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Abstract. This paper presents a novel knowledge-driven approach to
recognising multi-user concurrent activities in smart home environments.
Capturing these concurrent activity patterns is challenging in that it usu-
ally requires detailed application-/user-specific specifications, or needs a
large amount of data to build sophisticated models. The proposed ap-
proach is founded upon the use of a generic ontology model to represent
domain knowledge, which is independent of particular sensor deploy-
ment and activities of interest. It leverages the hierarchical structure of
domain concept ontologies and applies well-established hierarchy-based
techniques to enable automatic segmentation of real-time sensor traces
and supports matching finely grained sensor data to coarsely constrained
activities. We empirically evaluate our approach using a large-scale real-
world dataset, achieving an average accuracy of 86%.

1 Introduction

Recognising human activities in a sensor-instrumented environment is an im-
portant task in ambient intelligent environments. Earlier works mainly focus on
identifying activities for a single user [20], however there are often multiple res-
idents living in the same environment, performing different tasks concurrently.
Distinguishing these activities is essential to the development of customised con-
text aware applications in a real-world setting [5].

Recognising multi-user concurrent activities is challenging due to interwo-
ven sensor traces and the numerous, flexible, and complicated ways of human
conducting activities simultaneously. Sophisticated data-driven techniques have
been designed to capture concurrent activity patterns [10], which usually leads
to heavy computation and a craving for training data, and thus is unsuitable
for real-time recognition. These learned models are also at risk from being over-
fitted to the training data, which is very likely to be different from the data at
later real-time running. Few knowledge-driven techniques [18] have been applied,
however the detailed specifications might only be specific to certain environments
or users, thus not scalable to a wide range of deployment.

To address the above problems, we propose a general unsupervised approach
for recognising multi-user concurrent activities. We think from a new direction:
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we consider one of the most important and pre-requisite processes toward recog-
nising concurrent activities to be the automatic segmentation of a real-time
sensor trace – composed of a sequence of raw sensor events – into semantically
meaningful parts, each of which is assumed to correspond to one of the concur-
rent activities. Then we recognise each activity from segmented fragments by
treating it as the single activity recognition problem.

Our approach falls into the knowledge-driven category, however, the main
difference from existing techniques is that we use the generic ontologies (e.g.,
WordNet and the top-level ontology [21]) and necessary conditions to constrain
activities which will result in more certain knowledge and require much less
knowledge engineering effort. The top-level ontology model formally explores
the universal hierarchical structure in all types of domain concepts, inspired by
which we adapt two well-established hierarchy-based techniques to enable sen-
sor trace segmentation and activity recognition. First of all we utilise the Wu’s
conceptual similarity measure [19] to study the similarity between sensor events
based on their semantics annotated in the ontological model and use the simi-
larity to segment a sensor trace. To recognise activities, we employ the Pyramid
Match Kernel (PMK) which is an effective technique in supporting approximate
matches between two sets of hierarchical concepts and has been widely used in
recent image-based object detection and matching studies [22]. We extend the
PMK for matching sensor events to activities, because the original PMK for-
mula does not suit mapping sensor events to ontological activity description;
e.g., the activity profile specified in the activity ontology and raw sensor events
might not share the same level of abstraction and the domain concept ontologies
are not uniformly hierarchical. We validate our segmentation and recognition
algorithms using a large scale real-world dataset. Through comprehensive ex-
perimental studies, we demonstrate both the effectiveness and flexibility of our
proposed algorithms.

The rest of the paper is organised as follows. Section 2 reviews the recent
techniques in recognising interleaved and concurrent activities. Section 3 presents
a generic ontological model to represent sensor events, objects, and locations,
based on which we explore the semantics between sensor events and segment
a sensor trace into fragments. Section 4 introduces an activity ontology that
describes necessary conditions on an activity, and applies the PMK technique to
support activity recognition. We evaluate our technique on a real-world data set
in Section 5 and conclude the paper with future research directions in Section 6.

