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Abstract. Greenhouse gas emission scenarios (through 2100) developed by the 
Intergovernmental Panel on Climate Change when converted to concentrations 
and atmospheric temperatures through the use of climate models result in a 
wide range of concentrations and temperatures with a rather simple 
interpretation: the higher the emissions the higher the concentrations and 
temperatures. Therefore the uncertainty in the projected temperature due to the 
uncertainty in the emissions is large. Linguistic rules are obtained through  
the use of linear emission scenarios and the Magicc model. These rules describe 
the relations between the concentrations (input) and the temperature increase 
for the year 2100 (output) and are used to build a fuzzy model. Another model 
is presented that includes, as a second source of uncertainty in input, the climate 
sensitivity to explore its effects on the temperature. Models are attractive 
because their simplicity and capability to integrate the uncertainties to the input 
and the output. 

Keywords: Fuzzy Inference Models, Greenhouse Gases Future Scenarios, 
Global Climate Change. 

1 Introduction 

There is a growing scientific consensus that increasing emissions of greenhouse gases 
(GHG) are changing the Earth's climate. The Intergovernmental Panel on Climate 
Change (IPCC) Fourth Assessment Report [3] states that warming of the climate 
system is unequivocal and notes that eleven of the last twelve years (1995-2006) rank 
among the twelve warmest years of recorded temperatures (since 1850). The 
projections of the IPCCs Third Assessment Report (TAR) [4] regarding future global 
temperature change ranged from 1.4 to 5.8 °C. More recently, the projections indicate 
that temperatures would be in a range spanning from 1.1 to 4 °C, but that 
temperatures increases of more than 6 °C could not be ruled out [3]. This wide range 
of values reflects the uncertainty in the production of accurate projections of future 
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climate change due to different potential pathways of GHG emissions. There are other 
sources of the uncertainty preventing us from obtaining better precision. One of them 
is related to the computer models used to project future climate change. The global 
climate is a highly complex system due to many physical, chemical, and biological 
processes that take place among its subsystems within a wide range of space and time 
scales. 

Global circulation models (GCM) based on the fundamental laws of physics try to 
incorporate those known processes considered to constitute the climate system and are 
used for predicting its response to increases in GHG [4]. However, they are not 
perfect representations of reality because they do not include some important physical 
processes (e.g. ocean eddies, gravity waves, atmospheric convection, clouds and 
small-scale turbulence) which are too small or fast to be explicitly modeled. The net 
impact of these small scale physical processes is included in the model by means of 
parameterizations [10]. In addition, more complex models imply a large number of 
parameterized processes and different models use different parameterizations. Thus, 
different models, using the same forcing produce different results. 

One of the main sources of uncertainty is, however, the different potential 
pathways for anthropogenic GHG emissions, which are used to drive the climate 
models. Future emissions depend on numerous driving forces, including population 
growth, economic development, energy supply and use, land-use patterns, and a 
variety of other human activities (Special Report on Emissions Scenarios, SRES). 
Future temperature scenarios have been obtained with the emission profiles 
corresponding to the four principal SRES families (A1, A2, B1, and B2) [7]. From the 
point of view of a policy-maker, the results of the 3rd and 4th IPCC’s assessments 
regarding the projection of global or regional temperature increases are difficult to 
interpret due to the wide range of the estimated warming. Nevertheless this is an 
aspect of uncertainty that scientists and ultimately policy-makers have to deal with. 
Furthermore, most of the available methodologies that have been proposed for 
supporting decision-making under uncertainty do not take into account the nature of 
climate change’s uncertainty and are based on classic statistical theory that might not 
be adequate. Climate change’s uncertainty is predominately epistemic and, therefore, 
it is critical to produce or adapt methodologies that are suitable to deal with it and that 
can produce policy-useful information. The lack of such methodologies is noticeable 
in the IPCC’s AR4 Contribution of the Working Group I, where the proposed best 
estimates, likely ranges and probabilistic scenarios are produced using statistically 
questionable devices [2]. 

Two main strategies have been proposed for dealing with uncertainty: trying to 
reduce it by improving the science of climate change a feat tried in the AR4 of the 
IPCC, and integrating it into the decision-making processes [9]. There are clear 
limitations regarding how much of the uncertainty can be reduced by improving the 
state of knowledge of the climate system, since there remains the uncertainty about 
the emissions which is more a result of political and economic decisions that do not 
necessarily obey natural laws. 

