
D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2014, LNBIP 166, pp. 199–213, 2014.
© Springer International Publishing Switzerland 2014

Constraint-Based Automated Generation of Test Data

Hans-Martin Adorf and Martin Varendorff

Mgm Technology Partners, Frankfurter Ring 105a,
80807 München, Germany

{Hans-Martin.Adorf,Martin.Varendorff}@mgm-tp.com

Abstract. We present a novel method for automatically generating artificial test
data that are particularly suited for testing form-centric software applications
with several thousand input fields. The complex validation rules for user input
are translated to a constraint satisfaction problem (CSP), which is solved using
an off-the-shelf SMT-solver. In order to exert pressure onto the software under
test, the generated test data have to incorporate extreme and special values
(ESVs) for each field. The SMT-solver is aided by a sophisticated graph-based
cluster algorithm and by other heuristic methods in order to reduce the
complexity of the CSPs. With further optimizations, the test data generator now
routinely generates a complete set of test data records for large form-centric
applications within less than two hours. The test data generator described here
is operationally being used for automated tests of form-centric Web-appli-
cations, within an iterative development process emphasizing very early testing
of software applications.

Keywords: automated test data generation, constraint satisfaction problems,
form-centric software applications, functional testing, satisfiability modulo
theories, software quality assurance.

1 Introduction

The construction of comprehensive test data sets for large software applications is a
complex, time consuming, and error-prone process. The sets have to include valid
data records in order to support positive functional tests, as well as invalid data for
negative tests.

In order to exert pressure onto the application one needs appropriate test coverage
of the space of possible input data. Appropriate coverage requires seeking challenging
input values for input fields, such as extreme or otherwise special values (ESVs),
while simultaneously fulfilling all required validation rules for the input data, or,
conversely, explicitly violating some of them. In order to limit the test execution time,
the size of the test data set (i.e. the total number of test data records) should be small,
which forces one to incorporate as many ESVs as possible into each test data record.

Large applications may require thousands of input values, which are subject to a
similar number of validation rules. Test data sets have to be generated frequently.
Therefore the automation of the entire data generation process is not only highly
desirable, but a necessity for business-critical applications. This paper presents how
we solved the problem of generating high-quality artificial test data sets that are
mainly used within an efficient automated quality assurance process.

200 H.-M. Adorf and M. Varendorff

2 Testing Form-Centric Software Applications

Below we will concentrate on the quality assurance of “form-centric” software appli-
cations. The main purpose of such an application consists in providing users with “free-
text” fields on forms for data entry. The input to a form-centric application ought to be
validated before it is transferred to a processing system. This validation assures that each
field entry is syntactically correct (single-field validation), and that the combination of
entries into different fields is consistent (cross-field validation). The combination of
definitions of fields and of validation rules is called a “validation rule-base”.

A prime example of a large form-centric application is software supporting a tax
declaration, where the taxpayer must enter names, addresses, earnings, calendar dates,
etc. into free-text fields. Tax-related applications are particularly demanding, since
they may contain up to two dozens of forms, some of which may occur in several
instances (e.g. one form per child). Each form contains many fields, which in addition
can be repeated (e.g. a list of deductibles). As stated above, the number of accompa-
nying validation rules usually has the same order of magnitude as the number of
fields, which can be in the range of several thousands.

Another example of a form-centric application is software supporting an applicant
for an insurance policy, or an agent acting as an intermediary between the applicant
and an insurance company.

2.1 The Test Process

Form-centric applications, as any other software application, must be tested before
being deployed in the field. In our case, the high quality demands of our customers
have so far been met by executing intensive manual tests, which, due to the large
number of fields, are very tiring and costly. Over time, in order to save labor and to
reduce costs, manual tests are replaced, as far as possible, by automated tests. For the
automation of functional tests mgm has developed a test framework called jFunk [1].

