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Abstract Due to the dynamic nature and heterogeneity of Volunteered Geographic
Information (VGI) datasets a crucial question isu concerned with geographic data
quality. Among others, one of the main quality categories addresses data complete-
ness. Most of the previous work tackles this question by comparing VGI datasets
to external reference datasets. Although such comparisons give valuable insights,
questions about the quality of the external dataset and syntactic as well as semantic
differences arise. This work proposes a novel approach for internal estimation of
regional data completeness of VGI datasets by analyzing the changes in commu-
nity activity over time periods. It builds on empirical evidence that completeness of
selected feature classes in distinct geographical regions may only be achieved when
community activity in the selected region runs through a well-defined sequence of
activity stages beginning at the start stage, continuing with some years of growth
and finally reaching saturation. For the retrospective calculation of activity stages,
the annual shares of new features in combination with empirically founded heuristic
rules for stage transitions are used. As a proof-of-concept the approach is applied to
the OpenStreetMap History dataset by analyzing activity stages for 12 representative
metropolitan areas. Results give empirical evidence that reaching the saturation stage
is an adequate indication for a certain degree of data completeness in the selected
regions. Results also show similarities and differences of community activity in the
different cities, revealing that community activity stages follow similar rules but with
significant temporal variances.
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1 Introduction

Volunteered Geographic Information (VGI) denotes one of the most promising and
interesting developments in the field of geographic information science. Since the
coining of the term by Goodchild (2007) researchers all over the world have started
to scientifically investigate the phenomenon. One of the most crucial questions in
VGI research is concerned with the assessment of geographic data quality of VGI
datasets (ISO 2011; Goodchild and Li 2012). One of the outstanding categories of
geographic data quality addresses completeness. Although completeness estimations
of geographic datasets are not new, the VGI movement raises some new aspects such
as inherent heterogeneity, high regional differences or frequent changes. In previous
work researchers have addressed the assessment of data completeness in VGI datasets
with well-known approaches like comparisons with external reference datasets
(Haklay et al. 2010; Mondzech and Sester 2011; Zielstra and Hochmair 2011). Due to
the success and open license of OpenStreetMap (OSM) (Haklay and Weber 2008) the
project has been focus of most previous studies. The number of features, total lengths
of linear features or the overlapping area of buffered features are compared. Although
significant progress has been achieved, comparisons with external reference datasets
have certain disadvantages such as the incertitude concerning completeness of the
reference datasets, the missing of global availability or legal restrictions as well as
high fees (Hecht et al. 2013). To overcome these disadvantages this work introduces
a novel approach aiming at internal evaluation of data completeness. The presented
approach analyzes the community activity over time periods in order to determine
whether a certain level of completeness has been reached in a selected region. For
estimating the completeness level in a region the approach derives the three activity
stages Start, Growth and Saturation from the annual increase of geographic features
being mapped by volunteering community members. The measure for complete-
ness estimation is based on the hypotheses that completeness in a region can only be
achieved when community activity passes a well-defined sequence of activity stages.

The remainder of this chapter is organized as follows: The next section discusses
related work. It is followed by a section on the theoretical aspects of assessing
completeness of VGI datasets. Section 4 outlines the novel approach for internal
estimation of data completeness. Section 5 introduces the dataset used for proof-
of-concept evaluation. Section 6 presents and discusses results and finally, Sect. 7
concludes the work.

2 Related Work

Goodchild and Li (2012) propose three approaches for quality assurance of VGI
datasets: the crowdsourcing approach (i) relies on the community to check each
other’s contribution, the social approach (ii) gives people the responsibility of mod-
erating the mapping process and the geographic approach (iii) deals with correctness
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of spatial data. For measuring data quality of already mapped features related work
considers ISO 19157 (2011) where standardized quality measures for geographic
information are defined. Related work mainly addresses the quality categories com-
pleteness and positional accuracy for the most prominent open VGI dataset OSM.

