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Abstract. We develop a numerical method for the simulation of coastal flows
in multiply-connected domains with irregular boundaries that may contain both
closed and open segments. The governing equations are the shallow-water model.
Our method involves splitting of the original nonlinear operator by physical pro-
cesses and by coordinates. Specially constructed finite-difference approximations
provide second-order unconditionally stable schemes that conserve the mass and
the total energy of the discrete inviscid unforced shallow-water system, while
the potential enstrophy results to be bounded, oscillating in time within a narrow
range. This allows numerical simulation of coastal flows adequate both from the
mathematical and physical standpoints. Several numerical experiments, including
those with complex boundaries, demonstrate the skilfulness of the method.
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1 Introduction

When studying a 3D fluid dynamics problem in which typical horizontal scales are
much larger than the vertical ones—say, the vertical component of the velocity field is
rather small compared to the horizontal ones, or horizontal movements of the fluid are
normally much larger than the vertical ones—it is often useful to reduce the original
problem, usually described by the Navier-Stokes equations, to a 2D approximation.
This leads to a shallow-water model [19, 10, 6].

Shallow-water equations (SWEs) naturally arise in the researches of global atmo-
spheric circulation, tidal waves, river flows, tsunamis, among others [5]. In the spher-
ical coordinates (λ, ϕ) the shallow-water equations for an ideal unforced fluid can be
written as [18]
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Here U ≡ uz, V ≡ vz, where u = u(λ, ϕ, t) and v = v(λ, ϕ, t) are the fluid’s
velocity components, H = H(λ, ϕ, t) is the fluid’s depth, z ≡ √

H , f = f(ϕ) is the
Coriolis acceleration due to the rotation of the sphere, R is the radius of the sphere,
h = h(λ, ϕ, t) is the free surface height, g is the gravitational acceleration. Besides,
h = H + hT , where hT = hT (λ, ϕ) is the bottom topography. We shall study (1)-
(3) in a bounded domain D on a sphere with an arbitrary piecewise smooth boundary
Γ , assuming that λ is the longitude (positive eastward) and ϕ is the latitude (positive
northward).

As we are dealing with a boundary value problem, system (1)-(3) has to be equipped
with boundary conditions.

The question of imposing correct boundary conditions for SWEs is not trivial. Many
independent research papers have been dedicated to this issue for the last several decades
[19, 9, 20, 1]. Depending on the type of the boundary—inflow, outflow or closed—as
well as on the particular physical application, one or another set of boundary conditions
should be used. Following [1], we represent the boundary as Γ = Γo ∪ Γc, where Γo is
the open part of the boundary, while Γc is its closed part. Such a representation of the
boundary simulates a bay-like domain, where the coastline corresponds to the closed
part Γc, while the influence of the ocean is modelled via the open segment Γo. Yet, the
open segment is divided into the inflow Γinf := {(λ, ϕ) ∈ Γ : n · u < 0} and outflow
Γout := {(λ, ϕ) ∈ Γ : n ·u > 0}. Here n is the outward unit normal to Γ , u = (u, v)T.
On the closed part we put

n · u = 0, (4)

on the inflow we assume

τ · u = 0, h = h(Γ ) (5)

and on the outflow it holds

h = h(Γ ), (6)

where τ is the tangent vector to Γ , whereas h(Γ ) is a given function defined on the
boundary [1].

From the mathematical standpoint unforced inviscid SWEs are based on several con-
servation laws. In particular, the mass

M(t) =

∫
D

HdD, (7)
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are kept constant in time for a closed shallow-water system [20, 6]. In the numerical
simulation of shallow-water flows one should use the finite difference schemes which
preserve the discrete analogues of the integral invariants of motion (7)-(9) as accurately
as possible. It is crucial that for many finite difference schemes the discrete analogues
of the mass, total energy and potential enstrophy are usually not invariant in time, so
the numerical method can be unstable and the resulting simulation becomes inaccurate
[20]. This emphasises the importance of using conservative difference schemes while
modelling fluid dynamics phenomena.

In the last forty years there have been suggested several finite difference schemes that
conserve some or other integral characteristics of the shallow-water equations
[12, 2, 4, 11, 3, 7, 13]. In all these works, however, only semi–discrete (i.e., discrete
only in space, but still continuous in time) conservative schemes are constructed. After
using an explicit time discretisation those schemes stop being conservative. Besides,
while aiming to achieve the desired full conservatism (see, e.g., [14]), when all the
discrete analogues of the integral invariants of motion are conserved, some methods
require rather complicated spatial grids (e.g., triangular, hexagonal, etc.), which makes
it difficult to employ those methods in a computational domain with a boundary of an
arbitrary shape; alternatively, it may result in a resource-intensive numerical algorithm.

In this work we suggest a new efficient method for the numerical simulation of
shallow-water flows in domains of complex geometries. The method is based on our
earlier research devoted to the modelling of atmospheric waves with SWEs [16–18].
The method involves operator splitting of the original equations by physical processes
and by coordinates. Careful subsequent discretisation of the split 1D systems coupled
with the Crank-Nicolson approximation of the spatial terms yields a fully discrete (i.e.,
discrete both in time and in space) finite difference shallow-water model that, in case of
an inviscid and unforced fluid, exactly conserves the mass and the total energy, while
the potential enstrophy is bounded, oscillating in time within a narrow band. Due to the
prior splitting the model is extremely efficient, since it is implemented as systems of
linear algebraic equations with tri– and five–diagonal matrices. Furthermore, the model
can straightforwardly be realised on high-performance parallel computers without any
significant modifications in the original single-threaded algorithm.

The paper is organised as follows. In Section 2 we give the mathematical foundations
of the suggested shallow-water model. In Section 3 we test the model with several
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numerical experiments aimed to simulate shallow-water flows in a bay-like domain
with a complex boundary. We also test a modified model, taking into account fluid
viscosity and external forcing for providing more realistic simulation. In Section 4 we
give a conclusion.

2 Governing Equations of the Fully Discrete Conservative
Shallow-Water Model

Rewrite the shallow-water equations (1)-(3) in the operator form

∂ψ

∂t
+A(ψ) = 0, (11)

where A(ψ) is the shallow-water nonlinear operator, while ψ = (U, V, h
√
g)T is the

unknown vector. Now represent the operator A(ψ) as a sum of three simpler operators,
nonlinear A1, A2 and linear A3

A(ψ) = A1(ψ) +A2(ψ) +A3ψ. (12)

Let (tn, tn+1) be a sufficiently small time interval with a step τ (tn+1 = tn + τ ).
Applying in (tn, tn+1) operator splitting to (11), we approximate it by the three simpler
problems
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According to the method of splitting, these problems are to be solved one after an-
other, so that the solution to (11) from the previous time interval (tn−1, tn) is the
initial condition for (13): ψ1(tn) = ψ(tn), then ψ2(tn) = ψ1(tn+1) and finally
ψ3(tn) = ψ2(tn+1). Therefore, the solution to (11) at the moment tn+1 is approxi-
mated by the solution ψ3(tn+1) [8].

Operators A1, A2, A3 can be defined in different ways. In our work equation (13)
has the form
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This choice of Ai’s corresponds to the splitting by physical processes (transport and
rotation) and by coordinates (λ and ϕ). The latter means that while solving (16)-(18) in
λ, the coordinate ϕ is left fixed; and vice versa for (19)-(21).

Introducing the grid {(λk, ϕl) ∈ D : λk+1 = λk +Δλ,ϕl+1 = ϕl +Δϕ}, we ap-
proximate systems (16)-(18) and (19)-(21) by the central second-order finite difference
schemes, so that eventually in λ we obtain (the subindex l, in the ϕ–direction, is fixed,
as well as omitted for simplicity)
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while in ϕ we get (the subindex k, in λ, is fixed and omitted too)
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Here, in a standard manner, wn
kl = w(λk, ϕl, tn), where w = {U, V, h}; besides, we

denoted cl ≡ R cosϕl and c± ≡ cosϕl±1. In turn, the rotation problem (22)-(23) has
the form
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The functions Ukl, Vkl in the presented schemes are defined via the Crank-Nicolson
approximation as Ukl =

(
Un
kl + Un+1

kl

)
/2, Vkl =

(
V n
kl + V n+1

kl

)
/2. As for the over-

lined functions ukl, vkl and zkl, they can be chosen in an arbitrary manner [16]. For
instance, the choice wkl = wn

kl, where w = {u, v, z}, will yield linear second-order fi-
nite difference schemes, whereas the choice wkl = wkl coupled with the corresponding
Crank-Nicolson approximations for wkl will produce nonlinear schemes.

The developed schemes have several essential advantages.
First, the coordinate splitting allows simple parallelisation of the numerical algo-

rithm without any significant modifications of the single-threaded code. Indeed, say,
when solving (24)-(26), all the calculations along the longitude at different ϕl’s can be
done in parallel; analogously, for (27)-(29) the calculations at different λk’s are nat-
urally parallelisable. Finally, equations (30)-(31) can be reduced to explicit formulas
with respect to Un+1

kl , V n+1
kl [17].

Second, the simple 1D longitudinal and latitudinal spatial stencils used do not impose
any restrictions on the shape of the boundary Γ . Therefore, the developed schemes can
be employed for the simulation of shallow-water flows in computational domains of
complex geometries.

Third, the developed schemes are mass– and total-energy–conserving for the inviscid
unforced shallow-water model in a closed basin (Γ = Γc). To show this, consider, e.g.,
(24)-(26). The boundary condition will be U |Γ = 0, which can be approximated as

1

2
(U0 + U1) = 0, (32)

1

2
(UK + UK+1) = 0, (33)

where the nodes k = 1 and k = K are inside the domain D, while the nodes k = 0 and
k = K + 1 are out of D (i.e., fictitious). Multiplying (26) by τRΔλ, summing over all
the k = 1,K’s and taking into account the boundary conditions (32)-(33), we find that
the spatial term vanishes, so that
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which proves that the mass conserves in λ (at a fixed l). Further, multiplying (24) by
τRΔλUkl, (25) by τRΔλVkl and (26) by τRΔλghkl, summing over the internal k’s
and taking into account (32)-(33), we obtain
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that is the energy conserves in λ at ϕ = ϕl too. Similar results can be obtained with
respect to the second coordinate, ϕ (problem (27)-(29)), while the Coriolis problem
(30)-(31) does not affect the conservation laws. Note that to establish both the mass
and the energy conservation we used the divergence of the spatial terms in (24)-(26)
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and (27)-(29) [14]. The conservation of the total energy guarantees that the constructed
finite difference schemes are absolutely stable [8].

Fourth, from (24)-(26), (27)-(29) it follows that under the choice wkl = wn
kl, where

w = {u, v, z}, the resulting finite difference schemes are systems of linear algebraic
equations with either tri– or five–diagonal matrices. Obviously, fast direct (i.e., non-
iterative) linear solvers can be used for their solution, so that the exact conservation of
the mass and the total energy will not be violated.

3 Numerical Experiments

For testing the developed model we consider two problems. In the first problem the
SWEs are a closed system, so that we are able to verify the mass and the total energy
conservation laws; besides, the ranges of the variation of the potential enstrophy are
analysed. In the second experiment the problem is complicated by introducing a com-
plex boundary with open and closed segments, a nonzero viscosity, as well as a nonzero
source function imitating the wind. Such a setup simulates wind-driven shallow-water
flows in a bay.

3.1 Rectangular Domain Test

In this experiment we consider the simplest case: for the computational domain we take
the spherical rectangle D = {(λ, ϕ) : λ ∈ (12.10, 12.65), ϕ ∈ (45.16, 45.60)} with
a closed boundary Γ = Γc. This will allow to verify whether the mass and the total
energy of an inviscid unforced fluid are exactly conserved in the numerical simulation.
For the initial velocity field we take u = v = 0, while the free surface height is a
hat-like function (Fig. 1). The gridsteps are Δλ ≈ Δϕ ≈ 0.015◦, τ = 1.44 min.

In Fig. 2 we plot a graph of the discrete analogues of the potential enstrophy (9). The
mass and the total energy are not shown, as they are trivial constants, that is those invari-
ants are conserved exacly, while the behaviour of the potential enstrophy is stable—it
is oscillating within a narrow band, with a drastically small maximum relative error
about 0.32%, without unbounded growth or decay. This confirms the theoretical calcu-
lations (34)-(35), as well as demonstrates that the developed schemes allow obtaining
physically adequate simulation results.

3.2 Irregular Domain Test

Having a numerical shallow-water model that conserves the mass and the total energy
in the absence of sources and sinks of energy, now consider a more complex problem.

For the computational domain we choose the region shown in Fig. 3. Unlike the pre-
vious problem, the boundary is now of an arbitrary shape; besides, there are several on-
shore parts surrounded by water which represent small isles. The boundary Γ is divided
into the closed and open segments: Γo = {λ ∈ (12.32, 12.65), ϕ = 45.16} ∪ {λ =
12.65, ϕ ∈ (45.16, 45.50)}, Γc = Γ\Γo. This setup aims to simulate flows that may
occur in the Bay of Venice.
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Fig. 1. Rectangular Domain Test: Initial condition (the free surface height is shown in meters; the
markers ‘.’ denote the fictitious nodes outside the domain)
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Fig. 2. Rectangular Domain Test: Behaviour of the potential enstrophy in time (in days). Maxi-
mum relative error does not exceed 0.32%.

In order to make the flows more realistic, terms responsible for fluid viscosity are
also added into the first two equations of the shallow-water system. Specifically, on the
right-hand side of (11) we add the vector Dψ, where

D =

⎛
⎝d11 0 0

0 d22 0
0 0 0

⎞
⎠ , (36)
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Fig. 3. Irregular Domain Test: The computational domain (white area) with onshore parts and
interior isles (grey areas)
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Fig. 4. Irregular Domain Test: Field of the wind stress at t = 0.25 (left) and t = 0.75 (right)
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Here D is the viscosity coefficient. However, addition of the viscosity terms into (24)-
(25) and (27)-(28) requires a modification of boundary conditions (4)-(6). Following
[1], we use the boundary conditions

n · u = 0, Dh
∂u

∂n
τ = 0, (38)

(|n · u| − n · u) (h− h(Γ )

)
= 0, (39)

Dh
∂u

∂n
= 0. (40)
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Fig. 5. Irregular Domain Test: Numerical solution at several time moments (the solution is re-
duced to a coarser grid Δλ ≈ Δϕ ≈ 0.01◦ for better visualisation; the fluid’s depth is shown by
colour, while the velocity field is shown by arrows)
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Fig. 6. Irregular Domain Test with Nonzero Bottom Topography: Numerical solution at several
time moments
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Condition (38) is for u on the closed segment of the boundary (see also [15]), while (39)
and (40) are for h and u on the open segment, respectively. Condition (39) is supposed
to consist of two parts: the first term fires on the outflow (when |n ·u| = n ·u), whereas
the second term is responsible for the inflow (h(Γ ) is supposed to be given a priori).

Finally, on the right-hand side of (11) we add a wind stress of the form Wψ sin 2πt,
where

W ∼

⎛
⎜⎝

− cos π(ϕ−ϕmin)
Lϕ

0 0

0 cos π(ϕ−ϕmin)
2Lϕ

0

0 0 0

⎞
⎟⎠ , (41)

while Lϕ = ϕmax − ϕmin. The wind stress field at t = 0.25 and t = 0.75 is shown in
Fig. 4.

The numerical solution computed on the grid Δλ ≈ Δϕ ≈ 0.005◦ and τ =
1.44 min is presented in Fig. 5 at several time moments. Comparison with Fig. 4 shows
that a wind-driven flow occurs and is then developing in the computational domain.
Specifically, as the simulation starts, the velocity field is formed clockwise (Fig. 5,
t = 0.2, 0.4), in accordance with the wind stress at small times (Fig. 4, left). Later, at
t = 0.5, the wind’s direction changes to anticlockwise due to the term sin 2πt, which
is reflected in the numerical solution with a little time gap because of the fluid’s inertia,
especially in the open ocean far from the coastline: while the coastal waters change their
flows at t ≈ 0.5− 0.7, the large vortex in the open bay begins rotating anticlockwise at
t ≈ 0.8 (Fig. 5). Finally, at t = 1 the entire velocity field is aligned in accordance with
the late-time wind stress (Fig. 4, right).

In Fig. 6 we show the numerical solution to a slightly complicated problem—the
bottom topography is now a smooth hat-like function with the epicentre at λc = 12.51,
ϕc = 45.24. The diameter of the bottom’s irregularity is about 0.1◦, maximum height
is about 1.6 m. As it is seen from the figure, unlike the previous case the presence of an
underwater obstacle causes permutations in the depth field around, while the structure
of the velocity field keeps mostly unchanged in time (cf. Fig. 5).

4 Conclusions

A new fully discrete mass– and total-energy–conserving finite difference model for the
simulation of shallow-water flows in bay-like domains with complex boundaries was
developed. Having taken the SWEs written in the divergent form, we involved the idea
of operator splitting coupled with the Crank-Nicolson approximation and constructed
absolutely stable second-order finite difference schemes that allow accurate simulation
of shallow-water flows in spherical domains of arbitrary shapes. An important integral
invariant of motion of the SWEs, the potential enstrophy, proved to be bounded for an
inviscid unforced fluid, oscillating in time within a narrow range. Hence, the numeri-
cal solution is mathematically accurate and provides physically adequate results. Due
to the method of splitting the developed model can straightforwardly be implemented
for distributed simulation of shallow-water flows on high-performance parallel com-
puters. Numerical experiments with a simple inviscid unforced closed shallow-water
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system and with a viscous open wind-driven shallow-water model with zero and nonzero
bottom topography, simulating real situations, nicely confirmed the skills of the new
method.
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