
Business Intelligence in Software Quality

Monitoring: Experiences and Lessons Learnt
from an Industrial Case Study

Alexander Kalchauer2, Sandra Lang1, Bernhard Peischl1,
and Vanesa Rodela Torrents2

1 Softnet Austria, Inffeldgasse 16b/II, 8010 Graz, Austria
{bernhard.peischl,sandra.lang}@soft-net.at

http://www.soft-net.at
2 Technische Universität Graz, Institut für Softwaretechnologie,

Inffeldgasse 16b/II, 8010 Graz, Austria
{kalchauer,torrents}@student.tuGraz.at

Abstract. In this industrial experience article we briefly motivate con-
tinuous, tool-supported monitoring of quality indicators to facilitate de-
cision making across the software life cycle. We carried out an industrial
case study making use of a web-enabled, OLAP-based dashboard to mea-
sure and analyse quality indicators across various dimensions. We report
on lessons learnt and present empirical results on execution times regard-
ing different groups of queries implementing the desired quality metrics.
We conclude that today’s business intelligence (BI) solutions can be em-
ployed for continuous monitoring of software quality in practice. Further-
more, BI solutions can act as an enabler for any kind of data-driven
research activities within companies. Finally we point out some issues,
that need to be addressed by future data-driven research in the area of
software measurement.

Keywords: business intelligence, lessons learned, industrial case study,
web-enabled software dashboard.

1 Motivation

The new generation of interconnected and open IT systems in areas like health-
care, telematics services for traffic monitoring, or energy management are evolv-
ing dynamically, for example, software updates are carried out in rather short
cycles under presence of a complex technology stack. Tomorrow’s IT systems
are liable to stringent quality requirements (e.g. safety-, security or compliance
issues) and evolve continuously, that is, the software habitually is subject of
change. Given this context, monitoring of quality attributes becomes a neces-
sity. Efficient and effective management of a software product or service thus
requires continous, tool-supported monitoring of well-defined quality attributes.

The role of software as a driver of innovation in business and society leads to
an increasing industrialization of the entire software life cycle. Thus, the devel-
opment and operation of software nowadays is perceived as mature engineering

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2014, LNBIP 166, pp. 34–47, 2014.
c© Springer International Publishing Switzerland 2014



BI in Software Engineering: Experiences and Lessons Learnt 35

discipline (even in the secondary sector) and the division of labor is driven by
coordinated tools (in the sense of an integrated tool chain). As a consequence,
monitoring of quality attributes has to be carried out holistically, i.e. taking into
account various quality dimensions. This includes the continuous monitoring of
process- (e.g. processing time of for bugs or change requests), resource- (e.g.
alignment of bugs to software engineers) and product-metrics (e.g. code metrics
like test coverage as well as metrics regarding abstract models of the software,
if in place). However, to establish a holistic view on software quality we lack
methods and tools that allow one for an integration of the relevant dimensions
and (key) quality indicators.

To address these issues, as part of the research programme Softnet Austria II,
a web-enabled software dashboard making use of powerful OLAP technology has
been developed. This cockpit strives to provide the technological underpinning
to enable the integration of the various dimensions. In this article we briefly
describe the software architecture of our dashboard and point out experiences
and lessons learnt in the course of a pilot project. We considered issue manage-
ment, that is the treatment of defects and change requests (CRQs) alongside
with related parts regarding project management. In this industrial experience
paper we present exhaustive empirical results regarding the running time of the
queries implementing the various quality indicators. We contribute to the state
of the art in the field of quality monitoring in terms of (1) providing experiences
on setting up a software dashboard relying on an open-source BI solution and
(2) a performance analysis regarding the execution times.

In Section 2 we discuss the importance of metrics and quality models and
point out the need for integration of the different views on software quality. In
Section 3 we subsume the main ideas behind OLAP, typical usage scenarios and
operations and the overall architecture of our web-enabled dashboard solution.
In Section 4 we present our industrial case study conducted with a company from
the secondary sector1. In the context of the prevailing processes around CRQs
we outline (1) examples of quality metrics, (2) show how to use the OLAP tech-
nology for ad-hoc analysis of an industrial software repository, and (3) provide
empirical insights on the execution time of the various mulit-dimensional queries.
In Section 5 we report on lessons learned from our industrial case study, Section
6 discusses related work and Section 7 points out open issues and concludes our
industrial experience paper.

