
RSS and Sensor Fusion Algorithms for Indoor
Location Systems on Smartphones

Laia Descamps-Vila, A. Perez-Navarro and Jordi Conesa

Abstract Location-based applications require knowing the user position constantly
in order to find out and provide information about user’s context. They use GPS
signals to locate users, but unfortunately GPS location systems do not work in indoor
environments. Therefore, there is a need of new methods that calculate the location
of users in indoor environments using smartphone sensors. There are studies that
propose indoor positioning systems but, as far as we know, they neither run on
Android devices, nor can work in real environments. The goal of this chapter is
to address that problem by presenting two methods that estimate the user position
through a smartphone. The first method is based on euclidean distance and use
Received Signal Strength (RSS) from WLAN Acces Points present in buildings.
The second method uses sensor fusion to combine raw data of accelerometer and
magnetometer inertial sensors. An Android prototype that implements both methods
has been created and used to test both methods. The conclusions of the test are
that RSS technique works efficiently in smartphones and achieves to estimate the
position of users well enough to be used in real applications. On the contrary, the
test results show that sensor fusion technique can be discarded due to bias errors and
low frequency readings from accelerometers sensor.
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1 Introduction

Location-based applications for smartphones require knowing the location of the
user in order to provide information of user’s context. That information can be eas-
ily gathered in outdoor environments by using Global Positioning System (GPS).
However, GPS does not work in indoor environments. Inside a building, the GPS
signal is attenuated and scattered by the walls. Therefore, there is a need of alter-
native location-sensing systems that are able to run on smartphones within indoor
environments. Singh et al. 2013, Al Nuaimi and Hesham 2011, Ingram et al. 2004
or Ubisense (Woniak et al. 2013) present different techniques to develop indoor
positioning systems.

Among the indoor-location systems, many are wireless driven, i.e. they use of
Wireless Local Area Networks (WLAN) present in buildings to position the user:
the measurement of Received Signal Strength (RSS) from WLAN Access Points
(APs) available in the surrounding space allows to estimate the position of the user.

Fingerprinting is a technique that uses wireless technology to locate users in
indoor environments. As Melkonyan 2011 explains, fingerprinting measures, in a
preliminary stage called calibration, theRSS fromAPs of the area at known locations.
Such readings are stored as a radio-map database. After that, users at any location can
measure same signal features and try to find the statistical match with the radio-map
entries and then to find their location on the map.

An algorithm used to estimate position using RSS fingerprinting technique
is the nearest reference node that uses the euclidean distance metric (Teuber and
Eissfeller 2006). This method compares the RSS values from different APs mea-
sured at well-know positions in calibration stage with RSS values measured in an
unknown position. The difference between recorded values and current data can be
computed as an euclidean distance. It is possible to determine which calibration node
is closest to the current position and then convert this distance to a coordinate system.

Gansemer and Pueschel (2010) adapted the basic Euclidean distance algorithm
to an environment with changing sets of base stations. However, under specific cir-
cumstances still individual heavily incorrect location estimations occur. In addition,
the system is not tested on a smartphone.

Ferris et al. (2007) presented Wifi-SLAM project based on a Gaussian Process
Latent Variable Model to determine locations using signal strength data. Their
librarywas also used to develop aGIS indoor positioning application (Descamps-Vila
et al. 2013). Even though Wifi-SLAM could be integrated in an Android applica-
tion, calibration data and most of system functionalities were hosted in a web server
owned by a company that no longer offers the service. Thus, today the system is no
longer available.

As Jung et al. (2012) explain, WiFi-based indoor positioning involve some risks,
since in a real situation the infrastructure ofWLAN is not controlled. Thismay lead to
different drawbacks: (1) the number of APs emitting is uncontrolled, some APs may
be active during the calibration phase but may be inactive when the user estimates
the position (see Lee et al. 2013); (2) RSS of each AP is variable and unstable due
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to reflections, diffractions, multi-path effects, the amount of people or simply the
placement of the furniture (Gansemer and Pueschel 2010); (3) user may hold on
the smartphone in different position/direction during the calibration and during the
measurement stage, which derives in different RSS values (Shala and Rodriguez
2011).

