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Abstract. Multiple-bank e-cash (electronic cash) model allows users
and merchants to open their accounts at different banks. Most e-cash
systems in the literature have been proposed in the single bank model
in which clients and merchants have accounts at the same bank. In re-
cent years, some multiple-bank e-cash systems were proposed, but they
were proven secure in the random oracle model. In this paper, based
on the Groth-Sahai proof system and Ghadafi group blind signature, we
construct a multiple-bank e-cash system which is proven secure in the
standard model. We achieve the dual privacy requirement (i.e., the user
anonymity and bank anonymity) by using the group blind signature. Our
scheme can also trace the identity of the signer. At last, some security
properties of our scheme, such as anonymity, unforgeability, identifica-
tion of the double spender and exculpability, are proved in the standard
model.

Keywords: multiple-bank e-cash, group blind signature, automorphic
blind signature, Groth-Sahai proofs.

1 Introduction

Group blind signature and multiple-bank e-cash were firstly introduced by
Lysyanskaya and Ramzan [1]. Group blind signature combines the properties
of both a group signature scheme and a blind signature scheme and therefore
it maintains the anonymity of the signer as well as the message to be signed.
Multiple-bank e-cash system consists of a large group of banks which are moni-
tored by the Central Bank, opener, users and merchants. Each bank can dispense
e-cash. The users and merchants can open their accounts in different bank. To
make e-cash systems acceptable to government, the multiple-bank e-cash sys-
tem should provide the owner tracing, coin tracing, identification of the double
spender and signer tracing.

The multiple-bank e-cash system consists of Group Manager (GM), opener
(OP), multiple banks B1, · · · , Bn, the users U1, · · · , Un and the merchants
M1, · · · ,Mn. Existing multiple-bank e-cash systems were proven secure in the
random oracle model. Some results [2,3] have shown that some schemes proven
secure in the random oracle model, are not secure in the standard model. There-
fore, we propose a multiple-bank e-cash system proven secure in the standard
model. We consider the dual privacy requirement, such as the user anonymity
and bank anonymity.
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Related Work. Much research has been performed in the area of e-cash
[4,5,6,7,8,9,10,11]. The compact e-cash scheme [4] allows a user to withdraw
a wallet containing 2L coins efficiently and satisfies all the security properties
mentioned above. However, the number of the coins that the user wants must
be chosen in the withdrawal protocol, and be spent one by one in the spending
protocol. Belenkiy, Chase, Kohlweiss and Lysyanskaya [12] proposed a compact
e-cash system with non-interactive spending in the standard model. This scheme
is based on P-signature [13], simulatable verifiable random functions [14] and
Groth-Sahai proofs systems [15]. Izabachene and Libert proposed the first divis-
ible e-cash scheme [11] in the standard model. They used a different method to
authenticate the spending path. Unfortunately, the communication complexity
of the spending scheme is proportional to the level number of the spent node.
Zhang et al. constructed an anonymous transferable conditional e-cash [16] in
the standard model.

The concept of group blind signatures was first introduced by Lysyanskaya
and Zulfikar [1], where it was mainly used to design a multiple bank e-cash
system in which digital coins could be issued by different banks. Based on the
group blind signature [1], Jeong and Lee constructed a multi-bank e-cash system
[17]. However, the system is proven secure in the random oracle model. In 2008,
a multiple-bank e-cash [18] is proposed by Wang et al. However, it does not
satisfy the unforgeable requirement. In order to obtain unforgeability, Chen et
al. proposed an e-cash system [19] with multiple-bank. All the security of above
multiple-bank e-cash are proven in the random oracle model which is known not
to accurately reflect world (see [2] for instance).

Using divertible zero-knowledge proofs [21], Nguyen et al. proposed a group
blind signature [20]. However, to eliminate the interaction in proof, it relies on
the Fiat-Shamir transformation. Therefore, it is proven secure in the random
oracle model. In 2013, Ghadafi constructed a group blind signature [22] in the
standard model. He gave the formalizing definitions of the group blind signature.
He also offered the dual privacy requirement, such as the user anonymity and
the signer anonymity.