2 Measuring Software Quality

In general software quality is nowadays perceived as the degree of fulfilment
of either explicitly specified or tacit requirements of the stakeholder (e.g. the
ISO/IEC 25010:2011 standard [1] follows this notion). A specific quality model
makes this abstract definition applicable. Usually a quality model defines cer-
tain quality attributes (e.g. test coverage on the level of code, test coverage on

1 Due to a non-disclosure and confidentality agreements we do not mention our coop-
eration partner and made relevant data anonymous.



36 A. Kalchauer et al.

the level of requirements, processing time of defects or CRQs, testability of the
product, ...) and allows one for refining these attributes in terms of specific, mea-
surable characteristics of the resources, the product or the underlying processes.
The quality model thereby specifies a hierarchy of measurable characteristics and
ideally allows one for definition, assessment and prediction of software quality
[7]. Although definition, assessment and prediction of quality are different pur-
poses, the underlying tasks are not independent of each other. Obviously, it is
hard to assess quality without knowing what it actually constitutes. Likewise one
cannot predict quality without knowing how to assess it [7]. Quality models may
serve as a central repository of information regarding software quality. Ideally
the different tasks in software quality engineering, e.g. definition, assessment,
and prediction of quality attributes should rely on the same model. However,
in practice different (often implicit and incomplete) models are used for these
tasks. Therefore a common infrastructure that supports definition, assessment
and prediction of software quality using a common representation of the under-
lying quality-relevant data and metrics is highly desireable. As mentioned previ-
ously, our dashboard solution focuses on continuous monitoring of the software
life cycle particularly addressing the need for a smooth integration of various
quality dimensions. This allows one for analysing the relevant aspects regarding
quality attributes, including the early detection of erroneous trends. The early
detection of trends in turn is the foundation of setting remedial countermeasure
in motion.

3 Exploiting Business Intelligence in Software Engineering

The main idea behind BI is to transform simple data into useful information
which enhances the decision making process by basing it on a wide knowledge
about itself and the environment. That minimizes risks and uncertainties derived
from any decision that a company has to take [17].

Moreover, business intelligence contributes to translate the defined objectives
of a company into indicators with the possibility of analysing them from different
points of view. That transforms the data into information that, not only is able
to answer questions about current or past events but it also makes possible
building models to predict future events [6].

3.1 Architecture of the Web-Enabled Dashboard

The concepts outline in the previous sections are typically used in various busi-
ness areas for measurement, analysis and mining of specific data pools. Our
dashboard primary serves the purpose of carrying out data-driven research par-
ticularly addressing the integration of various views on software quality (process-,
product- and resources view). Figure 1 outlines the architecture of the web-
enabled dashboard making use of BI technology. The dashboard uses the open
source tool JPivot [10] as front end. It operates on the open source OLAP



BI in Software Engineering: Experiences and Lessons Learnt 37

server Mondrian [4]. JPivot allows the interactive composition of MDX (Muli-
Dimensional eXpressions) queries via a Web interface that also displays the re-
sults in tabular and graphical form. Predefined queries are stored on the server
and accessible from the web interface. JPivot loads these queries from the query
files or takes them from the MDX editor provided through the web interface,
than OLAP parses those queries through the multidimensional cubes and con-
verts them to SQL queries which are sent to a MySQL database.

Fig. 1. Software architecture of the BI-based dashboard [11]

4 Industrial Case Study: Quality Indicators for Managing
Defects and Change Requests

Our cooperation partner is developing a software product and has well-defined
work flows for development and maintenance in place. For our pilot project
we addressed the work flows around CRQs. Our cooperation partner classifies
issues according to three types: Defects, Enhancements (CRQs) and Tickets. In
general issues pass through various phases: The decision phase (Decide), the
implementation phase (Implement), the assessment phase (Review) and the test
phase (Test). According to these categorization, the work flow around CRQs is
partitioned into these four areas as illustrated in Figure 2.



