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Abstract. We study a combinatorial model of the spread of influence
in networks that generalizes existing schemata recently proposed in the
literature. In our model agents change behaviors/opinions on the basis of
information collected from their neighbors in a time interval of bounded
size whereas agents are assumed to have unbounded memory in previ-
ously studied scenarios. In our mathematical framework, one is given a
network G = (V,E), an integer value t(v) for each node v ∈ V , and a
time window size λ. The goal is to determine a small set of nodes (target
set) that influences the whole graph. The spread of influence proceeds
in rounds as follows: initially all nodes in the target set are influenced;
subsequently, in each round, any uninfluenced node v becomes influenced
if the number of its neighbors that have been influenced in the previous
λ rounds is greater than or equal to t(v). We prove that the problem
of finding a minimum cardinality target set that influences the whole
network G is hard to approximate within a polylogarithmic factor. On
the positive side, we design exact polynomial time algorithms for paths,
rings, trees, and complete graphs.

1 Introduction

Many phenomena can be represented by dynamical processes on networks. Ex-
amples include cascading failures in physical infrastructure networks [21], in-
formation cascades in social and economic systems [8], spreads of infectious
diseases [2], and the spreading of ideas, fashions, or behaviors among people
[12, 40]. Therefore, it comes as no surprise that the study of dynamical pro-
cesses on complex networks is an active area of research, crossing a variety of
different disciplines. Epidemiologists, social scientists, physicists, and computer
scientists have studied diffusion phenomena using very similar models to de-
scribe the spreading of diseases, knowledge, behaviors, and innovations among
individuals of a population (see [4, 9, 24] for surveys of the area).

A particularly important diffusion process is that of viral marketing [30], which
refers to the spread of information about products and behaviors and their adop-
tion by people. Recently, it has also become an important tool in the commu-
nication strategies of politicians [31, 39]. Although there are many similarities
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between social and epidemiological contagion [23], social contagion is usually
an intentional act on the part of the transmitter and/or the adopter, unlike a
pathogen contagion. The spread of ideas requires extra mechanisms in addition
to mere exposure, e.g., some kind of “social pressure”. More importantly, in the
marketing scenario one is interested in maximizing the spread of information
[22], while this is not likely to happen in the spread of pathogenic viruses. The
intent of maximizing the spread of viral information across a network naturally
suggests many optimization problems. Some of them were first articulated in the
seminal papers [27, 28], under various adoption paradigms. In the next section,
we will explain and motivate our model of information diffusion, state the prob-
lem that we are investigating, describe our results, and discuss how they relate
to the existing literature in the area.

Due to space constraints, proofs are omitted from this extended abstract.

2 The Model, the Context, and the Results

The network is represented by a pair (G, t), where G = (V,E) is an undirected
graph and t : V −→ N = {1, 2, . . . , } is a function assigning integer thresholds
to nodes. We assume that 1 ≤ t(v) ≤ deg(v) for each v ∈ V , where deg(v) is the
degree of v. For a given set S ⊆ V and a time window size λ ∈ N, we consider a
dynamical process of influence diffusion in G defined by two sequences of node
subsets, Influenced[S, r] and Active[S, r], r = 0, 1, . . . , where

Influenced[S, 0] = S, Active[S, 0] = ∅, and for any r ≥ 1 it holds that

Influenced[S, r] = Influenced[S, r − 1] ∪
{
v :
∣∣N(v) ∩ Active[S, r]

∣∣ ≥ t(v)
}
(1)

Active[S, r] =

{
Influenced[S, r − 1] if r ≤ λ

Influenced[S, r − 1] \ Influenced[S, r − 1− λ] if r > λ

Intuitively, the set S might represent a group of people who are initially influ-
enced/convinced to adopt a product or an idea. Then the cascade proceeds in
rounds. In each round r, the set of influenced nodes is augmented by including
each node v that has a number of influenced and still active neighbors greater
than or equal to its threshold t(v). A node is active for λ rounds after it becomes
influenced and then it becomes inactive.