Our Contribution. We construct a multiple-bank e-cash system by using au-
tomorphic blind signature scheme [23] and Ghadafi group blind signature [22] in
the standard model. We make the following contribution.

– We can trace the identity of the signer by the opener.
– By introducing a security tag, we can recover the identity of double spender.
– We give the security proof in the standard model. The new system satisfies

anonymity, unforgeability, identification of double spenders and
exculpability.

Paper Outline. The rest of the paper is organized as follows. In Section 2
we present preliminaries on the various cryptographic tools and assumptions.
Definitions and the security properties of divisible e-cash are presented in Section
3. In Section 4, we present our construction and give efficiency analysis. We give
the security proof in Section 5. Finally we conclude in Section 6.
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2 Preliminaries

2.1 Mathematical Definitions and Assumptions

Definition 1. (Pairing). A pairing ê : G1 × G2 → G3 is a bilinear mapping
from two group elements to a group element [15].

– G1,G2 and G3 are cyclic groups of prime order p. The elements G,H gen-
erate G1 and G2 respectively.

– ê : G1 × G2 is a non-degenerate bilinear map, so ê(G,H) generates G3 and
for all a, b ∈ Zn we have ê(Ga, Hb) = ê(G,H)ab.

– We can efficiently compute group operations, compute the bilinear map and
decide membership.

Definition 2. (Diffie-Hellman Pair). A pair (x, y) ∈ G1 × G2 is defined as
a Diffie−Hellman pair [24], if there exists a← Zp such that x = Ga, y = Ha,
where G,H generate G1 and G2 respectively. We denote the set of DH pairs by
DH = {(Ga, Ha)|a ∈ Zp}.

2.2 Mathematical Assumptions

The security of this scheme is based on the following existing mathematical
assumptions, i.e., the Symmetric External Diffie-Hellman (SXDH) [15], AWF-
CDH [26] and the asymmetric double hidden strong Diffie-Hellman assumption
(q-ADH-SDH) [23].

Definition 3. (Symmetric External Diffie-Hellman). Let G1,G2 be cyclic
groups of prime order, G1 and G2 generate G1 and G2, and let ê : G1×G2 → G3

be a bilinear map. The Symmetric External Diffie-Hellman (SXDH) Assump-
tion states that the DDH problem is hard in both G1 and G2. For random a, b,
G1, G

a
1 , G

b
1 ← G1 and G2, G

a
2 , G

b
2 ← G2 are given, it is hard to distinguish Gab

1

from a random element from Gi for i = 1, 2.

Definition 4. (AWF-CDH). Let G1 ← G1, G2 ← G2 and a← Zp be random.
Given (G1, A = Ga

1 , G2), it is hard to output (Gr
1, G

ar
1 , Gr

2, G
ar
2 ) with r �= 0, i.e.,

a tuple (R,M, S,N) that satisfies

ê(A,S) = ê(M,G2) ê(M,G2) = ê(G1, N) êR,G2 = ê(G1, S).

Definition 5. (q-ADH-SDH). Let G,F,K ← G1, H ← G2 and x, ci, vi ← Zp

be random. Given (G,F,K,Gx;H,Y = Hx) and

(Ai = (K ·Gvi)
1

x+ci , Bi = F ci , Di = Hci , Vi = Gvi ,Wi = Hvi)

for 1 ≤ i ≤ q−1, it is hard to output a new tuple (A = (K ·Gv)
1

x+c , B = F c, D =
Hc, V = Gv,W = Hv) with (c, v) �= (ci, vi) for all i. i.e., one that satisfies

ê(A, Y ·D) = ê(K · V,H), ê(B,H) = ê(F,D), ê(V,H) = ê(G,W ).
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2.3 Useful Tools

Groth-Sahai Proofs. Groth and Sahai [15] constructed the first NIZK proof
systems. They prove a large class of statements in the context of groups with
bilinear map in the standard model. In order to prove the statement, the prover
firstly commits to group elements. Then the prover produces the proofs and sends
the commitments and the proofs to the verifier. And last the verifier verifies the
correctness of the proof.

