A Multi-GPU Approach to Fast
Wildfire Hazard Mapping

Donato D’ Ambrosio!, Salvatore Di Gregorio!, Giuseppe Filippone!,
Rocco Rongo!, William Spataro', and Giuseppe A. Trunfio?

! Department of Mathematics and Computer Science,
University of Calabria, 87036 Rende (CS), Italy
2 DADU, University of Sassari, 07041 Alghero (SS), Italy

Abstract. Burn probability maps (BPMs) are among the most effective tools to
support strategic wildfire and fuels management. In such maps, an estimate of
the probability to be burned by a wildfire is assigned to each point of a raster
landscape. A typical approach to build BPMs is based on the explicit propaga-
tion of thousands of fires using accurate simulation models. However, given the
high number of required simulations, for a large area such a processing usually
requires high performance computing. In this paper, we propose a multi-GPU ap-
proach for accelerating the process of BPM building. The paper illustrates some
alternative implementation strategies and discusses the achieved speedups on a
real landscape.

Keywords: GPGPU, Cellular Automata, Wildfire Simulation, Wildfire Suscep-
tibility, Hazard Maps.

1 Introduction

Among the several tools recently developed to support fire hazard management, there
are the so-called burn probability maps (BPMs), which attempt to provide an estimate
of the probability of a point in a landscape to be burned under certain environmental
conditions. To cope with the nonlinear interactions between the many factors that de-
termine the fire behaviour, models for simulating wildfire spread are increasingly being
used to build BPMs [}, 12]. In particular, the typical approach is based on carrying out
a high number of simulations (e.g. many thousands), under different weather scenarios
and ignition locations [1].

In order to obtain reliable results in reasonable time, such an approach must be based
on fast and accurate simulation models operating on high-quality high-resolution re-
mote sensing data (e.g., Digital Elevation Models, vegetation description, etc). Among
the different wildfire simulation techniques [3], those based on Cellular Automata (CA)
[4-7] represent an ideal approach to build a BPM. This is because they provide accurate
results and can often perform the same simulations in a fraction of the run time taken
by different methods [6].

However, because of the required high number of explicit fire propagations, even us-
ing the most optimized algorithms, the building of simulation-based BPMs for a large
area often results in a highly intensive computational process. For example, building a

M.S. Obaidat et al. (eds.), Simulation and Modeling Methodologies, Technologies and Applications, 183
Advances in Intelligent Systems and Computing 256,
DOI: 10.1007/978-3-319-03581-9 13, (© Springer International Publishing Switzerland 2014

184 D. D’ Ambrosio et al.

high-resolution BPM for a regional territory typically requires the use of high perfor-
mance computing (HPC).

Among the different HPC alternatives is the recently emerging General-Purpose
computing on Graphics Processing Units (GPGPU), in which multicore Graphics Pro-
cessing Units (GPU) perform computations traditionally carried out by the CPU. In
this paper, we apply GPGPU, in conjunction with a wildfire simulation model, to the
process of BPM computation.

In particular, the proposed approach is based on a CA simulation model which repre-
sents a suitable trade-off between accuracy and speed of execution. The adopted parallel
computation consists of the iterative simultaneous simulation of a number of wildfires
with GPGPU, in order to cover the whole area under study. In the paper we illustrate
two different implementation strategies together with a multi-GPU approach. In addi-
tion, we discuss some numerical results obtained on a real Mediterranean landscape,
which is historically characterized by a high incidence of wildfires.

The paper is organized as follows. In the next section we outline the main charac-
teristics of the adopted CA simulation model and illustrate some details of the typical
approach for BPM computation. Then, in section [3] we present some introductory ele-
ments of the adopted GPGPU approach. In section 4] we outline the proposed parallel
approaches and in section [§]we investigate some of their computational characteristics.
The paper ends with section [@in which we draw some conclusions and outline possible
future work.

2 Simulation-Based Burn Probability Mapping

2.1 The Wildfire Simulation Model

As mentioned above, CA methods for simulating wildfires can be highly optimized
from the computational point of view. For this reason they are well suited for the process
of building BPMs. In particular, in this study we use the CA-based wildfire simulation
model described in [8] (to which the reader is referred for the details).

