,8), (3,8), (4,8) (1,8)  
7 (2,8) (2,8)  
8 (3,8), (4,8) (3,8) (1,9), (1,10), (2,10),(3,10), (4,10), 

(5,6), (5,7), (5,8), (5,9), (5,10) 

9 (1,9), (1,10), (2,10),(3,10), (4,10), 
(5,6), (5,7), (5,8), (5,9), (5,10) 

(1,9)  

10 (1,10), (2,10),(3,10), (4,10), (5,6), 
(5,7), (5,8), (5,9), (5,10) 

(1,10)  

3.4 Challenge for the incremental A-r-Star 

One major challenge of using the PRUNE-BRANCH algorithm is that, when the 
blocked node is very close to the root node; it tends to be time consuming. This is 
because, there will be a lot of branches to dissolve and this will take a longer time to 
complete. During real time implementation on a robot, this can be overcome by dis-
solving nodes and their corresponding branches as soon as they are traversed, thus the 
dissolution time will spread over the run time. 

4 Results and Discussion 

4.1 Comparison of the A-r-Star Planning from Scratch with That  
of A-r-Star Reusing the Previous DAG 

Table 3 shows a time comparison for the multiple-goal search on the maze in Fig. 5. 
Different destinations were searched in turn as shown in the goal column of the Table 
3. The environment is kept constant throughout the search. Also,  was kept 
constant at  280,90 . In the figure, blue = previous path; magenta = plan from 
scratch; Green = replan using previous DAG; black = obstacle nodes; gray = the mul-
ti-resolution grid built by  ; white = free spaces. The first scenario plans from 
scratch anytime it is queried with a new goal but the second one reuses the informa-
tion from DAG built by previous searches. It can be seen that, reusing the information 
from previous DAG amounts to a substantial increase in speed depending on how 
close the new goal is to a leaf in the previous graph. 
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Fig. 5. A simple maze showing the different paths planned and replanned by the A-r-Star 

4.2 Comparison of the Incremental-A-r-Star and the D-Star-Lite 

Fig. 7 illustrates the re-plan time comparison between the incremental  and 
 for the world map shown in Fig. 6. The cells that were blocked have been indi-

cated on the horizontal axis. Also note that the node blocking was accumulative, 
meaning when a node is blocked, it remains blocked in the next iteration. The incre-
mental  Algorithm outperforms  when the blocked node is farther from 
the root node but  outperforms the incremental  when the blocked node 
is closer to the root node.  

Table 3. The run time comparison for the A-r-Star algorithm searching multiple number of 
times in a static environment when it reuses the previous information and when it plans from 
scratch 

Goal Plan From Scratch Use Previous DAG 

(80, 80) 4.97 4.96 

(80, 260) 4.85 0.07 

(20, 200) 2.73 0.05 

(20, 340) 5.70 1.04 

(50, 360) 4.84 0.02 

(140, 280) 5.40 0.15 

140, 380) 4.13 0.02 

(180, 300) 2.16 0.01 

(240, 420) 2.88 0.01 

(220, 260) 3.67 0.02 
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Abstract. The analysis of existing methods and approaches for solving trans-
port logistics problems was performed in this paper, particularly, for optimal 
choice of transport company. In the working process the complex of decision 
making criteria was formed and the hierarchical structure of decision support 
system (DSS) for corresponding tasks was made. Thereby the list of different-
type methods (classical and fuzzy) for synthesis of developed DSS was defined. 
A comparative analysis of the application of fuzzy analytic hierarchy process 
and the method based on fuzzy inference was held for synthesis DSS for the 
optimal choice of transport company. The final results prove the effectiveness 
and reasonability of using fuzzy modeling in problems of transport logistics. 

Keywords: fuzzy AHP, fuzzy inference system, decision support system, 
transport logistics. 

1 Introduction 

Decision support systems (DSS) for solving different-type problems help for  decision 
makers (DM) to form and use corresponding databases of a priory and current data, 
models, algorithms and criteria of making effective decisions [1] in automatic and 
interactive modes. 

Different methods, models, theories and algorithms are used for analysis and crea-
tion of alternative decisions in DSS [1], among them are: intelligent analysis of data, 
simulated and fuzzy modeling, genetic algorithms, neural networks, decision making 
theory, fuzzy-sets theory and fuzzy logics, etc.  

Any intelligent system can be presented as generalized model, the structure of 
which is described with the help of corresponding approaches and mathematical rela-
tions upon availability of clearly defined (formalized) information, which can be pre-
sented by quantity characteristics. Thereby the necessity in processing fuzzy, in other 
words quality information, which is hard or impossible to formalize, becomes more 
actual [2].  
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Information systems and program complexes play important role in transport logis-
tics as they serve for analysis, planning and supporting of decision making processes, 
and also for providing the necessary level of services quality and increasing of trans-
port cargo traffic effectiveness [3]. 

2 The Analysis of Researches and Publications 

Today there exists a lot of publications on the research of DSS based on the fuzzy 
logics [4-6], which examine methods of the theory of fuzzy sets for modeling, analy-
sis and synthesis of intelligent hierarchically-organized systems. Researches, which 
are conducted in different countries, have proved that for many subjects of manage-
ment, parameters of which change in the process of operation, it is appropriate to use 
fuzzy computerized automatic control systems [7, 8]. 

The research of fuzzy logics was associated with the necessity of intelligent sys-
tems development, which is able to interact with a human taking from him verbal 
(fuzzy) information. For this a new mathematical tool is needed, which translates 
ambiguous statements to the language of clear and formal mathematical formulas. 

Fuzzy systems comparing to others have a list of advantages [9]: 
– possibility of processing and analysis of fuzzy input data; 
– fuzzy criteria formalization of estimation and comparison; 
– qualitative evaluations of input information as well as output results; 
– quick simulation of complex dynamic systems and their comparative analysis 

with  a given degree of accuracy. 

In the process of DSS development based on fuzzy logical inference there is a pos-
sibility of sharp increase in the number of fuzzy rules, which leads to difficulty of 
their formalizing and increasing of simulation time. This is due to the fact that when 
there are a great number of input system parameters, it is hard for expert to describe 
cause-and-effect by means of fuzzy rules as human memory can simultaneously store 
no more that 7 2±  states of investigated system [4]. 

One of the unsolved problems when using hierarchical approach for developing 
DSS on basis of fuzzy logical conclusion is complexity of structuring and considera-
tion of a large number of input parameters of such systems [7]. 

Using the theory of fuzzy sets and fuzzy logics when building DSS allows solving 
problems on intellectual level with the help of fuzzy databases of rules and also pro-
vides an opportunity to estimate alternative decisions and choose the best among them 
[10].  

To measure customer’s expectations different assessing methods are used, includ-
ing questionnaires, expert analysis, statistical methods, etc. The difficulty is that most 
of system parameters cannot be measured quantitatively, so it is difficult to get expli-
cit evaluations. The customer’s expectation usually are based on his subjective opi-
nion, experience of his work and more often they are  expressed in such statements as 
“it is desirable that the cargo has been delivered at 12 o’clock”, “it is possible to pay 
in range of 2000 to 3500” and so on. In the relevant statements there are elements of 
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ambiguity. A tool to formalize fuzzy customer’s expectations is a mathematical tool, 
which is based on the theory of fuzzy sets [3]. 

Improvement of cargo delivery quality by western carriers is done by means of ga-
thering consolidated cargo from quantity of senders, development of optimal routes of 
cargo transportation, and also connecting more effective type of transport on the cer-
tain stage of transportation [11]. Irrational transportations lead to increase of logistical 
and first of all transport expenses, and also to additional workload of transport  
routes [12]. 

The results of researches [13, 14] showed low effectiveness of firm activity when 
selecting company-carrier. This is due to the lack of a priory information about the 
level of tariffs for transportation, the cost and types of services provided by different 
carriers, etc. Choosing carrier in conditions of planned economy mostly is accompa-
nied by abstract calculations of transport expenses, excluding the impact of quality 
parameters of forwarding services. 

To guarantee that the fuzzy rule based modeling methodology will work in all 
possible situations we must make sure that every possible system can be obtained by 
applying the fuzzy rule based modeling methodology to appropriate rules [15]. 

Analysis of existing methods for optimal choice of transport company allows to de-
termine a list of disadvantages, among them are: difficulties in formalizing procedures 
of choosing company-carrier; inability to take into account additional factors; evalua-
tion of cargo physical parameters only and way of transportation; use of transitivity 
for quality indicators [14]. 

The purpose of this research is a development of the intelligent DSS for multicrite-
ria decision making in problems of transport logistics, analysis of synthesis distinctive 
features and modeling hierarchically-organized DSS on the basis of fuzzy logics, and 
also conduction of comparative analysis of results of DSS work using fuzzy analytic 
hierarchy process (FuzzyAHP) and the method based on fuzzy inference (FIS) for 
optimal choice of transport company. 

3 The Synthesis of DSS for Optimal Choice of Transport 
Company Based on FuzzyAHP 

The analysis of literature sources [3, 11, 14] allows marking main factors that influ-
ence of the process of selection of company-carrier. Fig. 1 shows hierarchical struc-
ture of decisions tree, which includes the main goal – choice of transport company, in 
the second hierarchical level are criteria: price, time of delivery, reliability, in the 
third hierarchical level are subcriteria: proposals for discounts, cost of services, deli-
very time, timeliness of delivery, image of the company, possibility of cargo insur-
ance, integrity of cargo and in the last (fourth) hierarchical level are alternative  
variants: companies A, B, C, D with the help of which the consumer of transport ser-
vices chooses the best transport company for cargo transporting. The problem of op-
timal selection of company-carrier is a multicriteria decision making task, that’s why 
there is a possibility of using alternative methods: AHP, FuzzyAHP and others [16]. 
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In classical formalization of AHP human judgments are represented as accurate 
numbers in the selected assessments scale. In the paper [17] it was proposed to use 
fuzzy numbers with tent belonging functions for assessments. 

 

Fig. 1. Hierarchical structure of decisions tree for the optimal choice of transport company   

In the study [18] there was researched the problem of fuzzy judgments influence 
on changing advantages rating. Thereby there was made a conclusion about the fact 
that increase of the degree of fuzziness (the distance between the left and middle 
boundaries of fuzzy triangular number) almost did not influence on the vector of 
priorities. The method proposed in the study of Chang [19] allows getting weights 
from fuzzy pairwise comparison matrixes (PCM). The result of using Chang method 
is a vector of priorities, which has point value. 

Let’s consider fuzzy comparison matrix: 
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where ( ) ( )1, , ,   1/ ,1 / ,1/ij ij ij ij ij ij ij ija l m u a l m u−= =   for , 1,...,i j n=  and 

i j≠ ; ija  – element of PCM; ijl  – lower bound of fuzzy number  ija ; ijm  –  the 

most expected value of fuzzy number ija ; iju  – upper bound of fuzzy number ija . 



 Comparative Analysis of Evaluation Algorithms for Decision-Making 207 

 

The method consists of several steps [18-20]. 
Step 1. The sums on the matrix rows are calculated according to formula 2 by 

means of fuzzy arithmetic: 

1 1 1 1

, , , 1,...,
n n n n

i ij ij ij ij
j j j j

RS a l m u i n
= = = =

 
= = = 

 
    ,              (2) 

where iRS  – sum of i  row of matrix; i  – order number of PCM row; j  – order 

number of PCM column; n  – total number of comparison elements. 
Step 2. The corresponding amounts are normalized according to formula 3: 

1 1 1

1 1 1 1 1 1 1
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n n n

ij ij ij
j j ji

i n n n n n n n

j kj kj kj
j k j k j k j

l m u
RS

S i n
RS u m l

= = =

= = = = = = =

 
 
 = = =
 
 
 

  

   
 ,        (3) 

where iS  – a normalized amount value of matrix i  row; iRS  – sum of i  row of 

matrix 

Step 3. The degree of hypothesis conformity is calculated i jS S≥  according to 

formula 4: 

1, if

( ) 0, if
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i j j j

i j
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                       (4) 

where ( )i jV S S≥   – degree of hypothesis conformity i jS S≥ ; iS  – normalized 

amount value of matrix i  row, ( , , )i i i iS l m u= ; jS  – normalized amount value of 

matrix j  row ( , , )j j j jS l m u= .  

Step 4. The degree of admissibility of the fact that iS  is better than the rest 

( )1n −  fuzzy numbers is calculated according to formula 5: 

( ) ( )
{1,.., },

| 1,.., ; min , 1,...,i j i j
j n j i

V S S j n j i V S S i n
∈ ≠

≥ = ≠ = ≥ =    ,    (5)                                
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where ( )| 1,.., ;i jV S S j n j i≥ = ≠   – the degree of admissibility of the fact that 

iS  is better than the rest ( )1n −  fuzzy numbers. 

The vector of priorities ( )1,...,
T

nW w w=  of fuzzy matrix is calculated according 

to formula 6. 
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where ( )| 1,.., ;i jV S S j n j i≥ = ≠   – the degree of admissibility of that fact that 

iS  is better than the rest ( )1n −  fuzzy numbers; ( )| 1,.., ;k jV S S j n j i≥ = ≠   – 

the degree of admissibility of the fact that kS  is better than the rest ( )1n −  fuzzy 

numbers. 
Let’s consider in more details the features of four-level DSS functioning, which are 

synthesized by authors on the basis of FuzzyAHP method. Hierarchical structure of 
system for optimal selection of transport company is designed in Java Enterprise. The 
main window of intelligent DSS is shown on Fig. 2.  

 

Fig. 2. DSS for optimal choice of transport company based on FuzzyAHP method 
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For estimate the relative importance of DM judgments [17] proposed to use the 
following fuzzy triangular numbers: (1,1,1), (1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,7), 
(6,7,8), (8,9,9). 

In Tables 1, 2 there is shown the evaluation of importance of criteria of second and 
third hierarchy levels using the scale of relative importance with fuzzy numbers. 

Table 1. The comparison of importance of criteria of second hierarchy level 

 Price (С1) Time of delivery (С2) Reliability (С3) 

Price (С1) (1,1,1) (1/4,1/3,1/2) (1/3,1/2,1) 

Time of delivery 
(С2) 

(2,3,4) (1,1,1) (1/3,1/2,1) 

Reliability (С3) (1,2,3) (1,2,3) (1,1,1) 

Table 2. The comparison of importance of subcriteria of Price criteria (C1) 

Price (С1) 
Proposals for discounts 

(С4) 
Cost of services 

(С5) 

Proposals for dis-
counts (С4) 

(1,1,1) (1/4,1/3,1/2) 

Cost of services (С5) (2,3,4) (1,1,1) 

 
In Table 3 there is shown the comparison of alternatives by criteria “Proposals for 

discounts (C4)” using fuzzy numbers. 

Table 3. The comparison of alternatives by criteria “Proposals for discounts (C4)” using fuzzy 
numbers 

Proposals for 
discounts (С4) 

Company A 
(А1) 

Company B 
(А2) 

Company C 
(А3) 

Company D 
(А4) 

Company A 
(А1) 

(1,1,1) (6,7,8) (1/4,1/3,1/2) (8,9,9) 

Company B 
(А2) 

(1/8,1/7,1/6) (1,1,1) (1/9,1/9,1/8) (1,1,1) 

Company C 
(А3) 

(2,3,4) (8,9,9) (1,1,1) (8,9,9) 

Company D 
(А4) 

(1/9,1/9,1/8) (1,1,1) (1/9,1/9,1/8) (1,1,1) 

Pairwise comparisons of all items carried at each hierarchical level of DSS for 
optimal choice of transport company. 
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4 The Synthesis of DSS for Optimal Choice of Transport 
Company Based on Fuzzy Inference 

FuzzyAHP for synthesis DSS has several limitations and problems. Appropriate 
method allows you to assign a zero weight of criteria solution or alternative. This 
leads to excluding criterion or alternative from consideration in the decision making 
process [20]. Also FuzzyAHP based on Extent Analysis Method allows 
incompleteness estimates in a PCM. In PCM are imposed limits on the number of 
elements of comparison. This is due to the fact that the expert must simultaneously 
consider all factors, since assigning specific numerical value of a particular factor; the 
expert must also match it with the other. Appropriate method cannot evaluate the 
consistency of fuzzy PCM, that there is a problem of checking the adequacy of expert 
judgments of logical thinking. 

The authors proposed an approach based on fuzzy inference for synthesis DSS, 
which takes into account a greater number of input parameters than FuzzyAHP. The 
expert must only generate fuzzy rules. The choice of transport company based on the 
overall assessment of the quality of transport services. 

The analysis of literature sources [3, 12] shows that among input parameters, 
which influence on assessment of the quality of transport services, for structural or-

ganization of DSS, can be defined following, there are:  1x  – customs costs; 2x  – 

expenses connected with possible situations on the way; 3x  – expenses on transporta-

tion; 4x  – authenticity of information about cargo movement; 5x  – efficiency of 

reporting information; 6x  – a risk during transportation; 7x  – saving according to 

amount of cargo; 8x  – saving according to quality of cargo; 9x  – delivery perfor-

mance; 10x  –  possibility of  cargo delivering to any part of territory; 11x  – readiness 

for delivery. Output signal of DSS is the assessment of transport services quality ( y ). 

Before the formation process of fuzzy data bases it is important to determine the 
number and type of linguistic term (LT) for assessment of input and output parame-

ters. For assessment of input coordinates ( , 1,...,ix i N= ) 3 LT were chosen (L – 

“low”, M – “medium”, H – “high”), for output variable – 5 (L – “low”, LM – “lower 
then medium”,  M – “medium”, MH – “higher then medium”,  H – “high”) with tri-
angular shape of belonging function. 

The structure of DSS (Fig. 3) is designed in such way that the number of inputs  
of each subsystem does not exceed five. This allows decreasing the number of  
database rules, thus increasing the sensitivity of system to influence of input coordi-
nates. Thereby it is important to conduct structuring of input variables only by  
common properties, which are the main (important) within a single subsystem [4]. It 

is advisable to combine input coordinates in the following groups: ( )1 1 1 2 3, ,y f x x x= ,  

( )2 2 4 5,y f x x= , ( )3 3 7 8,y f x x= , ( )4 4 9 10 11, ,y f x x x= , ( )5 5 6 2,y f x y= , ( )6 6 2 5,y f y y= ,  
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( )7 1 4 6, ,y f y y y= . Where , 1,...,6iy i =  are intermediate variables of DSS module, 

including: 1y  – cost of transportation; 2y  – the level of informativeness of cargo 

delivery; 3y  – safety of cargo; 4y  – image of subjects-participants of cargo transpor-

tation; 5y  – reliability of delivery system; 6y  – level of cargo transportation. 

 
Fig. 3. The structure of DSS for assessment of transport services quality 

In constructing fuzzy knowledge bases for DSS structure (Fig. 3) there are used 3 
LT with triangular shape of membership function that are presented for variables 

{ }1 2 11 2 3 5 6, ,..., , , , ,x x x y y y y  in Fig. 7, for variables { }1 4, ,y y y  – 5 LT in Fig. 7. 

  

Fig. 4. Linguistic terms for variables { }1 2 11 2 3 5 6, ,..., , , , ,x x x y y y y  (a) and for variables 

{ }1 4, ,y y y  (b) Selective set of rules for the first subsystem ( )1 1 1 2 3, ,y f x x x=  can be 

presented in Table 4 
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After describing fuzzy system and developing databases of fuzzy rules, synthesis 
of fuzzy DSS module is done in FuzzyTECH. Any system of fuzzy derivation in pro-
gram environment FuzzyTECH is shown as separate project [6]. There are several 
software products that allow developing DSS based on fuzzy logical. Widely famous 
is the software package MatLab, which includes tools “fuzzy” for development of 
such class of systems [6].  

Table 4. Rules for the first subsystem ( )1 1 1 2 3, ,y f x x x=  

№ of 
rule 

1 3 6 10 13 14 15 17 22 25 27 

1x  L L L M M M M M H H H 

2x  L L M L M M M H M H H 

3x  L H H L L M H M L L H 

1y  L LM M L LM M MH M M MH H 

 
The characteristic surface for the first rules database of the first fuzzy subsystem 

( )1 1 1 2 3, ,y f x x x=  is presented in Fig. 5.  

 

Fig. 5. The characteristic surface of the first subsystem for the components ( )1 2,x x  

In the process of fuzzy DSS work with a fixed structure of the rule bases and at a 
variable structure of the vector of input data rN N<  , the results of making decisions 

y  undergo deformation. This is due to the fact that the values of the input parameters 

(signals) that do not take part in modeling of fuzzy DSS { }( )0, 1,2,...,ix i N= ∈ , carry 
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out negative impact on the result y  through the appropriate fuzzy rules. To solve this 

problem the authors have developed an approach (based on two algorithms of editing 
of rules antecedents and consequents), which consists in correction of the rules of 
fuzzy rule bases at variation of input parameters that allows not to take into account 
the values of input signals { }, 1,2,...,ix NI i N= ∈ , which are not important for DM in 

the process of making decisions [21]. 
Method of correction (editing) the rules of fuzzy knowledge bases at different 

number of input coordinates of the system [21], which developed by the authors, can 
be used in  developed DSS for optimal choice of transport company. 

5 The Analysis of DSS Work Results 

According to results of DSS work for the optimal choice of transport company, using 
FuzzyAHP, the vector of priorities of alternative variants corresponds to the following 
values: 

– transport company A – 0,223; 
– transport company B – 0,158; 
– transport company C – 0,262; 
– transport company D – 0,357. 

The best variant of cargo transporting is company-carrier D with the priority 0,357. 
The results of modeling DSS for optimal choice of transport company based on the 

overall assessment of the quality of transport services, using fuzzy inference, for dif-
ferent companies (A, B, C, D) are shown in Table 5 and Table 6. 

Table 5. The value of the input data of transport companies 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 
A 75 90 35 80 60 45 70 90 30 95 50 
B 25 15 30 90 95 5 35 30 20 35 50 
C 10 30 87 90 95 30 60 75 55 37 75 
D 33 90 85 50 30 7 95 80 80 65 95 

Table 6. The results of modeling DSS for optimal choice of transport company 

 Y1 Y2 Y3 Y4 Y5 Y6 Y 
A 58 94 85 33 61 83 57 
B 4 93 17 29 94 61 34 
C 33 92 68 66 85 82 54 
D 55 15 94 96 59 94 74 

 
From the results of DSS work for assessment of transport services quality (Fig. 3, 

Table 5, 6) we received the following values: 



214 Y.P. Kondratenko, L.P. Klymenko, and I.V. Sidenko 

 

– transport company A – 57 balls; 
– transport company B – 34 balls; 
– transport company C – 54 balls; 
– transport company D – 74 balls. 

According to the results of modeling it is clear that among all transport companies 
with assessment of transport services quality (74 balls) the best one is the fours (D) 
transport company, and the worst mark has the third (C) transport company (34 balls). 

As a result of the algorithm based on fuzzy inference, the optimal is the score that 
corresponds to the maximum number of balls. According to this algorithm at the input 
of DSS for the optimal choice of transport company the expert sets clear values of 
input parameters (X1, X2, ..., X11) of the specific transport company (Eg., company A 
in Table 5). Thus by using fuzzy rules (Table 4) at the output of the DSS the assess-
ment of the corresponding transport company is formed (for example, company  
A - 57 balls from Table 6). Table 5 shows that the result of the algorithm (Y = 74) is 
optimal in terms of the DM for the optimal choice of transport company.  

Checking the adequacy of the results of the DSS for the optimal choice of transport 
company (Table 5, 6) is carried by comparative analysis of the proposed method, 
particular, method based on fuzzy logic inference (FIS), and well-known FuzzyAHP 
for different sets of criteria (input parameters). Moreover, the five experts were 
involved. Let’s consider corresponding sets of input parameters: 

– I set consists of 2 parameters: delivery price, timeliness of delivery; 
– II set consists of 3 parameters: I set + risk during transportation; 
– III set consists of 4 parameters: II set + saving of cargo; 
– IV set consists of 5 parameters: III set + readiness for delivery. 

The simulation results of DSS for the optimal choice of transport company using 
FuzzyAHP method (Table 7) and method based on FIS (Table 8) math by the optimal 
decision, that proves the adequacy of the proposed method based on FIS. 

Table 7. The simulation results of DSS using FuzzyAHP for different sets of input parameters 

Company 
Set  
of parameters 

Company A 
(А1) 

Company B 
(А2) 

Company C 
(А3) 

Company D 
(А4) 

I 0,286 0,182 0,269 0,263 
II 0,214 0,196 0,315 0,275 
III 0,307 0,114 0,233 0,346 
IV 0,256 0,204 0,228 0,312 
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Table 8. The simulation results of DSS using FIS for different sets of input parameters 

Company 
Set  
of parameters 

Company A 
(А1) 

Company B 
(А2) 

Company C 
(А3) 

Company D 
(А4) 

I 62 36 54 51 
II 53 47 60 57 
III 66 50 65 72 
IV 60 42 51 68 

 
The diagram of distribution of the vector of priorities for the optimal choice of 

transport company using appropriate methods for IV set of input parameters (Table 7, 
8) is presented in Fig. 5. Also carried out normalizing the vector of priorities for the 
method based on FIS. 

 

Fig. 6. The diagram of distribution of the vector of priorities for IV set of input parameters 

Checking the work of proposed method based on the fuzzy inference was carried 
out to solve the problem of assessing the quality of transport services [12, 21]. In the 
process of developing the appropriate DSS using the method of analytic hierarchy 
process and FuzzyAHP method to assess the quality of transport service encountered 
a number of problems associated with the restriction of input DSS coordinates. As 
their number were 19, so it made sense to use a method based on fuzzy inference, 
which had no relevant restrictions. 
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6 Conclusions 

DSS simulation results proved that the use of fuzzy logics is appropriate in cases 
when the criteria for decision-making, influencing factors and parameters of the real 
system are too complex for analysis using quantitative methods.  

In the case when necessary to consider a large number of input parameters appro-
priate to use fuzzy inference method for synthesis DSS.  

Synthesized DSS for the optimal choice of transport company is a universal soft-
ware complex for solving hierarchically-organized multicriteria problems using  
diverse methods of decision making. 

The analysis of fuzzy multicriteria decision-making methods allows to formulate 
requirements for future developments in this area, including the development of theo-
retical approaches to describe the complex relationships between the criteria. 
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Abstract. Big data is a collection of very large and complex data that
is difficult to load into the computer memory. The major challenges in-
clude searching, categorization and analysis of big data. In this paper,
a fuzzy based supervised classifier is proposed to handle the searching,
storage and categorization of big data. In this classifier, we proposed a
Random Sampling Iterative Optimization Fuzzy c-Means (RSIO-FCM)
clustering algorithm which partitions the big data into various subsets.
These subsets adequately cover all the instances (object space) of big
data. Then, clustering is performed on these subsets by feeding forward
the centers of clustered subset to group remaining subsets. Further, the
designed classifier based on Bayesian theory is used to assign the labels
to these clusters and also used to predict labels of unknown instances.
Thus, the proposed approach results in effective clusters formation which
also eliminates the problem of overlapping cluster centers faced by algo-
rithm discussed in [1] named as Simple Random Sampling plus Extension
FCM (rseFCM). The effectiveness of proposed clustering algorithm over
rseFCM clustering is evaluated on two very large benchmark datasets
in terms of fuzzification parameter m, objective function, computational
time and accuracy. Experimental results demonstrate that, the RSIO-
FCM algorithm generates more appropriate cluster centers location due
to which it achieves better classification accuracy as compared to the
rseFCM algorithm. Thus, it observed that, cluster centers location will
have significant impact over classification results.

1 Introduction

Big data is a collection of vast amount of data that is difficult to handle with
existing computer memory [1]. The abundant amount of information generated
from the various social networking sites, especially Facebook [1] alone logs pro-
duced 25 terabytes (TB) of data per day. Handling of such big data with existing
resources is the major challenge. The challenges include categorization, searching
and sharing and visualization of big data with limited resources. Clustering and
classification are primary tasks used in pattern recognition to effectively handle
the storage, searching and categorization of data from very large (VL) databases.
Clustering [2] is a process of grouping data into manageable parts such that, the
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samples in each group share some similarity with each other. Classification is
used for categorization or identification of samples, which determines the set of
categories, the new observation or sample belongs to. Hence, both the approaches
jointly handle these challenges associated with big data.

Many algorithms have been proposed to perform clustering of big data but,
only few of them address the fuzzy clustering problems. The literal FCM, clusters
the entire dataset and works well only for small range datasets. In contrast to
the literal schemes, simple random sampling plus extension FCM (rseFCM)[1]
approach is designed to perform clustering on VL data. It works on representative
samples taken from very large data to perform clustering. However, the rseFCM
suffers from overlapping cluster centers because the representative sample does
not cover all the objects present in VL data, thus the big dataset cannot be
grouped appropriately.

In this paper, the problem of overlapping cluster centers and challenges associ-
ated with big data are overcome with Random Sampling Iterative Optimization
Fuzzy c-Means (RSIO-FCM) algorithm. The proposed algorithm generates vari-
ous subsets of big data. These subsets covers all the objects present in big data.
Then, it performs clustering on these subsets by feeding forward the cluster cen-
ters location of one subset to group remaining subsets. Thus, it generates non
overlapping cluster centers location and works significantly well for big datasets.
Finally, the designed classifier which is dependent on the cluster centers and
based on the concept of Bayesian theory is used to predict the class labels of
unknown samples. The designed classifier is dependent on the cluster centers
therefore, cluster centers location will have significant impact over classification
results.

Section 2 describes the Review of related work. Section 3, describes the pro-
posed RSIO-FCM clustering algorithm for very large data. Then, we apply the
clustering results of both the approaches on classification mechanism based on
Bayesian theory. In section 4, we perform experimentation with two very large
datasets for demonstrating the effectiveness of proposed approach. Finally, sec-
tion 5 is presented with concluding remarks.

2 Review of Related Work

Many methods have been proposed by researchers for clustering very large data.
Generally, these methods are based on various types of algorithms. Sampling
methods, that compute cluster centers on sampled data which is randomly se-
lected from huge dataset include CLARA [3], CURE [4], and the coresets algo-
rithms [5]. These algorithms works well for crisp partitions. Methods that work
well to produce fuzzy partition include the fast FCM (FFCM) [6], in which lit-
eral FCM as discussed in algorithm 1, is iteratively applied for larger nested
samples till the change is reflected in the solution; and the multistage random
FCM [7] which combines FFCM till the final run of FCM on the full dataset.
These algorithm are based on extension of literal fuzzy c-means clustering as
discussed in algorithm 1.
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The literal fuzzy c-Means algorithm is based on optimization of objective
function [1].

Jm =

n∑
i=1

c∑
j=1

um
ij ‖ xi − vj ‖2, 1 ≤ m <∞ (1)

Algorithm1: LFCM/AO to iteratively minimize the Jm

Step2 : Compute cluster membership.

uij =
‖ xi − vj ‖

−2
m−1∑c

k=1 ‖ xi − vk ‖
−2

m−1

, ∀i, j (2)

Step3 : Check the constraint.
c∑

j=1

uij = 1 (3)

Step4 : Compute the cluster centers.

vj =

∑n
i=1[uij ]

mxi∑n
i=1[uij ]m

, ∀j (4)

Step5 : if ‖ V0 − vj ‖< ε then stop, otherwise go to step2; ε = 10−3,m > 1

Where U is the n×c partition matrix, m is a fuzzification parameter which dras-
tically affects the clustering results, V= {v1, v2, . . . , vc} denotes the set of cluster
centers and ε denotes the predefined constant.

2.1 Sampling and Noniterative Extension

The most obvious way to address the VL data is to sample the dataset and then
use literal FCM to generate cluster centers of the sampled data. Algorithm 2
outlines the approach based on sampling and noniterative extension named as
rseFCM. It produces the cluster centers of sampled data by using literal FCM
as discussed in algorithm 1 and then, it uses the extension approach in Step 3
of rseFCM to produce partition of full data.

Algorithm2: rseFCM to approximately minimize the Jm [1]

Input : X, c, V0,m
Output : U, V
Step1 : Sample the ns objects from X without replacement, denoted Xs.
Step2 : Us, V = LFCM(Xs, V0,m)
Step3 : Extend the partition (Us, V ) to X ,∀xi /∈ Xs using Eq. (2), produce (U, V )
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Note : Once the extension step is completed, so that partition U on the full
dataset is known, then by using U a completion step yields the cluster centers
V with Eq.(4).

The rseFCM algorithm as discussed in [1] is mainly designed to perform clus-
tering of very large data. The rseFCM algorithm works on sampled data taken
from entire dataset, then the cluster center locations produced on sampled data
will be extended to compute partitions on full data. The rseFCM algorithm
suffers from overlapping cluster centers location and significantly affects clas-
sification results because, the sampled data does not adequately covers all the
objects of big data. Thus, the error between the cluster center locations pro-
duced by sampled data and location produced by clustering entire dataset will
be drastically higher. Therefore, the rseFCM algorithm approximately minimizes
the objective function which drastically deviates from the minimum value of ob-
jective function produced by clustering entire dataset.

To design the clustering algorithm that scale well on big data and to over-
come the drawbacks of resFCM algorithm, the uniform random sampling with
iterative optimization (RSIO-FCM) algorithm is proposed. The RSIO-FCM al-
gorithm divides VL dataset into various subsets. These subsets adequately cover
all the objects present in the VL dataset. Then, RSIO-FCM algorithm feed for-
wards the cluster centers computed by clustering one subset of data to group
remaining subsets. Further, to assign the class labels to these clusters and to pre-
dict the class labels of unknown samples, a classifier is build based on Bayesian
theory. Hence, the proposed algorithm covers the entire object space and results
in better cluster formation by eliminating the problem of overlapping cluster
centers faced by rseFCM algorithm. It is observed that, the classification accu-
racy achieved by applying RSIO-FCM algorithm is comparatively higher than
rseFCM algorithm. Thus, it is inferred that, the accuracy of classifier greatly
depends on the clustering results.

3 Proposed Work

The proposed classifier works in supervised learning scheme, there are two phases
of learning : the training phase and the classification phase. In training phase,
Given a training set denoted here as Xtraining = {(x1, y1), . . . . . . (xl, yl)} where
the first component of lth tuple xl = (f1, . . . . . . , fd) denotes the attribute of ith
training instance in d–dimensions. The second component Yi = {y1, . . . . . . , yn}
denotes the class labels associated with the training instance. The goal here is
to form the grouping of similar instance and to learn a mapping from x→ y. In
the classification phase, the labels of test instance in Xtest are predicted using
the induced classifier.

3.1 Training of Classifier

In training phase of classifier, the Xtraining is clustered using the proposed RSIO-
FCM algorithm as discussed in section 3.1.1.
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3.1.1 Uniform Random Sampling with Iterative Optimization : Algo-
rithm 3, outlines the RSIO-FCM clustering approach which effectively clusters
very large data by appropriately minimizing the objective function. First, it
partitions the VL data into various subsets. Then, it iteratively calls the literal
FCM algorithm as discussed in algorithm 1, to compute cluster centers for every
subsets by feeding forward the centers of clustered subset to cluster remaining
subsets. When the partition on every subset is determined then, using Eq.(5)
it computes the partition on full dataset. Once the partition on full dataset is
known then, using Eq.(4) final cluster centers on full data are determined.

Algorithm3: RSIO-FCM to minimize the Jm

Input : X, c, V0,m
Output : U, V
Step1 : Load X as ns sized randomly chosen subsets X = {x1, x2 . . . . . . xs}
Step2 : Sample x1 from X without replacement
Step3 : Ul, Vl = LFCM(x1, V0,m)
Step4 : for p = 2 to s do

Up, Vp = LFCM(xp, Vp − 1,m)

Step5 : Compute the partition on full dataset

U =

s∑
i=1

Ul (5)

Step6 : Compute cluster centers with partition on full dataset using Eq.(4)
Step7 : Compute the objective function using Eq. (1)

The RSIO-FCM algorithm adequately covers the object space by generating clus-
ter centers for every subsets. Therefore, the cluster centers location produced by
RSIO-FCM algorithm reflects the actual position as produced by clustering the
entire dataset. Due to the proper cluster centers location generated by RSIO-
FCM algorithm, it appropriately minimizes the objective function as compared
to rseFCM algorithm. To show the effectiveness of clustering results generated
by RSIO-FCM algorithm, the classifier is designed based on Bayesian theory.
It is used to assign the labels to these clusters and also predict the labels of
unknown samples as discussed in section 3.2.

3.2 Classification Mechanism

After grouping the VL data in various clusters, the classifier is designed based
on Bayesian theory which assigns class labels to these clusters. The designed
classifier is dependent only on the cluster centers. This emphasizes that, the
cluster centers location will have significant impact over classification results. To
determine the output class labels for unknown samples, a relational matrix P is
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modeled which establish cluster class relationship through Bayesian theory and
also assign labels to these clusters.

P (classl/clusterk) =
Num(x ∈ classl, x ∈ clusterk)

Num(x ∈ clusterk)
(6)

where Num(x ∈ classl, x ∈ clusterk) denotes the posterior probability and
Num(x ∈ clusterk) denotes the prior probability. Now, the relation matrix P
constitutes all the P (classl/clusterk) as K × L matrix. The relation matrix P
determines the statistical relationship between the formed clusters and the given
class labels. Next the output class labels f(objecti) can be determined through
the total probability theorem as

P (classl/objecti) =

c∑
k=1

P (clusterk/objecti)P (classl/clusterk) (7)

where P (clusterk/objecti) represents the posterior probability, which determines
the presence of corresponding sample in particular cluster and can be computed
by Eq.(2) and P (classl/clusterk) is computed Eq.(6), then the output class
labels f(objecti) can be determined.

f(objecti) = arg 1≤l≤L maxP (classl/objecti) (8)

As presented in Eq.(7),classifier is designed using relational matrix as computed
in Eq.(6) which is dependent on the cluster centers. Therefore, the cluster centers
location will have significant impact on classification results. Thus, both the
approaches are complementary to each other.

4 Experimental Results

The experimentation is performed on machine having Intel (R) Core (TM)2
Duo processor with 3.00 GB memory. All the code was written in the MATLAB
R2013a computing environment. We evaluate the clustering and classification
capability of the proposed RSIO-FCM algorithm and the existing rseFCM algo-
rithm on two benchmark datasets. For both the algorithms, we randomly choose
c objects as the initial cluster centers to initialize V0. In all of our experiment,
we fix the value ε = 10−3. We have selected these datasets from the Univer-
sity of California at Irvine (UCI) Machine Learning Repository [8]. The basic
information of these benchmark datasets is illustrated in table 1 as follows:

Table 1. Basic Information about the Datasets

Datasets Samples Features Classes
Pen-Based Recognition of Handwritten Digits 10992 16 10

Page Blocks Classification 5473 10 5
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Table 2. Comparison of rseFCM and RSIO-FCM on Benchmark Datasets

(a)Pen-Based Recognition of Handwritten Digits
rseFCM RSIO-FCM

m objective function Total time(s) Accuracy objective function Total time(s) Accuracy
1.2 7833685633 31.79 74.88% 4622236.18 28.56 78.45 %

2.3 11917813.07 3.40 71.99% 10917812.07 2.089 81.89%
3.5 13718180.49 3.38 69.67 % 1271610.49 1.892 82.33 %

4.5 281935.08 2.42 65.96 % 211935.08 1.32 85.34 %

(b)Page Blocks Classification
rseFCM RSIO-FCM

m objective function Total time(s) Accuracy objective function Total time(s) Accuracy
1.2 387910619.6 1.54 79.02% 58137603.98 0.560 87.96%
2.3 181503981.8 1.44 72.98% 12096408.21 0.495 91.77%
3.5 79004007.83 1.43 71.09 % 772374.015 0.484 92.34 %

4.5 39501984.9 1.36 63.90 % 70788.88 0.480 93.22 %

The performance of rseFCM and RSIO-FCM are measured on very large data
over various parameters. (a) The fuzzification parameter m which drastically
affects the cluster formation. (b) The objective of both the algorithms is to min-
imize the objective function iteratively. (c) The time required in seconds to group
the very large data and to compute the cluster centers. (d) The classification ac-
curacy which determines the searching of unknown instance from large dataset.
The results are reported in table 2.
As reported in Table 2, it is observed that rseFCM algorithm works on mini-

mizing the objective function, since the sampled data does not covers the ade-
quate object space, it fails to appropriately minimize the objective function as
compared to minimum value achieved by RSIO-FCM algorithm. The rseFCM
algorithm also suffers from overlapping cluster centers. Therefore, it results in
degradation of classification accuracy. In contrast to rseFCM, the RSIO-FCM
algorithm generates cluster centers for every subset of dataset by covering the
entire object space, due to which the achieved objective function value is com-
paratively more minimized. The RSIO-FCM algorithm generates proper cluster
centers location due to which classification accuracy enhances with the increase
of fuzzification parameter m by constantly minimizing the objective function.
Thus, RSIO-FCM is preferable for big data.

As shown in Fig. 1 with increase of fuzzification parameter m the classification
accuracy achieved by RSIO-FCM algorithm is constantly increasing and much
higher than the rseFCM algorithm on both datasets. The same is verified with
the results reported in Table 2, the RSIO-FCM algorithm shows drastic im-
provement in performance for very large data as compared to rseFCM algorithm
on two benchmark datasets. Thus, accuracy of classifier greatly depends on the
clustering.
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(a) (b)

Fig. 1. Accuracy Comparison of resFCM and RSIO-FCM
(a) Pen-Based Recognition of Handwritten Digits (b) Page Blocks Classification

5 Conclusion

The major challenges associated with big data include searching ,categoriza-
tion and storage of big data. There are many ways to handle these challenges,
but the existing approaches does not jointly address these challenges. In this
paper, we designed a fuzzy based supervised classifier which jointly addresses
these challenges. In this classifier, the proposed RSIO-FCM clustering algorithm
overcomes the drawbacks of existing clustering algorithm named as rseFCM al-
gorithm. The RSIO-FCM algorithm divides the VL data into various subsets.
Then, it clusters every subset by feeding forward centers of clustered data to
cluster remaining subsets. Thus, RSIO-FCM algorithm covers the entire object
space adequately and generates same cluster centers location as produced by
clustering entire data. Further, the classifier designed based on Bayesian theory
is used to assign labels to these cluster. Therefore, the proposed classifier over-
comes the drawback of rseFCM algorithm which fails to cover the entire object
space adequately and unable to jointly address all these challenges. It is observed
that, due to proper cluster center locations generated by RSIO-FCM clustering
algorithm, it generates better classification accuracy than rseFCM algorithm. It
is inferred that, accuracy of classifier greatly depends on clustering efficiency.
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Abstract. Talent selection in cricket is a task which is usually carried out by 
coaches and senior players. The method relies on instincts or natural abilities of 
the selectors for talent assessment and selection. However, it suffers with sub-
jectivity, personal biasness and external influences. In country such as India 
where more than 1-million players play cricket daily, talent selection problem 
becomes significant. In this paper, we propose a model which can rank players 
in order of their talent. The model can potentially help reduce the implicit prob-
lems of manual talent selection system. The model assesses the cricketing talent 
of individual players based on the quantitative outcome of the identified para-
metric tests for assessing players’ physical/motor, anthropometric and cognitive 
skills and capabilities with respect to cricket. The Ordered weighted averaging 
aggregation (OWA) operator with Relative Fuzzy Linguistic Quantifier (RFLQ) 
is used to measure the weights and aggregate players’ talent values. The model 
is applied to the Jamia Millia Islamia’s (JMI) University Cricket team and re-
sults have been summarized. 

Keywords: Talent selection in Cricket, OWA, RFLQ, Model. 

1 Introduction 

Today sports have not remained merely limited to means for keeping healthy and fit. 
They have rather grown to become lucrative profession options for people with inter-
est. However, only interest is not sufficient to qualify the requirements of becoming a 
professional sportsperson. A wrong initial choice of sport, probably influenced by 
family, friends or media may jeopardize careers of young sports enthusiasts. Thus, 
timely talent identification within a person for a particular sports become significant 
as it can save the athlete from wasting time on a sports for which (s)he is not suitable. 
Also a suitable talented sportsperson may quickly excel in the sport which is right for 
him with minimal efforts. A number of authors [26], [27], [28] have defined talent as 
an increasable natural endowment of a superior quality of a person. Talent identifica-
tion is a process to identify the ability of superior quality. It is a complex multifa-
ceted, multidimensional and multi-stage process [22] [23] [24] [25]. 

Cricket is very popular sports in India. It is formally played in ten nations viz. Aus-
tralia, Bangladesh, England, India, Pakistan, New Zealand, Srilanka, South Africa, 
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West Indies, and Zimbabwe with 35-associate countries in all. In India alone 55,000 
cricket matches are played every day [31]. With such huge popularity a large number 
of young enthusiasts aspire to become professional cricketers. In India, with very 
limited coaches available, especially in the country interiors, talent identification and 
advice is rarely available. To address this problem, we had proposed an algorithm in 
[30] based on quantitative outcome of 28-tests which can help identify the talent level 
of a cricketer. These parametric tests have been proposed in [29] and are based on 
assessing physical/motor, anthropometric and cognitive abilities [20]. The next issue 
is to select talent optimally out of a large group of talented persons to play for a team. 
As noted earlier, more than a million cricketers play cricket daily in India. Short list-
ing or selecting talented players out of such large number for even district and state 
levels thus becomes very challenging. Talent selection is a long procedure that re-
quires careful planning in order to achieve the expected results [21]. Unavailability of 
scientific techniques makes the process highly susceptible to personal biasness and 
external influences.   

Our literature review on the subject could not uncover any existing technique for 
the problem of talent selection especially in Cricket. In this paper, we propose a talent 
selection methodology based on OWA operator for cricket which can reduce the sub-
jectivity, biasness and influences in talent selection to a large extent. Section 1.1 of 
the paper summarizes various techniques which have been used in the past on prob-
lem of selection amongst alternatives. The techniques summarized here were applied 
on problems from different domains including sports. In section 2.0, we discuss OWA 
operator and RFLQ. Section 3.0 explains the methodology with framework and algo-
rithm for talent selection in cricket. The experiment and results are described in the 
section 4.0 with data.     

1.1 Selection Techniques 

Various techniques for selection of optimum amongst alternatives have been proposed 
in the past although very few of them have been used for the talent selection problem. 
None of them has been applied to cricket. In the following paragraphs, we have sum-
marized the more frequently cited techniques and briefly describe their application 
domain: 

S.N. Omkar and R. Verma [1] proposed a technique to select a cricket team using 
genetic algorithm based on the past performances of the national level players. The 
solution provided does not cover the talent aspect while selecting cricketers. Thus, its 
applicability is limited to the case where complete historical information about player 
is available.  José M. Merigó and Anna M. Gil-Lafuente [2] have proposed a tech-
nique to shortlist football players based on the ordered weighted averaging distance 
(OWAD) operator, ordered weighted averaging adequacy coefficient (OWAAC), 
normalized adequacy coefficient (NAC), normalized hamming distance (NHD) and 
ordered weighted averaging index of maximum and minimum (OWAIMAM) [2].  
However, the algorithm was proposed to work on conceptual/theoretical parameters 
for player selection. No details about the parameters characterizing the players were 
provided. The paper also did not describe weight measuring/adjustment technique.  
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Selection techniques have also been applied to non-sports domains. Jose M. Meri-
go and Montserrat Casanovas [3], proposed an algorithm to select an appropriate 
company to invest the money using the induced ordered weighted averaging distance 
(IOWAD) and also compared the algorithms with a number of alternatives. The fuzzy 
aggregation operators with Dempster-Shafer belief structure, probability in the or-
dered weighted averaging (POWA) operator [4] and induced Euclidean ordered 
weighted averaging distance (IEOWAD) [10] are also used to select the investment 
policy by the experts and also made the comparison to the fuzzy weighted averaging 
(FWA), fuzzy ordered weighted averaging (FOWA) etc. [14]. Immediate probability 
fuzzy ordered weighted averaging (IP-FOWA) [5], induced and uncertain heavy or-
dered weighted averaging operator (UIHOWA) [11] and fuzzy induced generalized 
aggregation operators (FIOWA) with multi person quasi-FIOWA [7] are used to se-
lect the strategies in risk emergent [13]. Grey relative degree is used to select the 
proper candidate for office by experts in fuzzy group decision making environment 
[6]. The used weights vectors are hypothetical not real data. Probabilistic ordered 
weighted distance (POWD) is a unification of probability and OWA. POWD is used 
in the environment of political management to make the decision on price policy and 
comparison also made to others [8]. To take the decision in product management, the 
induced 2- tuple linguistic generalized aggregation operators (2- TILGOWA) are used 
[9].The consensus selection model proposed by F.J. Cabrerizo, et al in the environ-
ment of unbalanced fuzzy linguistic hedge. [12]. Uncertain probabilistic ordered 
weighted averaging distance (UPOWAD) operator is used to select the robots [15]. 
Uncertain generalize ordered weighted averaging (UGOWA) is used to select the 
project in information technology [16] and uncertain induced ordered weighted aver-
aging weighted aggregation (UIOWAWA) is used to select the holiday trip [17]. 
These summarized techniques are mapped by the ideal data which is imaginary. There 
is not any talent selection model in cricket find so far and no model has any live data 
to realize the application. In the absence of the live data, the credibility and validity is 
not presence in the given application of the operators. In this paper a model for cricket 
team selection with OWA operator is proposed from identified talented enthusiasts.  
So, the next section describes the OWA operator and its methodology.      

2 Ordered Weighted Averaging Aggregation (OWA) Operator 

The OWA operator was introduced by [18] to provide a means of aggregation, which 
unifies in one operator the conjunctive and disjunctive behavior. It provides a parame-
terized family of aggregation operators including many of the well-known operators 
like maximum, minimum, k-order statistics, median and arithmetic mean. For n dif-
ferent scores nxxx ,...,, 21 , the aggregation of these scores may be done using the OWA 

operator as follows. 

OWA ( nxxx ,...,, 21 ) = 
=

n

i
ii yw

1
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where iy is the ith largest score from amongst nxxx ...,, 21 . The weights are all non-

negative iwi,∀ ≥0, and 





 =

=
1

1

n

i
iw . We note that the arithmetic mean function may 

be obtained using the OWA operator, if ∀i, 
n

wi
1= . Similarly, the OWA operator 

would yield the maximum function with iw =1 and iw =0 for all i≠ 1. The minimum 

function may be obtained from the OWA operator when nw =1 and iw = 0 for all  

i≠ n. 
In fact, it has been shown [18] that the aggregation done by the OWA operator is 

always between the maximum and minimum. To find the values of the weights iw , we 

need to make use of the linguistic quantifiers, explained as follows. The relative fuzzy 
linguistic quantifier is used to measure the weights. 

2.1 Relative Fuzzy Linguistic Quantifier (RFLQ) 

A relative quantifier, Q: [0, 1] → [0, 1], satisfies Q(0) = 0, [ ]1,0∈∃r such that Q(r) = 

1. In addition, it is non-decreasing if it has the following property [ ]1,0, ∈∀ ba , ifa>b, 
then Q(a) ≥ Q(b). The membership function [18] of a relative quantifier can be 
represented as shown in [i]: 
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where, [ ]1,0,, ∈rba  and )/()( miQrQ =  
In [19], computation of the weights wi of the OWA aggregation from the function 

Q describing the quantifier has been demonstrated. In the case of relative quantifier, 
with m criteria [19], 

,,....,2,1)),/)1(()/( mimiQmiQwi =−−= with Q(0) = 0. 

3 Cricket Talent Selection Methodology  

Talent selection is a technique that helps in short listing/selecting most talented m-
players out of n-available alternatives. To accomplish this work, we record the norma-
lized outcome value of all n-players against the 28-tests [30] specific to talent identi-
fication in cricket. The normalized data is depicted in equation-    ∈ ,  I 1..28 

To obtain the weights for aggregation of talent values of various players, we apply 
relative fuzzy linguistic quantifier (RFLQ) as described in algorithm proposed in [30]. 
The resultant weights are depicted in equation-3. 
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Now, the OWA operator is used to aggregate the values of all test outcomes of 
each player. The algorithm for carrying out this work has been described section 3.1. 
The aggregated value of each player’s talent is shown in equation - 4. Next we sort 
the talent values in descending order to rank the talent levels of players. Now top m 
players may be easily picked out of n in order of their talent. The complete process is 
outlined in the figure-1.   

                    2821 ... ttt
 

 

 S=

np

p

p

.

.

.
2

1



























2821

2822212

2812111

...

......

......

......

...

...

tptptp

tptptp

tptptp

nnn
vvv

vvv

vvv

  

                            (2)   

 
 

                     2821 ... ttt  

         W=

np

p

p

.

.

.
2

1



























2821

2822212

2812111

...

......

......

......

...

...

tptptp

tptptp

tptptp

nnn
www

www

www

                            (3) 

Aggregation of the all tests’ values with the help of OWA operator. 
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Sort the V and give rank to the players for selecting the talented player 
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Algorithm:  

begin 
 for each player ],1[, nipi ∈  where n = total no. of players 

  for each test ]28,0[);( ∈kkT  

   ;28/)( kkr =  

        for each test ]28,0[);( ∈kkT  

        begin  
   if akr <)(  

              0)( =kQR   

      else if )({ kra ≤ }b≤
 

                        )/())(()( abakrkQR −−=  
       else 
                            })( bkr >     

                                1)( =kQR  

         end; 

                if )0( <>k  

              );1()(],[ −−= kQRkQRikw  

  End Loop k; 
End Loop i; 
 
for each player ],1[, nipi ∈  where n = total no. of players 

       for each test ]28,0[);( ∈kkT  

   if a < b then 

    
);]),[(d_assign(arrange_an = y(i) ascendingkT

kt
Π

 
   else 

    
);]),[(d_assign(arrange_an = y(i) descendingkT

kt
Π

 
  end for k; 
  sum: = 0; 
  for each player ],1[, nipi ∈  where n = total no. of play-

ers     
   sum += w(i,28)*y(i); 
   OWA( k,i) = sum; 
End for i; 
End; 
Sort descending on ascending value vector (V) = OWA(k,i); 
End for i; 
Cricket team= Pick up the m-players from the OWA(k,i). 
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Fig. 1. Talent selection process framework 

4 Experiment and Results 

To experiment with the algorithm’s applicability, we collected the data of the present 
15-players of the JMI University Cricket Team against the tests (T1, T2, … T28) and 
normalized the results on the scale of 0 to 1. The names of the players were randomly  
 

Table 1. Player’s Normalized Data Base 

 

Players’ rank 
Vector (V) 

Normalized Tests 
outcome of each 
player 
 

Sorted m play-
ers list accord-
ing to rank 

Lower and upper 
bounds for all 28-tests 
as identified by experts 

Weights 
Vectors for all 
tests and players 

RFL

OWA 
Operator 
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0.85 

 
 
 
 
 
 
 
  

Fig. 2. Triangular fuzzy value with range for player1 that is p1 

Table 2. Weights database of players 

 

Table 3. Weights Calculation for Player1 with Lower limit (0.09) and Upper limit (0.85) 

 

 

x0 0.09 

1 

Player-1
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mapped/coded to P1, P2, …P15. The coded names were used in further process of ex-
ecution of algorithm. The normalized players’ data is depicted in table-1. The weights 
based on the data in table-1 are calculated and are depicted in table-2. The application 
of the proposed algorithm for player-1 is shown in table-3 and the fuzzy triangular 
norm for player-1 is shown in figure-2. 