Although there are several methods to estimate indoor location through RSS
signals (Lee et al. 2013), (Teramoto et al. 2011), (Hui et al. 2007), as far as we know,
there is not any indoor positioning system ready-to-use in smartphones as end-user
application and not only in a test and controlled space. To face this problem, the main
objective of this work is to design indoor positioning algorithms that can be used as
location-sensing systems in smartphones within any indoor space.

The chapter proposes two different algorithms to estimate the user’s position in
indoor environments. The first one follows a fingerprinting technique, using RSS
from WLANs present in the building. This means that the system must overcome
problems of WiFi-based indoor positioning and problems of operation performance
on smartphones when positioning through WLAN ( see Melkonyan 2011).

It is important, also, to preserve accuracy when estimating position. Lee et al.
(2013) show that the accuracy of Euclidean distance algorithm can be improved if it
is possible to reduce the instability of AP signal strength. Hence, our algorithm has as
starting point the algorithm of the Euclidean distance with additional improvements
to avoid unstable signals. The second method proposed to estimate user location
is the sensor fusion technique, which merge data obtained from different inertial
sensors (Woodman 2007), such as accelerometers, gyroscopes and magnetometers,
to estimate the movement of the user.

The chapter is structured as follows: Sect. 2 explains the proposed indoor
positioning algorithms and an Android prototype that implement them. Section3
presents the tests done to each system to determine whether they can be used in real
situations. Finally, Sect. 4 presents the conclusions and further work.

2 Indoor Algorithm

The indoor location algorithm uses two different techniques: fingerprinting and
sensor fusion. The first subsection details how the RSS algorithm estimates user
position and the second subsection explains in detail how raw data obtained from
smartphone sensors can be combined to estimate user location.

2.1 RSS Algorithm

As explained in Sect. 1, fingerprinting technique is based on the measurement of
RSS from different APs. RSS from APs can fluctuate for several reasons such as:
a change on the number of people in a room, collisions of radio waves, orientation of
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mobile receiver, etc. These fluctuations can cause errors on estimating the position.
To avoid them, we propose to store only stable data in front of those fluctuations.

As fingerprinting technique is based on two phases, calibration and location,
following subsections detail how the fluctuations on both stages can be avoided.

2.1.1 Calibration

Oncalibration stage there aremeasurements ofRSS at different locations of the build-
ing, where there are multiple APs that emit radio signals with different intensities,
namely, different levels of RSS.

We call Node, N , every location where there is a measurement of RSS during
calibration stage. Eachnode is related to a location in 3D (x, y, z coordinates):N ∈ �3.
Every node has associated themeasurements of severalAP signals:Ni = [lc1, ..., lck]
where i is the index of the node N , k is the number of APs visible from the node N
and lcj (level calibration) is the RSS level for each AP (index j) measured in dBm.

In order to store reliable values as calibration data, the algorithm uses two thresh-
olds to discard unstable values. The first one is based on the standard deviation in
multiple measurements and the second one limits the number of stored values.

Standard deviation upper threshold

Since values of RSS are very unstable, the measurement of RSS values is repeated n
times in each node Ni. Thus, there are n measurements of each AP from each node:

Ni(n) = [[lci,1
1, ..., lci,1

n], ..., [lci,k
1, ..., lci,k

n]] (1)

where index i represents each Node and index j each AP.
Considering n measurements of RSS values, the standard deviation of RSS values

of each AP (index j) by each node (index i) is:

σi,j =
√
√
√
√

1

n − 1

n
∑

r=1

(lci,j
r − l̄ci,j)2 (2)

where the mean is defined by:

l̄ci,j =
∑n

r=1 lci,j
r

n
(3)

The standard deviation is a measure of statistical dispersion. Hence, the algorithm
discards APs with high values of σi,j because it means that those APs have many
fluctuations. Only the results of APs that are under a threshold are used for the
calibration. This threshold has been calculated through the following test.
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Table 1 APs standard deviation

AP1 AP2 AP3 AP4 AP5 AP6

σ (m) 2.134 2.438 2.174 1.569 2.007 2.038

We did 20 measurements of RSS values at a static position. We stored data of six
controlled APs. Then, we calculated the standard deviation of each AP. Results are
displayed in Table1.