At mgm we follow a software development life cycle emphasizing early and fre-
quent testing of the applications under development (figure 1). A development cycle
typically spans across several months. Within such a cycle, stable versions of the
software are regularly produced in iterations, and they are tested mainly using
automated functional tests. Test results are fed back into the development of the next
iteration in order to prevent a build-up of defects within a cycle. The duration of the
iterations decreases towards the end of a cycle. Accordingly, the frequency of
executing automated tests increases, which requires a timely creation of test data sets.

2.2 Requirements for the Test Data Generation

In this section we will take a closer look at the requirements for, and the complexity
of, the task of creating test data for a large form-centric application.

The validation rules in a rule base vary in complexity. Simple ones only check the
presence of values in one or more fields. Others consist of equalities, inequalities, or
disequalities between the values in two or more fields. Even more complex rules use
functions of field values within numerical predicates. The most complex rules
combine all types of conditions within sizable Boolean expressions.

Fig. 1. Mgm’s

For each input item, i.e.
instances, values need to b
extreme and special values
occur in at least one test
(all???) combinations of in
arise. If a test requires a
predefined for the test da
manually.

The execution of functi
data set) is time consuming
the size of a set with suffic
This requirement entails th
maximized.

Within a software devel
usually undergoes several
existing test data is usual
application. But if the rule-
generated. This requiremen
correspondingly fast. For r
turn-around time of one da
the data generation process.

For the test of large app
amount of test data records
limits. Therefore an automa

Constraint-Based Automated Generation of Test Data

s “Very Early Testing” quality assurance process

 a field which, as explained above, may appear in seve
e generated. The latter must comprise as many predefi
s (ESVs) as possible. Each ESV should, if feasible at
data record. There is no requirement to consider m

nteresting values, as a “combinatorial explosion” wo
particular combination of values, then these values

ata generation process, or such test cases are execu

ional test cases (each using a single record from the
g, since each test may run for several minutes. Theref
ient test coverage, as defined above, should be minimiz
hat the ESV density in each test data record should

lopment cycle the rule-base associated with an applicat
changes. If such changes are small, a large proportion
ly still valid, and can therefore be used for testing
-base changes are substantial, new test data will have to
nt entails that the test data generation process has to
reasons of practicality our goal has been to accomplis
ay between the delivery of a new rule-base and the end
.

plications it is impossible to manually generate a suffici
s with the required quality and within such stringent ti
ated generation approach is mandatory.

201

eral
ined
all,

many
ould

are
uted

test
fore
zed.

d be

tion
n of
the

o be
o be
sh a
d of

ient
ime

202 H.-M. Adorf and M. Varendorff

3 An Automated Test-Data Generator

The automation of test data generation – known to be a challenging, highly complex
task – is not a complete novelty. Early trials, which date back almost four decades,
even include the treatment of systems of non-linear equations [2]. Test data generators
described in the literature (see e.g. [3]) are often based on a mathematical modeling
process comprising the following phases: (1) construct a control flow graph (usually
by some form of code analysis), (2) select an execution path, and (3) generate test
data for the latter. Each execution path entails a so-called “path predicate”. If the
predicate is sufficiently simple, it can directly be submitted to a suitable solver (see
e.g. [4], [5]). If there is no solution, the path cannot be followed at run-time.

All these methods have to satisfy some constraint(s), but since solving constraint
satisfaction problems (CSPs) is particularly difficult, often one has to resort to
heuristic techniques [3].

Over the past five years, the quality assurance division at mgm has developed an
automated rule-based test data generator (R-TDG) fulfilling the requirements
described above. Our test data generator resembles the classical method of generating
test data insofar as it also uses predicates and a CSP-solver. However, unlike the
classical method, we do not have to perform any code analysis (which is notoriously
difficult) in order to generate a predicate. Instead, we are exploiting the validation
rule-base that accompanies each of our form-centric applications. From the rule-base
a “fundamental predicate” is directly derived, which concisely describes the domain
of valid input data. This predicate is systematically varied in order to incorporate all
those ESVs that should be present in a comprehensive, valuable set of test data
records. Each variation represents a CSP that, probably after some simplifications,
can directly be submitted to a CSP-solver, a Satisfiability Modulo Theories (SMT)
solver in our case.