Haklay (2010) compared the OSM street network (motorways, A- and B-roads)
of London with the federal dataset provided by Ordnance Survey. He concluded that
on average 80 % of the streets are already mapped. Neis et al. (2012) compared the
OSM street network of Germany with the commercial data provided by TomTom.
They showed that OSM has a longer street network for pedestrians while TomTom is
more detailed at rural street networks for cars. Moreover, authors revealed that urban
street networks developed earlier than rural ones. Similarly, Zielstra and Hochmair
(2011) compared the street network in selected cities in Germany and in the US with
three reference datasets, namely Tiger, NAVTEQ and TomTom. Girres and Touya
(2010) conducted a similar study for French roads, rivers and lakes. They determined
a relative completeness of 45 % for roads, 83 % for lakes and 8 % for rivers compared
to the French IGN dataset. Hecht et al. (2013) compared the OSM buildings with
the ALKIS/ATKIS datasets for selected regions in Germany and concluded that less
than 30 % of all buildings have been mapped.

While previous approaches pursue external data quality measures, the following
studies focus on internal measures without relying on reference datasets. One of the
first internal quality assessments was done by Mooney et al. (2010) who examined
the geometry of polygons. Neis et al. (2013) analyzed the development of OSM data
in 12 metropolitan areas distributed all over the world. According to their analysis
of active users, European cities show a more active OSM community. Furthermore,
authors analyzed the creation date and latest update of all features. They found that
more than 20 % of all features have been created in 2012 and used this as indicator,
that the dataset is not complete, yet. Corcoran et al. (2013) proofed that the growth
of OSM street networks follows the development pattern of street networks in the
real world defined by Strano et al. (2012). This pattern describes that the exploration
phase (when new areas are mapped) is followed by a densification phase (when more
details are added). Barron et al. (2014) developed a tool to analyze 25 indicators for
assessing OSM data quality. Arsanjani et al. (2013) simulate the OSM mapping
development for upcoming years based on development in previous years.

From examining previous work it can be concluded that only few studies address
internal completeness measures of VGI datasets. To the knowledge of the authors
there is no approach analyzing the development of the community activity over time
periods for estimating regional data completeness.

3 Estimating Completeness of VGI Datasets

The International Organization for Standardization defines in ISO 19157
“Geographic information—Data quality” (ISO 2011) five data quality categories
for geographic information, namely completeness, logical consistency, positional
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accuracy, thematic accuracy and temporal quality where completeness, which is
addressed in this chapter, is defined as:

[…] the presence and absence of features, their attributes and relationships. It consists of two
data quality elements: commission—excess data present in a dataset; and omission—data
absent from a dataset.

The completeness of a dataset depends on the presence of features in the dataset
and on the correspondence between these features and the objects or properties in
the real world. The measure does not depend on the positional accuracy or on the
level of detail of the features. Completeness is a property of a geographical dataset
and restricted to a geographical area and a purpose. The purpose defines the set of
feature classes which are investigated. Hence we define completeness as:

The completeness measure of the geographical dataset D, where D is defined by geographical
region R and for purpose P, depends on the degree of correspondence between the existence
of objects and properties in the real world and the presence of their representing features in
dataset D.

However, the degree of correspondence (i) cannot be measured directly and the
value (ii) cannot be calculated from the geographical dataset alone. Thus, com-
pleteness is commonly estimated by comparing two geographical datasets where
the reference dataset is used instead of the real world. The comparisons of datasets
with reference datasets or with the real world are so-called “external approaches” of
quality evaluations, while internal approaches estimate data quality by calculating
quality parameters from the dataset itself (ISO 2011). Internal approaches have to
use well-defined rules to derive completeness indicators. The adequacy of such rules
has to be proofed empirically. For VGI, the following three rules for estimating data
completeness can be applied:

1. Community activity and contributions One possibility to estimate internal
data completeness is to conduct an analysis of community contributions to VGI
datasets (Neis et al. 2012; Steinmann et al. 2013a, b). Characteristic of VGI
datasets are frequently appearing, disappearing or changing features. Since these
changes are assigned to their contributors the current development of mapping
activity of the community may always be treated as indicator for data complete-
ness (e.g. Neis et al. (2013)).

2. Hierarchical relationships between feature classes In VGI feature classes are
typically mapped according to their importance and appearance. For example,
motorways are usually mapped before lower-level streets (Neis et al. 2012). An
approach for estimating completeness may consider such hierarchical structures
(e.g. Corcoran et al. (2013)). Thus, the temporal appearance of feature classes or
feature class combinations may be used as completeness indicator.

