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Abstract We propose a model for assessing the performance of generation mixes
in a mean-variance context. In particular, we focus on the expected price of elec-
tricity and the price volatility that result from different generating portfolios that
change over time (because of investments and retirements). Our valuation model
rests on solving an optimization problem. At any time it minimizes the total costs of
electricity generation and delivery. A distinctive feature of our model is that the
optimization process is subject to the behavior of stochastic variables (e.g. load,
wind generation, fuel prices). Thus we deal with a problem of stochastic optimal
control. The model combines optimization techniques, Monte Carlo simulation over
the decades-long planning horizon, and market data from futures contracts on
commodities. It accounts for uncertain dynamics on both the demand side and the
supply side. The aim is to assist decision makers in trying to assess electricity
portfolios or supply strategies regarding generation infrastructures. To demonstrate
the model by example we consider the case of Great Britain’s generation mix over
the next 20 years. In particular, we compare three future energy scenarios and the
contracted background, i.e. four time-varying generating portfolios. Major British
power producers are covered by the EU Emissions Trading Scheme (ETS), so they
operate under binding greenhouse gas (GHG) emission constraints. Further, the UK
Government has announced a floor price for carbon in the power sector from 1
April 2013. The generation mix is optimally managed every period by changing
input fuel and electricity output as required.
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1 Introduction

Investments in power generation usually entail two types of effects: (i) portfolio
effects, i.e. the interplay between a new power plant and the existing fleet of plants
owned by a utility or located in a country; and (ii) option value effects, e.g. the
flexibility to run on particular technologies at a higher or lower rate over time as
uncertainty about the future unfolds. It has long been recognized that a proper
valuation of investments in power generation needs to capture both effects [7].
In other words, if the optimal degree of fuel mix diversity is to be identified, we
need valuation approaches that trade-off the expected returns and risks of increased
portfolio diversification, in both a static and dynamic perspective.

Mean-Variance Portfolio (MVP) theory is well suited for the first task [25]. The
standard framework envisages an investor that is confronted with a (financial)
portfolio selection problem. As long as information about asset average returns,
variances, and covariances is available, it is possible to map the whole set of assets
and portfolios of assets on a risk/return diagram. Hence, provided the investor
dislikes risk and likes return, it is possible to delineate the efficient frontier, i.e. the
set of asset portfolios that either minimizes risk for a given level of expected return,
or maximizes the latter for a given level of the former. Thus MVP theory allows
investors to identify the range of efficient choices. Then it is up to the investor to
identify the particular portfolio that best matches her/his individual preferences
regarding expected return and risk (the optimal portfolio). MVP theory thus
improves decision making in two ways: (i) by simplifying the portfolio selection
problem (narrowing down the choice along the efficient frontier), and (ii) by
sticking a number to the reduction of risk that diversification brings about.

MVP theory has been applied to real assets such as power plants with the aim of
identifying the optimal portfolio of generation assets for a utility or a country [2–4,
8, 20, 21, 32]. Bazilian and Roques [7] provide a brief review of this literature
alongside a number of state-of-the-art applications of MVP theory for electric
utilities planning. Early MVP applications mostly took a national or societal per-
spective; they were based on power generating cost and concentrated on fuel price
uncertainty. Some recent studies have instead adopted the viewpoint of private
investors. Therefore they also take account of a broader set of risks: electricity
price, emission allowance price, the co-movement of fuel, electricity, and carbon
prices, among others.

In dynamic, uncertain environments the availability of a broad range of gener-
ation technologies and the flexibility to run on them at different rates are particularly
valuable. However, this value is elusive. The Real Options approach (ROA) aims to
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quantify the value of a number of options that (project) managers have at their
disposal (e.g. the investment timing, size, stages, and so on). See Dixit and Pindyck
[14] and Trigeorgis [34].

When it comes to applying ROA to inform investments in power technologies, it
is usually necessary to adopt relatively restrictive assumptions about the stochastic
behavior of commodity prices. Besides, futures contracts on those commodities
may well be available but their liquidity for the decades-long maturities that these
infrastructures typically involve may falter. For a sample of ROA applications see
Murto and Nese [26], Roques et al. [31], Nässäkälä and Fleten [27], Blyth et al. [9],
Abadie and Chamorro [1].

Investors in liberalized electricity markets are naturally concerned about the
expected return and the risk of their investments. At the same time, policy makers
may guide investments in power plants in a particular direction (e.g. by adopting a
societal, as opposed to private, perspective). We propose a model for assessing the
performance of dynamic generation mixes in a mean-variance context. In particular,
we focus on the expected price of electricity and the price volatility that result from
different generating portfolios that change over time (because of new investments
and decommissioning of old plants).

There is a stark difference between our approach and the MVP portfolio
approach. The latter typically aims to identify a set of efficient fuel mixes that
optimally trade off the risks and expected returns of diversified portfolios of gen-
erating plants. This ‘efficient frontier’, however, usually corresponds to a single-
period uncertain situation, i.e. adopts a static perspective. Instead, we develop a
dynamic, multi-period approach. We assess the performance of different generating
mixes over decades. Similarly to the mean-variance approach, we can restrict
ourselves to considering a handful of particular generation settings which are of
interest to industry or policy makers. Our two measures can be plotted in the
standard risk-expected cost (or return) space, just like in the portfolio approach. But
they tell a rather different story, namely how our time-varying ‘portfolios’ behave
over a multi-year period (in terms of electricity price).

The model comprises two stages, namely simulation and optimization. The
optimization model minimizes an objective function subject to constraints. The
objective function considers two kinds of system costs: those of electricity gener-
ation and of unserved or lost load. The constraints can be split into two blocks
concerning the physical and economic environment. Regarding physical uncer-
tainty, power infrastructures are subject to failure. As for economic uncertainty,
commodity prices display mean reversion and seasonality where appropriate. Load
is similarly assumed to be seasonal and stochastic. The optimization provides, at
any time, the level of generation from each technology and served load along with
aggregate generation costs, carbon emissions, and allowance costs. We consider a
20-year time horizon (the one adopted in the UK Future Energy Scenarios). Over
this period the network topology changes naturally as new stations start operation
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while others are decommissioned. Each year is broken down into 60 time steps
(5 per month); i.e. the relevant period for the optimization problem is 1/60 year.1

The optimization model is nested in Monte Carlo simulation. Needless to say, if
simulations are to be realistic then we must work with numerical estimates of the
underlying parameters from official statistics, market data, and the like. A single run
determines the operation state of generation infrastructures over 60 × 20 = 1,200
consecutive time steps. The same holds for the value of stochastic load, wind- and
hydro-based generation, fossil fuel prices, and carbon price. Under each setting, the
optimization problem is solved: depending on the circumstances in place, genera-
tion is optimally dispatched subject to the network topology. Therefore, one sim-
ulation run involves 1,200 optimizations. We repeat the sampling procedure
750 times (so we solve 900,000 optimization problems). We thus come up with 750
time profiles of each variable of interest. Out of these simulations, we can determine
several metrics (not only averages) and derive the cumulative distribution function
of effects over major variables.