In principle, the operating procedure for the R-TDG is straightforward:

1. Define several configuration parameters, including the number of desired
instances of the forms and of the field lines.

2. Define required ESVs for all field instances.
3. Add definitions representing new data types and functions.
4. Run the R-TDG and produce random test data records.
5. Validate these records, and feed them into functional tests.

Figure 2 shows how this procedure integrates with the development process of the
application and its corresponding rule set. Three triggers may initiate a test data
generation process:

1. A major release of a rule set containing new field definitions or constraints: Test
data have to be generated for a functional test of the application.

2. A minor release of a rule set containing updated rules and only minor changes in
field definitions: Old test data may be reused, or new test data have to be
generated for a functional test of the application.

3. The deployment of a new version of the application for a functional test: New
ESVs may be necessary, requiring the generation of new test data for a
functional test of the application.

 Constraint-Based Automated Generation of Test Data 203

Fig. 2. Procedure for testing using a new or updated rule set, or a new version of the
application. The necessary test data are generated by the R-TDG.

The data-generation procedure within the R-TDG works as follows:

1. Read the configuration.
2. Read the field and rule definitions
3. Translate each field definition into a number of associated variable definitions,

and each validation rule into a number of associated constraints.
4. Assemble variables and constraints into a base CSP.
5. Read the field definitions, and generate ESVs for each field.
6. Use ESVs for creating variants of the base CSP.
7. Solve the resulting CSPs using an SMT-solver.
8. Translate the solutions back into the format required by the application.
9. Validate these records.

However, the simplicity of this process is misleading since a number of problems
arise which have to be solved before valid test data emerge. Let us discuss these
problems in some more detail.

3.1 Translating Field and Rule Definitions into Variable and Constraint
Definitions

Several configuration parameters govern the whole data generation process. Two of
those influence the translation, namely the actual number of instances of the forms

204 H.-M. Adorf and M. Varendorff

holding the fields (e.g. instances for up to 14 children in a tax declaration), and the
actual number of field instances. We refer to the actual numbers of form and field
instances as their “multiplicities”.

Consider, for example, the declaration of travel expenses: one “line” (consisting of
a set of field instances) might consist of the amount of trips, the origin (i.e. the
address of your employer), the destination (i.e. address of your destination), and the
distance. A validation rule might restrict the number of trips to 366. When we
generate test data, we have to set the desired multiplicity to less than 366 for the fields
above.

A form multiplicity of m combined with a field multiplicity of n leads to m times n
input items. The multiplicity values m and n can be quite large (1000 and more), but
in practice we rarely use values exceeding 2.

An important obstacle to deal with consists in the fact that an input item may be
empty. (An item being empty is equivalent to a Java-variable containing the value
null.) No SMT-solver known to us can handle variables that have no value. Therefore,
for each item, we have introduced a binary “occupation variable” that holds the
information whether the corresponding “value variable” is null or not. Such a variable
pair is semantically equivalent to a single variable whose value may be unspecified.
For instance, a field item of type Boolean is translated into a variable pair that
together can represent the three values: true, false, and undefined. We therefore refer
to the logic implemented in the rules as “three-valued” logic.

Fields are declared in field definitions which, apart from the data type, hold
additional information such as the minimum/maximum field length (number of
characters). This information has to be translated into variable and constraint
definitions that are comprehensible to the SMT-solver. Each field acts as a template,
which is translated into 2 * m * n corresponding variables.

The rules, which form the other half of the input to the R-TDG, are also mere
templates since initially only the maximum number of instances of the forms and of
the fields occurring in those rules are specified. Therefore each abstract rule must be
replicated according to the actual multiplicity of the forms and fields occurring in that
rule. As a consequence, each abstract rule is translated into several concrete con-
straints. The constraints have to be formulated in such a way that they properly
accommodate the value and occupation variables explained above. In effect, each rule
is normally translated into m * n corresponding constraints.

Another important issue to deal with is functions that occur in rule conditions.
SMT-solvers do not comprehend proper functions, but only constraints over a very
limited set of data types. Therefore each function occurring in a rule condition needs
to be translated into a corresponding equivalent constraint.