Groth-Sahai proofs can be instantiated under different security assumptions
but since as noted by [25] the most efficient Groth-Sahai proofs are those in-
stantiated under the SXDH assumption, we will be focusing on this instantia-
tion. Following the definitions of Ghadafi [22], the proof system consists of the
algorithms GS = (GSSetup,GSProve,GSV erify,GSExtract,GSSimSetup,
GSSimProve). For ease of composition, we also define the algorithm GSPOK
(crs, {w1, . . . , wi}, {ε1 ∧ . . .∧ εj}) [22] which proves j multiple equations involv-
ing witness (w1, . . . , wi) and returns a vector of size j of Groth-Sahai proofs.

Automorphic Blind Signature. Abe et al. proposed an automorphic blind
signature scheme [23] which is structure-preserving signatures on group ele-
ments. The automorphic blind signature to sign one message is done between U
and signer. We define the automorphic blind signature to sign one message as
ABSign() and the verification of the signature as ABSV erify().

In order to sign two messages, we use the definition 2 in [23] to finish a generic
transformation [23] from any scheme signing two messages to one singing one
message.

Group Blind Signature. Ghadafi constructed a group blind signature [22]
which provides the dual privacy requirement. On the one hand, the signer (the
bank) can hide his identity and parts of the signature that could identify him.
On the other hand, the user can hide the message and parts of the signature
which could lead to a linkage between a signature and its sign request. Ghadafi
presented two example instantiations. We use the first construction and define
the first construction as GGBS(). The CERT signature [22] is instantiated by
using the above automorphic blind signature [23]. Note that when we sign one
message, we use the ABSign() to generate the signature. However, when we
sign two messages, we use the transformation signature which transforms the
signature to two messages into the signature to one message.

3 Definitions for Multiple-Bank E-Cash

Our model builds on the security models for the Ghadafi group blind signature
[22] and the transferable e-cash [10]. The parties involved in a multiple-bank
e-cash are: a group manager GM , an opener OP , many banks Bi and users Ui.
Note that merchants M are the special users.

In the following, we first describe the algorithms for multiple-bank e-cash.
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3.1 Algorithms

We represent a coin as coin, which its identity is Id. A multiple-bank e-cash
system, denotedΠ , is composed of the following procedures, where λ is a security
parameter.

– ParamGen(1λ) is run by some trusted third party (TTP) which takes as
input 1λ and outputs the public key mbpk for the multiple-bank e-cash
system, the group manager’s secret key skGM and the opener’s extraction
key (ckop, ekop).

– BKeyGen() is run by the banks Bi, to generate his pairs of personal se-
cret/pulbic keys (bsski, bspki) and (bgski, bgpki). The former is used in the
joining protocol. The latter is used for issuing the group blind signature in the
withdrawal protocol. We assume that the public key is publicly
accessible.

– UKeyGen() is run by the users Ui, to generate his pair of personal se-
cret/pulbic keys (skUi , pkUi). Note that the merchants M are special users.

– Issue(Bi(mbpk, i, bsski),GM(skGM , i, bspki)) is an interactive protocol be-
tween a bank Bi and the group manager GM . After a successful completion
of this protocol, Bi becomes a member of the group. If successful, Bi obtains
the certificate certi, and stores the second secret/public keys (bgski, bgpki)
and certi into gski. GM obtains the signature sigi on the second public key
bgpki and stores the second public key bgpki and sigi into regi.

– Withdraw(Ui(mbpk,m),Bi(gski, pkUi)) is an interactive protocol between a
user Ui and an anonymous bank Bi. If the protocol completes successfully,
Ui obtains a blind signature πm on the message m. Bi does not learn what
the message was. Ui only knows the signature that is signed by the bank,
but he does not know which bank issues the signature.