Therefore our model can assess the performance of a pre-specified generation
fleet in terms of the resulting expected price and the standard deviation around that
expectation. These two pieces of information fall naturally within the MV approach
to portfolio theory. At this point, it is possible to assess the performance of the
whole system (under different generation mixes) according to several other metrics,
e.g. operation costs, unserved load, carbon emissions, etc. Comparing their relative
performance sheds light on their respective advantages and weaknesses.

Of course, uncertainty about the future affects the rate at which future cash flows
must be discounted to the present. Some related papers develop their analyses under
two (or more) discount rates, e.g. Roques et al. [32]. Another usual practice is to
assume a particular utility function that characterizes the tradeoff between risk and
return [22]. One of the inputs to this function is the coefficient of risk aversion.
Analyses are then developed under two, three or more levels of risk aversion
[16, 33, 38]. In our approach, futures markets play a major role. In addition to their
informational role, the use of futures prices allows discount at the risk-free interest
rate. This fact sidesteps the discussion about the appropriate discount rate.

To demonstrate how the model works we undertake a heuristic application. In
particular, we consider the UK Future Energy Scenarios up to 2032. We consider
both base- and peak-load technologies, and also installed capacities of power
technologies as scheduled by the UK Department of Energy and Climate Change
(DECC) over the planning horizon (2013–2032). The UK is covered by the EU
Emissions Trading Scheme (ETS), so their electricity generators operate under

1 This is in contrast to related papers that usually perform economic dispatch on an hourly (or
shorter) basis with a time horizon extending over one (or a few) year(s). For example, Delarue
et al. [12] take hourly load patterns into account (over 7 weeks) and corresponding dispatch issues
as ramping constraints. There would be no major problem in using our model for a yearly period
on an hourly basis (8,760 steps) apart from the increase in the time required for computation.
Unfortunately, our long-term simulation comes at the cost of framing the optimization problem on
a longer time span (for example, a week instead of an hour).
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binding greenhouse gas (GHG) emission constraints. Note that the UK Government
has announced a floor price for carbon in the power sector from 1 April 2013 with
an initial value around 16 ₤/tCO2 to target a price for carbon of 30 ₤/tCO2 in 2020
and 70 ₤/tCO2 in 2030. Each generation portfolio is exogenously given but is
optimally managed by changing input fuel and electricity output as required.

The paper is organized as follows. Section 2 introduces the theoretical model.
Upon the distinction between the physical environment and the economic envi-
ronment it presents the optimal dispatch problem. Then Sect. 3 shows a heuristic
application to four dynamic generating portfolios assumed to provide a range of
potential paths of Great Britain over the period 2012–2032. A section with our main
findings concludes.

2 The Model

We propose a model for evaluating the performance of time-varying generation
portfolios. The performance depends on factors that change over time, e.g. network
topology, market structure, fuel and electricity prices, energy policy, environmental
and climate policies, etc. Our valuation model rests on solving an optimization
problem. At any time it minimizes the total costs of electricity generation and
delivery; in this sense it draws on Bohn et al. [10]. A distinctive feature of our
model is that the optimization process is subject to the behavior of the stochastic
variables (e.g. load, fuel prices); thus we deal with a problem of stochastic optimal
control, which is similar to that in Chamorro et al. [11]. We allow for the possibility
that a fraction of the demand is unserved, but this has a non-negligible cost (thus,
with the exception of extreme cases, in practice load is always served). Regarding
market power or strategic bidding by power generators, we account for these issues
through the profit margin of the electricity price-setting (or ‘marginal’) technology.2

The model allows for random failures in physical facilities. Uncertainty stems
also from load, wind generation, and hydro generation. We assume these follow
stochastic processes with suitable properties (for example, seasonality or stationa-
rity) that can be estimated from official statistics. Stochastic processes similarly
govern the economic sources of uncertainty (fossil fuel prices and allowance pri-
ces). For estimation purposes, the ideal market data are composed of futures prices;
this is important because (assuming the required liquidity/maturities are met) they
enable us to estimate parameter values in a risk-neutral setting.3

Our model does not address the question of the optimal time to alter the gen-
eration portfolios. We ignore inflation and efficiency targets at this stage. We
abstract from access-pricing problems for new generators. The model allows a
number of questions to be modeled and answered. Thus, in our base case climate

2 See Chamorro et al. [11], Appendix C.
3 This does not mean that investors are risk neutral.
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policy makers commit themselves to a certain future path of the allowance price by
setting a floor (i.e. carbon price evolves stochastically but always above a minimum
threshold level). We run the model to assess the overall impact (both absolute and
relative to the case without a floor price). Besides, we try different time-varying
portfolios of generation facilities. This way the model can assist decision makers
when confronted with challenging strategic choices.

We aim to evaluate the performance of long-term portfolios through the resulting
electricity price and its volatility alongside the abatement of CO2 emissions. Since
the probability distribution of these impacts can be asymmetric, we go beyond
average values and derive whole distributions of effects. The electricity prices in
particular can be used to check whether they are high enough to get a fair return on
investments in any particular type of power technology.

The optimal power flow (OPF) algorithm dispatches generation assets in merit
(least-cost) order subject to physical constraints. The economic dispatch problem is
to find output for each available technology so as to minimize total (system) costs
while meeting load plus line losses. At every time demand and supply must be
balanced, and the Laws of Physics must apply in the network.

2.1 Physical Environment

Load. Load is assumed inelastic and stochastic while showing seasonality.
D denotes the net demand for electricity from consumers. Pumped storage is a
power technology that effectively consumes electricity; its contribution, P, has a
negative sign. Therefore, the gross demand d is the sum of the realizations of two
different stochastic processes computed as:

d ¼ Dþ P:

Depending on the infrastructure available, load can be fully served or not.
The electricity actually served is denoted by s.

Future demand dispalys seasonality and is uncertain. We assume that the des-
easonalized load evolves over time according to the following Inhomogeneous
geometric Brownian motion (IGBM):

dDt ¼ kðL� DtÞdt þ rDtdVt;

D is assumed to show mean reversion. L is the long-term equilibrium level
toward which the present deseasonalized load tends. k is the speed of reversion
toward that “normal” level. The instantaneous volatility of this load is denoted by r.
dVt is the increment to a standard Wiener process; it is normally distributed with
mean zero and variance dt.
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Generation capacity. S stands for a given particular power station, and its actual
electricity generation is denoted by x with an upper bound x.

The coal (c), natural gas (g), and nuclear (n) fuel technologies in our model are
prone to failure. We adopt a set of binary (Bernoulli) random variables for the
possibility of any one contingency. We thus assume that each station S of type
c; g; nf g is in service for a fraction K of the year. Here c ¼ 1; . . .;C

� �
stands for

coal plants, irrespective of whether they are operative or not. Note that C is not
fixed; it can change over time due to openings or closures on a planned schedule.
Similarly, g ¼ 1; . . .;G

� �
and n ¼ 1; . . .;N

� �
refer to gas and nuclear plants.