The three-valued logic vastly complicates all logical expressions and all functions
operating on field items. Consider the simple predicate z = max2(x, y). This expands to
4 cases:

1. z = max(x,y), if both x and y have values (here max is the ordinary maximum
function, which can be resolved into a logical condition),

2. z = x, if x has a value and y does not,
3. z = y, if y has a value and x does not,
4. z = lb, if neither x nor y is defined (here lb is the lower bound for the variables x

and y).

 Constraint-Based Automated Generation of Test Data 205

A concise representation of some functions is also an issue. Consider, for example,
a predicate y = f(x1, x2, …, xn) which requires that at least one of the number of input
items x1, x2, …, xn has to have a non-null value. If for the occupation variables we
were using ordinary Boolean data types (taking the values true or false), a complex
and long winding expression for the function f would result. If we instead use bit data
types (taking the values 0 or 1), a very compact formulation of the predicate emerges
in form of a numeric inequality.

3.2 Representing Data Types Unsupported by SMT-Solvers

The translation process described so far is incomplete. What is missing is a
description of how to deal with data types which occur in the rule-bases, but which
have no direct counterpart in the SMT-world. A case in point is a decimal number
which is an important data type for form-centric applications. Other such data types
encountered in our rule-bases are calendar dates and date ranges. Again, no SMT-
solver known to us can directly deal with calendar dates. We finally mention the
important string data types. While dealing with string data types and string constraints
is an important current research topic, none of the off-the-shelf SMT-solvers is
capable of dealing with strings.

Below we discuss in some detail how we represent these data types in our CSPs.

Decimal Numbers
A decimal number is a rational number that possesses a representation with a finite
number of digits after the decimal separator. For instance, a currency amount is a
decimal number with at most two decimal digits. On the other hand the rational
number 1/3 is not a decimal number.

In order to represent a decimal number within a CSP we use a pair consisting of a
rational number and an accompanying constraint (called “decimal constraint”). The
latter requires that a certain multiple of the number must be an integer. E.g. a standard
currency amount with 2 post-decimal digits (say Euros with Cents) multiplied by 100
must be an integer.

Unfortunately those innocent looking decimal constraints can lead to severe
performance issues for the SMT-solver.

Calendar Dates
Fields with values of type calendar date present another problem since the available
SMT-solvers do not encompass the data type “calendar date”. In the rule-base the
(external) representation of a date value is always a string, such as “11.03.1956”, but
a typical cross field constraint uses functions that require separate access to the day in
the month, the month, and the year of the calendar date. Comparisons with other date
variables or constants, such as before, at the same time, or later, may have to be
performed on parts of a date value, or on the whole value.

In order to enable a CSP-solver to operate on calendar dates, we represent any
calendar date by an integer equivalent to a ‘relative’ day, starting from 01.01.1900
(which is day 1). In an imperative or functional programming language it is easy to

206 H.-M. Adorf and M. Varendorff

implement accessor functions that retrieve the year, the month in the year, or the day
in the month from such a relative day. However, we are dealing with a declarative
CSP-language, and thus these accessors have to be implemented as constraints – a
non-trivial task.

We found representations for all required date constraints. However the run-times
are sometimes prohibitive. The only solution we have found so far consists in pre-
assigning suitable values to a sufficient number of the date variables involved, and
thereby remove these variables from the CSP in question. With this drastic measure
we have been able to cut down the run-times to reasonable values, at the expense of
losing some test-coverage.

Strings and String-Constraints
In a typical form-centric application a large number of the fields are string fields.
Each such field can contain a maximum number of characters, which is a simple
single-field constraint. The character set that the user may choose from for his/her
input is another constraint. In our applications, many fields are further constrained by
one or more regular expressions.

Here is a simple example of the combination of two regular expressions due to
different rules: an ID code must match the expression “[0-9]{5}”, but not match
“00000”, which might be a pseudo-value reserved for “first time customer who has no
ID yet”.

Solving CSPs over string variables is a current research topic (see e.g. [6], [7], and
references therein). However, none of the off-the-shelf SMT-solvers presently
includes a string data type.