Now, the OWA operator is used to aggregate the data for player1. 
P1V1= ( 85.0...,32.0,28.0,54.0,048.0 )= 

)]09.0,.......,75.0,80.0,80.0,85.0[*]0....,084.0,026.0,0,0[  
= 0.60525 
Similarly, the aggregated values of other players can be aggregated.  

The aggregated value vector V =  [0.60525, 0.42274, 0.54348, 0.55289,0.54490, 
0.53216, 0.51198, 0.45045, 0.51829, 0.54393, 
0.51636, 0.53247, 0.57898, 0.54948, 0.59644]. 

Applying the sorting algorithm on aggregated value vector V renders the players to 
fall in descending sequencing of their talent ranks. This is shown below: 

 
P1(0.60525)>P15(0.59644)>P13(0.57898)>P4(0.55289)>P14(0.54948)>P5(0.54490)
>P10(0.54393)> 
P3(0.54348)>P12(0.53247)>P6(0.53216)>P9(0.51829)>P11(0.51636)>P7(0.51198)> 
P8(0.45045)>P2(0.42274). 

 
Thus, the top m-players may now be easily selected/ shortlisted.  

4.1 Validation 

To validate the algorithm we first decoded the dummy viz. P1, P2, … P15  given earli-
er with the real names. We also recorded the unbiased opinion of the Jamia’s Cricket 
coach about his preferred team selection out of 15-available players. The coach’s 
opinion was compared with the selection rank of the top 11-players as determined by 
our algorithm. The comparison shows that the 9 out 11 players selected by the algo-
rithm were also shortlisted by the coach in his team. Thus, the algorithm’s result 
matches with the coach opinion with a high degree of 81.8% accuracy.  

5 Conclusion 

The literature review shows that no talent selection model has been proposed for 
cricket. In this paper we presented a summary of various selection techniques, which 
have been proposed by different authors for different domains. Afterwards, a brief 
discussion on OWA operator is presented. Subsequently, we have proposed an algo-
rithm for selecting top m-talented players out of n-available alternatives using OWA 
operator and RFLQ technique. The algorithm’s application has been demonstrated for 
short listing of players for the University’s cricket team. The result was validated by 
comparing the players’ ranks generated by the algorithm with the coach’s opinion. 
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Abstract. With the spreading of intelligent machines, man-machine
communication has become an important research area. Today, intel-
ligent robots co-operating with humans usually have to be able to store,
retrieve, and update information about their environment, interpret and
execute commands, offer existing and gain/learn new services. In these
processes, the efficient knowledge representation and storage are of key
importance. In this paper, a new graph based modular knowledge storage
and representation form is presented which is able to handle inaccurate
and ambiguous information, to store, retrieve, modify, and extend the-
oretical and practical knowledge, to interpret commands, and to learn
new cognitions.

1 Introduction

Intelligent robots collaborating with humans usually have to be able to store,
retrieve, and update information about their environment, interpret and execute
commands, offer existing and gain/learn new services [1]. The man-machine co-
operation usually involves some kind of communication, as well [2]. In these
processes, the efficient knowledge representation and storage are of key impor-
tance. The size of the databases, the accessibility to the stored knowledge, the
possibilities of building in new or refining the possessed information together
with the flexibility of the information update have a direct effect on the speed
and effectiveness of the cooperation asking for efficient data and knowledge
structures.

There can be found different knowledge representation approaches in the lit-
erature which can advantageously be applied in man-machine co-operation, as
well. We have to mention conceptual graphs (CG) (see [3]) which has primarily
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been developed for data base interfaces, to make easier for humans to under-
stand the data and to make inquiries. This approach applies the concepts as
basic primitives and the concepts themselves are types which incorporate every
instance that shares that type. In [4] a concept graph based knowledge model is
proposed to represent concepts, terminologies, methods, and processes in Soft-
ware Architecture. The knowledge is classified into a hierarchy of 4 levels: fun-
damental concepts, domain knowledge, process knowledge, and task knowledge.
[5] proposes a graph-based knowledge representation for Geographic Information
System (GIS), to represent spatial and non-spatial data (nodes), also including
spatial relationships (edges) between spatial objects and use the model for gen-
erating a dataset composed of both types of data. The authors of [6] propose the
Feature Event Dependency Graph (FEDG). It focuses on representing the fact
level knowledge compressively however without losing any important informa-
tion. The FEDG is efficient in retrieving user concerned knowledge patterns and
is especially useful in discovering latent knowledge and in effective reasoning. In
FEDG, the knowledge is represented by feature events (nodes) and the weighted
context links and dependency links (directed edges) between them.

In this paper, a new graph based knowledge storage and representation form is
introduced. Our approach principally belongs to the wider family of conceptual
graphs and can be considered as a more specialized version of CG however with
differences, thus becoming a novel approach: First of all, it has specifically been
developed for control systems, like the iSpace frame presented in [7] (for more
information about ISpace, see also [8]); while in CG the concepts are themselves
types, in our structure the instances are modeled as separate nodes in the in-
stance domain; we do not define constrains like CG does, etc. However, possibly
the main difference between our approach and the conceptual graph approach is
that instead of relation nodes we apply specific edge types.

The knowledge representation graph proposed in this paper distinguishes be-
tween theoretical knowledge and linkage-possibilities among virtual tools and
their real-word embodiments. This disassociation results in that a sophisticated
modularity can be kept in the knowledge storage and the environmental changes
have less effect on the knowledge structures. This way, the redundancy of the
representation becomes also lower than that of the traditional structures.

The paper is organized as follows: In Section 2 knowledge representation is
addressed. Section 3 deals with knowledge harmonized command interpretation
and processing while Section 4 is devoted to knowledge based hypotheses build-
ing. Finally, Section 5 contains the conclusions of the paper.

2 Knowledge Representation

2.1 Knowledge Base

The knowledge base holds the knowledge of the system. It is realized as a graph-
based structure, divided to abstract and instance domains. In the abstract do-
main, the nodes denote the known abstract objects and concepts and the directed
edges between them describe their relationship, thus describing the knowledge
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of the system about the world in general. In the instance domain the nodes rep-
resent existing objects that the intelligent machine (robot, iSpace) knows about.
The nodes are homogeneous and nameless (for an example, see Fig. 1). When-
ever the “world” of the robot is altered in any way, the changes should appear
in the appropriate domains of the knowledge base as well. “Physical” changes
(addition or removal of sensors, detectors, agents, etc.) should appear in the in-
stance domain, while “property” changes (temperature of the room, etc.) should
appear in the abstract domain.

Fig. 2 shows structural examples for the realization of the knowledge base
(the examples are taken from the ISpace application published in [9]). Fig. 2
depicts that tea, coffee, and cappuccino are drinks, beverages are synonymous
to drinks, drink machines can make drinks, brewing is (in this case) synonymous
to making, and actions done to drinks are heuristically dependent on time and
mood. It also shows an example how we can define minimum and maximum
values for variables together with the used step size (granularity). The different
types of edges used in the proposed knowledge base are (see Figs. 1- 3)

– Ability “edge”: It is a three-way connection, where node A is connected to
nodes B and C, if A can do C to B. E.g., “drink machines can make drinks”,
where A is node “ drink machine”, B is node “make” and C is node “drink”.

– Instance edges: An instance edge (denoted by an arrow with label I) assigns
the address of an executive agent to a node, e.g., “window opener”. The
assigned address is the physical address of the connected window opener
device.

– Meta edges: node A is connected to node B, if the concept A has a numerical
value in B quality. E.g., “the value of the day is 6”, where A is node “value”,

Fig. 1. Structure of the knowledge representation: the abstract and instant domains



244 A.R. Várkonyi-Kóczy, B. Tusor, and I.J. Rudas

Fig. 2. Example for the abstract domain of the graph-based knowledge base (left) and
structure of the meta edges (right)

B is node “day” (i.e., it is the 6th day of the week). With the application of
meta edges environmental variables can be appointed, which can store the
values of sensors or any other numerical values. The range of the value can
also be described by creating and setting the values of the meta edges thus
connecting nodes “minimum value” and “maximum value” to the appropri-
ate node. In this figure the defined environmental variable is node “day”, its
properties are set through the meta edges connecting it to nodes “minimum
value” and “maximum value”, storing the possible minimum and maximum
values. The edge between nodes “value” and “day” stores the current value
of the parameter, while the edge between nodes “granularity” and “day”
stores a value that remarks how sensitive the given variable is to changes.

– Inheritance edges: An inheritance edge (denoted by a triangle headed arrow)
connects node A to node B, if A (e.g “coffee” belongs to type B ( e.g. “drink”).
I.e., “coffee is a drink”. A inherits the properties of B.

– Heuristics edges (denoted by an arrow with label H): Node A is connected to
node B, if B ( usually an environmental variable) can be bound to concept
A. E.g., actions done to “coffee” (A) are dependent of “time” and “mood”
(B).

– Synonym edges: Node A is connected to node B by a synonym edge (denoted
by a symmetrical connection with label S) if the two concepts are synonyms,
like in our case “drink” and “beverage”. By this, the robot can interpret
instructions more flexibly.

– Association edges: Association edges (denoted by an arrow with label A)
build a connection between two nodes (with dedicated relationship) of the
instance domain. E.g., the instance of a particular “window opener” is asso-
ciated to a certain instance of “window”.

– Fuzzy edges: Fuzzy edges are similar to meta edges, except that they handle
fuzzy values instead of numerical values. E.g., A = “Saturday”, B = “day”
and the assigned value is given by the membership function that can be seen
in Fig. 3, for input value x. ( x = 0...6, assuming the days of the week start
with Sunday (with index 0).
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Fig. 3. Fuzzy membership function for the day “Saturday”

In Fig. 1 an example is shown how we can represent our knowledge about
the existing windows and their openers. A window can be opened and closed
by its opener. The actions depend heuristically on the temperature of the room
and how used up is the air in the room. Let us consider that there are two
windows and window opener devices in the room (denoted by the side of the
room where they are located: east or south), and the openers are associated
with the appropriate windows they can do actions to, thus it is trivial which
device can operate on which window. The user can instruct the robot to open
or close one or both windows. Each node is identified by the dictionaries.

To be able to represent instances of objects which do not exist at the moment
but can be made by devices operated by the robot (e.g., coffee) the void nodes
are introduced. A void node is the instance of the concept of the product. There
is a void node for each product and they are associated with the instance (which
is the drink machine, in the case of coffee) that can create the product.

2.2 Hypothesis Storage

The robot is able to build hypotheses about the environment and the habits of its
user. The hypotheses are stored in the hypothesis storage. A hypothesis consists
of (pointers to) the action and object nodes. It can also have optional numerical
values, similarly to the command the hypothesis is based on. A hypothesis also
has at least one trigger, which consists of a justification value that denotes how
reassured the system is in the trigger of the hypothesis; and at least one condition.
A condition is derived from an environmental variable: it consists of a condition
node (the node of the environmental variable), value (the value stored in the meta
edge connecting the environmental variable to node “value”), sensitivity (which
can be derived similarly to value using node “granularity” and the appropriate
meta edge), and affirmativeness, which is a Boolean value. If its value is false
then the condition is used as if it would be negated. (Thus the trigger will be
triggered only if the condition is not satisfied.)

2.3 Dictionaries

For identification, dictionaries are used (each consisting both abstract and the
instance domains), which assign analogous words to the nodes. Here, as exam-
ple, only one (English) dictionary is used, although the concept is designed for
the usage of multiple dictionaries. Further, non-verbatim dictionaries (e.g. based
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Fig. 4. Structure of the (i) instruction and (ii) prohibition type commands

on hand signs, see [10]) can also be included in the system. In general, the dic-
tionaries are “translated” to an equivalent, non-language-dependent dictionary
during the preprocessing. This way the knowledge base can be kept independent
of natural languages.

The most basic form of dictionaries is an ordered list containing the words (and
expressions) and the reference to their corresponding nodes. The construction
of the dictionaries and the knowledge base happens simultaneously; whenever a
new node is created, a new entry is also added to the dictionaries if the concept
of the node is described by a word or expression that is not included in the
dictionary yet.

3 Command Interpretation and Command Processing

In order to achieve advanced command processing, the system has to use gram-
mar rules. These contain rules that determine how the words and sentences can
be built with regards to the language. The modules of the Command Processor
analyze the given command (with regards to its language and grammar) and
instruct the appropriate executive agents to carry it out.

3.1 Command Parsing

The Command Parsing Module CPM first determines the type of the command,
and then parses it. Latter step depends on the type of the command. The input of
the CPM is the pre-processed command and its output is the parsed command.
Two types of commands can be defined: instructions and prohibitions (Fig. 4).

Instructions are simple commands. They are given by the human user to
achieve change in the environment or by the robot itself due to the Autonomous
Action Planning, which is the result of learning. The first part of instructions de-
scribes the action that is needed to be executed, possibly followed by an optional
“all” word, which means that the action is needed to be executed to all available
objects (e.g., “open all windows”). The second part describes the object of the
action which can be followed by optional numerical values.

Prohibitions are commands that are given by the human user to alter the
behavior of the system by bounding one or more commands that were already
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learned, thus achieving change in the hypotheses. Their structure is basically
the same as the structure of instructions except that they start with “DO NOT”
and have additional (at least one) text parameters, which usually represent fuzzy
variables. E.g., in case of the prohibition command “DO NOT make coffee on
Saturday”; “Saturday” is defined by the fuzzy membership function shown in
Fig. 3. Since the granularity of Saturday is 0.2, early Sunday morning and late
Friday night count as “almost Saturday” (this is why a fuzzy set is used for the
definition of the day instead of a crisp function).

This offers an efficient way to handle situations, where certain instructions
are regularly given except some particular cases. And further, the definition of
the occasions can hardly be defined sharply. The example presented here is the
alarm setting. The person asks the robot to set the alarm to 7:00 a.m. every day.
The forbidding command is formulated by the human after he/she is awakened
at 7:00 on Saturday morning, as well. As “Saturday” is defined as a fuzzy notion,
the robot will not set the alarm to 7:00 on the following late Friday evenings,
Saturdays and early Sunday mornings. Parallel with this, the system can learn
another alarming hypothesis, like “set the alarm to 9:00 on Saturdays”. The
latter will be handled as different command, because of the differing numeric
parameters.

Since the command is in a pre-defined format (which is based on the strictly
defined word order of the English language), the algorithm of the parsing phase
is quite trivial. To mention an example, in case of instructions the first word
is always the action and the second one is either the “all” word or (after the
removal of the occurring articles, like “the”) a noun that gives the object of the
command.

Fig. 5 shows an illustration for the advanced command analysis. The system
first parses the sentence to separate words, then analyses each part. From that,
it produces a graph, where the bigger circles are references to the appropriate
concepts of the knowledge base, while the smaller ones connected to them are
features of those words (e.g. a pronoun belonging to the noun, is it plural or
singular, etc.). Lastly, the squares denote the words-part of speech. This way
the commands that the human users can give become more flexible, the users
do not need to stick to a rigid order of words if it is unnatural in their native
language.

3.2 Command Interpretation

The function of the Command Interpretation Module (CIM) is to determine
which executive agent is able to carry out a given command. Its input is the pre-
parsed command and its output is the address or reference of an executive agent.
CIM only processes instruction commands since prohibition type commands are
not needed to be executed. The algorithm searches for three key nodes, in order:
the object node, the action node and the executive node.

These three nodes are needed to be connected via an ability edge (in such
way that represents the following: the concept of the executive node can do the
concept of the action node to the concept of the object node).
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Fig. 5. Example for the command parsing

The object node is a node that either corresponds to the object of the command
(through the dictionary) or can be reached from the corresponding node through
inheritance and/or synonym edges with a constraint that the node is needed to
have at least one instance (a node in the instance domain, which is bound to the
object node with an instance edge).

The action node is a node that either is corresponding to the action of the
command, or can be reached from the corresponding node through inheritance
and/or synonym edges, similarly to the object node, with the difference that the
action node does not need to have any instance. The executive node is a node
that can be found the same way as the object nodes, with the difference that its
instance is needed to be associated with the instance of the object node. Thus,
the algorithm effectively does the following: First, it finds out what concept the
object of the command is, then what action is needed to be done to the object,
and finally, what concept can do that action to the object. If the algorithm
cannot locate the three previously defined nodes, then it stops: the instruction
cannot be carried out. If it finds three nodes that satisfy all of the constrains
defined above, it returns the address or reference of the executive agent that is
stored in the instance node of the executive node.

Let us see an illustrative example: The user gives the command: “Brew coffee!”
(see Fig. 2). The algorithm first identifies node “drink” as the object node, since
it is the ancestor of the node “coffee”. Then it identifies node “make” as the
action node, since it is the synonym of the node “brew”. Finally, it identifies node
“drink machine” as executive node. If it has an instance (though the instances
are not shown in the figure) that is associated to the instance of “drink” (which is
a void node), then the system returns the address/reference of the drink machine
agent stored in the instance node.

3.3 Instruction and Execution

The task of the Instructor Module (IM) is to instruct the executive agents of the
robot/robot system chosen by the interpreter to execute the task to provide the
desired service for the user.
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In advanced man-machine co-operation the communication is usually
bi-directional, i.e. the robot (agent) has to be able to construct questions or
give information in a way that the human user/partner can easily understand.
In case of verbatim communication, this can be solved by the usage of voice syn-
thesizers (see e.g. [11]) or by simply writing the message out to a screen. Either
way, the usage of grammar rules is necessary, since communicating with the user
in his/her native language is the most convenient for the person. To achieve this,
an advanced, language dependent grammar rule representation and processing
method is needed.

4 Knowledge Based Hypotheses Building

An intelligent robot also has to be able to learn human reactions (e.g. instruc-
tions) together with the circumstances in which they appear and automatically
initiate (execute) actions if the conditions become similar to the learned situa-
tion. A part of the robot’s intelligence, the so called Autonomous Action Planner
(AAP) shall be responsible for learning via hypotheses and for decision making
whether or not to take actions according to what the system has learned.

4.1 Hypothesis Training

The task of the Hypothesis Trainer (HTM) is to determine which executive agent
can execute the command. Its input is the parsed command and has no outputs.
The algorithm of the hypothesis training works, as follows: If the command is an
instruction, then it searches for a hypothesis that has the same action, subject,
and numerical parameters. (There can be only one hypothesis like that, i.e. it is
sufficient to get the first found). If there is none found, then a new hypothesis is
created using the parameters of the command and a new trigger and new condi-
tions are added with the (environmental variable) nodes connected to the subject
node with heuristic edges. There will be as many conditions as many heuristic
edges are connected to the subject node. The value and granularity of each con-
dition is derived from the current value and granularity of the environmental
variable.

If there already is such a hypothesis, then the algorithm checks its triggers. If
there is a trigger with conditions triggered by the current values of the environ-
mental variables, the algorithm increases the justification of that trigger and end
the algorithm. If there is not any trigger like that, then a new trigger is added
using heuristics just like it is explained above.

If the command is a prohibition then the algorithm searches for a correspond-
ing hypothesis with triggers. If it does not have any triggers, it adds a new
trigger to it. If there is one then adds a new condition to all its triggers using
the negated fuzzy membership function of the prohibition.
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4.2 Hypothesis Trigger Checking

The task of the Hypothesis Trigger Checking (HTCM) is to frequently check the
conditions of the hypotheses in the hypothesis storage. If one is triggered, the
HTCM sends the command of the hypothesis to the CIM, which instructs
the appropriate executive agents to carry out the command.

For the hypothesis building, consider the following example: The human gives
certain commands to the intelligent robot at certain times (e.g., “open the cur-
tains” after waking up at 7:00, “make coffee” at 7:33 and 12:00, etc.). The robot
makes and manages hypotheses based on these commands. The justification
threshold of the triggers of hypotheses is set e.g. to 2, thus the system is only
able to give out the command of the triggered hypotheses if the command has
been detected at least 2 times under the same circumstances.

The left hand side of Fig. 6 shows an example for a learned hypothesis based
on the instruction “make coffee”. The command has been given at 7:33 and 12:00
(the parameters after “value” are: the value and granularity of the environmental
variable and the affirmativeness of the condition). (In this example, the mood
of the user was found frustrated (2) and neutral (3)).

Continuing the example, consider that the man’s weekday and weekend sched-
ules are different, though the robot does not know about this on the first time,
so it makes coffee at 7:33 on Saturday, as well. In reaction, the user gives a
prohibition: “DO NOT make coffee on Saturday”. Thus, the hypothesis based
on command “make coffee” is modified by the complement of fuzzy membership
function Saturday as is shown in the right hand side of Fig. 6, meaning that the
robot will not make any coffee if the value of the environmental variable “day”
equals to 6.

Fig. 6. Instruction (left) and prohibition (right) type hypothesis

5 Conclusions

Human-robot co-operation asks for efficient knowledge storage and representa-
tion models which have a direct effect on the accessibility to the knowledge
and also on the flexibility and adaptivity of the application and update of the
knowledge. In this paper, a new flexible graph based structure is proposed which
principally belongs to the wider family of conceptual graphs, however the au-
thors suggested a different (modified and extended) structure of the existing
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ones. The representation form has been adapted to a new range of problems
and is applied in a new field. The novelty of the presented structure mainly lies
in its specific edge types and that it stores and handles theoretical (abstract)
and practical (real-word) knowledge separately. It is also able to build in uncer-
tain and ambiguous knowledge by using fuzzy variables. As result, the proposed
model makes easy to store, retrieve, modify, and extend theoretical and practical
knowledge, to interpret commands and to associate them with physical means
and actions, to adapt to changes, learn and build in new (uncertain) knowledge
which aspects are especially important when the agents/robots are involved in
human-robot communication as well.

Acknowledgments. This work was sponsored by the Hungarian National Sci-
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Abstract. As people move through uncertain environments, they are
often presented with multiple route choices. Deciding which route to
take requires an understanding of the environmental features and how
they affect the person’s interpreted cost of each route. These quantities
can be appropriately modeled as fuzzy numbers to capture the inherent
uncertainty in human knowledge. We present an approach to guide a
person’s decision-making process through an environment modeled as
a fuzzy weighted graph, using an α-level OWA operator to implement
the principle of bounded rationality. A cost value is computed for each
possible route choice, which can then be used to rank the set of routes
and make a decision.

1 Introduction

Human geography is a diverse field involving the study of human traits in geo-
graphic space. One aspect of human geography is the study of how people nav-
igate through environments. In contrast to many computational path-planning
algorithms, humans do not always make optimal decisions when moving in an
environment. Rather, we make decisions based on a cognitive map built from
spatial knowledge and experience [1]. Rarely do these maps contain perfect in-
formation, as locations and spatial relationships between objects are measured
using humanistic concepts such as “There is a hill off in the distance,” or “This
path is about three miles long.” This type of uncertainty can be modeled using
fuzzy sets.

An environment can be viewed as a graph of discrete locations represented
as vertices and path transitions represented as edges. A person, or agent, may
assign a cost value to each path segment based on their personal interpretation
of the environmental features of that segment and how those features affect their
mobility along the path. The uncertainty inherent in the agent’s perception is
modeled by using fuzzy numbers to represent the costs. In order to evaluate the
total cost of a route between two locations, an agent must aggregate the costs
of each route segment. By studying decisions made by artificial agents in an
agent-based modeling scheme, we can gain insight on how groups of people will

M. Jamshidi et al. (eds.), Advance Trends in Soft Computing WCSC 2013, 253
Studies in Fuzziness and Soft Computing 312,
DOI: 10.1007/978-3-319-03674-8_24, c© Springer International Publishing Switzerland 2014



254 A.R. Buck, J.M. Keller, and M. Popescu

move in their environment under stress conditions, one of the goals of human
geography.

The focus of this paper is to present a method for determining the cost as-
signed to a particular route, based on environmental features and an agent’s
attributes. We use an α-level Ordered Weighted Average (OWA) operator [2] to
implement bounded rationality [3], the idea that agents have limited resources
with which to make decisions, resulting in sub-optimal choices. Once a route cost
has been established in the form of a fuzzy number, a variety of path-planning
algorithms can be used to guide the agent’s decision-making process. These in-
clude standard fuzzy shortest path algorithms such as [4] and [5] or the genetic
algorithm approach of [6]. The remainder of this paper is outlined as follows.
In Sect. 2, we define the concepts of fuzzy numbers, fuzzy weighted graphs, and
bounded rationality as implemented by an α-level OWA operator. In Sect. 3, we
present an example scenario consisting of three different routes and show how
different agent types evaluate the environment differently. Our conclusions and
ideas for future work are given in Sect. 4.

2 Path Planning in Uncertain Environments

2.1 Fuzzy Numbers

A fuzzy number is a convex, normalized fuzzy set A : IR→ [0, 1] that provides a
way of representing uncertainty in the value of a real number. The membership
function μA(x) gives the degree of membership that a specific value x has in the
fuzzy number A. Using Zadeh’s extension principle, we can define the arithmetic
operators for fuzzy numbers, as well as other functions such as maximization and
minimization. For a function f(A,B) operating on two fuzzy numbers A and B,
the resulting fuzzy number is given as

μf(A,B)(z) = sup
z=f(x,y)

min
(
μA(x), μB(y)

)
. (1)

Because fuzzy numbers are convex, we can use α-cuts and interval arithmetic to
quickly compute the result of a fuzzy computation. An α-cut of a fuzzy number
is an interval αA = [l, r] such that μA(x) ≥ α, x ∈ [l, r]. The decomposition
theorem states that a fuzzy number is simply the union of all α-cuts, α ∈ [0, 1].
For each value of α, the result of a convex, continuous function f(αA, αB) on
the α-cuts of two fuzzy numbers αA and αB is computed as

f(αA, αB) = f
(
[a, b], [c, d]

)
= [l, r], (2)

l = min
(
f(a, c), f(a, d), f(b, c), f(b, d)

)
,

r = max
(
f(a, c), f(a, d), f(b, c), f(b, d)

)
.

Although any fuzzy set that satisfies the conditions of convexity and normality
can be used to represent a fuzzy number, we often use triangular membership
functions for their simplicity. We define a triangular fuzzy number as a 3-tuple
(a, b, c), where the interval [a, c] is the support and b is the peak of the fuzzy
number.
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2.2 Fuzzy Weighted Graphs

An environment can be represented as a fuzzy weighted graph G̃ = (V , E ,X ),
where V = (v1, · · · , vN ) is the set of vertices representing the discrete locations
in the environment, E is the set of edges ek = (vi, vj) ∈ V × V representing
possible transitions from one location to another, and X is a set of fuzzy weights
assigned to each edge. For each edge ek, we denote a vector of fuzzy numbers

X̃(ek) =
(
X̃1(ek), · · · , X̃r(ek)

)
, where each element X̃i(ek) represents a different

measured feature of the edge ek (e.g. length, slope, path type, etc.).
For each edge ek = (vi, vj), we denote tail(ek) = vi and head(ek) = vj . An s, t

path p in G̃ is an n-tuple p = (e1, · · · , en) ∈ En such that head(ei) = tail(ei+1)
for i = 1, · · · , n− 1. We denote the start of the path as s = tail(e1), and the end
of the path as t = head(en). P(s, t) is the set of all s, t paths. For any path p ∈
P(s, t), we can define an aggregated weight vector F̃ (p) =

(
F̃1(p), · · · , F̃r(p)

)
,

where F̃i(p) is the aggregation of all fuzzy numbers X̃i(ek), ek ∈ p for the feature
i. The choice of aggregation function depends on the feature, as some features
such as distance are well suited for a summation-type aggregation, whereas other
features such as slope might be better aggregated with a maximization operator.

2.3 Bounded Rationality

An agent decision-maker trying to plan a route from point s to point t will ul-
timately need to choose a path from the set P(s, t). To do this, the agent will
need to have a method for comparing paths. For a given path p ∈ P(s, t), the
aggregated weight vector F̃ (p) provides a summarization of the various mea-
surable features of the path. Not all agents are identical, however, so we define

an agent-specific interpretation Ã(p) =

(
Ã1(p) = g̃1

(
F̃1(p)

)
, · · · , Ãr(p) =

g̃r

(
F̃r(p)

))
where each function g̃i

(
F̃i(p)

)
is defined independently for each

feature. These functions define how much various environmental properties af-
fect the agent’s interpreted cost of a path. As a rule of thumb, the values should
be scaled into units corresponding to the amount of effort the agent attributes
to moving along a path with each of the various features. We avoid explicitly
normalizing the resulting vector Ã(p) to allow certain features to dominate the
final cost in all circumstances. For example, most agents would consider a path
that contains no off-road segments to be far less costly than a path that contains
several off-road segments. In this case, the off-road feature should be scaled by
a very large number to guarantee that it will be the dominant factor in the final
cost evaluation. Care should be taken to ensure that all of the resulting elements
of Ã(p) are all appropriately scaled.

The principle of bounded rationality states that a decision-maker cannot
always consider all sources of information and tends to utilize only the most
prominent features when making a decision. We implement bounded rational-
ity using an α-level OWA operator to reduce the agent interpretation vector
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Ã(p) to a single fuzzy cost value C̃(p). An α-level OWA operator is a mapping

Φ
W̃

: (Ã1(p), · · · , Ãr(p)) �→ C̃(p) where W̃ = (W̃1, · · · , W̃r) is a vector of fuzzy
number weights defined on the domain [0, 1]. The Alpha-Level Approach defined
in [2] provides a method to compute Φ

W̃
using α-cuts. For each α ∈ [0, 1],

αΦ
W̃

(αÃ1(p), · · · , αÃr(p)) =

⎛⎜⎜⎜⎜⎝
r∑

i=1

wiaσ(i)

r∑
i=1

wi

∣∣∣∣∣ wi∈αW̃i

ai∈αÃi(p)
i=1,··· ,r

⎞⎟⎟⎟⎟⎠ , (3)

where σ : (1, · · · , r)→ (1, · · · , r)
such that aσ(i) ≥ aσ(i+1) ∀ i = 1, · · · , r − 1.

From the set of αΦ
W̃

, the final cost value can be obtained as

C̃(p) =
⋃

0≤α≤1

α · αΦ
W̃

(αÃ1(p), · · · , αÃr(p)). (4)

An efficient algorithm to quickly compute the α-level OWA operator is given
in [2]. By changing the weight vector, different aggregation operations can be
defined, such as averaging the first k elements or considering only the single most
influential feature.

3 Example

To demonstrate our method, consider the following hypothetical scenario. An
agent is trying to reach a goal position on the opposite side of a large hill. The
agent is presented with three route choices: through the woods, over the hill, or
the long way around. The shortest route goes directly over the hill, however this
route is very steep and unpaved. The next shortest route goes through a forrest
which provides shade and has only a mild elevation change, but the route is still
unpaved and also has a stream crossing with no bridge. The last route is the
longest, but it is completely paved and has almost no elevation change. One can
imagine three different types of agents that would prefer different routes based
on their personal traits. For example, an athletic agent that does not care about
elevation or path quality might prefer the direct route over the hill, whereas a
less active agent might need to take the long route to avoid climbing or going
off the paved route. Finally, a somewhat capable agent might prefer to take the
path through the woods – even with the dirt path, water crossing, and elevation
change – in order to avoid walking in the sun.

We model this scenario with the fuzzy weighted graph shown in Fig. 1. The
fuzzy weights assigned to each edge are the triangular fuzzy numbers shown in
Table 1. These represent the distance, slope, path quality, amount of shade, and
number of water crossings as measured by the agent. Note that the shade values
are defined so that unshaded routes have a greater cost value. It is appropriate
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to use fuzzy numbers to represent these values, as an agent will likely not have
perfect information. In this example, the route through the woods is A–B–C–E–
F , the route over the hill is A–B–E–F , and the long way around is A–B–D–E–F .
For each of these routes, we aggregate the features using fuzzy summation for
distance, path, shade, and water, and using the fuzzy max operator for slope to
represent how an agent may only care about the steepest part of a path. The
resulting aggregated feature vectors are shown in Fig. 2.

Fig. 1. Three Route Fuzzy Weighted Graph

Table 1. Fuzzy edge weights for the graph in Fig. 1

Edge Distance Slope Path Shade Water

(A,B) (1, 2, 3) (0, 0.64, 2.6) (0, 0, 0.2) (1, 2, 3) (0, 0, 0.2)

(B,C) (2, 4, 6) (0.8, 2.8, 4.8) (1.5, 3.5, 5.5) (0, 0.5, 2.5) (0, 0, 0.4)

(B,D) (3.5, 7, 11) (0, 0.57, 2.6) (0, 0, 0.7) (3.5, 7, 11) (0, 0, 0.7)

(B,E) (2.5, 5, 7.5) (5.5, 7.5, 9.5) (1.5, 4, 6.5) (2.5, 5, 7.5) (0, 0, 0.5)

(C,E) (2.5, 5, 7.5) (0.86, 2.9, 4.9) (2, 4.5, 7) (0, 0.5, 3) (0, 1, 2.3)

(D,E) (4, 8, 12) (0, 0.7, 2.7) (0, 0, 0.8) (4, 8, 12) (0, 0, 0.8)

(E,F ) (1, 2, 3) (0, 0.25, 2.3) (0, 0, 0.2) (1, 2, 3) (0, 0, 0.2)

We now define three agent types with different interpretation functions. In
this example, each feature is multiplied by a scalar value such that for an agent

l, Ã
(l)
i = g̃

(l)
i

(
F̃

(l)
i

)
= β

(l)
i · F̃ (l)

i . The β values for the three agents in our

example are given in Table 2. The first agent associates a moderate cost with
steep and unshaded routes, as well as a high cost for water crossings. The second
agent weights long routes, unshaded routes, and water crossings with an equally
high cost. The third agent has a very high cost associated with steep routes, a
somewhat high cost associated with unpaved routes, and a moderately high cost
for water crossings.
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Fig. 2. Aggregation of Feature Values for Three Route Example

Table 2. Agent Interpretation Values (β)

Agent Distance Slope Path Shade Water

1 1 10 1 10 100

2 10 1 1 10 10

3 1 100 50 1 10

Table 3. α-level OWA Weights

W̃1 W̃2 W̃3 W̃4 W̃5

W̃ (Max) (0, 0.5, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

W̃ (Top 2) (0.5, 1, 1) (0.5, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)

W̃ (Average) (0, 0.2, 0.4) (0, 0.2, 0.4) (0, 0.2, 0.4) (0, 0.2, 0.4) (0, 0.2, 0.4)
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Fig. 3. Bounded Rationality Cost Evaluation for Three Route Example

For each agent type, we evaluate the example environment using three differ-
ent sets of fuzzy number weights, shown in Table 3. The resulting cost evaluation
for each route is shown in Fig. 3. We see that the first agent tends to prefer the
forrest route, but due to the large cost associated with water crossings, this
agent also likes the direct route over the hill. As the OWA weights move from
the single most prominent feature toward the average of all features, the dis-
tinction between routes becomes less apparent. The second agent prefers the
hilly route for the “max” weights, but considers the forrest route to be about as
good as the hilly route for the other weights. The third agent clearly prefers the
long way around for all weight choices. From these costs, the agents can use any
appropriate fuzzy ranking method to pick a route to follow. A method such as
the Liou and Wang index [7] that allows for an additional optimism/pessimism
parameter would be appropriate for this type of problem.

4 Conclusion and Future Work

Fuzzy numbers are a natural way to represent how an agent interprets its en-
vironment. The α-level OWA operator allows an agent to aggregate multiple
fuzzy route features using the principle of bounded rationality. This allows dif-
ferent types of agents to each interpret an environment in their own way and
make unique decisions. The agent interpretation functions and the OWA weight
vector are quite flexible, and can be defined to fit many different domains.



260 A.R. Buck, J.M. Keller, and M. Popescu

A logical extension of this work is to incorporate the cost evaluation into a
general path-finding algorithm and an agent movement model. A fuzzy shortest-
path algorithm that can return multiple possible routes would be a good way to
provide several route choices to a decision-making agent. Agent movement could
then be guided by following the least-cost route.
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Geospatial Intelligence Agency for support of this research under contract NGA
HM 1582-10-C-0013.
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Abstract. Fuzzy measures (FMs) encode the worth (or importance) of
different subsets of information sources in the fuzzy integral (FI). It is
well-known that the Choquet FI (CFI) often reduces to an elementary
aggregation operator for different selections of the FM. However, FMs are
often learned from training data or they are derived from the densities
(worth of just the singletons). In these situations an important question
arises; what is the resultant CFI really doing? Is it aggregating data rel-
ative to an additive measure, a possibility measure, or something more
complex and unique? Herein, we introduce new indices (distance formu-
las) and fuzzy sets that capture the degree to which the CFI is behaving
like a set of known aggregation operators. This has practical application
in terms of gaining a deeper understanding into a given problem, guiding
new learning methods and evaluating the CFI’s benefit.

1 Introduction

Fuzzy measures (FMs) are often used to encode the (possibly subjective) worth
of different subsets of information sources. The Choquet fuzzy integral (CFI),
an aggregation operator, is a way to combine the information encoded in a FM
with the (objective) evidence or support of some hypothesis, e.g., sensor data,
algorithm outputs, expert opinions, etc. FMs can be obtained in a number of
ways: quadratic program (QP) [1], learning algorithm (e.g., genetic algorithm
[2], punishment-reward [3], gradient descent [4]), S-Decomposable measure (e.g.,
Sugeno λ-fuzzy measure [5], belief measure), etc. However, the vast majority of
FM learning and density deriving techniques (i.e., a FM acquired from just the
worth of the singletons) do not provide us with any knowledge about how the
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resultant CFI is truly aggregating the data. Characterizationmethods are needed
to help us discover what the CFI is really doing relative to a given (learned or
derived) FM. The applicability of such a tool is wide-ranging: from an increased
low-level understanding of how the sources are being fused to possibly helping us
learn which sources are needed and which are providing negligible information
to the problem at hand. Such a tool can also help us justify when the CFI is
indeed doing something unique by acting outside the bounds of a simple known
aggregation operator (e.g., weighted sum). It also has the potential to aid us
in predicting the benefit of adding (or aiding the design of) a new sensor in
multi-sensor fusion [6, 7].

Herein, we put forth new indices (distance formulas) and corresponding fuzzy
sets that help assess the degree of similarity a learned or density-derived FM,
which drives the behavior of the CFI, has to a subset of known aggregation
operators. As stated above, there are many potential applications for indices
that characterize the CFI. The work put forth herein is a first step in terms of
identifying such indices. Later, focused work will improve upon these building
blocks, indices, and explore their role in fusion.

The remainder of this article is structured as follows. Section 2 is a quick
review of the FM, followed by learning and density-based derivation methods
used herein to acquire it. Equations for characterizing the FM’s behavior is
introduced in Section 3. Last, preliminary experimental results are reported in
Section 4.

2 Background

The FM does not possess the restrictive property of additivity. Instead, it has
the weaker property of monotonicity (and typically normality). With respect
to a set of N information sources, X = {x1, ..., xN}, the FM is often used to
encode the (possibly subjective) worth of each subset in the power set 2X . In
the CFI, the FM is the mechanism that ultimately dictates how information is
aggregated.

Definition 1. (Fuzzy Measure) For a finite set of N information sources, X,
the FM is a set-valued function g : 2X → [0, 1] with the following conditions:

1. (Boundary Conditions) g(φ) = 0 and g(X) = 1,
2. (Monotonicity) If A, B ⊆ X with A ⊆ B, then g(A) ≤ g(B).

Note, if X is an infinite set, there is a third condition guaranteeing continuity.

Definition 2. (Choquet Fuzzy Integral) For a finte set of N information
sources, X, FM g, and partial support function h : X → [0, 1], the CFI is∫

h ◦ g =

N∑
i=1

ωih(xπ(i)), (1)

where ωi = (Gπ(i)−Gπ(i−1)), G(i) = g({xπ(1), ..., xπ(i)}), Gπ(0) = 0, h(xi) is the
strength in the hypothesis from source xi, and π(i) is a sorting on X such that
h(xπ(1)) ≥ . . . ≥ h(xπ(N)).
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In contrast to relatively simple and classical additive aggregation techniques,
e.g., weighted sum, the CFI is a more powerful aggregation operator that can
account for important interactions (when/if present) between different subsets
of information sources. Interactions, as referred to herein, are the combining of
hypotheses between the subsets of X (e.g., combining h(x1) with h(x2) results
in an increase or decrease to the overall confidence of a decision). The way in
which these interactions impact the aggregated result is guided by the selection of
FM. An example of the CFI is the following. Consider the case of multi-sensor
(e.g., electro optical infrared (EO/IR), ground penetrating radar (GPR), and
visual spectrum (VS)) explosive hazard detection. Furthermore, assume these
sensors are co-registered, meaning, we know the mapping from one pixel, (i,j), in
sensor (image) k to its corresponding pixel in sensor (image) m, or each source
is individually mapped into some global coordinate system. Therefore, N = 3
and x1 is EO/IR, x2 is GPR, and x3 is VS. For a specific world location, such
as (33.4526 , −88.7874), a hypotheses might be, “there is an explosive hazard
at this world location.” For simplicity, assume the information provided by each
sensor is its individual strength, in [0,1], in the above hypothesis. Thus, g(x1, x3)
is the importance of EO/IR and VS relative to answering this hypothesis and
the CFI is the combined belief that the location is a hazard and dangerous.

Next, we review a few FM learning and density deriving methods since they
guide the work and are a large part of the proposed experiments. Specifically, we
review learning a FM from data via QP, the class of S-Decomposable measures,
possibility and necessity measures, and the Sugeno λ-FM.

2.1 Quadratic Program for Learning the FM from Data

In [8], Grabisch shows how to compute the FM using QP. Training data is
used and the FM that makes the FI fit the data with minimum sum of squared
error (SSE) is used. Let T = {(oj , αj) : j = 1, ...,m} denote the set of training
data, where oj is the the jth object/instance and αj ∈ [0, 1] is the label of oj .
Referring to the multi-sensor EHD system example from Section 2, instance oj
would be a [1×N ] vector with confidence values for each of the N information
sources and αj would have a label of target or not target. With respect to
instance j, the CFI can be compactly represented in linear algebra form as
At

ojg + h(oj ;xπ(N)), where g is a vector (of size 2N − 1 × 1) of lexicographic
ordered FM terms (e.g., g(1) = g({x1}), g(2) = g({x2}), g(N+1) = g({x1, x2}),
g(2N − 1) = g({x1, x2, . . . , xN}), etc.) and Aoj is a vector (of size 2N − 2 × 1)
of differences in h values. For example, if the largest h value index is k, then
Aoj (k) = h(oj ;xπ(1))− h(oj ;xπ(2)). The FM is computed by minimizing

1

2
gt(2

m∑
j=1

AojA
t
oj)g +

m∑
j=1

(2(h(oj ;xπ(N))− αj)A
t
oj )g, (2)
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subject to (−C)g− b ≥ 0 and 0 ≤ g ≤ 1, where b is a vector (of size N(2N−1−
1)× 1) of all 0’s except for the last N entries, which are of value −1, and C is
a matrix (of size N(2N−1 − 1)× 2N − 2) of monotonic fuzzy constraints (see [8]
for details).

2.2 S-Decomposable Measure

The Sugeno λ-FM is one of the most widely used methods for deriving a FM
from just the densities. However, the Sugeno λ-FM is a member of a much larger
class of FMs, S-decomposable measures.

Definition 3. (S-Decomposable Measure). Let S be a t-conorm. A FM g is
called an S-decomposable measure if g(φ) = 0, g(X) = 1, and for all A, B such
that A ∩B = φ,

g(A ∪B) = S(g(A), g(B)).

2.3 Possibility and Necessity Measures

Popular examples of S-decomposable measures include the following.

Definition 4. (Possibility Measure). A FM Π is called a possibility measure
if Π(φ) = 0, Π(X) = 1, if A ⊆ B, Π(A) ≤ Π(B), and

Π(A ∪B) = max (Π(A), Π(B)). (3)

Definition 5. (Necessity Measure). A FM Nec is called a necessity measure
if Nec(φ) = 0, Nec(X) = 1, if A ⊆ B, Nec(A) ≤ Nec(B), and

Nec(A ∩B) = min (Nec(A), Nec(B)). (4)

2.4 Sugeno λ-Fuzzy Measure

Definition 6. (Sugeno λ-Fuzzy Measure). A measure gλ is called a Sugeno
λ-FM if it is a FM, [Def 1], and if for A,B ⊆ X and A ∩B = φ,

gλ(A ∪B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), λ > −1.

Sugeno showed that λ can be found by solving

λ+ 1 =

N∏
i=1

(1 + λg({xi})) , (5)

where Sugeno showed that there is exactly one real solution such that λ > −1.
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3 Indices for Analysis of the Choquet Integral

In this section, we put forth a new set of indices (distance formulas) and fuzzy
sets that capture the degree to which the CFI is behaving like a known aggrega-
tion operator for a given FM. Specifically, we put forth definitions for max, min,
average, the generic case of an ordered weighted average (OWA), and the degree
to which a FM is in accordance with a possibility FM. These FMs are based on
the theoretical investigation of the CFI for different FMs by Keller et al. [9].

Before moving on, a few terms used herein need to be established. First, a
lattice is induced according to the set of monotonicity constraints of the FM.
It is simple to think about and talk about a FM in terms of its lattice. Sec-
ond, a node in the lattice refers to the value of the FM for a given non-empty
subset of X . Layer k in the lattice, denoted L(k), is the set of all FM terms
for subsets of 2X that have cardinality equal to k. For example, if N = 3,
L (1) = {g (x1) , g (x2) , g (x3)}, L (2) = {g (x1, x2) , g (x1, x3) , g (x2, x3)}, and
L (3) = g (x1, x2, x3) = g (X).

3.1 Maximum Operator

It is well-known that the CFI is a max operator when the value at each node
(used herein when referring to non-empty subsets of X) in the lattice is 1. A
naive approach for measuring the distance in which a given FM behaves like the
max operator is

1

2N − 2

∑
I∈2X\{φ,X}

(1− g(I)). (6)

Equation 6 is a distance, which has a value of 0 when we have a max FM and a
value 1 in the case of minimum (dual of max). It can be easily converted into a
similarity by subtracting it from 1. However, Eqn. 6 is lacking as it assigns equal
importance to each node in the lattice and it does little-to-nothing to guarantee
the specific properties that we expect a max operator to possess. It is also very
hard to interpret what the distance is really measuring (outside comparing it
to the extreme case of min). It appears, to us, that whatever the measure is, it
should calculate its distance relative to a FM of all 1s (max FM). We assert that
a quality distance measure should enforce the idea that a given FM needs to
indeed behave like an OWA and differences at different layers in the lattice are
not equal (as we expect max to move to soft max and then a different operator
from there). We begin by assigning a weight (penalty or cost) for each layer in
the FM,

W =

[
1
N , . . . , 1

]∑N
i=1

i
N

. (7)
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Now, we put forth a formula that adheres to the concepts discussed above,

Dmax =

1∑
k=1

W (k)

2
(T1 + T4) +

[
N∑

k=2

W (k)

3
(T1 + T2 + T4)

]
, (8)

T1 = 1−
(∑

I∈L(k) g(I)

|L (k)|

)
, (9)

T2 =

(∑
I∈L(k) g (I)

|L (k)|

)
−
(∑

J∈L(k−1) g (J)

|L (k − 1)|

)
, (10)

T3 =

∑
I∈L(k) g (I)

|L (k)| , (11)

T4 =

∑
I∈L(k) (g (I)− T3)

2

|L (k)| − 1
. (12)

Specifically, T1 measures the difference from the expected value of 1, T2 is the
extraction of the OWA weights (which should be [1, 0, . . . , 0] for max), and T4

is an unbiased estimator of the variance of the values at layer k in the lattice.
While Dmax measures the distance of a given FM to max, what we really want
is a membership degree in which 0 means not max and 1 means it is max. How-
ever, how should this membership function be defined on the domain Dmax? We
propose that one specifies a definition for soft max and measures its correspond-
ing Dmax value. For example, in our experiments section we used N = 3 and
obtained Dmax ≈ 0.0637. Next, a membership function is selected; herein, we
used a Gaussian shaped membership function whose peak is centered at 0 and
σ is derived so that the 0.5 membership degree is at the corresponding location
(Dmax) for soft max. In this respect, one calibrates the concept of compatibility
relative to when we expect a FM to become increasingly dissimilar to max.

3.2 Minimum Operator

With respect to the min operator, each node in the lattice, except for g(X)
which is 1 by definition, should be 0. We also expect that the FM is an OWA
and we calibrate it relative to soft min. As min and max are duals, their resulting
calculations are largely similar,

Dmin =

1∑
k=1

W2 (k)

2
(T3 + T4) +

[
N−1∑
k=2

W2 (k)

3
(T3 + T2 + T4)

]
, (13)

where the weights are

W2 =

[
1, . . . , 1

N−1

]
∑N−1

i=1
i

N−1

. (14)
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Note, T3 measures the difference of a layer to the expected value of 0. Further-
more, we follow a similar calibration process to that outlined above (Sec. 3.1) to
calibrate min, with the only difference being we specify a definition for soft min
instead of soft max.

3.3 Average Operator

A unique property of the average operator, with respect to the FM, is it has
value k

N at layer k in the lattice. This is captured in the following equation,

Davg =
1

2N − 2

N−1∑
k=1

∑
I∈L(k)

∣∣∣∣g (I)− k

N

∣∣∣∣ . (15)

Unlike max and min, it is not as clear what the membership function and specific
calibration (point where the membership drops off to value 0.5 and shape of the
function) should be. It could however, be calibrated or fit to a user’s specification
or application. Herein we fit a z-membership function which was calibrated to
have membership value 0.5 at (1/N)

2
. Note that the value used for calibration

was experimentally determined based on our preliminary experiments.

3.4 OWA Operator

Based on the definitions above, measuring the degree to which the CFI, for a
given FM, is compatible with an OWA operator is relatively simple. The criteria
is that sets of equal size cardinality in the lattice have equal measure value,

DOWA =
1

N − 1

N−1∑
k=1

√
T4. (16)

Again, it is not obvious how to take this distance and construct a membership
function that everyone would agree with that captures the exact rate at which
a given FM is moving away from being an OWA operator. The membership
function can be specified by a user or specific application. Herein, we fit a trian-
gular membership function across the domain [0, 1] such that the left and center
points are at 0 and the right point is at 1. This membership function was chosen
intuitively and supported experimentally through our preliminary experiments.

3.5 Possibility Measure

The final index put forth here captures the degree to which the CFI is aggregating
data under the guidance of a possibility measure. A possibility measure has the
unique distinction that for A ⊂ X , g(A) is the maximum over the densities
corresponding to A. We therefore put forth the following distance measure,

DPoss =

∑
A∈2X\{φ,{x1},...,{xN},X} |g(A)−maxi∈A g({xi})|

2N − 2−N
. (17)
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As in the sections above, we empirically calibrated the membership function.
Herein, we fit a triangular membership function to DPoss such that the left and
center points are at 0 and the right point is at 1.

4 Preliminary Results

In this section, we report preliminary results that demonstrate the behavior
of our proposed indices. Once again, these indices are put forth in order to
characterize the behavior of the CFI. The goal of this work is to explore a few
such indices. The focus of this work is not to vigorously analyze the results of
different learning or data driven experiments for different application domains.
That is the subject of future work. Two sets of experiments were conducted:
using known FMs (Sec. 4.1), and using learned and density derived FMs (Sec.
4.2). For simplicity of reporting and describing the following experiments, the
following cases are performed for N = 3.

4.1 Experiment 1: Known Aggregation Operators

The experiments presented in Table 1 are put forth to demonstrate the behavior
of our indices with respect to known user specified FMs.

Table 1. Results of proposed indices for the case of known FMs and N = 3

User Specified FM Max Min Avg OWA Poss

(a) Max
dist. 0 0.44 0.5 0 0

memb. 1 0 0 1 1

(b)
Soft Max dist. 0.07 0.35 0.3 0 0.2

OWA weights of (0.7, 0.2, 0.1) memb. 0.5 0 0 1 0.8

(c) Min
dist. 0.36 0 0.5 0 0

memb. 0 1 0 1 1

(d) Average
dist. 0.18 0.22 0 0 0.33

memb. 0.01 0.01 1 1 0.66

(e)
OWA dist. 0.16 0.24 0.12 0 0.08

weights of (0.52, 0.08, 0.40) memb. 0.04 0 0.35 1 0.92

(f)
Possibility Measure dist. 0.12 0.31 0.18 0.15 0

densities of (0.4, 0.6, 0.8) memb. 0.13 0 0.02 0.84 1

(g)
Sugeno λ-FM dist. 0.28 0.1 0.27 0 0.25

densities of (0.1, 0.1, 0.1) memb. 0 0.41 0 1 0.74

(h)
Sugeno λ-FM dist. 0.13 0.35 0.25 0.27 0.07

densities of (0.5, 0.2, 0.9) memb. 0.11 0 0 0.72 0.92
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As expected, each of the simple aggregation operators have full membership to
their respective index. Also, note that a given FM can be many types of FMs at
once (i.e., for the max FM, it is also an OWA and possibility FM). Further, soft
max, 1.(b), returns a membership of 0.5 to the max index, and the possibility
measure, 1.(f), has full membership for its respective index. Interestingly, both
of the Sugeno λ-FMs, one being subadditive, 1.(g), and the other superadditive,
1.(h), have relatively high possibility memberships, which indicate it is acting in
accordance to a possibility FM despite the disparity between the two densities.