We do not consider that wind (w), natural-flow or hydro (h), and pumped storage
(p) stations can be ‘off’. All the intermittences for whatever reasons are modeled
through the stochastic behavior of the load factor. The theoretical model assumed is
an IGBM:

dWt ¼ kWðWm �WtÞdt þ rWWtdYW
t ;

dHt ¼ kHðHm � HtÞdt þ rHHtdYH
t ;

dPt ¼ kPðPm � PtÞdt þ rPPtdYP
t :

The standard notation for reversion speed, long-term value, and volatility holds
(wind: kW , Wm, and rW ; hydro: kH , Hm, and rH ; pumped storage: kP, Pm, and rP).

Generation from wind, natural flow and pumped storage stations is seasonal. Our
simulations assume a seasonal behavior for renewable electricity, so the seasonality
in each load factor must be previously identified (from historical time series).

We can define the activity vector a � ac; ag; an; 1; 1; 1
� �

across all its tech-
nologies f ¼ c; g; n;w; h; pf g. Aggregate output electricity, denoted x, comprises
generation from all its energy sources f ¼ c; g; n;w; h; pf g:

x �
X
f

xf ¼ xc þ xg þ xn þ xw þ xh þ xp:

The maximum power that can be generated at a given time (t) by coal plants is
acxc. Therefore, the aggregate output electricity is bounded from above.

2.2 Economic Environment

Demand-side costs. According to Foley et al. [15], in liberalized electricity markets
the sale of electricity at a profit is the main business focus with value of lost load
(VOLL) playing a larger part than energy not served (ENS) (which was a key factor
in the era of the state monopoly). Short run marginal cost-based pricing is generally
not high enough to ensure this, so equilibrium involves a degree of ENS priced at
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VOLL. Thus in our model we have implicit rationing costs. The overall unmet load
is computed as:

d � s:

All consumers are assumed to have an identical and constant VOLL per unit,
VOLL, for any level of electricity use. Thus demand-side costs equal the above
difference times VOLL.

Supply-side costs. A major driver of stations’ short-term marginal costs is fuel
cost (in addition to emissions cost). We assume that wind, hydro and nuclear
stations bid a price of zero [37]; that pumped storage takes electricity from the
network at the bottom of the price range; and that the prices of coal (C), natural gas
(G), and carbon dioxide (A) evolve stochastically over time.4

In a deregulated electricity market, economic costs include both explicit input
(fuel) and output (emissions) costs, and a margin to get a ‘reasonable’ profit for
the generation units. Its size (here assumed constant) crucially depends on the
‘marginal’ technology that sets the electricity price, and the scope for market power
and/or strategic behavior by generators.

Generation costs comprise the (bid-based) costs incurred by all power technologies
f ¼ c; g; n;w; h; pf g. Since wind, hydro, and nuclear generators are assumed to bid a
zero electricity price, these sourceswill be fully dispatchedwhenever available as long
as load surpasses their availability: xw ¼ xw, xh ¼ xh, xn ¼ xn. Noting that pumped
storage stations tend to adjust their operation to the time when electricity prices are at
the higher end, even above natural gas turbines, we assume their ‘cost’ function is a
multiple of that of gas turbines, in our case, 1.10. Thus total generation costs are:

cðxÞ ¼ xc Mm þ C þ 0:34056A
HC

� �

þ xg Mm þ Gþ 0:20196A
HG

� �
þ xp1:1 Mm þ 0:20196A

HG

� �
:

Here HG and HC denote the thermal efficiency of gas- and coal-fired stations,
respectively. C and G denote the price (in €/MWh) of coal and natural gas,
respectively, while A stands for the price (in €/tCO2) of carbon dioxide. In elec-
tricity markets where natural gas-fired stations are the usual marginal technology,
the fixed margin Mm will be the ‘average’ or long-term clean spark spread.5 When
coal-fired plants or pumped storage stations are the marginal plants, we assume that
they earn the same margin.

4 When there is a floor price for carbon in place (as in the UK), the carbon price (A) can be
different from the allowance price on the EU ETS.
5 As shown in National Grid [28], both peak and baseload electricity prices more or less track
natural gas prices at National Balancing Point (which does not happen with coal or oil, for
instance). This is relevant when we deal with the profit margin included in generation costs; see
Chamorro et al. [11], Appendix C.
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We assume that natural gas prices display a seasonal pattern, but that coal and
carbon do not. The long-term prices of natural gas and coal are described by the
following IGBM stochastic processes in a risk-neutral world:

dGt ¼ dfGðtÞ þ ½kGGm � ðkG þ kGÞðGt � fGðtÞÞ�dt þ rGðGt � fGðtÞÞdZG
t :

dCt ¼ ½kCðCm � CtÞ � kCCt�dt þ rCCtdZC
t :

Unrestricted carbon prices (e.g. those on the EU ETS) are assumed to follow a
standard geometric Brownian motion (GBM):

dBt ¼ ða� kBÞBtdt þ rBBtdZB
t :

Nonetheless, the UK has set a floor that effectively supresses downward paths
below a certain limit. Therefore, the (restricted) time-t allowance price At that serves
as the basis for computing At + 1 in our simulations obeys the scheme:

At ¼ floorðtÞ þmax Bt � floorðtÞ; 0ð Þ:

Thus, if Bt > floor(t) the restricted carbon price and the unrestricted one are the
same: At = Bt. Conversely, if Bt < floor(t) then we have At = floor(t).

Both G and C are assumed to show mean reversion. Gm and Cm denote the long-
term equilibrium levels toward which current (deseasonalized) gas and coal prices
tend in the long run. fGðtÞ is a deterministic function that captures the effect of
seasonality in gas prices. kG and kC are the reversion speeds toward the “normal”
gas and coal prices. Regarding the price of the emission allowance, the parameter a
stands for the instantaneous drift rate of carbon price. rG, rC and rB are the
instantaneous volatility of natural gas, coal and carbon allowance. kG, kC and kB
denote the market price of risk for gas, coal, and allowance prices. dZG

t , dZ
C
t and

dZB
t are the increments to standard Wiener processes. They are normally distributed

with mean zero and variance dt; besides:

dZG
t dZ

C
t ¼ qGCdt; dZ

G
t dZ

B
t ¼ qGBdt; dZ

C
t dZ

B
t ¼ qCBdt: ð3Þ

From the above stochastic differential equation for a commodity price under risk
neutrality it is possible to derive a theoretical model for the futures price with any
desired maturity. We estimate the parameters in this stochastic model using daily
prices and non-linear least-squares regression (see [11], Appendix D). Upon esti-
mation of the parameters we can simulate the behavior of commodity prices any
number of times.

Economic dispatch. We assume that the system operator dispatches generating
resources to minimize the total costs of generation and unserved energy. As is
usually the case in electricity markets, nuclear, wind and hydro are assumed to be
located at the bottom end of the ‘merit order’, i.e. they are the first technologies to
enter the system. Consequently, the problem below solves for the generation level
of coal- and gas-fired power plants (xc and xg, respectively) along with that of
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pumped-storage stations (xp) and power served (s). A high VOLL implies in
practice that the load will be served unless this is not technically feasible. The aim is
to find an optimal vector of power generated xf g and power served/consumed sf g
that minimizes system costs at any time:

min
xc;xg;xp;sf g

cðxc; xg; xpÞ þ d � sð Þ � VOLL

Subject to:

0� xf � af xf ; f ¼ c; g; n;w; h; pf g;
0� s� d;
dD ¼ aðD; tÞdt þ bðD; tÞdV ;
dR ¼ aðR; tÞdt þ bðR; tÞdY ; R ¼ fW ;H;Pg;
dX ¼ aðX; tÞdt þ bðX; tÞdZ; X ¼ C;G;Bf g;
At ¼ floorðtÞ þmax Bt � floorðtÞ; 0ð Þ:

The first two restrictions set the environment as determined by the operation state of
the physical assets. The components of the power system are subject to limits.
Besides, the power delivered is lower than or equal to the amount demanded. In
other words, served load must fall between zero and total load (it is possible that
some load is not met when cost is minimized).