In order to cope with string fields and associated string constraints we have used a
heuristic approach that consists of the following elements: for a given field, the field-
length constraint, the alphabet (character set) constraint, and any regular expression
match constraint are considered as predicates over the field. Each predicate is
replaced by the Boolean abstraction of the predicate, i.e. a Boolean variable which
holds the logical value of the predicate. The modified CSP is then submitted to the
SMT-solver, and the values of the artificial Boolean variables are read off the
solution.

For each string field, the solution of the CSP consists of a list of regular
expressions along with a list of Boolean values (match flags), which indicate whether
the string value for the field should match the expression or not. In order to generate
valid strings, fulfilling these predicates, a string generator was developed based on a
publically available regular expression package [8]. Our string generator uses the
well-known representation of a regular expression as a finite state automaton (see e.g.
[9]). By walking the graph representing the automaton, strings can be generated that,
in addition to meeting all constraints, may attempt to fulfill further requirements. The
most important requirement is to exhaust the given character set as early and as well
as possible. Our string generator accomplishes this goal.

The heuristic described above is not an exact method powerful to handle all
occurring situations. Once more, the price to pay for our approximation consists in
losing some of the viable solutions, and sometimes even generating inconsistencies.
Fortunately, most of the time our heuristic works well and produces valid solutions to
string constraints.

 Constraint-Based Automated Generation of Test Data 207

There are string constraints which, out of principle, cannot be treated by a string
generator acting in a post-processing phase. These comprise the equality and
inequality constraints between string variables, the substring function, and conversion
functions where a suitable string is converted to a number or calendar date. These
constraints do actually occur in our rule-bases, and properly solving CSPs that contain
them would require a genuine string solver. In cooperation with the Technical
University Munich such a string solver has been developed [7], but so far has not yet
been incorporated into the productive R-TDG. Therefore in each of those cases a
handcrafted workaround is still required.

3.3 Dealing with Non-linear Constraints

A major obstacle for almost any SMT-solver is non-linear constraints over numeric
variables, such as z = x * y for some variables x, y, and z (for an early account see e.g.
[2]). Only recently a few SMT-solvers that can solve constraints comprising
multinomial expressions have become available (see e.g. [10]).

For the time being, we linearize constraints such as the ones above, by manually
replacing a sufficient number of variables by constant values. Of course, this way we
lose ESV-coverage, but that is a modest price to pay, until we will be ready to move
on to a solver capable of handling non-linear constraints.

3.4 Generating Extreme and Special Values

The R-TDG is expected not to produce arbitrary data records, but test data records
that put the software under test (SUT) under pressure. Therefore, as explained above,
the records have to include ESVs for the input items.

For a numeric input item an important ESV obviously is 0; other ESVs of interest
are the minimum and the maximum admissible values. For a calendar date field 28th
and 29th of February, and 1st of March are interesting ESVs. Dates at the boundaries
of a quarter such as 1st of January and 31st of March are also interesting values. For a
string field, the empty string and a string with the maximum allowed number of
characters are interesting ESVs. For string fields it is important that each admissible
character occurs in at least one ESV, if feasible at all. Of course, for all input items
the null value is an important ESV.

For the production of ESVs we have implemented an automated ESV-generator.
For each variable it produces a reasonable set of ESVs on the basis of the variable’s
generic field-type combined with some additional field-specific parameters such as
the minimum/maximum field length.

In addition to predefined ESVs we usually include some random values that are
treated in the same way as the deterministic ESVs.

The number of ESVs for a given CSPs is roughly proportional to the number of
variables present. The number of ESVs to be generated for a given CSP averages
about 3 to 5 times the number of variables contained in the CSP.

208 H.-M. Adorf and M. Varendorff

4 Solving the CSPs Efficiently

The problem of validating a given data set is straightforwardly solved with an
algorithm with polynomial computational complexity. However, the associated
inverse problem of generating test data has a computational complexity that is much
higher than that of the forward problem. In almost all cases the problem of solving a
CSP is NP-complete. It is therefore often difficult to obtain solutions to practical
CSPs which, as in our case, may have many thousands of variables and many
thousands of constraints.