The adopted simulator is based on the Rothermel fire model [9], which provides the
heading rate and direction of spread given the local landscape and wind characteristics.
An additional constituent is the commonly assumed elliptical description of the spread
under homogeneous conditions (i.e. spatially and temporally constant fuels, wind and
topography) [10]. Under the above hypothesis, given the assumption of homogeneity
at the cell level, the CA transition function uses the elliptical model for producing the
complex patterns that correspond to the fire spread in heterogeneous conditions.

In brief, the two-dimensional fire propagation is locally obtained by a growing ellipse
(see Figure[I) having the semi-major axis along the direction of maximum spread, the
eccentricity related to the intensity of the so-called effective wind and one focus acting
as a ‘fire source’ [3,6]. At each CA step the ellipse’s size is increased according to both
the duration of the time step and maximum rate of spread. Afterwards, a neighbouring
cell invaded by the growing ellipse is considered as a candidate to be ignited by the
spreading fire. In case of ignition, a new ellipse is generated according to the amount of
overlapping between the invading ellipse and the ignited cell.

A Multi-GPU Approach to Fast Wildfire Hazard Mapping 185

_Growingellipse HER A

Tgnited cell

.

=

Unburned cell
- N

™\

Fig. 1. Growth of the ellipse locally representing the fire front. The forward spread is incremented
at each CA step according to the local spread rate and to the size of the time step.

A relevant feature of the model consists of the dynamic adaptation of the duration
of each time step. In practice, the step size is computed on the basis of the minimum
amount of time that elapses before the fire may have traveled from a cell on the current
fire front to a neighbouring cell [4, 6, [7].

2.2 A Simulation-Based Approach for Building BPMs

In the latest years, the use of hazard maps based on the explicit simulation of natu-
ral phenomena has been increasingly investigated as an effective and reliable tool for
supporting risk management [11, 1,12, [12].

In the case of wildfire, the most general approach for computing a BPM on a land-
scape [1, 2] consists of a Monte Carlo approach in which a high number of different
fire spread simulations are carried out, sampling from suitable statistical distributions
the random variables relevant to the fire behaviour. For example, the wind direction for
each simulated fire can be sampled in a range corresponding to the typical directions
of severe wind for the area. At the end of the process, the local risk is computed on the
basis of the frequency of burning.

The technique for computing the BPMs adopted in this study is based on a prefixed
number ny of simulation runs, where each run represents a single simulated fire. The
adopted weather scenario (i.e. wind and fuel moisture content) is stationary and cor-
responds to extreme conditions for the area with regards to relevant historical fires. A
regular grid of ignition locations is adopted, which corresponds to the assumption of
a uniform ignition probability for each point of the landscape. Also, all the simulated
fires have the same duration. The latter is selected considering the duration of historical
fires in the regions under study. All the other relevant characteristics are kept constant
during the simulations.

Once these have been carried out, the resulting n y maps of burned areas are overlaid
and cells’ fire frequency are used for the computation of the fire risk. In particular, a
burn probability py(c) for each cell ¢ is computed as:

f(c

mie)=7'; 1)
ny

where f(c) is the number of times the cell c is ignited during the ny simulated fires.

The burn probability for a given cell is an estimate of the likelihood that a cell will burn

186 D. D’ Ambrosio et al.

given a single random ignition within the study area and given the assumed conditions
in terms of fire duration fuel moisture and weather.

According to the procedure described above, the number n ¢ of simulation runs de-
pend on the resolution of the grid of ignition points. However, as shown in the applica-
tion example discussed later, the number of fire simulation needed for achieving a good
BPM accuracy can be considerably high in case of study areas with great extensions.

3 The Compute Unified Device Architecture

A natural approach to deal with the high computational effort related to construction of
the BPMs is the use of parallel computing. Among the different parallel architectures
and computational paradigms, the recently emerging GPGPU is particularly suited for
accelerating CA-based simulations [13,[14].