– Spend(Ui(coin, pkM , skUi , pkUi , ckop),M(skM , pkM , bgpki)) is an interactive
protocol between a user Ui and a merchant M . If the protocol completes
successfully, Ui obtains the corresponding serves. M obtains an e-coin coin.

– Deposit(M(coin, skM , pkM , bgpki),Bi(pkM , DB)) is an interactive protocol
between a merchant M and a bank Bi. If coin is not valid, Bi outputs ⊥.
Else, Bi checks whether the database DB contains an e-cash coin′ in which
the serial number is the same as the one in coin. If DB contains coin′, Bi

outputs (coin, coin′). Else, Bi adds coin to DB, and credits M ’s account.
– Identify(coin, coin′) is a deterministic algorithm executed by Bi. It outputs

the public key pkUi and a proof τG.
– VerifyGuilt(pkUi , τG) is a deterministic algorithm that can be executed by

anyone. It outputs 1 if τG is correct and 0 otherwise.
– Open(mbpk, ekop, regi,m, πm) is a deterministic algorithm in which the

opener uses his extraction key ekop to recover the identity i of the banker
and produces a proof τS attesting to this claim.

– VerifySigner(mbpk, i, bspki,m, πm, τS) is a deterministic algorithm which in-
puts an index i and returns 1 if the signature πm was produced by the bank
Bi or 0 otherwise.
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3.2 Security Properties

In this section, we give the brief description of the security properties in our
scheme.

Anonymity. Anonymity includes the bank anonymity and the user anonymity.
In the following, we give the formal definition of the bank anonymity and the
user anonymity.

The bank anonymity guarantees that the adversary is unable to tell which
bank produced a signature. We employ the same signer anonymity used by [22],
where we require that the adversary is given two banks of its choice, the adversary
still cannot distinguish which of the two banks produced a signature.

The user anonymity guarantees that the adversary is unable to tell which
message it is signing. We employ the blindness property used by [22], where we
require that the adversary is given a signature on a message mi for i = {0, 1} of
its choice, he still cannot distinguish which of the two messages is signed.

Unforgeability. Unforgeability guarantees that no collection of users can ever
spend more coins than they withdrew. Formally, we have the following definition
based on the experiment given below.

Identification of Double-Spender. The identification of double-spender guar-
antees that no collection of users, collaborating with the merchant, can spend
an e-cash twice without revealing one of their identities. Formally, we have the
following experiment.

Exculpability. The exculpability guarantees that the bank, even when collud-
ing with malicious users, cannot falsely accuse hones users of having double-spent
a coin. Formally, we have the following experiment.

4 Multiple-Bank E-Cash

Multiple-bank e-cash allows users and merchants to open their accounts at dif-
ferent banks. It supplies the users anonymity and the banks anonymity. In the
following, we give the details of this scheme.

4.1 Setup

On input 1λ and output the public parameters of bilinear groups bgpp = (p,G1,
G2,G3, ê, G,H), where λ is the security parameter. We choose random elements
F,K, T ∈ G1. On input bgpp run the setup algorithms for Groth-Sahai proofs
and return two reference strings crs1, crs2 and the corresponding extraction
keys ek1, ek2. The two reference strings and the extraction keys are used for the
first round and the second round of the automorphic blind signature scheme
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which is used for issuing the group blind signature on the e-cash. The opener’s
commitment key and extraction key are (ckop = crs2, ekop = ek2). On choose
sGM ← Zp and output the key pair of group manager (skGM = sGM , pkGM =
(S1 = GsGM

1 , S2 = GsGM
2 )). The public key of multiple-bank e-cash is mbpk =

(bgpp, F,K, T, crs1, crs2, pkGM ). H is a collision-resistant hash function.
Each bank Bi chooses sBi , s

′
Bi
← Zp and creates two key pairs (bsskBi =

sBi , bspkBi = (S1 = G
sBi

1 , S2 = G
sBi

2 )) and (bgskBi = s′Bi
, bgpkBi = (S1 =

G
s′Bi
1 , S2 = G

s′Bi
2 )). The first key pair is the bank’s personal key pair. The second

one is used for signing the e-cash. Each user Ui chooses sUi ← Zp and generates
the key pair (skUi = sUi , pkUi = (S1 = G

sUi
1 , S2 = G

sUi
2 )). Each merchant Mi

also creates the key pair (skMi = sMi , pkMi = (S1 = G
sMi

1 , S2 = G
sMi

2 )).