Usually there no stringent correlation between the run-time and the size of the CSP
measured by the number of variables or constraints. Nevertheless, CSPs with roughly
the same number of variables and of constraints tend to be more difficult to solve than
CSPs with an unbalanced number of variables and constraints. With few constraints
compared to the number of variables the solution space is large, and with many more
constraints than variables the search space for solutions can usually quickly be
restricted, or contradictions are found which lead to an empty solution space.

Efficiency-boosting techniques are essential for a test data generator that is
supposed to be useful in practice. It is important to offer reasonable turn-around times
that fit to operational schedules. With a combination of measures we were able to
reduce the make-span for generating tests data, even for our largest form-centric
applications from about a week to about an hour. Some of those measures are
explained below.

4.1 Partitioning a CSP into Independent Components

A major breakthrough consisted in partitioning any given CSP into independent CSP-
components. Two variables are in the same component when they simultaneously
occur only in constraints of this component. The components of a CSP can best be
viewed in the undirected primal constraint graph in which each vertex corresponds to
a variable, and two vertices are linked when the corresponding variables appear
together in one of the constraints. Each component-CSP can be solved independently
of the others.

One might think that CSP partitioning would be an integral part of any
SMT-solver, but apparently that seems not to be the case. Fortunately, our external
CSP-partitioning technique offers some advantages:

1. The partial solutions to the component-CSPs can freely be combined to form
complete solutions to the parent CSP, i.e. valid test data records.

2. A trivial parallelization (i.e. concurrency) of the solution process becomes
feasible, which further reduces the make-span for the test data generation. We
are usually employing two to four threads, each operating on a different CSP-
component. This approach exploits the resources of a state-of-the-art CPU with
four physical (eight virtual) cores quite well. The reduction of the make-span is
roughly proportional to the number of threads employed.

 Constraint-Based Automated Generation of Test Data 209

4.2 Decomposing a CSP via Cluster Analysis

The run-time of solving a given CSP is usually dominated by the run-time of solving
the largest component-CSPs. Sometimes the largest component-CSPs still are too
complex for our SMT-solver. Here it would be helpful if we could somehow identify
one or more central variables which, if “removed” from the CSP, would permit the
latter to be decomposed into two or more independent components. Again the child
CSPs should more easily be solvable than the parent CSP.

Fig. 3. CSP-decomposition accomplished by the “vertex inbetweenness” cluster analysis
algorithm. The primal constraint graph for a fairly large component of the CSP corresponding
to SUT #1 (see table 1) is shown before (left) and after (right) running the algorithm. The
algorithm has removed four central vertices in order to accomplish the decomposition.

In order to tackle this problem we have developed a very fast, concurrent, graph-
based “vertex inbetweenness” cluster algorithm that iteratively identifies central graph
vertices. The algorithm works on the primal constraint graph of the problematic
component-CSP. A central vertex, once identified, can subsequently be removed from
the graph (figure 3). After we had developed our algorithm we found that it had
already been invented several decades before in the field of sociology [11].

In the context of CSPs a variable removal can be achieved by pre-assigning a value
to the corresponding variable. (The pre-assigned value effectively transforms the
variable into a constant which therefore disappears from the CSP.) Often the removal
of a single variable does not yet allow a decomposition of the CSP. If so, the cluster
algorithm has to be iterated until decomposition becomes possible.

The vertex-inbetweenness algorithm is really amazing in identifying the important
central vertices, which eventually will allow a decomposition of the CSP into in-
dependent CSP-components of roughly comparable size. (The algorithm is greatly
superior to e.g. the simple vertex-cut algorithm, which will often split a given CSP
into one large and one tiny component.) From observing the effect of the vertex-
inbetweenness algorithm, and from analyzing its inner workings, we can state that

210 H.-M. Adorf and M. Varendorff

it behaves as if it were “goal directed”. It seems to identify a potentially worthy cut
consisting of one or more central vertices. During each iteration one of the vertices in
the cut-set is removed until the cut has been achieved. Only after having accomp-
lished this task the algorithm considers another potential cut.

