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Abstract This chapter presents an original approach to anomalous behavior
analysis in trajectory data by means of a recursive Bayesian filter. The anomalous
pattern detection is of great interest in the areas of navigation, driver assistant system,
surveillance and emergency management. In this work we focus on the GPS trajecto-
ries finding where the driver is encountering navigation problems, i.e., taking a wrong
turn, performing a detour or tending to lose his way. To extract the related features,
i.e., turns and their density, degree of detour and route repetition, a long-term per-
spective is required to observe data sequences instead of individual data points. We
therefore employ high-order Markov chain to remodel the trajectory integrating these
long-term features. A recursive Bayesian filter is conducted to process the Markov
model and deliver an optimal probability distribution of the potential anomalous
driving behaviors dynamically over time. The proposed filter performs unsupervised
detection in single trajectory with solely the local features. No training process is
required to characterize the anomalous behaviors. Based on the results of individ-
ual trajectories collective behaviors can be analyzed as well to indicate some traffic
issues, e.g., turn restriction, blind alley, temporary road-block, etc. Experiments are
performed on the trajectory data in urban areas demonstrating the potential of this
approach.
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1 Introduction

Anomalous behavior detection refers to the problem of finding patterns in data that
do not conform to expected behaviors. It is of great interest for the applications of
navigation/driver assistant system, surveillance and emergency management.

The techniques employed for anomalous pattern detection in the last years are
summarized in (Chandola et al. 2009) with following classes: classification based
techniques, parametric or non-parametric statistical techniques, nearest neighbor
based techniques, clustering based techniques, spectral techniques and information
theoretic techniques. A significant number of works related to automated anomaly
detection in trajectory data involve trajectory learning, i.e., cluster models of tra-
jectories corresponding to normal cases are learned from historical trajectories and
new trajectories are typically assigned an anomaly score based on the distance to
the closest cluster model or likelihood of the most probable cluster model (Morris
and Trivedi 2008). Hu et al. (2006) propose an algorithm for automatic learning of
motion patterns and use these patterns for anomaly detection and behavior predic-
tion. Trajectories are clustered hierarchically using spatial and temporal information
and then use a chain of Gaussian distributions to present each motion pattern. Based
on the learned motion patterns, statistical methods are used to detect anomalies
and predict behaviors. Besides the cluster based trajectories learning method, Picia-
relli et al. (2008) propose a trajectory learning and anomaly detection algorithm
based on one-class Support Vector Machine. The algorithm can automatically detect
and remove anomalies in the training data. They first evenly sample points from
the raw trajectory and then model each trajectory with a fixed-dimensional feature.
Bu et al. (2009) build local clusters using continuity characteristics of trajectories
and monitor anomalous behavior via efficient pruning strategies. Ma (2009) presents
a method of real-time anomaly detection for users following normal routes. Trajec-
tories are modeled as a discrete-time series of axis-parallel constraints (‘“boxes”) and
then incrementally compared with a weighted trajectory collected from N norms.

Current approaches include (Kim et al. 2011), in which Gaussian process
regression is used for the recognition of motions and activities (also anomalous
events given already learned normal patterns) of objects in video sequences. Pang
etal. (2011, 2013) adapt likelihood ratio test statistic to learn traffic patterns and detect
anomalous behavior from taxis trajectories to monitor the emergence of unexpected
behavior in the Beijing metropolitan area.

Recursive Bayesian estimation (or Bayes filter) (Masreliez and Martin 1977),
e.g., the Kalman filter (Kalman 1960) for linear and normally distributed variables,
are widely used in the areas of signal processing, navigation and robot/vehicle con-
trol. A main character of Bayes filters is the dynamic updating (actually two steps:
prediction and updating) the estimation of the underlying variable(s) based only
on the most recently acquired measurement data. Kalman filter and its extension
have been proved appropriate for trajectory analysis. Recent works include (Prevost
et al. 2007), which presents an extended Kalman filter to predict the trajectory of
a moving object with the measurement data from a moving sensor—an unmanned
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aerial system (UAS). An Unscented Kalman filter is used in (Sun et al. 2012) for the
trajectory tracking based on the satellite data with weak observability and inherent
large initial error.