4.2 The Joining Protocol

The joining protocol allows the bank to obtain a certificate from the group
manager. In order to issuing e-cash, each bank firstly joins into the group whose
manager is GM . Then the bank Bi obtains the certificate certi. Using the certifi-
cate and the key pair (bgsk, bgpk), the bank issuing the e-cash. In the following,
we give the details of the protocol.

1. (Bi → GM). The bank Bi generates the signature sigi = ABSign(bsski,

bgpki). Then Bi sends sigi, bgpki = (Sbg
1 = G

s′Bi

1 , Sbg
2 = G

s′Bi

2 ) to the group
manager GM .

2. (GM → Bi). GM checks whether the public key bgpki has existed in the

database DBpk or verifies ê(Sbg
1 , G2) �= ê(G1, S

bg
2 ). If it is not, GM verifies

the signature sigi. If ABSverify(bspki, bgpki, sigi) = 1, GM generates the
certificate certi = ABSign(skGM , bgpki). At last, GM sends certi to Bi.

3. Bi verifies the correctness of the certificate. If ABSverify(pkGM , bgpki,
certi) = 1, Bi saves the certificate certi.

4.3 The Withdrawal Protocol

The withdrawal protocol allows Ui to withdraw an e-cash from Bi. cm is defined

as the commitment and corresponding proof to the message m. C
ckop
m is defined

as the commitment to m using the commitment key ckop. In the following, we
give the protocol in detail.

1. (Ui → Bi). Ui chooses sm ← Zp and generates the serial number S =
(Gsm

1 , Gsm
2 ). Ui also chooses q1, q2 ← Zp and computes Q1 = Gq1

1 , Q2 =
Gq1

2 , Q3 = Gq2
1 , Q4 = Gq2

1 . Ui picks at random nonces ι1, ι2 ← Zp. To hide
the serial number, Ui generates the following commitments cS and the correct
proofs πS by using the commitment key ckop of the opener. Ui also generates
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the commitment cpkUi
and the correct proof πpkUi

to Ui’s public key pkUi =

(S1 = G
sUi
1 , S2 = G

sUi
2 ).

cS = (C
ckop

Gsm
1

, C
ckop

Gsm
2

, C
ckop

Q1
, C

ckop

Q2
, U1 = T ι1 ·Gsm

1 ),

πS ← GSPOK{crs1, {Gsm
1 , Gsm

2 , Q1, Q2}, ê(Gsm
1 , G2) = ê(G1, G

sm
2 ) ∧

ê(Q1, G2) = ê(G1, Q2) ∧ ê(T,Q2) · ê(Gsm
1 , G2) = ê(U1, G2)},

cpkUi
= (C

ckop

G
sUi
1

, C
ckop

G
sUi
2

, C
ckop

Q3
, C

ckop

Q4
, U2 = T ι2 ·GsUi

1 ),

πpkUi
← GSPOK{crs1, {GsUi

1 , G
sUi
2 , Q3, Q4}, ê(GsUi

1 , G2) = ê(G1, G
sUi
2 ) ∧

ê(Q1, G2) = ê(G1, Q2) ∧ ê(T,Q2) · ê(GsUi

1 , G2) = ê(U2, G2)}.
At last, Ui sends {pkUi , cS , πS , cpkUi

, πpkUi
} to Bi.

2. (Bi → Ui). Bi verifies the public key pkUi , πS and πpkUi
. If GSV erify(crs1,

πS) = 1 and GSV erify(crs1, πpkUi) = 1, Bi generates the group blind
signature GGBS(S, pkUi) [22] on cS and cpkUi

by using the definition 2 in
[23]. GGBS(S, pkUi) includes the signature σ(S,pkUi

) and the proof πσ(S,pkUi
)
.