38 A. Kalchauer et al.

Fig. 2. Simplified workflow, states and state transitions

4.1 Measuring the Management of Defects and Change Requests

Regarding the monitoring of quality indicators we distinguish between metrics
with a target state from the set of inflow states {A, C, C!, D, E, N, J, P} and
metrics with target state from the set of outflow states {O, Q, R, V}. Relying
on this categorization, metrics have been grouped into 6 groups:

– Group 1: Metrics regarding the inflow states and the elapsed time from
submission of an issue to a particular state. The around 20 performance
indicators from this group affect the decision phase and the implementation
phase. Depending on the concrete metric, drill-down and slicing into 15 to
20 different dimensions (version, milestone, product, status, priority, error
severity, person, role, age etc.) is required.

– Group 2: Metrics regarding the outflow state and the elapsed time from
submission to a particular state. The around 15 performance indicators con-
cern the review- and testing phase and have similar requirements wrt. ad
hoc analysis as group 1.

– Group 3: Metrics regarding the inflow states and the elapsed time on that
state. The 11 performance indicators are dealing with the elapsed time of a
CRQ in the decision- and implementation phase. Some of the performance
indicators are drilled-down to around 15 dimensions, often standard aggre-
gates (maximum, minimum, average) are used.



BI in Software Engineering: Experiences and Lessons Learnt 39

– Group 4: Metrics regarding outflow states and the elapsed time on that
state. The 14 performance indicators require ad-hoc analysis in up to 20
dimensions.

– Group 5 and Group 6: These metrics have high level of complexity as these
metrics relate states that are not consecutive. The complexity is caused due
to the fact, that it is necessary to keep track of an issue from its submission
through all its changes in order to compute the desired metrics. Nevertheless,
these performance indicators need to be drilled down to a couple of dimen-
sions. However, these metrics are less time critical as the Group 1-4 as the
quality indicators regarding group 5 and 6 are used occasionally only.

4.2 Queries for Ad-Hoc Analysis

The MDX language has become the standard defined by Microsoft to query
OLAP systems and provide a specialized syntax for querying and manipulating
the multidimensional data stored in OLAP cubes.

Table 1 shows the example of a query and the explanation of every state-
ment following by its graphical representation. As one can see in the query four
dimensions are selected:

– Time and measures on the columns.
– Products and severities on the rows.

Figure 3 and 4 illustrates the basic idea.

Fig. 3. The three queried dimensions form a cube

Using the where clause, one has the possibility to slice the represented cube.
That means that not all the data of the four dimensions will be shown, but only
those specified through the slicer defined in the where clause. In this case, these
issues which go to the state Resolved (R) and were successfully tested in the
previous step (Verified (V)).



40 A. Kalchauer et al.

Table 1. Query Example

Functions Handled data Description

1
Select
NON EMPTY
Crossjoin

([LastChangedDate].[All date].children,
[Measures].[IssuesStatesCount],
[Measures].[MinAgeInDays],
[Measures].[MaxAgeInDays],
[Measures].[AvgAgeInDays])

The crossjoin function
returns the cross
product of two sets. It is
necessary because
LastChangedDate and
Measures are two
different dimensions.
Since the type given to
crossjoin has to be a set,
one converts the
members to a set by
enclosing them in curly
brackets.

2 ON COLUMNS,

All the information
selected before will be
shown through the x
axis.

3
NON EMPTY
Crossjoin

([Product].[All product].Children, [Severity].[All
severity])

4 ON ROWS

All the information
selected before will be
shown through the y
axis.

5
From
[SoftCockpit]

Cube from where one
wants to extract the
data

6 where
([PrevStatus].[All status].[Verified],
[Activity].[All activities].[resolved])

Slicer: Tuple which
contains the members
that specify the
conditions that the data
has to fit to be shown.

The output given by the application is a table showing the required informa-
tion on the desired rows (Figure 5). Products and Milestone can be drilled down,
since they compose a hierarchy with several levels.