Results show that all standard deviations are below 3.0 m. Then, the upper thresh-
old to discard unstable measures is 3.0:

if σi,j � 3.0 ⇒ l̄ci,j values discarded (4)

if σi,j < 3.0 ⇒ l̄ci,j used for calibration (5)

Note that the value ofAP signal stored for the calibrationmap is themean obtained
in Eq.3.

Limit the number of APs by Node

In some indoor spaces there are many AP signals detected from a single Node, N ,
sometimes there are over 40 AP signals. Although the algorithm discards the APs
measurements that have a standard deviation value over a limit, the calibration map
does not need so much data for each Node. On the other hand, as the system runs in
a smartphone, the calibration matrix should be of a dimension as low as possible in
order to fit the memory requirements of smartphones. Thus, we need to reduce the
number of data of calibration and therefore we choose the more stable candidates to
calibration data.

To address this issue, standard deviations σi,j of measured APs in a single node Ni

are ordered in descendant order. Note that each AP is defined by APj and the number
of visible APs is defined by k. Thus, the algorithm stores a maximum of kmax of APj

values.
As a result, the l̄cij with standard deviation σi,j that are in a lower position than

kmax are discarded because are more unstable than the others. This filtering avoids
memory problems and increases performance efficiency, because it limits the size of
the calibration matrix.

Calibration matrix

The measurements of RSS that passed both thresholds, define the calibration map,
which is modelled as a matrix with the means of RSS levels:

Cal_Matrix = l̄cij i ∈ [0, s], j ∈ [0, k] (6)

where index i refers to the Node, index j refers to the index of AP, s is the total
number of nodes and k the number of APs. Note that the number of nodes in the



202 L. Descamps-Vila et al.

calibration stage can be defined by the user, but the number of detected APs depends
on the WLAN infrastructure of the building and their surroundings.

As explained previously, each Node i has a maximum of kmax associated APs.
However, each Node could detect different APs. Then, the matrix dimension will not
be kmax , it will have a variable dimension. In addition, whether a Node, Ni, does not
detect an APj that is already detected by another Node, the RSS value lcij will be
null, because the Node Ni does not have RSS from the AP.

2.1.2 Location

Once the calibration map is created it is possible to estimate user location. When the
user is at an unknown location, the system measures RSS values of APs from the
unknown position.

We define the unknown position of the measurement as P, which is associated to a
location in x, y, z coordinates: P ∈ �3. Every position P has associated the measures
of different AP signals and it is defined as: P = [lp1, ..., lpm] where m is the number
of APs visible from position P and lpm (level position) is the RSS value for each AP
measured in dBm.

As it is done in calibration stage, the algorithm applies the standard deviation
threshold. The system takes n measurements of RSS from a single position P:

P(n) = [[lp11, ..., lpn
1], ..., [lc1m, ..., lcn

m]] (7)

=
m

∑

j=1

(lpj
1, ..., lcj

n) (8)

where index j represent each AP.
To discard unstable measurements, the algorithm apply Eqs. 2–5standard devia-

tion threshold, but only by the index i = 1, because the system does measurements
from one position P when estimating the location. In this case, instead of a matrix,
the results are a list with the means of RSS levels:

Measure_Listj = l̄pj j ∈ [0, m] (9)

where index j refers to the index of AP and m is the number of APs that passed the
standard deviation threshold.

2.1.3 Positioning Through RSS Values

As Teuber and Eissfeller (2006) explains, the RSS signal ratio differences can be
expressed in a signal ratio difference vector in which the number of elements repre-
sents the number of AP. The ratio difference between nodes Ni and position P can
be obtained by euclidean metric:
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l(P,Ni) = li =
√
√
√
√

r
∑

j=1

(l̄cij − l̄pj)
2 (10)

where l̄cij is the data from the calibrationmap of Eq.6, l̄pj is the location data obtained
from Eq.9 and i is the index of each node used in the calibration stage.

As this algorithm is designed for any indoor environment, it may happen that
the detected APs from a node/location may not be always the same. For instance,
whether the system makes five measurements in each Node, Node 1 (i=1) may have
5 values for AP1 (j = 1): N1(5) = [lc1,11, lc1,12, ..., lc1,15] and four values for AP2
(j=2): N1(4) = [lc1,21, lc1,22, ..., lc1,24] because one measurement has not detected
the signal of AP2.