The last three restrictions are the stochastic differential equations. Demand Df g
has an initial value and evolves seasonally and stochastically over time. The load
factor of renewable, intermittent wind- and hydro-based generation stations
W ;H;Pf g is governed by a stochastic process. Similarly, the price of each com-

modity (coal, natural gas, and emission allowance) follows another Ito process. The
increments to standard Wiener process dV , dY and dZ differ. dZ also differs for
each commodity C;G;Bf g along with the terms aðX; tÞ and bðX; tÞ.

3 A Heuristic Application to the British Power Sector

To illustrate the model by example we consider a single system that is initially
given and fixed, namely Great Britain as of 2012. We abstract from the particular
arrangements of the British wholesale electricity market [37], which does not
operate as a pool.6 The demonstration of our general approach is thus inspired by
GB in that it uses plausible data, but with no claim as to accuracy for GB in detail.

6 The wholesale electricity market is operated within the British Electricity Trading and Trans-
mission Arrangements (BETTA). It is based on voluntary bilateral agreements between generators,
suppliers, traders and customers. In practice BETTA does not set a unique price: the actual price
generators are paid or customers have to pay is different if there is underproduction (for generators)
or overconsumption (for consumers).
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Regarding load, UK official statistics take ‘Electricity available’ as the starting
point for sales of electricity to consumers. This amount reflects the contribution
from all stations including pumped storage P. Electricity available in 2012
amounted to 336.96 TWh. After subtracting transmission and distribution losses
alongside theft, sales to consumers reached 308.41 TWh.7 Value is sacrificed
whenever load is lost. We assume VOLL = 2,500 ₤/MWh interrupted [30], or
2,904.44 €/MWh.

As for the generation capacity, the second column of Table 1 shows the gen-
eration mix by fuel source as of 2012. Based on UK DECC [35], coal-fired stations
reach a thermal efficiency of 36 %, combined cycle gas turbines reach 47.7 %, and
nuclear stations 39.8 %. “Wind” denotes both offshore and onshore wind. “Hydro”
stands for “Other renewables”; hydro stations generate electricity by flowing water
through turbines from sources naturally replenished through rainfall. “Pumped
storage” denotes “Other (Oil/Pumped)”; the latter stations use off-peak electricity to
pump water to a reservoir. They then release water to generate electricity at times of
peak demand (they are not considered to be renewable sources; UK DECC [36]).
The next column shows the number of power stations owned or operated by Major
Power Producers classified by type of fuel. Our model assumes a fleet of identical
average plants for each technology every year. The number and type of power
stations is expected to change significantly in the years ahead.

Maintenance and other works make plants unavailable from time to time. We
assume that natural gas plants are available 95 % of the time; nuclear plants 77 %;
and coal plants 75 %. As for renewable sources, all the stations are active in
principle but are intermittent. The time series of their metered output accounts for
their active/inactive state and load factor in a unified form. We use these data to

Table 1 GB electricity generation mix as of 2012 [29]; Contracted Background

TEC (MW)a MPP stations Thermal eff. Availability

Coal 27,571 22 0.360 0.75

Natural Gas 33,769 79 0.477 0.95

Nuclear 10,561 10 0.398 0.77

Wind 6,910 71

Hydro 1,626 79

Pumped Storage 6,380 4
a ‘Transmission entry capacity’ (TEC) is a Connection and Use of System Code term that defines a
generator’s maximum allowed export capacity onto the transmission system. All companies whose
prime purpose is the generation of electricity are included under the heading’Major power
producers’ (MPPs); they account for more than 90 % of total electricity generation. Large scale
hydro, large scale wind, and some biofuels fall within this category. Most generators of electricity
from renewable sources are “Other generators” because of their comparatively small size, even
though their main activity is electricity generation

7 UK Department of Energy and Climate Change [35], Table 5.5, support MC Excel spreadsheet.
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estimate the underlying parameters of wind generation, pumped storage and hydro
generation; see Appendix Tables A.3, A.5, and A.7.

Any day we have futures prices of all contracts on natural gas with monthly,
quarterly, seasonal (April–September and October–March), and yearly maturities
on the European Energy Exchange (EEX, Leipzig). We collected these data over
231 days. Similarly for coal to be delivered in Amsterdam, Rotterdam, or Antwerp
(so-called ARA coal). We also collected the prices of futures contracts on EU
emission allowances traded on the Intercontinental Exchange (ICE; London); see
Chamorro (2012), Appendix D. Using the futures prices on each day and non-
linear least-squares, we derived the curve that best fits futures prices on that day;
this provides an estimate of the parameters in the (risk-neutral) stochastic model.
Upon the calibration on each of the sample days, we computed the corresponding
average values in a second step; we use them as reasonable estimates of future
behavior.

Concerning the economic dispatch, the system operator aims to find an optimal
vector of power generated ðxÞ and consumed ðsÞ that minimizes the sum of (bid-
based) generation costs and unserved demand costs subject to the restrictions stated
above. The number of possible states of the system is 2ð22þ 79þ 10Þ in 2012; this
figure will change as old plants are decommissioned and new plants start operation.

Our aim is to evaluate the performance of dynamic generation portfolios. We
discount future cash-flows at the risk-free interest rate using risk-neutral parameters.
We run 750 simulations each consisting of 1,200 steps over 20 years (i.e. five steps
per month). At each step the optimal dispatch problem is solved subject to the
restrictions then in place; i.e. we solve 900,000 optimization problems that mini-
mize the sum of the bid-based costs of electricity generation and the cost of
unserved load, subject to linear and non-linear restrictions. The solution to each
problem defines the levels of generation and the power effectively served. Hence we
compute the bid-based production costs, electricity price, and carbon emissions,
among other variables. We follow the same steps with each generation portfolio.
The comparison among them describes their (relative) performance in terms of the
variable(s) involved.

3.1 Future Demand: Assumptions

We collected monthly load data from January 2002 to August 2013, i.e. 140
observations; see Fig. 1. Our base case analysis assumes that electricity demand
shows mean reversion over time with a null rate of growth. Transmission and
distribution losses alongside theft account for 9 % of overall demand over the
sample period. We estimate a load function with seasonality; see Appendix
Table A.1. The model is run with the same forecast demand under all the generation
mixes considered.
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3.2 Future Generating Portfolios

The UK has legislation in place setting limits on the emissions of greenhouse gases
as far ahead as 2050.8 Other legislation mandates a minimum level of renewable
energy in 2020.9 The 2012 Electricity 10 Year Statement10 (or ETYS for short; [29]
is the first GB document of its kind to be published. It forms part of a new suite of
publications which is underpinned by the UK Future Energy Scenarios. The ETYS
analysis is based around three future energy scenarios which provide a range of
potential reinforcements and outcomes. Additionally, further analysis has focused
on the contracted background, which includes any existing or future project that has
a signed connection agreement with National Grid.