Therefore, we propose that the modern view of climate modelling and decision-
making should become more tolerant to uncertainty because it is a feature of the real 
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world [6]. Choosing a modelling approach that includes uncertainty from the start 
tends to reduce its complexity and promotes a better understanding of the model itself 
and of its results. Science and decision-making have always had to deal with 
uncertainty and various methods and even branches of science, such as Probability, 
have been developed for this matter [5]. Important efforts have been made for 
developing approaches that can integrate subjective and partial information, being the 
most successful ones Bayesian and maximum entropy methods and more recently, 
fuzzy set theory where the concept of objects that have not precise boundaries was 
introduced [12]. Fuzzy logic provides a meaningful and powerful representation of 
uncertainties and is able to express efficiently the vague concepts of natural language 
[12]. These characteristics could make it a very powerful and efficient tool for policy 
makers due to the fact that the models are based on linguistic rules that could be 
easily understood.  

In this paper two fuzzy logic models are proposed for the global temperature 
changes (in the year 2100) that are expected to occur in this century. The first model 
incorporates the uncertainties related to the wide range of emission scenarios and 
illustrates in a simple manner the importance of the emissions in determining future 
temperatures. The second incorporates the uncertainty due to climate sensitivity that 
pretends to emulate the diversity in modelling approaches. Both models are built 
using the Magicc [11] model and Zadeh´s extension principle for functions where the 
independent variable belongs to a fuzzy set. Magicc is capable of emulating the 
behaviour of complex GCMs using a relative simple one dimensional model that 
incorporates different processes e.g. carbon cycle, earth-ocean diffusivity, multiple 
gases and climate sensitivity. In our second case we intend to illustrate the combined 
effects of two sources of uncertainty: emissions and model sensitivity. It is clear that 
we are leaving out of this paper other important sources of uncertainty whose 
contribution would be interesting to explore. The GCMs are, from our point of view, 
useful and very valuable tools when it is intended to study specific aspects or details 
of the global temperature change. Nevertheless, when the goal is to study and to test 
global warming policies, simpler models much easier to understand become very 
attractive. Fuzzy models can perform this task very efficiently. 

2 Fuzzy Logic Model Obtained from IPCC Data 

The Fourth Assessment Report of the IPCC shows estimates of emissions, 
concentrations, forcing and temperatures through 2100 [3]. Although there are 
relationships among these variables, as those reflected in the figure 1 (left panel), it 
would be useful to find a way to relate emissions directly with increases of 
temperature. A more physical relation is established between concentrations and 
temperature because the latter depends almost directly upon the former through the 
forcing terms. Concentrations are obtained integrating over time the emissions minus 
the sinks of the GHGs. One way of relating directly emissions and temperature, could 
be achieved if the emission trajectories were linear and non-intersecting as illustrated 
in figure 1 (left panel). Here, we perform this task by means of a fuzzy model, which 
is based on the Magicc model [11] and Zadeh´s extension principle (see Appendix). 
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Fig. 1. Left panel: Emissions scenarios CO2, Illustrative SRES and Linear Pathways. (-2) CO2 
means -2 times the emission (fossil + deforestation) of CO2 of 1990 by 2100 and so for -1, 0, 1, 
to 5 CO2. All the linear pathways contain the emission of non CO2 GHG as those of the A1FI. 
4scen20-30 scenario follows the pathway of 4xCO2 but at 2030 all gases drop to 0 emissions or 
minimum value in CH4, N2O and SO2 cases. Right panel: CO2 Concentrations for linear 
emission pathways, 4scen20-30 SO2 and A1FI are shown for reference. Data calculated using 
Magicc V. 5.3. 

 

Fig. 2. Left Panel: Radiative Forcings (All GHG Included) for Linear Emission Pathways and 
A1FI SRES Illustrative, the 4scen20-30 SO2 Only Include SO2. Right Panel: Global 
Temperature Increments for Linear Emission Pathways, 4scen20-30 SO2 and A1FI as 
Calculated using Magicc V. 5.3 

Using as input for the Magicc model the emissions shown in the previous figure we 
calculate the resulting concentrations (figure 1 right panel); forcings (figure 2 left 
panel) and global mean temperature increments (figure 2 right panel). 

The set of emissions shown in figure 1 (left panel) has been simplified to linear 
functions of time that reach by the year 2100 values from minus two times to 5 times    

the emissions of 1990. The trajectories labelled 5CO2 and (-2) CO2 contain the 
trajectories of the SRES. We observe that the concentrations corresponding to the 
5CO2 and the A1FI trajectories, by year 2100 are very close. The choice of linear 
pathways allows us to associate emissions to concentrations to forcings and 
temperatures in a very simple manner. We can say than any trajectory of emissions 
contained within two of the linear ones will correspond, at any time with a 
temperature that falls within the interval delimited by the temperatures corresponding 
to the linear trajectories. This is illustrated for the A1FI trajectory, in figure 2 (right 
panel) that falls within the temperatures of the 5CO2 and 4CO2 trajectories. We 
decided to find emission paths that would lead to temperatures of two degrees or less 
by the year 2100, this led us to the -2CO2, -1CO2 and 0CO2. The latter is a trajectory 
of constant emissions equal to the emissions in 1990 that gives us a temperature of 
two degrees by year 2100.  
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From the linear representation, it is easily deduced that very high emissions 
correspond to very large concentrations, forcings and large increases of temperature. 
It is also possible to say that large concentrations correspond to large temperature 
increases etc. This last statement is very important because in determining the 
temperature the climate models directly use the concentrations which are the time 
integral of sources and sinks of the green house gases (GHG). Therefore the detailed 
history of the emissions is lost. Nevertheless the statement, to large concentrations 
correspond large temperature increases still holds. These simple observations allows 
us to formulate a fuzzy model, based on linguistic rules of the IF-THEN form, which 
can be used to estimate increases of temperature within particular uncertainty 
intervals. Fuzzy logic provides a meaningful and powerful representation of 
measurement of uncertainties, and it is able to represent efficiently the vague concepts 
of natural language, of which the climate science is plagued. Therefore, it could be a 
very useful tool for decision makers. The basic concepts of fuzzy logic are presented 
in Appendix. 

The first fuzzy model one input one output defined for the global temperature 
change is (quantities between parenthesis were used with Zadeh’s principle to 
generate the fuzzy model, the number 1 means the membership value (μ) of the input 
variables used in formulating the fuzzy model): 

1. If (concentration is very low (about -2CO2)) then (deltaT is 

very low (1) 

2. If (concentration is low (about -1CO2)) then (deltaT is low 

(1) 

3. If (concentration is medium-low (about 0CO2) then (deltaT is 

medium-low (1) 

4. If (concentration is medium (about 1CO2)) then (deltaT is 

medium (1) 

5. If (concentration is medium-high (about 2CO2)) then (deltaT 

is medium-high (1) 

6. If (concentration is high (about 3CO2)) then (deltaT is high 

(1) 

7. If (concentration is very high (about 4CO2)) then (deltaT is 

very high (1) 

8. If (concentration is extremely high (about 5CO2)) then 

(deltaT is extremely high (1) 

The 8 rules for concentration are based on 8 adjacent triangular membership 
functions (the simplest form) corresponding to linear emission trajectories (-2CO2 to 
5CO2). The concentrations were obtained from Magicc model and cover the entire 
range (210 to 1045 ppmv). The apex of each membership function (μ=1) corresponds 
with the base (μ =0) of the adjacent one, as we show below (table 1): 
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Table 1. Concentration (ppmv) corresponding to each linear emission trajectory 

Linear emission 
trajectory 

μ =0 μ =1 μ =0 

1. -2CO2 210 213 300 
2. -1CO2 213 300 401 
3.  0CO2 300 401 513 
4.  1CO2 401 513 633 
5.  2CO2 513 633 762 
6.  3CO2 633 762 899 
7.  4CO2 762 899 1038 
8.  5CO2 899 1038 1045 

 

 

Fig. 3. Fuzzy model based on linguistic rules and Zadeh´s principle. Left panel: increases of 
temperature at year 2100 for each possible concentration (emission in the case of our linear 
model) value (solid line). Right panel: Fuzzy rules associated with the different classes of 
concentrations. (Calculated with MATLAB). 