4.3 Performance Analysis

During the implementation of the different sets of quality indicators, differences
in the performance regarding the amount of data have been observed. To anal-
yse this, different sets of data of the fact table have been taken into account.
The following graphs and explanations show the conclusions obtained from this
performance analysis. Table 2 summarizes the ressources of the server on which
we conducted our experiments. The test has been executed as follows: Every de-
veloped query has been tested for a different amount of years and consequently
for a different amount of data.

Moreover, a relation between some queries has been noticed during the ex-
periment as queries belonging to the same group have similar execution time



BI in Software Engineering: Experiences and Lessons Learnt 41

Fig. 4. The three previous dimensions are queried along the years which is the fourth
dimension

Fig. 5. Results produced by the query of Table 1

Table 2. Used resources

Physical Memory: 32GB
JVM Memory: 2GB

Processor: Intel Xeon CPU ES606@ 2.13 GHz, 2.13GHz (2 Processors)
OS: Windows Server 2008 R2 Standard

characteristics. The reason why this happens can be found in the complexity of
the queries which is caused by the where clause (slicer) of the query.

For the different groups of queries the following execution times have been
collected:

Figure 6 shows the execution times for the queries of Group 1 with different
sets of data. The average response time of all the considered metrics of Group 1
is shown in Figure 7.

Figure 8 shows the execution times for the queries of Group 2 with different
sets of data. Queries 2.7 and 2.8 are excluded since they proof the correct use
of the open state and have been implemented for the purpose of verification.
These queries are not used for continuous monitoring of the process. To ease the
illustration, queries 2.10 and 2.13 are also excluded as they can be computed



42 A. Kalchauer et al.

Fig. 6. Response time regarding the amount of the data for Group 1

Fig. 7. Average over the response time of Group 1

within a second even for a big amount of data.The average of all the quality
indicators of Group 2 is shown in Figure 9.

Execution times for the queries of Group 3 and 4 look very similar. For Group
5 and Group 6 queries we did not evaluate the response times, because of the
complexity of these queries. However, as mentioned before, these queries are not
used for continuous quality monitoring and are executed only occasionally.



BI in Software Engineering: Experiences and Lessons Learnt 43

Fig. 8. Response time regarding the amount of the data for Group 2

Fig. 9. Average over the response time of Group 2

However, inside these two groups one can also differentiate between the met-
rics which start in state New (’N’, creation of an issue) and go to a non-
terminating state (we refer to a middle state in the following, see Figure 2) and
the metrics which start in a middle state and end in another middle state. Since
the way through the hierarchy is longer for those metrics starting in state New
(’N’), the complexity of these metrics is higher. Furthermore the number of OR



44 A. Kalchauer et al.

operations in their definition is higher, which increases the execution times fur-
ther. Therefore a comparison between metrics from state new (’N’) to a middle
state and the metrics which goes from a middle state to another middle state
can be of interest.

Figure 10 shows the differences in performance between those metrics.

Fig. 10. Performance comparison between initial and middle states queries

5 Discussion and Lessons Learned

As one can observe, in all the metrics groups (although the execution times are
different) the shape of the graph is the same. The execution time increases in
a mostly linear way up to approx. 55000 rows in the fact table. For bigger fact
tables, there is a dramatic increase in the running time which is shown by the
almost vertical line. From this point, the execution time is increasing following
an almost linear shape. This fact shows that, with the current resources, if the
amount of data to be queried is above 55000 rows for the fact table, a generalized
tuning process should be carried out.

For very large cubes, the performance issues are driven mostly by the hard-
ware, operating system and database tuning, than anything Mondrian can do.

It has been observed that for this amount of data, increasing memory resources
means no change, since the execution times keep on being the same. 2GB are
enough to carry out any operation with this data. Therefore a tuning for the
database and Mondrian is suggested in [19].