Our model is based on the models in [20, 33] which assume that people can
be divided into three classes at any time instant. Ignorants are those not aware
of a rumor/not yet influenced, spreaders are those who are spreading it, and
stiflers are those who know the rumor/have been influenced but have ceased
to spread the rumor/influence.1 Several rules have been proposed to govern the
transition from ignorants to spreaders and from spreaders to stiflers, and many
papers have studied the dynamics of these systems, mostly in stochastic scenarios

1 The reader will notice an analogy with the SIR model of mathematical epidemiology
[2], in which individuals can be classified as Susceptible, Infected, and Recovered.
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(see [7, 34] and references quoted therein). Here, we posit that any ignorant
node becomes a spreader if the number of its neighbors who are spreaders is
above a certain threshold (i.e., the node is subject to a large enough amount of
“social pressure”), and any spreader becomes a stifler after λ rounds (because
the spreader loses interest in the rumor, for instance). Other papers have studied
information diffusion under similar assumptions [19, 26].

Our model also captures another important characteristic of influence diffu-
sion. It is well known (e.g. [3]) that people are more inclined to react to pieces
of information cumulatively heard during a “short” time interval than to infor-
mation heard during a considerably longer period of time. In other words, one is
more likely to be convinced of an opinion heard from a certain number of friends
during the last few days than by an opinion heard sporadically during the last
year from the same number of people. Therefore, it seems reasonable to study
diffusion processes in which people have bounded memory, and only the num-
ber of spreaders heard during the last λ rounds may contribute to the change
of status of an ignorant node.2 Formally, one has a dynamical process of influ-
ence diffusion on G described by the sequence of node subsets Influenced′[S, r],
r = 0, 1, . . . , where Influenced′[S, 0] = S, and for any r ≥ 1 it holds that

Influenced
′[S, r] =

= Influenced[S, r − 1] ∪ {
v :

∣∣N(v) ∩ Influenced
′[S, r − 1]

∣∣ ≥ t(v)
}

(2)

if r ≤ λ, and

Influenced ′ [S, r] = Influenced
′[S, r − 1] (3)

∪{v :
∣∣N(v) ∩ (Influenced′[S, r − 1]\Influenced′[S, r − 1− λ])

∣∣ ≥ t(v)
}

if r > λ. It is immediate that (2) and (3) are an equivalent way to write (1) and
(2): for any S ⊆ V and r ≥ 1, Influenced′[S, r] = Influenced[S, r], so we get
that the spreading process with “stiflers” also describes the spreading process
with “bounded memory” governed by (2) and (3).

Summarizing, the problem that we shall study in this paper is the following:

Time Window Constrained Target Set Selection (TWC–TSS)
Input: A graph G = (V,E), a threshold function t : V −→ N, and a time
window size λ.
Output: A minimum size S ⊆ V s.t. Influenced[S, r] = V , for some r ≥ 0.

When λ is large enough, for instance equal to the number n of nodes, our
Time Window Constrained Target Set Selection problem is equivalent
to the classical Target Set Selection problem studied in [1, 5, 6, 10, 13–
18, 37, 41]. In terms of our second formulation of the TWC–TSS problem, the
classical Target Set Selection problem can be viewed as an extreme case in
which it is assumed that people have unbounded memory. In general, the TWC–
TSS and the TSS problems are quite different. One of the main difficulties of the
new TWC–TSS problem is that the sequence of sets Active[S, r], r = 0, 1, . . .
is not necessarily monotonically non-decreasing: it is possible that Active[S, r]

2 Another model in which individuals carry a memory of the “amount of influence”
received during a bounded time interval has been studied in [23].
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is larger than Active[S, r + 1] for some values of r. When λ = n, we have
Active[S, r] = Influenced[S, r − 1] for any r, and monotonicity is restored. At
the other extreme, when λ = 1, a node v becomes influenced at time r only if
at least t(v) of its neighbors become influenced at exactly time r − 1. This sort
of synchronization in the propagation of influence poses new challenges, both in
the assessment of the computational complexity of the TWC–TSS problem and,
especially, in the design of algorithms for its solution. The example in which the
graph G is a path is particularly illuminating. As we shall see in Section 4.1,
the Target Set Selection problem is trivial to solve on a path; it is far from
being so when there is a fixed time window size λ.