Fig. 1 Past record of UK electricity available and sales of electricity to consumers (Public
distribution system)

8 The Climate Change Act of 2008 introduced a legally binding target to reduce GHG emissions
by at least 80 % below the 1990 baseline by 2050, with an interim target to reduce emissions by at
least 34 % in 2020. It also introduced ‘carbon budgets’, which set the trajectory to ensure these
targets are met. These budgets represent legally binding limits on the total amount of GHG that can
be emitted in the UK for a given 5-year period. The fourth carbon budget covers the period up to
2027 and should ensure that emissions will be reduced by around 60 % by 2030.
9 Renewables are governed by the 2009 Renewable Energy Directive which sets a target for the
UK to achieve 15 % of its total energy consumption from renewable sources by 2020.
10 http://www.nationalgrid.com/uk/Electricity/ten-year-statement/current-elec-tys/.
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Gone Green (henceforth GG). This is the main analysis case for the ETYS.
It assumes a balanced approach with different generation sectors contributing to
meet the environmental targets. Gone Green sees the renewable target for 2020 and
the emissions targets for 2020, 2030 and 2050 all met.

As Fig. 2 shows, coal capacity decreases dramatically over the period with a
U-turn as new carbon capture and storage (CCS) capacity comes on line from 2025
onwards. This is due to the EU Large Combustion Plants Directive (LCPD) and
Industrial Emissions Directive (IED). Gas/CHP generation capacity increases
overall over the full period (6.3 GW). Nuclear capacity increases by a total of
approximately 5 GW over the period. Wind starts from some 5 GW of capacity in
2012 but reaches 25 GW by 2020 and 49 GW by 2032. Hydro (including biomass
and marine) increases from almost 2 GW currently to some 5 GW over the full
period to 2032. Instead, generation capacity of pumped storage is cut in 50 % over
the period.

Slow Progression (SP). Developments in renewable and low carbon energy are
relatively slow in comparison to Gone Green and Accelerated Growth, and the
renewable energy target for 2020 is not met until sometime between 2020 and 2025.
The carbon reduction target for 2020 is achieved but not the indicative target for
2030.

This scenario places less emphasis on renewable generation. As Fig. 3 shows,
coal capacity declines consistently to some 4 GW by 2032. Instead, gas capacity
increases even more than before (10 GW more by the end of the period). Nuclear
capacity remains fairly static. Growth in wind capacity is considerably slower in
this scenario in comparison to Gone Green (capacity increases five-fold, not nearly
ten-fold as before). Other renewables excluding wind remain fairly static. Pumped
storage evolves basically as before.

Accelerated Growth (AG). This scenario has more low carbon generation,
including renewables, nuclear and CCS, coupled with greater energy efficiency
measures and electrification of heat and transport. Renewable and carbon reduction
targets are all met ahead of schedule.
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Fig. 2 Generation mix 2012–2032 under Gone Green future energy scenario [29]
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This scenario shows a much steeper increase in the level of renewable generation
capacity than the others, as Fig. 4 shows. Coal capacity shows a net decrease over
the period to 2032 of approximately 12 GW, with a slight U-turn at the end
combined with CCS. Gas-fired capacity shows a mild increase over the period.
Nuclear generation decreases a bit initially and then increases with the introduction
of new nuclear plant. Wind generation capacity increases 12-fold in this scenario.
Hydro capacity (alongside marine and biomass) also increases steeply over the
period to 2032. Pumped storage evolves basically the same way as before.

Contracted Background (CB). This refers to all generation projects that have a
signed connection agreement with National Grid. No assumptions are made about the
likelihood of a project reaching completion. Assumptions regarding closures have
only been made where there is an explicit notification of a reduction in Transmission
Entry Capacity (TEC) or there is a known closure date driven by binding legislation
such as the LCPD. The known LCPD closures entail a decrease in coal generation.

As Fig. 5 shows, this scenario has gas and nuclear generation capacities reaching
their highest shares of the mix. There is also a large increase in contracted wind
overall. Pumped storage falls short of the capacity levels assumed under Acceler-
ated Growth.
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3.3 Carbon Price: Assumptions

Taxes on activities that have negative environmental impacts are an important
component of both the tax system and the UK’s environmental policies [17]. The
climate change levy (CCL) is an environmental tax on electricity, gas, solid fuels
and liquefied petroleum gas supplied to businesses and the public sector. It
encourages energy efficiency to help the UK meet targets for cutting greenhouse
gases, including CO2 emissions. Transport taxes such as fuel duty, instead, are
designed primarily to raise revenues for public expenditure.

The UK Government has introduced a carbon price support mechanism to
support investment in low-carbon generation. From 1 April 2013 supplies of fossil
fuels used in most forms of electricity generation are liable either to CCL or fuel
duty. Supplies are charged at the relevant carbon price support rate, depending on
the type of the fossil fuel used. The rate is determined by the average carbon content
of each fossil fuel. The carbon price support rates for 2013–2014 represent the
difference between the Government’s target carbon price (the floor) and the futures
market price for carbon in the EU ETS in 2013. These tax rates are equivalent to
4.94 ₤/tCO2 in 2013–2014 [18].

The carbon price floor announced in Budget 2011 begins at around 16 ₤/tCO2 in
2013 and follows a straight line trajectory to 30 ₤/tCO2 in 2020, rising to 70 ₤/tCO2
in 2030 (2009 prices). The floor will increase at around 2 ₤/tCO2 per year from
2013 to 2020. The floor effectively eliminates the lower part of a number of random
paths of the carbon price. This policy measure (as compared to an unconstrained
carbon price) has a double effect: it increases the average carbon price while
decreasing its volatility. It in turn affects power technologies in different ways. The
model handles this floor.
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3.4 Power Generation

Investments in power generation face a broad set of risks which affect competing
technologies differently. The model solves for the generation level of several
technologies and the amount of power served in each period. Hence it is possible to
compute the cumulative power produced, and also a number of statistics of the
underlying distribution. Figure 6 displays the role played by each technology on
average under each scenario.

Figure 6 suggests that the AG portfolio delivers the most even levels of power
generation in terms of the major technologies. CB has the most uneven portfolio
from this viewpoint. Other renewables (hydro, biomass, …) and non-renewables
(pumped storage, oil) play a minor role in any case.

Combined cycle gas turbines are set to become the major producers in the SP
generating portfolio (less so in the GG portfolio). This is consistent with the relatively
low development of renewable and low-carbon energy and the delay in meeting the
environmental target. However, this situation is in sharp contrast with that in the CB
portfolio. Indeed, it is here where gas-based generation reaches its minimum. Instead,
nuclear stations appear as the major providers in the CB scenario.