πσ(S,pkUi
)
gives a proof that σ(S,pkUi

) is a valid signature on cS and cpkUi
.

At last, Bi sends πσ(S,pkUi
)
to Ui.

3. Ui verifies πσ(S,pkUi
)
. If it is OK, to obtain the signature of the messages

(Gsm
1 , Gsm

2 ) and (G
sUi
1 , G

sUi
2 ), Ui re-randomizes the proof πσ(S,pkUi

)
into

π′
σ(S,pkUi

)
.

At last, Ui obtains the e-cash coin = {S, cpkUi
, π′

σ(S,pkUi
)
}.

4.4 The Spending Protocol

The spending protocol allows Ui to spend an e-cash to the merchant M . In order
to hide Ui’s identity, Ui randomizes cpkUi

and π′
σpkUi

by RdCom and RdProve.

1. (M → Ui). M computes R = H(pkM ||Date||r) and sends {R, pkM , Date, r}
to Ui, where r← Zp is a random value.

2. (Ui → M). Ui also computes R = H(pkM ||Date||r). The commitment to

Ui’s public key is cpkUi
= (C

ckop

G
sUi
1

, C
ckop

G
sUi
2

, C
ckop

Q3
, C

ckop

Q4
, U1 = T ι2 · GsUi

1 ). In

order to hide Ui’s public key, Ui chooses ι
′
2, t

′, μ′, ν′, ρ′ ← Zp and randomizes
cpkUi

into c′pkUi
[24].

Ui computes Y = G
1

sm+1

1 and the security tag T = pkUi · ê(Y,GR
2 ). Mean-

while, Ui gives the following NIZK proofs πY , πT . πY gives a proof that

Y = G
1

sm+1

1 and sm in Y is equal to sm in S. πT gives a proof that the
security tag T is correctly formed.

πY ← GSPOK{crs1, {Y, φY , sm}, ê(G
1

sm+1

1 , Gsm
2 ·G2) = 1G3 , ê(Y/φY , h

θ) = 1G3},
πT ← GSPOK{crs1, {T, φT , Y, φY }, {T = pkUi · ê(Y,GR

2 ), ê(Y/φY , h
θ) = 1G3 ,

ê(T/φT , h
θ) = 1G3}},
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where φY , φT ← G1 are auxiliary variables, and θ ← Zp is a variable [11].

At last, Ui sends the e-cash coin′ = {S,R, c′pkUi
, T, πcoin′ = {π′

σ(S,pkUi
)
,

πY , πT }} to M .

3. M verifies the proofs. If they are correct, M saves coin′ and supplies serves
to Ui.

4.5 The Deposit Protocol

M can deposit the e-cash to any bank. We assume that M has an account in Bi.
When M wants to deposit a coin coin′ to Bi, M just sends coin′ to Bi. Bi checks
the validity of πcoin′ and the consistency with S. If coin′ is not a valid coin, Bi

rejects the deposit. Else, Bi checks if there is already the serial number S in the
database. If there is not entry in the database, then Bi accepts the deposit of the
coin coin′, credits the M ’s account and adds coin′ in the database. Else, there is
an entry coin′′ = {S,R′, c′′pkUi

, T ′, π′
coin′} in the database. Then, Bi checks the

freshness of R in coin′ compared to coin′′. If it is not fresh, M is a cheat and Bi

refused the deposit. If R is fresh, Bi accepts the deposit of the coin′, credits the
M ’s account and add (coin′, coin′′) to the list of double spenders. For recovering
the identity of double spender, Bi executes the Identify algorithm.

4.6 Identify

The Identify algorithm makes sure that when a double-spending is found, Bi

recovers the identity of double spender. The description of the Identify algorithm
is as follow.