2 Related Work

Activity recognition, one of the main research topics in ambient intelligence [2],
aims to identify users’ daily activities from observed sensor readings. Differ-
ent data-, knowledge-driven, and hybrid techniques are proposed in the litera-
ture, among which Hidden Markov Models (HMMs) have not only demonstrated
promising accuracies in recognising single-user sequential activities [9] but also
are presented as one of the most popular techniques in recognising interleaved
and concurrent activities.
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Patterson et al. [16] employ the HMM to recognise interleaved activities of
a morning routine using RFID data. Having experimented with various HMMs,
they conclude that using a HMM with a single state for each activity performs
best and increasing model complexity does not necessarily improve the recog-
nition accuracy. Modayil et al. [13] propose an interleaved HMM that aims to
capture inter- and intra-activity dynamics. It recognises activities based on the
last object used by the subject. This technique performs well in recognising cer-
tain interleaved activities and can, to a certain degree, deal with sensor data
noise.

Gong et al [3] developed a dynamically multi-linked HMM to interpret group
activities from video data involving multiple objects in a noisy outdoor scene.
The model is based on the discovery of salient dynamic interlinks among multi-
ple events using dynamic probabilistic networks. Nguyen et al. [14] employ the
hierarchical HMM (HHMM) in a general framework to recognise primitive and
complex behaviours of multiple people. A unified graphical model is constructed
to incorporate a set of HHMMs with data association.

Hu et al. [8] propose a novel probabilistic framework for multi-goal recognition
where both concurrent and interleaving goals can be recognised. The technique
used is skip-chain conditional random fields (SCCRF), within which concurrent
and interleaved goals are derived by adjusting inferred probabilities through
a correlation graph. The SCCRF is computationally expensive when a large
number of skip edges are involved. To prevent the recognition accuracy from
deteriorating, every partial model of the interleaved activities has to be observed
during the training phase. Hence the SCCRF requires a large amount of training
data because there are many different ways to interrupt and resume an ongoing
activity. As mentioned in [10], both HMMs and CRFs are more suitable for
purely sequential activities. To recognise interleaved and concurrent activities,
these techniques need to be extended or integrated with other techniques, which
usually encounters the problems of heavy computation and of craving for training
data.

Helaui et al. [7] build composite activity models using the Markov Logic Net-
work, a statistical relational approach to incorporate common sense background
knowledge. Gu et al. [5] present an unsupervised technique based on emerging
patterns with sliding time windows to recognise interleaved activities. This tech-
nique calculates complex activity scores based on mined activity-feature sets as
well as correlation scores between the activities. Our approach also uses feature
relevance to segment the boundary of adjacent activities, however we apply a
more formal knowledge-driven approach to segment real-time sensor traces solely
based on the semantic similarity of raw sensor events, without the need for extra
activity knowledge.

Inknowledge-drivenapproaches, ontologies are oneof themostpopular [6,17,15].
Chen et al. [15] present an ontologicalmode to represent smart home activities and
relevant context. The approach is motivated by the observations that ADLs are
daily routines full of common-sense knowledge providing rich links between the en-
vironment, events, and activities. The domain and prior knowledge is valuable in
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creating activity models, avoiding the need of large-scale dataset collection and
training.More recently, Saguna et al. [18] combine ontological and spatiotemporal
modelling and reasoning to recognise interleaved and concurrent activities. How-
ever their approach requires detailed understanding and thorough investigation of
the activity related specifics to successfully build long-termsolutions.Althoughour
approach shares the same motivation, we use the more certain must-have knowl-
edge rather than provide a complete specification for each activity; thus, we can
reduce the amount of knowledge engineering effort and as well as the bias from
experts.

3 Sensor Semantics and Segmentation

This section describes the sensor and the associated domain ontologies based on
which we introduce a semantic measure on evaluating the similarity between raw
sensor events. Following on, we illustrate an algorithm to segment a real-time
sensor trace into coherent fragments.