The global temperature changes were obtained through Zadeh’s extension principle 
applied to data from Magicc model. From the point of view of a policy maker, a fuzzy 
model as the one represented by the previous rules is a very useful tool to study the 
effect of different policies on the increases of temperature. 

The fuzzy rules model can be evaluated by means of the fuzzy inference process in 
such a way that each possible concentration value is mapped into an increase of 
temperature value by means of the Mamdani’s defuzzification process (see 
Appendix). The resulting increases of temperature at year 2100 for each possible 
concentration (emission in the case of our linear model) value (solid line) are shown 
in the left panel of figure 3.  

The right panel illustrates the formulation of the rules by showing the fuzzy set 
associated with the different classes of concentrations, the antecedent of the fuzzy 
rule, the IF part and the consequent fuzzy set temperature, the THEN part. The figure 
3 right panel also illustrates the uncertainties of one estimation: If the concentration is 
of 401 ppmv (it fires rule number 3) within an uncertainty interval of (300 to 513 
ppmv) 4 then the temperature increment is 1.95 degrees within an uncertainty interval 
of (1.23 to 2.63 deg C) in this case the temperatures will have uncertainties of one or 
two times the intervals defined by the expert or the researcher. 
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The fuzzy model is simpler and obviously less computationally expensive than the 
set of GCM’s reported by the IPCC. The most important benefit, however, is its 
usefulness for policy-makers. For example, if the required increase of temperature 
should be very low or low (-2CO2, -1CO2), then the policy-maker knows, on the basis 
of this model, that concentrations should not exceed the class small. 

3 A Simple Climate Model and Its Corresponding Fuzzy Model 

Here, we again use the Magicc model but this time we introduce a second source of 
uncertainty, the climate sensitivity. The purpose is to illustrate the effects of the 
combination of two sources of uncertainty on the resulting temperatures. The climate 
model is driven by our linear emission paths. The relationship between concentrations 
and sensitivity and increases of temperature at year 2100 is then used to construct  
a fuzzy model following the extension principle of the fuzzy logic approach (see  
Appendix). 

The set of fuzzy rules obtained in this case is the following: 

1. If (concentration is very very low) and (sensitivity is low) 

then (deltaT is low) (1)  

2. If (concentration is very low) and (sensitivity is low) then 

(deltaT is low) (1)  

3. If (concentration is very low) and (sensitivity is high) then 

(deltaT is med) (1)  

4. If (concentration is medium-low) and (sensitivity is low) 

then (deltaT is low) (1)  

5. If (concentration is medium-low) and (sensitivity is high) 

then (deltaT is high) (1)  

6. If (concentration is medium) and (sensitivity is low) then 

(deltaT is med) (1)  

7. If (concentration is medium) and (sensitivity is high) then 

(deltaT is high) (1)  

8. If (concentration is medium-high) and (sensitivity is low) 

then (deltaT is med) (1)  

9. If (concentration is medium-high) and (sensitivity is high) 

then (deltaT is high) (1)  

10. If (concentration is high) and (sensitivity is low) then 

(deltaT is med) (1)  

11. If (concentration is high) and (sensitivity is high) then 
(deltaT is high) (1)  

12. If (concentration is medium-low) and (sensitivity is med) 

then (deltaT is med) (1) 

Note that we have used the same nomenclature as before and the very high and 
extremely high concentrations are not considered. And the fuzzy sets for the 
temperature and sensitivity are shown in figure 4. We used this figure to build the rule 
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above in combination with 6 fuzzy sets for concentration similar to those from our 
first model described in section 2 (table 1). 

For sensitivity we built 3 triangular fuzzy sets corresponding to sensitivity values 
of 1.5, 3 and 6 deg C/W/m2, showed below (table 2): 

Table 2. Sensitivity (deg C/W/m2) input fuzzy sets for simple climate model 

Sensitivity parameter μ =0 μ =1 μ =0 
1. 1.5 (low) 1.5 1.5 6.0 
2. 3.0 (medium) 1.5 3.0 6.0 
3. 6.0 (high) 3.0 6.0 6.0 

Table 3. Temperature increase (°C) output fuzzy sets for simple climate model 

Sensitivity parameter μ =0 μ =1 μ =0 
1. Low 0.07 1.07 2.13 
2. Medium 0.36 1.98 3.70 
3. High 0.92 3.27 5.75 

 

Fig. 4. ΔT Global and sensitivity fuzzy sets for six linear emission pathways at 2100. The 
dashed lines show the membership functions. 