3. Relations between neighboring, sub- and super-regions Completeness assess-
ments have not to be treated as regionally isolated tasks. For example, it seems
obvious that complete regions are more likely to be in a cluster of complete neigh-
bors or that they contain at least complete sub-regions (Arsanjani et al. 2013).
Together with the results of other rules relationships between spatially close and
equally developed regions could be used as characteristic completeness indicator.
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Start

• Negative Growth
• Zero Growth
• Positive Growth

A Growth

• Negative Growth
• Zero Growth
• Low Growth
• Medium Growth
• High Growth

B Saturation

• Negative Growth
• Zero Growth
• Very Low Growth

Fig. 1 Activity stages for analyzing the completeness of VGI datasets

In this work we outline an approach for completeness estimation which is a combi-
nation of rule types (1)–(3). As a first step, the growth rates of features in a dataset are
analyzed to derive annual stages of community activity (rule type (1)). The activity
stages represent an empirically determined mapping progress where the last stage is
supposed to be a proper candidate indicator for completeness. Additionally, a detailed
analysis of community activities is conducted by regarding rules from type (2) and
(3). The results are used to gather additional evidence that completeness in a certain
region has been reached or is near to be reached.

4 Deriving Community Activity Stages

Activity stages describe the contributors’ activity by analyzing the annual changes
to features in a dataset. The stages describe an ideally unidirectional development
of the activities: at the start of a community activity only a few contributors are
contributing to the dataset, afterwards more contributors are joining the activity and
start contributing data before the mapping activity ceases since a certain level of data
completeness has been reached. The development of these activities is described
with the three stages Start, Growth and Saturation (Fig. 1). Within a certain stage
community activity may change to more detailed sub-stages. The transitions between
main stages follow distinct rules and are typically unidirectional. For the presented
analysis the activity stage Saturation is the most relevant one. It occurs in the final
years of a development in case that no more new (or just few) features are created.

The definition of stage transitions and sub-stage classifications is based on a
growth value. For time interval i, region r and feature class f the growth value g is
defined as the difference between the number of created features c and the number
of deleted features d

g (i, r, f ) := c (i, r, f ) − d (i, r, f ) (1)

The progress value p is defined for time interval i, region r and feature class f as the
fraction of the growth value from the overall growth value over the whole analyzed
time interval I (i ⊆ I )
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Table 1 Transition rules for sub-stages

Activity stage Condition Sub-stage

For all stages p (i, r, f, I) < 0 Negative growth
p (i, r, f, I) = 0 Zero growth

Start 0 < p (i, r, f, I) Positive growth
Growth 0 < p (i, r, f, I) ≤ 0.25 Low growth

0.25 < p (i, r, f, I) ≤ 0.75 Medium growth
0.75 < p (i, r, f, I) High growth

Saturation 0 < p (i, r, f, I) ≤ 0.03 Very low growth

p (i, r, f, I ) := g (i, r, f ) /g (I, r, f ) (2)

A progress value of 0.36 indicates that 36 % of all features have been created in the
respective time period. Transition rules between sub-stages are shown in Table 1.

In Fig. 1 the rules for the unidirectional transitions A and B between the activity
stages are empirically defined as heuristic rules. For transition A from Start to Growth,
two or more active contributors within a distinct region are required. Transition B
from Growth to Saturation requires the progress within a time period to be very low
(less than 3 %), whereas the cumulated progress value is greater than 0.97 and the
number of years with active contributions is greater than two. Due to the retrospective
calculation of growth values the resulting activity stages and sub-stages are subject to
change. Since community effort is continuously changing, significant annual growth
may occur although there was only minor growth during the previous years. It should
be noted that any re-evaluation of the dataset with additional data may result in other
activity stages for the previous years. It should also be noted that transition rules,
although being derived from empirical evidence, should be treated as ‘subject to
change’ since additional analyses could reveal the necessity of adjustments.

5 OSM History as Evaluation Dataset

To evaluate the proposed measure for data completeness, it is applied to the historic
changes of the OSM data (OSM History). The OSM History has been selected since
it includes all versions of all features starting from 2006 until the current date (for
this analysis the file from 5th Feb. 2013 has been used). Since the calculation of
activity stages is based on the definition of the growth value 4.1 and progress value
4.2 the historic data has to be prepared. Data preparation is based on the algorithm
proposed in Rehrl et al. (2012) and results in a list of annually aggregated growth
shares based on the total number of created and deleted features for the selected year.
In addition to growth shares, the total number of active contributors is calculated for
each year. Annual growths are considered as well-suited temporal units by avoiding
seasonal variability. The geographic scope of the analysis has been set to the same
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12 metropolitan areas (equal delimitation) as proposed in Neis et al. (2013). Besides
fostering comparability of results the selected areas are considered well-suited due
to worldwide distribution, cultural diversity and homogeneous settlement structure
with a large number of geographic features and feature classes. Moreover, it has
been previously found that urban communities are commonly more developed and
more active (Neis et al. 2012). For proving the results of the 12 metropolitan areas,
the three Austrian cities Vienna, Linz and Salzburg have been added. At least the
mapping of the street network has been estimated “complete” by the local OSM
community (OSM Wiki 2013b) and the authors’ local knowledge confirms this esti-
mation. Thus, the results for the Austrian cities are used as ground-truth for the
proposed completeness measure.

Beside geographic scopes, completeness measures have to be focused on different
feature classes. While OSM does not follow strict rules for classifying features, the
proposed keys and values in the OSM Wiki may be used for selecting feature classes
(OSM Wiki 2013a). As previously found, the feature classes denoted by the keys
highway and building are significantly more developed in comparison to all other
classes (Steinmann et al. 2013a). Due the high development it may be assumed that
both classes have passed several years of mapping activity in all of the selected
regions.

In OSM the key highway comprises all kinds of features related to the street
network. This includes motorways, roads, residential streets, tracks, paths and foot-
ways. The highway key is also used for point features like traffic lights, turning
points or pedestrian crossings. Due to the heterogeneous nature of the feature class
it is suggested to analyze sub-classes separately.

The key building is used for mapping each kind of buildings. The value specifies
the type of building (e.g. residential buildings, hotels or churches). In contrast to
highways, the building class is homogenously structured and thus may be analyzed as
a whole. In addition to the footprint and the building type, additional information such
as addresses may be attributed to buildings. Since address information is typically
mapped after building footprints, a separate analysis is suggested.

For the evaluation of the completeness measure, four different feature classes
are selected: (i) the class street subsumes the OSM highway sub-classes primary,
secondary, tertiary, living_street, residential and unclassified, (ii) the class path
subsumes the sub-classes path, footway, cycleway and steps, (iii) the class building
regards all features having the key building and finally (iv) the class house number
regards all features having the key addr:housenumber. While the classes street and
building are mainly used for calculating community activity, the classes path and
house number are used as additional indicators to estimate the level of completeness.

6 Results and Discussion

This section presents selected evaluation results and discusses the results in the
context of the following criteria: (i) impacts of different spatial resolutions, (ii) time
series of activity stages to highlight the transitions from Start to Growth to Saturation,
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Fig. 2 Activity stages for London using three spatial resolutions (feature class: street; year: 2012):
a shows the activity stage for Greater London. b shows activity stages for the 32 boroughs plus the
City of London. c shows activity stages as hexagon grid consisting of cells with a diameter of 5 km;
administrative boundary (black line); metropolitan area (white line) defined by Neis et al. (2013)

(iii) comparisons of activity stages for the selected metropolitan areas for one year,
(iv) comparisons of activity stages between selected feature classes and (v) compar-
isons of spatial activity stage patterns of the last year.

Figure 2 shows the impact of different spatial resolutions on the calculation of
activity stages for the London metropolitan area based on the same delimitation used
by Neis et al. (2013). Firstly, the algorithm is applied to Greater London resulting in
one conflated activity stage, in the middle the 32 London Boroughs plus the City of
London are analyzed separately resulting in different activity stages and on the right
the metropolitan area is subdivided by a hexagon grid with a cell diameter of five
kilometers. According to Hagenauer and Helbich (2012) the shapes of hexagon grids
follow urban patterns best. While the former two resolutions are bound to admin-
istrative boundaries the third one ignores boundaries. The benefit of using a grid
resolution can be found in the worldwide applicability as well as in the comparabil-
ity of different world regions. Analyses based on administrative boundaries cannot
be compared due to variances in size and shape. For example, Great Britain is sub-
divided by different administrative structures with totally different sizes. Moreover it
has been previously found that coarse-grained spatial resolutions with larger regions
conflate individual results, which could get apparent with more fine-grained resolu-
tions (Haklay et al. 2010). The London example from Fig. 2 confirms this finding
for activity stages as the spatial resolution of Greater London conflates the different
activity stages of the boroughs. However, activity stages for unpopulated areas should
be specifically addressed due to lower mapping activity. Indeed it should be noted that
larger evaluation units (administrative boundaries) may be useful for more general
analyses. Table 2 summarizes advantages and disadvantages of the three proposed
spatial resolutions with emphasis on analyzing community activity. The remainder
of this work builds on the hexagon approach.