Modern GPUs are multiprocessors with a highly efficient hardware-coded multi-
threading support. The key capability of a GPU unit is thus to execute thousands of
threads running the same function concurrently on different data. Hence, the compu-
tational power provided by such an architecture can be fully exploited through a fine
grained data-parallel approach when the same computation can be independently car-
ried out on different elements of a dataset.

The GPGPU platform investigated in this paper is the one provided by nVidia, which
consist of a group of Streaming Multiprocessors (SMs) able to support a limited number
of co-resident concurrent threads, which share the SM’s limited memory resources.
Furthermore, each SM consists of multiple Scalar Processor (SP) cores. In order to
program the GPU, the C-language Compute Unified Device Architecture (CUDA) [15]
is used. In a typical CUDA program, sequential host instructions are combined with
parallel GPU code. The idea underlying this approach is that the CPU organizes the
computation (e.g. in terms of data pre-processing), sends the data from the computer
main memory to the GPU global memory and invokes the parallel computation on the
GPU. After, and/or during the latter, the CPU invokes the copying of the computed
results into the main memory for post-processing and output purposes.

In CUDA, the GPU activation is obtained by writing device functions in C language,
which are called kernels. When a kernel is invoked by the CPU, a number of threads
(e.g. typically several thousands) execute their code in parallel on different data. Ac-
cording to the nVidia approach to GPGPU, threads are grouped into blocks and exe-
cuted on the SMs.

The GPU can access different types of memory. For example, to each thread block
can be assigned a certain amount of fast shared memory (which can be used for some
limited intra-block communication between threads). Also, all threads can access a
slower but larger global memory which is on the device board but outside the com-
puting chip. The device global memory is slower if compared with the shared memory
but it can deliver significantly higher bandwidth than the main computer memory. The
latter is typically linked to the GPU card through a relatively slow bus. As a results,
the parallel computation should be organised in such a way to minimize data transfers
between the host and the device.

Even though the GPUs global memory offers a considerably higher memory band-
width compared to CPUs host memory, it still requires hundreds of clock cycles to start

A Multi-GPU Approach to Fast Wildfire Hazard Mapping 187

the fetch of a single element. However, the massively threaded architecture of the GPU
is used to hide such memory latencies by rapid switching between threads: when a
thread stalls on a memory fetch, the GPU switches to a different thread. To fully exploit
such latency hiding strategy, it is usually beneficial to use a large number of blocks.

In the following, the concepts outlined above are applied to the GPGPU-based par-
allelization of the procedure for building BPMs previously described.

4 GPGPU-Based Wildfire Hazard Mapping

The procedure described in the following is based on accelerating through GPGPU
the execution of the many CA simulations required by the BPM. As in the sequential
version, the CA simulation model requires two memory regions, which will be called
CA . and CA,ezt, representing the current and next states for the cells respectively.
For each CA step, the neighbouring values from CA.,, are read by the local transi-
tion function, which performs its computation and writes the new state value into the
appropriate element of CA,,cp¢-

More in particular, accordingly to the recent literature in the field, in our imple-
mentation most of the automaton data (i.e. both the current and next memory areas
mentioned above) is stored in the GPU global memory. This involves: (i) initialising
the current state through a CPU-GPU memory copy operation (i.e. from host to de-
vice global memory) before the beginning of the simulation and (ii) retrieving the final
state of the automaton at the end of the simulation through a GPU-CPU copy operation
(i.e. from device global memory to host memory). Also, at the end of each CA step a
device-to-device memory copy operation is used to re-initialise CA.,,» With CAcqpt-

In order to speed up the access to memory, an array with the size corresponding to the
total number of cells was allocated in the CPU memory for each of the CA substates. All
of such arrays were then mirrored in the GPU together with some additional auxiliary
arrays (e.g. for storing the neighbourhood structure and the model parameters).

A key step in the parallelization of a sequential code for the GPU architecture ac-
cording to the CUDA approach, consists of identifying all the sets of instructions that
can be grouped in CUDA kernels. In particular, in the CA model for wildfire simulation
adopted in this study (see section2), two main CUDA kernels have been developed:

— the kernel implementing the fire propagation logic (i.e. the cell-level mechanism of
fire contagion);

— the kernel for dynamically adapting the time-step duration. Since this involves find-
ing the minimum of all allowed time-step sizes among the cells on the current fire
front, such kernel simply implements a standard parallel reduction (PR) algorithm.

The above kernels can be executed independently of each other on the different cells of
the automaton. However, the GPGPU parallelization object of this study raises several
issues.

First, in the whole automaton, only the cells belonging to the current fire front per-
form actual computation. Hence, launching one thread for each of the automaton cells
would result in a certain amount of dissipation of the GPU computational power. In
other words, a high percentage of threads would be uselessly scheduled. In addition,

188 D. D’ Ambrosio et al.

[Burnable/burnt cell
B Burning cell

Fig. 2. The RBB of a fire in a n x m raster. Only the cells inside the RBB, which is recomputed
at each CA step, are mapped into the CUDA grid of threads.

given the small size of most fires, the number of active threads generated by the sim-
ulation of a fire is usually too low to allow the GPU to effectively activate the latency
hiding mechanism.

For the above reasons, two main strategies were adopted. In particular, besides the
most straightforward parallel implementation, labelled as WCAM, in which the CUDA
kernels operate on the whole automaton, we have developed an additional implemen-
tation in which the grid of threads is dynamically computed during the simulation in
order to keep low the number of computationally irrelevant threads.

In such an approach, labelled as RBBM and represented in Figure 2l the smallest
rectangular bounding box (RBB) that includes any cells on the current fire front is com-
puted at each CA step using the efficient CUDA atomic instructions. Then, all kernels
required by the CA step (i.e. the PR for the time step adaptation and the transition
function) are mapped on such RBB.

Another measure adopted in this study consists of handling many fires simultane-
ously. In particular, clusters of fires are simulated up to covering the entire area under
study (i.e. until all the required n fires are propagated). Each cluster is composed of a
block of fires originated by spatially-contiguous ignition points taken from the regular
grid of fire ignitions.

Obviously, such an approach requires: (i) the use of an additional array for storing
an independent combustion state of each cell for each simultaneous fire; (ii) the com-
putation of a RBB that is common to all the simultaneous fires.

It is worth noting that since the efficiency of the RBBM approach depends on the
actual distribution of the simultaneous fires over the automaton, we choose from con-
tiguous ignition points the fires that are simulated together.

In order to carry out many simulations simultaneously, a particular grid of threads is
used is such a way that for each cell a separate thread handles the different simultaneous
fires (see Figure [3). This corresponds to a three-dimensional grid in which the vertical
dimension is associated with the simultaneous fires. It is also worth noting that the alter-
native approach, in which a single thread per cell iterates on the different simultaneous
fires, would generate a frequent divergence between the threads of the same warp, with
a consequent decline of efficiency.

A Multi-GPU Approach to Fast Wildfire Hazard Mapping 189

Grids of threads

— M, —

= O Burnable/burnt cell Computationally inactive thread
fire B Burning cell Computing thread

Fig. 3. The RBBM mapping of the CA transition function into a CUDA grid of threads in case of
the two simultaneous fires shown on the left. The kernel is mapped on a grid in which a separate
copy of the RBB is associated with each of the different simultaneous fires. This corresponds
to a three-dimensional grid, with the base represented by the RBB and the vertical dimension
corresponding to the fires.

Before starting the BPM construction, a pre-processing sequential phase takes place
in which:

— for each cell the maximum rate of spread, its direction and the local ellipse ec-
centricity (see Figure [T)) are computed using the proper model equations [9, [16].
Such pre-computed quantities determine, together with the landscape topography,
the wildfire spread at the cell-level.

— the maximum time-step size for each cell is computed and stored in an array in
order to speed-up the time-step adaptation during the CA iterations.

— a data structure C is built, which contains all the clusters of contiguous ignition
points corresponding to fires that must be simulated together (see Figure ().

It is worth noting that the first two steps above make sense because the weather condi-
tions are considered stationary, which is a common assumption for computing BPMs.

As explained above, the required CA simulations are carried out operating on clusters
of fires iteratively extracted from the data structure C. In particular, in the GPGPU
wildfire simulation, each CA step essentially consists of:

— executing the CUDA kernel that finds the current time step size for each simultane-
ous fire;

— executing the CUDA kernel that implements the propagation mechanism (and up-
dates the RBB in the RBBM approach);

— activating a device-to-device memory copy operation to re-initialise CA,, with
CAnext;

— incrementing the current time for each simultaneous fire by the corresponding time
step size.

190 D. D’ Ambrosio et al.

cluster of ignitions C,,

single ignition

1 e e e e 3 ®) e

GPU2 | C, e |
[@ (] L] @ [

— GPU 1| C,, Il C,, |

] [) [] @ .i GpU()I CM H G |

0:le ° o[|e® ° o[ii]e ° timeline >

[) L] L] L] L J [® L]
__________ = s ILZ

Fig. 4. An hypothetical example of regular grid of ignition points used for building a BPM. Con-
tiguous ignitions are grouped into clusters and the corresponding fires are simulated simultane-
ously. In the multi-GPU implementation each cluster is assigned to the first available GPU.

The above steps are iterated until the current time reaches the desired final time for each
fire of the current cluster.

4.1 The Multi-GPU Implementation

In the multi-GPU implementation, which is based on the Pthreads library, to each avail-
able GPU in the system we permanently associate a separate CPU thread using the spe-
cific CUDA function cudaSetDevice. In addition, a separate copy of the automaton is
mirrored in each GPU.

After such initialization phase, the process for the BPM computation is concurrently
carried out by each CPU thread as follows:

1. extraction, using the mutual exclusion mechanism provided by PThreads, of the
first available cluster C' of fire ignitions from the data structure C (see Figure [)
mentioned above.

2. execution of a CUDA kernel to set the ignition points included in its current cluster
C into the automaton cells stored in its GPU global memory;

3. execution, in its associated GPU, of the CA steps described above, until the current
time reaches the desired final time;

4. at the end of the simulations, execution of a further CUDA kernel on the whole
automaton to update an array f; in which each element represents the number of
times that a cell has been burned since the beginning of the process;

5. if there are still elements in C, extraction of a new cluster of ignitions and iteration
of the above steps 1 — 4; otherwise, the CPU thread ends.

When all the CPU threads have completed their cycles of simulations, all the arrays
f; are moved to the host memory and collected into a single array f,,. The latter, divided
by the total number of simulations n ¢, gives an estimate of the burn probability for each
cell of the automaton.

Given that the CPU threads are essentially independent on each others, the above
procedure can achieve a satisfactory level of efficiency. However, a limiting factor of

A Multi-GPU Approach to Fast Wildfire Hazard Mapping 191

the scalability originates from the exchange of data between GPUs and CPU at each
CA step (for example the duration of the steps or the RBB).

It is worth noting that, in a general case of heterogeneous landscape, the time re-
quired for the simulation of each cluster C' € C cannot be predicted in advance. In fact,
it depends on the specific conditions of the area covered by C' (e.g. fuel and terrain char-
acteristics or local wind vector). However, according to the above scheduling procedure,
as soon as a GPU finishes its current cluster computation, it fetches the next available
cluster of fires. This can be seen in Figure[d] where an hypothetical example of schedul-
ing is represented. Therefore, if C contains enough clusters (which is always the case
for large areas) the workload of each GPU is automatically balanced. In other words the
BPM computation runs flawlessly even in case of GPUs with different computational
power.

5 Results on a Real Landscape

The application presented here concerns an area of the Ligury region, in Italy. The land-
scape, shown in Figure[3 was modelled through a Digital Elevation Model composed of
461 x 445 square cells with side of 40 m. In the area, the terrain is relatively complex
with an altitude above sea level ranging from O to 250 m. The fuel bed, depicted in
Figure[dl was based on the land cover map from the CORINE EU-project. In particular,
the CORINE land-cover codes were mapped on the standard fuel models used by the
CA. Plausible values of fuel moisture content were obtained from literature data. Also,
a North direction open-wind vector, having an intensity of 20 km h~!, was used for
producing the wind field. A duration of 10 hours was adopted for all simulated fires.
Over the area, a regular grid of 92 x 89 ignition points was superimposed, leading to
7391 fires to simulate and to the BPM shown in Figure[6l

For the numerical experiments, we used a workstation based on an Intel Xeon X5660
(2.80 GHz) 6-Core CPU and equipped with two GPUs, namely a nVidia Tesla C2075
and a nVidia Geforce GTX 680 graphic card. The latter card belongs to the new nVidia’s
Kepler GPU architecture while the former is endowed with the older Fermi GPUs. The
Tesla C2075 was used in single precision floating point and with the ECC disabled. In
Table [Tl we report some of the relevant characteristics of the two GPU devices. To quan-
tify the speedup of the parallel implementations, we also included in the same CUDA
program the C-language sequential versions of the WCAM and RBBM approaches de-
scribed above. In particular, the program allows the user to select the desired version of
the algorithm, as well as whether to use the available GPUs or only the CPU.

It is worth noting that, in the sequential case only one fire at a time was propagated
since the advantages of simulating multiple fires are not significant. Specifically, using
only the CPU for simulating the 7391 independent fires required by the case-study
BPM, the WCAM approach took 14167.4 s while the RBBM strategy took 2082.6 s.

Using the adopted GPU devices in both single and multi-GPU mode, the BPM was
built with the WCAM approach and a variable number of simultaneous fires. According
to the results shown in Figure [7] the two GPUs working together achieved the lowest
elapsed time of 197.8 s, simultaneously simulating 81 fires. As can be seen, the simul-
taneous simulation of many fires was beneficial since it allowed a significant computing

192 D. D’ Ambrosio et al.

Fig.5. The landscape under study: a 18km x 18km area in Ligury, Italy. Colors refer to the
standard CORINE land-cover data.

Table 1. Some relevant characteristics of the adopted GPGPU hardware for all carried out exper-
iments. Note that GFLOPs refers to the theoretical peak performance in single-precision floating
point operations.

GTX 680 Tesla C2075

SM count 8 14
CUDA cores 1536 448
Clock rate [MHz] 1006 1150
Bandwidth [GB/s] 192.3 144.0
GFLOPs 3090.4 1030.4

time decrement. However, for all the GPU configurations, incrementing the size of the
clusters in C above a certain threshold did not lead to significant advantages. This is due
to the fact that, once the number of computationally-relevant threads is sufficient for
enabling latency hiding, a further increase of simultaneous fires is not necessary.

Interestingly, using the two GPUs together lead to a speedup ranging between 1.82
and 1.90 over the faster GPU, namely the GTX 680. Particularly relevant is the speedup
over the sequential run, which attained the value of 71.6.

Figure [7] also shows the times taken by the parallel RBBM approach as a function of
the number of simultaneous fires. According to the graph, in this case the joint compu-
tational effort of the two GPUs gave the lowest elapsed time of 33.8 s, corresponding
to a parallel speedup of 61.6.

In the RBBM runs, using the two GPUs together lead to a speedup over the faster
GPU (i.e. the GTX 680) ranging between 1.72 (196 simultaneous fires) and 1.89 (16 si-
multaneous fires). Not surprisingly, given the multi-GPU scheduling scheme described
in section B.1] in case of GPUs with different computational power the use of small
clusters of fires (i.e. the use of more clusters) gives the opportunity to better exploit the
faster GPU.

A Multi-GPU Approach to Fast Wildfire Hazard Mapping 193

Burn probability

00003

0.003 - 0.007
| 0007-00m1
0.011-0.018
B o018-0030

Fig. 6. The BPM obtained for the landscape under study

1000 T T T 200 T T T
900 —e— GTX 680 + TESLA C2075 | - —e— GTX 680 + TESLAC2075
w00 —4—GTX 680 —4—GTX 680
1 —v— TESLA C2075] 1504 —v— TESLA C2075 J

700 E

100

Elapsed time [s]
W P w (=)
g8 8 8 8
1 (1
,
s
Elapsed time [s]

& 50 —
200+

100 B

WCAM RBBM
0 T T T 0 T T T
0 50 100 150 200 0 50 100 150 200
Number of simultaneous fires Number of simultaneous fires

Fig.7. Time taken by the WCAM and RBBM approaches for simulating the 7391 independent
fires required by the BPM shown in Figure |6l The elapsed time is plotted as a function of the
number of fires that are simultaneously simulated by the GPU.

As expected, the simultaneous simulation of many fires was much more beneficial
than in the WCAM case. The reason is that, having available a relatively limited
number of simultaneous fires, the percentage of active cells is higher in a small RBB

Table 2. Best elapsed times (in seconds) for the computation of the BPM shown in Figure 6l In
brackets is the optimum number of simultaneous fires.

WCAM RMBB
CPU 14167.4 2082.6
GTX 680 369.5 (169) 61.1 (49)
Tesla C2075 612.2 (169) 89.8 (36)

GTX 680 + Tesla C2075 197.8 (81) 33.8 (49)

194 D. D’ Ambrosio et al.

Table 3. Best parallel speedup achieved with the used GPGPU devices
WCAM RMBB

GTX 680 38.3 34.1
Tesla C2075 23.1 232
GTX 680 + Tesla C2075 71.6 61.6

than in the entire automaton. However, also in this case it is not advantageous to simu-
late more than a certain number of simultaneous fires.

For clarity reasons, a summary of the elapsed times achieved for solving the test
problem are shown in Table[2l Moreover, the corresponding parallel speedups are shown
in Table[3l As can be seen, even using a single GPU lead to a significant acceleration of
the BPM computation.

6 Conclusions and Future Work

The parallel speedups of the multi-GPU based BPM computation procedure presented
in this paper are very satisfactory. The main advantage of such a parallelization lies
in enabling the building of BPMs for very large areas (e.g. at a regional level), which
otherwise may not be possible by adopting a standard computation. However, starting
from the application described above, several research directions can be explored.

For example, the multi-GPU approach may also be adopted for the automatic plan-
ning of risk-mitigation interventions on the landscape (i.e. the so-called fuel treatments)
[17]. Moreover, the fast simulation of a number of wildfires can make easier and more
accurate the assimilation of real-time sensor data [[18]. However, in this case a new ap-
proach with non-stationary weather conditions should be developed. This would require
computing with the GPU also the fire characteristics at the cell level at the price of an
increased computing time, though obtaining higher speedups.

Also, the GPGPU parallelization strategies investigated in this paper can be ex-
ploited, with the required adjustments, to other research and application areas. In fact,
the algorithm for building BPMs is somewhat similar to those adopted for dealing with
other natural hazards, such as the risk induced by debris or lava flows (e.g. [[L1,[19]).

Eventually, another possible direction of research consists of making the GPGPU ap-
proach available in more general libraries for supporting CA modelling and simulation,
such as the one presented in [20].

References

1. Carmel, Y., Paz, S., Jahashan, F., Shoshany, M.: Assessing fire risk using Monte Carlo sim-
ulations of fire spread. Forest Ecology and Management 257(1), 370-377 (2009)

2. Ager, A., Finney, M.: Application of wildfire simulation models for risk analysis. In: Geo-
physical Research Abstracts. EGU2009-5489, EGU General Assembly, vol. 11 (2009)

3. Sullivan, A.: Wildland surface fire spread modelling, 1990-2007. 3: Simulation and mathe-
matical analogue models. International Journal of Wildland Fire 18, 387—403 (2009)

4. Lopes, AM.G., Cruz, M.G., Viegas, D.X.: Firestation - an integrated software system for the
numerical simulation of fire spread on complex topography. Environmental Modelling and
Software 17(3), 269-285 (2002)

15.
16.

20.

A Multi-GPU Approach to Fast Wildfire Hazard Mapping 195

. Trunfio, G.A.: Predicting wildfire spreading through a hexagonal cellular automata model.