This chapter presents an original approach to anomalous behavior analysis of
GPS trajectory data of vehicles. A variant of recursive Bayesian filter is proposed
for a dynamic inference process. One of the original ideas is to find where the driver
is meeting navigation problems, i.e., taking a wrong turn, performing a detour or
tending to lose his way. Differing from most of the previous approaches:

1. The filtering is conducted for a high-level feature, i.e., the belief of behavior
character, instead of the vehicle state, i.e., position and orientation.

2. The pattern detection is performed on single trajectory and no previous learning
process is required to distinguish normal and anomalous behaviors.

For this purpose high-level features, i.e., (1) turns, their combination and density,
(2) the degree of detour and (3) the route repetition, are required and a long-term
perspective is taken to extract them from the original data. We use an extended
high-order Markov chain to remodel the trajectory integrating these long-term fea-
tures. The proposed recursive Bayesian estimator processes the Markov model and
deliver an optimal probability distribution of the potential anomalous drive behaviors
over time.

The chapter is organized as follows. In Sect.2 we introduce the anomalous
behaviors in the trajectories and the features we employed to recognize them.
Section 3 presents the Markov model adapted to the trajectory data and the recursive
belief filter. Experiments and results are demonstrated in Sect.4. The chapter ends
up with conclusions in Sect. 5.

2 Anomalous Behaviors and Features

In this work, we focus on the anomalous patterns in driving. In contrast to a normal
drive from the start spot to the predetermined destination, anomalous behaviors may
happen in many various situations, e.g., taking a wrong turn, getting lost, road-block,
temporary stopover, etc. Please note that we, just like other works, also work based
on the basic GPS data, i.e., time stamps and the positions. Unlike the conventional
measurements of position and velocity, however, the anomalous patterns can usually
not be observed at a single time point. High-level as well as long-term measurements,
i.e., behavior features, are required as the “observations” of the underlying state.

2.1 Turns Combination and Density

Turning is one of the most basic movements in the trajectory data. Although a single
turn is not indicating any anomalous behavior, their combination and density can
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Fig. 1 Turn extraction: the accumulated heading changes are extracted as a turn movement at the
last state

deliver some anomalous patterns like forming a detour/loop and unusually intensive
turns. In the GPS data a turn is normally finished within several time stamps (several
seconds). As shown in Fig. 1, at the first state where a turn starts the values of heading
changes are counted and the turn is “marked” at the last state when the turn has been
finished. We use the total absolute heading change of 40° as the threshold to determine
a turn. Turns right to the previous direction is defined as positive.

In comparison with the detection of a single turn, a perspective with even longer
term is taken to observe and evaluate the combination and density of multiple turns.
Turns inside a given time interval (a “memory” of normally 1 to 2min at urban
driving speed) are recorded with the directions of turning. Intensive sequential same
turns, e.g., double or triple left turns, have more impact on the belief of anomalous
behaviors than the sequential different turns because they are implying a potential
detour (see below) or the tendency of looping.

2.2 Detour Factor

Detour often happens when the driver meets traffic issues, e.g., road-blocking and
traffic jam, or fails to find the correct or best way to the destination. A detour factor
is conducted to quantify the degree of detour as an anomalous feature. From a start
point, if the trajectory tends to go backwards, or in other words, the heading change
is about 180°, it will be treated as a detour and the detour factor will be calculated
for all the points in the backward segment. As shown in Fig. 2, the detour factor of an
individual point is the ratio of the length of the trajectory from the start point (solid
blue) and the direct distance (green) between the start point and the current position.
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Fig.2 Detour factor: calculated from the first turn of turn-combination of U-form. The detour factor
values are only given to a certain segment (bold, red) after the heading change is accumulated to
about 180° until the value decreases. A value of 1 is then given to the rest states meaning no detour

2.3 Route Repetition

The most prominent feature in a one-way trajectory is the route repetition, i.e., the
driver goes back to the same road part, from either same or opposite direction, on
his way to the destination. Route repetition with the opposite direction is mostly the
result of performing an U-turn while that with same direction often happens after
driving a loop. The current trajectory segment, i.e., between the current and the last
steps, is repeating a former route when any prior trajectory segment(s) fall inside the
buffer of the current segment and approximately parallel to it.