3.1 Domain and Sensor Ontologies

Central to our technique is a general ontological model that consists of four
main components: Object, Location, Sensor, and Activity. Among them, the
object and location ontologies are general (also called domain ontology in this
paper) in that they represent concepts of an application domain or in a certain
environment. By linking the sensor and activity ontologies to these two, we can
make sense of raw sensor data and infer activities from them.

The object ontology (OO) describes the type-of relationships between house-
hold objects. For example, a cup is a type of crockery, denoted cup � crockery.
To make the OO as general as possible, we extract it from WordNet [12], which
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(a) The OO example: a hierarchy of household objects from WordNet (b) The LO example: a hierarchy of rooms in a house

Fig. 1. The domain Object and Location ontologies
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is a hierarchical lexical system where words are organised by semantic relations
in terms of their meaning. Figure 1 (a) shows a part of the OO1.

The location ontology (LO) describes the containment relationships between
locations in terms of their spatial layout. Figure 1 (b) presents an example of
room layouts in an ordinary house in the form of a lattice. A house consists of
two floors, connected by a set of stairs.

The sensor ontology (SO) represents sensors and sensor events. A sensor event
is usually represented in a tuple se = (st, sId, val), indicating at the time st
a sensor whose id is sId reports a value val. The sensor id refers to a sensor,
which has a type (e.g., energy, object use, or temperature) and can be linked
to an attached object and an installed location. Both objects and locations are
instances defined in OO and LO. The sensor value can be abstracted into high-
level terms (such as the status of the object like ‘open’ or ‘close’, or a particular
property of an environment ‘hot’ or ‘cold’).

3.2 Semantic Similarity and Segmentation

Based on the conceptual models described in the above section, we will discuss
semantic similarity with which to automatically segment a sensor trace that is
composed of a sequence of sensor events.

Definition 1. Let sei and sej be two sensor events. The semantic similarity
between them is defined as

sim(sei, sej) =(simT (sti, stj), simS(sIdi, sIdj)), (1)

simS(sIdi, sIdj) =
simC(soi, soj) + simC(sli, slj)

2
, (2)

where

– sti (stj), sIdi (sIdj), soi (soj), and sli (slj) are respectively the timestamp,
sensor id, object that the sensor is attached to, and the location where the
sensor is located.

– The simT is the time similarity function that compares the time distance
between the sensor events.

– The simS is the sensor similarity function that normalises the conceptual
similarity functions simC on their objects and locations.

The conceptual similarity function is built on the algorithm proposed by
Wu et al. [19]. The idea is to find the least common subsumer (LCS ) of the
two input concepts and compute the path length from the LCS up to the root
node. The LCS is the most specific concept that these two concepts share as an
ancestor.

1 For brevity, we omit intermediate terms.
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Definition 2. Let c1 and c2 be two concepts organised in one hierarchy. The
conceptual similarity measure between them is calculated as:

simC(c1, c2) =
2×N3

N1 +N2 + 2×N3
,

where N1 (N2) is the path length between c1 (c2) and the LCS node of c1 and
c2, and N3 is the path length between the LCS and the root.

When c1 equals to c2, their LCS node is itself and the similarity is 1.0. When
c1 is semantically far from c2, their LCS node can be close to the root in the
hierarchy, which makes N1 and N2 large and N3 small, so the similarity is close
to 0. Therefore, the larger the similarity measure, the closer the two concepts.
Taking an example from Figure 1, the conceptual similarity between a cup and
a plate is 2∗3

2+2+2∗3 = 0.6, while the similarity between cup and door is 2∗1
3+4+2∗1 =

0.22.
The time similarity function simT can exist in two forms: fine- and coarse-

grained. Since the timestamps on each sensor event can be represented in numeric
values, its fine-grained form is calculated as

simT (st1, st2) = min(1, 1− |st2 − st1|
Tmax

), (3)

where Tmax is the maximum range of the time under consideration. For example,
if we consider daily activities we set the Tmax to be 24 hours (equally 86,400
seconds). If there exists a hierarchy of temporal concepts similar to the object
or location concepts, then its coarse-grained form is calculated as Definition 2.
In this paper, we take the fine-grained form, because the time hierarchy can be
application specific, which violates the generality principle. However, we note
this as a future research direction.