We can relate these production levels to their respective capacities installed. This
sheds light on the effective load factor of each technology which in turn affects their
profitability.11 Figures 7, 8, 9 and 10 show the results under each scenario.

Under the three future energy scenarios coal has a higher share in power gen-
eration than in capacity installed; however both shares are almost equal in the CB
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11 In models where optimal dispatch takes place on an hourly basis the underlying model is able
to determine the effective number of operating hours (ENOH). The load factor equals ENOH/
8,760. For instance the model in Delarue et al. [12] determines technology specific load factors by
optimization. In our case, such a direct calculation cannot be made. Instead, we can calculate the
effective electricity output from each technology in a given period and the maximum possible
output in that period. Dividing the former by the latter we could get an indirect measure of
technology specific load factors similarly by optimization.
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portfolio. The situation is the opposite regarding gas-fired power plants. This
suggests they fall short of running at anything close to full capacity. The difference
is sizeable in AG, and particularly acute in CB; in this latter portfolio, there is room
for concerns about their prospective profitability. Similarly to coal, nuclear always
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reaches a higher share in terms of power delivered than installed capacity. The gap is
most pronounced in the CB scenario. As for wind, the gap remains basically steady in
all the portfolios other than CB, around seven percentage points. In the CB portfolio,
the gap is almost zero with generation reaching its maximum share (30 %).

3.5 The Results in a Mean-Variance Context

It is well known that the various generation technologies display different risk-
return profiles. Since each scenario puts a different emphasis on the competing
technologies, the scenarios themselves show different risk-return profiles despite
sharing a common demand pattern.

As already mentioned, the model minimizes costs by solving a dispatch problem
one period after another. Each period the model determines an electricity price at
which supply meets demand (this price is set by the marginal technology to enter
the pool).12 Thus there are as many electricity prices as periods or optimization
problems. First these prices are discounted so as to get their present-value equiv-
alents. Then we calculate the average or expected value alongside the standard
deviation. Figure 11 displays the results under each scenario.

As Fig. 11 shows, GG and SP turn out to be almost indistinguishable from each
other in terms of both average electricity price (€/MWh) and price risk.13 They
perform slightly worse than the AG scenario. The best performer is CB since it lies
furthest to the left and to the south. Prices in this setting are so low because of the
high share of zero-cost technologies entering the pool. Now, would nuclear plants
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12 These prices can be substantially lower than actual prices under market power [22].
13 This overlap is by no means new in the related literature. Even radically different mixes can
have nearly identical risk-return characteristics. As Awerbuch and Yang [5] put it: “There are
many ways to combine ingredients to produce a given quantity of salad at a given price”.
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be profitable at such low prices?14 Would utilities change the way they bid in the
power market?

Each of the 750 simulations delivers whole paths of a number of variables. For
example, we have 750 levels of the electricity price from 2013 to 2032. Figure 12
shows the frequency distributions under each of the generation portfolios as
envisaged in ETYS 2012. Most cases (and the probability mass) are concentrated
around the average price. But they are skewed right: the electricity price becomes
very high in a few cases.

It is possible to derive an average electricity price as a by-product of the model:
in each optimization the operating technology with the highest cost sets the mar-
ginal price. So there are as many electricity prices as optimization problems. Each
portfolio delivers an average price.

Following de Neufville and Scholtes [13], we examine the cumulative distri-
bution functions (or CDFs, sometimes referred to as “target curves”), which present
a lot of information in a compact form and thus provide an effective way to compare
alternative generation portfolios; see Fig. 13. The target curve under the CB stays
always above those of the other portfolios, that is, it stochastically dominates them.
Thus the CB portfolio entails a lower probability of surpassing any given level of
electricity price (the vertical distance from the target curve to 1.00).

3.6 Environmental Goals: Carbon Emissions

Needless to say, from a social planner’s perspective the generating cost is the
relevant measure [4, 6]. In a carbon constrained environment, this cost reflects the
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14 Lynch et al. [24] calculate (hourly) electricity prices from the (hourly) marginal cost of elec-
tricity provision and determine the return of each power technology under least-cost dispatch and
marginal-cost pricing.
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Fig. 12 Probability distribution of the average electricity price for different GB generation mixes
over 2012–2032

Fig. 13 Cumulative density function or “target curve” of the average electricity price for different
GB generation mixes over 2012–2032
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emission allowance price to some extent. Yet the amount of carbon emissions can
be used as such to assess the four generation portfolios from an environmental point
of view.

We computed the average of the 750 cumulative values for the above variables
and others. Dividing these by the 20 years in our time horizon we obtained yearly
averages.

Each scenario involves different utilization patterns of power technologies thus
giving rise to different levels of CO2 emissions. Here again the CB scenario out-
performs the others, so in principle there seems to be no trade-off between cost
efficiency and carbon objectives. Figure 14 displays the average results. Note that
even if the time profile of these emissions is asymmetric (which will render average
values unreliable), from an environmental viewpoint it is basically the same whe-
ther a ton of CO2 is emitted in 2017 or 2023 (it will stay in the atmosphere for
centuries). It is the cumulative emissions from each portfolio that matters. Since the
time horizon considered is the same across the four portfolios, the ranking based on
cumulative emissions coincides with that based on average yearly emissions.

Nonetheless, the time profile of these emissions is quite asymmetric (as the
composition of the generating fleets changes over time) so their yearly averages
must be taken with caution. We resort again to the target curves that result from
alternative power portfolios; see Fig. 15. The CB portfolio stochastically dominates
the other portfolios. In other words, it entails a lower probability of surpassing any
given level of carbon emissions. As expected, AG comes second, followed by GG;
SP portfolio is last.

3.7 Diversification and Concentration Issues

Depending on the prevailing circumstances, an efficient generation portfolio could
in principle concentrate on one or two technologies (and hence primary energy
sources). For example, the lack of long-term financial instruments for managing
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risks may favor technologies that ‘self-hedge’ to some extent; Roques et al. [32].
This reliance on one or two pillars might jeopardize another policy goal, namely
security of supply. Indeed, as these authors point out, actual electricity markets may
not appropriately signal the need for diversity and flexibility at the macroeconomic
level. In other words, there can be a trade-off between efficiency and security.

Further, MVP theory assumes that price shocks are stochastic. However, the
fewer technologies a power system relies upon, the fewer (as a rule) the number of
suppliers, and the more the system is exposed to the (non-stochastic) effects of
collusion and monopoly; Krey and Zweifel [23]. This risk of collusion grows higher
as the number of suppliers (or energy sources) becomes lower.

To depict a possible tradeoff between efficiency and security, we use several
concentration indexes to quantify fuel mix diversity. Hill [19] identified and ordered
an entire family of possible quantitative measures of diversity:

Da ¼
XI

i¼1

pai

" # 1
1�a

; a 6¼ 1;

where Da specifies a particular index of diversity, pi represents (in economic terms)
the relative share of option i in the portfolio under scrutiny, and a is a parameter that
inversely measures the relative sensitivity of the resulting index to the presence of
lower contributing options.