BI in Software Engineering: Experiences and Lessons Learnt 45

6 Related Work

Software cockpits for interpretation and visualization of data were already con-
ceptually prepared ten years ago. A reference model for concepts and definitions
around software cockpits is presented in [15]. Concepts and research prototypes
have been developed in research projects like Soft-pit [14] and Q-Bench [9].
Whereas Soft-pit has the goal of monitoring process metrics [14], the Q-Bench
project is aimed at developing and using an approach to assure the internal
quality of object oriented software systems by detecting quality defects in the
code and adjusting them automatically.

The authors of [2] report that the integration of data from different analysis
tools gives a comprehensive view of the quality of a project. As one of the
few publications in this field, the authors also deal with the possible impact of
introducing a software dashboard. The authors of [3], [5], [13], [12] report on
experiences and lessons learnt regarding software dashboards .

According to [8], in the context of explicit quality models, a viable qual-
ity model has to be adaptable and the handling of the obtained values (i.e.
a table result) should be easily understandable. Business intelligence systems
with OLAP functionalities support these requirements and are used nowadays
in several fields [20]. Thefore using BI technology for qualiy monitoring offers
an excellent foundation for data-driven research in collaboration with companies
[16].

Related to the work presented herein are industrial-strength tools, e.g. Bugzilla
(http://www.bugzilla.org), JIRA (http://www.atlassian.com/software/jira), Po-
larion (http://www.polarion.com) and Codebeamer (http://www.intland.com),
Swat4j (http://www.codeswat.com), Rational Logiscope
(http://www-01.ibm.com/software/awdtools/logiscope/) or
Sonar (http://www.sonarsource.org) strive to integrate quality metrics in an en-
vironment of heterogeneous data sources [18]. Some tools (Swat4j or Rational
Logiscope) support the evaluation of quality metrics explicitly taking account a
quality model. Whereas these tools are very flexible in data storing and repre-
sentation, they offer few possibilities for the integration and analysis of different
quality dimensions.

7 Conclusion

In this article we motivate that continuous, tool-supported quality monitoring
is gaining more and more importance due to a new generation of interconnected
and open IT systems that evolve dynamically under presence of a complex tech-
nology stack. We briefly summarize the challenges in operationalising quality
indicators and point out the necessity to integrate the different quality per-
spectives (e.g. process-entered view, product-centred view and resource-centred
view). Having a multi-dimensional view in mind, we argue that OLAP tech-
nology, as it is successfully applied in various business areas - provides a solid
foundation for data-driven research in the field of software quality. We provide



46 A. Kalchauer et al.

an overview of the software architecture of our software dashboard which makes
use of open-source OLAP technology. Afterwards we present an industrial case
study carried out with a company developing a software product. The case study
particularly deals with quality indicators for managing issues (change requests
and defects) and comprises over 43.000 issues over a time period of 13 years.
We implemented over 100 metrics that are dissolved in up to 20 different di-
mensions. Our exhaustive analysis of the running time for the most important
quality indicators shows that today’s BI technology is good enough to support
ad-hoc analysis for most of the relevant quality indicators. Further we report on
challenges and lessons learnt. The work presented in this industrial experience
paper shows that - by relying on today’s BI technology - measurements and
ad-hoc analysis of relevant data is feasible, however, there is an increased need
for further research dealing with the impact of measurement tools in industrial
practice. Yet it is an open issue, how continuous monitoring of quality indicators
effects the overall software quality. Further research should take advantage of
past experiences and lessons learnt but specifically address the impact of con-
tinuous quality monitoring on software quality.

Acknowledgement. The work presented herein has been partially carried out
within the competence network Softnet Austria II (www.soft-net.at, COMET
K-Projekt) and funded by the Austrian Federal Ministry of Economy, Family
and Youth (bmwfj), the province of Styria, the Steirische Wirtschaftsfrderungs-
gesellschaft mbH. (SFG), and the city of Vienna in support of the Center for
Innovation and Technology (ZIT). We listed the authors in alphabetical order.