 

Fig. 5. Fuzzy model for concentrations and sensitivities. Left panel: ΔT surface. Right panel: 
Fuzzy rules. (Calculated with MATLAB). 

Similarly, for global temperature change we have 3 triangular fuzzy sets built with 
data obtained from Magicc model and Zadeh’s extension principle for each sensitivity 
value; the apex of each fuzzy set is the value of global temperature change for the 
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0CO2 linear emission path according to the value of sensitivity, the base of the fuzzy  
sets range from -2CO2 to 3CO2 (assuming global temperature changes below 6 deg 
C) for each sensitivity value (see table 3 and figure 4): 

The Mamdani’s fuzzy inference method is used also here as the defuzzification 
method to compute the increase of temperature values. The results are shown in figure 
5. The left panel of figure 5 shows the surface resulting from the defuzzification 
process. The right panel illustrates again that for the case of a concentration of 401 
ppmv and a sensitivity of 3 (medium sensitivity) the temperature is about 2 degrees 
within an uncertainty interval of (0.36 to 3.70 deg C) where the membership value is 
different from 0. When we compare our previous result with this one we find that the 
answers are very close in fact the fall within the uncertainty intervals of both. The 
uncertainty of concentrations and sensitivity are respectively (300 to 513 ppmv)  
and (1.5 to 6 deg C/W/m2). The result is to be expected since in our first experiment 
we used the Magicc model with default value for the sensitivity and this turns to  
be of 3. 

4 An Extended Simple Climate Model 

In the previous section the emissions were arranged in 6 fuzzy sets and the 
sensitiveties in three fuzzy sets. We decided to take just three fuzzy sets for the 
resulting temperatures; the parameters were calculated according to Zadeh´s extension 
principle, this means the position of the apex (μ=1) and the feet of the triangles (μ=0) 
were calculated with Magicc. The choosing of three sets for the temperature was 
clearly arbitrary since the combination of six emission sets and three sensitivities 
results in 18 sets for the temperature. Again using Magicc we calculated the 
parameters of the 18 fuzzy sets. The output fuzzy rules and its corresponding fuzzy 
sets are shown in tables 4 and 5: 

Table 4. Output temperature increase fuzzy rules (IF - THEN form) for combinations of 6 
concentrations and 3 sensitivities. Example: if concentration is 0CO2 and sensitivity is 3.0 
then temperature increase is T9. 

Concentrations of linear 
emission trajectories 

Sensitivity parameter 
1.5 3.0 6.0 

1. -2CO2 T1 T7 T13 
2. -1CO2 T2 T8 T14 
3.  0CO2 T3 T9 T15 
4.  1CO2 T4 T10 T16 
5.  2CO2 T5 T11 T17 
6.  3CO2 T6 T12 T18 
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Table 5. Output temperature increase fuzzy sets based on Magicc data 

Temperature 
fuzzy set 

μ =0 μ =1 μ =0 
Temperature 

fuzzy set 
μ =0 μ =1 μ =0 

T1 0.07 0.07 1.23 T10 1.07 2.63 5.02 
T2 0.07 0.61 1.98 T11 1.47 3.20 5.75 
T3 0.61 1.07 2.63 T12 1.82 3.70 6.41 
T4 1.07 1.47 3.20 T13 0.36 0.92 2.17 
T5 1.47 1.82 3.70 T14 0.36 2.17 3.27 
T6 1.82 2.13 4.16 T15 1.23 3.27 4.20 
T7 0.07 0.36 2.17 T16 1.98 4.20 5.02 
T8 0.07 1.23 3.27 T17 2.63 5.02 5.75 
T9 0.61 1.98 4.20 T18 3.20 5.75 6.41 

 

For this version of the model we use, instead of 100 ppmv of the former version, 
210 ppmv as left foot of the triangle (μ=0) of the first concentration fuzzy set 
(corresponding to the linear emission trajectory -2CO2) because this value can be 
related to values of temperature increase obtained from Magicc. The results of 
running this model with 18 rules are shown in figure 6 (left panel, defuzzification 
surface) and right panel (fuzzy rules). Figures 5 and 6 show the surfaces which are 
rather similar, the complete set of fuzzy rules leads to the plateaus that are seen in the 
figure 5 no longer appear.  

The fuzzy rules (figure 6, right panel) show again, for comparison, the result of the 
case of a concentration of 401 ppmv and a medium sensitivity parameter of  
3 deg C/W/m2. Now, the defuzzificated value of temperature increase is of 2.26 °C 
within an uncertainty interval of (0.61 to 4.20 °C). 

This illustrates the fact that although the 3 fuzzy sets for the temperature were 
chosen arbitrarily (or almost) in the first case the result are similar to the most 
complete model. This is the consequence of considering the uncertainties, and the 
values of one model lay within the uncertainty of the other. On the other hand  
the results indicate that a careful selection of rules may reduce the complexity of the 
model. Other possibility is that within the 18 rule model there is some redundancy. 

 

 

Fig. 6. Extended Fuzzy model for concentrations and sensitivities. Left panel: ΔT surface. 
Right panel: Fuzzy rules. (Calculated with MATLAB). 
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5 Discussion and Conclusions 

In this work, simple linguistic fuzzy rules relating concentrations and increases of 
temperatures are extracted from the application of the Magicc model. The fuzzy 
model uses concentration values of GHG as input variable and gives, as output, the 
increase of temperature projected at year 2100. A second fuzzy model based on 
linguistic rules is developed based on the same Magicc climate model introducing a 
second source of uncertainty coming from the different sensitivities used by the 
Magicc to emulate more complicated GCMs used in the IPCC reports. An extended 
version of this simple climate model with 18 fuzzy sets for temperature increase 
corresponding to each possible combination of concentration and sensitivity input 
fuzzy sets, has been presented too. These kind of fuzzy models are very useful due to 
their simplicity and to the fact that include the uncertainties associated to the input 
and output variables. Simple models that, however, could contain all the information 
that is necessary for policy makers, these characteristics of the fuzzy models allow not 
only the understanding of the problem but also the discussion of the possible options 
available to them. For example going back to the question of stabilizing global 
temperatures at about 2 degrees or less, we can see the fuzziness of the proposition; 
we could estate that we should stay well below 400 ppmv by year 2100. The observed 
emission pictured in figure 6 where the IPCC scenarios are also shown are contained 
within A1F1 and the A1B therefore we could say that they point to a temperature 
increase that will surpass the two degrees. In fact to keep temperatures under 2 
degrees we have already stated we should remain under 400 ppmv and we are very 
very close (fuzzy concept) to this concentration. 

 

Fig. 7. Observed CO2 emissions against IPCC AR4 scenarios (taken from http://www.Tree 
hugger.com/ clean-technology/iea-co2-emissions-update-2010-bad-news-very-bad-news.html) 
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Appendix 

A.1 Fuzzy Logic Basic Concepts 

As Klir stated in his book [6], the view of the concept of uncertainty has been 
changed in science over the years. The traditional view looks to uncertainty as 
undesirable in science and should be avoided by all possible means. The modern view 
is tolerant of uncertainty and considers that science should deal with it because it is 
part of the real world. This is especially relevant when the goal is to construct models. 
In this case, allowing more uncertainty tends to reduce complexity and increase 
credibility of the resulting model. The recognition by the researchers of the important 
role of uncertainty mainly occurs with the first publication of the fuzzy set theory, 
where the concept of objects that have not precise boundaries (fuzzy sets) is 
introduced [12].  



 Fuzzy Models: Easier to Understand and an Easier Way to Handle Uncertainties 235 

 

Fuzzy logic, based on fuzzy sets, is a superset of conventional two-valued logic 
that has been extended to handle the concept of partial truth, i.e. truth values between 
completely true and completely false. In classical set theory, when A is a set and x is 
an object, the proposition “x is a member of A” is necessarily true or false, as stated 
on equation 1:  
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Whereas, in fuzzy set theory, the same proposition is not necessarily either true or 
false, it may be true only to some degree. In this case, the restriction of classical set 
theory is relaxed allowing different degrees of membership for the above proposition, 
represented by real numbers in the closed interval [0,1], i.e.: 

 [ ]1,0: →XA  

Figure A.1 presents this concept graphically. 