3 A Recursive Belief Filter

A Bayes filter is conducted to estimate an unobserved state, i.e., the belief of
anomalous behaviors, recursively over time. The extracted features mentioned above
can be considered as the measurements/observed states in the Hidden Markov Model
(HMM).
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Fig. 3 An example of remodel the high-order Markov chain with the “memory” m = 3. The last 3
observations of each state in X is integrated into new observations Z for the new chain Y

3.1 The High-Order Markov Chain

Markov chains are commonly used in the modeling of state changes over time
sequence. The first order Markov chain is the basis of most Bayes filter variants,
e.g., Kalman filter, and can be easily considered as an appropriate model for trajec-
tory data. In this work we use an extended high-order Markov chain to integrating
the long-term features mentioned above. Let x be the unobserved state (here the
probability of anomaly) and z the measurement from long-term observations, the
HMM as the process model is presented in Fig. 3.

The proposed high-order Markov chain X = {xo, ..., x,} still follows the Markov
assumption, i.e., the probability of the current state given a limited number of previous
ones is conditionally independent of the other earlier states:

DXk |Xk—1, Xk—2, ooy Xkmms -y X0) = P Xk Xk—1, Xk—=2, +oes Xk—mm) (D

with m < k. The measurement Z = {zg, ..., 2, } at each state is dependent not only
on the corresponding state, but also several previous states:

P(Zh|Xkes Xk—1s woos Xk—mms +oes X0) = P(Zk|Xks Xk—15 +ver Xk—m+1) (2)

The higher order implies also, however, (1) the number of to be solved parameters
grows exponentially with the order O (|x|™) (with |x| the number of possible states
of x and m the order) and (2) the reliability of parameter estimation decreases. We
then remodel the trajectory by constructing a new chain ¥ = {yp, ..., y,} with a
m-tuple of x states:

Yk = (Xky Xk—1s oor Xk—m+1) 3



A Recursive Bayesian Filter for Anomalous Behavior Detection in Trajectory Data 97

so that the new chain Y over the m-tuple is equivalent to a first order Markov chain
keeping the conventional Markov property

POkIYVe—1, Yie—2, s Y0) = Pkl yk—1) 4

with a “memory” of m, and

Pk Yks Yk=1, -y Y0) = P(Zklyk) )

as shown in Fig. 3 (bottom).

3.2 The Belief Filter

The proposed filter is a simple variant of recursive Bayesian estimator keeping the
dynamic property and the prediction/updating scheme. Although normally the pre-
diction and updating steps work alternately and provide required inputs for each
other, either of them has also the probability to be skipped. In this work both of these
cases will happen:

e We are using multiple measurements (behavior features) for the updating.
Sometimes more than one feature can be extracted at the same time stamp. With the
assumption that the features are independent to each other (simplified assumption)
the updating step is performed multiple times before the next prediction.

e These long-term features, however, cannot be continuously observed. In the
interval of the given observations the prediction will be performed solely for mul-
tiple times.

Prediction
The prediction step calculates the total probability, i.e., the integral of the products
of the transition probability p(xx|xx—1) and the probability of the previous state
p(xr—1lzk—1) over all possible x;_1. In this case we have only one variable, i.e., the
belief, to be estimated and in principle it cannot be predicted based on any current
measurements. We assume that the anomalous behaviors are rather “transitory” than
the normal drive and, therefore, use a simple exponential decay to predict the belief
of the next state:

Xk = Xkl = F - xp—1 + wi (6)

where
F=e%% wp ~ N0, 02). (7

F simulates the decay given to the belief of anomaly along with the driving.
A Gaussian noise is added by wg. k is used to count the number of previous state(s)
without new anomalous feature(s) being reported. The accumulation of k makes sure
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that the belief decays rapidly after the driver performs normally. The decay tendency
can actually be tuned by the factor s. Generically we give no weight to k for each
step, i.e., s = 1, in the urban area. Fine tuning of s can adapt the filter to:

e the driving in suburban areas with higher speed and sparse street crossings, in
which case two potential anomalous behaviors may have longer time interval and
the belief decay should be set slower to keep the pattern being found, and

e the pedestrian trajectory in dense urban areas, where the decay speed may need to
be further enhanced to avoid continuous accumulation of the belief.