Example 1. In this example, we calculate the semantic similarity between the
sensor events se1, se2 and se3 in Figure 2. The location and object concepts
refer to the LO and OO in Figure 1.

– se1 and se2: their time similarity is 1 − 10
86400 = 1 using Equation 3; their

sensor similarity is (0.22 + 0)/2 = 0.11 using Definition 1.
– se2 and se3: Similarly, their time similarity is 1 − 25

86400 = 0.9997 and their
sensor similarity is (0.22 + 0)/2 = 0.11.

– se1 and se3: their time similarity is 1 − 35
86400 = 0.9996 and their sensor

similarity is (0.6 + 1)/2 = 0.8 where the location similarity between these
two sensors is 1.

In the above example, based on the similarity measures between these three
sensor events, we can intuitively observe that the sensor events se1 and se3
should be grouped together, and se2 should be partitioned from the former two.
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Fig. 2. Segmenting a sequence of interwoven sensor events based on their semantic
similarity

This sequence could suggest that there are two users: one is cooking in the
kitchen, while the other is using the bathroom. This example introduces our
idea of automatic segmentation of sensor traces that record concurrent activ-
ities; that is, dividing a sequence of raw sensor events into segments, each of
which is composed of sensor events that are semantically similar, intuitively
corresponding to one of the concurrent activities.

Algorithm 1 illustrates the segmentation process. During the process, we main-
tain two lists: a confirmed list Lc that stores all the segmented sequences that
are distant from the time of the current sensor event and will no longer be
concatenated with other sensor events, and a tentative list Lt that records the
unfinished sequences that are likely to be concatenated with new sensor events.

Algorithm 1. Automatic segmentation of a real-time sensor trace
Data: SEQ = 〈se1, se2, . . . , sen〉: a sequence of incoming sensor events
(θT , θS): the time and sensor threshold pair
Result: LS: a list of segmented sequences
initialise(Lc);
initialise(Lt);
foreach se ∈ SEQ do

found = false;
if (!Lt.isEmpty) then

for i = 1 to Lt.size do
sei = Lt.get(i).last;
(simT , simS) = sim(se, sei);
if simT ≤ θT then

Lc.add(Lt.get(i));
Lt.remove(i);

else if (!found && similarityCheck(simT , simS , θT , θS)) then
Lt.add(se);
found = true;

if !found then
formList(se);
Lt.add(se);

return Lc;
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Given an incoming sensor event, se, we calculate the similarity measure be-
tween it and the previous sensor event in each sequence in the tentative list Lt;
that is, (simT , simS) = sim(se, sei), 1 ≤ i ≤ m, where m is the size of Lt, and
sei is the last sensor event in the ith sequence. If there exists a sequence i such
that the similarity sim(se, sei) satisfies the given time and sensor thresholds
θt and θs, the new event se will be joined with the sequence i as 〈. . . , sei, se〉.
If the current se is different from all the sequences in Lt, then a new list 〈se〉
will be formed and added to Lt. That is, each sequence in Lt suggests one of
the concurrent activities; and the number of sequences in Lt implies how many
concurrent activities are ongoing.

During the process we also check whether any list i in the tentative list should
be moved to the confirmed list by assessing the time similarity simT . If the
similarity is too small, the list is distant from the current time and will be
unlikely to be further linked with any new sensor events; in this case it will be
moved to the confirmed list Lc. In the end, the segmentation result is Lc =
{〈se1, se2, . . . , sek1〉, 〈sek1+1, . . . , sek2〉, . . . , 〈sekm−1+1, . . . , sen〉}, where ki(1 ≤
i ≤ m − 1) is the last index in the ith segmentation. Since the input sensor
sequence records the concurrent activities, it is highly likely that there exists
two sequences that are temporally contained or overlapping.