4.2 Experiment 2: Learned and Density Derived FMs

The baseline experiments presented in Table 2 are put forth to demonstrate the
behavior of our indices with respect to learned and density derived FMs. For
the case of the QP, 100 random samples were produced, labels were generated
using a known FM (which varies per experiment), and the QP was then used to
approximate the FM from that data (input plus known labels).

Table 2. Results of proposed indices for learned and density derived FMs for N = 3

Method used to obtain FM Max Min Avg OWA Poss

(a)
QP fit to data from soft max FM dist. 0.07 0.35 0.3 0 0.2
OWA weights of (0.7, 0.2, 0.1) memb. 0.5 0 0 1 0.8

(b)
QP fit to 0.9 of OWA and 0.1 noise1 dist. 0.14 0.26 0.1 0 0.11

OWA used was [0.52, 0.08, 0.4] memb. 0.07 0 0.51 0.99 0.88

(c)
Sugeno λ-FM using densities dist. 0.11 0.3 0.19 0 0.29

learned in Table 2.b memb. 0.19 0 0.01 0.99 0.7

(d)
QP fit to random (but valid) FM dist. 0.2 0.23 0.18 0.21 0.36

FM of (0.5, 0.1, 0.11, 0.51, 0.79, 0.89, 1) memb. 0 0 0.02 0.78 0.64

(e)
QP fit to valid FM dist. 0.24 0.14 0.16 0 0

FM of (0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 1) memb. 0 0.14 0.1 1 1

The first experiment, shown in Table 2.(a), shows that the indices are still
performing as expected when the FMs are learned using a QP. More interest-
ingly, however, is comparing experiments 2.(b)-(c) with 1.(e). Memberships for
all indices in 2.(b), are relatively close to the “calibrated” (expected) results
computed in 1.(e) even with a slight amount of noise added to the OWA. How-
ever, 2.(c), the Sugeno λ-FM derived using the densities found in 2.(b), does not
return memberships consistent with that found in 2.(b), which is undesired if
we recognize 2.(b) as being the optimal FM for that data. In fact, the Sugeno

1 In the case of noise, 90% of the label is from the OWA and 10% is random noise
from the interval [0, 1].
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λ-FM appears to make the CFI act a bit more like a max operator. Additionally,
as seen in 1.(g)-(h), the Sugeno λ-FM continues to have a high membership to
behaving in accordance to possibility FMs. The last two experiments, 2.(d)-(e),
show that the indices are able to characterize the behavior of FMs picked at
random (but checked to ensure monotonicity) in a manner that is expected.

These preliminary results provide a proof of concept for the indices put forth
herein. From these experiments it has been shown that the indices do return
characterizations of the FM that reflect what one may expect to see for a given
FM. It is important to note that a thorough investigation with respect to the
experimental application of these indices is needed and planned as future work
to further develop this FM characterization tool. This set of preliminary results
gives a glimpse at the utility and need for such a tool; however, further analysis
needs to be done. For example, a more intuitive and defined method for creating
the fuzzy sets needs to be introduced, as these dictate the membership degree.
Though there are areas of these indices that can likely be refined, this initial set
of CFI characterization tools begins a movement towards filling a void in the
understanding of what the CFI is really doing and how it is behaving.

5 Summary

In this paper, we put forth a set of new indices (distance formulas) and fuzzy
sets to help address the question of what the CFI is doing for the case of learned
or density derived FMs. The proposed tools have practical application in terms
of gaining a deeper understanding into a given problem, guiding new learning
methods (i.e., learning a FM that is a possibility measure, additive measure,
etc.) and evaluating the benefit of using the CFI. Herein, we defined a few initial
indices and we presented preliminary results for the behavior of these indices for
the cases of a number of known FMs (and thus aggregation operators), simple
learned (using the QP), and density derived FMs. While the results are prelim-
inary, we believe they show the promise of such an approach to formally char-
acterize the FM and CFI. In future work we will improve upon the definitions
and further refine (calibrate) the fuzzy sets. In addition, we will then look to
(experimentally) use these indices to help discover interesting and unknown be-
haviors of FMs and CFIs for the bigger purpose of guiding new theorems to help
us better understand the aggregation behavior of mutli-sensor fusion systems.
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Abstract. A methodology for modeling the electrocoagulation of
wastewater from the food industres, with high organic loads is proposed.
The approach used is a nonlinear model based on Artificial Neural Net-
works (ANN), which is able to understand the interaction between the
variables that define the process, to complement the traditional design
of experiments. Where the interaction of variables determines in many
cases, a large number of experiments to perform, that involve stages such
as planning, organization and execution of experimental activities, also
characterization and analysis of wastewater in order to remove chemical
oxygen demand (COD) and total dissolved solids (TSS). From this ap-
proach it will be possible to find appropriate conditions for these param-
eters in order to enhance the contaminant removal process with specific
routes (experimental conditions).

Keywords: Artificial Neural Networks, electrocoagulation, COD, TSS,
wastewater, slaugtherhouse.

1 Introduction

Water is essential for life. In a growing world population water is needed to
satisfy the necessity of drinkable water, for irrigating agriculture fields and for the
industry. Residual substances directly derived from industries pollute the water.
Strategies to overcome challenges in developing and adapting the technology
for protection, conservation and recovery of this natural resource are currently
under investigation. Residual liquids are substances at different concentrations
generated as products or subproducts from industrial production processes. It is
essential to treat industrial residual water before it is discharged to the sewers.
This action must be taken since residual water has polluting action, which varies
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according to concentrations of pollutants. Wastewater is classified according to
the type of industry that generates it.

The industries are classified into five groups:

– Consumer industries (textiles, tanning and laundry),

– Food production industries: canned foods, dairy products, fermented and
distilled beverages, meat products and poultry, animal husbandry, sugar,
pharmaceuticals, etc.

– Industries of materials: paper, photographic products, steel, foundry, oil
fields and refineries, rubber, production of adhesives and automotive indus-
try.

– Chemical industry: acids, detergents, starch, explosives, pesticides, phos-
phates and phosphorus, formaldehyde, plastics and resins. authors of the
paper.

– Energy industries: power plants and nuclear power plants.

Water treatment is important into achieve water availability for man and agri-
culture, therefore quality standars must be fullfilled in order to assure water free
of pollutants, under this approach diverse equipments and facilities have been
developed to treat wastewater [1]. Electrocoagulation is an emerging technology
used since 1906. During the last two decades it has been reported different appli-
cations of electrocoagulation such as: removing oil dispersed particles [2], grease
and oil in the treatment of wastewater from electroplating processes, textile
and water treatment processes [3], among others. New approaches to optimize
the electrocaogulation process are required. A new interesting tool could be the
artificial intelligence. Artificial Neural Networks (ANN) are tools of artificial
intelligence intended to imitate the complex operation of organizing and pro-
cessing information of the neurons in the brain. ANNs can identify patterns that
correlate strongly a set of data which correspond to a class by a learning pro-
cess, in which interconnected neuron weight are used to store knowledge about
specific features identified within data. Then in this manuscript we use an ANN
to model the electrocoagulation process in order to find strategies to optimize
this process.

2 Background

One way to quantify the effectiveness of a water treatment process is based on
the percentage removal of various parameters such as chemical oxygen demand
(COD) and the Total Suspended Solids (TSS). The chemical oxygen demand
(COD) is a parameter used to determine easily biodegradable matter. Is based on
the use of a strong oxidant capable of oxidizing the non-biodegradable material.
The amount of oxidant consumed is proportional to the amount of rustymatter
[4]. The Total Dissolved Solids (TDS) are a measurement of the organic and inor-
ganic substances, in molecular form, ionized or micro-granular, liquid containing,
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in our case, water. To be considered TDS, substances should be small enough
to pass a sieve or filter with size of two microns. If organic and inorganic sub-
stances cannot pass by a two-micron filtration and are indefinitely suspended
or dissolved are called TSS (Total Suspended Solids). TSS is an indicator of
the characteristics of water and the presence of chemical contaminants, that is,
chemical composition and concentration of salts [5]. We can then define electro-
coagulation as a process in which particles are destabilized contaminants that are
suspended, emulsified or dissolved in an aqueous medium, inducing electric cur-
rent in the water through parallel metal plates of different materials, being iron
and aluminum the most widely used (Fig. 1) [6–8]. Electrocoagulation has been
used in the treatment of wastewater from the food industry [9–12], these wa-
ters are characterized by high levels of COD and TSS besides high percentages
of fats. The electrocoagulation process is affected by different factors. Among
the most important are the nature and concentration of the contaminants, the
wastewater pH and conductivity.

Fig. 1. Electrocoagulation system with aluminum anode and cathode of iron [13]

The electrocoagulation traditional modeling is based on statistical models
from simple linear regression to determine the influence of any of the param-
eters (principals components analysis, ANOVA) and physicochemical behavior
modeling (molecular interactions) [14]. These factors determine and control the
reactions occurring in the system and the formation of coagulant. Based on
this, it is necessary to define new methodologies for obtaining the maximum
advantage of the contaminant removal system of the food industries. It must
be recognized that this task is a joint effort that required optimization con-
cepts in order to achieve succesful results with the fewest experiments, such as
planning and organization of experimental activities, characterization and anal-
ysis through experimental designs, and proper integration through a computer
system analysis and control of the results.

For this, we propose as an alternative the use of Artificial Neural Networks
to understand and model the process, in turn to find appropriate parameters
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and conditions (process route) to enhance the removal of contaminants. The
advantage of using artificial neural networks is that they allow to model non-
linear correlations between the study variables, in addition to finding problems
where there are adjustments missing data. Recent studies [15, 16] have been
used to model synthetic waters removing contaminants present therein. This
study is based on modeling the behavior of the electrocoagulation water com-
ing from real industries. Therefore, an ANN was trained to predict conditions
for modeling removal of COD and TSS of a slaughterhouse wastewater. From
the variables measured in the laboratory the reponce of the electrocoagulation
process a nonlinear relationship was used to predict the output of the system.

3 Methodology

We apply the methodological approach for the design and implementation of a
nonlinear model based on soft computing technologies (ANN), which consists of
4 phases:

– Collection and generalization of data, selection of input and output signals,
normalization of data.

– Construction of the topology of the ANN.

– Validation and Testing of artificial neural network (backpropagation algo-
rithm).

– Comparison and discussion of the results generated by the ANN.

It is noteworthy to mention that our methodological approach emphasizes
design topologies, which are calibrated via activation functions in the hidden
layer and output layer, and later compared between the various topologies. The
purpose is to obtain different nonlinear neural network models in order to an-
alyze the behavior of each of them, with the overall behavior and thus retain
the network model that has the best performance, the error calculation- RMS
(according to the lowest RMSE - Root Mean Square Error). We were provided
of a database of experimental results from which experiments were created for
prospective shemes, and raises training of RNA for analysis. The summary of
the selected variables from the databases for this modeling are summarized in
Table 1. It has been found that working with parallel systems, while reducing
the execution time of the RNA, generates more noise in the data. As handled
two neural networks, one that considers output to% COD removal, and another
that considers to% TSS removal. The entire data set was normalized in values
between 0 and 1 simultaneously.

4 Results

Several topologies were studied for the amount of data to be used (60 series).
A neural network with n-variables in the input, allows us to select two hidden
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Table 1. Summary of Experiments

Scheme 1 Scheme 2

Input Concentration of wastewater: Concentration of wastewater:
variables 100%, 70%, 50%, 30% 100% 70%, 50%, 30%

pH: 5, 7, 9. pH: 5, 7, 9
Current Intensity: The intensity of Current Intensity: The intensity of

current sought to keep values current sought to keep values between 1
between 1 and 2 Amperes/m2. and 2 Amperes/m2.

Time (min): 0, 15, 30, 45, and 60.
Output COD% removal, experimental (mg/L). COD% removal, experimental (mg/L).
variables TSS% removal, experimental (mg/L). TSS% removal, experimental (mg/L).

Table 2. Summary of Experiments

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Scheme 1 Scheme 1 Scheme 2 Scheme 2
Output 1: Output 2: Output 1: Output 2:

% Removal COD % Removal TSS % Removal COD % Removal TSS

Table 3. Comparison of RMSE

Experiment ANN RMSE Correlation between

Real and Predicted Values

1 0.103148907 0.92307919
2 0.210019623 0.845899987
3 0.075617117 0.969321091
4 0.138088355 0.94450795

layers of 10 neurons each layer, an output layer of one neuron, and a function
of sigmoidal activation. All data are considered representative so that the whole
data is used to train the network, but the last 15 values will be considered for
appropriate validation. The modeling is performed in MatlabTM neural network
simulator The experiments described are summarized in Table 2. In each of
the experiments we used the backpropagation algorithm to train the ANN. The
RMSE was analyzed for the data set used to obtain the results shown in Table 3.
Is easy to see that experiment 3 responds best to the prediction of data compared
to the other (from RMSE estimate of ANN and the tendency of the coefficient
of correlation between actual and predicted normalized by ANN proposal). As
noted Experiment 4 also yields good results, which helps us to understand that
the most representative variables are from the scheme two. Figs. 2-5 show the
results of the training of the networks (Table 3) and the desnormalization of
data that show the results of training and validation of modeling.
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Fig. 2. Experiment 1 and Scheme 1- Output 1 (COD), a) correlation between the
Real (o) and Predicted (+) values, b) behavior of the output of the ANN and the
Experimental values
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Fig. 3. Experiment 2 and Scheme 1- Output 2 (TSS), a) correlation between the Real
(o) and Predicted (+) values, b) behavior of the output of the ANN and the Experi-
mental values
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Fig. 4. Experiment 3 and Scheme 2- Output 1 (COD), a) correlation between the
Real (o) and Predicted (+) values, b) behavior of the output of the ANN and the
Experimental values
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Fig. 5. Experiment 4 and Scheme 2- Output 2 (TSS), a) correlation between the Real
(o) and Predicted (+) values, b) behavior of the output of the ANN and the Experi-
mental values

5 Conclusion

From the results it is concluded that the ANN was capable to predict the COD
and TSS removal. The Artificial Neural Network was able to understand the
nonlinear relationship between these variables, which are considered independent
quantized values so far, and the interaction of these variables to carry out the
experiments, optimal results could allow removal of the pollutants. Therefore,
we suggest testing different scenarios for possible future results.
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14. Hernández, L.P.S.: Investigacóin sobre procesos avanzados de tratamiento y depu-
ración de aguas mediante electrocoagulación. PhD dissertation, E.T.S.I. Caminos,
Canales y Puertos (UPM) (June 2011)

15. Ciprian-George, P., Renata, F., Marius, P., Silvia, C.: Neural Networks Based
Models Applied to an Electrocoagulation Process. Environ. Eng. Manag. J. 10,
375–380 (2011)

16. Afshin, M., Hiua, D., Loghman, A., Leila, A., Anise, I.: Dye Removal Probing by
Electrocoagulation Process: Modeling by MLR and ANN Methods. J. Chem. Soc.
Pak. 34, 1056–1069 (2012)



Memetic Algorithm for Solving the Task

of Providing Group Anonymity

Oleg Chertov and Dan Tavrov

Applied Mathematics Department
National Technical University of Ukraine “Kyiv Polytechnic Institute”

Kyiv, Ukraine
{chertov,dan.tavrov}@i.ua

Abstract. Modern information technologies enable us to analyze great
amounts of primary non-aggregated data. Publishing them increases
threats of disclosing sensitive information. To protect information about
a single person, one needs to provide individual data anonymity. Provid-
ing group data anonymity presupposes protecting intrinsic data features,
properties, and distributions. Methods for providing group anonymity
need to protect the underlying data distribution, and also to ensure suf-
ficient data utility after their transformation. In our opinion, the latter
task is a problem which can be solved using only exhaustive search,
therefore heuristic procedures need to be developed to find suboptimal
solutions.

Evolutionary algorithms are heuristic guided random search tech-
niques mimicking biological evolution by natural selection. They are in-
herently stochastic, which turns out to be a downside when converging
to an optimum. Memetic algorithms are a combination of evolutionary
algorithms and local search procedures. Applying local search increases
convergence and enhances algorithm performance by incorporating prob-
lem specific knowledge.

In the paper, we introduce a memetic algorithm for providing group
anonymity. We illustrate its application by solving a real data based
problem of protecting military personnel regional distribution.

1 Introduction

According to the latest research conducted by the International Data Corpora-
tion [1], about 30% of digital information in the world need protection, and this
number will rise to roughly 40% by 2020. In particular, it is necessary to protect
publicly available results of various statistical surveys.

In this paper, by protecting statistical data we understand providing their
individual (group) anonymity, i.e. [2] the property of individual respondents
(groups of respondents) to be unidentifiable within a statistical dataset. Provid-
ing group anonymity implies concealing sensitive data distribution features, and
also preserving sufficient level of their utility [3]. Existing methods solve this
task in two stages. First, the data distribution is modified in order to mask its
sensitive features. Then, the dataset is adjusted to fit the modified distribution.
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Preserving data utility is a complex optimization task with no feasible al-
gorithms developed for solving it (at least, known to the authors) other than
exhaustive search. This task needs to be solved using heuristic approaches. Evo-
lutionary algorithms are heuristic guided random search techniques that mimic
biological evolution by natural selection [4, p. 15]. Memetic algorithms (MAs)
were introduced in [5]. They mimic cultural evolution at the level of memes
[6, p. 192]. Usually, MAs are implemented [7, p. 49] as evolutionary algorithms
combined with local search procedures. Applying local search [4, p. 174] enables
us to enhance the algorithm efficiency at solving certain tasks by utilizing prob-
lem specific knowledge, and to increase algorithm convergence. In this paper,
we propose to apply MAs to solving the task of providing group anonymity not
only at its second stage, but at the first one as well.

The rest of the paper is organized as follows. In Section 2, we discuss the
notion of group anonymity. In Section 3, we outline the general MA structure
and discuss its components. In Section 4, we illustrate MA by solving a real
data based task of protecting regional distribution of military personnel working
in the state of Massachusetts, the U.S. In Section 5, we draw conclusions and
sketch possible directions of research to come.

2 Group Anonymity Basics

2.1 Generic Scheme of Providing Group Anonymity

Let the data about respondents be collected in a depersonalized microfile M
with records ri, i = 1, ρ, containing values of attributes wj , j = 1, η. Let wj

denote the set of all the attribute wj values.
Let us denote by P = {P1, . . . , Plp} the subset of wp. We will call wp the pa-

rameter attribute, and we will also call Pi, i = 1, lp, parameter values. Parameter
values enable us to split initial microfile M into submicrofiles M 1, . . . ,M lp .

Let us denote by V = {V1, . . . , Vlv} the subset of the Cartesian product
wv1 × . . .×wvt , where vj are integers, ∀j = 1, t. We will call wvj , j = 1, t, vital

attributes, and we will also call Vi, i = 1, lv, vital value combinations.
We will denote by G (V ,P ) a group, i.e., a set of vital value combinations and

parameter values. The group defines categories of respondents whose distribution
needs protection.

The task of providing group anonymity (TPGA) lies [8] in modifying the
microfileM for eachGi, i = 1, k, so that sensitive data features become confided.
The generic scheme of providing group anonymity is as follows:

1. Construct a (depersonalized) microfile M of statistical data to be processed.
2. Define one or several groups Gi (V i,P i), i = 1, k, representing categories of

respondents to be protected.
3. For each i from 1 to k:

– choose a goal representation Ω (M , Gi) which defines a dataset of ar-
bitrary structure representing features of Gi in a way appropriate for
providing group anonymity;
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– perform data mapping using a goal mapping function Υ : M → Ωi

(M , Gi);
– obtain a modified goal representation using a modifying functional Ξ :

Ωi (M , Gi)→ Ω∗
i (M , Gi);

– obtain a modified microfile using an inverse goal mapping function Υ−1 :
Ω∗

i (M , Gi)→M∗.
4. Prepare the modified microfile for publishing.

The first three operations of step 3 comprise the first stage of solving the
TPGA. The last operation of step 3 is the second stage.

We will deal with the most widely used goal representation, the quantity
signal q =

(
q1, . . . , qlp

)
[9]. In the simplest case, qi are quantities of respondents

in submicrofiles M i, i = 1, lp, whose vital attribute values belong to V .

2.2 Minimizing Microfile Distortion While Performing Its
Modification

Microfile modification boils down to altering the values of the parameter at-
tribute p for certain records belonging to G in order to obtain the needed distri-
bution.

To ensure that the overall number of records with a particular value of the
parameter attribute p remains the same, the records should be altered in pairs.
This procedure can be interpreted as a mutual swapping of records between
different submicrofiles, which should be continued until the needed goal signal
is obtained. In general, the choice of pairs of records to be swapped can be
arbitrary. The only restriction is that one of them has to belong to group G, and
the other one does not have to. However, in such case the needed distribution of
vital attribute values can be achieved at the cost of distorting the distribution of
the other attribute values potentially important for further statistical research.

In general, all the metrics for estimating microfile utility loss (information loss
measures [10,11]) can be divided into metrics for ordinal (continuous) data and
metrics for categorical (nominal) data.

For the ordinal data, standard deviation (1), absolute deviation (2), or mean
variance (3) [10, p. 107] [11, p. 184] are usually applied:

1

ρnord

ρ∑
i=1

nord∑
p=1

(
zip − z∗ip

)2
, (1)

1

ρnord

ρ∑
i=1

nord∑
p=1

∣∣zip − z∗ip
∣∣ , (2)

1

ρnord

ρ∑
i=1

nord∑
p=1

∣∣zip − z∗ip
∣∣

zip
, (3)

where zip, z
∗
ip are the values of the pth ordinal attribute of the ith record in initial

and modified microfiles, respectively, nord is the number of ordinal attributes.
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Among all the metrics presented above, only the last one takes into account
that different attribute values can vary in magnitude. However, even it fails
to provide adequate results if the values in the initial microfile (but not the
modified one) approach zero. A suitable metric was proposed in [12] to deal
with this situation:

1

ρnord

ρ∑
i=1

nord∑
p=1

∣∣zip − z∗ip
∣∣

√
2Sp

, (4)

where Sp is the standard deviation of the pth ordinal attribute values in the
microfile.

It is impossible to directly apply (1–4) to categorical data. Several metrics have
been proposed to deal with such data [10, p. 107–110]. For practical applications,
it is primarily recommended to use metrics which lie in direct comparison of
categorical values, since such metrics are always easy to interpret.

By influential attributes we will understand those ones whose distribution
over parameter values is of interest for microfile data analysis.

Then, the minimal microfile distortion can be achieved through swapping the
values of the parameter attribute between records close to each other with respect
to their influential attribute values. We will call such an operation swapping of
the records between submicrofiles. For instance, to provide group anonymity for
a regional distribution of respondents with the certain occupation, one needs
to swap the place of working between certain records. At the same time, to
maximally ensure that the microfile data utility is preserved, the records to be
swapped should be close, or even identical, with respect to their marital status,
age, income level, and so forth.

In this paper, to quantitatively determine how close two records are, we will
use the influential metric [13]:

InfM (r, r∗) =
nord∑
p=1

ωp

(
r (Ip)− r∗ (Ip)
r (Ip) + r∗ (Ip)

)2

+

nnom∑
k=1

γkχ
2 (r (Jk) , r

∗ (Jk)) , (5)

where Ip stands for the pth ordinal influential attribute (their overall number is
nord), Jk stands for the kth categorical influential attribute (their overall number
is nnom), r (·) denotes the operator yielding the specified attribute value of the
record r, χ (v1, v2) denotes the operator which is equal to χ1 if values v1 and v2
fall into one category, and χ2 otherwise, ωp and γk are nonnegative weighting
coefficients to be chosen according to the importance of certain attributes (the
more improtant the attribute, the greater the coefficient).

Unlike the metrics introduced above, the influential metric (5):

1. Enables us to obtain the quantitative measure for the ordinal as well as the
categorical attributes.

2. Takes into account only the influential attributes, i.e., those ones important
for the subsequent microfile data analysis.

3. Enables us to quantitatively determine (using coefficients ωp and γk) each
attribute’s importance.
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It is virtually impossible to examine all the record pairs (r, r∗) to choose
those ones which yield minimal value of (5). Thus, it is necessary to come up with
heuristic approaches for choosing record pairs (r, r∗) that yield results acceptable
from both the computational complexity and minimal value of (5) points of view.

2.3 Single-Stage Approach to Solving the Task of Providing Group
Anonymity

As was mentioned in Section 2.1, the typical TPGA is usually solved in two
stages.

At the first stage, the quantity signal is modified in order to conceal its sen-
sitive features, such as [13, p. 77] its extremums, statistical features, trends,
and others. However, in many cases it is necessary to perform such modification
of the signal that its other important characteristics are preserved, or at least
altered insignificantly.

Several techniques for modifying quantity signals described in the literature
aim at preserving particular signal characteristics. E.g., the normalizing tech-
nique described in [14] enables us to conceal signal extremums with simultane-
ous preservation of such statistical features as the mean value and the standard
deviation. Applying wavelet transforms [15] also makes it possible to mask signal
extreme values, but it preserves signal wavelet details in the process. With the
help of singular spectrum analysis [16], one can successfully conceal signal trend
and preserve its cyclic and periodic components at the same time.

At the second stage of solving the TPGA, the microfile is adjusted in order to
correspond to the modified quantity signal. As was stated in the previous section,
such modification in ideal case needs to guarantee that the overall amount of
distortion introduced in the microfile and expressed by (5) is minimal. Since it is
impossible to achieve in practice, heuristic approaches need to be developed that
modify the microfile within feasible time limits and guarantee that the distortion
is sufficiently small.

Two main approaches have been proposed in the literature that meet these
two requirements. Heuristic strategies introduced in [17] enable us to modify the
microfile in a relatively short time, altering less than several percent of all the
records in it. Memetic algorithm fully described in [18] outperforms heuristic
strategies in finding better solutions of the task, however, it takes much more
time to accomplish that.

Often, preserving data utility at the second stage (i.e., distorting the microfile
as little as possible) is more important than at the first one (i.e., preserving
quantity signal features). In such cases, no specific requirements are imposed on
the modified quantity signal as the result of the first stage of solving the TPGA.
It only needs to suffice as a solution to the TPGA. In this paper, we will consider
the modified signal the solution to the TPGA if all the extremums are masked.

As was mentioned in the previous section, the amount of distortion being
introduced into the microfile heavily depends on the particular choice of record
pairs to be swapped between different submicrofiles. However, it is obvious that
the overall amount of distortion depends not only on the heuristic approach
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applied at the second stage, but also on the modified quantity signal itself. Some
modified signals might lead to introducing smaller amount of distortion than the
other ones.

The task of choosing such modified signal at the first stage of solving the
TPGA that yields minimal microfile distortion at the second stage seems to
be the one which can be solved only by exhaustive search. Therefore, in the
section that follows, we propose to use memetic algorithms for solving the task
of providing group anonymity by not only choosing what pairs of records to swap
at the second stage, but also by choosing how many pairs should be swapped, and
between which submicrofiles. In other words, we propose a method for solving
the TPGA in only one stage, simultaneously searching for a modified signal and
particular record pairs to be swapped in order to adjust microfile in accordance
with this signal.

We call such an approach a single-stage approach to solving the TPGA.

3 Memetic Algorithm Structure

3.1 General Algorithm Structure

An MA for modifying microfile M implies carrying out the following steps:

1. Randomly generate initial population P of μ individuals, apply to each of
them local search operator S.

2. Calculate fitness function f (x) for each individual x ∈ P .
3. Check termination condition. It if holds, stop, otherwise, go to 4.
4. Select λ pairs of parents.
5. Apply recombination operator R to each parent pair.
6. Apply mutation operator M to each of the offspring. Put resulting individ-

uals into P ′.
7. Apply local search operator S to each individual x ∈ P ′.
8. Calculate fitness function f (x) for each individual x ∈ P ′.
9. Select μ fittest individuals from P ∪ P ′ and put them into P in place of the

current ones.
10. Go to 3.

3.2 Individual Representation

Each individual in P represents a particular solution of the TPGA. It is a matrix
U = ‖u‖Q×4. Elements of the first column ui1, ∀i = 1, Q, stand for the indices
of the microfiles from which the records belonging to the group G should be
removed. They are usually defined by the user before solving the task. Elements
of the third column ui3, ∀i = 1, Q, stand for the indices of the microfiles to which
the records belonging to G should be added. They, too, are specified by the user
beforehand. Elements of the second column ui2 define the indices of the records
from the submicrofiles Mui1 to be removed, elements of the fourth column ui4
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define the indices of the records from the submicrofiles Mui3 to be swapped with
those ones defined by ui2.

Each U row defines a pair of records from different submicrofiles to be swapped.
Therefore, each individual U uniquely defines the modified quantity signal q∗

(total number of occurrences of particular submicrofile indices in the columns 1
and 3), and also determines the particular way of obtaining it (each row defines
the records to be swapped). Each individual U can have different number of
rows.

Two restrictions are imposed on each individual U :

– total number of occurrences of a microfile index i in the first column of U
cannot exceed qi;

– each pair 〈ui1, ui2〉 or 〈ui3, ui4〉 ∀i = 1, Q has to occur in U only once.

3.3 Fitness Function

The fitness function should represent [4, p. 19] a heuristic estimation of solution
quality. In the case of the TPGA, the solution quality depends on two factors.
First, the cost of obtaining the modified quantity signal q∗ defined by the indi-
vidual U in terms of (5) should be as minimal as possible. Second, the modified
signal itself should suffice as a solution, i.e., extremums in q should be masked.

The first condition can be incorporated in the fitness function in a straight-
forward manner. The latter condition can be interpreted as a constraint on the
TPGA, so it can be incorporated in the form of a penalty function [19]. Moreover,
we introduce a penalty term to prevent individuals from growing indefinitely:

f (U) = Cmax −
(

Q∑
i=1

InfM (Mui1 (ui2) ,Mui3 (ui4)) + Φ (φ,a) + Ψ (Q)

)
,

(6)
where M (i) is the operator yielding the ith record of M , Q is the number of
rows in U , Φ stands for the penalty term associated with the quality of q∗, a is
the vector with the indices of the submicrofiles present in the first column of U , φ
is the vector with the weighting coefficients associated with such submicrofiles, Ψ
stands for the penalty term associated with preventing individuals from growing
indefinitely, Cmax is a great positive constant needed to ensure that f (U) > 0
∀U .

We propose to use the following penalty term associated with the quality of
q∗:

Φ (φ,a) =
∑
i∈a

φiq
∗
i . (7)

3.4 Variation Operators

Recombination operator R (Up1, Up2) is applied with a high probability pc to two
parent individuals Up1 and Up2 with Qp1 and Qp2 rows, respectively, and returns
two offspring individuals Uo1 and Uo2 with Qo1 and Qo2 rows, respectively.
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We propose to use the operator reminiscent to both “cut” and “splice” op-
erators introduced in [20]. It works by independently generating two crossover
points kp1 and kp2 (random numbers in ranges [0, Qp1] and [0, Qp2], respectively),
splitting both parents at appropriate points, and creating the offspring by ex-
changing the tails. In this case, Qo1 = kp1 +Qp2 − kp2, Qo2 = kp2 +Qp1 − kp1.

Mutation operator M (U) is applied to the individual U with Q rows, and
returns the mutated one U ′ with the same number of rows. We propose to view
M as a superposition of four operators M = M4 ◦M3 ◦M2 ◦M1:

– M1 is applied with a small probability pm1 to the first U column as to the
permutation; moving element ui1, i ∈ {1, 2, . . . , Q}, around involves moving
element ui2 accordingly;

– M2 is applied with a small probability pm2 to the third U column as to the
permutation; moving element ui3, i ∈ {1, 2, . . . , Q}, around involves moving
element ui4 accordingly;

– M3 is applied with a small probability pm3 to the second U column as to the
vector of categorical integer values;

– M4 is applied with a small probability pm4 to the fourth U column as to the
vector of categorical integer values.

It is important to ensure that both restrictions imposed on the individuals
are not violated as the result of applying variation operators.

3.5 Local Search Operator

Local search operator S (U) is applied to the individual U with Q rows, and
returns the modified one U ′ with the same number of rows. We propose to
perform local search by carrying out the following steps:

1. For each U row i, i = 1, Q, carry out steps 2–4.
2. Generate a random number r ∈ [0, 1].
3. If r ≤ pmem (r > pmem), assign to ui4 (ui2) the index of a record from Mui3

(Mui1) closest to the record ui2 (ui4) from Mui1 (Mui3) in terms of (5).
4. Go to 2.

Parameter pmem should be great enough to ensure effective local search. How-
ever, it shouldn’t approach unity to prevent premature algorithm convergence.

It is important to ensure that both restrictions imposed on the individuals
are not violated as the result of applying local search operator.

3.6 Other Algorithm Parameters

Both parent and survivor selection can be chosen according to considerations
other than those imposed by the individual representation. We propose to use
tournament selection [21] as an easy-to-implement and efficient operator which
does not require any global knowledge of the population [4, p. 63].
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The population can be initialized by randomly generating matrices with dif-
ferent numbers of rows. It seems reasonable to generate elements ui1 with prob-
abilities proportional to the values of the corresponding elements of q.

The choice of such algorithm parameters as population size μ, crossover prob-
ability pc etc. should be made individually for each task being solved.

4 Practical Results

Let us consider the task of masking the regional distribution of military personnel
working in the state of Massachusetts, the U.S. We will use the 5-Percent Public
Use Microdata Sample File corresponding to the 2000 U.S. census of population
and housing [22]. The total of 141 838 records was taken for analysis.

We took “Place of Work PUMA” (PUMA standing for “Public Use Microdata
Area”) as the parameter attribute. Its values correspond to the codes of statis-
tical areas of Massachusetts. We took each 10th value in the range 25010–25120
as the parameter values.

We took “Military Service” as the vital attribute. Its value “1” stands for
“Active Duty,” so it was taken as the only vital value.

A corresponding quantity signal is presented in Fig. 1 (solid line). Each signal
element 1, 2, . . . , 12 corresponds to appropriate statistical area, with 1 corre-
sponding to 25010, 2 corresponding to 25020 etc.

As we can see, there are extreme signal values in its elements 2, 7, 9, and 12.
The records belonging to the group of military personnel need to be removed
from them.

To minimize the overall influential metric (5), we took attributes “Sex,”
“Age,” “Hispanic or Latino Origin,” “Marital Status,” “Educational Attain-
ment,” “Citizenship Status,” and “Person’s Total Income in 1999” as the influ-
ential ones. For the sake of simplicity, we considered all the influential attributes
to be categorical, with the necessary parameters from (5) defined the following
way: γk = 1 ∀k = 1, 7, χ1 = 1, χ2 = 0. The metric thus defined shows the
number of attribute values to be altered in order to provide group anonymity in
the microfile.

We used the fitness function (6) in the following form:

f (U) = 1099−
(∑Q

i=1

∑7
k=1 (sign |InfM (Mui1 (ui2, Ak)−Mui3 (ui4, Ak)|))

+ 1.2 · q∗2 + q∗7 + q∗9 + q∗12 +
4Q
50 − 3

)
,

where M (i, j) yields the value of the jth attribute of the ith record in M , Ai

stands for the ith influential attribute, i = 1, 7, sign (·) stands for the function
yielding 1 (−1) if its argument is positive (negative), or 0 if it equals 0, Q is the
number of rows in U , q∗ is the modified quantity signal obtained after performing
the swaps defined by U , the penalty term 4Q

50 − 3 heavily discriminates against
individuals with over 100 rows.
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We chose the swap mutation [23] to be mutation operators M1 and M2, and
the random resetting mutation [4, p. 43] to be mutation operators M3 and M4.
The tournament size in the tournament selection was chosen to be 5. Other
algorithm parameters were defined as follows: μ = 100, λ = 40, pc = 1, pm1 =
pm2 = pm3 = pm4 = 0.001, pmem = 0.75. We applied linear fitness scaling in the
form presented in [24, p. 79] to prevent premature convergence.

We performed 30 independent runs of the MA. In each run, we terminated
after having obtained 1000 generations. Among 3000 individuals from the last
generations of each run, 2114 ones (or 70.47%) correspond to perfectly valid
solutions of the TPGA. Some of the best solutions in terms of the overall metric
(5) are presented in Fig. 1. The mean metric over all the solutions is 61.97, i.e.,
we need to alter only 0.04% of the attribute values in order to provide group
anonymity.

To compare the results obtained using the single-stage approach at solving the
TPGA, we also displayed on Fig. 1 the solution obtained in a conventional way
and described in [18]. At the first stage, wavelet transforms were used, and at
the second stage, both heuristic strategies and memetic algorithm were applied
to minimize microfile distortion. The overall value of (5) after applying the best
of heuristic strategies was 59, and the overall value of (5) after applying MA was
57.
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Fig. 1. Initial (solid line) and several modified quantity signals: the one with the metric
43 (dotted line), the one with the metric 49 (dashed-dotted line), the one obtained in
[18] (dashed line)
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5 Conclusions and Future Research

In the paper, we introduced a novel memetic algorithm for solving the task
of providing statistical data group anonymity, and discussed its main features.
We also illustrated its applicability to practical tasks by solving a real data
based problem of masking military personnel regional distribution for the state
of Massachusetts, the U.S.

We consider the following directions to be promising for future research: en-
hancing the algorithm efficiency by choosing appropriate operators, analyzing its
efficiency as dependent on its parameters, combining the algorithm with other
heuristic procedures described in the literature on providing group anonymity.
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Abstract. In the present paper we construct a higher order Takagi-
Sugeno fuzzy system that approximates a Mamdani fuzzy system, with
arbitrary accuracy. The goal of this construction is to reduce the com-
putational complexity of a fuzzy systems considered, also to replace a
nonlinear operator by an approximate linear operator. The proposed
methodology is fully constructive, so it does not require training of the
Takagi-Sugeno fuzzy system. The construction combines Takagi-Sugeno
systems with the classical Lagrange interpolation.

1 Introduction

The most successful and the most wide-spread applications of fuzzy sets theory
proposed by L. Zadeh in [14] are fuzzy controllers [5], [8], [10] [1]. There is an
extensive literature on the applications of fuzzy controllers, while their theory
receives recently less attention [7]. Of course for a successful development of
the topic both from theoretical and practical points of view one needs deeper
investigation of aspects related to fuzzy controllers.

A single input single output fuzzy system (fuzzy system for short) consists
typically of a fuzzifier, an inference system constructed by taking into account a
fuzzy rule base, and a defuzzifier. If the fuzzy system is coupled with a classical
discrete or continuous dynamical system, then it becomes a fuzzy controller. We
can say that the fuzzy core of a controller of this type is a fuzzy system.

Mamdani fuzzy systems [5] are historically the first fuzzy controllers and they
have the property that they can be derived very easily from linguistic (fuzzy)
rules. The disadvantage of a Mamdani system is its computational complexity,
which in general involves two numerical integrations. Takagi-Sugeno systems gain
speed over Mamdani systems, but there is a price to pay, namely the linguistic
interpretation is often replaced by data-driven and learning based methodologies
[3], [12] for their construction.
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In the present paper we construct a Takagi-Sugeno fuzzy system that can
approximate a given Mamdani fuzzy system with arbitrary accuracy. The con-
struction is combining Takagi-Sugeno fuzzy systems with classical Lagrange in-
terpolation. This method is inspired by combined approximation operators in
[4], similar to the ideas in [1] and [2], where Takagi-Sugeno fuzzy systems and
Taylor expansions were combined.

2 Preliminaries

Let us denote by C[a, b] the set of continuous functions on the [a, b] interval. The
uniform norm of a function f ∈ C[a, b] is defined as

‖f‖ = sup
x∈[a,b]

f(x).

Definition 1. [9] Let (X, d) be a compact metric space and ([0,∞), | · |) the
metric space of positive reals endowed with the usual Euclidean distance. Let
f : X → [0,∞) be bounded. Then the function

ω (f, ·) : [0,∞)→ [0,∞),

defined by

ω (f, δ) =
∨
{|f (x)− f (y) |x, y ∈ X, d(x, y) ≤ δ}

is called the modulus of continuity of f.

Theorem 1. The following properties hold true
i)

|f (x)− f (y) | ≤ ω (f, d(x, y))

for any x, y ∈ X;
ii) ω (f, δ) is nondecreasing in δ;
iii) ω (f, 0) = 0;
iv)

ω (f, δ1 + δ2) ≤ ω (f, δ1) + ω (f, δ2)

for any δ1, δ2,∈ [0,∞);
v)

ω (f, nδ) ≤ nω (f, δ)

for any δ ∈ [0,∞) and n ∈ N;
vi)

ω (f, λδ) ≤ (λ+ 1) · ω (f, δ)

for any δ, λ ∈ [0,∞);
vii) f is continuous if and only if

lim
δ→0

ω (f, δ) = 0.
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A fuzzy rule base consists of linguistic rules (fuzzy if-then rules) of the follow-
ing form:

If x is Ai then y is Bi, i = 1, ..., n.

We assume that Ai are the antecedents in our fuzzy rule base and they are fuzzy
sets having continuous membership grades while consequences Bi are integrable,
, i = 1, ..., n.

We consider a Mamdani fuzzy system with Center of Gravity defuzzification.
For x ∈ [a, b] a crisp input, the fuzzy output is calculated as

B′(y) =
n∨

i=1

Ai(x) ∧Bi(y),

which is subject to defuzzification and the result is

COG(B′) =

∫ d

c B′(y) · y · dy∫ d

c
B′(y)dy

.

Combining these two relations we can write a Mamdani fuzzy system as

M(x) =

∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · y · dy∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

.

Since Ai is continuous, and Bi integrable, i = 1, ..., n we have M(x) well defined
and continuous.

A Takagi-Sugeno fuzzy system is described by fuzzy rules with fuzzy sets
as antecedents and numerical values as consequences. We consider higher or-
der Takagi-Sugeno fuzzy systems in the present paper. Such a fuzzy system is
described by the if-then rules i = 1, ..., n :

if x is Ai then yi = am,ix
m + am−1,ix

m−1 + ...+ a0,i.

To aggregate the individual outputs of the fuzzy rules we calculate

y =

∑n
i=1 Ai(x) · yi∑n

i=1 Ai(x)
.

As a conclusion the output of a higher order Takagi-Sugeno fuzzy system is
given as

TS(x) =

∑n
i=1 Ai(x) · (am,ix

m + am−1,ix
m−1 + ...+ a0,i)∑n

i=1 Ai(x)
.

3 Takagi-Sugeno Approximation of a Mamdani Fuzzy
System

The problem proposed and solved in the present paper is the following.
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Given a Mamdani system find a Takagi-Sugeno fuzzy system that approxi-
mates its output with arbitrary accuracy. The advantage of such an approxima-
tion is its low computational complexity compared to the Mamdani approach,
which involves numerical integration. The idea is present in the literature in sev-
eral applications, whenever the sum is used as an aggregation operator rather
than max-min composition (based on compositional rule of inference) or min-→
compositions (based on generalized modus ponens). In this way we would like to
fill in the gap that exists between theoretical findings of fuzzy logic and practical
applications of fuzzy systems.

Of course since Takagi-Sugeno fuzzy systems can approximate any continuous
function with arbitrary accuracy [3], [6], [12], [7], the existence of such Takagi-
Sugeno fuzzy systems is theoretically ensured. In the presented approach we
adopt a constructive approach, avoiding the use of adaptive techniques which
are not easily leading to theoretical results. Adaptive techniques can be used to
further improve performance of the Takagi-Sugeno controllers that we construct
if we have to use them in a certain application.

Let us start with the Mamdani system

M(x) =

∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · y · dy∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

. (1)

Let us consider that both the antecedents and consequences are normal, such
that Ai(xi) = 1 and Bi(yi) = 1, i = 1, ..., n. Let us consider the knot sequence
x−1 < x0 < a = x1 < ... < xn = b < xn+1 < xn+2. Let us denote by (A)0 the
0-level set of any fuzzy set A, which is by definition the closure of its support,
i.e. (A)0 = cl(supp(A)). We consider

(Ai)0 ⊆ [xi−1, xi+1]

and
(Bi)0 ⊆ [min{yi−1, yi, yi+1},min{yi−1, yi, yi+1}],

i = 0, ..., n, which means that there are exactly two overlapping antecedents in
the rule bases that we consider. Also, let us consider y−1, y0, yn+1, yn+2 auxil-
iary knots for the consequence part, without a restriction on the ordering for the
consequences. We define pi(x) as the (fourth-order) Lagrange interpolation poly-
nomial for the data (xi−2, yi−2), (xi−1, yi−1) (xi, yi), (xi+1, yi+1), (xi+2, yi+2),
i = 1, ..., n,

pi(x) =

i+2∑
k=i−2

lk(x)yk, lk(x) =

i+2∏
j=i−2,j �=k

x− xk

xj − xk
. (2)

The Takagi-Sugeno fuzzy system associated to these polynomials is

TS(x) =

∑n
i=1 Ai(x) · pi(x)∑n

i=1 Ai(x)
. (3)

The following theorem shows that the Takagi-Sugeno fuzzy system considered
is an approximation of the Mamdani system considered above.
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Theorem 2. Let us consider M(x) a Mamdani fuzzy system as given in (1)
and TS(x) be a Takagi-Sugeno fuzzy system as in (3) with consequences as in
(2). Then the following estimate holds true

‖M(x)− TS(x)‖ ≤ 3 max
j=1,..,n

ω(pj, δ) (4)

with δ = maxi=0,n+2 |xi − xi−1| .
Proof. We obtain successively:

|M(x)− TS(x)| =
∣∣∣∣M(x)−

∑n
i=1 Ai(x) · pi(x)∑n

i=1 Ai(x)

∣∣∣∣
=

∣∣∣∣∑n
i=1 Ai(x)M(x)∑n

i=1 Ai(x)
−
∑n

i=1 Ai(x) · pi(x)∑n
i=1 Ai(x)

∣∣∣∣
≤
∑n

i=1 Ai(x)|M(x) − pi(x)|∑n
i=1 Ai(x)

. (5)

Since there are only two overlapping consequences, i.e., x ∈ (Aj)0 ∪ (Aj+1)0, we
get

‖M(x)− TS(x)‖ ≤
∑j+1

i=j Ai(x)|M(x) − pi(x)|∑j+1
i=j Ai(x)

Now we estimate |M(x)− pk(x)|, k ∈ {j, j + 1} as follows

|M(x) − pk(x)| =
∣∣∣∣∣
∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · y · dy∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

− pk(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · (y − pk(x)) · dy∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

∣∣∣∣∣ .
We use now Lemma 7.10 in [1] and we get

|M(x) − pk(x)| ≤
∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · |y − pk(x)| · dy∫ d

c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

.

We will use again the fact that there are two overlapping rules, so there exist
two consecutive non-zero terms in the above maximum. Then we obtain

|M(x)− pk(x)| ≤
∫
(Bj)0∪(Bj+1)0

∨j+1
i=j (Ai(x) ∧Bi(y)) · |y − pk(x)| · dy∫

(Bj)0∪(Bj+1)0

∨j+1
i=j (Ai(x) ∧Bi(y)) · dy

(6)

with x ∈ [xj−1, xj+2]. For each y ∈ (Bj)0 ∩ (Bj+1)0 we have

y ∈ [ min
i=j−1,...,j+2

yi, max
i=j−1,...,j+2

yi],
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Fig. 1. Takagi-Sugeno fuzzy system (continuous line) that approximates a Mamdani
fuzzy system (dash-dot line)

i.e.,

y ∈ [ min
i=j−1,...,j+2

pk(xi), max
i=j−1,...,j+2

pk(xi)].

Since pk, k = j, j + 1 are continuous we obtain that there exists zj, zj+1 ∈
[xj−1, xj+2] with pj(zj) = y and pj+1(zj+1) = y. We obtain

|y − pj(x)| = |pj(zj)− pj(x)| ≤ ω(pj , |zj − x|) ≤ ω(pj, 3δ),

where δ = maxi=0,..,n+2 |xi − xi−1|. Similarly

|y − pj+1(x)| = |pj+1(zj+1)− pj+1(x)| ≤ ω(pj+1, |zj+1 − x|) ≤ ω(pj+1, 3δ).

As a conclusion, from (6) finally we obtain

|M(x)− pk(x)| ≤ 3 max
k=j,j+1

ω(pk, δ) ≤ 3 max
j=1,..n

ω(pj , δ),

relation which together with (5) leads to the estimate in the statement of the
theorem, namely (4).

We consider in what follows an example. We consider a simple Mamdani
fuzzy system that approximates different target functions, using 10 fuzzy rules.
Its Takagi-Sugeno Approximation is constructed (see Figs 3, 3). We use tri-
angular antecedents and consequences for the Mamdani system and triangular
antecedents for the Takagi-Sugeno fuzzy system. The results confirm the theo-
retical findings of the paper.
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Fig. 2. Takagi-Sugeno fuzzy system (continuous line) that approximates a Mamdani
fuzzy system (dash-dot line)

4 Conclusions and Further Research

As our conclusion let us formulate that we have proved that a Mamdani fuzzy
system can be approximated by a Takagi-Sugeno fuzzy system in a fully con-
structive way. This open up new applications, where one can combine linguistic
and data based rules, towards the development of new types of fuzzy systems.
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Abstract. The application of soft computing in image/signal enhancement and 
comparing it with traditional methods will be discussed in this paper.  This 
study presents two optimization methods for -rooting image enhancement, 
which is a transform based method. The first method is a derivative-based 
optimization and the second one is Genetic Algorithm optimization. The 
parameter will be driven through optimization of measure of enhancement 
function (EME). The results from, the simulations show both methods are 
reliable; however, the first method has more computing cost. 

Keywords: soft computing, genetic algorithm, alpha-rooting. 

1 Introduction  

Soft computing has been used to solve complex tasks such as pattern recognition, 
anomalies recognition and forecasting. The classical problem solving methods have 
been rapidly replaced with these new algorithms over the past decades. Artificial 
Neural Networks (ANN), Fuzzy Logic and Genetic Algorithms (GA) are the most 
popular methods in soft computing working based on human mind and genetic 
evolution [1]. Image enhancement composed of several techniques applied to the 
images, modify image perception.   

There are two general methods for image enhancement; the first method is Spatial 
Domain Image Enhancement which directly manipulates the pixels of the images. 
Second is Frequency Domain methods. In this method, images are transferred into 
frequency domain, then a function is applied to modify their magnitudes, and finally 
the results are converted to time domain. In [2], Maini has proposed several image 
enhancement algorithms in spatial domain.  Logarithmic transformations are applied in 
image enhancement where images are gray-scale and there are large ranges of values, 
the lower values are mapped into wider ranges in Logarithmic Transformation 
Methods. Powers-Law Transformations (Gamma Correction) is defined by   . 
This method is used for various values of γ in order to find the best performance. 
Histogram Processing is the most common spatial domain method, which improve 
image performance by spreading out higher bin intensity in the histogram. 
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It was proved that genetic algorithms are the most powerful unbiased optimization 
techniques for sampling a large solution space. Because of unbiased stochastic 
sampling, they were quickly adapted in image processing. They were applied for the 
image enhancement, segmentation, feature extraction, and classification, as well as the 
image generation. Genetic Algorithm is a heuristic that is routinely used to generate 
useful solutions to optimization and search problems [3]. Since in the α-rooting method 
the objective is to find the best parameter α which maximizes the EME function, this 
problem is considered an optimization problem and therefore Genetic Algorithm has 
been used as a solution. We will describe both methods in the following sections.  

1.1 α-Rooting Image Enhancement  

α-rooting filter is a Fourier Based Image Enhancement method. With α-rooting 
enhancement working in frequency domain is much easier. The procedure of transform 
based image enhancement has the following steps [4]: 

• Transfer to frequency domain (DFT) 
• Perform a function which modifies the magnitude  (M) 
• Transfer to the time domain 

These steps are represented in figure 1. 

 

Fig. 1. Flowchart of the steps for image enhancement by α-rooting 

Where f is the original image, M is a function which multiplies the transformed 
coefficients α, and g in the enhanced image. In this case M is define as | | | | , (1) 

where the coefficient  is in the range of [0, 1].  
For measuring image enhancement we used the following equation which is 

explained in [2] : 

, , 1 20log , ,, ,  

 
(2) 

where each image f(n,m) is divided to  blocks w(n,m), α is the enhancement 
parameter, , ,  and , , ,  are the minimum and maximum intensity of each 
block. In this project, and  are constant and the objective is to find α that 
maximizes equation (2). max , ,  (3) 

 



 Alpha-Rooting Image Enhancement Using a Traditional Algorithm 303 

 

1.2 Genetic Algorithm 

In this study, we mostly focus on image (contrast) enhancement of gray-scale images 
by applying new technology versus the classic one. The objective of this paper is to 
optimize α-rooting parameter which is a frequency based image enhancement method 
[4], [5]. Genetic Algorithm has been applied to calculate the required parameter. The 
proposed methodology has been implemented with MATLAB and MATLAB’s GA 
toolbox.  

The rest of the paper is organized as follows; first the paper describes the α-rooting 
algorithm in detail, which is a useful method in image enhancement. Then, the genetic 
algorithm used for enhancing the image will be explained. In the third section, the 
results acquired from both algorithms will be presented and compared. In the final 
section, we show our conclusion and make some discussions.  

2 Methods  

Genetic Algorithm is an artificial intelligence approach that is used to solve 
optimization problems. It mimics the metaphor of evolution of genes in the form of 
biological generation. The same as the evolutions of genes in nature, this process is not 
a directed, purposive process in this machine learning technique. The individual 
parameters that are to be optimized will be presented as a vector of random values at 
the beginning of the algorithm, which are similar to the base-4 chromosomes seen in 
living organisms’ DNA. Each base of these chromosomes will then evolve to its final 
value through a random process.  

Fig 2. shows the process of evolution in a simple GA optimization. It can be seen 
from the flowchart that this process contains the following steps [6]: 

1. Start with generating random population of N chromosomes. N represents the 
number of parameters or chromosomes to be optimized. 

2. Evaluate the fitness function ϕ(x) for each chromosome X in the population. 
3. If the generated population does not satisfy the condition of fitness function, in 

reproduction parts, two parents (chromosomes) should be selected. The probability 
of selection of the parents increases for those chromosomes that have higher 
values for the fitness function.  

4. Cross over the parents to produce new children. 
5. Mutate new offspring at position n in the chromosome. 
6. Replace newly generated population with old the one. 
7. The new chromosome is generated now. The algorithm goes back to step 2. 
8. When the created population satisfies the condition, the algorithm stops and the 

old population will be replaced with the new population as the output of the 
optimization.  