Fig. 15 Target curve of yearly average carbon emissions from different GB generation mixes over
2012–2032
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For a ¼ 1, the above general form reduces to the so-called Shannon-Wiener
diversity index:

SW ¼
XI

i¼1

�pilnðpiÞ:

The higher the SW index, the more diverse the system. If SW < 1, the system is
highly concentrated and therefore subject to the risk of collusion or monopoly,
leading to interrupted supply and/or price hikes [23].

For a ¼ 2, the reciprocal of the resulting expression is the Herfindahl-Hirschman
concentration index:

HH ¼
XI

i¼1

p2i :

The HH index can range from 0 (full diversification) to 10,000 (total concen-
tration). A value HH < 1,000 is taken by antitrust authorities as indicating no
concentration. A value of HH > 1,800 has been interpreted as problematic in terms
of exposure to supply risk.

Krey and Zweifel [23] apply these two indexes to U.S. and Swiss data to
determine the trade-off between economic efficiency and security of supply. As they
point out, “both [SW and HH] indices permit evaluation of the security of supply of
different power generating technologies thanks to a greater number of suppliers.
They therefore complement the MVP approach for policy makers who fear pur-
chases of primary energy to be exposed to collusion or monopoly—a consideration
of relevance especially in the markets for natural gas and uranium”. Both indices
help to determine whether a power generation portfolio is sufficiently diversified in
terms of technologies (this in turn implies diversification in terms of purchases of
primary energy sources).

We first looked at the initial capacities and those at the end of the time horizon
under each scenario. Table 2 shows that the SW index is always higher than 1;
below this threshold the risk of collusion looms. Relative to 2012, the SP portfolio
points to a reduction of diversity; the opposite happens with the CB portfolio: it is
the most diversified one. The HH index instead suggests that the SP portfolio is the
least concentrated while CB is the most so.

It may be of interest to apply the SW and HH indexes not only to installed
capacities but to generation levels as well. One or two scenarios suggest that some

Table 2 Diversity and concentration indexes of GB installed capacity from 2012 to 2032

Installed
capacity
(2012)

Gone
green
(2032)

Slow progres-
sion (2032)

Accelerated
growth (2032)

Contracted
background
(2032)

SW 1.455 1.440 1.281 1.441 1.500

HH 4,161 4,096 3,464 4,004 4,556
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power technologies will show load factors lower than usual. Table 3 displays the
results (based on yearly averages of installed capacities and generation levels).

The SW index surpasses the threshold 1.0 which suggests that the underlying
generation portfolio (and hence primary energy sources) is reasonably diversified.
A higher SW index means a more diverse system. As before, CB happens to be the
most diversified scenario in terms of average capacity while SP scenario is the least
so. However, in terms of average production the AG portfolio is the most diver-
sified whereas CB is the least diversified.

The HH index takes on values higher than 1,800 which implies that all gener-
ation portfolios are concentrated. Now, a higher HH means a system further away
from perfect competition. The CB portfolio is the least concentrated in terms of
installed capacity. Conversely, it is the most concentrated portfolio in terms of
power generation; more competition among suppliers of primary energy would thus
be particularly beneficial. In all, the preeminence of CB portfolio according to MVP
analysis comes at a price in terms of the lowest diversification and highest con-
centration regarding power generation. On the other hand, note that GG and SP
overlap in the MVP figure but this is not the case when it comes to the diversity
index or the concentration index.

3.8 Sensitivity Analysis: Portfolio Performance Without
a Floor Carbon Price

This section shows similar figures as before, under the alternative assumption of an
unconstrained carbon allowance price. The standard assumption in the literature is
that carbon price follows a GBM, which is a non-stationary process (thus adding
significantly to price risk). Figure 16 displays the results under each scenario.

First, comparison with Fig. 11 shows that the average electricity price decreases
while the standard deviation increases significantly in the absence of the carbon
price floor. The previously overlapping GG and SP portfolios no longer overlap, yet
they continue to be close to each other. They do not perform as well as the scenario
AG in terms of expected price, but they are relatively less risky. The clear winner
again is CB since it lies furthest to the left and to the south.

Regarding carbon emissions, not surprisingly they are higher now than in
Fig. 14, since carbon prices can fall more when there is no support; see Fig. 17.

Table 3 Diversity and concentration indexes of GB installed capacity from 2012 to 2032

Index Gone
Green

Slow
progression

Accelerated
growth

Contracted
background

SW: Capacity 1.494 1.412 1.510 1.511

SW: Generation 1.422 1.322 1.431 1.242

HH: Capacity 2,634 3,070 2,588 2,477

HH: Generation 2,508 3,057 2,463 3,336
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Considering each portfolio in isolation, yearly average carbon emissions under GG
rise by 8.7 MtCO2, those under SP by 4.7 MtCO2, those under AG by 8.1 MtCO2,
and finally those under CB by 2.1 MtCO2.

4 Conclusions

MVP analysis has been increasingly adopted over the last decades to assess the
performance of power generating portfolios in a number of countries. This is
consistent with the notion that, in liberalized electricity markets, investors and
utilities are concerned not only with the average or expected return on their
investments but also with their risk. This basic tradeoff is suitably represented in a
diagram with a measure of performance on the vertical axis (e.g. expected elec-
tricity cost or power per monetary unit) and a measure of risk on the horizontal axis
(e.g. the standard deviation of the variable involved).
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The traditional framework applies to a generating portfolio that is typically kept
constant over the evaluation horizon (say, 20 years). It can be the current portfolio
in a given country, or a target portfolio assumed to be in place sometime in the
future.

Here we consider a generating portfolio in a dynamic context. We recognize the
fact that the fleet of power plants changes over time as new stations connect to the
electric grid and older ones cease operation. Further, we evaluate the performance
of several generating portfolios in face of a common stochastic path of future
demand. There is more to these real facilities than to financial assets, so other
metrics beyond expected price and price volatility can be of interest too. Indeed,
investors, utilities and policy makers aim at different goals, so the most relevant
variables can differ among them.

We develop a valuation model that rests on cost minimization. Our measure of
cost naturally includes that of power generation and of unserved load. Regarding
the former, power producers under the EU ETS face both stochastic fuel prices and
carbon allowance prices. As for the latter, in our model lost load has a non-
negligible cost.

Uncertainty in our model extends beyond economic variables. It affects the state
of physical infrastructures and/or their output. In sum, we deal with a problem of
stochastic optimal control.

At any time, the optimization algorithm provides the level of power generation
by technology, served load, aggregate generation costs, carbon emissions, and
allowance costs, among other variables. The optimization model is nested in Monte
Carlo simulation. A single run determines a number of state variables over 60�
20 ¼ 1; 200 consecutive time steps. Under each setting, the optimization problem is
solved. Therefore, one simulation run involves 1,200 optimizations. We repeat the
sampling procedure 750 times. We thus come up with 750 time profiles of each
variable of interest. In particular, our model can assess the performance of a pre-
specified generation fleet in terms of the resulting expected price and the standard
deviation around that expectation. When several generating portfolios are consid-
ered, comparing their relative performance sheds light on their respective advan-
tages and weaknesses.