The predicted state estimate is taken as prior estimate for the current state.

Updating
The update step uses Bayes rules. The prior estimate is refined with the observation
on the current state and deliver a posterior estimate.

p(xk|Zk) = p(Zk|Xk) i p(xk|Zk_1) (8)
P(zklzk—1)

where the prior distribution is actually

pClz-n) = [ | pGixlx) - pOklxe—1) ©)
ieV

with multiple measurements. p(xx|xx—1) is the initial distribution after prediction. z;

with i € V the observation(s) that have been previously integrated ()’) in the current
updating phase.

3.3 Belief Inference

We employ two simple typical cases: detour and wrong turn with simulated data to
present the inference process using the proposed belief filter. Besides the information
of turns these two cases have their particular features that another one does not have
i.e., the detour case has only detour factor and no repeated route while the wrong turn
case has the latter only. So that the influence of the individual features can be well
demonstrated. Figure 4 presents a simple simulated trajectory with detour (left) and
the extracted high-level features plotted over time (right). The bold red line shows
the inferred belief of anomalous patterns over time. The possibility values are also
presented in the trajectory with scaled colors. Please note that the green circle and
red asterisk are used to mark the start and end positions of the trajectory, respectively.
The value/color of each line segment is determined by its start point. We use these
two examples to demonstrate some typical situations in the inference process.
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Fig. 4 Simulated trajectory of detour (left) with start position (green circle), end position (red

asterisk) and the belief of anomalous behavior shown with scaled color. Three high-level features:

Turns (blue), repeated route (magenta) and detour factor (green) are plotted together with the belief
of anomaly over time (right)
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Fig. 5 Simulated trajectory of detour: trajectory with colors indicating the belief of anomaly (/eft)
and the distributions of the belief and behavior features over time (right)

e Double different turns is considered normal. If the current turn has the different
direction to the previous one, less probability is given to guarantee the continuous
decay of the belief of anomaly.

e Double same turns, in the contrast, mean potential detour or even looping. Proba-
bility gain is added when the second turn happens.

e Detour factor increases and reach the maximum value when the detour is finished.
The belief of anomaly has the peak value at this time as well.

o After the detour the belief of anomaly has a fast decay.

Another typical case of wrong turn is shown in Fig.5. All the states of repeated
route have the same feature value of 1. The belief increases as long as the vehicle
stays in the wrong way and reaches the peak value at the spot where the wrong
turn started. The belief decays to normal value when the vehicle goes back to the
previous road.
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4 Experiments

Experiments are performed on the volunteered geographic information (VGI) data,
an open trajectory dataset as well as the trajectories from self-acquisition. Figure 6
shows an experiment on a VGI dataset, which has been gathered by one business
commuter in two years inside the city of Hannover, Germany. 100 trajectories are
randomly selected to test the presented algorithm. Anomalous behaviors, with a
probability of anomaly over 85 %, are detected in 12 trajectories (12 % of the total
number). 368 out of total 68136 (0.54 %) GPS nodes are labeled presenting potential
anomaly. Detailed analyses on several individual trajectories can be found in the
follow-up figures.

In comparison with the two simulated cases (cf. Figs.4 and 5) Figs. 7 and 8 show
the detour and wrong turn detections on the actual VGI trajectories.