9. If the end condition is satisfied, then stop. 
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Fig. 2. Genetic algorithm flowchart 

As mentioned earlier, α-rooting algorithm finds the value of alpha, which 
maximizes the value of EME. However, the algorithm must go through all the values 
of alpha to find this optimized value of α. In this research, GA is used to improve gray-
scale image contrast by optimizing the parameter α. Therefore, the fitness function for 
the chromosome in GA (as alpha in only one parameter to be optimized) is used for the 
measure of enhancement as a fitness function. 

3 Implementation and Results 

In this part, we used the classical algorithm of α-rooting and GA to find α, which 
satisfied equations (2) and (3). The classical algorithm is based on sequence of points 
calculated by a deterministic computation. In each iteration the algorithm generates a  
single point [7]. The first method is using a sequence of points for α starting at 0.01  
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Table 1. Shows optimized parameter for both classical and GA algorithms. It also shows the 
number of iterations required by each method. 

Methods α  # of iterations 

Classical algorithm 
(1st image) 

0.7900 100 

GA (1st image) 0.78199 37 

Classical algorithm 
(2nd image) 

0.7700 100 

GA (2nd image) 0.77589 3 

Classical algorithm 
(3rd image) 

0.8600 100 

GA (3rd  image) 0.88204 4 

Classical algorithm 
(4th image) 

0.8800 100 

GA (4th image) 0.93216 1 

 

Fig. 3. The EME vs. α graph for 4 images 
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which increases at increments of 0.01. EME should be calculated for 100 iterations per 
image. In the second method, we use GA to optimize EME. α has been selected as a 
GA parameter and the inverse of EME is the fitness function. GA algorithm may find 
the best solution after a few generations.  

Four black and white images were adopted from [8]. Both algorithms were used to 
find the parameter α. The Matlab GA toolbox was used to simulate the genetic 
algorithm. The sizes of the images vary between 359 460 to 1095 1692. The values 
of and  are 16 pixels. We added zeros to both sides of the images such that the 
image’s pixels are divisible by and . Table 1 compares the results acquired from 
both models. It shows that both methods have achieved acceptable results while GA 
method requires less iteration to find the optimum α. This is usually equivalent to less 
computation time which shows GA has performed the task faster.   

Fig 3. is a graphical representation of the value that maximizes the EME function 
for both methods. The results show that both methods perform well on the black and 
white images. However, it is worth mentioning that the genetic algorithm required 
fewer iterations to find the optimum value of α. For most of the images, the algorithm 
found the best value of α, with less than five iterations, while the classical α-routing 
algorithm should compute all the values in the range of α. 

 

 

Fig. 4. a) Original image b) α-rooting enhanced image using GA c) α-rooting enhanced image 
using classical algorithm 
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4 Conclusion 

In this paper, two methods have been used for contrast enhancement of gray-scale 
images using α-rooting. The first method is using an algorithm which increases α in 
increments of 0.01 (starting at α = 0.01) for 100 iterations per image to find the best α 
that maximizes the EME measure. The second method is using Matlab's GA toolbox to 
find the best α that minimizes the inverse of the EME measure. By comparing the 
results for four images we can see that both methods greatly improved the contrast of 
the images, but there is not a significant difference between the results generated by 
both methods. However, by using GA toolbox we get faster results, as it generates 
good results after a few generations, whereas the algorithm terminates after 100 
iterations and then compares the results.  
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Abstract. This work presents an alternative approach (Genetic Algorithms 
approach) to traditional treatment of Recommender Systems (RSs). The work 
examines genetic algorithms possibilities to offer adaptive characteristics to 
these systems trough learning. The main goal, in addition to give a general view 
about RSs capabilities and possibilities, it is to provide a new example 
mechanism for to extend RSs learning capabilities (from user’s personal 
characteristics), with the purpose of improve the effectiveness at time of to find 
recommendations and appropriate suggestions for particular individuals. 

Keywords: Recommender Systems, Genetic Algorithms, User-Adapted 
Interaction. 

1 Introduction 

Usually in Internet, that is the main source of information for people that search 
answers and solutions for many situations, we use search engines typing key words, 
being too much the employed time for this task without finding the expected results. 
One alternative is to use Recommender Systems (RSs) [19, 26, 3] that offer to users 
an approach with their preferences, which are capable of suggesting the acquisition of 
any product. These systems filter the information, being classified in two main 
categories, depending on the information that use to suggest items.  Those that only 
use information on the items and information with respect to objective user are call 
“Content Based” where the types, needs and inclinations of the users are determined 
in design time [9]. Alternative there are systems that do not use information on the 
items, but they do the suggestion using the known preferences of a group of users to 
predict the strangers preferences of a new user, the recommendations for this new 
user are based on these predictions [24]. This category is named “Collaborative 
Filtering” (CF). 



310 O. Velez-Langs and A.D. Antonio 

 

The users "collaborate" in the sense of any rating (evaluations on items) that put 
any user improve all the performance of the system [14].  The base of this technique 
is that a good interesting way to find content for a person is to find first other people 
that have similar interests and then to recommend items that those people prefer [6].  

The Basic process is do a matching between the information that has about the 
profile of the active user1 and the profiles of the other users that are already stored and 
of whose preferences has knowledge. The approach in this work describes a different 
alternative to traditional collaborative filtering, using Genetic Algorithms (GAs) like 
tuners in the process of profile matching, adapting finally these to individual 
preferences what impacts in a greater precision at moment of to predict that likes or 
not to one specific user. The paper is organized in the following way section 2 show a 
background related work, and related view to the collaborative filtering, CHC GA and 
Learnable Evolutionary Model (LEM) respectly, section 3 show the experiment 
framework of the proposal, section 4 show the method, in section 5 we can see some 
results and their analysis finally the section 6 talk about conclusions. 

2 Related Work 

Recommender Systems are alternative to search  engines (like Google, Yahoo and 
others), instead of use keywords entered by the user, take information of a previous 
knowledge obtained from a group of users using the technique that is named 
Collaborative Filtering (CF). Rich [27] is considered like one of the first references in 
the topic. There is a long history of patents related to RS and CF, covering since [7] to 
[15]. In 1992 Goldberg et. al. coined the term of "Collaborative Filtering", in the 
context of a system for filtered of e-mails using binary flags [12]. Excellent studies 
and research can be found in [29, 18, 13]. 

Shardanand and Maes [29] designed a CF system for music (Ringo) and 
experienced with diverse number of distance measures among users, including 
Pearson’s Correlation, restricted correlation and Cosine. They compare four 
recommendation algorithms based in the Medium Absolute Error (MAE) of 
predictions. 

The e-Commerce system Amazon.com (http://www.amazon.com), requests to any 
user to qualify the articles recently bought. These qualifications are used as entrance 
for a recommendations engine helping to consumers to find others products that 
probably like. GroupLens is pioneer in the theme and carries many efforts in CF ([24, 
18, 19, 14]). GroupLens team initially implemented CF systems based on 
neighbourhood to qualify articles of Usenet. They use a scale between 1 and 5, 
compute the distance using Pearson. Pennock and Horvitz [25] propose an axiomatic 
base for CF. CF does prediction of preferences, combining predilections of different 
users. Authors aim that the "addition" of preferences has been studied in the theory of 
Social Election from 1960 [1]. They maintain that only a simple model of more 
nearby neighbour satisfiers the axiomatic conditions. Delgado [9] uses an approach of 

                                                           
1 The term “active user” refers to the people which the system works. 
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CF based in agents, developing some algorithms that combine the data of the 
qualifications with other sources of information such as geographical location of 
users. The especially heavy voting is used to combine the recommendations from 
different sources. 

One approach named semi-automatic filtering that combine Genetic Algorithms 
and the called “learning form feedback” is presented in Sheth and Maes [30], this 
approach adapts of dynamic way to the changes of interest of the user, shown like one 
small population of filtering agents goes evolving to do selection of personalized 
Usenet news.  In Min Tjoa et al [21], is presented a system called CIFS (Cognitive 
Information Filtering System) which applies an evolutionary model (Learning 
Classifier System) at the time of to learn from the user. CIFS filter e-mails, based in 
the ranking that do the user and in the checking of behaviour of him. CIFS use, with 
difference of the previous system, one Boolean recuperation framework in addition of 
vectorial. Additionally not only adapts to the user profiles but does a process of 
generation of the same. Amalthaea (Moukas and  Maes [22]) is a multi-agent 
ecosystem for personalized filtering, which discovers and monitors information sites.  

MyVU [11], is presented like a new generation of RSs, its focus is based on the 
behavior of consumption observed in the user and Interactive Evolutionary 
Computation. This system develops a management of the customer relations and 
marketing one-to-one in one virtual university domain. MyVU provides an adaptable 
Web interface for different members in one virtual university and presents 
recommendation routines for the places often utilized. 

The work of  Kim et al. [17] presents a novel recommender system that combines 
two methodologies, interactive evolutionary computation and content-based filtering 
method. Also, the proposed system applies clustering to increase the time efficiency. 
The system aims to effectively adapt and respond to immediate changes in users 
preference. Boumaza and Brun [4] present experiments and results on a standard 
benchmark data-set from the recommender system community that support the choice 
of the evolutionary approach and show that it leads to a high accuracy of 
recommendations and a high coverage, while dramatically reducing the size of the 
model (by 84%), also show that the evolutionary approach produces results able to 
generate accurate recommendations to unseen users, while easily allowing the 
insertion of new users in the system with little overhead. 

The system presented in Salehi et al. [28] has two main modules. In the first 
module, weights of implicit or latent attributes of materials for learner are considered 
as chromosomes in genetic algorithm then this algorithm optimizes the weights 
according to historical rating. Then, recommendation is generated by Nearest 
Neighborhood Algorithm (NNA) using the optimized weight vectors implicit 
attributes that represent the opinions of learners. In the second, preference matrix 
(PM) is introduced that can model the interests of learner based on explicit attributes 
of learning materials in a multidimensional information model. Then, a new similarity 
measure between PMs is introduced and recommendations are generated by NNA. 
Finally Hu et al. [16] propose a generalized Cross Domain Triadic Factorization 
(CDTF) model over the triadic relation user-item-domain, which can better capture 
the interactions between domain-specific user factors and item factors. In particular,  
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they devise two CDTF algorithms to leverage user explicit and implicit feedbacks 
respectively, along with a genetic algorithm based weight parameters tuning 
algorithm to trade off influence among domains optimally 

2.1 CHC Algorithm 

CHC [10] is a genetic generational search algorithm that uses elitist selection. This 
technique introduces a balance between diversity and convergence. The CHC 
algorithm matches the parents randomly, but only to those pairs of strings which they 
defer one to each other in some number of bits (i.e., a crossing threshold) is allowed 

them to reproduce. The initial threshold is established 4l , where l  is the string size. 

When there is no descent inserted in the new population during the elitist selection, 
the threshold is reduced in 1. The cross operator in CHC realizes a uniform crossing 
(HUX) and a random exchange in half of bits exactly that differ both between the 
parents. During the recombination phase, mutation in this type of algorithm is not 
applied. When descent in the population of a successive generation cannot be inserted 
and the crossing threshold has reached a value of 0, the CHC put new diversity inside 
the population through a restart form known as catastrophic mutation. 

The catastrophic mutation uses the best individual in the population as a model to 
restart the population. The new population includes a string model’s copy; the rest of 
the population is generated muting some bits percentage (i.e. 35%) in the string 
model. The next figure shows schema: 

 

 

Fig. 1. CHC Algorithm 

2.2 Learnable Evolutionary Model 

LEM (Learnable Evolution Model) is similar to an ordinary GA in the sense of using 
a population of (usually bitstring) “chromosomes” whose fitnesses are measured, and 
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whose chromosomes compete to survive into the next generation, the model was 
proposed for Michalski in [20]. 

In a standard GA algorithm, the next generation of chromosomes is generated from 
the previous generation by eliminating the less fit from the population, by making 
copies of the fitter chromosomes, and then applying genetic operators, LEM uses a 
concept learning algorithm (called AQ, but specifically in this work we use one 
Decision Tree Algorithm like ID3) to find a classification rule which covers 
(matches) the fittest few chromosomes in each generation and does not cover the least 
fit chromosomes.  The fittest few chromosomes are called the “positive examples”, 
and the least fit are called the “negative examples”. The aim of the learning algorithm 
is to find these classification rules. Once the classification rule which matches the +ve 
chromosomes and does not match the -ve chromosomes is found, it is used to generate 
other chromosomes which match the rule, that are added to the population. The new 
generation of chromosomes has its fitnesses measured and another GA/LEM loop 
begins. 

The classification rule instantiates chromosomes that have high fitness values, 
because the rule itself was created from high fitness chromosomes. Hence the 
population fills with high fitness chromosomes, and faster than with blind genetic-
operator GAs, because the classification rule steers the evolution into high fitness 
regions. The next figure shows schema: 

 

 

Fig. 2. LEM Algortihm 

3 Experimental Design 

Now the frame of the experiment is illustrated, showing the data initially, the metric 
used and the tests on which we frame the carried out experiment. 

3.1 Experimental Data and Sets 

The data of MovieLens are used in the experiments which were collected by 
GroupLens (http://www.grouplens.org) of anonymous information which is composed 
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by 100.000 voting (ratings) of 943 users on 1.682 items in a scale of 1 to 5, each user 
has evaluated 20 items at least, in addition it has users’ demographic information 
(age, gender, occupation). The prediction schema will generate estimations for 
existents evaluations in the data set. This is done in order to compare the algorithms 
effectiveness, using an error measurement between predictions and evaluation real 
values. The algorithms will use a data set when these evaluations are not present, 
guaranteeing a clean prediction process. In this way we can divide the data set in three 
groups: 

• Test set: 9430 evaluations used in algorithm evaluation phase (pre-editions 
and error computing), which count with 10 items valued by a user chosen 
randomly. 

• Training set: It counts with 90570 evaluations which are used in the Genetic 
Algorithms run and Pearson’s Correlation. The training set is the only 
evaluations space that the algorithm knows. 

• Recommendation set: It is the whole data set, which is composed by 
training and test sets. 

3.2 Metrics 

In order to have an idea of the quality of a prediction algorithm, there are three 
important dimensions that must be measured: coverage, efficiency and accuracy [7].  

• The coverage is defined as a measurement of items percentage for which 
predictions can be made. 

• The efficiency is a concept derived from IR and its measure is given by three 
main parameters: precision, recovery and relevance index. 

• The accuracy measures how well the system was in the process of presenting 
items to the user.  

The metrics to evaluate the precision of a prediction algorithm can be divided in 
two groups: precision’s statistic metrics and decision support metrics [14]. 

3.2.1   Mean Absolute Error (MAE) 
First using this metrics were Shardanand and Maes in [29]. This is defined as the 
absolute error average, computing as the difference between the rating given by the 
user and the prediction. 

MAE is defined as: 

1

1
,.

=

−=
c

j
jiji pr

c
MAE                                                 (1) 

Where c is the number of items that the user i has evaluated. 

3.2.2   Normalized Absolute Error (NMAE) 
Goldberg et Al [13] propose a Normalized Absolute Error (NMAE), which gives a 
precision measurement independent of the possible evaluations range. 
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Other metrics in this group have been studied, such as mean squared error and the 
correlation between user ratings vector and predictions vector for the same items. 
However the conclusions which are obtained using any of these metrics are generally 
the same ones [13]. 

3.3 Tests 

The tests will be made on the raised CF scheme, applying different variants in the 
implementation in order to compare their configurations on the MovieLens data set. 
The variants of the algorithm that we will use are: Standard Genetic Algorithm ([29, 
33]), GA CHC ([34]), Learnable Evolutionary Model and Pearson’s Algorithm.  

3.4 Genetic Algorithm CHC 

It is used in order to find a suitable weight configuration to the characteristics that 
compose the active user profile, having in mind the test set. In the implementation 
that we made, we determine two experimental variants in order to analyze and 
interpret the obtained results:  

• Variant 1: The experimental variant is to use to users selected randomly 
which have at least one item in common with the active user in the 
experimentation phase, in prediction phase, without using a criterion to 
determine which of the selected users are in the active user’s neighborhood 
but on the contrary including all of them in the neighborhood. 

• Variant 2: During the experimentation process was observed that users 
selected randomly in training phase had, in most cases and in determined 
occasions all, a greater value to the determined threshold for the 
neighborhood. Therefore based on the threshold criterion, they should not be 
used these in next phases, reason why we decided to form the neighborhood 
set with all users of the DB. Proceeding to arrange them in ascending form 
according to the Euclidian Distance with the active user and only the top-N 
are selected (TOP-N). 

3.5 Learnable Evolutionary Model 

In this model we use one similar approach like in CHC case for experimental variants 
but involving the LEM in the proposal for tuning the process of profile matching. The 
LEM developed here use one Decision Tree algorithm (ID3) like learning component 
in place of AQ learning. 
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3.6 Pearson’s Correlation 

This algorithm only uses the votes (rating) that users emit on common items as 
criterion to determine the neighborhood degree between two users and build the 
neighborhood set in TOP-N form ordering DB users’ neighborhood degree with the 
active user in descending form; it’s different to the form in which is treated this 
problem by the Genetic Algorithm CHC which, in addition to this characteristic, it 
uses user information and characteristics of the evaluated item.  The precision of each 
FC algorithm configuration is measured using the Mean Absolute Error (MAE) 
formula on made predictions, having in mind the test set. The results of the GA 
Standard, CHC and LEM are counteracted with the result of the Pearson’s Correlation 
Algorithm. 

4 Proposed Method 

Our proposal is based on work made in [31] subsequent works like [33, 34] show the 
approaches GA standard and CHC respectively. Before initiating, the movies 
information must be processed in separated profiles, one for each person, defining the 
movie differences for that person. 

The user profile j  is denoted by ( )jprofile , and it’s represented as an array of 
22 values for the 22 characteristics considered from data set for each user. The profile 
has two parts: a variable part (the rating value, which changes according to the item 
that is considered in a given moment), and a fixed part (the others 21 values, which 
only are recovered once at beginning of the program). As the user j  can have 
qualified many different movies, is defined profile )( ji,  as profile of the user j  
on the film i : 

 
                     1 Rating    2 Age    3 Gender   4 Occupation...  22 18 Genre frequencies 

5 23 0 45 000000100010000000 

Fig. 3. Profile(i,j). Profile of the User i on item j 

The data that compose the users profiles of the data repository were treated in such 
way that only they change between 0 and 1. In order to do more comfortable the task 
of distance computing between profiles. Once the profiles are built, the process can 

begin. Given the active user A , a set of similar profiles to ( )Aprofile  must be 

found. 

4.1 Neighborhood Selection 

The success of a CF system depends in high measurement of the effectiveness of 
algorithm in charge to find the more similar profiles set or neighborhood to the active 
user. 
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The neighborhood selection algorithm consists of three main tasks: 

• Profiles selection 
• Profiles correspondence 
• Best profiles collection 

These are showed in the following figure. 

 

Fig. 4. Neighborhood Set Computing 

4.2 Profiles Selection 

In order to select the best possible profiles, the ideal scenario would be to use the 
whole database. However, this is not always the most feasible choice, especially when 
the database is very big and we have few computational resources. As result, in this 
work we choose a random sampling of 10 individuals for neighborhood selection.  

4.3 Profiles Correspondence 

After the profiles selection, the correspondence process computing the distance or 
similarity between the selected profiles and active user profile, using a distance 
function. This work focus in the matching process; the genetic algorithm is used to 
adjust the correspondence between profiles for each active user. 

According to Bresse’s et al [5] work, it seems that the most of the current 
recommender systems use algorithms that consider just the “voting information” as 
the only characteristic on which the comparison between two profiles becomes. 

However in real life, the way in which we say that two people are similar is not 
only based on if they have complementary opinions about a specific subject, but in 
other factors such as historical precedents and personal details. If we apply this to the 
profiles adjust, things like demography and life style, this is age, user gender and film 
gender, must be taken into account. Each user gives an importance or priority to each  
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characteristic. These priorities can be quantified or numbered. For example, if a user 
prefers the recommendations based on the opinions of a same gender person, then this 
characteristic’s weight for the gender must be higher than others. In order to 
implement a really personalized recommender system, the weights need to be 
captured and adjusted to reflect the user preferences. Here is when we implement a 
genetic algorithm for the weights evolution. 

A potential solution to the problem of evolving the characteristics weight, ( )Aw , 

for the active user A , is represented as a weight set as it shows next: 

 

Fig. 5. Individual’s phenotype in the population 

Where fw  is the weight associated to the characteristic f  which genotype is a 

string of binary values. Each individual has 22 genes, which are evolved by an elitist 
genetic algorithm (described in other section). The comparison between two profiles 
can be conduced now using a modified Euclidian distance function, which has into 
account multiple characteristics. ( )jAEuclidean ,  is the similarity between the active 

user A  and user j . 

                                        
(3) 

Where: 

• A  is the active user 
• j  is a user provided by the profile selection process, besides Aj ≠  

• The common items that A  and j  has rated, are defined by the set 

zλλ .......1  

• z is the number of films in common. 
• wf , is the active user’s weight for the characteristics f  

•  i  is a common film item, where exist ( )iAprofile ,  and ( )iiprofile , . 

• ( )jAdiff fi ,,  is the difference in profile value for the characteristic f  

between the users A  and j  about the film i . 

The profile value must be normalized before of doing the compute, when the 
weight for any characteristic is 0 such characteristic is ignored, thus it is possible to 
allow that the characteristic selection being adaptive to each user preference.  
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4.4 Best Profiles Collection 

Once the Euclidian distances, ( )jAEuclidean , , are found between ( )Aprofile  and 

( )jprofile  for all values of j  which were selected by the profiles selection process, 

the best profiles collection algorithm is called, this algorithm classifies each 
( )jprofile  according to its similarity with ( )Aprofile . The system only uses those 

profiles that have a Euclidian distance lower than 0.25 as A ’s neighborhood. 

4.5 Items Recommendation 

In order to do a recommendation, considering the active user A  and a neighborhood 
set of nearby profiles, it’s necessary to find seen items and well rating items by the 
users in the neighborhood set that the active user has not seen. In our case, we take as 
recommendations those items that the users of the A ’s neighborhood have in 
common with a greater or equal voting to 4, presenting them to the active user 
through an interface. As the neighborhood set has those users that are similar to A , is 
very probable that the movies that has liked these users, likes to the active user. 

4.6 Genetic Algorithm  

As we mentioned above, we use a genetic algorithm to evolve the characteristics 
weights for the active user, and therefore to help to adjust the profiles correspondence 
process to the preferences and specific user personality. 

For this task one GA standard, a type CHC genetic algorithm and one Learnable 
Evolutionary Model were chosen. In the implementation a simple binary genetic 
codification without sign is used, using 8 bits for each of 22 genes, beginning the GA 
with random genotypes. The genotype is represented in a phenotype (a characteristics 
weights set) turning the binary genes’ alleles in to decimal. The characteristics 
weights can be computing from these real values. The total phenotype value then is 
computed adding the real values for the 22 characteristics. Finally, the weights values 
for each characteristic can be found dividing the real values by the total value, this 
represent a value in the range [0,1] being this value the assigned value to the 
characteristic.  

4.6.1   Fitness Function 
To compute the aptitude for this application is not a trivial task. Each weight set in the 
GA’s population must be used by the profiles correspondence process into the 
Recommender System. Thus, the system must be executed again over the dataset for 
each new weight set; we do this in order to compute the aptitude.   

But when a RS is executed only produce recommendation, not aptitudes. A poor 
weight set can result in a poor profiles neighborhood set for an active user and, 
therefore poor recommendations. A good weight set must result in a good neighbor  
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set, and good recommendations. For this reason it is required a method for compute 
the RS’s quality, in order to assign an aptitude rate to a corresponding weights. 

A solution would be to use the active user as an aptitude function. This would 
imply obtaining feedback from user asking him to evaluate the recommendations 
quality [5]. Its input could be used to help to derive the aptitude classification for the 
current characteristics weights set. 

This aptitude classification would give a highly precise view from the user 
preferences. However, is slightly probable that all users are ready to take part in all 
the recommendations, because the needed time could be too much. Instead of this, we 
decided reformulate the problem as supervised learning task.  As we described above, 
considering the active user A and a profiles neighborhood set, the recommendations 
to A can be done. In addition to these recommendations, is possible to predict what 
does A think about theirs. For example, if certain film it’s suggested because similar 
users saw it, but those users only thought that the film was middle term, and then is 
probable that the active user thinks the same. Therefore, for the used data domain 
(MovieLens), for the system was possible to recommend new movies and predict how 
the active user would qualify each film. 

The vote prediction formula ( )jAvotepredict ,_ , for A  on the item i , could be 

defined as follows: 

                         
(4)

 

Where:  

• jmean is the vote media for the user j  

• k  is a normalization factor such as the sum of the Euclidian distances is 
equal to 1 

• ( )ijvote ,  is current vote that user j  has given to item i  

• n  is the neighborhood size. 

To compute the fitness measurement for a evolved weights set, the CF finds the 
profiles neighborhood set for the active user. 

5 Results 

To realize this type of experiments in which the methods are based in neighborhood 
techniques, the fact of how the system appropriately assigns the weight to the profile 
characteristics for a given user (active user) and the criterion to determine how closer 
is to other  user, are very important in the moment to do the predictions. 

There are many problems that might appear in a bad weighting of these criteria, 
which were evident during the different executions of the algorithms and that help us 
in the task of adjust the neighborhood selection phase. Next we show some 
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disadvantages that we had during the system execution and generated us a bad 
definition of the neighborhood set: 

• From the users set chosen randomly for the GA execution, none of them have 
common items with the objective user, this generates null predictions and 
recommendations because doesn’t have a neighborhood set for execute this 
proceedings. 

• Users that have few common items; inclusive could be those that have one item 
with the current user, could be taken as neighborhood users rejecting users with 
more common items. This problem can be observed more easily in the Pearson’s 
Correlation Algorithm, because the nature of this algorithm in which only the fact 
of how a user assigns the evaluations it’s taken as criterion to assign the 
similarity degree. In some proposals it is chosen to assign importance to the co-
evaluations number, for example n/50, being n the common evaluations number, 
for a very small number of n the correlation is too low. 

• The neighborhood set is formed only by few users, this brings as consequence 
that predictions and recommendations only fit to a single items set. 

In first place, as we mentioned previously, we analyzed the numbers of items 
evaluated for each one, we take the possible number of users that could be part of its 
neighborhood set too. During the implementation of the Genetic Algorithm (CHC) we 
take as criterion to determine the users’ neighborhood of the sample, with the 
objective user, the followings: 

a. The active user’s neighborhood’s members are those users with a Euclidian 
distance in relation with this inferior to 0.25. 

b. The neighborhood’s members are those users that have evaluated at least one 
item in common with the active user. 

These criteria are taken in the planned tests to do. 
The opposite case is used to determine the users’ neighborhood in the 

implementation of the Pearson’s Algorithm, in which the neighborhood is found using 
the nearest TOP-N users from whole DB’s users set. In the predictions case, these are 
made in a test set of 14 items by user to evaluate each algorithm’s effectiveness and 
its accuracy is analyzed with MAE metric, it must be in account that users voting 
(rating) to the items are entire data in the range of 1-5 while prediction generated by 
the algorithms is in real numbers in the same range. 

Table 1 shows the averages of all executions for MAE behavior in our three 
approaches vs Pearson, Figure 6 is this same behavior but graphically 

Table 1. MAE Average Comparation 

 MAE_GA MAE_CHC MAE_LEM MAE_Pearson 

Average 0,63053 0,51389 0,28811 0,87127 
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Fig. 6. MAE Average Comparation 

The Figure 7 and Figure 8 show for two different random sets of ten users, the 
MAE average for our different approaches 
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Fig. 7. MAE Average Comparation for ten users selected randomly (1) 
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Fig. 8. MAE Average Comparation for ten users selected randomly (2) 



 Learning User’s Characteristics in Collaborative Filtering through Genetic Algorithms 323 

 

Finally we can see some examples for three random different  users (Figure 9 to 
Figure 11 ) related to the behavior of real rating vs predicted rating for GA standard, 
CHC and LEM approaches respectively, 

 

Fig. 9. Results of Real rating vs Predicted rating for one user selected randomly (1) 

 

Fig. 10. Results of Real rating vs Predicted rating for one user selected randomly (2) 

 

Fig. 11. Results of Real rating vs Predicted rating for one user selected randomly (3) 

5.1 Results Analysis 

Clearly we can see in our results that, in the most of the cases, GA standard 
outperform Pearson approach and the two consequent modifications: CHC and LEM 
approaches improve this behavior. 

From the obtained results the principal aspect to stand out is the clear superiority of 
LEM proposal in relation with the Pearson’s Correlation Algorithm, as the evaluation 
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metrics’ graphs show to the realized predictions for the users used in the experiments. 
Although this not underestimate the utility of the techniques based on made vote by 
users, in our case is primary to show that besides of vote there are other 
characteristics like item’s information and users’ information that might help in the 
objective of improve the predictions and recommendations realized to a particular 
user. Although the visual predictions do not seem to have a high level of reliability, 
the metrics’ result express the opposite. Although it’s reflected that the predictions are 
maintained over the media both in application of Pearson’s Algorithm like in the 
Genetic Algorithm approaches. 

6 Conclusions 

The use of the Evolutionary Computation, especially the CHC genetics algorithms 
and LEM, as alternative for treat the RS, showed to be a viable choice to deal with 
problems in predictions based on Collaborative Filtering. The realized tests allow us 
verify the effectiveness of these technique, because it obtained a higher accuracy in 
the prediction phase than the results obtained to apply the traditional Pearson’s 
Correlation Algorithm. 

The success of this type of experiments allow us know other techniques to deal 
with problems in the area and improve the expectations of new researches that try to 
improve the obtained behavior through conventional techniques, besides allow us to 
see other variables that aren’t considered in conventional models. 
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Abstract. Fuzzy sets have been originally introduced as generalizations
of crisp sets, and this is how they are usually considered. From the math-
ematical viewpoint, the problem with this approach is that most notions
allow many different generalizations, so every time we try to general-
ize some notions to fuzzy sets, we have numerous alternatives. In this
paper, we show that fuzzy sets can be alternatively viewed as limits of
crisp sets. As a result, for some notions, we can come up with a unique
generalization – as the limit of the results of applying this notion to the
corresponding crisp sets.

1 Formulation of the Problem: Too Many Different
Fuzzifications

Crisp Sets: Brief Reminder. Many properties are well-defined and objective
(“crisp”). For example, a real number x is either positive or not positive, it is
either smaller than 10 or not, etc. Each such crisp property can be described by
a (crisp) set – namely, by the set S of all the objects that satisfy this property.

For each such set S and for each object x, either the object x belongs to the
set S (x ∈ S) or the object x does not belong to the set S (x �∈ S). A set S
can therefore be equivalently described by its characteristic function μS(x) that
assigns, to each object x, the truth value of the statement x ∈ S. In other words:

– If x ∈ S, i.e., if the object x satisfies the property defining the set, then
μS(x) = 1.

– On the other hand, if x �∈ S, i.e., if the object x does not satisfy the desired
property, then we take μS(x) = 0.

Need for Fuzzy Sets. Humans routinely deal with properties which are not fully
well-defined and not fully objective, such as “small”, “young”, etc. A large por-
tion of our knowledge, of our experience, is described in terms of such properties.
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To deal with such imprecise (“fuzzy”) properties, L. Zadeh introduced the no-
tion of a fuzzy set; see, e.g., [1,2,3]. The main idea behind fuzzy sets is that for
fuzzy notions S, we no longer have a clear division into objects which absolutely
satisfy this notion and objects which absolutely do not satisfy this notion.

For a crisp property like “positive”, if we continuously increase a number x
from negative values to positive ones, we first have numbers which are absolutely
not positive, and then, at x = 0, we abruptly switch to numbers which are
absolutely positive. In contrast, for a property like “small”, as we increase values
x from small to not small, we do not abruptly switch from small numbers to non-
small ones, the transition is continuous. When the value x is very small, this value
will be classified by everyone as absolutely small. Similarly, a very large value
will be classified by everyone as absolutely not small. However, for intermediate
values, we may differ whether this value is small or nor, and even a single person
can hesitate.

To capture this phenomenon of a “smooth” transition between true and false,
Zadeh decided to use values between 0 (“false”) and 1 (“true”) to describe the
intermediate states of our beliefs. As a result, a fuzzy set S can be mathematically
defined as a function μS(x) that assigns, to each possible object x into a number
μS(x) from the interval [0, 1].

Fuzzy Sets Have Been Very Successful. Zadeh’s idea of capturing the fuzziness
of human reasoning has led to numerous successful applications, in control, in
clustering, etc.; see, e.g., [1,2].

Important Problem: How to Fuzzify? It is not always easy to apply fuzzy tech-
niques. One of the reasons for this is that there are many alternative fuzzy
techniques, and it is not clear which of these techniques we should use.

The reason for this variety of techniques is that, as defined above, the concept
of a fuzzy set is a generalization of the concept of a crisp set. A crisp set can be
defined as function that assigns, to each object x, a value from the 2-element set
{0, 1}, while a fuzzy set is defined as a function that assigns to each x an element
of the more general set [0, 1]. To extend a concept from crisp sets to fuzzy sets
means that we need to extend an operation defined for two truth value 0 and 1
to all possible intermediate values.

This happens, e.g., when we define a complement to a set. In the classical
case, this is easy: if an element x belongs to the set S, this element does not
belong to the complement −S, and vice versa. In other words, if χS(x) = 1, then
χ−S(x) = 0, and if χS(x) = 0, then χ−S(x) = 1. So, a complement is described
by an operation that maps 0 to 1 and 1 to 0. We would like to generalize this
operation to general fuzzy sets, i.e., to general numbers from the interval [0, 1].
It is clear that there are many different ways to extend an operation.

That is why in fuzzy applications, there are many generalizations of nega-
tion, many generalization of the union (different t-conorms) and of the intersec-
tion (different t-norms), different definitions of probability of a fuzzy event, etc.
Which of these generalization should we choose? This is often not clear.
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What We Do in This Paper. In this paper, we show that fuzzy sets can be
also naturally interpreted as limits of crisp sets. Mathematically, this equivalent
reformulation in terms of limits is equivalent to the original definition.

Computationally, the reformulation in terms of limits may even be much worse
that the original definition, since we are replacing a reasonably simple notion of
a function (from the set X of all objects to the interval [0, 1]), a notion routinely
studied in high school, with a much more complex concept of limit of sets, a
concept that is only studied by professional mathematicians.

However, from the viewpoint of generalizations, the limit definition has a clear
advantage: once a fuzzy set S is represented as a limit of a sequence of crisp sets
S1, S2, . . . , then we can define, e.g., the probability of this fuzzy set as a limit
of the probabilities of the corresponding crisp sets.

We will show that in some cases, this idea indeed enables us to select one
definition among many. We will also show that this idea is not a panacea: some-
times, when the sequence Sn tends to S, the corresponding values do not tend
to a limit; in such situations, we still have to choose an appropriate fuzzification.

We hope that, in addition to the above-described pragmatic use of this idea,
it will also lead to an even wider acceptance of fuzzy set techniques: one may
be reluctant to use generalizations, but it is a natural idea to use limits: this is
why we routinely use real numbers which are, in effect, nothing else but limits
of directly observable rational numbers; that is why we routinely use infinities
which are nothing else but limits of real numbers, etc.

2 Polling Interpretation of Fuzzy Properties Naturally
Leads to Fuzzy Sets as Limits of Crisp Sets

Polling Interpretation of Fuzzy Properties: Reminder. One of the standard ways
to elicit the membership degrees μS(x) is by polling. We ask several (N) experts
whether they would agree that an object x satisfies the corresponding property
(e.g., whether the given number is small). If M out of N folks say that the given

value x is small, we take the ratio
M

N
as the desired degree μS(x).

Polling: Logistic Challenges. When a variable x only takes finitely many possible
values, we can simply repeat the above procedure for all these values, and get
all the desired degrees μS(x), i.e., get the full description of the corresponding
fuzzy set. In reality, there are infinitely many possible values of each quantity x.
The first challenge us that we can only ask folks about finitely many different
values x.

The second challenge is that it is difficult for many people to think in abstract
terms. When I see a person, I can tell whether, in my opinion the person is
short or not; when I experience a certain temperature, I can tell whether this
temperature corresponds to “warm” or not. However, if for me, a fuzzy threshold
between short and non-short lies around 170 cm, and none of my friends are of
this threshold height, it will be difficult for me to decide whether someone of
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height exactly 170 cm is short or not, without actually observing such a person.
Because of this, not only we are limited to finitely many possible values x, but
we are also limited to values x corresponding to actual objects shown to the
polled experts.

This leads to the third challenge: that we may be polling, e.g., medical doctors
or geoscientists located at different parts of the word. It would be too expensive
to fly the same patients to all the medical doctors, or to fly all geoscientists
to the same earth formation. Realistically, each expert deals with his/her own
values x, and our goal is to combine this data.

What Is the Direct Result of Polling. As a result of polling, we get a finite
collection C of values x, some of which are marked, by an expert, as having the
property S while others are marked as not having the property S. Let C+ ⊆ C
denote the collection of all the values that experts marked as satisfying the
desired property.

We are dealing with real-life objects. For two real-life objects, the probability
that they have the exact same value of some quantity x is 0. We can therefore
safely assume that all these values are different. For example, if we pick two
rocks, it is highly improbable that they will have the exact same weight; their
weights may be close, but they cannot be exactly equal.

Example. As an example, let us consider a situation when we describe what it
means for a rock to be heavy. For this purpose, we ask geoscientists to present
examples of rocks which they consider to be heavy and rocks which they consider
to be not heavy. For each rock, we mark its weight. Then, C is the collection of
the weights all these rocks, and C+ ⊆ C is the set of the weights of all the rocks
which a geophysicist considered to be heavy.

Let us assume, for simplicity, that rocks of weight under 0.5 kg are considered
light, rocks whose weight is 1 kg or more are considered heavy, and rocks of
intermediate weights are considered heavy by some geophysicist and not heavy
by others. For example, we can have 10 rocks of weights 0.1, 0.2, 0.4, 0.6, 0.7,
0.9, and 1.3, of which rocks of weight 0.6, 0.9, and 1.3 have been marked as
heavy. In this case, C = {0.1, 0.2, 0.4, 0.6, 0.7, 0.9, 1.3} and C+ = {0.6, 0.9, 1.3}.

How Polling Techniques Process This Information. Based on the given set of
samples marked by experts, how can we estimate the degrees μS(x) correspond-
ing to different values x? For each value x, it is highly improbable that one of
the experts actually dealt with this very value; we can only hope to find close
values for which an expert has expressed his or her opinion. So, we take a neigh-
borhood (x−ε, x+ε) of the desired value x and, in this neighborhood, count the
proportion of points which were marked by an expert as satisfying the property
S. In other words, as an estimate for μS(x), we take the ratio

μS(x) ≈ #(C+ ∩ (x− ε, x+ ε))

#(C ∩ (x− ε, x+ ε))
, (1)
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where #(s) denote the number of elements in a set s and C+ ⊆ C is the collection
of all the values from the set C which experts marked as satisfying the desired
property.

To get a more accurate estimate, we need to elicit more opinions from the
experts, which would enable us to get more points in the set C. This means that
we are not just dealing with a single set C of such values, we get an increasing
sequence of finite sets C1, C2, . . . , Cn, . . . corresponding to increasing number
of points (#(Cn)→ +∞), so that

μS(x) ≈ #(C+
n ∩ (x− ε, x+ ε))

#(Cn ∩ (x− ε, x+ ε))
(2)

for all n, where and C+
n ⊆ Cn is the collection of all the values from the set Cn

which experts marked as satisfying the desired property.

Example. In the above rocks example, we continue eliciting information about
heavy and not-heavy rocks. In this case, as Cn, we can take the set of all weights
at the moment when we have collected information about n such rocks; then,
C+

n is the set of all the rocks which the geoscientists considered to be heavy.

How Polling Techniques Process This Information (cont-d). In general, the more
points, the more accurate the estimate; thus, the most accurate estimate corre-
sponds to the limit n→ +∞:

μS(x) ≈ lim
n→+∞

#(C+
n ∩ (x − ε, x+ ε))

#(Cn ∩ (x − ε, x+ ε))
. (3)

This limit, however, is not yet an exact value of μS(x), since this limit rep-
resents not just a single value x but the whole interval (x − ε, x + ε). To get
the exact value of μS(x), we therefore need to perform one more transition to a
limit: by taking ε → 0. After that, we should be able to get the exact value of
the membership degree:

μS(x) = lim
ε→0

lim
n→+∞

#(C+
n ∩ (x− ε, x+ ε))

#(Cn ∩ (x− ε, x+ ε))
. (4)

Let us show how this procedure can lead to a limit interpretation of fuzzy
sets.

From Finite Lists Cn to Crisp Sets Sn: Crisp Case. Let us start our analysis
of the situation with the case when the desired property is crisp. Suppose that
we have a finite set Cn of values for each of which experts decided whether this
value satisfies the desired property or not. For each given value x, how can we
then decide whether the given value x satisfied the desired property?

A natural idea, as we have mentioned, is to check whether some value which
is close to x have been classified by experts. The closer this already-classified
value to x, the more confident we are that this element and the desired value x
both satisfy or both do not satisfy the property S. Thus, a reasonable idea is to
look for the element from Cn which is the closest to x:
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– if this closest element satisfies the property S, then we conclude that the
given value x also satisfies the property S;

– is this closest element does not satisfy the property S, then we conclude that
the given value x does not satisfy S either.

Of course, there will be few threshold cases when the value x is exactly in between
two values, one classifies as satisfying S and another classified as not satisfying
S, but these values are rare, so we can arbitrarily classify them to S or to a
complement to S.

Thus, for each n, we divide the set X of all possible values of x into two sets:

– the set of all the values x which are, based on the set Cn, classified as
satisfying the property S; we will denote this set by Sn; and

– the set of all the values x which are, based on the set Cn, classified as not
satisfying the property S; this second set is simply a complement X − Sn.

As we elicit more and more opinions from experts, we get sets Cn which have
more and more points; moreover, we get more and more points within each
interval. So in the limit, when we increase n, the corresponding sets Sn and
X − Sn becomes closer and closer to the actual sets S and X − S, in the sense
that:

– if the value x actually satisfies the property S, i.e., if x ∈ S, then most
probably, starting with some sufficiently large n, it will be recognized by
this procedure as having this property;

– similarly, if the value x actually does not satisfy the property S, i.e., if
x �∈ S, then most probably, starting with some sufficiently large n, it will be
recognized by this procedure as not having this property.

In other words, if we form the values χSn(x), then for sufficiently large n, these
values will coincide with χ(S), i.e., we will have χS(x) = lim

n→+∞χSn(x).

From Finite Lists Cn to Crisp Sets Sn: General (Fuzzy) Case. What happens
in the general (fuzzy) case? In this case, based on each set of observations Cn,
we can also subdivide the entire set X into two crisp subsets:

– the set Sn of all the values x for which the closest point from Cn is classified
as having the property S, and

– the set X − Sn of all the values x for which the closest point from Cn is
classified as not having the property S.

Example. In the rocks example, Cn = {0.1, 0.2, 0.4, 0.6, 0.7, 0.9, 1.3} and C+
n =

{0.6, 0.9, 1.3}. Then, e.g.,
– for 0.62, the closest point from Cn is 0.6; this point classified as heavy, so

0.62 is assigned to the set Sn of heavy objects;
– on the other hand, for 0.68, the closest point from the set Cn is 0.7 which

is classified as not heavy, so 0.68 is assigned to the set X − Sn of not-heavy
rocks.
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The borderline points of the set Sn are the midpoints between the neighboring
heavy and not-heavy values from Cn, i.e.:

– a midpoint 0.5 between 0.4 and 0.6,
– a midpoint 0.65 between 0.6 and 0.7, and
– a midpoint 0.8 between 0.7 and 0.9.

Thus, in this example, the set Sn takes the form [0.5, 0.65] ∪ [0.8,∞).

From Finite Lists Cn to Crisp Sets Sn: General (Fuzzy) Case (cont-d). So far,
the description is similar to the corresponding description of the crisp case. The
difference is what happens in the intermediate values x for which the experts
differ. For such intermediate values, if we start with a randomly selected col-
lection of values around x, out of which experts classify a proportion μS(x) as
satisfying the property S, then, as one can easily check, the proportion of points
assigned to the set Sn will also be approximately the same. In other words, we
will have

μS(x) ≈ len(Sn ∩ (x− ε, x+ ε))

len(x − ε, x+ ε)
, (5)

where len(s) denotes the total length of the set S:

– for an interval, it is exactly its length;
– for a union of several disjoint intervals, it is the sum of their lengths.

Similarly to the above formulas (3)–(4), to get an accurate value μS(x), we need
to take more and more points n and narrower and narrower interval (x−ε, x+ε).
Then, we get

μS(x) = lim
ε→0

lim
n→+∞

len(Sn ∩ (x− ε, x+ ε))

len(x− ε, x+ ε)
. (6)

Example. In the rocks example, the set Sn of all the objects which are classified
as heavy has the form Sn = [0.5, 0.65] ∪ [0.8,∞).

– On the interval [0, 0.5], the only value which is classified as heavy is the
value 0.5. These values form a degenerate interval [0.5, 0.5]. The length of
this interval is 0, so we have μ(x) ≈ 0.

– On the interval [0.5, 1] of length 0.5, the value which are classified as heavy
form the set [0.5, 0.65]∪ [0.8, 1.0]. The length of this set is 0.15+ 0.2 = 0.35,

so we have μ(x) ≈ 0.35

0.5
= 0.7.

– On the interval [1, 2] of length 1, all the values are classified as heavy, so we
have μ(x) ≈ 1.

As we collect more data, we get a better approximation to the desired member-
ship function.

Resulting Idea: Fuzzy Set As a Limit of Crisp Sets. Similarly to describing a
crisp set S as a limit of the corresponding crisp sets Sn, we can thus formally
describe a fuzzy set as a limit of crisp sets if the formula (6) is satisfied.

We can now define operations on fuzzy sets as limits of operations on the
corresponding sets Sn – when such a limit exists. Let us describe this idea in
precise terms.
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3 Fuzzy Sets as Limits of Crisp Sets: Definitions and
Results

Definition 1. We say that a fuzzy set S with a membership function μS(x) is
a limit of a sequence of (crisp) sets Sn, and denote it as Sn → S, if for every
x ∈ X, the formula (6) holds.

Comment. A similar definition can be formulated for fuzzy subsets of a plane,
a 3-D space, or, more generally, a multi-D space; in this case:

– to describe a neighborhood of a point x = (x1, . . . , xd), it is reasonable to
use, e.g., boxes

(x1 − ε1, x1 + ε1)× . . .× (xd − εd, xd + εd)

instead of intervals;

– instead of a length of a set, we need to use a more general Lebesgue measure;
e.g., area for sets in a plane, volume for 3-D sets. etc.

Let us first show that the above intuitive idea indeed works, i.e., that generic
fuzzy sets can indeed be represented as limits of crisp sets.

Proposition 1. Every fuzzy set with a continuous membership function can be
represented as a limit of crisp sets.

Proof. One way to describe the corresponding set Sn is to divide the real axis

into intervals

[
k

n
,
k + 1

n

)
corresponding to different integers k, and to divide

each such interval of length
1

n
into two parts:

– a part

[
k

n
,
k

n
+ μ

(
k

n

)
· 1
n

)
, a portion μ

(
k

n

)
, is assigned to the set Sn,

while

– the remaining part

(
k

n
+ μ

(
k

n

)
· 1
n
,
k + 1

n

)
is assigned to the complement

of the set Sn.

One can easily check that for the resulting sequence of sets

Sn =
⋃
k

[
k

n
,
k

n
+ μ

(
k

n

)
· 1
n

)
,

the equation (6) holds for every x. The statement is proven.

Let us show that this enables us to uniquely describe probability of a fuzzy set.
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Definition 2. Let ρ(x) be a continuous probability density, let P (s)
def
=
∫
s
ρ(x) dx

be the resulting probability measure, and let S be a fuzzy set. We say that a real
number P (S) is a probability of a fuzzy set S if for every sequence of crisp set
Sn with Sn → S, we have P (Sn)→ P (S).

Proposition 2. For every fuzzy set S with a continuous membership function
μ(x), its probability is well-defined and equal to P (S) =

∫
μ(x) · ρ(x) dx.

Comment. This result provides one more justification for the original Zadeh’s
definition of the probability of a fuzzy set [4].

Another case when the limit idea enables us to select a unique generalization
is the case of a complement.

Definition 3. We say that a fuzzy set S′ is a complement to a fuzzy set S if
for every sequence Sn of crisp sets for which Sn → S, we have −Sn → S′ for
the sequence of their complements −Sn.

Proposition 3. For every fuzzy set S with a continuous membership function
μ(x), its complement S′ is well-defined and its membership function is equal to
μS′(x) = 1− μ(S).

The Limit Idea Is Not a Panacea. While the above idea works well for defining
probability, it is not a panacea. Let us show, for example, that this idea does
not lead to a unique definition of a union or intersection of two fuzzy sets.

Indeed, ideally, we should be able to define the intersection of two fuzzy sets
S and S′ in a similar manner:

– we say that a fuzzy set is a union S ∪ S′ of fuzzy sets S and S′ if for every
two sequences of crisp sets Sn → S and S′

n → S′ imply Sn ∪ S′
n → S ∪ S′;

– similarly, we say that a fuzzy set is an intersection S ∩ S′ of fuzzy sets S
and S′ if for every two sequences of crisp sets Sn → S and S′

n → S′ imply
Sn ∩ S′

n → S ∩ S′.

Alas, it turns out that for different sequences Sn and S′
n, we get different limits.

Indeed, let us consider, for example, the two identical fuzzy sets S = S′ both
corresponding to complete ignorance μS(x) = μS′(x) = 0.5. For this membership
function, the construction from the proof of Proposition 1 leads to the sets

Sn =
⋃
k

[
k

n
,
k

n
+

1

2
· 1
n

)
. (7)

If we use these sets as sequences Sn and S′
n corresponding to both fuzzy sets S

and S′, then we get Sn ∪ S′
n = Sn ∩ S′

n = Sn, and thus, for the limit fuzzy sets,
we get μ(x) = 0.5 for all x.
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Alternatively, we can still use Sn as a sequence of crisp sets approximating
the set S while using a different sequence

S′
n =

⋃
k

[
k

n
+

1

2
· 1
n
,
k + 1

n

)
(8)

to approximate the set S′. In this case:

– the union Sn ∪ S′
n is the whole real line, so in the limit (6), we get μ(x) = 1

for all x;
– on the other hand, the intersection Sn ∩ S′

n consists of midpoints of all

intervals

[
k

n
,
k + 1

n

)
, so here, in the limit (6), we have μ(x) = 0.

4 Discussion and Future Work

Discussion. In this paper, we described how a fuzzy set can be represented in
terms of several crisp sets – specifically, a fuzzy set is represented as a limit of
crisp sets.

Another well-known way of representing a fuzzy set with a membership func-
tion μS(x) in terms of crisp sets is a representation in terms of alpha-cuts
{x : μS(x) ≥ α}. The main difference is that

– to uniquely determine a fuzzy set, we need to know all its alpha-cuts, while
– we do not need all limit sets Sn to uniquely determine a fuzzy set: it is

sufficient to know the sets Snk
for some sequence nk →∞ (e.g., for nk = k2).

Future Work. In mathematical terms, the property that

Sn → S implies P (Sn)→ P (S)

is known as continuity. In these terms, we can say that:

– probability is a continuous function of sets
(in the sense of convergence Sn → S);

– complement is a continuous operation, while
– union and intersection are discontinuous operations.

For such discontinuous operations, instead of a single limit value, we have an in-
terval of possible limit values. So maybe we can extend the limit idea to interval-
valued fuzzy sets?
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Abstract. To properly process data, we need to know the accuracy of
different data points, i.e., accuracy of different measurement results and
expert estimates. Often, this accuracy is not given. For such situations,
we describe how this accuracy can be estimated based on the available
data.

1 Formulation of the Problem

Need to Gauge Accuracy. To properly process data, it is important to know
the accuracy of different data values, i.e., the accuracy of different measurement
results and expert estimates; see, e.g., [3–5]. In many cases, this accuracy infor-
mation is available, but in many other practical situations, we do not have this
information. In such situations, it is necessary to extract this accuracy informa-
tion from the data itself.

Extracting Uncertainty from Data: Traditional Approach. The usual way to
gauge of the uncertainty of a measuring instrument is to compare the result
x̃ produced by this measuring instruments with the result x̃s of measuring the
same quantity x by a much more accurate (“standard”) measuring instrument.

Since the “standard” measuring instrument is much more accurate than the
instrument that we are trying to calibrate, we can safely ignore the inaccuracy
of its measurements and take x̃s as a good approximation to the actual value x.
In this case, the difference x̃− x̃s between the measurement results can serve as
a good approximation to the desired measurement accuracy Δx = x̃− x.

Traditional Approach Cannot Be Applied for Calibrating State-of-the-Art
Measuring Instruments. The above traditional approach works well for many
measuring instruments. However, we cannot apply this approach for calibrat-
ing state-of-the-art instrument, because these instruments are the best we have.
There are no other instruments which are much more accurate than these ones
– and which can therefore serve as standard measuring instruments for our
calibration.
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Such situations are ubiquitous; for example:

– in the environmental sciences, we want to gauge the accuracy with which the
Eddy covariance tower measure the Carbon and heat fluxes; see, e.g., [1];

– in the geosciences, we want to gauge how accurately seismic [2], gravity, and
other techniques reconstruct the density at different depths and different
locations.

How State-of-the-Art Measuring Instruments Are Calibrated: Case of Normally
Distributed Measurement Errors. Calibration of state-of-the-art measuring in-
struments is possible if we make a usual assumption that the measurement errors
are normally distributed with mean 0. Under this assumption, to fully describe
the distribution of the measurement errors, it is sufficient to estimate the stan-
dard deviation σ of this distribution.

There are two possible approaches for estimating this standard deviation. The
first approach is applicable when we have several similar measuring instruments.
For example, we can have two nearby towers, or we can bring additional sensors
to the existing tower. In such a situation, instead of a single measurement result
x̃, we have two different results x̃(1) and x̃(2) of measuring the same quantity
x. Here, by definition of the measurement error, x̃(1) = x + Δx(1) and x̃(2) =
x+Δx(2) and therefore, x̃(1) − x̃(2) = Δx(1) −Δx(2).