Our Results. In Section 3, we prove a polylogarithmic inapproximability re-
sult for the TWC–TSS problem under a plausible computational complexity
assumption. The result is obtained by a modification of the very clever proof
of the inapproximability of TSS by Chen [13]. In view of the strong inapprox-
imability of the TWC–TSS problem, we then turn our attention to special cases
of the problem. In Section 4 we present the main results of the paper: exact
polynomial time algorithms for paths, rings, complete graphs, and trees. The
algorithms for paths and rings are based on dynamic programming, and the al-
gorithm for complete graphs is greedy. The algorithm for trees is also based on
dynamic programming and requires the solution of polynomially many integer
linear programs. The polynomial time solvability of each integer linear program
is guaranteed by the unimodularity of the associated matrix of coefficients.

3 Hardness of TWC–TSS

In general, our optimization problem TWC–TSS is unlikely to be efficiently
approximable, as the following result shows.

Theorem 1. For any fixed value of the time window size λ, the TWC–TSS
problem cannot be approximated within a ratio of O(2log

1−ε n) for any fixed ε > 0,
unless NP ⊆ DTIME(npolylog(n)).

Theorem 1 is a generalization of a similar inapproximability result given in
[13] for the Target Set Selection problem that, as said before, corresponds
to our Time Window Constrained Target Set Selection problem when
the time window size λ is unbounded. Our result holds for any fixed value of λ.
The proof details are presented in the Appendix; here we sketch the main idea.
We prove Theorem 1 by a polynomial time reduction from the same MIN REP

problem used in [13].
Let H = (VA ∪ VB , E) be a bipartite graph, where VA ∩ VB = ∅ and E ⊆

VA × VB. Let A be a family of subsets of VA that partitions VA into |A| equally
sized subsets, and analogously let the family B be a partition of VB into |B|
equally sized subsets. Given graph H and partitions A, B, the MIN REP problem
asks for a subset U ⊆ V of minimum size such that for each A ∈ A and B ∈ B

E ∩ (A×B) �= ∅ implies [E ∩ (A×B)] ∩ (U × U) �= ∅. (4)
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Theorem 2. [13] The MIN REP problem cannot be approximated within a ratio

of O(2log
1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Given an instance of MIN REP consisting of the bipartite graph H = (VA ∪
VB, E) and the pair of partitions (A,B), we construct an instance I for the
TWC–TSS problem. More precisely, for the instance I we will only specify a
suitable graph G = (V,E) and threshold function t : V −→ N = {1, 2, . . . , },
since our aim is to prove inapproximability for any value of λ. We denote by Γ�

the gadget shown in Figure 1(a), which consists of � paths of length 2 connecting
the same pair of nodes. If λ ≤ 8, we need another gadget Γ λ

� shown in Figure
1(b); it consists of � paths, each having length 11− λ and connecting the same
pair of extremal nodes. All internal nodes of the gadgets have threshold 1.

x

. . .

y

v1 v2 v�

x

. . .

y

v1,1 v2,1 v�,1

v1,10−λ

v2,10−λ
v�,10−λ

Fig. 1. (a) The gadget Γ� consisting of � paths of length 2 sharing the extremal nodes.

(b) The gadget Γ λ
� consisting of � paths of length 11− λ sharing the extremal nodes.

Let N = |V |+ |E|. The graph G has node set V1 ∪ V2 ∪ V3 ∪ V4 where

– V1 = V and each node has threshold N2,
– V2 = {x(a,b) : (a, b) ∈ E}; each node x(a,b) ∈ V2 has threshold 2N5. The node

x(a,b) is connected to both a ∈ V1 and b ∈ V1 by a gadget ΓN5 ; moreover, if

λ ≤ 8 then x(a,b) is also connected to both a and b by a gadget Γ λ
N5 .

– V3 = {yA,B : (A×B) ∩ E �= ∅}; each node yA,B ∈ V3 has threshold N4 and
is connected by a gadget ