
Towards an Open Framework Leveraging

a Trusted Execution Environment

Javier González1 and Philippe Bonnet1,2

1 IT University of Copenhagen, Denmark
{jgon,phbo}@itu.dk

2 INRIA Paris Rocquencourt, France

Abstract. Sensor data is a core component of big data. The abundance
of sensor data combined with advances in data integration and data
mining entails a great opportunity to develop innovative applications.
However, data about our movements, our energy consumption or our
biometry are personal data that we should have full control over. Like-
wise, companies face a trade-off as the benefits of innovative services
must be weighted against the risk of exposing data that reveal core in-
ternal processes. How to design a data platform that enables innovative
data services and yet enforce access and usage control? The solutions pro-
posed in the literature to this trade-off all involve some form of trusted
execution environment, where data and processing is trusted and safe
from corruption by users or attackers. The hardware that could support
such trusted execution environments is however closed to the research
community: OEMs disable security extensions from their development
boards and the software handling these security extensions is not open.
In this paper we present a framework that combines commercially avail-
able hardware and open source software. It can be used today by the
research community as a trusted execution environment to investigate
future big data platforms.

1 Introduction

The decrease in size, price and power consumption of large classes of sensors
equipped with computation and communication capabilities is making sensor
data a crucial component of big data systems [4]. The sheer availability of data
about energy consumption in an office raises obvious questions: does constant
employee monitoring improve productivity? Does it improve the quality of facil-
ity management? Does it improve energy efficiency? What if this data is in the
possession of a direct competitor: can it be misused? The trading of personal
data, maintained outside our control, for innovative data services is recognized as
a significant problem by analysts and even by European legal organizations [4,6].
The problem is as similar for companies that are in a position to trade sensitive
internal data for innovative services.

To address this increasing information security problem, the consensual solu-
tion is to develop a data platform that enables innovative data services (relying

G. Wang et al. (Eds.): CSS 2013, LNCS 8300, pp. 458–467, 2013.
c© Springer International Publishing Switzerland 2013



Towards an Open Framework Leveraging a Trusted Execution Environment 459

on modern data integration, mining or clustering techniques) while allowing
users to retain some form of control over who access this data (access control)
and how (usage control). Put differently, we need a trusted data platform to
support innovative services based on sensor data. In [8], solutions involving a
trusted middleware layer are described. In [1], we proposed the vision of trusted
cells, a decentralized data platform based on trusted execution environments
embedded on personal data devices (set top boxes, smart phones or smart me-
ters) at the edges of the Internet. These visions are based on the premise that
trusted execution environments are actually available and can be programmed
to enforce access and usage control policies. However, the hardware that could
support such trusted execution environments has so far been unavailable to the
research community: OEMs disable security extensions from their development
boards and the software handling these security extensions is neither open nor
widely available. Our experience is that it requires first hand information to
know which security extensions (if any) are enabled in a given board, making it
impossible for most developers to determine which are the security capabilities
of the processors powering their own boards.

In this paper, we describe an open framework that combines hardware and
open source software, and provides a trusted execution environment that is (i)
readily available to the research and open source communities, (ii) fits well into
well-known programming frameworks such as Linux and Android, and (iii) is
rich enough to support the design of future big data platforms. We call this
framework the Arm-Xilinx/OpenVirtualization framework as it combines secure
hardware from Xilinx, based on a chip equipped with the TrustZone system from
ARM, with the open source, secure operating system OpenVirtualization from
Sierraware.

In the rest of the paper, we discuss the requirements for supporting usage
control in big data platforms (Section 2), we then discuss what kind of framework
is needed to support our vision of trusted cells(Section 3). Finally, we describe
the ARM-Xilinx hardware platform and the OpenVirtualization software that
constitute a very promising framework in this context (Section 4). We finally
draw our conclusions in Section 5.

2 Enforcing a Usage Control Model

Once a user give away some data, she loses any form of control over it. The deci-
sion of sharing data is, so far, a discrete operation: either all or none of the data is
shared. When dealing with sensitive data, mid points are sometimes achieved by
means of external legal agreements, such as Nondisclosure Agreements (NDAs),
licenses, and other terms of usage. A user might for example give her consent to
some terms of usage when she gives away personal data for a given service (e.g.,
giving away location for a smart phone app or giving away energy consumption
data for a social game aiming at improving energy efficiency). Legal actions are
then possible if a non permitted data access or distribution is perpetrated. These
legal actions are complex and possibly costly. But most importantly, they are



460 J. González and P. Bonnet

taken once the damage is already done. Furthermore, no legal agreement can
prevent malicious attacks from being perpetrated against the devices storing
sensitive data. Ideally, the data sharing process would enable two (or more) par-
ties to negotiate a contract, which we call a usage model, defining who can access
the shared data and how this data is used, while the underlying data platform
ensures that the contract is met by all parties at all time. Put differently, the
data platform enforces the usage model by preventing contract breaches either
from the contract parties or from third parties. Now, we are faced with two core
questions: (1) How does a usage control model looks like? and (2) what does it
take to enforce it?

Fig. 1. UCONABC model: the reference monitor enforces usage decisions (can a given
subject apply a right on a given (set of) object(s)?) based on subject and object
attributes, as well as authorizations, obligations and conditions.

Usage control models usually refer to UCONABC [7]. In the UCONABC

model, subjects provide or consume data objects. Objects might contain secrets
about identified subjects (the data producer, the data consumer, or possibly a
third party). A subject accesses objects via a set of usage functions referred to
as rights. A reference monitor is responsible for taking usage decisions based
on the subject and object attributes as well as Authorization, oBligations and
Conditions ABC. Authorizations are predicates that define whether a subject is
authorized to hold a right; obligations are predicates that define the actions that
a subject must take before or while it holds a rights; and conditions define pred-
icates that must hold true about the environment in which the subject requires
a given right.

What does it take to enforce a UCONABC model? The data platform should
implement a reference monitor and guarantee that there will be no access to
data objects unless appropriate usage decisions (i.e., decisions that respect the
contract negotiated by all parties) are taken. The basic idea is that the reference
monitor is a software component that relies on hardware security features sepa-
rating a secure world (where objects, attributes, as well as rights, authorizations



Towards an Open Framework Leveraging a Trusted Execution Environment 461

and conditions are securely stored, while usage decisions are securely executed)
and a non secure world (where the rest of the processing takes place). There
is today, to the best of our knowledge, no implementation of any UCONABC

model. In fact, there has not been, so far, any easily accessible framework that
distinguishes secure and non secure worlds. We expect that the form of hardware
security and rich operating system integration that we describe below will be a
breakthrough for the research community and that it will enable experimenta-
tions with various forms of usage control models.

3 Implementing Trusted Cells

In [1], we proposed a model, called Trusted Cells, where a client side reference
monitor is embedded on smart devices (including set top boxes, smart phones or
smart sensors) at the edges of the Internet. With trusted cells, the infrastructure
(communication, computing and storage) is untrusted, while the personal devices
that data owners and consumers use to provide or access data are trusted. In
the rest of the paper, we focus on Trusted Cells as a data platform implementing
a UCONABC model. We hereby encourage the community to define alternative
data platforms.

The vision of the trusted cells is based on the separation of a trusted and a rich
environment maintaining a high throughput between them1. How to separate a
non trusted and a trusted environment? There are three options. The first one
(O1), is to opt for a software solution, without hardware support. The second
solution (O2) is to fully separate a secure device (where software and hardware
are trusted), e.g., a secure token, and a non secure device, e.g., a PC in which
the secure token is plugged. The third option (O3) is to consider a processor
that propose a secure mode of execution and a non secure mode of execution.

Before we review these three options, we need to precise the types of attacks
that trusted cells might be submitted to [9]. First, Hack Attacks, which are
limited to software. Examples of hack attacks include viruses or malware. These
attacks are normally triggered by an user approving the installation of a piece
of software that then executes the attack. Second, Shack Attacks, which are
low-budget hardware attacks. Attackers have physical access to the device, but
they lack the knowledge or equipment to carry out an attack at an integrated
circuit level (e.g., scanning I/Os, forcing pins, reprogramming memory devices).
Third, Lab Attacks, which are comprehensive and invasive hardware attacks.
Attackers have access to laboratory equipment and the knowledge to perform
unlimited reverse engineering of a given device (e.g., reverse engineering a de-
sign, performing cryptographic key analysis). The assumption should be that a
device can always be bypassed by a lab attack given enough time and budget.

1 Note that a rich non secure world and a high throughput between secure and non
secure worlds, will enable innovative applications and that there is always a trade-off
between how rich the secure world can be and how easy it is to guarantee that the
secure operations are indeed secure. Exploring this trade-off is a topic for future
work



462 J. González and P. Bonnet

Now, who might be a third party attacker (in addition to the Subject and Ob-
ject)? We adopt the taxonomy proposed by IBM [3], which distinguish between
three classes of attackers. First, intelligent outsiders, i.e., remote attackers,
who lack specific knowledge on the system. They might have access to mod-
erately sophisticated equipment. These attackers try to reproduce software or
simple hardware attacks published in the Internet by a technical expert, rather
than attempt to create new ones. Second, trained insiders, that are techni-
cal experts, highly educated, with experience and access to sophisticated tools.
They are considered trusted, possibly employed by the company developing the
device subject of the attacks. Their knowledge of the system varies, but it can
be assumed that they have access to the information describing it (e.g., secret
information, detailed designs). They seek discovering an sharing new class at-
tacks. Third, funded organizations that represent organizationally founded
teams of trained attackers. They are capable of carrying out sophisticated at-
tacks by means of advanced analysis tools. They are capable of designing new
and innovative attacks exploiting the most insignificant weaknesses.

So, what kind of attacks do we envisage? The most probable attackers are (i)
data owners that might want to alter their own data (e.g., customers could try
to lower their energy consumption bill by altering the measurements stored in
their own smart meters), (ii) subjects that access unauthorized objects (volun-
tarily or not), and (iii) third parties that intentionally extract (large volumes of)
data objects (e.g., organized crime that plans to sell industrial information to a
competitor or organize burglaries in a neighborhood at a time when all houses
are likely to be empty, inferring this information from electricity usage).

The first solution (O1), only based on software is thus not appropriate. Note
that today, all popular data platforms, are only based on software solutions.
Note also, that the number of large scale break-ins and leaks are getting greater
by the day 2 and their effects are beginning to get noticed by the population
(e.g., in Denmark3.

The second option (O2) relies on dedicated, tamper resistant processors ex-
tended with security and cryptographic features that take care of sensitive op-
erations. For example, a dedicated processor can be used to perform crypto-
graphic operations associated with the management of DRM digital certificates.
The main characteristic of this approach is that security is provided by physical
isolation. The dedicated processors are difficult to access physically, and their
design and size makes it difficult for a sophisticated lab attack to succeed. De-
pending on the impediments to perform a lab attack, and the response of the
platform to a potential successful attack, the platform can be described in terms
of its level of tamper resistance. These processors can be used in combination
with certified toolkits to heighten up the overall security of the platform (e.g.,
a Chip-and-PIN terminal). The main downside of this approach is that their
level of security is sustained by a detriment in performance and functionality,

2 http://www.indefenseofdata.com/data-breach-trends-stats/
3 http://cphpost.dk/news/national/nation-œincreasingly-

vulnerable-cyber-attack

http://www.indefenseofdata.com/data-breach-trends-stats/


Towards an Open Framework Leveraging a Trusted Execution Environment 463

making dedicated processors not eligible for the applications we are used to see in
our phones or laptops. Examples of these dedicated, tamper-resistant processors
are IBM CryptoCards4and ARM SecurCore Processors5. This class of solution
might be appropriate for trusted cells, if the protection against lab attack is
paramount.

The third solution (O3), where hardware is not tamper-resistant, still pro-
vides some level of hardware security together with a rich environment. For
example, TrustZone is ARM’s approach to bringing security and high perfor-
mance together. It is tightly integrated into Cortex-A processors, making use of
the AMBA AXI bus and specific TrustZone Intellectual Property (IP) blocks to
extend throughout the system. This allows to secure peripherals such as mem-
ory, crypto blocks, keyboards or screen in runtime, impeding malicious software
to intercept or alter communications and operations involving sensitive data.
Even though ARM does not provide an implementation for TrustZone, they
have worked together with Global Platform in defining a standard specification
for trusted environments. The result is the Global Platform Trusted Execution
Environment (TEE). From an architectural perspective, TrustZone can be con-
ceived as a set of security extensions that enables a TEE running in parallel to
a Rich Execution Environment (REE). High performance tasks are executed in
the REE, while tasks that require an extra level of security are executed in the
TEE. What is interesting about the REE - TEE separation is that it does not
require a dedicated processor for the TEE. Each physical processor core provides
two virtual cores, one considered Non-secure (Normal World) and the other Se-
cure (Secure World), and a mechanism to context switch between them, known
as the monitor mode. The implementation of the monitor mode relies on the
so-called NS bit that is added to the bus transactions and to cache tags in the
system. The NS bit is an addition to the AMBA3 AXI Advanced Peripheral Bus
(APS), a peripheral bus that is attached to the system bus using an AXI-to-
APB-bridge [2]. It is indirectly derived from the identity of the virtual core that
performs a given instruction or memory access. Since the monitor is the most
sensitive component of TrustZone, it is always handled by the Secure World.
Also, since context switching is done by hardware, the overhead is minimal.

The main advantage we see in TrustZone is that it intrinsically supports se-
curity in high performance tasks involving sensitive data. Also, TrustZone being
implemented in Cortex-A9 and Cortex-A15, which are the most popular pro-
cessors for mobile platforms at the moment (e.g., Samsung Exynos and Nvidia
Tegra series), gives us the advantage of developing for an already known and ex-
tensively deployed platform; not to mention the announced partnership between
AMD and ARM that promises the incorporation of TrustZone-based proces-
sors in AMD chips6 to be included in smartphones, set-top boxes and laptops.

4 http://www-03.ibm.com/security/cryptocards/
5 http://www.arm.com/products/processors/securcore/
6 http://www.amd.com/us/press-releases/Pages/

amd-strengthens-security-2012jun13.aspx

http://www-03.ibm.com/security/cryptocards/
http://www.arm.com/products/processors/securcore/
http://www.amd.com/us/press-releases/Pages/


464 J. González and P. Bonnet

Finally, since TrustZone does not require a dedicated processor, it saves compo-
nents, making it a cheap alternative to secure tokens.

TrustZone is not tamper-resistant, however. Lab attacks are out of the scope
of the hardware protection provided by the TrustZone IP blocks and the AMBA
AXI peripheral bus. This is not much of a problem for trusted cells, which con-
stitute a decentralized data platform. Much more problematic is the secrecy
surrounding it. TrustZone technology was first introduced in 2003 [5] and was
officially presented in a press release by ARM in 20047. Surprisingly though,
10 years later, TrustZone’s market is still almost exclusive to Trusted Logic,
Gemalto and Giesecke&Devrient (MobiCore), and it is difficult to find it men-
tioned in any research work besides the one by the Graz University of Tech-
nology8. All three world leading security companies monopolize the TrustZone
market, driven by financial stakeholders such as Visa and MasterCard, by im-
peding 3rd parties - specially research oriented institutions - to make use of it by
opposing to open implementations. The level of security provided by TrustZone
is therefore virtually increased through obscurity: A lock unknown to locksmiths
is world’s most secure lock.

The lack of open APIs and libraries, in combination with Original Equip-
ment Manufactures (OEM) such as Samsung or Nvidia, disabling the TrustZone
security extensions for their development boards is a big impediment for the
research community to get hold of the technology. At the time of this paper the
only boards fully supporting the TrustZone technology are: Xilinx Zynq-7000
AP SoC ZC702, Nvidia Kayla DevKit (Tegra 3) and ARM Versatile Express.
Our experience is that they are all subject to nondisclosure agreements (NDA),
if TrustZone use is intended. Overcoming the closeness of TrustZone requires
implementing, supporting and promoting standards, as well as making them
available to an active, diverse community. This is the main contribution of this
work. We are actively pushing for the expansion and distribution of an open
source implementation of a TEE for the TrustZone security extensions. This in-
volves bringing the parts together, dealing with licensing limitations and making
source code and documentation accessible.

While this third option, based on TrustZone is attractive on paper, the secrecy
surrounding it and the lack of open APIs and libraries is a huge barrier to its
utilization in the context of trusted cells (or any other innovative data platform).
We are working together with Xilinx and Sierraware to remove this barrier.

4 The ARM-Xilinx/OpenVirtualization Framework

Sierraware9, an embedded virtualization company, developed Open Virtualiza-
tion10, which is the first open source alternative that leverages the security exten-
sions present in ARM TrustZone. It is composed by (i) SierraVisor, a hypervisor

7 http://www.arm.com/about/newsroom/5688.php
8 http://www.iaik.tugraz.at
9 http://www.sierraware.com

10 http://www.openvirtualization.org

http://www.arm.com/about/newsroom/5688.php
http://www.iaik.tugraz.at
http://www.sierraware.com
http://www.openvirtualization.org


Towards an Open Framework Leveraging a Trusted Execution Environment 465

for ARM-based systems, and (ii) SierraTEE, a TEE for ARM TrustZone hard-
ware security extensions. While the hypervisor is an interesting contribution, it is
the TEE open source implementation that changes the game, since it opens the
door for developers and researchers to using TrustZone. Open Virtualization’s
TEE implementation is compatible with Global Platform’s TEE specification.

Open Virtualization was first released between 2011 and 2012. Since then,
Sierraware has maintained an open source distribution of it. However, their fo-
cus has been in their commercial distribution. The main issue with this approach
is the risk of contaminating one of the versions with the other. This is specially
significant when it comes to IP blocks and other licensed software. As a con-
sequence, releasing code for the open source version requires the overhead of it
having to be audited by the different vendors, making the process tough and slow,
and preventing code distribution via repositories. Also, maintaining a commer-
cial product implies inevitably that publicly available documentation is limited
and incomplete.

We are working together with Xilinx11 and Sierraware to improve this situ-
ation. Our main contributions here are (i) facilitating the distribution of Open
Virtualization by structuring it and making it available through a public service
code repository, (ii) increasing the public knowledge of TrustZone by working
with Xilinx in documenting the support of Open Virtualization for the Xilinx
SoC ZC702, and as a consequence of this (iii) helping expanding the reach of
TrustZone and Open Virtualization to the research community. The git reposi-
tory containing Open Virtualization is available and can be used directly for the
Xilinx ZC702 board12. We are at the moment working with Xilinx to create a
wiki to complement the repository with documentation on both TrustZone and
Open Virtualization. Our intention is to continue supporting this project and im-
prove those components of Open Virtualization that are relevant to our research.
Ideally, this would be the beginning of a community around Open Virtualization,
where researchers and developers could contribute and build knowledge. We are
also working towards making this git repository Sierraware’s main vehicle for
their open source distribution.

Let us take an example of how the ARM-Xilinx/OpenVirtualization frame-
work could support Trusted Cells. Consider Servfos, a fictive company, that pro-
vides energy services based on data obtained from the smart sensors it is world
renowned for. Their clients supply Servfos with data coming from the sensing
infrastructures deployed in their buildings, and Servfos uses these data to give
their clients all sorts of statistics and other information on their energy usage
efficiency. This allows Servfos’ clients to detect energy leakages and reduce their
monthly expenses. Also, Servfos works with the local municipality in a contest
for ”The Greenest Firm in the Block”. Those business that wish to participate
agree on Servfos providing the municipality with a set of spatio-temporal aggre-
gates on their energy consumption, which are then used for the contest and for
some energy awareness games in different social networks. Finally, Servfos gives

11 http://www.xilinx.com
12 https://github.com/javigon/OpenVirtualization

http://www.xilinx.com
https://github.com/javigon/OpenVirtualization


466 J. González and P. Bonnet

their clients the possibility to participate in an European project that promotes
energy efficiency in office buildings. While the concrete businesses the data is
coming from is not relevant, it is required to access all data points from one
random office in each participant’s building for a whole month. For each service
they provide, Servfos has a different contract with each of their clients, where all
parties agree on who will access which data, and how it is going to be used. Serv-
fos’ clients are willing to participate in green initiatives, but they are concern
about potential uncontrolled accesses to their sensitive data.

In order to support all the services that Servfos offers to their clients two things
are needed: a policy model that is flexible enough as to allow the definition of
complex access and usage policies (the contract), and an engine that enforces
this contract. Derived from this, our specific challenges are: (i) defining an usage
control model for sensor data in terms of UCON authorizations, obligations and
conditions, (ii) identifying which components of a database system should be
placed in a secure environment in order to enforce this usage control model, and
finally (iii) providing an implementation for it. The ultimately goal is to have a
framework (iv) that allows companies like Servfos to provide valuable services
on top of sensor data belonging to individuals or organizations, in such a way
that data owners can count on the access and usage control policies they define
to be enforced. Such framework represents the data platform we have described
in this paper and an implementation of the trusted cells.