Each of the random variables Δx(1) and Δx(2) is normally distributed with
mean 0 and (unknown) standard deviation σ (i.e., variance σ2). Since the two
measuring instruments are independence, the corresponding random variables
Δx(1) and Δx(2) are also independent, and so, the variance of their difference is
equal to the sum of their variances σ2 + σ2 = 2σ2. Thus, the standard deviation
σ′ of this difference is equal to

√
2 · σ. We can estimate this standard deviation

σ′ based on the observed differences x̃(1) − x̃(2) and therefore, we can estimate

σ as
σ′
√
2
.

This approach is not applicable in the geosciences applications, when we usu-
ally have only one seismic map, only one gravity map, etc. In such situations, we
have several measurement results x̃(i) with, in general, different standard devia-
tions σ(i). For every two measuring instruments i and j, the difference x̃(i)− x̃(j)

is normally distributed with the variance
(
σ(i)

)2
+
(
σ(j)

)2
. By comparing actual

measurement results, we can estimate this variance and thus, get an estimate eij
for the sum. As a result, e.g., for the case when we have three different measuring
instruments, we get three values eij for which:

e12 =
(
σ(1)

)2
+
(
σ(2)

)2
; e13 =

(
σ(1)

)2
+
(
σ(3)

)2
;

e23 =
(
σ(2)

)2
+
(
σ(3)

)2
.

Here, we have a system of three linear equations with three unknowns, from

which we can uniquely determined all three desired variances
(
σ(i)

)2
:(

σ(1)
)2

=
e12 + e13 − e23

2
;
(
σ(2)

)2
=

e12 + e23 − e13
2

;
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σ(3)

)2
=

e13 + e23 − e12
2

.

Need to Go Beyond Normal Distributions, and Resulting Problem. In practice,
the distribution of measurement errors is often different from normal; this is
the case, e.g., in measuring fluxes [1]. In such cases, we can still use the same
techniques to find the standard deviation of the measurement error. However, in
general, it is not enough to know the standard deviation to uniquely determine
the distribution: e.g., we may have (and we sometimes do have) an asymmetric
distribution, for which the skewness is different from 0 (i.e., equivalently, the
expected value of (Δx)3 is different from 0).

It is known that in this case, in contrast to the case of the normal distri-
bution, we cannot uniquely reconstruct the distribution of Δx from the known
distribution of the difference Δx(1) − Δx(2). Indeed, if we have an asymmetric
distribution for Δx, i.e., a distribution which is not invariant under the transfor-

mation Δx→ −Δx, this means that the distribution for Δy
def
= −Δx is different

from the distribution for Δx. However, since Δy(1) − Δy(2) = Δx(2) − Δx(1),
the y-difference is also equal to the difference between two independent variables
with the distribution Δx and thus, distribution for the difference Δy(1) −Δy(2)

is exactly the same as for the difference Δx(1)−Δx(2). In other words, if we know
the distribution for the difference Δx(1)−Δx(2), we cannot uniquely reconstruct
the distribution for Δx, because, in addition to the original distribution for Δx,
all the observations are also consistent with the distribution for Δy = −Δx.

This known non-uniqueness naturally leads to the following questions:

– first, a theoretical question: since we cannot uniquely reconstruct the distri-
bution for Δx, what information about this distribution can we reconstruct?

– second, a practical question: for those characteristics of Δx which can be
theoretically reconstructed, we need to design computationally efficient al-
gorithms for reconstructing these characteristics.

2 Technique for Solving the Problem

Technique to Use. To solve these questions, let us use the Fourier analysis tech-
nique.

What we want to find is the probability density ρ(z) describing the distribu-

tion of the measurement error z
def
= Δx. In order to find the unknown probabil-

ity density, we will first find its Fourier transform F (ω) =
∫
ρ(z) · ei·ω·z dz. By

definition, this Fourier transform is equal to the mathematical expectation of
the function ei·ω·z: F (ω) = E

[
ei·ω·z] . Such a mathematical expectation is also

known as a characteristic function of the random variable z.
Based on the observed values of the difference z(1)− z(2), we can estimate the

characteristic function D(ω) of this difference: D(ω) = E
[
ei·ω·(z(1)−z(2))

]
. Here,

ei·ω·(z(1)−z(2)) = e(i·ω·z(1))+(−i·ω·z(2)) = ei·ω·z(1) · e−i·ω·z(2)

.
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Measurement errors z(1) and z(2) corresponding to two measuring instruments

are usually assumed to be independent. Thus, the variables ei·ω·z(1)

and e−i·ω·z(2)

are also independent. It is known that the expected value of the product of two
independent variables is equal to the product of their expected values, thus,

D(ω) = E
[
ei·ω·z(1)

]
· E

[
e−i·ω·z(2)

]
,

i.e., D(ω) = F (ω) ·F (−ω). Here, F (−ω) = E
[
e−i·ω·z] = E

[(
ei·ω·z)∗] , where t∗

means complex conjugation, i.e., an operation that transforms t = a+ b · i into
t∗ = a− b · i. Thus, F (−ω) = F ∗(ω), and the above formula takes the form

D(ω) = F (ω) · F ∗(ω) = |F (ω)|2.
In other words, the fact that we know D(ω) means that we know the absolute
value (modulus) of the complex-valued function F (ω).

In these terms, the problems becomes: how can we reconstruct the complex-
valued function F (ω) if we only know its absolute value?

3 Is It Possible to Estimate Accuracy?

How to Use Fourier Techniques to Solve the Theoretical Question. First, let us
address the theoretical question: since, in general, we cannot reconstruct ρ(z) (or,
equivalently, F (ω)) uniquely, what information about ρ(z) (and, correspondingly,
about F (ω)) can we reconstruct?

To solve this theoretical question, let us take into account the practical fea-
tures of this problem. First, it needs to be mentioned that, from the practical
viewpoint, we need to take into account that the situation in, e.g., Eddy co-
variance tower measurements is more complex that we described, because the
tower does not measure one single quantity, it simultaneously measuring several
quantities: carbon flux, heat flux, etc. Since these different measurements are
based on data from the same sensors, it is reasonable to expect that the result-
ing measurement errors are correlated. Thus, to fully describe the measurement
uncertainty, it is not enough to describe the distribution of each 1-D measure-
ment error, we need to describe a joint distribution of all the measurement
errors z = (z1, z2, . . .). In this multi-D case, we can use the multi-D Fourier
transforms and characteristic functions, where for ω = (ω1, ω2, . . .), we define

F (ω) = E
[
ei·ω·z] , with ω · z def

= ω1 · z1 + ω2 · z2 + . . .
Second, we need to take into account that while theoretically, we can consider

all possible values of the difference z(1)−z(2), in practice, we can only get values
which are proportional to the smallest measuring unit h. For example, if we
measure distance and the smallest distance we can measure is centimeters, then
the measuring instrument can only return values 0 cm, 1 cm, 2 cm, etc. In other
words, in reality, the value z can only take discrete values. If we take the smallest
value of z as the new starting point (i.e., as 0), then the possible values of z take
the form z = 0, z = h, z = 2h, . . . , until we reach the upper bound z = N ·h for
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some integer N . For these values, in the 1-D case, the Fourier transform takes
the form

F (ω) = E
[
ei·ω·z] = N∑

k=0

pk · ei·ω·k·h,

where pk is the probability of the value z = k·h. This formula can be equivalently

rewritten as F (ω) =
N∑

k=0

pk · sk, where s
def
= ei·ω·h. Similarly, in the multi-D case,

we have z = (k1 · h1, k2 · h2, . . .), and thus,

ei·ω·k·h = ei·ω·(k1·h1+k2·h2+...) = ei·ω1·k1·h1 · ei·ω·k2·h2 · . . . ,

so we have

F (ω) =

N1∑
k1=0

N2∑
k2=0

. . . pk · sk1
1 · sk2

2 · . . . ,

where sk
def
= ei·ωk·hk . In other words, we have a polynomial of the variables

s1, s2, . . .:

P (s1, s2, . . .) =

N1∑
k1=0

N2∑
k2=0

. . . pk · sk1
1 · sk2

2 · . . .

Different values of ω correspond to different values of s = (s1, s2, . . .). Thus, the
fact that we know the values of |F (ω)|2 for different ω is equivalent to knowing
the values of |P (s)|2 for all possible values s = (s1, s2, . . .).

In these terms, the theoretical question takes the following form: we know
the values D(s) = |P (s)|2 = P (s) · P ∗(s) for some polynomial P (s), we need to
reconstruct this polynomial. In the 1-D case, each complex-valued polynomial
of degree N has, in general, N complex roots s(1), s(2), etc., and can, therefore,
be represented as |P (s)|2 = const · (s − s(1)) · (s − s(2)) · . . . In this case, there
are many factors, so there are many ways to represent it as a product – which
explains the above-described non-uniqueness of representingD(s) as the product
of two polynomials P (s) and P ∗(s)

Interestingly, in contrast to the 1-D case, in which each polynomial can be
represented as a product of polynomials of 1st order, in the multi-D case, a
generic polynomial cannot be represented as a product of polynomials of smaller
degrees. This fact can be easily illustrated on the example of polynomials of two
variables.

To describe a general polynomial of two variables
n∑

k=0

n∑
l=1

ckl · sk1 · sl2 in which

each of the variables has a degree≤ n, we need to describe all possible coefficients
ckl. Each of the indices k and l can take n + 1 possible values 0, 1, . . . , n, so
overall, we need to describe (n+ 1)2 coefficients.

When two polynomials multiply, the degrees add: sm · sm′
= sm+m′

. Thus,
if we represent P (s) as a product of two polynomials, one of them must have a
degree m < n, and the other one degree n−m. In general:
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– we need (m+ 1)2 coefficients to describe a polynomial of degree m and
– we need (n−m+ 1)2 coefficients to describe a polynomial of degree n−m,
– so to describe arbitrary products of such polynomials, we need (m + 1)2 +

(n−m+ 1)2 coefficients.

To be more precise, in such a product, we can always multiply one of the poly-
nomials by a constant and divide another one by the same constant, without
changing the product. Thus, we can always assume that, e.g., in the first poly-
nomial, the free term c00 is equal to 1. As a result, we need one fewer coefficient
to describe a general product: (m+ 1)2 + (n−m+ 1)2 − 1.

To be able to represent a generic polynomial P (s) of degree n as such a
product P (s) = Pm(s) · Pn−m(s), we need to make sure that the coefficients at
all all (n+1)2 possible degrees sk1 ·sl2 are the same on both sides of this equation.
This requirement leads to (n+ 1)2 equations with (m+ 1)2 + (n−m+ 1)2 − 1
unknowns.

In general, a system of equations is solvable if the number of equations does
not exceed the number of unknowns. Thus, we must have

(n+ 1)2 ≤ (m+ 1)2 + (n−m+ 1)2 − 1.

Opening parentheses, we get

n2 + 2n+ 1 ≤ m2 + 2m+ 1 + (n−m)2 + 2 · (n−m) + 1− 1.

The constant terms in both sides cancel each other, as well as the terms 2n
in the left-hand side and 2m + 2 · (n −m) = 2n in the right-hand side, so we
get an equivalent inequality n2 ≤ m2 + (n −m)2. Opening parentheses, we get
n2 ≤ m2+n2−2·n·m+m2. Cancelling n2 in both sides, we get 0 ≤ 2m2−2·n·m.
Dividing both sides by 2m, we get an equivalent inequality 0 ≤ m − n, which
clearly contradicts to our assumption that m < n.

Let us go back to our problem. We know the product D(s) = P (s) · P ∗(s),
and we want to reconstruct the polynomial P (s). We know that this problem is
not uniquely solvable, i.e., that there exist other polynomials Q(s) �= P (s) for
which D(s) = P (s) ·P ∗(s) = Q(s) ·Q∗(s). Since, in general, a polynomial P (s) of
several variables cannot be represented as a product – i.e., is “prime” in terms of
factorization the same way prime numbers are – the fact that the two products
coincide means that Q(s) must be equal to one of the two prime factors in the
decomposition D(s) = P (s) · P ∗(s). Since we know that Q(s) is different from
P (s), we thus conclude that Q(s) = P ∗(s).

By going back to the definitions, one can see that for the distribution ρ′(x) =
ρ(−x), the corresponding polynomial has exactly the form Q(s) = P ∗(s). Thus,
in general, this is the only non-uniqueness that we have: each distribution which
is consistent with the observation of differences coincides either with the original
distribution ρ(x) or with the distribution ρ′(x) = ρ(−x). In other words, we
arrive at the following result.
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Answer to the Theoretical Question. We have proven that, in general, each dis-
tribution which is consistent with the observation of differences Δx(1) − Δx(2)

coincides either with the original distribution ρ(x) or with the distribution

ρ′(x) def
= ρ(−x).

4 Practical Question: How to Gauge the Accuracy

How to Use Fourier Techniques to Solve the Practical Question: Idea. We want
to find a probability distribution ρ(z) which is consistent with the observed
characteristic function D(ω) for the difference. In precise terms, we want to find
a function ρ(z) which satisfies the following two conditions:

– the first condition is that ρ(z) ≥ 0 for all z, and
– the second condition is that |F (ω)|2 = D(ω), where F (ω) denotes the Fourier

transform of the function ρ(x).

One way to find the unknown function that satisfies two conditions is to use
the method of successive projections. In this method, we start with an arbitrary
function ρ(0)(z). On the k-th iteration, we start with the result ρ(k−1)(z) of the
previous iteration, and we do the following:

– first, we project this function ρ(k−1)(z) onto the set of all functions which
satisfy the first condition; to be more precise, among all the functions which
satisfy the first condition, we find the function ρ′(x) which is the closest
to ρ(k−1)(z);

– then, we project the function ρ′(z) onto the set of all functions which satisfy
the second condition; to be more precise, among all the functions which
satisfy the second condition, we find the function ρ(k)(x) which is the closest
to ρ′(z).

We continue this process until it converges.
As the distance between the two functions f(z) and g(z) – describing how

close they are – it is reasonable to take the natural analog of the Euclidean

distance: d(f, g)
def
=
√∫

(f(z)− g(z))2 dz. One can check that for this distance

function:

– the closest function in the first part of the iteration is the function ρ′(z) =
max(0, ρ(k−1)(z)), and

– on the second part, the function whose Fourier transform is equal to

F (k)(ω) =

√|D(ω)|
|F ′(ω)| · F

′(ω).

Thus, we arrive at the following algorithm.

How to Use Fourier Techniques to Solve the Practical Question: Al-
gorithm. We start with an arbitrary function ρ(0)(z). On the k-th iteration, we
start with the function ρ(k−1)(z) obtained on the previous iteration, and we do
the following:
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– first, we compute ρ′(z) = max(0, ρ(k−1)(z));
– then, we apply Fourier transform to ρ′(z) and get F ′(z);

– after that, we compute F (k)(ω) =

√|D(ω)|
|F ′(ω)| · F

′(ω);

– finally, as the next approximation ρ(k)(z), we take the result of applying the
inverse Fourier transform to F (k)(ω).

We continue this process until it converges.
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Abstract. This paper is a contribution to the Structural Health Monitoring prob-
lem, solved by using case based reasoning and Self Organizing Maps. The ex-
pert system described in this paper is able to detect, locate and quantify stiffness 
percentage changes in a mechanical engineering structure. In order to overcome 
issues relating large number of parameters involved in the training stage it was 
applyed differential evolutive algorithms. Proper indexes to evaluate the  
training quality were proposed in order to increase diagnosis reliability. The  
algorithms were tested using the UBC ASCE Benchmark. The numerical im-
plementation shows decreasing in the identification errors with respect to those 
obtained by selecting manually network training parameters. 

Keywords: Structural Health Monitoring, Case-Based-Reasoning, Differential 
Evolutionary Algorithm. 

1 Introduction 

The objective in Structural Health Monitoring (SHM) is to detect, locate and quantify 
damages in order to predict the useful life in engineering structures [1]. In this sense, 
several methodologies have been developed in recent years [2-5].  They use digital 
signal processing techniques and artificial intelligence algorithms to identify changes 
in structure models. The application presented in this paper allows the identification 
of percentual stiffness changes in mechanical structures. The methodology is an ex-
tension of previous work [6], and is based on discrete wavelet transform (DWT), 
principal component analysis (PCA), case based reasoning (CBR) and self organizing 
maps (SOM). The contribution of the present work is a procedure which allows auto-
matic tuning of the algorithms via differential evolutive approaches. This procedure 
allows overcoming isues related with the tuning of an expert system which require 
high experience. Automatic tuning reduces the poor performance of expert systems 
tuned with heuristic rules. 
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2 Structural Health Monitoring Algorithm 

Figure 1 shows the scheme used for damage identification.  

 

Fig. 1. Damage identification procedure 

The steps in order to identify critical changes in a structure are the following: 
 
i. Case DataBase Construction: It is a memory array which contains full dy-

namic simulations of the model structure. They describe damage patterns and 
facilitate the search of similar damages. When a new record is sensed it is 
posible to classify its severity using information previously storaged. The 
similarity measure is commonly euclidean distance. In figure 1, the SOM 
evaluate this similarity [7]. 

ii. Apply Discrete Wavelet Transform to time signals of acceleration sensors 
located in some elements of the structure. The resulting detail and approxi-
mation wavelet coefficients are the feature vector.    

iii. Reduce the feature vector using Principal Component Analysis in order to 
extract the most relevant information. 

iv. Obtain a diagnosis by analogy using Case-Based Reasoning [7]. In this sense 
a SOM neural network is used.     

 
For a more detailed description of the methodology the reader is refered to a  

previous work [6] 

2.1 Benchmark Case  

The mechanical structure used for numerical validation corresponds to the UBC 
Benchmark (see figure 2). It is a steel frame with 4 floors located at the British Co-
lumbia University, Canada. The ASCE facilitates a numerical model with 120 free-
dom degrees [4]. Each floor of the model has 9 columns (vertical elements), 12 beams 
(horizontal elements) and 8 braces (diagonal elements) which sum 116 finite ele-
ments. Each floor contains 29 elements (columns, beams and Braces).  
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Fig. 2. Benchmark structure 

Damage detection consist in identify variations of the nominal matriz stifness. In 
this sense, the objective of the expert systems is to know if the stifness of a specific 
element (beam, column or brace) suffered alterations compared with its nominal val-
ue. It is possible recording 16 acceleration signals. The expert system also classifies 
the element with damage in the respective type (beam, column or brace) and locates 
the floor of the element with damage. 

The cases DataBase are simulations with percentual stiffness variations in the 
range [0, 50%] taking into account 1, 2, 3 or 4 elements simultaneously. These varia-
tions are represented by the 16 acceleration records. Th estructure was excited using 
whithe noise and a total of 6500 cases were stored. 

2.2 Error Indexes  

The following error indexes were estimated in order to evaluate the algorithm  
performance: 

 
• Dimension error: This index relates the number of elements with dam-

age, where á  has a value of 4.   
 % á 100                         1  

 
• Severity error: This index takes into account the magnitude of the per-

centual stifness variation. It is calculated using the average estimations 
for each element. It is defined by:      %  100              2  

• False Positive error: A false positive occurs when the expert system de-
tects damage and actually there is no damage. 
 %  #  #   100                          3  
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• False Negative error: A false negative occurs when the expert system 
does not detect damage and actually there is a damage:  
 %  #   #   100                                        4  

 
• Type error: Corresponds to the nmber of elements which were classified 

wrongly on a specific type (column, beam or brace). 
 

• Floor error: It is the number of elements located wrongly in the  
respective floor. 
 

• Element error: Take into account the error relating a specific element. 

3 Automatic Tuning of SOM Neural Network 

This section is focused on describe the procedure in order of automatically tuning 
SOM neural networks. In this sense, an evolutive diferential algorithm (ED) is im-
plemented. When a SOM neural network is trained, it is necessary to select the fol-
lowing parameters: 

 
• Normalization method: It is necesary to normaliza de data input between 

different options. Data normalization avoids false dominant clusters.   
 

• Output neurons number: It is the clusters number, according to [6-11] it is 

recommended to use a range between 5 n  and
9

10
n

, where n is the number of 
training cases. 

 
• Grid structure and Map shape: it is the local topology map. 

 
• Neighborhood function: it is the interation between reference vectors and af-

fects the precision and generalization of the SOM network. 
 
SOM quality is commonly described by the following indexes [12, 13]: 
 
• Topographical error: It is a measurement of topology preservation [14]. It 

should be near to zero. 
 

• Distortion: Shows how well each neuron represents the input data [11]. 
 

• Histogram uniformity: It is a measurement of the cases distribution in the 
clusters. Ideally, each cluster should be containing cases of the same type and 
there is not be empty clusters.  
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3.1 Evolutive Diferential Algorithm 

In order to tune automatically the SOM network, the evolutive diferential algorithm 
minimizes a weigthed averaged of the SOM quality and error indexes.  

 , ∑                                                  (5) 
 

Where  : weight factor, :  error indexes,  : estándar deviation of cross  
validation. 

Diferential evolutive algorithm (ED) was proposed by Storm y Price [8-9] in 1998. 
It is a technique base don the evolution of real valued vectors (poblation - individuals) 
which are posible solutions in the search space. The difference between ED and other 
Evolutive algorithms (AEs) lies in the use of linear combinations of individuals of the 
current population [15-16]. Figure 3 details the ED algorithm sequence.  

 

Fig. 3. Evolutive diferential algorithms 

3.2 Individual Codification 

The first step in the ED algorithm is to codify each individual of the poblation. Each 
gene of the chromosome corresponds to one SOM tuning parameter. The figure 4 
shows a graphical representation for the chromosome of one individual. , …  

Figure 4 Graphical representation of an individual chromosome.  
Table 1 describes the posible parameters in the tunning stage for a neural network. 

Table 1. Parameter codification 

Parameter Options Code Parameter Options Code 
 

Normalization  
method ( ) 

Variance 
Linear 

Logaritmic 
Logistic 

1 
2 
3 
4 

Grid  
structure ( ) 

Hexagonal 
Rectangular 

1 
2 

Output 
Neurons ( ) 

Random  
value 

X 

Map 
shape ( ) 

Laminate 
Cylindrical 
Thoroidal 

1 
2 
3 

Neiborhood 
 function ( ) 

Gaussian 
Cut Gaussian 

Bubble 

1 
2 
3 
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3.3 Initial Population  

The initial population (pop)
of individuals and the colum
population is generated in 
expressed in table1. 

3.4 Mutation 

The mutation operator use
One ( , ) will be the base
[10].  This operator adds th
order to obtain the new indi

 

                                 r1, r
 

 [0.4 y1] is the constan
the individuals’ xr2 and xr3. 

3.5 Recombination 

After mutation, it is applie
(target) in order to generat
created mixing the compone

 

 
In (7), r is a random valu

position of the mutated i
al  ,  [10]. 

The cross coefficient CR

) is a matriz of size [NPxD]. The rows (NP) are the num
mns (D) are the chromosome length. Each individual of 
a random way taking into account the codification ru

es three individuals of the population selected random
e vecor and the rest ( ,  and  , ) the differential vect
he proportional difference between ,  and ,  to ,
ividual mutated ( ): 

,     ,   ,                                                

r2, r3 ∈ {1, 2,. . . . , } 

nt mutation and it establishes a diferentiation range betw
This constant helps with convergence issues.  

ed the parents crossing operator over each individual 
te a trial individual  . This intermédiate individual 
ents of y  using a probability factor Cr ∈ [0, 1]. 

,    ;,                                                            
ue [0 – 1]. If r is less than the cross coefficient (CR), th
individual  ,  is changed with the j element of 

 

Fig. 4. Cruza operator 

R is selected in a random way. [15-17]. 

mber 
f the 
ules 

mly. 
tors ,  in 

 (6) 

ween 

,  
 is 

7  

he j 
the 
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3.6 Survivers Selection  

The selection operator is evaluated over the target  ,  and trial  ,  vectors to 
decide which individuals will make part of the new eneration ( , ). The selection 
operator evaluates the fitness function  : 

,   ,  ,,                                               (8) 

3.7 Terminal Condition 

Following aspects are taking into account to stop iterations in the ED algorithm: Fit-
ness reach an average value and Maximun numbers of iterations.  

Empirically was found that 20 iterations and 6.5% variations of the fitness value 
works fine for the application. More tan 20 iterations require simulations time hihger 
than 48 hours. 

4 Numerical Results  

Figure 5 shows the fitness value after 20 generations and the SOM parameters for the 
best individual are   , 4, 1, 2,    1800, 3 . 

   

  

Fig. 5. Fitness evolution 

The error indexes values using 3 cross validation groups are shown in table 2.  
In table 2 errFl and errTy correspond to the floor and type error classification re-

spectively; whereas FN and FP are the negative and false positve errors. The indexes 
nl, nh, and nv correspond to clusters with low, high and empty number of cases using 
such a threshold the average between the number of case and the neurons in the SOM.  
Automatic tuning of SOM network is slightly better than using default parameters. 

Figure 6 shows the average errors for the location of the element and the severity 
of damage using automatic tunning. 
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Table 2. Upper: Error inde
parameters. 

Gro
FP 

35 

errTy 

0.016 

N

0.4

0.4

0.4

 
Gro

FP 

4 
errTy 

0.06 

0

0

0

 
 

Fig. 6. Left: 

Figure 7 shows error ind

exes for best individual. Lower: Error indexes using def

oup 1 Group 2 Group 3 
FN FP FN FP FN 

0 44 4 38 0 

errFl errTy errFl errTy errFl 

0.074 0.016 0.069 0.018 0.070 

SOM Quality 
Nl nh nv 

4124 0.5876 0.4124 

4177 0.5823 0.4177 

4186 0.5814 0.4186 

oup 1 Group 2 Group 3 
FN FP FN FP FN 

31 8 33 8 34 
errFl errTy errFl errTy errFl 

0.2 0.06 0.18 0.06 0.18 

SOM Quality 
nl nh nv 

.28 0.73 0.27 

.27 0.73 0.27 

.26 0.74 0.26 

  

mean Element Error. Rigth: Mean severity error  

dexes relating the SOM quality. 

fault 
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Fig. 7. Left: Topog

According to figure 7, th
sive iterations, and distortio
=0.7664). It is a signal than

5 Conclusions 

Tuning automatically the 
However it requires high c
empty. Also, the identifica
for the SOM. 

In the fitness function th
dominant tendencies. For f
weigths, for example, give m

The most critical param
parameters relating the sha
detection problem previous
borhood function have poor

It is possible to include 
cal benchmark using CBR a
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Abstract. In many practical situations, it is necessary to cluster given
situations, i.e., to divide them into groups so that situations within each
group are similar to each other. This is how we humans usually make
decisions: instead of taking into account all the tiny details of a situation,
we classify the situation into one of the few groups, and then make a
decision depending on the group containing a given situation. When we
have many situations, we can describe the probability density of different
situations. In terms of this density, clusters are connected sets with higher
density separated by sets of smaller density. It is therefore reasonable to
define clusters as connected components of the set of all the situations
in which the density exceeds a certain threshold t. This idea indeed
leads to reasonable clustering. It turns out that the resulting clustering
works best if we use a Gaussian function for smoothing when estimating
the density, and we select a threshold in a certain way. In this paper,
we provide a theoretical explanation for this empirical optimality. We
also show how the above clustering algorithm can be modified so that it
takes into account that we are not absolutely sure whether each observed
situation is of the type in which we are interested, and takes into account
that some situations “almost” belong to a cluster.

1 Formulation of the Challenges

Clustering Is How We Humans Make Decisions. Most algorithms for control
and decision making take, as input, the values of the input parameters, and
transform them into the optimal decision (e.g., into an optimal control value).
Humans rarely do that. When facing a need to make a decision – e.g., where to
go eat, which car or which house to buy, which job offer to accept – we rarely
write down all the corresponding numbers and process them. Most of the time,
for each input variable, instead of its exact known value, we only use a category
to which this value belongs. For example, to decide where to eat, instead of
the exact prices of different dishes, we usually base our decision on whether the
restaurant is cheap, medium, expensive, or very expensive. Instead of taking into
account all the menu details, we base our decision on whether this restaurant
can be classified as Mexican, Chinese, etc. Similarly, when we select a hotel to
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stay during a conference, instead of taking into account all the possible features,
we base our decision on how many stars this hotel has and whether it is walking
distance, close, or far away from the conference site.

In all such cases, before we make decisions, we cluster possible situations, i.e.,
divide them into a few groups – and then make a decision based on the group
to which the current situation belongs.

Clustering Is a Natural First Step to Learning the Rules. Humans are often
good at making decisions. In many situations – such as face recognition – we
are much better than the best of the known computer programs, in spite of the
fact that computers process data much faster than we humans. To improve the
ability of computers to solve problems, it is therefore reasonable to emulate the
way we humans make the corresponding decisions. This means, in particular,
that a reasonable way to come up with a set of good-quality decision rules is to
first cluster possible situations, and then make a decision based on the cluster
containing the current situation.

Clustering: Ideal Case. How shall we cluster? In order to cluster, we need to
have a set of situations, i.e., vectors x = (x1, . . . , xn) consisting of the values of
n known quantities that characterize each situation.

Let us first consider the case when we have so many examples that in the
vicinity of each situation x = (x1, . . . , xn), we can meaningfully talk about the
density d(x) of situations in this vicinity – i.e., the number of situations per unit
volume.

In the ideal case, when all situations belong to several clearly distinct clusters,
there are no examples outside the clusters – so the density outside the clusters
is 0. Within each cluster, the density d(x) is positive. Different clusters can be
distinguished from each other because each cluster is connected. So, in this ideal
case, one we know the density d(x) at each point x, we can find each cluster as
the connected component of the set {x : d(x) > 0}.

Clustering: A More Realistic Case. In practice, in addition to objects and situa-
tions which clearly belong to different clusters, there are also “weird” situations
that do not fall under any meaningful clusters. For example, when we make a
medical decision, we classify all the patients into a few meaningful groups – e.g.,
coughing and sneezing patients can be classified into patients with cold, patients
with allergy, patients with flu, etc. However, there may be some exotic diseases
which also cause sneezing and coughing, diseases which are not present in the
current sample in sufficient numbers.

Such not-easy-to-classify examples can occur for every x. Let da be the average
density of such examples. In this case, if at some point, the observed density
d(x) is smaller than or equal to da, then most probably all examples with these
parameters are not-easy-to-classify, so they do not belong to any of the clusters
that we are trying to form. On the other hand, if for some point x, the observed
density d(x) is much larger than da, this means that all these examples cannot
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come from not-easy-to-classify cases: some of these example come from one of
the clusters that we are trying to form.

This idea leads us to the following clustering algorithm: we select a threshold t,
and then find each cluster as the connected component of the set {x : d(x) ≥ t}.

How to Estimate the Density d(x). In practice, we only have a finite set of
examples x(1), x(2), . . . , x(N). In order to apply the above approach, we must
use the observed values x(j) to estimate the density d(x) at different values x.

One possible answer to this question comes from the fact that usually, dues to

inevitable measurement inaccuracy, the measured values x(j) = (x
(j)
1 , . . . , x

(j)
n )

are not exactly equal to the actual (unknown) values x
(j),act
1 , . . . , x

(j),act
n of the

corresponding quantities; see, e.g., [7]. If we know the probability density func-

tion ρ(Δx) describing the measurement errorsΔx
def
= x−xact, then for each j, we

know the probability density of the corresponding actual values: ρ(x(j)−x(j),act).
So, if we only have one observation x(1), it is reasonable to estimate the density

of different situations x as d(x) = ρ(x(1) − x). When we have N observations
x(1), x(2), . . . , x(N), it is reasonable to consider them all equally probable, i.e.,
to assume that each of these observations occurs with probability p(x(j)) = 1/N .
Thus, due to the formula of the full probability, the probability d(x) of having
the actual situation x can be computed as

d(x) = p(x(1)) · ρ(x(1) − x) + . . .+ p(x(N)) · ρ(x(N) − x) =
1

N
·

N∑
j=1

ρ(x(j) − x).

The above formula is known as the Parzen window; see, e.g., [8]. The correspond-
ing function ρ(x) is known as a kernel. As a result, we arrive at the following
algorithm.

Resulting Clustering Algorithm. At first, we select a function ρ(x). Then, based
on the observed examples x(1), x(2), . . . , x(N), we form a density function d(x) =

(1/N)·
N∑
j=1

ρ(x(j)−x). After that, we select a threshold t, and we find the clusters

as the connected components of the set {x : d(x) ≥ t}.

Algorithmic Comment. In practice, we can only handle a finite number of possi-
ble points x, so we perform computations only for finitely many x – e.g., for all
points x from a dense grid. In the discrete case, the subdivision into connected
components is equivalent to finding a transition closure of the direct neighbor-
hood relation – and it is well known how to efficiently compute the transitive
closure of a given relation; see, e.g., [1].

Discussion: Beyond Probabilities and Measurements. In the above text, we de-
scribe a statistical motivation for this algorithm. It turns out (see, e.g., [2,3])
that a fuzzy approach leads, in effect, to the same algorithm – in this case, in-
stead of the probability density ρ(x), we must take the membership function
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describing the neighborhood relation, and the Parzen window formula for d(x)
describes not the total probability, but rather (modulo an irrelevant 1/N factor)
the fuzzy cardinality of the fuzzy set of all examples in the neighborhood of the
given point x. This fuzzy approach makes sense, e.g., when the sample values
x(j) come not from measurements, but from expert observations.

Empirical Results. By testing different possible selections, we found out [2,3]
that empirically:

– The best kernel is the Gaussian function ρ(x) ∼ exp(−const · x2).
– To describe the best threshold, we must describe, for each possible threshold

t, the interval formed by all the threshold values t′ that lead to the same
clustering of the original points x(j) as t. Then, we select the threshold t for
which this interval is the widest – i.e., for which clustering is the most robust
to the threshold selection.

1st Challenge: Explain the Above Empirical Results. Our 1st challenge is to
provide a theoretical explanation for these empirical results.

2nd Challenge: Some Observations May Be Erroneous. In the above analysis, we
assumed that all the situations that we observed and/or measured are exactly
of the type in which we are interested. In other words, we assume that the only
uncertainty is that the measurement values are imprecise. In reality, about some
measurements, we are not sure whether the corresponding situations are of the
desired type or not.

For example, when we analyze the animals that we observed in the wild, not
only are our measurements not absolutely accurate, but in addition to this, in
some cases, we are not sure whether we actually observed an animal or it was
just a weird combination of shadows that made it look like an animal.

It is desirable to take this additional uncertainty into account during cluster-
ing.

Comment. This additional uncertainty was recently emphasized by L. Zadeh,
when he promoted the idea of a Z-number [9], a number for which there are two
types of uncertainty: an uncertainty in value – corresponding to the accuracy
of the measuring instrument, and an uncertainty in whether we did measure
anything meaningful at all – corresponding, e.g., to reliability of the measuring
instrument.

3rd Challenge: Need for Fuzzy Clustering Results. The above algorithm provides
a crisp (non-fuzzy) division into clusters. In real life, in some cases, we may
indeed be certain that a given pair of objects belongs to the same cluster (or to
different clusters); however, in many other cases, we are not 100% sure about
it. It is desirable to modify the above clustering algorithm in such a way that it
reflects this uncertainty. In other words, we fuzzy clusters, clusters in which some
situations x are assigned to different clusters with different degrees of certainty.
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The existing fuzzy-techniques-based clustering algorithms provide such clas-
sification (see, e.g., [4,6]); it is therefore reasonable to modify the above density-
based fuzzy-motivated algorithm so that it will produce a similar fuzzy cluster-
ing.

4th Challenge: Need for Hierarchical Clustering. In practice, our classification is
hierarchical. For example, to make a decision about how to behave when we see
an animal in the forest, we first classify animals into dangerous and harmless
ones. However, once we get more experience, we realize that different dangerous
animals require different strategies, so we sub-classify them into subgroups with
a similar behavior: snakes, bears, etc.

It is therefore desirable that our clustering algorithm have the ability to pro-
duce such a hierarchical clustering: once we subdivided the original situations
into clusters, we should be able to apply the same clustering algorithm to all the
situations within each cluster c and come up with relevant sub-clusters. Alas,
this does not always happen in the above density-based clustering algorithm.
Indeed, we select a threshold for which the corresponding interval is the widest.
Thus, it is highly possible that within a cluster, we will have the same intervals
– so the new sub-classification will be based on the same threshold and thus, it
will return the exact same cluster. The 4th – and the last – challenge is to modify
the above algorithm so that it will enable us to produce the desired hierarchical
clustering.

In this paper, we propose possible solutions to all these challenges.

2 Solutions to Challenges

A Solution to the 1st Part of the 1st Challenge. We need to explain why
empirically, the Gaussian membership functions – or, equivalently, the Gaussian
kernels ρ(Δx) – are empirically the best.

Case of Measurements. This empirical fact is reasonably easy to explain in the
case when the values x(j) come from measurements, and the probability density
ρ(Δx) corresponds to the probability density of the measurement errors.

In this case, the empirical success of the Gaussian kernels can be easily ex-
plained by another (better known) empirical fact: that the Gaussian distribution
of the measurement error is indeed frequently occurring in practice. This new
empirical fact, in its turn, has a known explanation:

– a measurement error usually consists of a large number of small independent
components, and,

– according to the Central Limit theorem, the distribution of the sum of a
large number of small independent components is indeed close to Gaussian
(see, e.g., [8]) – the more components, the closer the resulting distribution
is to Gaussian.
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Case of Expert Estimates. As we have mentioned, the values x(j) often come not
from measurements, but from expert estimates. In this case, the inaccuracy of
these estimates is also caused by a large number of relatively small independent
factors. Thus, we can also safely assume that the corresponding estimation errors
are (approximately) normally distributed.

Alternative Explanation. The whole idea of the above density estimates can be
reformulated as follows: we start with the discrete distribution dN (x) in which we
get N values x(j) with equal probability, and then we “smoothen” this original
distribution – by taking a convolution between dN (x) and a kernel function ρ(x):
d(x) =

∫
dN (y) · ρ(x− y) dy.

In the previous text, we mentioned that the empirically best choice of the
kernel function is a Gaussian function, but what we did not explicitly mention is
that even after we fix the class of Gaussian functions, we still to find an appro-
priate parameter – the half-width of the corresponding Gaussian distribution.
An appropriate selection of this parameter is important if we want to achieve a
reasonable clustering:

– on the one hand, if we select a very narrow half-width, then each original
point x(j) becomes its own cluster;

– alternative, if we select a very wide half-width, then all the density differences
will be smoother out, and we will end up with a single cluster.

The choice of this half-width is usually performed empirically: we start with a
small value of half-width and gradually increase it.

In principle, every time we slightly increase the half-width, we could go back
to the original discrete distribution and apply the new slightly modified kernel
function. However, since the kernel functions are close to each other, the re-
sulting convolutions are also close to each other. So, it is more computationally
efficient, instead of starting with the original discrete distribution, to apply a
small modifying convolution to the previous convolution result.

In this approach, the resulting convolution is the result of applying a large
number of minor convolutions, with modification kernel functions which change
the function very slightly – i.e., which are close to the delta-function convolution
with which does not change the original function at all. How can we describe
the composition of such large number of convolutions?

From the mathematical viewpoint, each modification kernel function K(x)
can be viewed as a random variable whose probability density function propor-
tional to K(x). The delta-function kernel – that does not change anything –
corresponds to the random variable which is equal to 0 with probability 1. A
kernel corresponding to a small change thus corresponds to a random variable
which is close to 0 – i.e., which is small.

It is well known that the probability distribution ρ(X) of the sum X = X1 +
X2 of two independent random variables is equal to the convolution of their
probability density functions ρ1(X1) and ρ2(X2):

ρ(X) =

∫
ρ1(X1) · ρ2(X −X1) dX1.
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Thus, applying several convolutions – corresponding to several small random
variables – is equivalent to applying one convolution corresponding to the sum
of these small random variables. Due to the Central Limit theorem, this sum is
(almost) normally distributed. So, the corresponding probability density function
is (almost) Gaussian, and the resulting convolution is (almost) the convolution
with the Gaussian kernel.

A Solution to the 2nd Part of the 1st Challenge. The above clustering
algorithm depends on the selection of an appropriate threshold t. It turns out
that empirically, the following method of selecting this threshold works best: we
select a threshold t for which the results of clustering the sample situations x(j)

are the most robust with respect to this selection, i.e., for which the interval
t(t) consisting of all threshold values t′ that lead to the same clustering of the
original situations as t is the widest.

How can we explain the empirical efficiency of this method?

Analysis of the Problem. The clustering of the sample situations is based on
comparing the corresponding values d(x(j)) with the threshold t. Thus, crudely
speaking, the interval t(t) consists of all the values t′ between the two sequential
values d(x(j)).

For simplicity, let us consider 1-D case. In this case, locally, the density func-
tion is monotonic, so the consequent values of the density d(x(j)) are, most
probably, attained at the two neighboring points x(j). (In multi-D case, if we use
the local coordinates in which the gradient of the density is one of the directions,
there are also additional dimensions that do not affect the density.)

In a sample of N points, the distance Δx to the next point can be found
from the condition that there should be one point on this interval. By definition
of the probability density, the probability to find the point on the intervals is
equal to d(x) · Δx. The total number of points is N , so the average number of
points on the interval is N · d(x) · Δx. Thus, we have N · d(x) · Δx ≈ 1 hence
Δx ≈ 1/(N · d(x)). When we move from the original point x to the new point
x+Δx, the density changes from d(x) to d(x)+Δx·d′(x) ≈ d(x)+d′(x)/(N ·d(x)).
Thus, the different between the two values if the threshold that lead to different
clusterings – the desired gap – is proportional to the ratio |d′(x)|/d(x). In multi-

D case, we similarly have ‖∇d(x)‖2/d(x), where ∇d def
=

(
∂d

∂x1
, . . . ,

∂d

∂xn

)
is the

gradient vector, and for every vector z = (z1, . . . , zn), ‖z‖2 def
=
√
z21 + . . .+ z2n

denotes its length.
After this reformulation, the question becomes: why, as an objective function,

the ratio ‖∇d(x)‖2/d(x) works the best? To answer this question, we will con-
sider general reasonable optimality criteria which can be formulated in terms of
the density function d(x) and its gradient ∇d(x).

What We Need Is a Preference Relation. We do not necessarily need a numerical
objective function that would enable us to compare two points x with two differ-
ent values of d(x) and ∇d(x). All we need is a preference relation (d, z) � (d′, z′)
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allowing us to compare two pairs (d, z) consisting of a real number d and an
n-dimensional vector z. The meaning of this relation is that the pair (d, z) is
better than (or of the same quality as) (d′, z′) – as a point whose value d(x) is
used as a threshold.

Let us enumerate natural properties of this relation, and then see which rela-
tions satisfy all these properties.

Natural Algebraic Properties of the Preference Relation. To be able to always
make a decision, we must require that for every two pairs (d, z) and (d′, z′), we
have either (d, z) � (d′, z′) or (d′, z′) � (d, z). In mathematical terms, this means
that the relation is linear or total.

Of course, since any pair (d, z) is of the same quality as itself, we must have
(d, z) � (d, z) for all d and z. In mathematical terms, this means that the relation
is reflexive.

This relation must also be transitive: indeed, if (d, z) is better than (or of the
same quality as) (d′, z′), and (d′, z′) is better than (or of the same quality as)
(d′′, z′′), then (d, z) should better than (or of the same quality as) (d′′, z′′).

Closeness of the Preference Relation. Let us assume that (dn, zn) → (d, z),
(d′n, z′n)→ (d′, z′), and (dn, zn) � (d′n, z′n) for all n.

Since all the measurements are imprecise, this implies that for any given
measurement error, for sufficiently large n, the pair (d, z) is indistinguishable
from (dn, zn): (d, z) ≈ (dn, zn). Similarly, for sufficiently large n, the pair (d′, z′)
is indistinguishable from the pair (d′n, z

′
n): (d

′, z′) ≈ (d′n, z
′
n).

Thus, no matter how accurately we perform measurements, for the pairs (d, z)
and (d′, z′), there are indistinguishable pairs (dn, zn) ≈ (d, z) and (d′n, z

′
n) ≈

(d′, z′) for which (dn, zn) � (d′n, z
′
n). Hence, from the practical viewpoint, we

will never be able to empirically conclude, based on measurement results, that
(d, z) �� (d′, z′). So, it is reasonable to conclude that (d, z) � (d′, z′).

In mathematical terms, this means that the relation � is closed in the topo-
logical sense.

Rotation Invariance. The components xi of each situation x = (x1, . . . , xn) de-
scribe, e.g., spatial coordinates of some object, or components of the 3-D vector
describing the velocity of this object. In all these cases, the specific numerical
representation of the corresponding vector depends on the choice of the coor-
dinate system. In most practical situations, the choice of a coordinate system
is arbitrary: instead of the original system, we could select a new one which is
obtained from the previous one by rotation. It is therefore reasonable to require
that the preference relation not change if we simply rotate the coordinates. In
other words, it is reasonable to require that if (d, z) � (d′, z′), and T is an
arbitrary rotation in n-dimensional space, then (d, T (z)) � (d′, T (z′)).

First Result. From closeness and rotation invariance, we can already make an
important conclusion about the preference relation. Let us formulate this first
result in precise terms.
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Definition 1

– A relation � on a set A is called:
• linear (or total) if for every two elements a, a′ ∈ A, we have a � a′ or
a′ � a.
• reflexive if a � a for all a ∈ A;
• transitive if a � a′ and a′ � a′′ imply that a � a′′.

– Let n ≥ 1 be an integer. By a preference relation, we mean a linear reflexive
transitive relation � on the set of all pairs (d, z), where d is a non-negative
real number and z is an n-dimensional vector.

– We say that a preference relation � is closed if for every two sequences
(dn, zn) → (d, z) and (d′n, z

′
n)→ (d′, z′) for which (dn, zn) � (d′n, z

′
n) for all

n, we have (d, z) � (d′, z′).
– We say that a preference relation � is rotation-invariant if for every two

pairs (d, z) and (d′, z′) and for every rotation T in n-dimensional space,
(d, z) � (d′, z′) implies that (d, T (z)) � (d′, T (z′)).

Proposition 1. For every closed rotation-invariant preference relation �,
whether there is a relation (d, z) � (d′, z′) between the two pairs (d, z) and (d′, z′)
depends only on the values d and d′ and on the lengths ‖z‖2 and ‖z′‖2 of the
vectors z and z′, i.e., if (d, z) � (d′, z′), ‖z‖2 = ‖t‖2, and ‖z′‖2 = ‖t′‖2, then
(d, t) � (d′, t′).

Proof. Let us start with notations. Let us denote a ≡ b if a � b and b �
a. This relation is clearly symmetric. Since the original relation � is reflexive
and transitive, the new relation is also reflexive and transitive. In mathematical
terms, reflexive symmetric transitive relations are called equivalence relations;
thus, the above relation ≡ is an equivalence relation.

One can easily check that a � b and b ≡ c imply that a � c, and that a ≡ b
and b � c also implies a � c.

We plan to prove that for for every number d, for every vector z, and for every
rotation T , we have (d, z) ≡ (d, T (z)).

Let us show that if we succeed in proving this, then the proposition will be
proven. Indeed, since every two vectors of equal length can be transformed into
each other by an appropriate rotation, this will mean that if (d, z) � (d′, z′),
‖z‖2 = ‖t‖2, and ‖z′‖2 = ‖t′‖2, then (d, z) ≡ (d, t) and (d′, z′) ≡ (d′, t′). From
(d, t) ≡ (d, z), (d, z) � (d′, z′), and (d′, z′) ≡ (d′, t′), we will now be able to
conclude that (d, t) � (d′, t′), i.e., exactly what we want to conclude in Proposi-
tion 1.

So, to complete our proof, it is sufficient to prove that for every axis � and
for every angle ϕ, the property (d, z) ≡ (d, T�,ϕ(z)) holds, where T�,ϕ denoted a
rotation by the angle ϕ around the axis �.

We will first prove this statement for the case when ϕ = 2π/k for some integer
k ≥ 2, i.e., when k · ϕ = 2π.

Indeed, due to linearity of the preference relation �, we have (d, z) �
(d, T�,ϕ(z)) or (d, T�,ϕ(z)) � (d, z). Without losing generality, let us consider
the first case, when (d, z) � (d, T�,ϕ(z)).
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In this case, rotation invariance implies that (d, T�,ϕ(z)) � (d, T�,2ϕ(z)), that
(d, T�,2ϕ(z)) � (d, T�,3ϕ(z)), . . . , and that (d, T�,(k−1)·ϕ(z)) � (d, T�,k·ϕ(z)) =
(d, T�,2π(z)) = (d, z).

Transitivity, when applied to (d, T�,ϕ(z)) � (d, T�,2ϕ(z)) � . . . � (d, z), implies
that (d, T�,ϕ(z)) � (d, z). Since we already know that (d, z) � (d, T�,ϕ(z)), we
conclude that (d, z) ≡ (d, T�,ϕ(z)). The statement is proven.

Let us now prove the desired statement (d, z) ≡ (d, T�,ϕ(z)) for the case when
ϕ = 2π · (p/q) for some integers p and q.

Indeed, in this case, ϕ = p·ϕ(q), where we denoted ϕ(q)
def
= (2π)/q. We already

know, from Part 3.1 of this proof, that equivalence is preserved when we rotate
by the angle ϕ(q), i.e., that (d, z) ≡ (d, T�,ϕ(q)(z)). Similarly, (d, T�,ϕ(q)(z)) ≡
(d, T�,2ϕ(q)(z)), . . . , and, finally, that (d, T�,(p−1)·ϕ(q)(z)) ≡ (d, T�,p·ϕ(q)(z)) =
(d, T�,ϕ(z)). Thus, by transitivity of the equivalence relation, we conclude that
indeed (d, z) ≡ (d, T�,ϕ(z)). The statement is proven.

Let us now prove the desired statement (d, z) ≡ (d, T�,ϕ(z)) for an arbitrary
angle ϕ.

Indeed, every real number can be represented as a limit of rational num-
bers – e.g., its approximations of higher and higher accuracy. By applying this
statement to the ratio ϕ/(2π), we conclude that an arbitrary angle ϕ can be
represented as a limit of the angles ϕn each of which has a form 2π times a
rational number. For such angles, in Part 3.2 of our proof, we already proved
that (d, z) � (d, T�,ϕn(z)) and (d, T�,ϕn(z)) � (d, z). Due to closeness of the pref-
erence relation, we can now conclude that in the limit ϕn → ϕ, we also have
(d, z) � (d, T�,ϕ(z)) and (d, T�,ϕ(z)) � (d, z), thus (d, z) ≡ (d, T�,ϕ(z)).

The statement is proven, and so is the proposition.

Discussion. Based on Proposition 1, when we describe a preference relation, it is
not necessarily to consider pairs consisting of a real number d ≥ 0 and a vector
z. Instead, it is sufficient to only consider two non-negative numbers: d and the

length l
def
= ‖z‖2 of the vector z. So now, we have a preference relation defined

on the set of pairs of non-negative numbers d and l.

Monotonicity. If we have a homogeneous zone, i.e., a zone in which the density
is constant and its gradient is 0, then this whole zone should belong to the same
cluster. Selecting a threshold corresponding to this zone would mean cutting
through this zone, which contradicts to the idea of clustering as bringing similar
situations into the same cluster. From this viewpoint, it makes sense to dismiss
pairs (d, l) for which l = 0: the optimal cut should never be at such pairs.

Similarly, points x with small gradient are probably not the best placed to cut.
In other words, everything else being equal, situations with higher gradient (i.e.,
with larger values of l) are preferable as points used to determine a threshold.

With respect to density, as we have mentioned, the higher the density, the
more probable it is that the corresponding values belong to the same cluster.
Thus, everything else being equal, situations with lower density (i.e., with smaller
values of d) are preferable to cut. From this viewpoint, it makes sense to dismiss
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pairs (d, l) for which d = 0: if such ideal pairs are present, we have an ideal
(no-noise) clustering (as we mentioned in the beginning of this paper), so there
is no need for all these sophisticated methods. Thus, we arrive at the following
definitions.

Definition 2

– By a non-zero preference relation, we mean a linear reflexive transitive re-
lation � on the set of all pairs (d, l) of positive real numbers.

– We say that a non-zero preference relation is monotonic if the following two
conditions hold:
• for every d and for every l < l′, (d, l′) � (d, l) and (d, l) �� (d, l′);
• for every l and for every d < d′, (d, l) � (d′, l) and (d′, l) �� (d, l).

Comment. The notion of closeness can be easily extended to this new definition.

Sub-samples. Instead of considering all possible situations, we may want to con-
sider only part of them – this often happens in data processing when we want to
decrease computation time. Of course, we need to select sub-populations in such
a way that within each cluster, the relative density does not change. However,
it is OK to select different fractions of sample in different clusters. For example,
if some cluster contains a large number of different situations, it makes sense
to select only some of them, while for another cluster which consists of a few
situations, we cannot drastically decrease this number since otherwise, we will
not have enough remaining elements to make statistically meaningful estimates
(e.g., estimates of the probability density d(x)).

When we select only a portion of elements at a location x, the density d(x)
in the vicinity of this location is multiplied by the ratio λ of the following two
proportions: the proportion of this cluster in the original sample, and the pro-
portion of this cluster in the new sample. Since the values of xj do not change,
the gradient z – and hence, its length l – is also multiplied by the same constant
λ. In the vicinity of another cluster, the corresponding values of d′ and l′ are
similarly multiplied by a different constant λ′. It is reasonable to require that
the relative quality of different possible thresholds does not change under this
transition to a sub-sample. Thus, we arrive at the following definition.

Definition 3. We say that a non-zero preference relation � is sub-sampling
invariant if for every two pairs (d, l) and (d′, l′) and for every two positive real
numbers λ > 0 and λ′ > 0, (d, l) � (d′, l′) implies that

(λ · d, λ · l) � (λ′ · d′, λ′ · l′).

Proposition 2. For every closed monotonic sub-sampling invariant non-zero
preference relation �, (d, l) � (d′, l′) if and only if l/d ≥ l′/d′.
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Discussion. Thus, as a threshold, we should select a value of the density d(x)

corresponding to the point where the ratio
‖∇d‖
d

attains its largest possible

value. This result explains the above empirical rule.