A more complicated case with turns, loop and an incomplete detour is given
in Fig.9 (left). As shown in the belief and feature distributions (Fig.9, right), the
influence of the first two turns decrease rapidly along the driving and present actually
a normal segment. Forming a loop is in contrast a prominent anomalous behavior,
which consists of three sequential turns and route repetition when the vehicle goes
back to the former road. A small segment containing turns combination is detected
afterwards and part of it is recognized as a detour (second peak of the green line)
with the proposed method.
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distributions of the belief and behavior features over time (right)
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Fig. 8 An example of wrong turn: trajectory with colors indicating the belief of anomaly (left) and
the distributions of the belief and behavior features over time (right)
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Fig. 9 A single trajectory with turns, loop and detour: trajectory with colors indicating the belief
of anomaly (left) and the distributions of the belief and behavior features over time (right)

Figure 10 demonstrates a trajectory which is correctly recognized as normal
driving, i.e., no obvious anomalous pattern are found. The belief distribution function
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Fig. 10 Anexample of normal driving: trajectory with colors indicating the belief of anomaly (/eft)
and the distributions of the belief and behavior features over time (right)
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Fig.11 Collective behaviors in the cases of road-blocking and blind alley: a collection of trajectories
in the same area and similar time period (/eft) and the street map with the locations of the road-block
and the blind alley being manually labeled (right)

shows robustness with only slight fluctuates, even though the trajectory also contains
a few large turns.

Surely the anomalous behaviors are not frequent in the usual trajectory data.
In some cases of urban traffic, e.g., road-blocking, blind alley or turn restriction, how-
ever, anomalous traces will be often found and concentrated in a certain area. These
collective behaviors reflect to a certain extent the traffic issues mentioned above.

Figure 11 shows trajectories from self-acquisition (with known traffic conditions
and driver behaviors) in an urban area, where a temporary road-block as well as a
blind alley nearby (right) near a road crossing can be found. Anomalous patterns are
found at the end of the blind alley and from multiple sides of the road-block. As
shown in the trajectories (left), driver 1 from the north saw the sign of road-block
and made a detour, driver 2 missed the warning sign of road-block, had to make a
U-turn right before the road-block and then performed a detour to go on with the
same direction. Driver 3 from the south turned around even earlier because of the
warning sign and observing a traffic jam before the crossing. Although the blind
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Fig. 12 Collective behaviors in the case of turn restriction: trajectories (left) passing the road
intersection shows no anomaly except that from the bottom to the left and the street map (right)
with the routes from bottom to left (red) and reversed (blue) indicating the turn restriction

alley on the west side is not a temporary setup, it causes U-turns sometimes for the
drivers who are not familiar with this area.

Figure 12 presents an experiment on the open trajectory dataset: “GeoLife GPS
Trajectories” (Zheng et al. 2008, 2009, 2010) of Beijing, China. Inside the shown
segment trajectories from the bottom to the left show coincident detour while the
reversed (from the left to the bottom) trajectories have no anomaly. We assume that
such phenomena may indicate a potential left turn restriction, which is proven by the
street map shown in Fig. 12 (right), i.e., no left turn is possible here because of the
cloverleaf junction and the direction restrictions in the streets.

5 Conclusion

This chapter presents an original approach to anomalous behavior detection in the
trajectory data by means of a recursive Bayesian filter. The main contributions of
this work can be summarized as follows:

e A recursive belief filter is conducted for the dynamic detection of anomalous
patterns.

e Long-term behavior features are integrated using high-order Markov model.

e Unsupervised detection in single trajectory with local features.

By these means the belief of anomalous behaviors can be inferred dynamically
over time. In single trajectory, the result indicates where the driver is likely meeting
navigation problem and an assistant is needed. Furthermore, a potential of reflecting
traffic issues, e.g., turn restrictions, unexpected blind alleys and temporary road-
blocks, is shown as well by analyzing the collective behaviors of multiple trajectories.
We are, however, actually aware that the geometric features only are still limited
for a plausible anomaly detection. Further semantic information and background
knowledge might be helpful to estimate the anomalous behaviors more precisely.
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In this chapter we demonstrate one application of the proposed filter—the
detection of specific driving behaviors in GPS trajectory data. We assume that this
scheme can also be (1) extended to other trajectory patterns given corresponding fea-
tures and (2) adapted to the trajectories of pedestrian or animals, which are derived
from the other sensors like cameras and trackers.
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