Thereby, the algorithm only introduces values in Eq.10 when there are RSS
values from the same APs. This restriction is important to avoid adding non-existent
distances. Hence, in Eq.10, index r defines the coincident APswith signals measured
both in calibration and location stages: APr = APk ∩ APm.

The drawback of taking only the r coincident APs is that we can obtain a
smaller distance li when there are few APs coincidents than when there are many.
Thus, each distance li is divided by the number of r values in order to normalize li
value according to the number of coincident APs. If there is not any coincidence,
namely, APr = 0, the distance cannot be calculated and it is necessary to perform
new RSS measures.

Finally, to estimate the position P of a particular location with respect to the
coordinate system, Teuber and Eissfeller (2006) suggest using the weighted mean
of the coordinates of the closest q calibration Nodes. The selected q Nodes are the
ones that have a lower value of li. Equations11 to 13 show how to calculate the
coordinates of the position:

x = 1
∑q

i=1(
1
li
)

·
q

∑

i=1

(
xi

li
) (11)

y = 1
∑q

i=1(
1
li
)

·
q

∑

i=1

(
yi

li
) (12)

z = 1
∑q

i=1(
1
li
)

·
q

∑

i=1

(
zi

li
) (13)

where li is obtained from Eq.10 and xi, yi, zi are the coordinates associated to
each Node Ni when doing the calibration.

Thus, the position obtained using RSS algorithm is:

rRSS = (x, y, z) (14)
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At this point we have a first guest of the position. To improve it, in the next step
we introduce data from inertial sensors to develop a sensor fusion system.

2.2 Sensor Fusion

Inertial sensors such as accelerometers, gyroscopes and magnetometers can be used
to determine the user’s movement and location. Thus, these inertial motion sensors
may provide data to improve the accuracy of the position obtained with Eq.14.

Following subsections explain how to estimate the distance traveled and the
direction of movement of users using sensor fusion of accelerometer and magne-
tometer data.

2.2.1 Position Estimation

The accelerometer of a smartphone offers the values of the acceleration (m/s2) of
the device through measurement of the forces applied on the sensor. It provides the
values of acceleration in three dimensions of space (x, y, z). Google (R) explains
on the documentation that internally the accelerometer sensor used this equation for
every single axis:

ai = gi −
q

∑

j=1

Fj
i

m
(15)

where i represents each of the coordinate axis, g is the value of the force of gravity,
F the force acting on the device, m is the mass of the device and q the number of
forces that act on the device.

Equation15 shows that accelerometer row data includes the gravity force.
Tomeasure the real acceleration of the device, the contribution of the force of gravity
must be removed from the accelerometer data. The simplest way is to use a high-pass
filter to isolate the force of gravity and obtain what is called the linear acceleration,
then:

a′
i = ai − gi (16)

where the index i represent each coordinate axis.
Once there is a vector with the acceleration on the three axes, we can estimate the

position after some time. It is necessary to apply the equations of cinematics of an
object that has a linear movement accelerated. It is shown in Eq.17:

ra =
n

∑

i=1

ri−1 + 1

2
a′

i�t20,i (17)

where ra = (x, y, z) is the position after a time �t, r0 is the initial position, and a is
the acceleration obtained from Eq.16.
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Fig. 1 Smartphone coordinate system (left). World coordinate-system defined by Google (right)

To obtain the initial position, r0, we consider that we are still and just in a point
where we can obtain the position via GPS or just in a calibration node. Thus, from
the starting point and with the accelerometer, we can obtain a new guess of the
position: ra.

2.2.2 Movement Direction

Besides theposition estimation, the accelerometer sensor couldbeuseful to determine
orientation of movement. The magnetometer measures the strength of the ambient
magnetic field inμTesla, in x, y, z axes. The combination of both sensors data provides
information from the orientation of the device.

Magnetometer and accelerometer measure data in the device coordinates system,
but to know the direction the user is moving, it is necessary to know values respect
real-world coordinate system. Thereby, raw data obtained from the smartphone
must be transformed into another system, which can be used to position the user.
This system is defined by Google as worlds coordinate system.

The left side of Fig. 1 represents the smartphone’s coordinate system. On the
right side there is the representation of the coordinate system that Google defined as
world’s coordinate system. In this coordinate system, x is tangential to the ground
at the device’s current location and points approximately East; y is tangential to the
ground at the device’s current location and points toward the geomagnetic North Pole
and z points toward the sky and is perpendicular to the ground plane and represents
altitude. Both drawings are extracted form Google documentation.

Then, using a rotation matrix defined as an Android internal method, it is possible
to transform any vector from the smartphone’s coordinate system to the world’s
coordinate system or vice-versa. The processing of data with the rotation matrix
derives into the orientation of the smartphone respect world’s coordinate system.

However, the positioning system requires to know the azimuth angle. This is the
angle between magnetic north and the device’s y axis (Fig. 1). When the device’s y
axis is aligned with magnetic north this value is 0, if device’s y axis is pointing south
this value is 180◦, when pointing east the value is 90◦ and when it is pointing west
this value is 270◦.
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To obtain the azimuth angle the system can apply another internal method from
Android, called getOrientation. Finally, it is only necessary to transform values
obtained from this method from radians into degrees in order to know the angle
respect the magnetic north. This lets the user to know the relative direction that is
oriented the device respect to Earth frame of reference, because the Earth’s magnetic
north is known. It works in a similar way to traditional compasses.

2.3 Prototyping

We implemented the algorithms and methods described in this section on an
Android prototype. The objective is to test whether all of them can be used in an
Android smartphone and whether it is possible to estimate the position in an indoor
environment.

The main functionalities of the prototype are: to display the available floor plan
of buildings; to calibrate the floor plan with RSS values (see Sect. 2.1); to measure
the position of the Android device using the accelerometer (see Sect. 2.2.1); to show
the direction of movement of the user respect north magnetic pole like a compass
(see Sect. 2.2.2); to show the estimated user position over the floor map.

3 Testing

The smartphone used to perform the tests is a Galaxy Nexus with Android 4.3.
The first subsection presents tests performed on the prototypewith the RSS algorithm
and the second subsection shows the tests performed using sensor fusion.

3.1 RSS Tests

This subsection shows the tests performed with the prototype of the RSS positioning
algorithm described in Sect. 2.1 within the Android device. We did positioning tests
in two different buildings in order to analyze the behavior of the system in two
different environments. One place is a flat (Building A) and the other is an office
building (Building B). In these tests we used only one floor for each building, what
means that the coordinate z is always equal to 0. In addition we dissociated theWi-Fi
connection of the smartphone.

The metrics for the tests are the same in each building. For the calibration we
measured 40 nodes: s = 40. In each node we repeated the RSS measurement 5 times:
n = 5. The limit of AP signal values stored by the matrix is 15 for node, kmax = 15.
The standard deviation threshold is 3.0, as defined in Sect. 2.1.1.

We measured 10 different positions in each building. In order to have statisti-
cal values, we estimated the position of each one 10 times (therefore, we had 100
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Fig. 2 Building B—Position 4

measurements for building). For each estimation of the position, the algorithm took
5 measurements, n = 5 and it used the fourth nearest nodes to calculate the x, y
coordinates, q = 4.

3.1.1 Results

Table2 presents the results of building A and Table3 presents the results of Building
B. Tables show the mean of the 10 measurements for each position, the error, the
standard deviation and the accuracy respect to the theoretical x, y position.
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Table 2 Positioning tests in building A

Position Mean ± error (m) σ (m) Accuracy (m)
xp yp σx σy x y

1 6.94 ± 0.09 9.31 ± 0.16 0.30 0.52 −0.29 0.38
2 3.40 ± 0.01 9.97 ± 0.01 0.01 0.01 −0.53 −0.96
3 4.79 ± 0.02 7.70 ± 0.01 0.06 0.01 −0.23 −0.25
4 5.53 ± 0.22 3.99 ± 0.10 0.68 0.33 1.25 0.42
5 8.65 ± 0.35 3.97 ± 0.19 1.11 0.61 −0.78 −0.65
6 6.42 ± 0.14 8.42 ± 0.09 0.44 0.29 −1.27 1.06
7 5.33 ± 0.18 5.11 ± 0.17 0.57 0.55 −0.24 1.18
8 6.92 ± 0.04 11.07 ± 0.01 0.13 0.02 0.42 −0.26
9 8.03 ± 0.18 1.83 ± 0.09 0.59 0.29 −1.23 0.66
10 6.89 ± 0.08 3.25 ± 0.08 0.26 0.24 0.32 1.30