 

Fig. A.1. Gaussian membership functions of a quantitative variable representing ambient  
temperature 

Figure A.1 illustrates the membership functions of the classes: cold, fresh, normal, 
warm, and hot, of the ambient temperature variable. A temperature of 23 °C is a 
member of the class normal with a grade of 0.89 and a member of the class warm 
with a grade of 0.05. The definition of the membership functions may change with 
regard to who define them. For example, the class normal for ambient temperature 
variable in Mexico City can be defined as it is shown in figure A.1. The same class in 
Anchorage, however, will be defined more likely in the range from -8 °C to -2 °C. It 
is important to understand that the membership functions are not probability functions 
but subjective measures. The opportunity that brings fuzzy logic to represent sets as 
degrees of membership has a broad utility. On the one hand, it provides a meaningful 
and powerful representation of measurement uncertainties, and, on the other hand, it 
is able to represent efficiently the vague concepts of natural language. Going back to 
the example of figure A.1, it is more common and useful for people to know that 
tomorrow will be hot than to know the exact temperature grade. 

At this point, the question is, once we have the variables of the system that we 
want to study described in terms of fuzzy sets, what can we do with them? The 
membership functions are the basis of the fuzzy inference concept. The compositional 
rule of inference is the tool used in fuzzy logic to perform approximate reasoning. 
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Approximate reasoning is a process by which an imprecise conclusion is deduced 
from a collection of imprecise premises using fuzzy sets theory as the main tool. 

The compositional rule of inference translates the modus ponens of the classical 
logic to fuzzy logic. The generalized modus ponens is expressed by: 

Rule:   If  X  is  A  then  Y  is  B 
Fact:    X  is  A' 

Conclusion:  Y  is  B' 

Where, X and Y are variables that take values from the sets X and Y, respectively, 
and A, A' and B, B' are fuzzy sets on X and Y, respectively. Notice that the Rule 
expresses a fuzzy relation, R, on X × Y. 

Then, if the fuzzy relation, R, and the fuzzy set A' are given, it is possible to obtain 
B' by the compositional rule of inference, given in equation 2, 

 [ ]),(),('minsup)(' yxRxAyB
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Where sup stands for supremum (least upper bound) and min stands for minimum. 
When sets X and Y are finite, sup is replaced by the maximum operator, max. Figure 
A.2 (left panel) illustrates in a simplified way the compositional rule of inference 
graphically. 

 

Fig. A.2. Left panel: Simplified graphical representation of the compositional rule of inference. 
Right panel: Extension principle example for two input fuzzy variables A and B with 3 fuzzy 
sets each. 

The compositional rule of inference is also useful in the general case where a set of 
rules, instead of only one, define the fuzzy relation, R. 

A.2 Extension Principle 

Zadeh says that rather than regarding fuzzy theory as a single theory, we should 
regard the conversion process from binary to membership functions as a methodology 
to generalize any specific theory from a crisp (discrete) to a continuous (fuzzy) form. 
The extension principle enables us to extend the domain of a function on fuzzy sets, 
i.e., it allows us to determine the fuzziness in the output given that the input variables 
are already fuzzy. Therefore, it is a particular case of the compositional rule of 
inference. Figure A.2 (right panel) gives a first idea of the extension principle 
showing an example of two input variables with 3 fuzzy sets each. 
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The extension principle is applied to transform each fuzzy pair (Ai, Bj), in a fuzzy 
set of the C output variable. Notice that in the example of figure A.2 (right panel) we 
have 9 pairs of fuzzy input sets and, therefore, 9 fuzzy sets are obtained representing 
the conclusion as shown in the right hand side of figure A.2 (right panel). The 
extension principle when two input variables are available is presented in equation 3. 
Ck is the kth output fuzzy set extended from the two input fuzzy sets Ai and Bj. In the 
example at hand, as illustrated in figure A.3, the extension principle is applied 9 
times, to obtain each of the output fuzzy sets associated to each fuzzy input pair. 
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For instance, the output fuzzy set C9, is obtained when using the extension principle 
of equation 3 with the input fuzzy sets A1 and B3 [6, 1, 8]. 
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