4 Activity Ontology and Recognition

After segmenting real-time raw sensor traces into fragments, we need to infer
an activity for each fragment. This section describes an activity ontology that
defines a profile with time, location, and object constraints. The activity recogni-
tion process is to find the activity whose profile best matches the current sensor
fragment using the Primary Match Kernel (PMK) technique.

4.1 Activity Ontology

In the activity ontology (AO) we constrain each activity with time, object, and
location conditions. Generally there are two types of conditions to constrain
activities: sufficient and necessary. A sufficient condition is the most common
type that has been used in knowledge-driven activity recognition techniques. If
a sufficient condition is satisfied, then an activity is occurring. An example rule
on the activity ‘sleep’ is:

person in bedroom ∧ bed is accessed ∧ time is night

∧ light in bedroom low ∧ door in bedroom closed

⇒ user is sleeping.

However, sufficient conditions are usually user-specific, over-detailed and do
not always hold. In the above example, a user could sleep while leaving the bed-
room’s door open, or leaving the light on. Contrastingly, a necessary condition
restricts what must hold when a user performs an activity, meaning that if an
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activity is occurring, then its necessary condition must hold. In other words, if
the condition does not hold, then it is impossible that the user is performing
activity. In the AO, only the necessary conditions are specified on activities.

We consider two types of time conditions: occurring time – when the activity
usually occurs and duration – how long this activity typically lasts. For example,
we place the constraint that the activity ‘prepare breakfast’ should occur in the
morning (6am - 12am), and that the activity ‘bath’ should last more than 5
minutes. The object and location condition specifies what object the user must
access to in order to perform this activity and where this activity must occur.
To note that the necessary conditions that we specify here should be general
knowledge in the sense that most people will execute the activity in this way. A
summary of necessary conditions on the ‘prepare breakfast’ activity is presented
as follows.

Activity Occurring Time Duration Location Object

prepare breakfast [6am - 12am] 30min kitchen {cooking utensil, tableware}

As we can see, compared to the sufficient condition, the necessary condition
is more certain and concise. The object and location conditions are defined on
concepts in the domain ontologies OO and LO. Thanks to the existence of the OO
and LO hierarchies, we can specify the conditions using more general concepts
rather than listing each specific concept. For example, we could directly constrain
the objects for the ‘prepare breakfast’ activity on cooking utensil or tableware,
without the need of enumerating each concrete entity like a cup, plate or pan.

4.2 Pyramid Match Kernel and Activity Recognition

Activity recognition is done by finding an activity whose necessary condition
best matches the currently segmented sensor traces. Here we employ the PMK
technique [4], which is used to find an approximate correspondence between
two sets of hierarchical concepts. PMK has been successfully utilised in recent
image-based object detection and matching studies [22].

The principle of PMK is described as follows [11]: let X and Y be two sets of
vectors in a D-dimensional feature space. Pyramid matching works by placing
a sequence of increasingly coarser grids over the feature space and taking a
weighted sum of the number of matches that occur at each level of resolution.
At any fixed resolution, two points are said to match if they fall into the same cell
of the grid; matches found at finer resolutions are weighed more heavily than
matches found at coarser resolutions. More formally, let H�

X and H�
Y denote

the histograms of X and Y at a resolution �, so that H l
X(i) and H l

Y (i) are
the numbers of points from X and Y that fall into the ith cell of the grid.
The number of matches at � is given by the histogram intersection function:
I� = I(H�

X , H�
Y ) =

∑N
i=1 min(H�

X(i), H�
Y (i)), where N is the total number of

cells at a level � along each dimension, which is N = 2D�.
Since the number of matches found at a coarser resolution � includes all the

matches found at the finer level � + 1, the matches at coarser levels involve
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increasingly dissimilar features. To address this issue, PMK penalise matches at
the coarser level by associating the matches at each level � with a weight 1

2L−� ,
which is inversely proportional to the cell width at that level. Thus we come to
the formula: KL(X,Y ) = IL +