Bi knows two coins coin1 = {S,R1, {c′pkUi
}1, T1, π1} and coin2 = {S,R2,

{c′pkUi
}2, T2, π2}. Therefore, Bi directly recovers the public key pkUi by

computing (TR2
1 /TR1

2 )
1

R2−R1 .

4.7 Verify

Any one can verify the correctness of the double spenders and the signer (bank).
In order to verify the correctness of the double spenders, any one executes the al-
gorithm V erifyGuilt. One can parse the coin1 and coin2 as (S,R1, {c′pkUi

}1, T1,

π1) and (S,R2, {c′pkUi
}2, T2, π2) and next run Identify on these values. If the

algorithm Identify returns a public key, then one can check if π1 is consistent
with (S,R1, {c′pkUi

}1, T1) and if π2 is consistent with (S,R2, {c′pkUi
}2, T2).

In order to verify the correctness of the signer (bank) who is opened by opener,
any one executes the algorithm V erifySigner. The input of the algorithm is
(mbpk, i, bspki,m, πm, τS). After verifying the correctness of πm, any one can
check if the signature is signed by the bank.
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4.8 Signer Tracing

Signer tracing is that the opener OP can recover the identity of the signer Bi. Ui

obtains the signature π(σS ,σpkUi
). Using the Open algorithm [22], OP extracts

(σ(S,pkUi
), certi, bgpki) from π(σS ,σpkUi

). Therefore, we know which bank signs

the e-cash.

4.9 Efficiency Analysis

We analyze the efficiency of our scheme, Chen’s scheme [19] and Jeong’s scheme
[17] from the following 5 aspects, namely the efficiency of the joining protocol,
the efficiency of the withdrawal protocol, the efficiency of the spending protocol,
the efficiency of the deposit protocol and security model. It is somehow hard to
quantify the exact cost of the spending protocol in [17] as the instantiation of the
SKREP is very complex. We thus simplify the comparison by stating the total
multi-exponentiations needed. The comparison is given in the following Table 1.

We assume that C1 is the computation cost of the joining protocol. C2 is the
efficiency of the withdrawal protocol. C3 is the efficiency of the spending proto-
col. C4 is the efficiency of the deposit protocol. C5 is the security model. ME
represents the number of multi-exponentiation. ROM represents the random
oracle model. SM represents the standard model.

Table 1. Efficiency comparison between related work and our scheme

C1 C2 C3 C4 C5

Chen’s scheme [19]
Bi 62ME Bi 91ME M 580ME

Bi 285ME ROM
GM 273ME Ui 71ME Ui 61ME

Jeong’s scheme [17]
Bi 11ME Bi 10ME M 12ME

Bi 12ME ROM
GM 12ME Ui 19ME Ui 11ME

Ours
Bi 17ME Bi 17ME M 101ME

Bi 76ME SM
GM 17ME Ui 36ME Ui 26ME

Based on the Table 1, the number of multi-exponentiation in our scheme is
less than one in Chen’s scheme [19], but more than Jeong’s scheme [17]. However,
our scheme is proven secure in the standard model. We know that the scheme
proven secure in the standard model is more securer than one proven secure in
the random oracle model. Therefore, our scheme is more secure.

5 Security Analysis

Regarding the security of our construction, We have the following theorem.

Theorem 1. Our multiple-bank e-cash system is secure under the following as-
sumptions: unforgeability of automorphic blind signature and Ghadafi group blind
signature, pseudorandomness of the Dodis-Yampolskiy PRF and soundness, wit-
ness indistinguishability and re-randomness of Groth-Sahai proofs system.
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6 Conclusion

In this paper, we present a multiple-bank e-cash which is proved secure in the
standard model. We achieve the dual privacy requirement (the users anonymity
and the bank anonymity) by using the Ghadafi group blind signature. To hide the
identity of the user, we re-randomize the commitment to the user’s public key by
using the re-randomness of the Groth-Sahai proofs system. To ensure the security
of the security tag, we use the pseudorandomness of the Dodis-Yampolskiy PRF.
At last, we prove the security properties in the standard model.
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