We illustrate the model by example. Specifically, we look at the British power
generation mix over the time horizon 2012–2032. The 2012 Electricity 10 Year
Statement envisages three future energy scenarios alongside the contracted back-
ground. Under Gone Green, the renewable target for 2020 and the emissions targets
for 2020 and 2030 are all met. Under Slow Progression, instead, the 2020 target is
not met until between 2020 and 2025; and the 2030 target is not achieved. Under
Accelerated Growth renewable and carbon reduction targets are all met ahead of
schedule. The Contracted Background portfolio refers to all projects that have a
signed connection agreement with National Grid; reductions and closures with an
explicit notification or date are also taken into account. Note that, as of 1 April
2013, the UK Government introduced a carbon price support mechanism. It aims at
a carbon price floor around 16 ₤/tCO2 in 2013, 30 ₤/tCO2 in 2020, and 70 ₤/tCO2
in 2030 (2009 prices).
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Regarding power generation in absolute terms, in the SP and GG portfolios gas
turbines are set to be the major producers. However, they only play a minor role in
the CB. In the latter, nuclear plants appear as the major providers.

The shares of coal and nuclear in power generation are higher than their shares in
installed capacity under the three future energy scenarios. The opposite is true for
gas-fired power plants. As for wind, its share of generation falls below that of
capacity in all cases except CB, where they are at par (around 30 %).

In the MVP framework we looked at the average electricity price and standard
volatility that result from each long-term power portfolio. GG and SP are almost
indistinguishable from each other, and AG is very close. CB clearly outperforms all
of them on both accounts, whether we focus on the typical scatter diagram or the
more informative target curves. On the other hand, carbon emissions can be used to
assess the performance of the above portfolios from an environmental viewpoint.
Again, the CB portfolio outperforms the others by a wide margin.

Economic efficiency can lead us to rely heavily on a low number of technolo-
gies. This can jeopardize security of supply. Further, it can also give rise to anti-
competitive practices or market power. We address these concerns by means of the
Shannon-Wiener diversity index and the Herfindahl-Hirschman concentration
index. When applied to yearly averages of installed capacity and power delivered,
the four portfolios as of 2032 are reasonably diversified. CB in particular is the most
diversified regarding capacity but the least so regarding production. At the same
time, the four portfolios are problematic in terms of exposure to supply risk. CB is
the least concentrated regarding capacity and the most concentrated regarding
production.

We perform a sensitivity analysis with respect to the carbon price floor. In its
absence, carbon price is assumed to evolve according to a standard GBM. As could
be expected, the average electricity price is both lower and less volatile in the four
portfolios. Again, CB is the clear winner. On the other hand, it is no surprise that
carbon emissions are higher now that carbon prices can fall lower. The CB portfolio
outperforms the other three also on this ground.

Our model can be improved in several ways. One involves better characterizing
the strategic behavior of generators and the exercise of market power. Our model
does not address strategic investment decisions such as how much generation
capacity to add, and when to add it. These sequential investment decisions call for
further research.
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Appendix: Estimation

Load. Sample period: 2002:01–2013:08, i.e. a total of 140 monthly observations for
GB. Tables A.1 and A.2.

Average deseasonalised load over the last 24 sample months: 24.90418 TWh.
With transmission losses included: 27.14556 TWh. Load volatility: 0.1801.

Table A.1 OLS estimates of load seasonality

Coefficient t-ratio Coef. Adj.

d(1) 3.43684 22.0155 3.7462

d(2) 1.59612 10.2244 1.7398

d(3) 3.37581 21.6246 3.6796

d(4) −1.47726 −9.4630 −1.6102

d(5) −2.11448 −13.5449 −2.3048

d(6) −2.2726 −14.5577 −2.4771

d(7) −2.83468 −18.1583 −3.0898

d(8) −2.73487 −17.5189 −2.9810

d(9) −2.27469 −13.9508 −2.4794

d(10) 0.254252 1.5593 0.2771

d(11) 1.47866 9.0687 1.6117

d(12) 3.69348 22.6523 4.0259

NoteCoef. Adj. stands for seasonal estimates of load plus transmission losses

Table A.2 Regression analysis statistics

Mean-dependent var −0.011663 S.D.-dependent var 2.553337

Sum squared resid 37.43261 S.E. of regression 0.540779

R-squared 0.958694 Adjusted R-squared 0.955145

F(12, 128) 247.5705 P-value(F) 2.43e-82

Log-likelihood −106.3144 Akaike criterion 236.6288

Schwarz criterion 271.9285 Hannan-Quinn 250.9735

Rho −0.232423 Durbin-Watson 2.416934
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Wind load factor. Sample period: 2006:04–2010:12, a total of 52 monthly
observations. Tables A.3 and A.4.

Average wind load factor: 0.27. Wind load volatility: 0.9088.
Pumped load factor. Sample period: 1998:01 to 2013:08, i.e. 188 monthly

observations.

Table A.3 OLS estimates of wind load seasonality

Coefficient t-ratio

d(1) 8.74421 9.1273

d(2) −2.06081 −2.1511

d(3) 6.25051 6.5244

d(4) −4.19477 −4.8954

d(5) −4.65959 −5.4378

d(6) −11.3065 −13.1949

d(7) −8.8292 −10.3039

d(8) −3.88958 −4.5392

d(9) 1.45744 1.7009

d(10) 1.74116 2.0320

d(11) 12.4732 14.5565

d(12) 4.4757 5.2232

Table A.4 Regression analysis statistics

Mean-dependent var −0.209207 S.D.-dependent var 7.129921

Sum squared resid 165.2062 S.E. of regression 1.916050

R-squared 0.941968 Adjusted R-squared 0.927782

F(11, 45) 66.40291 P-value(F) 4.57e-24

Log-likelihood −111.2076 Akaike criterion 246.4151

Schwarz criterion 270.9317 Hannan-Quinn 255.9431

rho 0.238200 Durbin-Watson 1.473965
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Hydro load factor. Sample period: 1998:01–2013:08, or 188 monthly observa-
tions. Tables A.5 and A.6.

Average hydro load factor: 0.3432. Hydro load volatility: 1.1099.

Table A.5 OLS estimates of hydro load seasonality

Coefficient t-ratio

d(1) 0.161759 11.7014

d(2) 0.0811138 6.8087

d(3) 0.0757758 4.6115

d(4) −0.027608 −6.1159

d(5) −0.122501 −11.3235

d(6) −0.185731 −10.8948

d(7) −0.16752 −13.7335

d(8) −0.12782 −8.8027

d(9) −0.0529903 −4.6321

d(10) 0.05018 6.5314

d(11) 0.125938 16.4867

d(12) 0.163624 10.2220

Table A.6 Regression analysis statistics

Mean-dependent var −0.003719 S.D.-dependent var 0.133179

Sum squared resid 0.469528 S.E. of regression 0.051651

R-squared 0.858549 Adjusted R-squared 0.849708

F(12, 176) 91.90841 P-value(F) 4.00e-69

Log-likelihood 296.5316 Akaike criterion −569.0632

Schwarz criterion −530.2259 Hannan-Quinn −553.3278

Rho 0.384711 Durbin-Watson 1.229343
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Pumped load factor. Sample period: 1998:01–2013:08, i.e. 188 monthly
observations Tables A.7 and A.8.

Average pumped load factor: −0.0845. Pumped load volatility: 0.4660.
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