∑L−1
l=0

1
2L−� (I

� − I�+1) .
Given the above, we next adapt PMK to support semantic matching between

the conditions in activities and sensor data. To prepare, we translate each activ-
ity’s necessary condition into a D-dimensional vector V , where each dimension
represents a dimension of constraint (i.e., Location, Object, and Time). Corre-
spondingly, we construct a set S of D-dimensional vectors extracted from a sensor
segment. For a cell i at a resolution level � in a dimension d, we consider a value
falling into the cell if the value is more specific to the value corresponding to the
cell. Since each element in an activity vector could be composed of a set of values,
we call the activity element falling into a cell if any of its values falls into the cell.

Instead of employing uniform grids for each feature space, we use the con-
ceptual hierarchies of the OO and LO presented in Figure 1. Thus, the match
degrees at each resolution level � will be penalised by a new weight 1

cl
Ld−� , where

c� is the maximum width at �. The final match degree between a sensor trace
and an activity profile is the summed degree at each resolution level in each
dimension, which is formally defined in Definition 3.

Definition 3. Let V be a D-dimensional activity profile and S be a set of D-
dimensional vectors extracted from a segment of sensor traces. The matching
degree between V and S is calculated in the following formula.

pmk match(V,S) =

∑D
d=1(ILd +

∑Ld−1
l=0

1

c�
Ld−� (I

�(d)− I�+1(d))))

|S| ×D
;

I�(d) = I(S�(d), V �(d)) =

N(�)∑

i=1

size(S�(d))∑

j=1

δ(i, Sj(d), V
�(d))

δ(i, Sj(d), V
�(d)) =

{
1, if both Sj(d) and V �(d) fall into the cell i
0, otherwise.

where Ld is the number of resolution levels in a dimension d, N(�) is the number
of cells, and size(S�(d)) is the size of values in the sensor segment S at a level
� in the dimension d.

Example 2. We present a concrete example of calculating the match degree
between a sensor segment and the ‘sleep’ activity. We extract time, location,
and object data from a 3-length sensor segmentation as follows: T = (23:12:38,
23:13:02, 23:13:04), L = (BA,WDA,BA), O = (Bed,Chair, Bed), where BA
and WDA represent a bed and work desk area in a bedroom (as shown in
Figure 1). The matching degree at these dimensions are calculated as follows.

Dimension Constraint PMK Degree

Occurring time [8pm, 12pm], [0am, 8am] 3
Location BA 2.5
Object Bed 2.5
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For the occurring time, we assume there is no hierarchy for temporal concepts,
so we simply match the sensing time to the range, and the matching degree here
is 3. Given the location constraint as the bed area (BA), the unpenalised match
degrees from the coarsest level 0 to the finest level 3 respectively are 3, 3, 3, and
2. Then we penalise the match degrees by the weight and get the final result:
(0 + 0 + 1 * 1/2 + 2) = 2.5. The match degree on the object dimension can
be similarly calculated as 2.5. Then the total normalised match degree for this
sensor fragment to the ‘sleep’ activity is (3+2.5+2.5)/(3*3) = 0.89.

The recognition of an activity is done by matching the extracted feature set
from a sensor segment to each activity’s conditions. The activity that achieves
the highest score is the inferred result.

5 Experiment and Evaluation

We evaluate our segmentation and recognition algorithms on a well-known real-
world dataset. To the best of our knowledge, there are few available multi-user
datasets that are well annotated in the smart home community. After careful
selection2, we adopted the ‘Interleaved ADL Activities’ (IAA) dataset from the
CASAS smart home project [1]. This dataset was collected in a smart apart-
ment testbed hosted at Washington State University during the 2009-2010 aca-
demic year. The apartment was instrumented with various types of sensors to
detect user movements, interaction with selected items, the statuses of doors
and lights, consumption of water and electrical energy, and temperature, result-
ing in 2, 804, 812 sensor traces. With the variety of sensors, number of sensor
traces, length of the collection period, and the availability of the environment
knowledge, we consider IAA as suitable to evaluate our technique.