References

1. ISO/IEC 25010:2011 software engineering - software product qualtiy requirements
and evaluation (SQuaRE) - quality model. International Organization for Stan-
dardization (2011)

2. Bennicke, M., Steinbrückner, F., Radicke, M., Richter, J.-P.: Das sd&m software
cockpit: Architektur und erfahrungen. In: INFORMATIK, pp. 254–260 (2007)

3. Biehl, J.T., Czerwinski, M., Smith, G., Robertson, G.G.: Fastdash: a visual dash-
board for fostering awareness in software teams. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 1313–1322. ACM (2007)

4. Bouman, R., van Dongen, J.: Pentaho Solutions: Business Intelligence and Data
Warehousing with Pentaho and MySQL. Wiley Publishing (2009)

5. Ciolkowski, M., Heidrich, J., Simon, F., Radicke, M.: Empirical results from using
custom-made software project control centers in industrial environments. In: Pro-
ceedings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 243–252. ACM (2008)

6. Dario, B.R.: DATA WAREHOUSING: Investigacin y Sistematizacin de Conceptos.
PhD thesis, Universidad nacional de Crdoba (2009)

7. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Software quality mod-
els: Purposes, usage scenarios and requirements. In: ICSE Workshop on Software
Quality, WOSQ 2009, pp. 9–14 (2009)



BI in Software Engineering: Experiences and Lessons Learnt 47

8. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Software quality mod-
els: Purposes, usage scenarios and requirements. In: ICSE Workshop on Software
Quality, WOSQ 2009, pp. 9–14. IEEE (2009)

9. http://www.qbench.de/

10. JPivot, http://jpivot.sourceforge.net/
11. Lang, S.M., Peischl, B.: Nachhaltiges software management durch lebenszyklus-

übergreifende überwachung von qualitätskennzahlen. In: Tagungsband der Fach-
tagung Software Management, Nachhaltiges Software Management. Deutsche
Gesellschaft für Informatik (November 2012)

12. Larndorfer, S., Ramler, R., Buchwiser: Dashboards, cockpits und projekt-leitstände:
Herausforderung messsysteme für die softwareentwicklung. OBJEKTspektrum 4,
72–77 (2009)

13. Larndorfer, S., Ramler, R., Buchwiser, C.: Experiences and results from estab-
lishing a software cockpit at bmd systemhaus. In: 35th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2009, pp. 188–194 (2009)

14. Münch, J., Heidirch, J., Simon, F., Lewerentz, C., Siegmund, B., Bloch, R., Kurpicz,
B., Dehn, M.: Soft-pit - ganzheitliche projekt-leitstände zur ingenieurmässigen
software-projektdurchführung. In: Proceedings of the Status Conference of the Ger-
man Research Program Software Engineering, vol. 70 (2006)

15. Münch, J., Heidrich, J.: Software project control centers: concepts and approaches.
Journal of Systems and Software 70(1), 3–19 (2004)

16. Peischl, B., Lang, S.M.: What can we learn from in-process metrics on issue man-
agement? Testing: Academic and Industrial Conferencem Practice and Research
Techniques, page IEEE Digial Library (2013)

17. Raisinghani, M.S.: Business intelligence in the digital economy: opportunities, lim-
itations and risks. Idea Group Pub. (2004)

18. Staron, M., Meding, W., Nilsson, C.: A framework for developing measurement
systems and its industrial evaluation. Information and Software Technology 51(4),
721–737 (2009)

19. Torrents, V.R.: Development and optimization of a web-enabled OLAP-based soft-
ware dashboard, Master thesis, Universidad de Alcala (2013)

20. Watson, H.J., Wixom, B.H.: The current state of business intelligence. Com-
puter 40(9), 96–99 (2007)

http://www.qbench.de/
http://jpivot.sourceforge.net/

	Business Intelligence in Software Quality Monitoring: Experiences and Lessons Learntfrom an Industrial Case Study
	1 Motivation
	2 Measuring Software Quality
	3 Exploiting Business Intelligence in Software Engineering
	3.1 Architecture of the Web-Enabled Dashboard

	4 Industrial Case Study: Quality Indicators for Managing Defects and Change Requests
	4.1 Measuring the Management of Defects and Change Requests
	4.2 Queries for Ad-Hoc Analysis
	4.3 Performance Analysis

	5 Discussion and Lessons Learned
	6 Related Work
	7 Conclusion
	References