Table 3 Positioning test building B

Position Mean ± error (m) σ (m) Accuracy (m)
xp yp σx σy x y

1 35.04 ± 0.31 7.01 ± 0.08 0.99 0.26 −3.02 −0.43
2 32.81 ± 0.32 10.25 ± 0.58 0.92 1.64 0.64 −1.08
3 30.59 ± 0.32 12.48 ± 0.42 1.00 1.31 3.59 2.76
4 34.92 ± 0.12 17.34 ± 0.76 0.37 2.41 −3.08 5.01
5 34.50 ± 0.32 26.76 ± 0.90 1.01 2.84 −3.33 −1.18
6 36.05 ± 0.57 32.90 ± 0.52 1.82 1.63 −0.84 −2.77
7 7.15 ± 1.91 22.63 ± 1.01 6.05 3.19 3.43 −2.26
8 5.85 ± 0.61 15.52 ± 0.59 1.92 1.89 1.79 1.80
9 28.65 ± 0.26 26.36 ± 0.82 0.82 2.60 −0.18 −4.20
10 23.75 ± 0.08 23.58 ± 0.32 0.25 1.01 3.42 −1.36

Figures2 and 3 show two screen-shots of the Android prototype with the tests on
two different positions of a Building. Blue dots are the measured positions (results
of Tables2 and 3) and red dot is the theoretical position.

3.1.2 Analysis

The algorithm designed to estimate the position through RSS values provide
reasonably good results. In building A results show an accuracy below 1.5m, how-
ever, in building B accuracy is around 2–3m, except in two positions where the
accuracy is around 4–5m.

The standard deviation of all results, except position 7 of building B, are within
1–2 m of deviation. Thus, the scattering of results is low, as intended in the design
of the algorithm. Standard deviation is also better in building A than in building B.

Results show the position measurement is more precise and more accurate in
building A. This may be due to two reasons: (1) the number of nodes calibrated is
the same in the two buildings, s = 40, however building A is smaller than building
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Fig. 3 Building B—Position 6

B and therefore there are more nodes calibrated by square meter which improves
the calibration; (2) we have seen that in building A there are less number of APs
detected, the ones detected are stronger and are always the same. Hence, as stated
on Introduction section, the more stable and controlled are the APs, the better is the
position estimation.

In addition, note that the theoretical point is not within the margins of error of the
measured point. Therefore there are sources of error that are not controlled.
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Table 4 Orientation
measurements at rest

Mean of angle respect north (degrees) σ

65.4795 0.8391

3.2 Sensors Tests

Once shown that user position through RSS algorithm can be estimated, this section
uses the prototype to test the sensor fusion system proposed in Sect. 2.2 to get the
orientation and position of the device.

3.2.1 Movement Direction

This subsection shows that we achieved also to obtain the direction of the device
while user is walking. Figure4 presents the system that we implemented following
explanations of Sect. 2.2.2. It is a screenshot of the prototype.

The system indicates the direction a person is moving. The black line inside the
circle indicates the Earth’s magnetic north and the number shows the orientation to
the north. In this case, the head of the smartphone is oriented at 65.5◦. In addition,
Fig. 4 displays raw data of accelerometer and magnetometer, which are the source
data necessary to find this angle.

In order to know the reliability of the obtained values, wemeasured 2,000 samples
of orientation values at a static position. Results are displayed on Table4. They show
the dispersion on data values is low since standard deviation is small.

3.2.2 Position

This subsection shows the tests performed with the prototype to estimate the distance
traveled by the user, using the equations described in Sect. 2.2.1.

The prototype measured the acceleration while a user is holding the device hor-
izontally and walking in only one direction. Hence, Eq.17 is used only in one axis,
in this case y axis of the smartphone coordinate system (refer to Fig. 1).

Figure5 presents a graphic with the acceleration raw data measured in the three
axes. Note that the raw acceleration from the sensor is the one defined in Eq.15.
The z axis shows the acceleration produced by the force of gravity over the device.
y axis shows the acceleration values on the direction of movement because we have
shown this direction as the moving axis, and x axis is perpendicular to the direction
of movement. The variations shown on the graphic are due to step movement of the
user. Hence, it is clear that this data is influenced by the force of gravity.