The apartment housed two people, R1 and R2, who performed their normal
daily activities during the collection period. Within the AO described in the
earlier section, each activity is constrained by the time, location and object con-
ditions. In this dataset, we find that these activities do not have explicit temporal
features; e.g., the sleeping activity is rather than defined as a proper night sleep,
but as the user lying on the bed even for a few seconds. To be consistent with
our knowledge engineering principle: only consider confident conditions when
specifying an activity, we do not place any temporal constraints on the activi-
ties. The only objects used in this dataset is the equipment in the kitchen (e.g.,
the burner), which is only relevant to the ‘meal preparation’ activity. Therefore,
we focus our constraints on the location. For example, the activity ‘R1 Wander’
is constrained to be in resident R1’s bedroom, the activity ‘R1 Sleep’ is con-
strained to be in resident R1’s bed area, and the activity ‘Meal Preparation’
is constrained to the kitchen and using the burner object. The annotated ac-
tivities along with their recorded occurrence time and location constraints are
summarised as follows.

2 Lists of Home Datasets: http://boxlab.wikispaces.com/List+of+Home+Datasets

http://boxlab.wikispaces.com/List+of+Home+Datasets
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Activity Time(in hour) Location Constraint

R1 Sleep 1053.97 R1’s bed area
R1 Work 123.44 R1’s work desk area

R1 Wander 1.47 R1’s bedroom
R2 Sleep 1335.57 R2’s bed area
R2 Work 99.87 R2’s work desk area

R2 Wander 0.62 R2’s bedroom
Meal (Preparation) 34.05 kitchen

Hygiene 83.83 bathroom
Bath 14.84 bathtub
Home 2.3 fronthall

In the end, the object ontology contains 20 instances and the location ontology
contains 15 instances, on which we define 83 sensors, and 10 activities. We note
that these ontologies are quite small for recognising activities in a real world
smart home environment. Complement to such small size of knowledge in activity
recognition is a novel use of hierarchy-based similarity measure and pattern
recognition.

We note that in this paper we do not intend to distinguish behaviour for mul-
tiple users if they are semantically ambiguous; for example, ‘R1 Meal Preparati
on’ and ‘R2 Meal Preparation’ are treated together as one activity ‘Meal Prepa
ration’, while ‘R1 Sleep’ and ‘R2 Sleep’ are considered individually because they
have explicit location semantics. The reason is that capturing the behaviour pat-
terns for each individual user in performing the same activity is very challenging,
which not only poses the risk of under- or over-specifying due to expert bias but
also requires expressive logical language to specify and computationally expensive
inference engine to process. Such knowledge is usually better discovered through
sophisticated data mining and machine learning techniques [14]. One of our future
goals is to combine our technique with such techniques to distinguish finer-grained
interleaved activities. This paper focuses on demonstrating the effectiveness of us-
ing a very limited amount of more certain and less subjective knowledge in detect-
ing multi-user concurrent activities with explicit semantic implications.

5.1 Parameter Selection

In terms of segmenting a real-time sensor trace, we have mentioned two param-
eters in Algorithm 1: sensor and time semantic thresholds. We set the semantic
similarity threshold to be 0.5. In terms of the time threshold, we set a time dis-
tance d and the threshold θT = 1 − d

Tmax
, and if simT (st1, st2) in Formula 3 is

below θT (i.e., their time distance is over d), then we dissect the corresponding
sensor events se1 and se2. Here we propose another way to set the time threshold,
called a Tuned Time threshold Configuration mechanism (TTC ). The principle
of TTC is to tune the time distance by taking the sensor similarity into account:

d′(simS) =
d

101−simS
.
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Compared to setting the uniform time threshold configuration (UTC ), TTC
is a more flexible way to balance both the time and sensor thresholds. The
intuition is that the sensor events reported in close proximity should be tied up,
even though they are not highly similar; this is useful in detecting activities that
have coarser constraints. For example, the ‘R1 Wander’ activity is constrained
on R1’s bedroom that spatially contains both the bed and work areas, which are
defined as the location constraints on the ‘R1 Sleep’ and ‘R1 Work’ activities
respectively. Using this tuned threshold, we could gather sensor traces that were
spread over the room but whose timing gap was close, potentially implying that
R1 is wandering. On the other hand, as the sensor threshold is roughly set, we
could use this increasingly tighter time constraint to dissect sensor events whose
semantics are not very close. For example, we could dissect sensor traces for the
sleeping and working activities if the timing gap between the traces was not close
enough.