Data flows between the trusted cell located in the client side and the one in
the Servfos side. The trusted cells control the access to the sensor data accord-
ing to the UCONABC model. They guarantee that sensitive data is stored in
secure memory and processed by a secure processor (TEE). High performance
processes take place in a REE. To do so they make use of the TrustZone secu-
rity extensions of the ARM Cortex-A9 processor powering the trusted cell. The
software enabling the use of TrustZone is Open Virtualization: an open source
implementation of Global Platform TEE’s specification developed by Sierraware.
The communication between the cells is secured by cryptographic keys that are
stored in the Secure World.

5 Conclusion

In the process of designing and implementing a data platform for sensor data
that allows data owners to share their data while retaining a form of access and
usage control over it, we have encountered a challenge in finding suitable hard-
ware to support it. The secrecy surrounding commercially available hardware
platforms that leverage secure processing, and the lack of open implementations
for them, limit their use, specially inside the research community. What is more,
the industrial monopoly created around secure platforms such as TrustZone vir-
tually increases their level of security through obscurity, representing a benefit
for attackers that are smart enough to find unreported loopholes.



Towards an Open Framework Leveraging a Trusted Execution Environment 467

In this paper we present our efforts for changing this situation. We have
worked together with Xilinx in bringing to the research community Open Virtu-
alization: an open source implementation of a TrustZone TEE environment de-
veloped by Sierraware. The goal is that our efforts result in the establishment of
a community around Open Virtualization and TrustZone, where researchers and
developers can contribute and build knowledge. In the process of discussing the
suitability of TrustZone for our research purposes, we have also given an overview
of commercially available hardware platforms for trusted big data platforms.

Finally we have presented the roadmap for a data platform that supports the
manipulation, analysis and sharing of large volumes of sensor data, while address-
ing the information security problem that this introduces. This data platform
is the materialization of a trusted cell. It is the combination of a formal us-
age control model (UCONABC), a commercially available, extensively deployed
hardware technology that leverages security at a low price (ARM TrustZone),
and an open source implementation of Global Platform’s TEE standard (Open
Virtualization). This is a first step towards a decentralized data platform based
on a TEE at the edges of the Internet that supports innovative services on sensor
data.

References

1. Ancieaux, N., Bonnet, P., Bouganim, L., Nguyen, B., Popa, L.S., Pucheral, P.:
Trusted cells: A sea change for personal data services. In: CIDR (2013)

2. Amba R©, A.: axitm and acetm protocol specification. Technical report, ARM (2013)
3. Abrahan, D.G., Dolan, G.M., Double, G.P., Stevens, J.V.: Transaction security sys-

tem. IBM Systems Journal 30(2), 206–229 (1991)
4. Gantz, J., Reinsel, D., Lee, R.: The digital universe in 2020: Big data, bigger digi

tal shadows, and biggest growth in the far east. In: IDC (February 2013)
5. ImObersteg, G.: Arm trustzone extension delivers hardware security for next gen-

eration, opensystem, armpowered solutions. Intelligence 2, 6–12 (2003)
6. Katzenbeisser, S., Kursawe, K., Preneel, B., Sadeghi, A.-R.: Privacy and security in

smart energy grids (dagstuhl seminar 11511). Dagstuhl Reports 1(12), 62–68 (2011)
7. Park, J., Sandhu, R.: The uconabc usage control model. ACM Trans. Inf. Syst.

Secur. 7(1), 128–174 (2004)
8. IEEE Computer Society. Data engineering. Bulleting of the Technical Committee

on Data Engineering 35(4) (2012)
9. ARM Security Technology. Buiding a secure system using trustzone technology.

Technical report, ARM (2009)


	Towards an Open Framework Leveraging
a Trusted Execution Environment

	1 Introduction
	2 Enforcing a Usage Control Model
	3 Implementing Trusted Cells
	4 The ARM-Xilinx/OpenVirtualization Framework
	5 Conclusion
	References