Proof of Proposition 2. Since a preference relation is reflexive, we have (d, l) �
(d, l) for every d and l. If we apply invariance with respect to sub-sampling
with λ = 1 and λ′ = 1/d, we get (d, l) � (1, l/d) . If we apply invariance with
respect to sub-sampling with λ = 1/d and λ′ = 1, we get (1, l/d) � (d, l). Thus,
(d, l) ≡ (1, l/d) . Similarly, (d′, l′) ≡ (1, l′/d′) . Thus, (d, l) � (d′, l′) if and only
if (1, l/d) � (1, l′/d′) . For pairs (1, l), due to monotonicity, (1, l) � (1, l′) if
and only if l ≥ l′. Thus, indeed, (d, l) � (d′, l′) if and only if l/d ≥ l′/d′. The
proposition is proven.

A Solution to the 2nd Challenge. In the above algorithm, we implicitly
assume that, while there is some inaccuracy in the measurement results corre-
sponding to each observed situation x(j), each measurement indeed represents
the situation of the type in which we are interested. In practice, we are not
always sure that what we measured in necessarily one of such situations.

A natural way to describe this uncertainty is to assign, to each observed
situation j, a probability pj (most probably, subjective probability) that this
situation is indeed of the desired type.

It is desirable to take these probabilities into account during clustering.

Idea. The main algorithm is based on the Parzen formula

d(x) = p(x(1)) · ρ(x(1) − x) + . . .+ p(x(N)) · ρ(x(N) − x) =
1

N
·

N∑
j=1

ρ(x(j) − x).

In deriving formula, we assumed that all observations x(j) are equally probable,
i.e., that they have the same probability p(x(j)) to be observed. Now that we
know the probability pj that each observation is real, these observations are not
equally probable: the probability p(x(j)) of the j-th observation is proportional
to pj : p(x

(j)) = k · pj for some constant k.
This constant can be found from the condition that the overall probability is

1, i.e., that
N∑
j=1

p(x(j)) = k ·
N∑
j=1

pj = 1. Thus, we get k =
1

N∑
j=1

pj

, and instead of

the original Parzen formula, we get a new formula:

d(x) = p(x(1)) · ρ(x(1) − x) + . . .+ p(x(N)) · ρ(x(N) − x) = k · d0(x),

where d0(x)
def
=

N∑
j=1

pj · ρ(x(j) − x).
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Comment. Clusters are then determined based on the set of all the situations x
that satisfy the inequality d(x) ≥ t for some threshold t. Since d(x) = k · d0(x),
this inequality is equivalent to the inequality d0(t) ≥ t0, where t0

def
=

t

k
.

Thus, instead of considering the actual density d(x) and selecting an appro-
priate threshold t, we could as well consider a simpler function d0(x) and select
an appropriate threshold t0 for this simpler function. As a result, we arrive at
the following modification of the above algorithm:

Resulting Algorithm. Based on the observations x(j) and on the probabilities pj ,

we form an auxiliary function d0(x)
def
=

N∑
j=1

pj · ρ(x(j) − x). Then, we select an

appropriate threshold t0 and find clusters as connected components of the set
{x : d(x) ≥ t0}.

Comment. For selecting t0 we can use the same algorithm as before since, as
one can easily see, this algorithm does not change if we simply multiply all the
values of d(x) by the same constant (1/k).

A Solution to the 3rd Challenge. In the above algorithm, we assign each
situation to a definite cluster; crudely speaking, to the cluster which is most
probable to contain this situation. Because of the probabilistic character of the
assignment procedure, the resulting “most probable” assignment is not neces-
sarily always the correct one – it is just the assignment which is correct in more
cases than other possible assignments.

In reality, it is quite possible that each cluster also contains situations which
were not assigned to it – and vice versa, that some situations that were assigned
to this cluster actually belong to a different cluster. It is therefore desirable to
estimate, for each current cluster c and for each situation x which is currently
outside this cluster, the degree to which it is possible that x actually belongs
to c.

An Idea on How to Solve This Challenge. In the above algorithm, the clusters
were built based on the choice of a threshold t: each cluster c is a connected
component of the set {x : d(x) ≥ t}, where d(x) is a probability density function
based on the observed situations x(j).

If a situation x does not belong to the given cluster, this means that x cannot
be connected to elements of c by points y for which d(y) ≥ t. In other words,
whatever connection we make between the point x and a point xc from c (e.g., a
curve connecting x and xc), there will be a point y on this connection at which
d(y) < t.

If for some situation x, there is a connection at which all these intermediate
values d(y) are close to t – e.g., exceed t − ε for some small ε > 0 – this means
that the corresponding situation y “almost” belongs to the cluster: it would
belong to the cluster if we changed the threshold a little bit. In this case, if we
assign degree of confidence 1 to situations originally assigned to the cluster c, it
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makes sense to assign a degree close to 1 to this situation c. For example, we can

simply take the ratio
t− ε

t
as the desired degree of confidence that the situation

x belongs to the cluster c.
On the other hand, if no matter how we connect x with some xc ∈ c, we have

to go through some points with very low probability density – e.g., density 0 –
this means that no matter how much we decrease the threshold, this situation
x will not end up in the cluster c. To such situations x, we should assign low
degree of confidence that this situation x belongs to the given cluster c.

Thus, we arrive at the following natural definition.

Resulting Definition. For each situation x and for each cluster c, we estimate

the degree dc(x) to which x belongs to c as the ratio dc(x) =
tc(x)

t
, where t

is the threshold used for the original clustering, and tc(x) is the largest value
s ≤ t for which both the situation x and the original cluster c belong to the
same connected component of the set {y : d(y) ≥ s}.

Discussion. For elements x that were originally assigned to the cluster c, the
degree dc(x) as defined above is equal to 1.

For elements x that can be connected to c by situations y for which d(y) ≥ t−ε,
the above-defined degree dc(x) is larger than or equal to

t− ε

t
.

Finally, if we have a situation x for which, no matter how we connect it to c,
there will always be situations y on this connection for which d(y) = 0, then the
above-defined degree dc(x) is equal to 0.

An Alternative Solution to the 3rd Challenge. In the above approach, all
the situations x which have been originally assigned to a cluster c are automat-
ically assigned degree dc(x) = 1. An alternative approach is to assign different
degrees dc(x) to different such situations x.

To assign such degrees, we can use the same idea that we used when we
assigned degrees dc(x) to situations x which are outside the original cluster c.
Namely, the original assignment of a situation x to different clusters is based on
the value d(x): situations with d(x) ≥ t were assigned to different clusters, while
situations with d(x) < t were not assigned to any clusters. If d(x) = t, then a
minor change in d(x) can move this situation outside the clusters. On the other
hand, if d(x)  t, this means that even after a reasonable change in the value
of d(x), the situation x will still be assigned to a cluster. Thus, the larger the
value d(x), the larger our confidence that the situation x will be assigned to the
cluster. It is therefore reasonable to take d(x) as a degree of confidence that
the situation x belongs to the cluster c.

Of course, this value needs to be normalized so that the largest degree will be
1. Thus, we arrive at the following alternative definition.

Alternative Definition. For each situation x and for each cluster c, we estimate
the degree dc(x) to which x belongs to c as follows:
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If d(x) ≥ t, then, as dc(x), we take the ratio
d(x)

dmax
, where dmax

def
= sup

y
d(y) is

the largest possible value of the density d(x).

If d(x) < t, then, as the desired degree, we take the ratio dc(x) =
tc(x)

dmax
, where

tc(x) is the largest value s ≤ t for which both the situation x and the original
cluster c belong to the same connected component of the set {y : d(y) ≥ s}.

A Solution to the 4th Challenge. Once the original clusters are established,
then, for each cluster c, it is desirable to be able to apply the clustering algorithm
only to the situations from this cluster – and come up with sub-clusters of the
cluster c.

A possible solution is to use the fuzzy clusters, i.e., to produce the degrees of
belonging (that we produced as a solution to the 3rd challenge), and then to use
these degrees when clustering all the situations from the cluster c – as we did in
our solution to the second challenge.

Because of the degree of belonging, the resulting density function is different
from what we had based on the original sample. As a result, hopefully, we will
not simply produce the original cluster (as in the original algorithm) – we will
divide this cluster into reasonable sub-clusters.

Implementations. Most of the above solution have been implemented and
applied to real-life problems [2,3]; the resulting clustering is indeed closer to the
expert-generated clustering than the clustering performed by the usual fuzzy
clustering algorithms.
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Abstract. In many real-life situations, e.g., in medicine, it is necessary
to process data while preserving the patients’ confidentiality. One of the
most efficient methods of preserving privacy is to replace the exact values
with intervals that contain these values. For example, instead of an exact
age, a privacy-protected database only contains the information that the
age is, e.g., between 10 and 20, or between 20 and 30, etc. Based on
this data, it is important to compute correlation and covariance between
different quantities. For privacy-protected data, different values from the
intervals lead, in general, to different estimates for the desired statistical
characteristic. Our objective is then to compute the range of possible
values of these estimates.

Algorithms for effectively computing such ranges have been developed
for situations when intervals come from the original surveys, e.g., when
a person fills in whether his or her age is between 10 or 20, between 20
and 30, etc. These intervals, however, do not always lead to an optimal
privacy protection; it turns out that more complex, computer-generated
“intervalization” can lead to better privacy under the same accuracy,
or, alternatively, to more accurate estimates of statistical characteristics
under the same privacy constraints. In this paper, we extend the existing
efficient algorithms for computing covariance and correlation based on
privacy-protected data to this more general case of interval data.

Keywords: privacy protection, statistical database, computing covari-
ance, computing correlation,interval uncertainty.

1 Formulation of the Problem

Need for Processing Data in Statistical Databases. Often, we collect data for the
purpose of finding possible dependencies between different quantities. For exam-
ple, we collect all possible information about the medical patients with the hope
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of finding out which factors affect different illnesses and which factors affect the
success of different cures. The resulting collection of records ri = (ri1, . . . , rip),
1 ≤ i ≤ n, is known as a statistical database since typically, statistical meth-
ods are used for look for possible dependencies; see, e.g., [8]. These statistical
methods are usually based on computing statistical characteristics such as mean

Ej =
1

n
·

n∑
i=1

rij , variance Vj =
1

n
·

n∑
i=1

(rij −Ej)
2, standard deviation σj =

√
Vj ,

covariance Cjk =
1

n
·

n∑
i=1

(rij − Ej) · (rik − Ek), and correlation ρjk =
Cjk

σj · σk
.

Need for Privacy Protection. In many real-life situations, e.g., in medicine, it is
necessary to process data while preserving the patients’ confidentiality.

A similar need for privacy protection exists for analyzing data from social
networks.

How to Protect Privacy in Statistical Databases: The Main Idea of an Interval
Approach. One of the most efficient methods of preserving privacy is to replace
the exact values with intervals that contain these values.

For example, instead of an exact age, a privacy-protected database only con-
tains the information that the age is, e.g., between 10 and 20, or between 20 and
30, etc.

Interval Approach: A Threshold-Based Approach. In general, for each of p vari-
ables xi, 1 ≤ i ≤ p, we fix some thresholds ti,1 < ti,2 < . . . < ti,ni (e.g., 0, 10, 20,
30, . . . , for age), and replace each original value xi with the range [ti,k, ti,k+1]
that contains this value.

In the above example, the actual age of 19 will be replaced by the range
[10, 20].

Need to Process Corresponding Interval Data. Based on this interval data, it is
important to compute the values of different statistical characteristics such as
correlation and covariance between different quantities.

For privacy-protected data, for each statistical characteristic C(v1, . . . , vm),
different values vi from the given intervals [vi, vi] lead, in general, to different
estimates C(v1, . . . , vm). Thus, it is necessary to compute the range of possible
values of these estimates:

C([v1, v1], . . . , [vm, vm])
def
=

{C(v1, . . . , vm) : v1 ∈ [v1, v1], . . . , vm ∈ [vm, vm]}. (1)

What Was Known Before. For most statistical characteristics, the problem of
computing the range (1) under general interval uncertainty is computationally
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intractable (NP-hard); see, e.g., [6]1. However, for the above-described privacy-
related case, feasible algorithms are possible for computing many statistical char-
acteristics, in particular, covariance and correlation; see, e.g., [2–6].

Need to Go Beyond the Threshold-Based “Intervalization”. In the above
threshold-based “intervalization”, we replace each data point r = (r1, . . . , rp)
with a box

b = [b1, b1]× . . .× [bp, bp] (2)

formed by the corresponding threshold intervals [bi, bi]. The larger the boxes,
the wider the resulting interval (1) – i.e., the less accurate our estimates of
the corresponding statistical characteristics. From this viewpoint, the boxes b
should be as narrow as possible. On the other hand, if they are too narrow,
e.g., if some box contains only one record, then the privacy of this record is
not well-protected. To properly protect privacy, we need to make sure for some
sufficiently large integer K, each box b contains at least K records (this is called
K-anonymity; see, e.g., [9]), and that for each variable xi, there are at least
� different values of this variable coming from records within this box (this is
called �-diversity); see, e.g., [1].

Boxes do not have to come from thresholds. The only reasonable restriction is
that they should form a subdivision in the sense that no two boxes should have a
common interior point. Under the privacy-motivated restrictions ofK-anonymity
and �-diversity, we must look for a subdivision into boxes which leads to the
narrowest possible range C([v1, v1], . . . , [vp, vp]) of the desired characteristic. It
turns out (see, e.g., [10, 11]) that to attain this narrowest range, we need to use a
general subdivision into boxes which is more complex than the above threshold-
based one. Namely, in the above threshold-based subdivision into boxes, if two
records (r1, r2, . . .) and (r′1, r

′
2, . . .) have the same value of r1 (i.e., if r′1 = r1),

then the corresponding boxes have the same x1-interval [b1, b1]. In other words,
the selection of the x1-interval of the corresponding box depends only on the
value r1 and does not depend on the values of all other quantities r2, . . .

In contrast, in the optimal subdivision into boxes, the same value of r1, de-
pending on the values of other quantities r2, . . ., we may need boxes with different
x1-intervals. For example, if for some r2, . . ., there are more records around the

1 For those readers who are not familiar with the notion of NP-hardness, here is a brief
(somewhat informal) description; for details, see, e.g., [7]. We are interested in the
possibility of solving problems by feasible algorithms – which is usually interpreted
as polynomial-time algorithms, i.e., algorithms whose running time is bounded from
above by a polynomial of the input length. The class of all the problems which
can be solved in feasible (polynomial) time is usually denoted by P. In practice, we
normally have problems for which we can feasibly check whether a given candidate
for a solution is actually a solution; the class of such problems is denoted by NP.
A problem P0 is called NP-hard if every problem from the class NP can be reduced to
this problem. Thus, unless it turns out that P=NP – which most computer scientists
believe to be impossible – no feasible (polynomial-time) algorithm can solve all the
instances of the NP-hard problem P0.
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point (r1, r2, . . .), then, in the optimal subdivision into boxes, these records are
assigned to a narrower box, with narrower x1-intervals. On the other hand, for
the same value r1 and different values r′2, . . ., there may be much fewer records
around the point (r1, r

′
2, . . .). In this case, in the optimal subdivision into boxes,

these new records records are assigned to a wider box, with a wider x1-interval.

Resulting Problem and What We Do in This Paper. Since the optimal inter-
valization goes beyond a simple threshold-based one, it is necessary to extend
algorithms for estimating covariance and correlation to such optimal intervaliza-
tion. Such algorithms are presented in this paper.

2 Analysis of the Problem

First Comment: Computing the Upper Endpoint Cjk Can Be Reduced to Com-
puting the Lower Endpoint Cjk. One can easily check that if we replace each
value rik with its opposite r′ik = −rik, then the covariance Cjk changes sign:
C′

jk = −Cjk. As a result, if we replace each original interval [rik, rik] with its
opposite [−rik,−rik], then the resulting range is the opposite to the original

range: [C ′
jk, C

′
jk] = [−Cjk,−Cjk]. This means, in particular, that C ′

jk = −Cjk

and therefore, that Cjk = −C′
jk.

Thus, if we know how to compute lower endpoints, we can compute the lower
endpoint C′

jk for the modified database, and then compute Cjk as Cjk = −C′
jk.

Because of this reduction, in the following text, we will only consider the
problem of computing the lower endpoint Cjk.

Known Facts from Calculus: Reminder. Each statistical characteristic
C(v1, . . . , vm) is a continuous function of its variables. It is known that the
range of a continuous function on a connected box [v1, v1]× . . .× [vm, vm] is an
interval [C,C] whose endpoints are the smallest possible value C of the function
C(v1, . . . , vm) on the box and its largest value C. It is also known that for each
continuous function on a closed box, its minimum and its maximum are attained
at some points.

When a function C(v1, . . . , vm) attains its minimum on the box at a point
(vmin

1 , . . . , vmin
i , . . . , vmin

m ), this means, in particular, that for every i, the one-

variable function f(vi)
def
= C(vmin

1 , . . . , vmin
i−1 , vi, v

min
i+1 , . . . , v

min
m ) attains its mini-

mum on the interval [vi, vi] at vi = vmin
i .

In general, a function f(x) of one variable attains its minimum on an interval
[x, x] either inside this interval or at one of its endpoints x or x. If the function
f(x) attains its minimum at an inside point, then its derivative at this point is
known to be equal to 0: f ′(xmin) = 0. If f(x) attains its minimum at x, then we
should have f ′(x) ≥ 0 because otherwise, if we had f ′(x) < 0, then, for a small
Δx, we would have f(x̃+Δx) < f(x), which contradicts to our assumption that
the value f(x) is the smallest. Similarly, if the function f(x) attains its minimum
at x, we should have f ′(x) ≤ 0.
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Let Us Apply These Facts to Minimizing Covariance. For covariance, as one can

easily check,
∂Cjk

∂rij
=

1

n
· (rik − Ek) and

∂Cjk

∂rik
=

1

n
· (rij − Ej). Thus, for the

values rmin
ij and rmin

ik at which the minimum of Cjk is attained, we have one of
the three options:

– either rij < rmin
ij < rij and

∂Cjk

∂rij
= 0, i.e., rmin

ik = Ek;

– or rmin
ij = rij and rmin

ik ≥ Ek;

– or rmin
ij = rij and rmin

ik ≤ Ek.

Thus:

– if rmin
ik > Ek, then the first and third cases are impossible, so we must have

rmin
ij = rij ;

– if rmin
ik < Ek, then the first and second cases are impossible, so we must have

rmin
ij = rij .

Therefore, if Ek < rik, then, due to rik ≤ rmin
ik , we get Ek < rmin

ik and therefore,
rmin
ij = rij . Similarly, if rik < Ek, then rmin

ij = rij .

Likewise, if rmin
ij > Ej , then rmin

ik = rik, and if rmin
ij < Ej , then rmin

ik = rik.

So, if Ej < rij , then rmin
ik = rik, and if rij < Ej , then rmin

ik = rik.
Thus, if we know the location of Ej in comparison to the interval [rij , rij ]

and we know the location of Ek in comparison with the interval [rik, rik], then,
with one exception, we can uniquely determine the minimizing values rmin

ij and

rmin
ik . For example, if Ek < rik and Ej < rij , then rmin

ij = rij and rmin
ik = rik. If

Ek < rik and rij ≤ Ej ≤ rij , then rmin
ij = rij ≥ Ej , hence rmin

ik = rik.
The only exception is when Ej ∈ [rij , rij ] and Ek ∈ [rik, rik]. In this case,

minimizing over rij , we have three calculus-motivated options:

– the first option is rmin
ik = Ek;

– the second option is rmin
ij = rij and rmin

ik ≥ Ek;

– the third option is rmin
ij = rij and rmin

ik ≤ Ek.

These conditions describe a set of possible pairs (rmin
ij , rmin

ik ), a set formed by
three line segments.

Similarly, minimizing over rik, we have three other calculus-motivated options:

– the first option is rmin
ij = Ej ;

– the second option is rmin
ik = rik and rmin

ij ≥ Ej ;

– the third option is rmin
ik = rik and rmin

ij ≤ Ej ,

which define a new three-segment set. The actual pair (rmin
ij , rmin

ik ) belongs to
both these sets and thus, belongs to their intersection. This intersection consists
of three points: (rij , rik), (rij , rik), and (Ej , Ek).

Let us show that the minimum cannot be attained at a point (Ej , Ek). Indeed,
let us show that if for some smallΔ �= 0, we replace the value rij = Ej with a new
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value r′ij = Ej +Δ and the value rik = Ek with a new value r′ik = Ek −Δ, then
the covariance will decrease – which shows that the minimum is not attained
when rij = Ej and rik = Ek. To show this, we will use a known equivalent

expression for the covariance Cjk = M − Ej · Ek, where M
def
=

1

n
·

n∑
i=1

rij · rik.
When we replace the values rij and rik with the new values r′ij and r′ik, then

the mean Ej is replaced with E′
j = Ej +

Δ

n
, the mean Ek is replaced with

E′
k = Ek − Δ

n
. The product rij · rik = Ej · Ek is replaced with

(Ej +Δ)(Ek −Δ) = Ej ·Ek −Δ ·Ej +Δ · Ek −Δ2.

Thus, the quantity M is replaced with M ′ = M − 1

n
·Δ ·Ej +

1

n
·Δ ·Ek − 1

n
·Δ2.

Hence, the new expression for the covariance takes the form

C′
jk = M ′−E′

j ·E′
k = M− 1

n
·Δ·Ej+

1

n
·Δ·Ek− 1

n
·Δ2−

(
Ej +

Δ

n

)
·
(
Ek +

Δ

n

)
.

After opening parentheses, we can see that the terms proportional to Δ ·Ej and

Δ·Ek cancel out, so we get C′
jk = Cjk− 1

n
·Δ2+

1

n2
·Δ2 = Cjk−n− 1

n2
·Δ2 < Cjk.

This proves that when the box b contains the point (Ej , Ek), then we have only
two options for the minimizing values of rij and rik.

Towards an Algorithm. In the privacy-protected database, boxes form a subdi-
vision, so for each possible location of the pair (Ej , Ek), there is at most one box
that contains this pair. This box contains several records; let us denote their num-
ber by nb. In the minimizing selection, some of the pairs (rmin

ij , rmin
ik ) are equal

to (rij , rik) and some are equal to (rij , rik). Covariance does not change if we
re-order the records; thus, when computing covariance, we only care about how
many of nb records are equal to (rij , rik); let us denote this number by mb. One
can easily check that M , Ej , and Ek are linear functions of mb; thus, the covari-
ance Cjk = M−Ej ·Ek is a quadratic function ofmb: Cjk = C2 ·m2

b+C1 ·mb+C0,
for known values Ci.

To find the smallest possible value of Cjk, we want to find a value mb =
0, 1, . . . , nb for which this expression is the smallest possible. This can be done
by using the known properties of a quadratic function C2 ·m2

b + C1 ·mb + C0:

– when C2 > 0, it decreases when mb ≤ − C1

2C2
and increases after that;

– when C2 < 0, it increases when mb ≤ − C1

2C2
and decreases after that;

– when C2 = 0, it increases if C1 > 0 and decreases if C1 < 0.

On the interval where this expression is increasing, we take the smallest possible
value of mb; on the interval where this expression is decreasing, we take the
largest possible value of mb.
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Towards an Algorithm: Final Touch. What is important is where the values
Ej and Ek are in comparison with the endpoints of the corresponding inter-
vals [rij , rij ] and [rik, rik]. Thus, to find possible ranges of Ej , we can sort
all the endpoints rij and rij of the xj-intervals of different boxes into an in-
creasing sequence Tj,1 < Tj,2 < . . ., and consider all possible “small boxes”
b = [Tj,ij , Tj,ij+1]× [Tk,ik , Tj,ik+1]. Thus, we arrive at the following algorithm for
computing the lower endpoint Cjk of the range of covariance.

3 Algorithm for Computing Covariance

What Is Given. We are given a finite collection of B boxes ba = [ba1, ba1]× . . .×
[bap, bap], 1 ≤ a ≤ B. These boxes form a subdivision, i.e., no two boxes have
a common interior point. For each of these boxes, we are given the number na

of records corresponding to this box. We are also given the indices j and k for
which we want to find the range of covariance values.

Algorithm. First, we sort all 2B j-endpoints baj and baj of all B boxes into
an increasing sequence Tj,1 < Tj,2 < . . ., and form ≤ 2B “small” j-intervals
[Tj,ij , Tj,ij+1].

Then, we similarly sort all 2B k-endpoints bak and bak of all B boxes into
an increasing sequence Tk,1 < Tk,2 < . . ., and form ≤ 2B “small” k-intervals
[Tk,ik , Tk,ik+1]. After that, we form “small boxes” by considering all possible
pairs b = [Tj,ij , Tj,ij+1] × [Tk,ik , Tj,ik+1] of a small j-interval and a small k-
interval. In our algorithms, we will analyze these small boxes one by one.

Let us now consider computations corresponding to a fixed small box b. As we
have shown, once the small box b = [bj , bj ]× [bk, bk] is fixed, then for almost all
original boxes (except for the original box ba0 that contains b), we can uniquely
determine the minimizing values rmin

ij and rmin
ik :

– if bj ≤ baj and bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if bj ≤ baj and bak ≤ bk ≤ bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if bj ≤ baj and bak ≤ bk, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj and bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj and baj ≤ bk ≤ bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj and bak ≤ bk, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj ≤ bj ≤ baj and bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj ≤ bj ≤ baj and bak ≤ bk, then rmin
ij = baj and rmin

ik = bak.

This way, for each of the boxes ba (a �= a0), we can compute this box’s contri-
butions to the expressions M , Ej , and Ek as, correspondingly,

na

n
· rmin

ij · rmin
ik ,

na

n
· rmin

ij , and
na

n
· rmin

ik .

For the box ba0 = [ba0j , ba0j ]× [ba0k, ba0k], the corresponding contributions take
the form

ma0

n
· ba0j · ba0k +

na0 −ma0

n
· ba0j · ba0k,
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ma0

n
· ba0j +

na0 −ma0

n
· ba0j , and

ma0

n
· ba0k +

na0 −ma0

n
· ba0k,

with an unknown ma0 . By adding the contributions corresponding to different
boxes and forming Cjk = M − Ej · Ek, we get an expression for Cjk which is
quadratic in ma0 . By using techniques described in the previous section, we can
compute the minimum of this expression over all possible integer valuesma0 from
0 to na0 . This minimum Cjk(b) is the smallest possible value of the covariance
under the assumption that the pair (Ej , Ek) belongs to the small box b.

To find the desired value Cjk, we can then compute the smallest of the values
Cjk(b) corresponding to all possible small boxes b.

Computational Time for This Algorithm. Sorting takes time O(B ·log(B)). After
sorting, we get ≤ 2B j-intervals and ≤ 2B k-intervals, so we get O(B2) small
boxes – pairs of such intervals.

In the main part of the algorithm, for each of O(B2) small boxes b and for each
ofB original boxes ba, we need finitely many computational steps. Thus, the total
number of computational steps for the main part is bounded byO(B2)·B·const =
O(B3). The total computation time is thus equal to O(B · log(B))+O(B3), i.e.,
to O(B3). This algorithm requires cubic time and is, therefore, feasible.

Comment. According to [10], in some cases, better estimates for covariance come

from weighted estimates Cw
jk =

n∑
i=1

wi · (rij − Ew
j ) · (rik − Ew

k ), where

Ew
j =

n∑
i=1

wi · rij , Ew
k =

n∑
i=1

wi · rik,

and wi are appropriate weights for which wi ≥ 0 and
n∑

i=1

wi = 1. The weight

wi of a record depends only on the box ba that contains this record. In other
words, for some values Wa, wi = Wa for all the records ri from the box ba. In

these terms, the equality
n∑

i=1

wi = 1 means that
∑
a
na ·Wa = 1. The formula for

Cw
jk can be represented in an equivalent form, as Cw

jk = Mw − Ew
j · Ew

k , where

Mw
jk =

n∑
i=1

wi · rij · rik.
An analysis similar to the one from Section 2 shows that, in effect, the algo-

rithm from Section 3 can be applied for computing the range of this character-
istic as well; the only difference is that after selecting the values rmin

ij and rmin
ik ,

we need to use the weighted expressions Mw, Ew
j , and Ew

k instead of original
equal-weight expressions for M , Ej , and Ek.

4 Algorithms for Computing Correlation

Correlation: Reminder. The Pearson’s correlation coefficient ρ describes the de-
gree of dependence between the inputs: if the coefficient ρ is close to 1 or to −1,
this means that there is a strong dependence; if this coefficient is close to 0, this
means that most probably, there is no dependence.
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Correlation under Interval Uncertainty: Practical Meaning of Lower and Upper
Bounds. Under interval uncertainty, instead of a single value ρ, we get an interval[
ρ, ρ

]
of possible values. For positive values ρ, the upper endpoint ρ describes

to what extent it is possible that there is a dependence between the inputs, while
the lower endpoint ρ describes to what extent, based on the available data, we
can guarantee that there is a dependence. Similarly, for negative values ρ, the
lower endpoint ρ describes to what extent it is possible that there is a dependence
between the inputs, while the upper endpoint ρ describes to what extent, based
on the available data, we can guarantee that there is a dependence.

Which Endpoints Are Most Important for Statistical Databases. As we have men-
tioned, one of the main purposes of statistical databases is to discover possible
new dependencies – dependencies which can then be checked and utilized. From
this viewpoint, the most important endpoints are: the upper endpoint for the
positive correlation, and the lower endpoint for the negative correlation.

Computing Correlation: What Is Known. The relative importance of different
bounds is good news: while in general, computing correlation under interval
uncertainty is NP-hard (see, e.g., [6]), a feasible (i.e., polynomial-time) algorithm
is possible for computing the upper endpoint ρ for positive correlations and the
lower endpoint ρ for negative correlations; see, e.g., [2].

The Known Algorithm Is Rather Slow. This algorithm is polynomial-time: for
inputs consisting of n records, its computation time is bounded by O(n5).

However, from the practical viewpoint, even for a small database with n =
1000 records, this means 1015 arithmetic operations: two weeks on a Gigaflop
machine; for n = 104 records, this already means an unrealistic amount of 1020

operations.

For Statistical Databases with Privacy-Motivated Boxes, the Known Algorithm
Can Be Made Somewhat Faster. In the algorithm from [2], we consider possible
quadruples (pairs of pairs) of vertices. In the privacy-motivated case, we have
≤ 4B vertices, where B is the number of different boxes. Thus, the total number
of quadruples of vertices is O(B4).

According to [2], once the quadruple is fixed, then, within each box ba, we
select the same optimizing values rmax

ij and rmax
ik (or rmin

ij and rmin
ik ) for all the

records from this box. Thus, once the quadruple is fixed, we need to perform only
finitely many computations within each box – and then, as we did for covariance,
multiply the results by na. For each ofO(B4) quadruples, we therefore need O(B)
computational steps, to the total of O(B4) ·O(B) = O(B5).

This number of steps is still large, but since the number of boxes is much
smaller than the number of records, this number of steps is much smaller than
O(n5) – and thus, more realistic.
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4. Kreinovich, V., Longpré, L., Starks, S.A., Xiang, G., Beck, J., Kandathi, R., Nayak,
A., Ferson, S., Hajagos, J.: Interval Versions of Statistical Techniques, with Ap-
plications to Environmental Analysis, Bioinformatics, and Privacy in Statistical
Databases. Journal of Computational and Applied Mathematics 199(2), 418–423
(2007)

5. Kreinovich, V., Xiang, G., Starks, S.A., Longpré, L., Ceberio, M., Araiza, R., Beck,
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Abstract. Process interruptions are carried out either automatically by
monitoring and control systems that react to deviations from standards
or by operators reacting to anomalies or incidents. Process interruptions
in (very) large production systems are difficult to trace and to deal with;
an extended stop is also very costly and solutions are sought to find
an effective support technology to minimize the number of involuntary
process interruptions. Feature selection is intended to reduce the com-
plexity of handling the interactions of numerous factors in large process
systems and to help find the best ways to handle process interruptions.
We show that feature selection can be carried out with fuzzy entropy
and interval-valued fuzzy sets.

1 Introduction

In the modern process industry we typically have to deal with very large and
very complex systems that should be operated at close to maximum capacity
most of the time with as few interruptions as possible. In this way the return
on assets (ROA) can be kept at levels that will give sustainable competitive
advantages for the company running the process(es).

Interruptions are made by monitoring and control systems that react to devi-
ations from predefined standard settings or by operators reacting to anomalies
or to incidents that deviate from process operations that are considered normal.
The incidents that cause interruptions by monitoring and control systems are
easily identified (at least in an initial round) as they are deviations from preset
standards but the incidents to which operators react can be more challenging
(also if the initial diagnostics of the monitoring and control systems turn out
to be false). The more demanding incidents require an intelligent or smart di-
agnostics process to find out what is taking place, when it got started, how the
incident has happened and how it will work out to what consequences. This then
typically initiates reasoning and decision processes to work out (i) what should
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be done, (ii) when and (iii) how it should be done. Quite frequently we want
this to be done in some optimal ways.

In the process industry this needs to happen in almost real time as we do
not want many interruptions, and if they happen they should be as short as
possible. We work on building ontology of the imprecise as a platform for han-
dling incidents for the process industry when diagnostics should be fast and
sufficiently correct; this is part of a research program called D2I (Data to Intelli-
gence) funded by the process industry and Tekes (The Finnish Funding Agency
for Technology and Innovation).

The cases we are considering are characterized as “big data”, i.e. there is a
very large set of documents that cover the incidents and what decisions were
made and what the outcomes were (actually - how good the decisions were).

In our work with the process industry we found that it makes sense to first
work out the core logic of the activities and events that create the incidents; this
will reduce the complexity of the problem and in many cases also the dimension-
ality of the data sets. Second, carry out a feature selection to find the variables
that will contribute to the problem solving; then use, for instance, principal com-
ponent analysis to find the variables that contribute to the data volume but not
to the problem solving (if some variables show up in both phases the analysis
needs some further steps).

The purpose of feature selection is to reduce the number of input variables
(features) describing the logic of the incidents. By selecting an appropriate set of
features and excluding the ones that are irrelevant the problem solving process
can be improved not only in terms of computational complexity but also in terms
of the interpretability of the methods.

The feature selection set is used to identify similar incident cases that can
be used in case-based reasoning implementations to significantly speed up the
problem-solving processes. In this paper we will focus on the feature selection
and work out how to do it with fuzzy entropy and interval-valued fuzzy sets.

The paper is structured as follows: in section 2 preliminary definitions of
entropy and interval-valued fuzzy sets are given; section 3 shows the feature
selection method which is illustrated with an example in section 4; conclusions
are given and future research is outlined in section 5.

2 Preliminaries

In order to present the feature selection method, we will present the necessary
definitions concerning fuzzy entropy, type-2 fuzzy sets and feature selection.

2.1 Fuzzy Entropy

In [12], Zadeh defined for the first time a fuzzy entropy on a fuzzy set A for
a finite set X = {x1, x2, ..., xn} with respect to a probability distribution P =
{p1, p2, ..., pn} as

H(X) = −
n∑

i=1

μA(xi)p(xi) log p(xi),
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where μA is the membership function of the fuzzy set A. A fuzzy set A of X
is characterized by its membership function μA : X → [0, 1] where μA(x) is
interpreted as the degree of membership of element x in fuzzy set A for each
x ∈ X . If the membership value in the fuzzy entropy takes the form

μA(x) =

{
1, if x ∈ X
0, otherwise

then we obtain the definition of entropy introduced by Shannon [9].
Since the first proposal, many different approaches were proposed to quantify

the “fuzziness” of a fuzzy set using entropy measures. Although there are many
different definitions, the common basis for a well-defined entropy measure (since
the proposal of Kosko [5]) is the four De Luca-Termini axioms [3]. They include
the following:

1. H(A) = 0 if and only if A ∈ X is a crisp set.
2. H(A) = 1 if and only if μA(xi) = 0.5 for every i.
3. H(A) ≤ H(B) if A is less fuzzy than B, i.e., if μA(x) ≤ μB(x) when μB(x) ≤

0.5 and μA(x) ≥ μB(x) when μB(x) ≥ 0.5.
4. H(A) = H(AC) where AC = 1−A denotes the complement of A.

Different definitions of fuzzy entropy include:

– De Luca and Termini [3]

HLT (A) = −
n∑

i=1

[μA(xi) log(μA(xi)) + (1− μA(xi)) log(1− μA(xi))]

– Kosko [5]

HK(A) =

∑n
i=1 min(μA(xi), μAC (xi))∑n
i=1 max(μA(xi), μAC (xi))

Fuzzy entropy has been applied successfully in different decision making prob-
lems [13] and image processing [1]. One of the most important applications of
fuzzy entropy is feature selection as a basis for classification and segmentation.
Lee et al. [6] employ fuzzy entropy measure to partition the feature space into
decision regions and to select relevant features with good separability for the clas-
sification task. Pasi [8] combines similarity-based classification procedure with
feature selection process based on fuzzy entropy and obtains satisfactory results
with a smaller number of selected features than previous studies. In this pa-
per we will follow the approach proposed by Shie and Chen [10], and extend
the proposal by incorporating interval-valued fuzzy sets and fuzzy entropy of
interval-valued fuzzy sets in the feature selection process. In the following we
recall the main concepts from [10].

Let X be a universal set with n elements distributed in a pattern space:
X = {x1, x2, ..., xn} . Let A be a fuzzy set defined on an interval of pattern
space which contains k elements. The mapped membership degree of the element
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xi with the fuzzy set A is μA(xi). The n elements are divided into m classes:
C1, C2, ..., Cm. The match degree Dj with the fuzzy set A for the elements of
the class Cj on an interval is defined as

Dj =

∑
xi∈Cj

μA(xi)∑
xi∈X μA(xi)

.

The fuzzy entropy Hj(A) of the elements of class Cj in an interval is defined as

Hj(A) = −Dj logDj .

The fuzzy entropy H(A) on the universal set X for the elements within an
interval is defined as

H(A) =

m∑
j=1

Hj(A).

2.2 Type-2 Fuzzy Sets

A fuzzy number A is a fuzzy set in R with a normal, fuzzy convex and contin-
uous membership function of bounded support. The family of fuzzy numbers is
denoted by F . Fuzzy numbers can be considered as possibility distributions.

Definition 1 ([4]). An interval-valued fuzzy set A defined on X is given by

A =
{
(x, [μL

A(x), μ
U
A(x)])

}
, x ∈ X,

where μL
A(x), μ

U
A(x) : X → [0, 1]; ∀x ∈ X,μL

A(x) ≤ μU
A(x), and the ordinary fuzzy

sets μL
A(x) and μU

A(x) are called lower fuzzy set and upper fuzzy set about A,
respectively.

The most used types of fuzzy sets in different applications are triangular
and trapezoidal fuzzy numbers. The membership function of a triangular fuzzy
number A can be written as,

A(x) =

⎧⎪⎪⎨⎪⎪⎩
1− a− x

α
if a− α ≤ x ≤ a

1− x− a

β
if a ≤ x ≤ a+ β

0 otherwise

and we use the notation A = (a, α, β). An interval-valued fuzzy set A = (AU , AL)
of triangular form can be represented by six parameters A = (a, α1, β1, α2, β2)
where AL = (a, α1, β1) stands for its lower fuzzy number and AU = (a, α2, β2)
denotes its upper fuzzy number.

It is important to mention, that there exist different definitions of entropy for
Type-2 fuzzy sets, in this paper we will consider the one introduced by Szmidt
and Kacprzyk [11]:

HSK(A) =
1

n

n∑
i=1

1−max(1− μU
A(xi), μ

L
A(xi))

1−min(1− μU
A(xi), μL

A(xi))
.
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3 Feature Selection with Interval-Valued Fuzzy Sets

The first step in employing entropy for feature subset selection is to define the
optimal number of intervals (classes) and the corresponding membership func-
tions for every dimension. The fuzzy entropy of a feature decreases when the
number of intervals increases. Too many clusters can result in over-fitting prob-
lem and reduce the classification accuracy rates. For every feature in the model,
on way to determine the optimal number of fuzzy sets to describe the variable
is to perform cluster analysis on the feature values, determine the cluster cen-
ters and create the membership functions. After calculating the fuzzy entropy
of each fuzzy set Ai of the feature Fj the fuzzy entropy of the feature itself, if
the entropy of a new clustering is not improved above the predefined threshold
value, we can choose the lastly created clustering as the final one.

If we have l number of features and 1 outcome variable (with m classes), the
universal set is a subset of Rl+1. For the final number of fuzzy subsets for Fj

we will use the notation kj . The upper fuzzy membership values for Fj can be
defined in the following way:

– For the left-most cluster center, c1:

AU
1 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5 +

0.5(x− xmin)

c1 − xmin
, if xmin ≤ x ≤ c1

c2 − x

c2 − c1
, if c1 ≤ x ≤ c2

0, otherwise

– For the right-most cluster center, ckj :

AU
kj
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x− ck−1

ck − ck−1
, if ckj−1 ≤ x ≤ ckj

0.5 +
0.5(xmax − x)

xmax − ck
, if ckj ≤ x ≤ xmax

0, otherwise

– For an internal cluster center, ci: A
U = (ci, ci − ci−1, ci+1 − ci)

The lower fuzzy numbers can be defined in a similar way with the center the
same as the center of the corresponding upper fuzzy number and the support is
contained in the support of the upper fuzzy number.

To improve the model presented in [10], we propose two different solutions to
incorporate interval-valued fuzzy sets. A straightforward extension is to define
the upper and lower match degrees in the following way:

DU
j =

∑
xi∈Cj

μAU (xi)∑
xi∈X μAU (xi)

, DL
j =

∑
xi∈Cj

μAL(xi)∑
xi∈X μAL(xi)

.

The overall match degree can be calculated as the function of the upper and lower
match degrees (in the simplest case as linear combination), and the entropy is
calculated using this overall match degree, Dj as

Hj(A) = −Dj logDj .
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A different modification of the original model is to use a fuzzy entropy de-
fined for interval-valued fuzzy sets. In this paper, we use the one proposed by
Szmidt and Kacprzyk [11]. According to this measure, the match degree can be
calculated as

Dj =
n∑

i=1

1−max(1 − μU
A(xi), μ

L
A(xi))

1−min(1 − μU
A(xi), μL

A(xi))
.

The fuzzy entropy then calculated as the sum of the fuzzy entropy of the kj
interval-valued fuzzy sets describing a feature:

H(A) =
m∑
j=1

Hj(A).

As a result of choosing the optimal number of fuzzy subsets for every feature,
we will also obtain the overall entropy of the features with respect to the outcome
variable. The feature with the optimal entropy value will be selected as the
best describing variable of the model and used in the consequent steps. In the
algorithm, in every step one new feature is added to the set of selected features:
the choice is determined by calculating the joint entropy of a subset of features
with respect to the outcome variable. In the following we describe how the joint
entropy is calculated when choosing the second feature.

Let us suppose that F1 was chosen as the best feature. For every h = 2, ..., l,
we need to calculate the entropy of the pair (A1

s, A
h
t ), s = 1, ..., k1, t = 1, ..., kh in

the following way. First we need to calculate the match degree: both proposed
methods can be applied. According to the first one, we calculate the upper and
lower match degrees as

D
U1,h

j (s, t) =

∑
xl+1
i ∈Cj

max(μ
A

U1
s
(x1

i ), μA
Uh
t

(xh
i ))∑

xi∈X max(μ
A

U1
s
(x1

i ), μA
Uh
t

(xh
i ))

,

D
L1,h

j (s, t) =

∑
xl+1
i ∈Cj

max(μ
A

L1
s
(x1

i ), μA
Lh
t

(xh
i ))∑

xi∈X max(μ
A

L1
s
(x1

i ), μA
Lh
t

(xh
i ))

.

The overall match degree can be calculated as the linear combination of the
upper and lower match degrees. According to the second approach, we calculate
the match degree as

D1,h
j (s, t) =

n∑

i=1

min

{
1−max(1− µ

A
U1
s

(xi), µ
A

L1
s

(xi)), 1−max(1− µ
A

Uh
t

(xi), µ
A

Lh
t

(xi))

}

max

{
1−max(1 − µ

A
U1
s

(xi), µ
A

L1
s

(xi)), 1−max(1− µ
A

Uh
t

(xi), µ
A

Lh
t

(xi))

} .

The entropy of the pair (A1
s, A

h
t ) is

H(A1
s, A

h
t ) =

m∑
j=1

−D1,h
j (s, t) logD1,h

j (s, t),



IVFN in Feature Selection 389

and finally the overall entropy

H(F1, Fh) =

k1∑
s=1

kh∑
t=1

H(A1
s, A

h
t ).

At the end of this step, the feature pair with the optimal entropy will be
selected as the best describing pair. If the improvement in the entropy is above a
given threshold, we continue the algorithm by fixing the best pair and calculate
the joint entropy with all the remaining features one by one.

4 Illustrative Example

To illustrate the feature selection method with interval-valued fuzzy entropy, we
will use the data set from [2]. The data set contains the description of 4898 wines
in terms of 11 different properties (acidity, pH level, alcohol etc). The outcome
variable is the quality of wine measured on a discrete scale between 1 and 10.
We used MATLAB software [7] for the implementation of the feature selection
algorithm. In this example we focus on reducing the number of variables in a
model, not on the classification of the wines.

Table 1 compares the features that were selected as the best variables based
on 3 different approaches: by using fuzzy entropy and by using the two different
approaches described in this paper based on the entropy of interval-valued fuzzy
sets. As we can see from the table, Alcohol is always chosen as the best feature
as it minimizes the entropy in all 3 methods. The original fuzzy entropy method
and the extension with type-2 fuzzy sets result in the same subset of features,
the difference is that by using a threshold value, according to the original fuzzy
entropy all three features would be selected while based on interval-valued fuzzy
sets, Alcohol and Chlorides provide sufficient information, there is no significant
improvement by selecting also CitAcid. Using the upper and lower match degrees,
we obtained different set of features in the second and third steps: Density and
VolAcid.

Table 1. Comparison of the results of the different approaches

Step Fuzzy entropy Upper and lower match degrees Type-2 entropy

1 Alcohol Alcohol Alcohol

2 Chlorides Density Chlorides

3 CitAcid VolAcid CitAcid

5 Conclusions and Future Research

In this paper, we presented an algorithm for feature selection employing interval-
valued fuzzy sets and fuzzy entropy. The membership functions on the fuzzy sets
are defined individually for every variable by creating a partition of the observa-
tion with minimal fuzzy entropy. The selection of the features is performed by
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increasing the selected subset with the feature that minimizes the joint entropy
with respect to an output variable. In future research, the main application of
the algorithm will be the identification of similar cases in an event database in
case of an incident. Using the presented method, the number of variables to be
considered can be significantly reduced while minimizing the information loss,
and the identified features can be used to find similar cases and consequently
to identify the possible causes of an incident. In future research we will test the
classification performance of the algorithm by comparing the performance with
type-1 fuzzy entropy measures.

Acknowledgments. This research has been funded through the TEKES strate-
gic research project Data to Intelligence [D2I], project number: 340/12.
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Abstract. By their widespread application, engineering virtual spaces together 
with computation methods play key role in product information management in 
order to assist product definition and the relevant decisions. Research in order 
to include hard and soft computing methods in well organized product model of 
increasing intelligence is a main objective of product model development ef-
forts. This paper is a contribution to these efforts by a possible method for in-
cluding a higher level knowledge based modeling as extension to the currently 
applied product models. After an introduction of relevant characteristics of en-
gineering problem solving, role of soft computing is discussed. Following this, 
extending of knowledge integration in product model by the proposed method is 
explained and new features for the extended product model are introduced. Fi-
nally, the proposed new context structure is outlined and its implementation in 
product lifecycle management (PLM) systems is conceptualized. 

1 Introduction 

During the past decades, vast methodology has been developed for the support of 
engineering activities during lifecycle of products. In order to achieve consistent  
solutions, integrated product models are applied by extensive utilization of novel 
approaches such as feature principle, context based definition of features, and  
representation of corporate knowledge in product model. 

By now, feature principle is applied for all engineering objects in a product model 
for PLM. Feature modifies product model in a well defined way. Its position and ac-
tivity can be changed in the product model. Some parameters of a feature are defined 
in the context some of the other features while some of the other features are defined 
in the context of given parameters of this feature. 

Knowledge representation in current product models is not suitable for real con-
nection of human request with model feature generation process. In order to achieve 
better connection, the current knowledge representation capabilities must be extended. 
Some engineering activities need hard, while others need soft computing based prob-
lem solving for numerical analysis and imprecise approximation, respectively. The 
two needs may encounter in the same product definition process. Inadequate know-
ledge representation limits the application of hard and soft computing methods. 
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The Laboratory of Intelligent Engineering System (LIES) which is the laboratory 
of the Institute of Applied Mathematics, John von Neumann Faculty of Informatics, 
Óbuda University does fundamental and applied researches in new ideas and methods 
for representative leading product lifecycle management (PLM). As one of the results, 
a new integration of knowledge in product model is proposed to improve communica-
tion of human request with product feature generation processes in this paper. 

Integration of engineering information in product model started with the standard 
ISO 10303 by International Organization for Standardization (ISO) during eighties 
and nineties. Current advanced engineering practice is concentrated in Product Life-
cycle Management (PLM) systems. This demands new considerations at product 
modeling. Main research issue in product model is bridging the gap between human 
and feature object generation processes. Soft computing is anticipated to have key 
role in this work in the future. 

In this paper, considering the need for the above integration, a method is intro-
duced for contextual representation of human request, product behavior, and problem 
solving knowledge in product model with particular attention to the integration and 
utilization of the strength of the soft computing. An introduction to relevant characte-
ristics of engineering problem solving is followed by a discussion on role of soft 
computing. As the main contribution, extending of knowledge integration in product 
model is explained including new product model features for this purpose. The last 
sector of the paper proposes a new context structure and concept of implementation in 
PLM systems in close connection with this structure. 

2 Management of Product Information in Increasingly 
Intelligent PLM Systems 

Situation driven definition of product features has become a critical issue in PLM 
systems. In order to achieve this, self modification capability of product model must 
be developed for the case of changed circumstances. Active knowledge in product 
model initiates propagation of these changes in the product model along contextual 
chains of product features. 

A simplified schema of main elements and their connections in a PLM system an-
swers the question that what are purposes and functions of a PLM system (Fig. 1). 
Communication of engineers with the PLM system is done through engineer commu-
nity management. Engineers access PLM system using this functionality. Product 
definition and simulation process management organizes PLM activities and places 
process definition features in the product model. Engineers access modeling proce-
dures through this functionality. Capture management and production equipment 
definition and control management is a connection with the production world. Product 
structure and data management handles PLM Model of product. 

Product and related knowledge definition management is highlighted in Fig.1 be-
cause this is the area of research where some recent results are reported in this paper. 
Human interactions are done for direct product feature definitions and knowledge 
definitions. Knowledge features in the product model and the PLM system are applied 



 Computing Intensive Definition of Products 393 

 

for adaptive drive of product feature generation. This is the indirect way of product 
feature definition. The purpose of the proposed modeling is contributing to the devel-
opment of a more automated and intelligent way of indirect product model feature 
definition in advanced PLM modeling systems. 

 

Fig. 1. Product definition in the course of product modeling 
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3 Engineering Problem Solving and Role of Soft Computing 

Lotfi A. Zadeh who is recognized as father of Fuzzy, summarized soft computing in 
[1] as a set of methodologies that exploits the tolerance for imprecision and uncertain-
ty. Key methodologies include fuzzy logic, neuro-computing, and probabilistic rea-
soning. The awaited results are tractability, robustness, and low cost at solutions. 
Inevitable, soft computing must have key importance in engineering problem solving. 
While soft computing has gained key role in product control processes in the form  
of embedded intelligence, product model based engineering problem solving in  
industrial PLM systems still can not utilize its strength. The door is open for new 
research results because advanced PLM systems can accept new object and procedure 
definitions for this purpose at their open surfaces. 

 

Fig. 2. Product definition in the course of product modeling 

Paper [2] discusses the question how soft computing capabilities can serve engi-
neering outcomes by the applications of fuzzy logic, genetic algorithms, and neural 
networks. The modeling extension explained below gives a possible answer by the 
definition of the outcomes in product model and the method to fulfill of outcomes in 
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the course of product definition. Among others, it relies upon the recognition that the 
product development must be supported by definition of product functions in the 
product model. A functional and physical representation is proposed in [3] for a better 
support of conceptual design than in the conventional physical and geometric repre-
sentation based product modeling is possible. This concept is important towards better 
recognition of the non-geometrical characteristics of product. Authors of [4] recog-
nize that conceptual design is only partially covered in PLM systems. A discontinuity 
can be experienced in the customer and functional requirements, product characteris-
tics, and product design parameters information flow. Integration of quality function 
deployment, failure mode and effects analysis, and axiomatic design are proposed. 
While this can be a right way, experiences tell that much more contexts should be 
defined in order to achieve consistent model and modeling process. 

Analyzing representative product definition in current industrial practice, main 
functions and system elements were concluded (Fig. 2) providing starting point for 
the work in this paper. Engineers communicate with model based product definition 
processes using suitable implementation of human computer interaction (HCI) me-
thods. They can do required development of modeling by using of application pro-
gramming interface (API) or other surfaces for this purpose. Product definition 
processes serve engineering problem solving for development and application of 
product. Engineering problem solving first defines product outcomes. Using product 
outcomes, product functions and specifications are defined then used at the definition 
of known product objects. An object is available in the applied PLM product or it 
must be defined in application or third party environment by using of API or purpose-
ful communication surfaces. The answer to the question that how can this model be 
realized in the current advanced industrial product modeling tells the subsequent 
needs for research in product modeling. The role of fuzzy logic, genetic algorithm, 
and artificial neural network in subsequent research is inevitable. 

As it is discussed in [5], Fuzzy logic should be considered as a useful tool at deci-
sion making. In engineering, human assessment includes subjectivity which cannot be 
expressed by numeric values. In [5], fuzzy logic is applied to handle linguistic terms. 
Fuzzy membership functions are used to convert linguistically expressed preferences 
into fuzzy numbers. This allows for application of Fuzzy operators. 