The cluster algorithm is the power tool in our toolbox which we apply when
nothing else helps to reduce the run-time of a critical (i.e. prohibitively long-running)
component-CSP. We have had situations where the SMT-solver, working on a
relatively small component-CSP, would not return within half a day. This, of course,
is unacceptable. The CSP-decomposition, accomplished by applying the cluster
algorithm, usually helps to dramatically reduce the make-span which the SMT-solver
requires for generating solutions – sometimes by several orders of magnitude. The
performance gain again comes at the expense of test coverage, since variable values
oftentimes are fixed to constants that may not even be ESVs. However, obtaining test
data with reduced test coverage is much better than obtaining test data too late or not
at all!

4.3 Re-using Partial Solutions

Another very important efficiency boosting technique, which we recently implemen-
ted, consists in the following: when, for a component-CSP which is currently being
worked on, a partial solution containing some ESVs has been obtained, it can be
reused as a starter, when other ESVs are being added. For large rule-bases, reusing
partial solutions has decreased the make-span for obtaining complete test data sets by
a factor of 30 to 50. To us this large reduction factor came as a welcome surprise.

4.4 Handling Decimal Constraints

At first sight decimal constrains appear innocent. However, in practice we all too
often suffer from severe efficiency problems. Particularly when the number of post-
decimal digits is variable (as is the case for some fields in our SUTs), the run-time for
solving the CSPs can increase dramatically. We therefore had to resort to the
following heuristic: we solve the CSP without decimal constraints, and wait for a
problem with decimal numbers to surface in at least one of the solutions. Only for
those problematic variables, where a solution contains a rational number that cannot
be represented as a decimal number with the allowed number of post-decimal digits, a
decimal constraint is inserted into the CSP. The CSP is then solved once more.

Clearly, this heuristic approach requires two or more solution runs. However, in
our experience, the overall efficiency, when using this heuristic, is still a lot higher
compared to inserting a decimal constraint for all variables that represent a decimal
number.

4.5 Timeouts

Sometimes the solution process for a component-CSP is well underway, when all of
the sudden the SMT-solver “goes on strike”, meaning, it does not return within
acceptable time. In such a situation a timeout is very helpful. When a process,

in which an SMT-solver ru
current component-CSP is c
further consideration. The s
the process not only termina

Fig. 4. Architec

5 Architecture

A sketch of the architecture
start with a rule set, transla
CSP into independent com
accessed via a “Solver Ada
them back to valid test dat
diagram is accompanied by

The most complex com
Handler”. The Translator
definitions of fields and rul
and constraint definitions
include as many ESVs as ar
overall size of the set at a m

Constraint-Based Automated Generation of Test Data

uns, is overdue, it is cancelled. The latest ESV added to
considered to be the trouble-maker, and is eliminated fr
solution process is then restarted, and it is guaranteed t
ates, but terminates in acceptable time.

cture of the rule-based test data generator (R-TDG)

e of the R-TDG is shown in figure 4. The basic idea i
ate it to a CSP with variables and constraints, partition
mponents, solve the CSP by an SMT-solver (which
apter”), assemble the solutions of the CSPs, and trans
ta records. Each architectural component contained in

y a short description of its task.
mponents are the “Translator” and the “ESV Cover
r remedies the discrepancy between the “real wor
les of the business domain and the available variable ty
of an SMT-solver. The ESV Coverage Handler tries
re feasible into the resulting test data set, while keeping

minimum.

211

the
rom
that

s to
the

h is
late
the

rage
rld”

ypes
s to
the

212 H.-M. Adorf and M. Varendorff

6 Results

Table 1 presents the results of generating test data for some large form-centric SUTs.
For all SUTs the number of test data records is relatively small considering the
number of ESVs that have to be incorporated. In addition, in all cases the make-span
of generating test data is between ~10 and ~100 minutes, well below the one day
target that we set out, when we began the development of the R-TDG.