In: Sloot, PM.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp.
385-394. Springer, Heidelberg (2004)

. Peterson, S.H., Morais, M.E., Carlson, J.M., Dennison, P.E., Roberts, D.A., Moritz, M.A.,

Weise, D.R.: Using HFIRE for spatial modeling of fire in shrublands. Technical Report PSW-
RP-259, U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station,
Albany, CA (2009)

. Trunfio, G.A., D’ Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm

for simulating wildfire spread through cellular automata. ACM Transactions on Modeling
and Computer Simulation 22(1), 1-26 (2011)

. Avolio, M. V., Di Gregorio, S., Lupiano, V., Trunfio, G.A.: Simulation of wildfire spread using

cellular automata with randomized local sources. In: Sirakoulis, G.C., Bandini, S. (eds.)
ACRI 2012. LNCS, vol. 7495, pp. 279-288. Springer, Heidelberg (2012)

. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Tech-

nical Report INT-115, U.S. Department of Agriculture, Forest Service, Intermountain Forest
and Range Experiment Station, Ogden, UT (1972)

. Alexander, M.: Estimating the length-to-breadth ratio of elliptical forest fire patterns. In:

Proc. 8th Conf. Fire and Forest Meteorology, pp. 287-304 (1985)

. Rongo, R., Spataro, W., D’ Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava

flow hazard evaluation through cellular automata and genetic algorithms: an application to
Mt Etna volcano. Fundamenta Informaticae 87(2), 247-267 (2008)

. Rongo, R., Lupiano, V., Avolio, M.V., D’ Ambrosio, D., Spataro, W., Trunfio, G.A.: Cellular

automata simulation of lava flows - applications to civil defense and land use planning with
a cellular automata based methodology. In: Proceedings of SIMULTECH 2011 (2011)

. Filippone, G., Spataro, W., Spingola, G., D’ Ambrosio, D., Rongo, R., Perna, G., Di Gregorio,

S.: GPGPU programming and cellular automata: Implementation of the SCIARA lava flow
simulation code. In: 23rd European Modeling and Simulation Symposium (EMSS), Rome,
Italy, September 12-14 (2011)

. D’Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.: Cellular automata and

GPGPU: an application to lava flow modeling. International Journal of Grid and High Per-
formance Computing 4(3), 3047 (2012)

CUDA C Programming Guide: v. 3.2 (2010)

Anderson, H.: Predicting wind-driven wildland fire size and shape. Technical Report INT-
305, U.S Department of Agriculture, Forest Service (1983)

. Ager, A.A., Vaillant, N.M., Finney, M.A.: A comparison of landscape fuel treatment strate-

gies to mitigate wildland fire risk in the urban interface and preserve old forest structure.
Forest Ecology and Management 259(8), 1556-1570 (2010)

. Xue, H., Gu, F,, Hu, X.: Data assimilation using sequential monte carlo methods in wildfire

spread simulation. ACM Trans. Model. Comput. Simul. 22(4), 1-25 (2012)

. Crisci, G.M., Avolio, M. V., Behncke, B., D’ Ambrosio, D., Di Gregorio, S., Lupiano, V., Neri,

M., Rongo, R., Spataro, W.: Predicting the impact of lava flows at Mount Etna, Italy. Journal
of Geophysical Research: Solid Earth 115(B4) (2010)

Blecic, 1., Cecchini, A., Trunfio, G.A.: A general-purpose geosimulation infrastructure for
spatial decision support. Transactions on Computational Science 6, 200-218 (2009)

	A Multi-GPU Approach to Fast
Wildfire Hazard Mapping
	1
Introduction
	2
imulation-Based Burn Probability Mapping
	2.1
 Wildfire Simulation Model
	2.2
A Simulation-Based Approach for Building BPMs

	3
The Compute Unified Device Architecture
	4
GPGPU-Based Wildfire Hazard Mapping
	4.1
The Multi-GPU Implementation

	5
Results on a Real Landscape
	6
Conclusions and Future Work