After isolating the force of gravity and applying Eq.17 we measured 5 times the
same distance.

The distance traveled by the user that is holding the device is 6m. Results of the
tests gave a distance equal to da = 10.801 ± 0.119 m. Results are far away from the
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Fig. 4 Android prototype that shows device movement direction

real distance. These bad results can be caused by a low rate of update readings and
bias errors.

If the frequency of data collection is low, the system loses information.
For instance, imagine the last measured acceleration is low and then there is a sig-
nificant increase. In case the sensor takes time to read these data, the information is
lost and increases the error.

To test this hypothesis, we took measurements of 2,000 samples of accelerometer
values in a static position. Table5 shows the rate of readings of accelerometer values.
The first column displays themean of the frequency, which is about 60ms, the second
column shows the standard deviation, the third column the maximum value of update
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Fig. 5 Accelerometer measurements while user’s walking
Table 5 Accelerometer frequency measurements

Mean (ms) σ (ms) Max (ms) Min (ms)

63.73 13.65 133.27 3.81

Table 6 Accelerometer measurements at rest

Axis Mean (m/s2) σ (m/s2) Accuracy (m/s2)

x −0.497 0.037 −0.497
y 0.119 0.038 0.118
z 9.919 0.049 0.109

reading and the fourth column the minimum. These results show that accelerometer
sensors have a low rate of update readings and it is very unstable.

Additionally, themeasured distance varies greatly depending on the time it takes to
make themovement.We noticed that when the device is at rest, the distance increases
constantly, instead of remaining constant. This may be due to the accelerometer have
a initial bias error that corresponds to the offset of its output signal from the true
value (see report from (Woodman 2007)). A constant bias error of accelerometer
causes an error in position which grows quadratically with time.

Wemeasured the bias of the accelerometer from the 2,000 samples measurements
defined previously. Table6 shows the results.

The average of acceleration values is different from the theoretical values
(0, 0, 9.8). This is what makes the distance to increase constantly increases even
though the device is at rest, because there are a constant bias of the accelerometer
values that are integrated over time, the error is cumulative.

In order to avoid this issue, it is therefore necessary to subtract the bias error
(mean values of Table6) during the measurements. However, in a real application, it
is not possible to calibrate each smartphone constantly to reduce the bias, because
we have seen that the bias is not always the same for the same accelerometer.
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After doing several sensor tests, we have seen it is possible to know the direction
of movement, however, the accelerometer sensors have a low update reading results
and bias error which derive into very bad distance measurement results. Hence, at
the moment we avoid using accelerometer to estimate user position.

4 Conclusions

In this chapter two indoor positioning algorithms that can run entirely in a smartphone
device have been presented. One of them uses RSS values of WLANs present in
a building to estimate the user position. The algorithm is based on the euclidean
distance method and it is designed to be used in a smartphone, taking into account
the performance limitations of these devices. The other algorithm uses the sensor
fusion technique, which combines inertial sensors raw data to detect the direction of
movement and distance travelled by the user.

Both algorithms have been implemented in an Android prototype in order to
demonstrate that they can work efficiently in such devices and to test their effective-
ness.With the prototype, theRSS algorithmhas been tested in twodifferent buildings,
giving good results. In fact, results show that most of the positionmeasurements have
accuracies around 1–3m and standard deviations of 1–2m. Comparing results of two
buildings, we have seen that, the more nodes are measured during calibration and
the stronger and stable the APs of the building, the better the results.

Sensor fusion technique allowed to find out what direction the user is moving, but
tests show very bad results when calculating the user position with the accelerometer
sensors. The problem seems to be that the accelerometer sensor has a big bias error
and a low and unstable frequency of reading results, which derives on big errors
when calculating the distance traveled by a user.

Therefore, the main contributions of this chapter are two fold. On the one hand, it
presents a couple of algorithms that use smartphone sensors to locate users in indoor
environments and demonstrate that they can be implemented and work efficiently in
smartphones. On the other hand, it test both algorithms and identify some problems
that worsen the quality of location estimation when using data from inertial sensors.

As future work, we plan to do tests on different floors of the two tested buildings,
taking into account the z axis in order to analyze the accuracy and precision of the
system over different floors. We also would like to establish a calibration standard
that works as a guide for the users and to study different methods to address the
errors in sensors such as the accelerometer.
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