Table 1. For several large form-centric software applications under test (SUTs) the table shows
the size of the CSP (measured by the number of variables and the number of constraints), the
number of CSP-components after partitioning and decomposition, the number of test data
records produced, and the make-span of the data generation. Form and field multiplicities were
set to two. Two threads were used in parallel.

SUT # Variables # Constraints # Components # Records Make-
span

#1 11,845 14,307 3309 51 25 min
#2 13,325 17,063 2129 90 92 min
#3 3,128 4,111 374 79 9 min

#4 2,934 3,736 381 86 12 min
#5 4,830 5,968 712 86 11 min
#6 4,199 5,069 452 79 19 min

7 Summary

We have presented a novel approach for generating artificial random test data that are
suitable for testing large form-centric software applications. These contain up to
several thousand fields that the user has to potentially fill in. The very same single-
field and cross-field constraints that are used by a validator, for validating the user
input to the application, are also used by our test data generator.

The set of base constraints is augmented by simple additional constraints, which
insert into the solutions “extreme and special values” (ESVs), whose purpose is to
exert pressure onto the software application under test (SUT). The variations of the
initial constraint satisfaction problem (CSP) are solved by an off-the-shelf Satis-
fiability Modulo Theories (SMT) solver. Data types unknown to current SMT-solvers
such as decimal numbers, calendar dates, and strings, have to be treated in special
ways. Several heuristics, including an effective graph-clustering algorithm, have been
put in place in order to enable an efficient generation of test data. Even for large form-
centric applications the make-span for data generation has come down to less than
100 minutes.

For about four years, these data are regularly used mainly for automated tests of
several large form-centric software applications that are being developed by our
company.

 Constraint-Based Automated Generation of Test Data 213

8 Glossary

CSP constraint satisfaction problem
ESV extreme and special value
R-TDG rule-based test data generator
SMT satisfiability modulo theories
SUT software (application) under test

References

1. Dost, J., Nägele, R.: “jFunk Overview”, mgm technology partners GmbH (2012)
2. Howden, W.E.: Methodology for the Generation of Program Test Data. IEEE Transactions

on Computers C-24(5), 554–560 (1975)
3. Edvardsson, J.: Survey on Automatic Test Data Generation. In: Second Conf. on Computer

Science and Engineering in Linkoeping (ECSEL), pp. 21–28 (1999)
4. DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation. IEEE

Transactions on Software Engineering 17(9), 900–910 (1991)
5. Gotlieb, A., Botella, B., et al.: Automatic test data generation using constraint solving

techniques. ACM SIGSOFT Software Engineering Notes 23(2), 53–62 (1998)
6. Hooimeijer, P., Veanes, M.: An Evaluation of Automata Algorithms for String Analysis.

Redmond City, Microsoft Research (2010)
7. Braun, M.: A Solver for a Theory of Strings. Fakultät für Informatik, Technische

Universität München (2012)
8. Møller, A.: “Automaton.” Aarhus, Basic Research in Computer Science (BRICS) (2009)
9. Brüggemann-Klein, A.: Regular expressions into finite automata. In: Simon, I. (ed.)

LATIN 1992. LNCS, vol. 583, pp. 87–98. Springer, Heidelberg (1992)
10. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver (2012)
11. Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry 40,

35–41 (1977)

	Constraint-Based Automated Generation of Test Data
	1 Introduction
	2 Testing Form-Centric Software Applications
	2.1 The Test Process
	2.2 Requirements for the Test Data Generation

	3 An Automated Test-Data Generator
	3.1 Translating Field and Rule Definitions into Variable and Constraint Definitions
	3.2 Representing Data Types Unsupported by SMT-Solvers
	3.3 Dealing with Non-linear Constraints
	3.4 Generating Extreme and Special Values

	4 Solving the CSPs Efficiently
	4.1 Partitioning a CSP into Independent Components
	4.2 Decomposing a CSP via Cluster Analysis
	4.3 Re-using Partial Solutions
	4.4 Handling Decimal Constraints
	4.5 Timeouts

	5 Architecture
	6 Results
	7 Summary
	8 Glossary
	References