A well known role of genetic algorithms in engineering is development of results 
by replacing a population representing an engineering result with a new generation. 
As an example for the application of genetic algorithm, multi-stage reverse logistics 
network problem is solved in [6] by using of weight mapping crossover which in-
cludes priority-based encoding method and a new crossover operator. Artificial neural 
network is mainly useful in learning of knowledge. Although current product model-
ing systems have tools to accept soft computing methods, lack of product level inte-
gration of problem solving does not allow for organized and coordinated application 
of soft computing. 
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4 Extended Integration of Knowledge in Product Model 

The development of PLM systems proceeded the way of including knowledge in full 
feature and active context driven product model during the past decade. The word 
active means that including or modification of a knowledge entity automatically 
changes any other entity in the product model any parameter of which is in 
represented contextual connection with parameters of the changed entity. Because 
professional PLM systems are undergone quick development, correct connection of 
the proposed extended knowledge integration demands the definition of the concept 
currently prevailing modeling (CPM) in Fig. 3. 

 

Fig. 3. Current product definition 

Product definition process and product model entities for the case of CPM are in-
troduced in Fig. 3. During the reported work, it was recognized that this model has 
not representation for the product function driven organization of knowledge. In order 
to replace the missing organization, more connections are needed in the engineering 
problem solving than in Fig 2. Because product outcome representation is not availa-
ble in the product model to drive definition of product functions and specifications, 
engineer makes direct definition. Nevertheless, procedures may be available for this 
purpose under the supervision of engineering problem solving. Product functions are 
directly defined by engineer and they are included in the product model only in a 
structure where they connect product features. At the same time, substantial local area 
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analyses are available in advanced CMP products. Specifications are placed in know-
ledge features and local area simulation features. Product objects are represented as 
product features and are defined by using of knowledge and local area simulation 
features. Role of direct utilization of specifications by engineers during product object 
definition is still covers large percentage of decisions. This situation results product 
model which has not capability for a reveal of the applied way to decision. At the 
same time, thousands of product model modification interactions would require origi-
nal intent and method of decisions to be changed during lifecycle of a product. 

 

Fig. 4. High level product definition 

The method which is proposed as a contribution to improving CPM modeling by 
enhancing its representation capabilities is called as high level product definition 
process (Fig. 4) in this paper. High level refers to level of decisions by using of higher 
level product definition knowledge in the product model. One of the new product 
features for this purpose must be defined for the representation of the outcome speci-
fication. In the proposed modeling, this feature has parameters in order to define con-
textual connections for quality specification, product function, product objects, and 
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generation method features. Moreover, outcomes are in contextual connection within 
the product model in order to gain survey on engineering problem solving for engi-
neers in this level. 

Concept of function is considered as it was introduced in [7]. Knowledge is inte-
grated by parameters of generation method features. Product object is represented 
here only for its fitting to a contextual structure and refers to the relevant product 
feature in the CPM. The new high level product model features are representations for 
product definition requests, product object contexts, and product behavior and action 
features. High level product model entities are defined as product definition request 
features, product object contexts, and product behavior and action features in order to 
represent engineer intent, organized contextual connections of product objects, and 
product behaviors, respectively (Fig. 5). Actions on the current product model entities 
are organized to behavior definitions so that behavior controls product object defini-
tion. Main contextual connections of the high level product model entities are visua-
lized in Fig. 5. 

Product definition request is controlled by product function. Although quality spe-
cification is associated with product function, quality is defined by human for func-
tion it is not in contextual connection with product function in Fig. 5. However, PLM 
systems offer free definition of contexts so that the above connections can be changed 
depending on product type or human intent. Knowledge for the generation of product 
objects and their contextual connections can be included in the generation method. A 
traceable and identified way to solution is to be recorded. Product objects as features 
can be defined directly or they are selected for product function or quality specifica-
tion already defined. 

Product object contexts are defined in order to complete the current product model 
(CPM) entities by organized contextual connections for better survey able product 
model. One of the possible contextual structures of the product object context related 
features is shown in Fig. 5. Product features and context features are created in the 
context of context structure and parameter features. At the same time, product fea-
tures are defined in the context of context features along contextual chains. 

Product behavior feature is connected with other connecting behavior features in 
order to gain a contextual integration of behaviors those are defined for a product. 
Behavior is defined by situation and circumstances as it is usual in situation driven 
modeling mainly in automation. In other to achieve this, situation and circumstances 
are defined in the context of behavior. In an extended behavior definition, circums-
tance sets are mapped to situation variants. A circumstance set represents all informa-
tion needed by the definition of the relevant feature definition actions in order to  
generate actions needed by the control of product object definition to fulfill behavior. 
Product object definition requirements are transferred by feature definition actions to 
the current product model entity generation processes. Product definition request fea-
tures, product object contexts, and product behavior and action features include  
features some of them are in contextual connections. Context structure is driven by 
product features as they are mapped in the contextual groups of product definition 
request features. At the same time, product is defined in the context of product func-
tion using other features in the contextual group of product definition request features. 
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The proposed method applies knowledge feature representations those are availa-
ble in PLM systems for modeling of experience and expertise as active features. Situ-
ation driven active product feature parameter definition is done by rules and rule sets. 
Rules can refer to any mathematical formula. For the purpose of connection parame-
ters of product features, definition of arbitrary parameter is available. Event based 
product feature definition is available, for example, for making a feature active or 
inactive. The proposed modeling can be connected with the knowledge definition in 
CPM. At the same time, higher level object definition processes can be integrated in 
product model in this way. 

 

Fig. 5. High level product model entities 
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5 Context Structure and Implementation in PLM systems 

Product behavior [8] is in the centre of the proposed modeling in order to connect 
outcome specification and product object generation. Previous decisions are consi-
dered as circumstances for situation. Behavior includes actions for product definition 
requests. Action includes knowledge and specifications for the product object genera-
tion. Conventional specifications are embedded as active knowledge in the CPM and 
are applied for driving product objects as it was introduced in [9]. 

The currently prevailing product modeling methods ensure free definition of fea-
tures, feature parameters, and contexts in accordance with the actual engineering task 
and the decisions of engineers involved in that task. Application of context definitions 
in the proposed modeling extension is explained in Fig. 6. Product function PF feature 
has parameters P1PF-Pn PF. Parameter PiPF is the product object PO feature. When 
engineer defines the feature PF, first creates or selects the PO feature. When this se-
lection is included in the model, it is defined as context C. Context C refers to rele-
vant method for the selection. In this way, feature generation methods are included in 
organized system of context definitions. C is a context definition for extension fea-
ture. The organized system of contexts is connected to CPM modeling and serves the 
generation of product features and relationships amongst them. 

 

Fig. 6. Contextual connection definition in product model 

Generation methods carry knowledge for the selection of features and definition of 
their parameters. Parameters of a generation method include product objects and their 
parameters, generation program consisting of contextual steps, steps, and elements for 
steps stored in the pool of elements. In example of Fig. 6, generation method GMHLC 
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serves selection of product object PO for product function PF, while generation me-
thod GMPO defines relationships for given parameters of product objects PO, POX, 
and POY. Context is defined according to knowledge to be represented such as numer-
ical methods, fuzzy logic, neural networks, etc. (Fig. 6). 

As it is obvious from this paper, the proposed modeling supposes implementation 
in advanced PLM system environment. The classical solution is application pro-
gramming interface (API) which ensures access to CPM objects in the current product 
modeling systems in order to define new objects and model object handling proce-
dures. Recent systems are developed towards offering dedicated communication sur-
faces similar to those applied at model construction. 

The proposed modeling has been gained more importance by the development of 
PLM modeling towards human definition of product function and behavior. The pro-
posed method offers new possibility for the content based connection of product ob-
ject generation and product function and behavior request. 

Future research will reveal characteristics of the new extension features, their pa-
rameters, and the relevant contextual connections. The next task will be integration of 
knowledge in contexts as representation of product object generation methods. The 
main objective is integration of deeper knowledge in contextual connections in the 
form of soft computing procedures in order to enhance intelligence of self adaptive 
product definition. 

6 Conclusions 

Knowledge representation capabilities in current product models must be extended 
because they are not suitable for real connection of human request with model feature 
generation process. This is outstandingly true for the connection of function, specifi-
cation, and generation requests with the more analyzable behavior in order to intelli-
gent automation of product object definition. The proposed method is a contribution 
to efforts in application of organically integrated knowledge instead of the closed and 
separated knowledge based procedures. 

For the above purpose, a new integration of knowledge in product model is pro-
posed in this paper. This integration is aimed to establish a new request driven prod-
uct feature generation in close communication with current product model features 
serving as extension to the well proven CPM product modeling in PLM systems. In 
the extension, product model representation is solved for engineering outcome speci-
fication. This representation is used to define behavior with circumstance defined 
situation. Behavior drives actions for the definition of product and conventional speci-
fication features in order to generate CPM product model features. The main contex-
tual chain in the proposed modeling extension includes product definition request, 
product object context, and product behavior and action features. This chain estab-
lishes connection between specification supported model object requests, organized 
definitions of feature related contextual definitions and product object driving enable 
definition and application of product behaviors. 
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Abstract. This contribution presents an infinite-horizon optimal track-
ing controller for nonlinear systems based on the state-dependent Riccati
equation approach. The synthesized control law comes from solving the
Hamilton-Jacobi-Bellman equation for state-dependent coefficient fac-
torized (SDCF) nonlinear systems. The proposed controller minimizes a
quadratic performance index, whose entries are determined by the parti-
cle swarm optimization (PSO) algorithm in order to improve the perfor-
mance of the control system by fulfilling with design specifications such
as bound of the control input expenditure, steady-state tracking error
and rise time. The effectiveness of the proposed PSO optimal tracking
controller is applied via simulation to the Van der Pol Oscillator.

1 Introduction

The optimal control approach has the aim of achieving an adequate performance
of a control system by minimizing a meaningful cost functional, which can be
established to evaluate the response of the state variables and the control input
expenditure. A solution to the optimal control problem is obtained by solving the
associated HamiltonJacobiBellman (HJB) equation, whose solution in general
is rather complicated for nonlinear systems [1, 2], but if this solution exists,
the control law results in an state feedback controller, which generates optimal
trajectories from every initial condition [1, 4]. Indeed, in [1, 3, 5], optimal control
theory is introduced as a synthesis tool to guarantee stability margins, which are
basic robustness properties that a control system must possess. Moreover, the
optimal control solution based on the HJB equation is more suitable for feedback
design over infinite-time intervals [1, 5].
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Recently, an optimal control scheme for state-dependent coefficient factorized
nonlinear systems have been proposed based on the State-Dependent Riccati
Equation (SDRE) approach [6–9]. The SDRE strategy have emerged as appro-
priate methodology to obtain nonlinear optimal controllers, observers and filters
[10]. Different successful simulations, experimental and practical applications of
SDRE control have demonstrated the effectiveness of the control methodology.
This control approach provides an effective algorithm for synthesizing nonlin-
ear feedback controllers. In essence, the SDRE technique is a systematic way for
synthesizing nonlinear feedback controllers, which mimic the controller synthesis
as done for the linear case.

It is worth pointing out that the cost functional in the optimal control scheme
depends on parameters which are usually selected by a trial-and-error procedure
such that an adequate performance of the system is achieved. However, this pro-
cedure can take several iterations until the desired performance is obtained. This
fact motivates to develop a mechanism (using PSO) such that the parameters of
the cost functional are determined in an optimized way.

Additionally, although there exist many important results on optimal control
based on the SDRE to achieve stabilization for nonlinear systems, the optimal
tracking for nonlinear systems have been seldom analyzed, in spite of that for
different control applications, it is required that the output of the system tracks
a desired trajectory.

This paper proposes an optimal tracking control scheme for state-dependent
coefficient factorized nonlinear systems, based on the HJB equation solution,
which results in the solution of the SDRE. A parameters-dependent cost func-
tional is minimized by the optimal controller, which achieves trajectory tracking
to a desired reference for the controlled variables. As a contribution of this paper,
the parameters for the cost functional are determined through a PSO algorithm
in order to improve the performance of the control scheme. The proposed fitness
function to be optimized considers the tracking error, the control input expen-
diture and the rise time of the controlled variables. A simulation illustrates the
applicability of the proposed PSO optimal tracking control scheme.

2 Optimal Control for Nonlinear Systems

This section describes the solution to the optimal tracking control for nonlinear
systems, which can be presented as a state dependent coefficient factorization.
Also, concepts on controllability and observability for this class of nonlinear
systems is discussed.

2.1 State-Dependent Coefficient Factorized Nonlinear Systems

Let us consider the nonlinear system

ẋ = f(x) +B(x)u, x(t0) = x0 (1)

y = h(x) (2)
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where x ∈ R
n is the state vector, u ∈ R

m is the control input and y ∈ R
p

is the system output; the functions f(x), B(x) and h(x) are smooth maps of
appropriate dimensions, with f(0) = 0 and h(0) = 0.

Consider that function f(x) in (1) and h(x) in (2) can be transformed in the
SDCF representation as f(x) = A(x)x and h(x) = C(x)x, respectively [11, 12],
then system (1)-(2) results in

ẋ = A(x)x +B(x)u (3)

y = C(x)x. (4)

In order to obtain well-defined optimal control schemes, appropriate factorization
for these representations should be determined such that controllability and
observability properties are fulfilled for system (3) and output (4).

In [11, 10], the generalization of the rank test for the state-dependent factor-
ized controllability matrix of system (3) is defined as

rank {C(x)} = n ∀x (5)

where
C(x) = [

B(x), A(x)B(x), · · · , An−1(x)B(x)
]

(6)

whereas the state-dependent observability matrix is defined as [10]

O(x) = [
C(x), C(x)A(x), · · · , C(x)An−1(x)

]T
. (7)

Hence, factorization A(x)x must be determined such that C(x) and O(x) have
full rank, or to use duality between controllability and observability [13].

2.2 Optimal Tracking Control for Nonlinear Systems

For many applications, as aerospace, electrical machines, robotics, among others,
it is important for control purposes to track a desired trajectory for the closed-
loop system, then it is required that an output of the system track a desired
trajectory as close as possible in an optimal sense and with minimum control
effort expenditure [14, 5].

In order to deal with optimal tracking in dynamical systems, let us define the
tracking error as

e = r − y

= r − C(x)x (8)

where r is a desired reference (constant or time-varying) to be tracked by the
system output y.

The quadratic cost functional J to be minimized, associated to system (3), is
defined in function of the tracking error as

J =
1

2

∫ ∞

t0

(
eTQ(e) e+ uTR(e)u

)
dt (9)
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where Q is a symmetric and nonnegative definite matrix, and R is a symmetric
and positive definite matrix [14]. Matrices Q(e) and R(e) are design parameters
that are proposed such that a desired performance or the fulfillment of design
specifications are guaranteed, as will be described in Section 3.

The optimal control solution is related to determine the control u(t), t ∈
[t0,∞), such that the criterion (9) is minimized. In this case, the solution for
optimal trajectory tracking control is established as the following theorem.

Theorem 1. Assume that system (3)-(4) is state-dependent controllable and
state-dependent observable. Then the optimal control law

u∗(x) = −R−1BT (x) (P x− z) (10)

achieves trajectory tracking for system (3) along a desired trajectory r, where P
is the solution to the symmetric matrix differential equation

Ṗ = −CT (x) QC (x) + P B(x)R−1BT (x)P

−AT (x)P − P A(x) (11)

and z is the solution to the vector differential equation

ż = − [A(x)−B(x)R−1BT (x)P
]T

z − CT (x) Qr (12)

with boundary conditions P (∞) = 0 and z(∞) = 0, respectively. Control law
(10) is optimal in the sense that it minimizes the cost functional (9), which has
an optimal value function given as

J∗ =
1

2
xT (t0)P (t0)x(t0)− zT (t0)x(t0) + ϕ(t0) (13)

where ϕ is the solution to the scalar differentiable function

ϕ̇ = −1

2
rTQr +

1

2
zT B(x)R−1BT (x) z (14)

with ϕ(∞) = 0.

Proof. For details of the proof see [6]. !"

3 PSO Optimal Tracking Control

As described in Section 2.2, the cost functional (9) depends on the parameters
Q(e) and R(e). Usually, these parameters are determined by a trial-and-error
tuning method by considering the transient and steady-state performance of the
system variables, which is a time-consuming process often taking a few iterations
before a desirable response can be obtained.

This paper proposes to determine the entries of Q(e) and R(e) for (9) through
the PSO algorithm such that the following measures are considered:

1. An amount of steady-state tracking error;
2. An amount of the control input expenditure;
3. Rise time (Tr): the time required for the controlled variable to be settled

from the 10% to the 90% of its final value.
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3.1 PSO Algorithm

The PSO algorithm was developed in [17] as an optimization algorithm based
on social simulation models to determine the minimum of nonlinear functions by
iteratively improving a candidate solution with regard to a given fitness function
(measure of performance) [17, 18]. In the PSO algorithm, the swarm is defined
as a set:

S = {s1, s2, . . . , sN} (15)

of N particles (candidate solutions), defined as:

sj = (sj1, sj2, . . . , sjn)
T ∈ A, j = 1, 2, . . . , N (16)

where n is the number of particle components. The objective function, F (s), is
assumed to be available for all points in A. The particles are assumed to move
within the search space, A, in an iterative way, which is possible by adjusting
their position using a proper shift, called velocity, and denoted as:

vj = (vj1, vj2, . . . , vjn)
T , j = 1, 2, . . . , N. (17)

Velocity is also adapted iteratively to render particles capable of potentially
visiting any region of A. Velocity is updated based on information obtained in
previous steps of the algorithm. This is implemented in terms of a memory, where
each particle can store the best position it has ever visited during its search. For
this purpose, besides the swarm, S, which contains the current positions of the
particles, PSO maintains also a memory set:

Ps = {p1, p2, . . . , pN} (18)

which contains the best positions:

pj = (pj1, pj2, . . . , pjn)
T ∈ A, j = 1, 2, . . . , N (19)

ever visited by each particle. These positions are defined as:

pj(r) = argmin
r

Fj(r). (20)

The algorithm approximates the global minimizer with the best position ever
visited by all particles. Let ∗ be the index of the best position with the lowest
function value in P at a given iteration r

p∗(r) = argmin
r

F (pj(r)). (21)

Then, the PSO is defined by the following equations [17]:

vjl(r + 1) = vjl(r) + c1γ1(pjl(k)− sjl(r)) + c2γ2(p
∗
j (r) − sjl(r)), (22)

sjl(r + 1) = sjl(r) + vjl(r + 1) (23)
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j = 1, 2, . . . , N, l = 1, 2, . . . , n

where r denotes the iteration counter; γ1 and γ2 are random variables uniformly
distributed within [0, 1]; and c1, c2, are weighting factors, also called the cognitive
and social parameter, respectively [18].

The last two terms on the right side in (22) enable each particle to perform a
local search around its individual best position pjl and the swarm best position
p∗j . The first term on the right side in (22) allows each particle to perform a
global search by exploring a new search space.

In this paper, the PSO algorithm is used for the controller (10)–(12) by defin-
ing the components of a particle as the entries of matrices Q(e) and R(e).

4 PSO Optimal Tracking Application to the Van der Pol
Oscillator

Consider the model of the Van der Pol Oscillator [19]

ẋ1 = x2

ẋ2 = −x1 +
1

2

(
1− x2

1

)
x2 + (2 + cos(0.1 x1))u. (24)

In order to illustrate the optimal control tracking scheme, let us define the non-
linear outputs for (24) as y1 = x1 and y2 = x1 x2.

Note that the system (24) can be presented as

ẋ = A(x)x +B(x)u

y = C(x)x

where x = [x1, x2]
T , with the matrices defined as

A(x) =

[
0 1

−1 1

2

(
1− x2

1

)] ; B(x) =

[
0

2 + cos(0.1 x1)

]
; C(x) =

[
1 0
0 x1

]
.

Consider the references for y = [y1, y2]
T as r = [r1, r2]

T
= [10, 0]

T
, and the error

defined as e = r−y. The control scheme to achieve optimal tracking is stated by

(10)–(12), and the entries of Q(e), are defined as Q(e) =

[ α
β‖y1−r1‖+γ 0

0 1

]
and

R(e) = �, where α, β, γ and � are positive constants.
The performance specifications for the Van der Pol oscillator are: 1) less than

1% steady-state tracking error; 2) less than 100 for the control input value and
3) less than 3 seconds for the rise time Tr.

The PSO algorithm calculates the optimized values for α, β, γ and �, subject
to the fitness function

F (s) = 330 (r1 − y1)
2 + x2

2 + u2 + 5Tr
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such that the performance specifications are guaranteed. The obtained optimized
values are α = 93.1213, β = 0.0017, γ = 0.1327 and � = 1.2685. In is worth
mentioning the PSO algorithm facilitates the determination of these parameters,
if not, a trial-and-error methodology should be used to select the parameters,
which is a time consuming and inefficient task.

Considering the optimized parameters for Q(e) and R(e), the optimal tra-
jectory tracking for x1 is displayed in Fig. 1, for which the desired reference
is r1 = 10. Additionally, the time-response for x2 and the optimal control law
evolution are displayed in this figure.

Fig. 1. Time response for x1, x2 and control law u

5 Conclusions

This paper has established the optimal control for tracking of state-dependent
coefficient factorized nonlinear systems and minimizing a parameters-dependent
cost functional, whose parameters are determined by using a PSO algorithm in
order to improve the performance of the control scheme. The proposed controller
results in a state feedback optimal control law plus a time-varying term. The
applicability of the proposed approach is illustrated via simulations, achieving
an optimized tracking for the Van der Pol Oscillator.
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Abstract. In clinical practice, making diagnostically crisp decisions is
critical to successful treatment outcomes. However, there is no agreement
on the operational methodology that is best suited to convert imprecise
symptomatic information into crisp clinical treatment decision making.
In this paper, a new computational decision making tool, Delphi-Neural
Decision Making Processor (D-NDMP), is introduced as a preliminary
study to apply to clinical practices for more successful and efficient op-
erational decisions. A case study in a dental clinical decision involving
a deep decay tooth is presented as an example to perform D-NDMP.
The results yield a more reliable and confident opinion on the practical
application of treatment decision in uncertain cases in a clinical decision
making process.

1 Introduction

In our daily life, we make frequent decisions based on our past experiences which
we are consciously or unconsciously subject to. Decision making may solve a
problem or make it worse, but that is only revealed once an activity has been
applied. In professional fields, however, such as health care, we rely on experts
to make the best possible decisions and thereby lessen the chance of an unfor-
tunate outcome following the treatment. Therefore, it is natural to develop a
method to capture the best expert knowledge to ensure as much as possible that
we have successful and effective clinical practices in diagnosis, monitoring and
interventions.

Clinical decision making is conventionally a cognitive heuristic process: assess-
ment (through data gathering, assimilation, and analysis), judgment (through
evaluation and choice), and operational decision. Heuristics may result in a fea-
sible solution but may cause a substantial decision error due to bias [1]. Also,
clinical decisions involve uncertainties and trade-offs. The uncertainties may be
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from the accuracy of diagnostic tests, the natural history of a disease, the ef-
fect of treatment in an individual patient, or the effects of an intervention in a
group or population as a whole [2]. Considering the complexity, clinical decision
making becomes a crucial and difficult procedure.

In this paper, we present a new computational decision making model, named
Delphi-Neural Decision Making Processor (D-NDMP), to assist clinicians to
make more successful and efficient decisions. In this model, we propose a signif-
icant modification to the neural inputs and synaptic weights by employing the
Delphi technique. This Delphi-neural approach increases the reliability and the
confidentiality of clinical decision making processes by quantitatively adapting
opinions of professional clinicians and practitioners. As a preliminary study, a
dental decision making process is introduced as an example in this paper. From
the result, D-NDMP shows very promising assistance to the clinical decision
making process.

2 Methods

In a decision making process, the qualitative (descriptive) terms, such as ‘very’,
‘normal’, ‘so so’, and others, which are common in clinical encounters, should
be transformed into numerical scores to reflect the subjective qualitative eval-
uations of experts (professional clinicians and practitioners). The descriptive
terms are rather fuzzy (not crisp) making it difficult to make a crisp decision.
It is more precise to use numbers to represent an opinion. In this study, we use
scores between −5 and 5 to evaluate clinical factors (categories) for operational
decisions. In this way, the limitation of point scales (such as losing information
by few points and cognitive overload by too many points [3]) can be overcome.
For example, if a clinician has an ‘extremely negative’ opinion on a category for
a decision, the clinician would score between −5 and −4 on the category.

Table 1 describes the starting position in such a basic clinical decision making
process. At the top of the table, a problem is defined for an operational deci-
sion. Regarding the definition of the problem, n questionnaires are formulated
as categories (clinical factors) with m experts (professional clinicians). The clin-
icians score the categories between −5 and 5 in the shaded area of the table, C,
considering the definition of the problem. The average, A, of each category is
calculated as

Amn =
1

m

(
m∑
i=1

Cin

)
, n ∈ N (1)

Then, D-average, D, is computed by adapting the Delphi technique to improve
the reliability of the opinions from the experts. D represents the value of agreeing
opinions from experts. The Delphi technique (or Delphi method) is a structured
communication technique with a panel of experts. It was originally developed in
the 1950s by the Rand Corporation, Santa Monica, California, for use in oper-
ation research. The schematic diagram of the Delphi technique is shown in Fig.
1. Experts are asked to give their opinions on questionnaires in the first round.
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Table 1. Delphi-neural approach to clinical decision making

Definition of problem (score: −5 ∼ 5)
���������Clinitians

Categories
Category#1 Category#2 · · · Category#n

Clinician#1 C11 C12 · · · C1n

Clinician#2 C21 C22 · · · C2n
··
·

··
·

··
· . . . ··
·

Clinician#m Cm1 Cm2 · · · Cmn

Average (A) A1 A2 · · · An

D-average (D) D1 D2 · · · Dn

In the next round, the experts receive other opinions anonymously as a feedback
and then give new opinions under the influence of their colleagues’ opinions. This
expert survey is repeated several times until a consensus occurs. This technique
delivers quantitative as well as qualitative results by using explorative, predic-
tive and normative opinions from experts. Thus, this technique is a relatively
stronger process for use with naturally unsure and incomplete information [4].
As aforementioned, the core of the Delphi technique is the ‘anonymous’ circu-
lation of the expert opinions with proper reasoning as internal feedbacks. The
anonymous circulation can be expressed as

Cmn(k + 1) = Cpn(k) (2)

Definition of the problem

Formulation of questionnaires

Opinions from expert group

Final decision

yes

no
Consensus?

Fig. 1. Schematic diagram of Delphi technique
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where k is number of round, p is randomly permuted number (p ∈ 1, 2, . . . ,m).
Then, average opinions, D, can be updated by the feedback as

Dn(k + 1) =
1

m

(
m∑
l=1

Cln(k) + Cln(k + 1)

2

)
(3)

The feedback process can be represented by averaging the opinion from an expert
and an anonymously circulated opinion. The reliability of averaged opinions, R,
can be calculated by using variance of the opinions as

Rn(k) =
1

var (Cmn(k))
(4)

where var(•) represents variance function. As the variance of Cmn decreases, the
reliability of the average opinion of Cmn increases. The circulation should stop
in the condition as

∀Rj > rd, j = 1, 2, · · · , n (5)

where rd is a desired reliability defined by a user. However, it is more convenient
to appoint a desired variance as an allowable variance. Thus, a consensus of
opinion for each category can be achieved with final value of D.

The next process of clinical decision making is to analyze the consensus by a
classification method. Neural networks are one of the most powerful tools for
classification. Neural networks were inspired by the study of biological neurons.
By employing synaptic operation and somatic operation, neural networks provide
a superiority of identification and classification and have therefore been widely
used in research fields [5]. In this paper, we do not consider the dynamic feedback
(such as back-propagation algorithm) in neural networks but apply static neural
networks to the clinical decision making process. The schematics of the proposed
process is illustrated in Fig. 2

A neural unit (single artificial neuron) is composed of synaptic operation, v, and
somatic operation, yN , and they are expressed as

v =
∑

XW (6)

yN = Φ[v] (7)

Delphi
Technique

Neural
Decision

Processor

D-NDMP

Subjective
evaluation

D

Decision

yN

Experts

Fig. 2. Schematics of the process flow of D-NDMP
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where X is input vector, W is weight vector, and Φ[•] is a mapping function.
Conventionally, a sigmoid function is chosen as a mapping function due to its
special characteristics exhibiting a progression from small beginning to accel-
erated end as natural processes [6]. In clinical decision making, D-average D
replaces X, and the value of W is assigned by the professional clinicians (ex-
perts) between 0 and 1 with agreement. The Delphi technique is applied to
evaluate the importance of the clinical factors (categories) for the given problem
(the more important, the higher number). Thus, the synaptic operation for the
Delphi-neural approach can be rewritten as

v =
∑

DW (8)

3 Case Study: Operational Decision in a Dental Clinic
Practice

Decision making in dental clinics is not easy for dentists or patients. One of the
most common complex dilemmas is an operational decision on deep tooth decay.
In this case, mainly two choices are available: root canal treatment or implant
(see Fig. 3). The former operation saves the natural tooth with a permanent
filling after removing the damaged pulp (which includes the nerve and blood
vessels) of the tooth. It is necessary to remove all of the pulp in the tooth to
avoid further infection. Sometimes, a cap on the treated tooth is necessary to
protect the tooth from a heavy load. However, sometimes the removing process
cannot be perfectly performed due to the shape of the root canals. The latter
operation extracts the damaged tooth and replaces it with an artificial tooth.
Dental implants are titanium tooth roots that anchor an artificial tooth to the
dental bone. Replacing a tooth takes time and planning. Other factors such as
gum disease and bad bite may cause an implant to fail prematurely. Among
professional dental clinicians and practitioners, there are no absolutes applicable
to this complex decision making process [7,8].

(a) (b)

implant

artificial 
tooth (cap)

filling

root 
canal

cap

Fig. 3. Dental treatment for deep tooth decay: (a) root canal treatment and (b) implant
[8]
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Now we apply the proposed Delphi-neural decision making processor (D-
NDMP) to this clinical decision making. In order to perform the process by
D-NDMP, we first need to define the clinical problem in order to formulate
questionnaires (categories). An example is presented for a case study below.

A healthy man had a very sensitive molar. A few days later, he felt pain
around the molar and went to see a dentist. The dentist (d1) found that
the root of the molar was infected by a virus. The dentist (d1) decided to
perform a root canal treatment on the tooth after discussing the situation
with the patient. While the dentist (d1) was drilling a hole on the tooth, he
found a crack on the tooth. The crack has not shown on the X-Ray picture
taken before the process. The dentist (d1) informed the patient about the
crack and decided to continue the root canal treatment on the next visit.
The patient visited another dentist (d2) for a second opinion on the tooth.
The second dentist (d2) examined the tooth carefully and discovered that
the crack continued into the gum. The second dentist (d2) then suggested
an implant process to the patient since in his opinion the crack probably
continued to the deep end of the tooth. The second dentist (d2) explained
to the patient that in this case root canal treatment would not be sufficient
to treat the tooth permanently. The patient visited a third dentist (d3) who
concluded that root canal treatment would be a suitable treatment for the
tooth.

The problem in the given example is to select the better treatment for the dam-
aged tooth: root canal treatment or implant. In order to select one alternative
using D-NDMP, root canal treatment is scored in positive numbers (1 ∼ 5, the
higher number being a stronger recommendation). The implant option is scored
in negative numbers (−5 ∼ −1, the lower number being a stronger recommen-
dation). The neutral opinion is scored as 0. Three experts are associated with
different opinions on the treatment. The clinical factors (categories, F) for the
operational decision and the weights (W) of the factors would be:

• F1: importance of infection in the tooth for the treatments (W1: 1)
• F2: importance of crack on the tooth for the treatments (W2: 1)
• F3: importance of mobility (shakiness) of the tooth for the treatments (W3:
0.1)
• F4: importance of the patients health for the treatments (W4: 0.8)
• F5: predictability of the success of the treatments (W5: 1)
• F6: risk of the infection after the treatments (W6: 0.8)
• F7: finances for the treatments (W7: 0.6)
• F8: aesthetic after the treatments (W8: 0.8)

The clinical factors and weights would vary in a real practical case. The given
factors and numbers are reasonably selected for this case study. The weights (W)
of the factors vary between 0 and 1 which would be defined after agreement of
the experts opinions. F3 has very low weight since the damaged tooth is rarely
mobile (shaking). The complete table of decision making for this example is
shown in Table 2.
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Table 2. D-NDMP to decision making in dental operational decision

Root canal treatment (1 ∼ 5) or Implant (−5 ∼ −1) (score: −5 ∼ 5)
���������Clinicians

Categories F1
(W1: 1)

F2
(W1: 1)

F3
(W1: 0.1)

F4
(W1: 0.8)

d1 5 2 1 5

d2 −5 −5 −1 −4

d3 2 −2 0 2

Average (A) 0.67 −1.67 0 1

D-average (D) 0.04 −0.42 0 0.06

Root canal treatment (1 ∼ 5) or Implant (−5 ∼ −1) (score: −5 ∼ 5)
���������Clinicians

Categories F5
(W1: 1)

F6
(W1: 0.8)

F7
(W1: 0.6)

F8
(W1: 0.8)

d1 4.5 3 5 3

d2 −4 −2 −4 −5

d3 2 0 3 0

Average (A) 0.67 0.83 0.33 1.33 −0.67

D-average (D) 0.05 0.02 0.08 −0.04

3.1 Conventional Approach (Averaging)

Conventionally, the average value, A, would be applied to make a decision. For
the calculation, A was applied as neural inputs with given weights and sigmoid
function. As the result with A, the root canal treatment is highly recommended
for this patient. The result is shown in Fig. 4. The blue line represents the
mapping function between −5 and 5. The red dot is the final neural output
(yN ), and the output represents how the final decision is confident with the
two treatment, implant (−1) and root canal treatment (1), respectively. In this
example, the value of synaptic operation (v) is 1.17, and yN is 0.82 with average,
A, as neural input, which means that it is highly recommended (about 82%)
that the patient should take the root canal treatment as operational decision.
The decision may be acceptable; however, the reliability of the decision is still
questionable.

3.2 D-NDMP Approach

Now we perform D-NDMP to make a decision for the same example. MATLAB
was used to develop D-NDMP. In order to increase the reliability of the pro-
cessor, the tolerance for matrix C was initially set to 0.1. That means that the
circulation round for the Delphi technique continues until the variance in each
category becomes less than the tolerance. D-average was achieved with little
variances (< 0.1) for each category, which yielded v = −0.24 and yN = −0.24.
This result recommended that the patient might take the implant operation,
which is a different opinion from that of the conventional decision making. Fur-
thermore, the decision may be reconsidered since the value of the neural output



418 K.-Y. Song and M.M. Gupta

Fig. 4. Result of the decision making by a conventional method, averaging the scores.
From the result, the root canal treatment is certainly recommended (82%).

Fig. 5. Results of D-NDMP by employing different values of allowable variances. (a)
var(•) < 1, (b) var(•) < 0.1, (c) var(•) < 0.01, and (d) var(•) < 0.001. (var(•)
represents variance of C after the Delphi technique).

is not convincing (< 0.4). It was also observed that as the tolerance changes, the
decision of D-NDMP are altering (see Fig. 5). That indicates that operational
decision is still debatable, which indicates that the conventional decision may
not be a right choice.

4 Conclusions

In this paper, we propose a new computational decision making method by de-
veloping a Delphi-neural decision making processor (D-NDMP) as a preliminary
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study. The Delphi technique was adapted to increase the reliability of the deci-
sion, and neural networks were employed for classification. D-NDMP provides an
adaptive method on consensus opinions to improve quantitative as well as qual-
itative decision making in clinical decision making processes. An operational
decision making in a clinical dental practice was considered as a case study in
this paper. The result of the case study shows that as the reliability of the infor-
mation increased, the decision became more neutral, which indicates that both
treatments are still in debate with current experts and categories. The model
developed herein will next to be tested with actual clinical data.
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S�lawomir Zadrożny1, Janusz Kacprzyk1,2, Mateusz Dziedzic2, and Guy De Tré3
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Abstract. A widespread and growing use of information systems, no-
tably databases, calls for formalisms to specify user preferences richer
than classical query languages. The concept of bipolarity of preferences
is recently considered crucial in this respect. Its essence consists in con-
sidering separately positive and negative evaluations provided by the user
which are not necessarily a complement of each other. In our previous
work we have proposed an approach based on a specific interpretation
of the positive and negative evaluations and their combination using a
non-standard logical connective referred to as “and possibly”. Here we
propose a novel extension of that approach. We present the concepts,
possible interpretations and some analyses.

Keywords: flexible database query, bipolar query, context in querying.

1 Introduction

We consider here database querying as an action, or process, going beyond a
simple retrieval of data satisfying a standard condition(s) as, e.g., a price lower
than a threshold, location in one of favorite districts, etc. To better present the
essence of our new approach, we relate our concepts and analyses to an intuitive
example of querying a real estate database. In such a context the user’s inter-
ests, intentions and preferences are usually much more sophisticated and their
adequate representation using classical query languages is not easy, if possible at
all. One step towards such a better representation is the concept of the flexible
fuzzy queries [1] which make it possible to use linguistic terms in queries with
their semantics provided by appropriate fuzzy sets. The user may then express
in a more natural way his or her preferences as to, e.g., the price of the prop-
erty sought, just stating that the property should be cheap instead of artificially
defining a threshold distinguishing acceptable prices from those to be rejected.
Recently, a further step towards even more human consistent representation of
the user preferences has been proposed in the form of bipolar queries, termed so
by Dubois and Prade [2]. The motivation for that type of queries has been an
attempt to grasp the negative and positive aspects which may be independently
provided by the user to characterize data he or she is looking for. The bipolar
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queries may be considered in their most general form as consisting of two condi-
tions separately accounting for these negative and positive assessments. However
in the literature a specific interpretation of bipolar queries seems to prevail so
far in which the negative and positive condition correspond to a constraint and
a wish, respectively. There are different possible interpretations of such a con-
straint and wish. We have earlier [3,4] developed an interpretation referred to as
the required/desired semantics which is a fuzzy extension of the seminal work of
Lacroix and Lavency [5].

In this paper, we propose a further extension of this type of bipolar queries
and we show its relation to various approaches known in the literature.

The structure of the paper is as follows. In the next section we briefly remind
the essence of the the concept of a bipolar query with an emphasis on its special
version based on the required/desired semantics. Section 3 comprises the main
contribution of this paper introducing the concept of contextual bipolar queries.
Finally, we conclude summarizing the content of the paper and envisaging the
lines of possible further research.

2 Bipolar Queries

Some studies [6] show that while expressing his or her preferences the human
being is contemplating separately positive and negative features of alternative
courses of action, objects, etc. Applying this paradigm to database queries one
should consider two types of conditions: the satisfaction of one of them makes a
tuple desired while the satisfaction of the second makes it to be rejected. This is
the most general form of what we will refer to as a bipolar query. Moreover, we
will assume that both conditions are expressed using fuzzy predicates and thus
may be satisfied to a degree, from 0 to 1. In the most general form mentioned
above one obtains two satisfaction degrees, of the positive and negative condition,
respectively, and then needs some means to compare such pairs of degrees to rank
tuples in an answer to the query; cf., e.g. [7].

We will consider here a special class of bipolar queries where the positive
and negative condition are interpreted in a specific way as that the data items
sought definitely have to satisfy the complement of the latter condition, while
the former condition are somehow less stringent. For example, a hotel sought by
the user may be required to be cheap and – but only if possible – (desired to
be) comfortable. The negative condition is here “not cheap” while the positive
condition is “comfortable”. We specify the complement of the negative condition
(denoted C) which may be interpreted as a required condition. On the other
hand, the positive condition is directly expressed and may be referred to as a
desired condition (denoted P ); the whole query is denoted (C,P ). Both C and
P are generally specified as fuzzy sets, with the membership functions μC and
μP , respectively. Following Lacroix and Lavency [5], Yager [8] and Bordogna and
Pasi [9], we model the interaction between the required and desired condition
using the “and possibly” operator casting the whole bipolar query condition in
the following form:

C and possibly P (1)
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which may be exemplified, referring to the previous example, by “cheap and
possibly comfortable”.

The “possibility” referred to in the “and possibly” operator is meant here as
the consistency1 Namely, in the case of crisp conditions C and P it is assumed
that if there is a tuple which satisfies both conditions, then and only then it
is actually possible to satisfy both of them and each tuple has to meet both of
them. In such a case (C,P ) reduces to the usual conjunction C ∧ P . On the
other hand, if there is no such a tuple, then it is not possible to satisfy both
conditions and the desired one can be disregarded. In such a case (C,P ) reduces
to C alone. If C and/or P are fuzzy, both conditions may be simultaneously
satisfied to some degree lower than 1. Then, the matching degree of the (C,P )
query against a tuple is between its matching degrees of C ∧ P and C.

Formally, for the crisp case [5]:

C(t) and possibly P (t) ≡ C(t) ∧ (∃s(C(s) ∧ P (s))⇒ P (t)) (2)

and for the fuzzy case [12,4]:

truth(C(t) and possibly P (t)) =

min(μC(t),max(1−max
s∈R

min(μC(s), μP (s)), μP (t))) (3)

where R denotes the whole dataset (relation) queried. The value of

max
s∈R

min(μC(s), μP (s)), denoted as ∃CP (4)

which expresses the truth of ∃s(C(s) ∧ P (s)), may be treated as a measure of
the interference of P with C.

The formula (3) is derived from (2) using the classic fuzzy interpretation of
the logical connectives via the maximum and minimum operators. In Zadrożny
and Kacprzyk [4] we analyze the properties of the counterparts of (3) obtained
by using a broader class of the operators modeling logical connectives.

3 New Type of Bipolar Queries

Our starting point are bipolar queries in the sense of the required/desired se-
mantics described in the previous section. According to (1) the query “C and
possibly P” is satisfied (to a high degree) by a tuple t only if either of the two
conditions holds:

1. it satisfies (to a high degree) both conditions C and P , or
2. it satisfies C and there is no tuple in the whole database

which satisfies both conditions.

(5)

1 For other interpretations of the “and possibly” operator cf., e.g. [10,11].
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Here we will discuss the concept of another “and possibly” operator based on
the weakening of the condition (5). Namely, the notion of the “possibility” of
satisfying both C and P will now be meant in a certain context of a given tuple.

Let us consider an example. We would like to prepare recommendations for
the customers concerning hotels in particular regions of interest and to list cheap
and comfortable hotels. But we want all regions covered and if there are no cheap
and comfortable hotels in a given region, then a cheap hotel will do.

This implies the concept of a contextual bipolar query:

Find cheap and possibly – with respect to the hotels located in
the same region – comfortable hotels.

(6)

meant to be satisfied by a hotel if:

1. it is cheap (to a high degree) and is comfortable (to a high degree), or
2. it is cheap (to a high degree) and there is no another hotel

located in the same region which is both cheap and comfortable.

The new “contextual and possibly” operator may be formalized as follows. The
context is identified here with a part of the database defined by an additional
binary predicate W , i.e.,

Context(t) = {s ∈ R : W (t, s)} (7)

where R denotes the whole database (relation). The “contextual and possibly”
operator is no more a binary operator as it admits three arguments:

C and possibly P with respect to W (8)

where predicates C and P should be interpreted as representing the required
and desired condition, respectively, while the predicate W denotes the context.

Then, the formula (8) is interpreted as:

C(t) and possibly P (t) with respect to W ≡
C(t) ∧ ∃s(W (t, s) ∧C(s) ∧ P (s))⇒ P (t) (9)

Referring to our example, C and P represent the properties of being cheap and
comfortable, respectively, while W denotes the relation of being located in the
same region, i.e.,W (t, s) is true if both tuples represent hotels located in the same
region. Predicate W may be fuzzy as, e.g., if the location of a hotel represented
by a tuple t is Southern Texas, then another hotel located in the (fuzzy) border
of the Southern and Northern Texas, and represented by a tuple s, may be in
relation W (being located in the same region) to a degree, i.e., W (t, s) ∈ [0, 1).
Below, we further discuss some possible interpretations of W .
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A Partition/Similarity Based Interpretation. A relation expressed with
the predicate W may define a partition of the set of tuples. In our running
example concerning a hotel database, the hotels may be grouped according to
their location. Such a grouping may be crisp as, e.g., in the case when the hotel
location is identified with its city address. Then, the relation represented by
W should be an equivalence relation, i.e., a reflexive, symmetric and transitive
relation; the equivalence classes of it correspond to particular cities “present”
in the database of hotels. However, such a grouping may be also fuzzy as, e.g.,
when the hotel location is identified with the region such as the Southern Texas
or the Northern Texas. The belongingness to a given region may be not clear-cut
and a hotel may be seen as located in two (or even more) neighbouring regions,
with a different degree to each of them.

Most often, it will be not practical, if at all possible, for the user to directly
define the relation W , i.e., to explicitly assign a membership degree for each
pair of tuples. A reasonable approach, illustrated by the examples of the above
paragraph, will be to define such a relation on a domain of a given attribute,
obviously, for a domain of a small cardinality. For example, if we identify the
address of a hotel with the city and the number of cities represented in our hotel
database is reasonably small, then the user may directly define any relation on
the set of the cities and adopt it to the set of the tuples in an obvious way:

W (t, s) ≡ P (t(Ai), s(Ai)) (10)

where Ai is one of the attributes belonging to the scheme of the database2 R,
t(Ai) denotes the value of attribute Ai for the tuple t (and, analogously s(Ai)),
and P is a relation defined on D(Ai), i.e., on the domain of the attribute Ai.
Obviously, the relation W may also be defined in terms of a set of relations on
a number of domains as well as in terms of a relation defined on a Cartesian
product of the domains of several attributes. The latter scenario is less practical
as the cardinality of the set resulting from the Cartesian product grows quickly.

Amore practical scenario, in particular for “quantitative” numerical attributes,
is to use an expression referring to the values of this attribute to define a similar-
ity between the tuples. For example, if we wish to group the hotels into classes
corresponding to various levels of an average room price, then the relationW can
be defined as:

W (t, s) = f(| t(AvgRoomPrice)− s(AvgRoomProced) |)
where AvgRoomPrice is an attribute representing the average room price and
f is a function which relates the difference of the prices of the rooms to the
membership of both tuples to the same price class/level.

Actually, in some cases a more natural way to define the relation W may
be via a direct definition of a partition. Such a partition is easily definable in

2 We often identify a database with a relation which what does not restrict the general-
ity of our consideration but makes it possible to avoid potential ambiguity of which
relation is actually referred to: that being a part of a relational database or that
defined on the set of the tuples of such a relation and denoted by the predicate W .
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terms of the values of a selected attribute. In case of our hotels database, such a
partition may be based on the value of the attribute State, making it possible
to group the hotels according to the US state in which they are located. In the
case of a crisp relation W , due to the well known one-to-one correspondence
between partitions of a given set and equivalence relations defined on the same
set, the user may define W in a way more comfortable to him or her, i.e., either
to specify a relation or partition. In the fuzzy case the situation is a bit more
complex but following Schmechel [13] it is also possible, under some conditions,
to preserve the validity of such a correspondence. Namely [13], let us assume
that a fuzzy equivalence relation, or τ−equivalence relation is a fuzzy relation
W : R×R→ [0, 1] satisfying the following conditions:

reflexivity W (t, t) = 1, ∀t ∈ R,
symmetry W (t, s) = W (s, t), ∀t, s ∈ R,
τ-transitivity τ(W (t, s),W (s, u)) ≤W (t, u) ∀t, s, u ∈ R.

where τ is a t-norm. Moreover, let us assume that a subset P ⊆ F(R) of the
space of all fuzzy sets defined on R is a fuzzy partition, or a τ -partition of R if
it satisfies the following conditions:

1. ∀X∈P∃t∈RμX(t) = 1,
2. ∀t∈R∃X∈PμX(t) = 1,
3. ∀X∈P∀Y ∈P∀t∈R∀s∈RμX(t) = 1⇒ τ(μY (t), μY (s)) ≤ μX(s).

Then, there is a one-to-one correspondence between fuzzy equivalence relations
on R and fuzzy partitions of R. As the assumed properties of fuzzy equivalence
relations and fuzzy partitions are fairly intuitive, such a correspondence provides
for the same freedom to express the relation W as in the crisp case.

An Ordering Based Interpretation. Above we showed the usefulness of W
when it is an equivalence relation. Consider now the following example.

Find a spacious and possibly – with respect to the rooms not
much more expensive – located on a low floor room.

Thus, of interest is now a room which:

1. is spacious (to a high degree) and located on a low floor (a fuzzy predicate
“low” should be satisfied to a high degree), or

2. is spacious (to a high degree) and there is no another room
not much more expensive which is both spacious and located on a low floor.

The relation W now may be expressed as W = ¬Z where Z represents the
concept of “much more expensive”, i.e., is a (fuzzy) order relation.

Similarly interesting queries may be built referring to a temporal relation
between the data searched. For example:

Find a hotel in Southern Texas and possibly – with respect to
its previous record for this year – offering low prices.
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assuming a database storing information on the historic prices offered by hotels
in different regions. Thus, of interest is now a room which:

1. is spacious (to a high degree) and located on a low floor (a fuzzy predicate
“low” should be satisfied to a high degree), or

2. is spacious (to a high degree) and there is no another room
not much more expensive which is both spacious and located on a low floor.

A Modal View. The predicate W has an immediate interpretation when our
new type of a bipolar query is considered from the modal logic perspective [14].
Namely, let us adopt the language of the standard propositional modal logic [15]
with the modality symbol ♦. Let the Kripke frame (Ω,W ) be defined as:

– the set of worlds Ω comprises tuples of the relation T , i.e., for each t ∈ T we
have an ωt ∈ Ω,

– W is now the accessibility relation defined on Ω ×Ω.

Then, we have the following equivalence:

C(t) and possibly P (t) with respect to W ≡ C ∧ (♦(C ∧ P )⇒ P ) (11)

Thus, the satisfaction (degree) of the query is identified with the truth (degree)
of the modal formula on the right hand side of (11). The latter formula is true (to
a degree) at a world ωt (for a tuple t) if and only if the formula representing the
required condition C is true at the world ωt (tuple t satisfies C) and, moreover,
if the conjunction of the formulas representing C and P is true at a world ωs

accessible from ωt, then also the formula representing the desired condition P
have to be satisfied at the world ωt.

The modal view of W provides for an obvious generalization of the interpre-
tations of W as discussed earlier.

4 Concluding Remarks

In this paper we proposed a novel concept of a contextual bipolar query involving
a ternary condition. It makes it possible to form queries with a combination of
positive and negative conditions, aggregated using the “and possibly” operator
in which the possibility is meant in a separately defined context. We discuss
various possible interpretations of such a context.

The proposed concept of an extended bipolar query needs further research,
notably related to other relevant approaches, in particular cast in the framework
of queries with preferences in the sense of Chomicki [16,17]. There is also a
certain similarity to the skyline operator based queries which are also covered
by the general approach of Chomicki. Another important aspect requiring a
further study is an effective and efficient execution of such queries. This will
be the subject of our intensive further research. A starting point may be again
the approach of Chomicki who studies several algorithms suitable for executing
queries with preferences depending on the structure of the preference relation.
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Acknowledgment. Mateusz Dziedzic contribution is supported by the
Foundation for Polish Science under International PhD Projects in Intelligent
Computing. Project financed from The European Union within the Innovative
Economy Operational Programme (2007-2013) and European Regional Devel-
opment Fund.

References
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Abstract. In this paper, we present control systems for an unmanned
aerial vehicle (UAV) which provides aerial support for an unmanned
ground vehicle (UGV). The UGV acts as a mobile launching pad for
the UAV. The UAV provides additional environmental image feedback
to the UGV. Our UAV of choice is a Parrot ArDrone 2.0 quadcopter,
a small four rotored aerial vehicle, picked for its agile flight and video
feedback capabilities. This paper presents design and simulation of fuzzy
logic controllers for performing landing, hovering, and altitude control.
Image processing and Mamdani-type inference are used for converting
sensor input into control signals used to control the UAV.

1 Introduction

1.1 Background on Quadrotors

Quadcopters are a class of four-rotored aerial vehicles. They have been shown
to provide stable acrobatic flight as demonstrated in many hobbyist, research
and commercial grade products. To provide the flight characteristics that quad-
copters are prized for, large quantities of energy must be consumed for each
of the four high-speed motors. For many small quadcopters, the battery life is
typically limited to minutes of flight time due to the weight of the batteries and
power draw of the motors. Limited time of use for quadrotors creates a problem
for researchers to solve.

1.2 Targeted Landing and Landing on a Mobile Base

Researchers are trying to find ways to improve the effectiveness of quadcopter
given current battery systems and motors. One method many researchers are
trying is limiting the flight time of quadrotors and providing a base station to
act as either a landing pad for battery conservation [1], hot swapping [2,3] or
battery recharging purposes [4]. In [2], researchers created a fixed mechanical
base station for a quadcopter to proceed with a hot-swap of a battery. In [1]
researchers performed landing maneuvers on a mobile base using a low-cost
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camera sensor to sense infrared Light Emitting Diodes (LEDs) acting as beacons
on the mobile base.

Researchers from the University of Waterloo, Canada simulated coordinated
landing of a quadcopter using nonlinear control methods. With their methods,
they designed a joint decentralized controller that attracts the two linearized
systems together via coupled state information [3].

In [4] researchers developed a system where an Adept Mobile Robotics P3AT
unmanned ground vehicle (UGV) provided services for mobile landing and target
identification for visual inspection by an ArDrone quadcopter [4]. For control
of the quadcopter, the researchers utilized classical controllers for controlling
the altitude, pitch, roll and yaw. Vision input was used by the researchers on
both platforms for navigation and landing control. Actuators onboard the UGV
platform performed error correction post-landing by shifting the ArDrone to the
optimal landing position.

1.3 Paper Topic and Structure

In this paper we utilize fuzzy logic controllers to control heading, altitude, ap-
proach, and hovering for an ArDrone 2.0 using visual and distance feedback.
We draw inspiration from the automated UGV/UAV inspection system in [4]
for testing our system. Visual feedback is provided by identification of visual
tags, similar to the ones used in [4], using open source software to calculate the
tag identication match and orientation. Compared to [4], we utilize fuzzy logic
controllers instead of classical controllers to simplify the design of quadcopter
manuevers. Also, we use a single multi-resolution visual tag that changes by
distance, instead of using multiple spatially separated tags. We also do not rely
on more than the coordinate systems relative to the cameras. This is a major
difference from the work of others that have constructed a fully mapped and
controlled test environment to provide high resolution location services. The
rest of the paper is organized as follows: Section 2 details the control problems
handled by the fuzzy controllers. Section 3 details the software and hardware
experimentation with the controllers. Section 4 provides results from hardware
and software tests. Section 5 provides conclusions on the system and future work
with the UAV/UGV system. The rest of the paper is organized as follows: Section
2 details the control problems handled by the fuzzy controllers. Section 3 details
the software and hardware experimentation with the controllers. Section 5 pro-
vides results from hardware and software tests. Section 6 provides conclusions
on the system and future work with the UAV/UGV system.