Figure 3 shows the sequential changes of community activity stages (see rule (1)
in Sect. 3) for the feature class street in the metropolitan area of London during the
years 2006–2012 using hexagon cells with 5 km diameter. The annual results shown
in the hexagon maps are summarized in the bottom right diagram. While in the year
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Table 2 Advantages and disadvantages of different spatial resolutions

Greater London Boroughs + City Hexagons

Advantage Fewer test regions;
overview
analysis

Residential areas are
considered, no
areas without
population or
infrastructure

All polygons have
the same size and
emphasize;
world-wide
comparability;
detailed analysis
of homogenous
topographies
(e.g. big cities)

Disadvantage Places with different
activity stages
are conflated; no
detailed
conclusions are
possible

Places with different
activity stages
are conflated;
detailed
conclusions only
with additional
contextual
knowledge; large
polygons are
more emphasized
in visualization

Areas with low
contribution
level; especially
unpopulated
areas; hexagons
do not fit
administrative
boundaries

2006 71 cells are still in Start, in 2007 119 out of 120 cells have proceeded to Growth
which is an indication for rising community activity in all parts of London. Since
London has been the incubator city of the OSM project, activity stages are temporally
ahead in comparison to other cities. Community activity most likely starts in the city
center and moves towards the suburbs subsequently (see Cairo in Fig. 5 and Buenos
Aires in Fig. 6). In 2010, the first two cells reached Saturation. In 2012, a majority
of cells has reached Saturation which can be interpreted as indication that a certain
level of completeness has been achieved.

To address the question whether saturated cells are also complete cells the next
analysis regards the hierarchical structure of the feature classes (see rule (2) in
Sect. 3). Tables 3 and 4 compare the activity stages of 12 metropolitan areas and
three Austrian reference cities for the year 2012. While Table 3 shows the results
for feature classes street and path, Table 4 has its focus on comparing the classes
building and house number. The tables show (i) the number of hexagon cells per
metropolitan area or city, (ii) the absolute numbers of cells which are in Start and
Saturation, respectively, and charts showing the relative share of the three activity
stages and (iii) ratios between the numbers of created features between the related
feature classes. Results in Table 3 emphasize that streets are mapped before paths,
while Table 4 indicates that buildings are mapped before house numbers. In case of
streets in Berlin, 34 of 85 hexagons have already reached Saturation by the end of
2012 while for the paths only 14 hexagons have achieved the final stage. Results
indicate that cities with similar activity patterns exist. In Table 3, the cities Berlin,
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2006 2007 2008 2009 2010 2011 2012
Saturation 0 0 0 0 2 27 57

Growth 49 119 120 120 118 93 63
Start 71 1 0 0 0 0 0

0%

20%

40%

60%

80%

100%(h)

Fig. 3 Activity stages (2006–2012) for feature class street for the metropolitan area of London
showing the mapping progress. a 2006, b 2007, c 2008, d 2009, e 2010, f 2011, g 2012, h Shares
of activity stages of the 120 hexagon cells of London as time series from 2006–2012

London, Los Angeles, Moscow, Paris and Sydney have a faster mapping progress
than the other cities. These cities also have the most advanced ratio towards mapping
paths which is an indication for a high level of street completeness. Contrary, Johan-
nesburg has a very low ratio and a high proportion of saturated cells, which is an
indicator for a temporary inactive community than for completeness. For buildings
and house numbers, the cities Buenos Aires, Cairo and Istanbul have the slowest
activity progress. Due to Japan’s different address scheme, only a very low number
of house numbers has been mapped in Osaka which results in an adverse ratio (sim-
ilar for Seoul). This finding gives indication that slow progress can also be the result
of cultural variations. In case of Paris it has to be stressed that the city benefited
from a major building import in 2010. In both tables the results for the three Austrian
reference cities Linz, Salzburg and Vienna reveal the supposed advanced mapping
progress with Linz as the most saturated city for all feature classes which reflects
own and community observations. The overall results confirm previous results from
Neis et al. (2013) that European cities have a more active OSM community compared
to other cities.
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Table 3 Comparisons between 12 metropolitan areas + 3 reference cities based on activity stages
of the year 2012 for the feature classes street and path