5.2 Evaluation of Segmentation

We consider a segmentation algorithm to work well if it can partition the whole
sensor trace into a much smaller number of fragments while still able to de-
tect wherever there is a boundary between interleaved and concurrent activities.
Therefore the performance of segmentation is measured using two parameters:
(1) partition percentage – the percentage of the number of the segmentations over
the total size of sensor traces and (2) accuracy – the percentage of boundaries
between activities that is successfully detected. More specifically, a detection
is considered successful and counted if the time at the detected segmentation
(either start or end time) dst is within the range of the boundary time (again,
either start or end time of an activity) rst; i.e., dst ∈ [rst − tt, rst + tt], where
tt is the time tolerance that is set to be 2 minutes in our experiment.

The evaluation result is presented in Figure 3, where we compare the perfor-
mances of the above TTC and UTC mechanisms. As presented in Figure 3, our
segmentation algorithms can partition a large sequence of sensor events into a
much smaller number of fragments (whose partition percentages vary from 25%
to 2%). The detection accuracy is close to 1, indicating we can detect the bound-
ary successfully. Combined with both these measures, we can conclude that our
algorithm is able to select and combine sensor events that resemble one activity
and separate sensor events that correspond to different activities.

5.3 Evaluation of Recognition

After segmentation we use the recognition algorithm to infer the most likely
activity for each segment. Figure 4 presents the overall accuracies of recognising
single and concurrent activities. In the IAA dataset, there is 44% of the time
that more than one activities are being simultaneously performed by different
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Fig. 3. Partition percentages and accuracies of segmentation

users, and the accuracy of recognising these activities is 95%. The reason that the
accuracy of recognising concurrent activities is higher than that on single activity
is that most of time we recognise more than one activities. There are times that
the activities have been inferred while there is no corresponding activity recorded
in the ground truth.

Fig. 4. Proportion and accuracies of single- and concurrent-activities in IAA

Figure 5 presents the confusion matrix of recognising the activities in IAA,
where each figure is read as the percentage of predictions over actual occur-
rences. The result shows that the recognition algorithm can accurately recognise
the activities with explicit constraints. For example, the ‘Meal’, ‘Bath’, ‘Home’
activities have distinguished location constraints that are exclusive from any
other activities, so they are very well recognised. In contrast, the ‘Wander’ and
‘Hygiene’ activities are less well recognised since they are specified with coarser-
grained constraints.
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Fig. 5. Confusion matrix for recognising the activities in IAA

6 Conclusion and Future Work

This paper presents a novel approach to combining ontologies with recent ad-
vances in semantic matching techniques to recognise daily human activities. The
technique benefits from generality, low engineering effort, and no requirement
for training data. We have demonstrated the effectiveness of our technique in
segmenting sensor traces online, and recognising multi-user concurrent activities.
The technique works well on activities that have explicit semantics, but is lim-
ited in its ability to distinguish coarsely constrained activities from similar but
more finely constrained activities. In the future, we will explore other derivative
PMK functions to tackle this problem.

Also the current segmentation algorithms work well on object use sensors
such as motion sensors or RFID, and we will look into how to formally define
correlations between different types of sensors so that we can segment other types
of sensor data. Additional areas of future research will focus on distinguishing the
individual user participating in a common activity, and extending our ontological
model with time series analysis techniques and machine learning techniques; that
is, using the frequency and gap of sensor events to characterise the temporal
features of different users performing the same activity.
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