2 Control System

2.1 Control Problems

Figure 1 shows a depiction of the system controller. Figure 2 shows a depiction
of the control problems.
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Fig. 1. Depiction of UAV System Controller

(a) Heading Control (b) Hovering Control (c) Landing Control

Fig. 2. Depiction of UAV/UGV Landing Control Problems

2.2 Altitude Control

The altitude control problem is to control the quadcopter to reach and maintain
a set altitude with minimal deviation from the setpoint. To do so with a quad-
copter, one needs to vary the power provided to all four rotors to produce the
necessary lift to rise to the setpoint or downward force to reduce altitude.

2.3 Heading and Landing Control

The heading control problem is to control the quadcopter to reach a desired
orientation angle with the mobile landing base. To do this, the quadcopter needs
to translational velocity along its local y-axis, while rotating along its local z-axis
to reduce the orientation angle. Overall, the goal is to have the same orientation
on both the UAV and UGV. With the same orientation, the UAV can then
approach the UGV for landing operations. To approach the UGV once oriented,
the quadcopter must translate along its x-axis to get close enough to use its
bottom cameras to detect the landing pad. Once detected, the landing control is
used to lower the craft. The landing control problem is to control the quadcopter
to maintain a mininum orientation angle and positional error on descent towards
a visual marker. To do this, the quadcopter needs to translate across both the x
and y axes to reduce positional error, rotate along the z-axis to reduce orientation
error and while descending along the z-axis to land.
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2.4 Controller Variables

We define the following variables for the controllers:

– hMB,LP - height of the landing pad
– hMB,COG - height of the landing pad
– hS - sensed height
– h - flying height of quadcopter
– (xq, yq, zq) - pose relative to the quadcopter local frame
– (xMB , yMB , zMB) - pose relative to the mobile landing pad local frame
– PL - Landing position as a 3D point

Figure 3 shows the usage of the control variables in the system.

(a) Altitude control

(b) Landing control

Fig. 3. Control variable usage

3 Simulation and Hardware Experimentation

3.1 Software Packages

To develop the fuzzy controllers, we used a combination of Robot Operating
System (ROS) [5], ROS Gazebo [6] with the TUM ArDrone Simulator [7], ROS
package ar track alvar [8], and tools from FuzzyLite [9]. ROS is a software pack-
age that allows for the transport of sensor and control data via ”topics” using
the publisher/subscriber message passing model. The TUM ArDrone Simulator
is a package for ROS Gazebo that allows for simulation of the ArDrone in 3D
environments. FuzzyLite is an open source Fuzzy Logic Controller library, writ-
ten in C++, which has a Graphical User Interface (GUI), called QtFuzzyLite,
for designing fuzzy logic controllers. The ROS package al track alvar is used for
unique tag identification.
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3.2 Detailed Controller Design Workflow

Listed below is the workflow of the design of the fuzzy logic controller using both
software and hardware:

1. Modify membership functions and/or rules in FuzzyLite GUI
2. Export fuzzy logic controller C++ code using FuzzyLite GUI
3. Insert generated code into simulated controller in ROS and compile
4. Run controller ROS node with TUM simulator
5. Repeat 1-4 if controller is not ready for hardware test, or go to step 5
6. Run controller ROS node with ArDrone autonomy drivers and ArDrone

hardware
7. Repeat 1-6 if hardware test of controller exhibits unwanted behavior

3.3 ArDrone Controller and Driver ROS Nodes

The following ROS topics are inputs to ’ardrone autonomy’ which are used to
control both the simulated and hardware ArDrone:

– /ardrone/navdata/altd – estimated altitude in millimeters
– /cmd vel/twist/linear/x – controls movement along local x-axis
– /cmd vel/twist/linear/y – controls movement along local y-axis
– /cmd vel/twist/linear/z – controls movement along local z-axis
– /cmd vel/twist/angular/z – controls movement along local z-axis

The following ROS topics are tag recognition inputs to the fuzzy controllers from
the package ’al track alvar’:

– /visualization marker/id - unique marker id linked to known tag
– /visualization marker/pose/position/x - position of tag along x-axis rela-

tive to center
– /visualization marker/pose/position/y - Position of tag along y-axis rela-

tive to center
– /visualization marker/pose/position/z - Position of tag along z-axis rela-

tive to center of reference tag image. This is also h − hMB,COG when posi-
tioned above the tag

– /visualization marker/pose/orientation/z - Quaternion angle around z-
axis used for orientation

The following fuzzy system state controller actions are performed by the ROS
package ’ace ardrone fuzzy’:

1. If not directed to search for landing vehicle, perform mission
2. If tag not found, search for tag
3. If tag found, apply fuzzy alignment of quadcopter with mobile base
4. If tag found, quadcopter aligned and landing directed, apply fuzzy landing

controller
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4 Simulation Results

4.1 Fuzzy Inference Systems

For altitude control, we used the altitude input variable hS as input to the con-
troller. Figure 4 shows the fuzzy controller designed for altitude control during
evaluation in FuzzyLite. The three input fuzzy controller designed for landing
control is shown below in Figure 5 during evaluation in FuzzyLite.

Fig. 4. Altitude controller fuzzy inference system

Rules for the altitude controller are as follows:

– if sonar reading is too low then cmd vel gaz is large increase velocity
– if sonar reading is a little low then cmd vel gaz is small increase velocity
– if sonar reading is On Target then cmd vel gaz is no change
– if sonar reading is a little high then cmd vel gaz is small decrease velocity
– if sonar reading is too high then cmd vel gaz is large decrease velocity

Rules for the landing controller are as follows:

– if orientation x is way left then cmd vel z rot is large turn right
– if orientation x is a little left then cmd vel z rot is small turn right
– if orientation x is On Target then cmd vel z rot is hold direction
– if orientation x is a little right then cmd vel z rot is small turn left
– if orientation x is way right then cmd vel z rot is large turn left
– if displacement x is way left then cmd vel y linear is large move right
– if displacement x is too left then cmd vel y linear is small move right
– if displacement x is centered then cmd vel y linear is do nothing
– if displacement x is too right then cmd vel y linear is small move left
– if displacement x is way right then cmd vel y linear is large move left
– if displacement y is way low then cmd vel x linear is large move backward
– if displacement y is too low then cmd vel x linear is small move backward
– if displacement y is centered then cmd vel x linear is do nothing
– if displacement y is too high then cmd vel x linear is small move forward
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– if displacement y is way high then cmd vel x linear is large move forward
– if displacement z is way high then cmd vel z linear is large move down
– if displacement z is too high then cmd vel z linear is small move down
– if displacement z is centered then cmd vel z linear is do nothing
– if displacement z is too low then cmd vel z linear is small move up

Fig. 5. Landing controller fuzzy inference system

4.2 Simulated Hover

A series of images illustrating the altitude control for the quadcopter is shown
below in Figure 6.

4.3 Simulated Descent

A series of images covering descent of the simulated quadcopter is shown below
in Figure 7.
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(a) Hovering over mobile
base

(b) Front camera view (c) Found large tag

Fig. 6. Hovering images from simulator before descent

(a) Tag not yet recognized (b) Found large tag (c) Found small tag

Fig. 7. Landing images from simulator during descent

5 Hardware Results

Hardware testing of the drone controllers demonstrated acceptable performance
given that the environment was not too complex. Environmental complexity
became an issue when the ArDrone exhibited unwanted behavior in its sensed
altitude sensor during altitude control due to a suspected firmware issue. When
the sonar passes too close to an object, the onboard firmware appears to re-
calibrate the altitude, then re-obtains a valid sonar reading and proceeds to
fly erratically using poorly calibrated altitude data. A video with the hardware
results will be uploaded to Youtube.

6 Conclusion

In our work we designed fuzzy controllers for controlling altitude and hovering in
place above a target. We demonstrated simulation of the controllers performed
using the combination of open source tools FuzzyLite, ROS Gazebo with TUM
ArDrone Simulator. Simulation results showed acceptable performance from the
altitude control and also landing controller. Future work toward the open source
community will include providing a solution to the corrupted altitude readings.
Future work on development of the system is to integrate the controllers together
via a fuzzy state machine.
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Abstract. Many qualitative group decisions in professional fields such
as law, engineering, economics, psychology, and medicine that appear to
be crisp and certain are in reality shrouded in fuzziness as a result of
uncertain environments and the nature of human cognition within which
the group decisions are made. In this paper we introduce an innova-
tive approach to group decision making in uncertain situations by using
fuzzy theory and a mean-variance neural approach. The key idea of this
proposed approach is to defuzzify the fuzziness of the evaluation values
from a group, compute the excluded-mean of individual evaluations and
weight it by applying a variance influence function (VIF); this process
of weighting the excluded-mean by VIF provides an improved result in
the group decision making.

1 Introduction

In any professional field such as law, engineering, economics, psychology, and
medicine, we are often faced with ambiguous choices in our decision making pro-
cesses. A decision making process involves perceptions relating to neurological
processes of acquiring and mentally interpreting qualitative (fuzzy) information.
Our cognitive process relating to the process of acquiring knowledge by the use
of reasoning, intuition, and perception for the evaluation of suitable courses of
action (decisions) among several alternative choices plays a very important part
in human decision making [1]. Such decisions are made where human judgment is
called upon to choose among competing and viable options. These decisions are
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often made under the environments of vague (fuzzy), incomplete and conflicting
evidence. Thus, our decision making process is often masked by fuzzy and sta-
tistical uncertainties. A change in the formulation of these cognitive processes,
for example by providing new information, can alter the results of our decision
significantly.

In recent decades, a number of methods have been developed to improve the
quality of decisions by applying some new mathematical methods using comput-
ers. Fuzzy logic has been one of the major candidates as a mathematical tool in
decision making processes. One application of fuzzy logic in decision making is
to employ fuzzy linguistic quantifiers which quantify linguistic expressions such
as ‘good’, ‘fair’, and ‘bad’ [2, 3]. Some other ways of using fuzzy logic are to de-
fine uncertainties with the possibility of events for strategic decisions [4]. More
approaches of fuzzy logic on group decisions can be found in the reference [5].

In this paper, we present a novel approach for qualitative group decision
making namely a fuzzy-neural decision analyzer (FNDA) incorporating some
feedback mechanism that allows various outcomes to be assessed and evaluated.
Here, we introduce a new notion of excluded-mean and excluded-variance. This
proposed FNDA consists of the following three stages:

(i) Quantifier (an interface between human and computer) For compu-
tational purposes, the quantification of the perceived subjective opinion of
individual evaluators on each piece of evidence is converted into some fuzzy
numbers, say over the interval [−10, 10];

(ii) Pre-processor First, as a defuzzification process, fuzzy logic is applied
to the perceived subjective opinions of evaluators expressed in the form of
fuzzy numbers. Then, the two statistical parameters, excluded-mean (μ) and
excluded-variance (v), of the defuzzified numbers are computed. Finally, the
neural input u for the neural decision processor is computed which is the
product of μ and a variance influence function (VIF, f);

(iii) Neural decision processor (NDP) The NDP uses u, the output of the
pre-processor, under various classifications of evidences, and finally yields a
decision y.

In this paper, we evaluate the performance of the proposed fuzzy-neural decision
analyzer (FNDA) on a generic case study.

2 Design of Fuzzy-Neural Decision Analyzer (FNDA)

The group decision making analyzer in a qualitative (fuzzy) environment pre-
sented in this paper is based upon the confluence of fuzzy-statistical and neural
approaches [6]. For the formulation of this novel group decision making ap-
proach in a qualitative environment, we introduce (a) the expertise derived from
an evaluation group to provide the defuzzification and (b) three new statistical
parameters: excluded-mean (μ), excluded-variance (v), and variance influencing
function (VIF, f). It should be emphasized that without the incorporation of
VIF, the decision making will be plagued by the large variance resulting from
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the undue influence of the unscreened subjective ranking tacitly present in any
qualitative decision making process.

The procedure in the fuzzy-neural decision analyzer (FNDA) for a group deci-
sion making, as shown in Fig. 1, is as follows: First, each subjective (qualitative)
opinion is quantified into a fuzzy number (evaluation), say s. The pre-processor
defuzzyfies the fuzzy numbers depending on the expertise of the group, then
computes excluded-mean (μ) and excluded-variance (v) for each evidence/factor
using the fuzzy data provided by n evaluators. Then, a decision is made by a
neural decision processor (NDP).

Quantifier
Neural

Decision
Processor

Fuzzy-Neural Decision Analyzer
(FNDA)

Subjective
evaluation

Evaluators

s u

Pre-
Processor
defuzzifier

µ, v, f
Chairman

Decision
Final

Decision

Feedback

y

Fig. 1. Flow chart of fuzzy-neural decision analyzer (FNDA)

2.1 Quantifier

In this process, qualitative language is translated to quantitative language. In
a group decision making process on a given case, each member of the group
expresses his/her opinion (evaluation), this opinion is influenced by individual
perception, which, in turn, is influenced by his/her experience. The evaluation
employs fuzzy linguistic quantifiers which quantify linguistic expressions such as
‘good’, ‘fair’, and ‘bad’ [2, 3]. In order to express the opinion (evaluation) of
each evaluator, the qualitative (fuzzy) opinions are quantified into some fuzzy
numbers, say over the interval of [−10, 10]. The fuzziness and statistical (random
fluctuations) uncertainty can be managed in this pre-processor.

Let us consider a situation with a group of n evaluators and m pieces of
evidence (factors). The individual pieces of evidence (factors) are the features
of a case to be evaluated, and the evaluators of the group are asked to quantify
their opinions for each piece of evidence with a fuzzy number (value) over an
interval, [−10, 10]. In the evaluation process, each evaluator (j (j = 1, 2, . . . , n))
is asked to quantify his/her opinion on each evidence (factor, i (i = 1, 2, . . . ,m))
using a fuzzy number sij over the interval. In some cases, some p evaluators do
not wish to mark a score and instead mark ‘X’ for some evidence (factor, i) for
any of the following reasons:

i) the evaluator feels that this particular evidence is not relevant for this deci-
sion; and/or

ii) the evaluator considers himself/herself unqualified to judge this particular
evidence appropriately.
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2.2 Pre-processor: Defuzzifier

In this process, the fuzziness of the quantified numbers is supervised by a de-
fuzzifier applying fuzzy theory introduced by Zadeh [7]. Fuzzy sets describe the
fuzzy number whose boundaries are not precise. By expressing the fuzzy num-
bers, a fuzzy set shows a mapping γ from a fuzzy number s (s ∈ S,S is the
universe of discourse) to the unit interval [0, 1], which converts non-crisp num-
bers to crisp numbers. This idea can be represented as a fuzzy set through a
triangular membership function with the slope (a) and the degree of fuzziness
(uncertainty, Δs) of the evaluation. The operations on two fuzzy sets, A and B,
are defined as

A ∪B : γA∪B ≡ max[γA(s), γB(s)], s ∈ S (1)

A ∩B : γA∩B ≡ min[γA(s), γB(s)], s ∈ S (2)

−A : γ−A ≡ 1− γ−A(s), s ∈ S (3)

The process of defuzzification is performed by Fuzzy Logic Toolbox Software
(MATLAB 2010a, The MathWorks) and briefly explained in this paper. The
details can be found in the reference [8].

In this study, fuzzy sets (input function) for fuzzy numbers (input) are de-
fined with triangular membership functions considering some uncertainty (Δs).
Output functions are also decided with triangular membership functions. Then,
fuzzy rules (if-then rule) are constructed between an input function (IF) and an
output function (OF) as an IF number corresponds to the same OF number,
such as IF1→OF1, IF2→OF2, and so forth. Thus, a mapping between inputs
(fuzzy values, s) and outputs (defuzzified values, ŝ) can be constructed by ap-
plying a ‘centroid’ defuzzification method. The centroid defuzzification method
yields a defuzzified value (ŝ) by retuning the center of area under the output
function curve [8].

In the decision making process of an evaluator group, we should take into con-
sideration how much the evaluator group is familiar with the case to be decided.
Motivated by this consideration, we generate a fuzzy set with some uncertainty
(Δs) according to the expertise of an evaluator group (uneducated, educated
and expert) on the particular case. The uneducated group (GUE) represents a
group has little experience with the type of case, and the members are not fa-
miliar with the particulars of the case. The educated group (GE) has experience
with the case or been educated about it, thus the members are reasonably fa-
miliar with the case. The members in the expert group (GEX) are very familiar
with the case and the underlying issues, thus the evaluation of a member in
this group includes very minimal uncertainty. The number of fuzzy sets in a
case is also determined by the expertise of the evaluator group. For GUE , three
fuzzy sets (input functions) are constructed with high uncertainty (Δs = 7),
and accordingly three output functions are applied. As a result, the mapping
presents a higher oscillation which represents high uncertainty in this group. For
GE , seven input functions and output functions are built with Δs = 2.5. The
mapping contains small oscillation indicating lower uncertainty in this group.
The fuzzy sets for GEX are made with 21 input functions and output functions
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with Δs = 1. The mapping of input and output functions is almost linear, which
signifies almost no uncertainty in this group. The mapping functions in each
group are illustrated in Fig. 2. During the defuzzification process, in case of ‘X’
(s = X), the defuzzified value of the evaluation is also kept as ‘X’ (ŝ = X).

2.3 Pre-processor: Excluded-Mean, Excluded-Variance and
Variance Influence Function

After defuzzifying the fuzzy values, the pre-processor of FNDA computes sta-
tistical values (excluded-mean, μ, and excluded-variance, v) for each piece of
evidence (factor) using the evaluation of the group evaluators. In the computa-
tion of mean and variance, the number of p opinions marked ‘X’s are excluded.
Thus, the excluded-mean (μi) and the excluded-variance (vi) are computed as

Excluded−Mean : μi =

(
1

n− p

)⎡⎣ n∑
j=1

ŝij

⎤⎦ , for ŝij �= X (4)

Excluded− V ariance : vi =

(
1

n− p

)⎡⎣ n∑
j=1

(ŝij − μj)
2

⎤⎦ , for ŝij �= X (5)

The excluded-mean of opinions indicates the average opinions of the group,
whereas the extended-variance in the scores indicates the degree of inconsis-
tency (disagreement or fluctuations) of the opinions of the evaluators. Then, the
excluded-mean is further weighted by a function of excluded-variance, a vari-
ance influence function (VIF) that can deal the statistical fluctuations in group
opinions. One can formulate many types of VIF. One of the VIFs that we use
in this paper is defined as

f(αvi) = exp(−αvi), (i = 1, 2, . . . ,m) (6)

where exp(−αvi) is an exponential function, and α is the gain that provides
the importance to VIF. It should be noted that a large difference of opinions
will yield a large excluded-variance vi. As excluded-variance vi increases, the
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Fig. 2. Mapping functions for (a) GUE, (b) GE and (c) GEX . The mapping functions
are generated from different numbers of input and output functions as well as different
uncertainties (Δs)
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significance of the evidence f(αvi) decreases. Also, as the gain α changes, the
significance of the relationship changes. In a group decision making process,
it is commonly observed that some evaluations are very close (low variance),
whereas some evaluations are very diverse (high variance). It is also to be noted
that the diversity (fluctuation) of evaluations for certain evidence arises due to
the different experiences, subjectivity and cognitions of individual evaluators.
In order to assess the agreement of evaluations for each piece of evidence, it is
necessary that some weight be assigned to each piece of evidence in the evaluation
process. This basic principle of variance influence function (VIF) is expressed as
follows:

• If the evaluations for a piece of evidence are in general agreement, then
the excluded-variance is relatively low, and, thereby, the influence of that
evidence should be high.

• If the evaluations for a piece of evidence are not in general agreement, then
the excluded-variance is relatively high, and, thereby, the influence of that
evidence should be low.

2.4 Neural Decision Processor (NDP)

In general, a neural network (NN) is composed of many neural layers, and each
neural layer has many neural units. NN is one of the most powerful tools for
classification. It provides a superior procedure for identification and classifica-
tion and has therefore been used widely in this type of research [9]. A sigmoidal
function is commonly applied for a mapping function due to its special charac-
teristics exhibiting a progression from a small beginning to an accelerated end as
natural processes [10]. Considering the special features of conventional NN, we
propose a neural decision processor (NDP) for group decision making as shown
in Fig. 3. The NDP presented in this paper is composed of two neural layers.
The first and the second neural layers are named category layer and decision
layer, respectively [11, 12]. In NN, a neural unit is composed of two operations:
the synaptic operation and the somatic operation. The synaptic operation is the
sum of products of neural inputs (u) and neural weights (w) which represent
the past experiences. The somatic operation is a nonlinear mapping process.

D1 Output 
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Input vector 
from 

pre-processor

Decision layer 

C1
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Category layer
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...

h1

..
..

..
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y

Fig. 3. Neural Decision Processor (NDP) for a group decision making process. This
NDP is composed of a category layer and a decision layer.
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The input to the NDP is the output vector from the pre-processor. In the
NDP, the category layer is influenced by the process of group decision making.
In most cases, the evidence identified as relevant will have some common features.
Therefore, the pieces of evidence that have common features are grouped into
a category. In this study, we define a category layer which classifies evidence in
q categories (C1, C2, . . . , Cq). Furthermore, each such evidence is weighted by
different values (weight, cwkb, k is the category number, and b is the weight
number in Ck) in different categories. For example, evidence F1 can be classified
into category C1 as well as in C3; however, the corresponding weights of F1 in
C1 and C3 may be different due to the degree of importance of F1 in different
categories. The weights (cw) of the neural units in the category layer are pre-
assigned by unanimous group assessments. The number of neural units in the
category layer is determined by the number of categories of evidence/factors.
Finally, the decision layer of the NDP accumulates the information (h) from each
neural unit in the category layer for final decisions. In this layer, the importance
of the categories is ranked by assigning different weights. Then the individual
decisions are made (D1, D2, . . . , Dt). The neural weights (dwlb, l is a decision
number, and b is the weight number in Dl) in this decision layer are also pre-
assigned by the members of a group.

The fuzzy-neural decision analyzer (FNDA) proposed in this paper is an an-
alytical tool to aid in a group decision making process. This is a generic math-
ematical decision analysis model that can be applied in a variety of real life
decision making processes in a qualitative language (fuzzy) environment.

3 A Case Study: New Product Development

In industries, it is necessary to determine if a new product can be competitive
and/or successful in the market before deciding a new product line. Accurate
decision making on the new product development becomes more important, and
committee members evaluate the idea of the new product under the confluence
of various pieces of evidence (factors). Recently, many applications of fuzzy set
theory employing evaluations and survey analysis have been used in industrial
engineering research [13–15]. We apply FNDA to a group decision for the devel-
opment of a new product with 50 evaluators and 14 factors (characteristics of the
product) on the new product as presented in Ref.[16]. The survey (benchmark)
was carried out using these 50 evaluators, and their evaluations are expressed
by scores over the interval [−10, 10]. ‘X’ in the table (Ref.[16]) implies ‘irrele-
vance’, and it indicates ‘no evaluation’ which may occur during the evaluation
of factors as discussed earlier. The statistical parameters, the excluded-mean,
the excluded-variance and the VIF, are further calculated in each group, GUE ,
GE and GEX , after the mapping functions for defuzzification as presented in
Table 1.

For this particular case study having 14 factors, we classified the factors in
four categories (q = 4) to make one decision (t = 1) as follows:
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Table 1. The statistical parameters of the three different groups after defuzzfication

Statistical Evidences (Factors)
Group parameters F1 F2 F3 F4 F5 F6 F7

µ 0.91 −1.08 1.68 0 −1.53 −0.39 −1.69
GUE v 3.14 5.16 8.1 0 5.39 2.08 9.62

f(×10−3) 43.3 5.7 0.3 1000 4.5 124.6 0.07

µ 1.96 −2.18 2.63 0.02 −2.91 −0.83 −2.3
GE v 8.03 6.94 9.95 1.99 7.58 8.04 13.27

f(×10−3) 0.33 0.97 0.05 136.7 0.51 0.32 0

µ 1.93 −2.26 2.61 0.05 −2.9 −0.86 −2.37
GEX v 7.96 6.82 9.97 2.27 7.75 8.13 12.77

f(×10−3) 0.35 1.1 0.05 103.3 0.43 0.3 0

Statistical Evidences (Factors)
Group parameters F8 F9 F10 F11 F12 F13 F14

µ 3.88 −0.23 0 0.09 1.08 2.72 2.72
GUE v 13.34 0.71 0 3.55 9.21 11.34 10.84

f(×10−3) 0 493.5 1000 28.8 0.1 0.01 0.02

µ 5.19 −1.07 0.5 −0.41 2.04 3.53 3.77
GE v 10.4 5.27 0.91 10.02 14.86 11.52 9.18

f(×10−3) 0.03 5.1 400.9 0.04 0 0.01 0.1

µ 5.14 −1.15 0.62 −0.37 1.98 3.55 3.82
GEX v 10.59 5.26 1.37 9.91 14.7 11.55 9.21

f(×10−3) 0.03 5.2 255.1 0.05 0 0.01 0.1

• Category 1 (C1): F2, F5, F6, F7, F8, F9 and F11
• Category 2 (C2): F2, F3, F5, F6, F7, F9, F11 and F12
• Category 3 (C3): F2, F5, F6, F7, F9, F11 and F13
• Category 4 (C4): F1, F4, F10 and F14

It should be noted that some of the factors are common to various categories.
For example, F2 is included in categories C1 and C2 as well as in C3. For the
category layer, in the synaptic operation, we assumed an equal weight, cwkb = 1
(k = 1 ∼ 4, b = 1 number of factors in Ck), for all the factors in each neural
unit with the threshold cwk0 = 0 (k = 1 ∼ 4). In the somatic operation, a
linear mapping function with gain g=1 was assigned. For the decision layer, in
the synaptic operation, we assigned the weights as dw = [15, 10, 5, 0.75] with
the threshold dw0 = 0. In the somatic operation, the mapping function Φ(gz) =
100tanh(gz) with gain g = 0.3 yields an output over the interval [−100, 100],
where a negative value represents the ‘Negative’ decision with a confidence level
between [−100 %, 0 %), where a positive value implies the ‘Positive’ decision
with a confidence level between (0 %, 100 %], and where Φ = 0 implies a neutral
decision. In our decision making process, to achieve some meaningful results,
we define the confidence zone over the interval ±ρ %, and in this study, we set
ρ = 30.



FNDA 447

3.1 Validation of FNDA with Group Decision

In order to validate our proposed model, we compare the benchmark group
decision and the results of FNDA. In the group decision making, an individual
member of the group provides his/her decision in the form of ‘YES’ or ‘NO’ as
presented in Ref.[16]. If the numbers of ‘YES’ are Y, and the numbers of ‘NO’
are N, then we define the confidence level η as

η =
Y −N

Y +N
× 100(%) (7)

A positive η implies a positive decision (YES), and a negative represents a neg-
ative decision (NO). In this benchmark group survey with 50 evaluators for the
proposed new production line, a Negative decision was made with η = −12%.
This ‘Negative’ decision with low confidence (−12%) is not within the significant
level. By the validation model of FNDA presented in this study, if the results
from FNDA are similar to that of the benchmark group decision, then, we can
safely rely on our proposed FNDA configuration. For the FNDA process, first,
in the pre-processing, we computed μ, v and f with gain α = 1 without any de-
fuzzification process in order to validate the proposed algorithm. Following this,
the outputs of the pre-processor were fed to the neural decision processor (NDP)
with assigned weights (cw and dw) in the category and the decision layers. Af-
ter the decision making process of the FNDA, the decision value (judgment)
becomes −0.39 which implies that the FNDA reflects a ‘Negative’ decision, and
accordingly the confidence level is yielded as −11.6% which is very close to the
decision of the benchmark group (−12%). From the validation, it can be con-
cluded that with the assigned parameter values such as neural weights, category
numbers, and gains are dependable, and the FNDA is safely reliable for further
analysis of decision making on the new production line. Now, we consider the
groups expertise with the obtained evaluation scores. By doing so, the decision
of each group case can be further investigated. In the cases of GEU , GE and
GEX , the decisions by the FNDA are different as shown in Fig. 4. The decisions
of the three groups are all ‘Negative’ judgment, and the levels of confidence in
GUE , GE , and GEX are −7.41%, −8.14%, and −12.93%, respectively. Although
the levels of confidence of the three groups are different, their decisions are not
too divergent and all lie in lower confidence zone. With the assigned parameters,
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Fig. 4. The decisions by FNDA after defuzzification. The shaded area represents lower
confidence zone.
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the decision and level of confidence of the expert group case yields better agree-
ment with those of the benchmark group because there is small uncertainty in
the evaluation values in the expert group.

3.2 Fact-Finding Process of Individual Evaluator by FNDA:
A Feedback Process in Decision Making

After validating the FNDA with the benchmark group decision, all of the factors
could be ranked by the values of neural weights in the category and the decision
layers. The process of making such rankings in itself would aid the decision maker
in his/her thinking. “Did the evaluator place too much emphasis on that factor?”
is a question that would then be open to meaningful review, either by others
or individuals alone. The exploration of an evaluation is called the fact-finding
process which is a feedback (review) process in decision making. We apply the
FNDA to review the decision of an individual evaluator. In this review process,
the decisions of individual evaluators are examined with feedback created by
varying their evaluations on certain factors. The results of the pre-processing
shown in Table 1 shows that F4 and F10 give the lowest values of v, thereby,
the highest values of f in all of group cases, which indicates that the opinions
about these two factors were the most dominant influences on the final decision.
Here, as an example, we explore E1’s evaluation in each group by changing the
evaluation values of F1 and F10 in the fact-finding process. Before changing
the evaluation values, the level of confidence in the decision of E1 is found as
−15% in GUE , −8% in GE and −10% in GEX . Then, we alter the evaluation
value of F1 from −10 to 10 for each group, and it is discovered that the level of
confidence on the decision of E1 does not vary much. The confidence levels of
GUE , GE , and GEX are in the interval of [−15.3%, −14.5%], [−8.4%, −8.2%],
and [−10.2%, −9.9%], respectively. The negative value of the confidence level
indicates ‘Negative’ decision. This indicates that the decisions of E1 are mostly
the same regardless of E1’s evaluations of F1. Similarly, the factors with lower
VIF value have little effect on the individual decision process. However, after
altering the evaluation value of F10 from −10 to 10 for each group, we can see
that the level of confidence in the decision of E1 is much diverged as shown in
Fig. 5. The green circle is the decision before the changing the evaluation of
E1. The yellow (bigger) circles represent new decision after new evaluation. The
yellow (bigger) circles are widely distributed through the level of confidence from
negative and positive in the cases of the educated group and the expert group.
In the case of the uneducated group, the decision of E1 is not quite diverged;
however, some decisions are almost close to the confidence zone. Likewise, higher
values of VIF play significant roles in the decision of the new production line.
This observation indicates that the decision changes by other evaluators in a
group may result into a similar wide distribution over the level of confidence.
From the observation of this simulation study, we conclude that the expertise
of a group is an important feature to be considered during the decision making
process by a group. The expertise affects the defuzzification process significantly.
This simulation also revealed that the decision of an uneducated group may not
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Fig. 5. Decision (level of confidence) change of evaluator #1 (E1) by altering the
evaluation value of evidence (factor) #10 (F10) from −10 to 10 in each group. The
shaded area represents lower confidence zone.

change much by varying the evaluation scores of factors; however, in an educated
and an expert group, a slight change of some evaluation of a factor may yield
very different decisions.

4 Conclusions

In this paper, we have introduced the fuzzy-neural decision analyzer (FNDA),
a new approach for quantitative group decision making. One of the key ideas
of this proposed approach is to defuzzify the evaluation values considering the
expertise of the evaluation group as uneducated, educated or expert. Therefore,
more accuracy can be achieved during the review processes. Another key idea
is to update the output of the pre-processor by applying a variance influence
function (VIF) which emphasizes the importance of each piece of evidence (fac-
tor), thereby reducing the statistical uncertainty that occurs in the process of
transforming qualitative expressions to quantitative scoring. This improves the
evaluations in group decision making processes. Further, FNDA is applied to
an individual fact-finding process as a review process using the outcomes from
the group decision, which represents a feedback process during an individual
decision making process. A case study of a group decision making of a ‘YES’ or
‘NO’ variety on a new product development was carried out to demonstrate the
application of FNDA. The advantage of applying FNDA in a process of group
decision making is that it allows for more precisiation [17, 18], without losing
the fuzzy richness of the reality under consideration.

In summary, FNDA can assist decision makers by this process of weighting and
ranking the evidence (factor) they rely on. FNDA is a useful tool to be applied
for decision making in qualitative language environments such as business or law
or public policy.
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Abstract. We present an iterative preprocessing approach for training a support 
vector machine for a large dataset, based on balancing the center of mass of 
input data within a variable margin about the hyperplane. At each iteration, the 
input data is projected on the hyperplane, and the imbalance of the center of 
mass for different classes within a variable margin is used to update the 
direction of the hyperplane within the feature space. The approach provides an 
estimate for the margin and the regularization constant. In the case of fuzzy 
membership of the data, the membership function of the input data is used to 
determine center of mass and to count data points which violate the margin. An 
extension of this approach to non-linear SVM is suggested based on dimension 
estimation of the feature space represented via a set of orthonormal feature 
vectors. 

Keywords: SVM, Center of Mass. 

1 Introduction 

1.1 SVM Training for Large Dataset: Background 

Support vector machines (SVMs) have been shown to be power tools for classifica-
tion of input data based on structural risk minimization [1-2]. SVM uses a hyperplane 
(within the input space, in case of linear SVM, or in a feature space, in case of non-
linear SVM) to separate the input data based on their classification while maximizing 
the margin from the input data. In case of inseparable dataset, a soft margin version of 
SVM is used to allow for misclassification error by imposing a penalty, e.g., propor-
tional with the Euclidian distance from the class margin. In such a case, a regulariza-
tion parameter is used as a tradeoff mechanism between the maximizing the margin 
and minimizing the error penalty. The appropriate level of tradeoff is generally de-
termined by a validation step to estimate the out-of-sample error. 

N number of samples x ,  are used for training an SVM, where x ∈  and ∈ 1,1  (denoting the classification of the ith data sample). A hyperplane classifi-
er is sought to separate the input data according to their classification: 
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x w · x 1, if 11, if 1 (1) 

Direction of w is perpendicular to the hyperplane, and its inverse of magnitude 
represents the margin between the hyperplane (having plane number 0) and the mar-
gin surface having the plane number  set to +1 or -1 (e.g., at the nearest class data 
points in a linearly separable case): 

  w · x 1,  (2) 

When the dataset is not linearly separable, a slack (or error) parameter is used to still 
classify the data point correctly within the slack from the class margin: 

  w · x 1 , 0,  (3) 

To maximize the margin w , an objective function is formed to minimize w · w  
as well as the slack errors, based on the trade off parameter C, subject to (3): 

 Minimize w · w ∑  (4) 

The solution may be found at the saddle point of the Lagrangian: 

w, , , 12 w · w w · x 1   

  (5) 

where , 0, and the Lagrangian is minimized w.r.t. w,  and maximized w.r.t. , , yielding: 

 ∑ x  (6) 

 ∑ 0 (7) 

 ,   0 ,  (8) 

The modified Lagrangian in dual form (i.e., by substituting (6) and using (7) and (8)) 
is quadratic in , and it is minimized w.r.t. , subject to constraint (8): 

 ∑ ∑ ∑ x , x  (9) 

In a non-linear case, where the optimization is done in a feature space , the vector 
product in (9) would become z  · z , where z x  is the corresponding feature 
vector and the dot product in space  may be expressed as a corresponding kernel x , x  in  domain, satisfying Mercer condition. The solution for (9) provides a 
set of  where most are typically zeros, i.e., corresponding to data points that are 
outside the margin (with zero slack). A non-zero  represents an x  which is at the 
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margin or violating the margin with a non-zero slack. The KKT conditions for the 
solution are [3]: 

  1 0 1 0 1  (10) 

The classification hypothesis may be expressed by the few non-zero ’s (by substi-
tuting (6) in (1)) with their corresponding x ’s denoted as support vectors (SVs): 

 x ∑ x , x  (11) 

While most ’s are typically zero, the performance of quadratic (QD) programming 
solvers suffer for large datasets due to large size of ( ) kernel matrix with x , x  elements. Various approaches have been developed to address this issue, 
such as “chunking” to break down a larger QD problem into series of smaller ones 
[4], [5], and [8] or breaking the problem to the smallest chunk in pair-wise sequential 
minimal optimization [3]. In addition, the solver typically repeats the optimization by 
varying the values of C and/or kernel parameter(s) within a wide exponential range, 
and a grid search is used to determine the optimum hyperparameter(s) likely to mi-
nimize out of sample error (e.g., estimated by validation dataset). Other approaches 
attempt to eliminate subset of input dataset via fuzzy clustering to reduce the work-
load [6], or use a coarse clustering approach to reduce the runtime [9]. 

2 Preprocessing for SVM Using Center of Mass 

While any data point might be a support vector (as anticipated by (9)), we present a 
preprocessing approach to quickly identify the potential SVs in linear SVM, as the 
initial starting point for QD solvers in order to speed up the optimization process. In 
one approach, a greedy algorithm projects and orders the data points on a direction for 
hyperplane, in order to find an optimum hyperplane in such a direction. Then, it takes 
a step in changing the direction of the hyperplane, based on the data points already 
scanned at or about the margin and the center of masses of margin violators. This 
approach also estimates the relationship between margin and C to narrow the practical 
range of C’s needed for use with validation. An extension of this approach to non-
linear SVM is suggested based on an assumption that relatively few SVs would  
support the hyperplane having a relatively low effective dimensionality. 

2.1 Leverage Model of Lagrange Multipliers 

The relations (6) and (7) suggest a view of leverage for the data points (depicted in 
solid black in Fig. 1) at or inside the margin about the hyperplane. Per (10),  for the 
points inside the margin gets limited to C, while those at the margin may have  be-
tween 0 and C. Furthermore,  provides the polarity to the “force”  excreted on 
the margin by the corresponding data point. For example, as shown in Fig. 1, such 
force by “circle” class (having y = +1) is pointing down, while those from “square” 
class (with y = -1) are pointing in opposite direction. 
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Fig. 1. Leverage model of data points at the margin 

Equation (7) may be rewritten as a force balance equation: 

      12  (12) 

where  and  are indexes for non-zero ’s corresponding to “circle” and “square” 
classes (i.e., y = +1 and -1), respectively. The soft margin SVM that allows errors 
(with slack) limits the value of  to C (tradeoff parameter). This can be interpreted as 
the “skin” of the soft margin only being able to support a point force up to C before 
getting penetrated. In other words, the force on the margin builds up from 0 to C, as 
the point is “pushed” from outside the margin through the “skin”. 
The “force” model (with  playing the role of force) can be extended to a “leverage” 
model (with torque) by observing that the RHS of (6) resembles a torque x  hav-
ing x  as its leverage. To exploit this property, we project (6) on a direction perpendi-
cular to  (denoted by unit vector ): 

. x .  . 0 (13) 

Note that in  dimensional space of , there are 1  independent  per  (unit 
vector in direction of , also denoted as ). Equation (13) implies that, at the solu-
tion, the torque from the forces  balance so not to tilt   in the direction of . It 
should be noted that if ’s are offset by a arbitrary fixed vector , Equation (6) (as 
well as (13)) remain invariant under such translation due to (7): 

x  (14) 

By placing  on the hyperplane (u = 0), Equation (13) demonstrates that the torques 
balance around such a pivot point in any of  direction(s), as for example depicted 
in Fig. 2. 
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Fig. 2. Balancing torques at pivot point  with leverage projected on  
This also implies that the “center of mass” for “circle class” (for solid circles) should 
have the same projection on  as the center of mass for “square class” (solid 
squares), when the optimum solution is at hand. This is because the torque from a set 
of points from one class can be represented by the torque from their corresponding 
center of mass. Note that the center of mass for such points is weighted by their cor-
responding force ( ) as shown below: 

Given (12) and (6), Equation (13) may be written as follows: 

In cases that the number of points violating the margin (from both classes) are signifi-
cantly higher than those exactly on the margin, one can assume that most of ’s are 
limited to C, and the determination of the center of mass is simplified to a class mem-
ber head count (violating the margin) and its projection on . It is noteworthy that 
the projection on the direction of  (i.e., on  or  produces the inverse of margin: 

where  is the margin. To setup the problem, for the first iteration,  are deter-
mined from all class data points via (15) (by ignoring ’s, e.g., by setting them to the 
same constant). The initial  is estimated as follows: 

A set of ’s is determined for , for example by (reconstructing) a successive 
pair-wise rotation matrices that define a transformation for aligning the unit vector  
 

· , ·  (15) 

· · or ·  (16) 

. x . . w  (17) 

 (18) 
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associated with the last coordinate to . The same transformation provides a set of 1  orthonormal  ’s by operating on the other unit vectors of other 1  
dimensions. 

2.2 Scanning through Ordered Projection Values 

Next, ’s are projected onto  (or ) (see Fig.3), and they are sorted based on 
the projected values ( ): 

Then, for a given set of percentage of population (e.g., 1%, 5%, 10%, 20% … of the 
class with less members), scan/count from low end of  for y = +1 class (denoted as 

) and high end of  for y = -1 class (denoted as ) as shown in Fig. 3. 
The count can also be sequential from each sorted list, for example, based on margin 
or percentage change. If the data set happens to be separable by ,  is more 
than , and their average (denoted as ) marks the hyperplane candidate for 
zero error, and half of their difference corresponds to its margin. 

 

Fig. 3. Projection of  on  

If  is less than  (i.e., not linearly separable in  direction), the 
count/scan continues until the class markers pass each other. In such a case, the prior 
position of the markers (before passing each other),  and  , are used to mark 
a zero-margin hyperplane candidate under , for example by taking an average val-
ue. The slack error is tracked by simply adding the projected values during the 
scan/count (to be later offset and scaled by the position of the hyperplane and size of 
the margin, respectively) as shown in (22) and (23). At given class counter positions, 

 and   (see Fig. 3), the hyperplane parameters are estimated as follows: 

.  (19) 



 Preprocessing Method for Support Vector Machines Based on Center of Mass 457 

 

where 

where  and  are number of class points counted/scanned corresponding to 
 and   projection class markers.  is the center of mass for the 

scanned data point for a class, and  is 1, based on the class. In a synchronous 
counting between classes, where the counts are the same ( ) and the class errors 
are weighted equally, the estimated slack error is: 

In this scheme, during one scan/count, various error levels are estimated for a given 
count  or percentage of the population (based on ). Summations over ’s in 
(22) and (23) represent a cumulative running sum as the counting progresses. Similar-
ly,  or their projections on  (as well as on , ’s) are determined as running 
sums based on the scanned data points. Objective function (4) and its elements as well 
as misclassification ratio (MR) data points can be estimated and tracked: 

 

12 and w  (20) 

·  0 2  (21) 

.  · .  

· 1 1 ·
· 1 · · . 

(22) 

.   · · 2 1·
  · · 2 1 ·  . 

(23) 

 . 12 .  12 ·  (24) 
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where IndexLookup and IndexLookupRev determine the number of misclassified data 
points in each class, by looking up the index of the projection value of hyperplane in 
the ordered list of the projected values of ’s onto . 

Per (20) and (25), a relationship between margin m and in-sample misclassification 
rate  is determined for each candidate  being iterated, based on the scan through 
various values of . In addition,  as a measure of slack error is made 
independent of C, per (22). Therefore, the relationship between the objective function 
(24) and C may conveniently be determined for a candidate  without rescanning the 
dataset, for a given C. Thus, a range of appropriate C may be estimated, for example, 
as an order of magnitude below and above 2  for 
various  encountered during the same scan. 

2.3 Predictive Tilting Based on Center of Mass and In/Out Adjustments 

For data points on the margin boundary, (6) and (13) may be used to determine the 
effect of trade off ∆  between two margin points and  of the same class (e.g., y = 
+1) with opposite ∆ : 

Given  and  are on the margin,  is perpendicular to . Therefore, the 
effect is a tilt to  in the direction of . The amount of tilt is proportional to 

, i.e., the tradeoff in  for far away points has larger impact on tilting . 
The concept applies to points of different classes (having the same ∆  per (12) and 
opposite signs for y’s). Motivated by (26), we describe an efficient method for provid-
ing ∆  for the subsequent iteration. 

In addition to projection of data points on , the data point(s)  are also pro-
jected on ’s, and sorted accordingly (see for example Fig. 2): 

where k indexes over 1  independent ’s corresponding to . For a given 
, assume the margin, , and offset, , are optimized as to (24) for a given C, 

per previous section. Thus, an update to  should be in form of a rotation or a small 
tilt, ∆ , perpendicular to  (see Fig. 4). 

    1 2 2  . 
(25) 

∆ ∆ x ∆  (26) 

, . ,  (27) 
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Fig. 4. Tilt in  

The small tilt maintains the magnitude of , and therefore, the corresponding por-

tion of the objective function   does not change. However, the tilt impacts slack 

errors in (4) in three ways, based on (a) points staying in violation of the margin hav-
ing different slack error, (b) points going out of margin violation reducing slack error, 
and (c) points coming into margin and increasing slack error, as depicted in Fig. 4. 
Assuming the tilt pivot point, , is located on the hyperplane (i.e.,  b  · ), the change in  due to ∆  becomes: 

Let ∆  be aligned to , , so that ∆   ∆  , . Then: 

Let  be a set of in-margin data points prior to the tilt (i.e., including those that 
stay in and go out after the tilt). The total change in plane numbers for each class is: 

where   denotes the number of data points from each class in ;  in-
dexes points over each class; and  is the center of mass for each class of data 
point in , given by 

The change in slack error for  becomes: ∆∈ · ∆∈ ∆ · · ,  (31) 

 
 
 

∆  ∆ · x  (28) 

∆  ∆ , · ,  (29) 

∆∈ ∆  ,∈  · ,  

∆  · · , . (30) 

1
∈ .  
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Fig. 5. Reduction of slack error by tilting  based on center of masses of data points that vi-
olate the margin (shown in darker color) 

where it is assumed that   are equal and denoted by   (resulting in eli-
mination of ). As depicted in Fig. 5, the imbalance in  can be used to reo-
rient  via ∆  in reducing the slack error. 

However, the expression for ∆  is now adjusted by those points going out and 
coming into the margin after the tilt by considering both  and ∆  to account for 
double counting of those going out (denoted by ) which were included in 

, as well as those coming into the margin after the tilt (denoted by ). 

Further simplification results: 

∆∈  –   b ∆  · ,
1  ∆  ,∈ 1  ∆  ,∈  . 

where   are the number data points for each class coming into the margin 

after the tilt, and   is the sum   . The expression for 
the adjustment of slack error for data points going out of the margin is quite similar, 
except for minus sign (as the errors are reduced) and labels switching from in to out: 

∆∈ 1 · ∆∈  (32) 
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Therefore, at each iteration, (31) may readily be evaluated for a given ∆ , based on 
tracking of the running sum of ,  in (30) or center of masses in (31), during the 
scanning of the ordered list of projected data (19). While (31) is explicitly proportion-
al to ∆ , (32) and (33) are only indirectly related to ∆ , through   and  . It would be reasonable for most affected points be from regions far from 
the pivot point per (28) where ∆  would be greater. 

The following approach is adopted to control the tilt so that the scan of projected 
data along  would provide the required data for evaluating (31), (32), and (33). 
Based on the scanning of  and  projection class markers, Equations (20)-
(25) provide applicable hyperplane (if any) and its associated objective function and 
slack error for various ’s. Therefore, around the marker positions corresponding 
to margin, , and offset, , other neighboring markers provide such informa-
tion, e.g., for a larger margin , as depicted in Fig. 6. 

 

Fig. 6. Limiting the tilt, based on data obtained in projection scan along  

The markers corresponding to  are adopted to effectively limit ∆ , so that the 
set of data points going into the margin ( ) due to the tilt would be limited to 
those data points entering margin  when margin is expanded from  in  di-
rection (denoted as ), provided that: 

where  is the full extent of data points in ,  direction from the pivot point, and the 
pivot may be taken at the extremes of the range or near a center of mass (e.g., where 

 project on , ). Practically, the margin markers which control the margin 
boundaries are used to determine the limit for ∆ . For example, 

∆∈ 1 · ∆∈  (33) 

∆ ∆ ∆
 (34) 

∆
 (35) 
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where  and  are the projections of the margin boundaries of  and  
on . Consequently, , and therefore, a search for elements of 

 becomes limited to a relatively small dataset . In evaluating (34), it 

is first checked whether a given point in  has entered the tilted margin (e.g., 

via evaluating  or using (29)). Similar check is made for determining  
using (29) where the updated  indicates whether a point in  has moved out of 
margin (i.e., to ). 

To determine if objective function may be minimized by tilting , (31), (32), and 
(33) are added for a given ∆  to check if the total slack error is reduced (denoted 
as a functional ∆ , ∆  ) for a particular , . If so, ∆  adopts a component 
from ,  in proportion to the corresponding error reduction: 

where  is a learning step parameter. In one approach, the contribution to ∆  is made 
if ∆ , ∆  , where  is a threshold parameter. In another approach, the 
contribution is made when ∆ , ∆  , allowing for taking the step in an 
opposite direction of increasing slack error. 

The next step of iteration is performed by updating the candidate  according to 
(36), and it stops for example when the objective function (24) does not improve sig-
nificantly or a maximum iteration count has reached. 

2.4 Estimation of Lagrange Multipliers 

Based on the above preprocessing iterations, a set of candidate hyperplanes are gener-
ated for various values of C. According to KKT condition (10), ’s are generated for 
bounded parameters (i.e., 0 or C). For any data point at margin, initialize  to /2, and/or use (13) to determine such ’s based on the distribution of unbounded 
parameters across , . 
An advantage of this approach is that quite immediately in its iterations, proper scale 
of C is readily determined. 

3 Extension to Non-Linear SVM 

3.1 A Case of RBF (Gaussian) Kernel 

Equation (9) after kernel substitution for feature space becomes: 

 ∑ ∑ ∑ x , x  (37) 

In the following approach, instead of attempting to break the problem of  qua-
dratic form in (9), we make an assumption that in a relatively low dimensional space 

∆   ∆ , ∆ ,,  (36) 
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scenario, there may be significantly more points in the margin than those exactly at 
the margin, and we attempt to find an approximate solution in the non-linear space via 
a low dimensional decomposition. 

To have low number of support vectors with RBF (Gaussian) kernel, the data 
points need to be well represented or covered in  via several kernels centered 
around few central points to be uniquely identifiable, e.g., through triangulation. This 
requirement helps to ensure that in the feature space, the dimensions represented by 
the central points provide dimensional coverage for other data points in the dataset. 
Therefore, in , we assign at least 1 such centers to basically allow for triangu-
lation. However, the requirement calls for coverage as well, so that a given point in 
the dataset would have non-trivial kernel values with respect to at least 1 central 
points. RBF (proximity) kernel in input space is between (0,1], with the coverage 
dependent on the bandwidth parameter  as shown in (38): 

x , x , 12  (38) 

Therefore, the coverage of each central point extends to at most several ’s. Too 
small a  creates islands out of each input dataset, resulting in high dimensionality, 
high number of SVs, and relatively high out of sample error [7]. In other words, the 
learning process memorizes the training data instead of learning the overall pattern for 
small . On the other hand, too large a , it will have difficulty negotiating stronger 
curves than the shape of the kernel allows. 

Let there be  such centers in  covering the input dataset, denoted as G  with 1  . Because of coverage of every x , the set of x , G ’s representing prox-
imity to the centers triangulate x  with sufficient accuracy. Therefore, in the transform 
space Z, there are at least 1 non-trivial dot products between z  and H  (i.e., the 
respective transformed counterparts of x  and G ) to provide dimensionality coverage: 

x , G z · H  (39) 

Because of triangulation, H  define  dimensional space in feature space capable of 
supporting similar number of SVs. Note that given neighboring G  are within cover-
age of their closest centers as well (with non-trivial cross kernel), the set of H ’s do 
not quite form an orthogonal basis in Z. However, a set of orthonormal feature vectors 

 may be constructed in Z domain based on H ’s (e.g., see [10] for an example of 
Gram-Schmidt Orthonormalization). The first  is taken in the same direction as H , 
and the rest are determined, for example, by iterative subtraction process, so that  
would retain basic characteristics of the corresponding H  as much as possible:  H

H
H

G , G
   H H ·   . 

 V
V

,  H H ·   . 
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 V
V

,  H H ·  H ·         

V
V

, H H ·  (40) 

Note that V  as ·  may be expressed via dot products of H  through H , and 

therefore, accessible in terms of cross kernels of G ’s: G , G . All transformed 
data points z ’s (including H ’s) as well as hyperplane related vectors (e.g.,  and , ) may be expressed based on the orthonormal set of  ’s. For example: 

H G , G   . 
H   H ·    . 
H  H ·  H ·         

H V  H · ,  (41) 

where , ’s are expressed via cross kernel of G ’s, and , 0  . Similar-
ly, for a z : 

z ,  (42) 

On the basis of orthonormal set of  ’s, a lower triangular matrix  is constructed by 
transposing H ’s as rows of : …… ,  (43) 

The components of z , i.e., , ’s, are determined by inverting as follows: 

z  …… z
…· z… …

G , x…  (44) 

Therefore: 

z
…,… …

G , x…  (45) 

The above shows that a slice of original kernel matrix in (37) is used to deal with  
the data in feature space. The coverage and triangulation in input space implies  
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redundancy in the kernel matrix. In other words, if two input points x  and x  may be 
located in  based on their kernels (or distances) to G ’s, then per (45), x , x  
(which is · ) may be expressed in terms of G , x ’s, G , x ’s, and G , G ’s. The accuracy in which this is possible can be used as a validation of 
coverage and triangulation to ensure the dimensionality of the feature space can sup-
port decomposition in (42) and (45). 

The machinery of previous sections can thus be brought to bear in the feature 
space, as all expressions are convertible to dot products (such as projections of the 
data points on certain directions). 
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