Highway 2012 Hex. # Street Path Ratio s:p
Start Sat. % Start Sat. %

Berlin 85 0 34 0 14 1 : 1.5

Buenos Aires 177 8 52 134 7 13.0 : 1

Cairo 105 21 34 93 3 19.5 : 1

Istanbul 110 19 21 91 1 18.7 : 1

Johannesburg 167 12 80 140 4 24.7 : 1

London 120 0 57 0 7 1.2 : 1

Los Angeles 369 6 157 186 23 4.9 : 1

Moscow 300 1 113 30 14 1 : 1.9

Osaka 224 18 11 80 3 14.6 : 1

Paris 188 0 44 10 12 1.5 : 1

Seoul 147 39 15 112 3 12.4 : 1

Sydney 126 1 4 12 21 8.0 : 1

Linz 14 0 9 0 5 1 : 7.7

Salzburg 13 0 2 0 0 1 : 1.5

Vienna 41 0 9 0 3 1 : 1.9

Start Growth Saturation
The ratio s:p is the proportion between the number of created street (s) and path features (p)

A more detailed comparison demonstrates the shift in mapping progress between
different hierarchically structured features. Figure 4 shows two time series for London
and Paris. For London, the time series compares the progress of feature classes street
and path, while for Paris, the progress of class building is compared to the progress
of class house number. Both cities have been selected due to their advanced progress
for the respective feature classes (see Tables 3 and 4). Figure 4 illustrates the shares
of activity stages based on the hexagons for the years between 2006 and 2012.
The diagrams outline that a shift between the related feature classes is observable.
Streets are mapped before paths while buildings are mapped before house numbers.
A possible reason for that phenomenon is that the focus of mapping interests follows
a hierarchical order being determined by hierarchical relationships between feature
classes. For example, most building footprints are mapped before house numbers are
added. Based on this observations it may be valid to assess saturated hexagons more
likely as complete if the observed area followed the typical hierarchical mapping
schema, too. This trend can also be observed in the hexagon maps visualized in
Figs. 5 and 6 and confirms the findings of Corcoran et al. (2013) about the exploration
and densification phase.
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Table 4 Comparisons between 12 metropolitan areas + 3 reference cities based on activity stages
of the year 2012 for the feature classes building and house number

Building 2012 Hex. # Building House number Ratio b:hn
Start Sat. % Start Sat. %

Berlin 85 1 18 4 3 1.6 : 1

Buenos Aires 177 126 0 160 1 3.3 : 1

Cairo 105 79 5 100 1 21.7 : 1

Istanbul 110 78 1 98 0 27.3 : 1

Johannesburg 167 93 1 166 0 2.4 : 1

London 120 8 13 56 3 3.0 : 1

Los Angeles 369 178 25 249 8 5.8 : 1

Moscow 300 26 39 119 7 3.9 : 1

Osaka 224 137 0 220 0 1657 : 1

Paris 188 11 70 83 8 7.6 : 1

Seoul 147 128 0 140 0 11.6 : 1

Sydney 126 55 9 101 0 3.1 : 1

Linz 14 0 6 0 4 4.3 : 1

Salzburg 13 0 0 1 1 2.1 : 1

Vienna 41 0 0 1 3 1.6 : 1

Start Growth Saturation
The ratio b:hn is the proportion between the number of created building (b) and house number
features (hn)

Concerning relationships between neighboring cells (see rule (3) in Sect. 3), the
last comparison outlines the activity stage for the year 2012 for cities with a fast and
a slow mapping progress. Figure 5 compares the results of London and Cairo for the
feature classes street and path using hexagon maps. While London depicts advanced
progress with respect to the mapping of streets, path mapping is still predominately
stuck in Growth. Similarly, street mapping activity in Cairo is more advanced than
path mapping. In contrast to London, Cairo still has 20 % of all hexagon cells for the
street class and 89 % of the cells for the path class in Start. The high percentage of
cells in Start for both feature classes indicates a low level of completeness for Cairo.

Figure 6 shows differences in building and house number mapping for the
metropolitan areas of Paris and Buenos Aires. As Table 4 indicates, Paris has a high
proportion of cells in Saturation while Buenos Aires still has many cells in Start.
Again, more progress has been identified for buildings compared to house num-
bers. Single and distributed Saturation hexagons, as for paths in London (Fig. 5) and
house numbers in Paris (Fig. 6), should be treated carefully. Those hexagons can also
indicate temporal inactivity at the beginning of the mapping progress.
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2006 2007 2008 2009 2010 2011 2012

Saturation 0 0 0 0 2 27 57

Growth 49 119 120 120 118 93 63

Start 71 1 0 0 0 0 0
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60%

80%

100%

2006 2007 2008 2009 2010 2011 2012

Saturation 0 0 0 0 1 2 7

Growth 14 89 110 116 119 118 113

Start 106 31 10 4 0 0 0
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2006 2007 2008 2009 2010 2011 2012

Saturation 0 0 0 0 0 17 70

Growth 0 5 49 95 127 143 107

Start 188 183 139 93 61 28 11
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2006 2007 2008 2009 2010 2011 2012

Saturation 0 0 0 0 0 2 8

Growth 0 0 3 22 51 71 97

Start 120 120 117 98 69 47 15
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100%

(a) (b)

(c) (d)

Fig. 4 Mapping progress based on activity stages (2006–2012) for London and Paris. a London—
street, b London—path, c Paris—building, d Paris—house number

To summarize, it can be concluded that combining different rules for interpret-
ing saturated cells leads to more accurate estimations. The presented examples have
especially shown that (i) an appropriate selection of different spatial resolutions, (ii)
the consideration of hierarchical structures between feature classes and (iii) the con-
sideration of spatial distributions provide a proper analysis method for completeness.

However, the proposed approach is based on the simple hypothesis that when
contributors cease to create features in a region, a sufficient level of completeness
has been reached. A drawback of the method comes from the fact that low mapping
activity can also be the result of non-ideal community developments (Suh et al.
2009). Thus, a critical evaluation of resulting activity stages is necessary for adequate
estimations.

7 Conclusions and Outlook

In this chapter we proposed a new method for analyzing changes in VGI datasets to
determine community activity stages in order to estimate regional completeness. The
presented results show that local community activities provide sufficient information
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Fig. 5 Comparison of two different progress patterns in London and Cairo based on calculated
activity stages for the year 2012 using the feature classes street and path. a London—street, b
London—path, c Cairo—street, d Cairo—path

for assessing regions as complete. Several indicators show that regions with a low
local community activity are estimated to be “regional complete”, too.

The examples outlined above lead to plausible indications that the level of regional
completeness can be derived from the temporal progress of community activity.
Together with a detailed analysis of spatial distributions of activity stages a more
accurate estimation between inactive and complete can be achieved. Furthermore, a
selective analysis regarding the mapping progress of hierarchically structured feature
classes, e.g. for streets and paths, facilitates the understanding and estimation of
completeness. The proposed method can be easily adapted to different time periods,
temporal resolutions, spatial resolutions and feature classes in order to provide deeper
insights into the mapping progress of VGI communities.

To achieve reasonable results, the interpretation of activity stages for estimating
completeness requires consideration of multiple aspects such as different hexagon
sizes or related feature types. This applies especially for regions with a small or young
VGI community or for regions with different cultural or topographic characteristics.

An open issue for further analyses would be to investigate more diverse geo-
graphic regions on applicability and generalization of the approach. For example
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Fig. 6 Comparison between two different progress patterns in Paris and Buenos Aires based on
calculated activity stages for the year 2012 using the feature classes building and house number.
a Paris—building, b Paris—house number, c Buenos Aires—building, d Buenos Aires—house
number

rural regions, sparsely populated regions or other feature classes than streets and
buildings would be proper candidates. Finally, externally estimated complete regions
may be considered as candidates for deriving and validating additional inference rules
for completeness estimations. These rules can be used for automated completeness
assessments in the future.
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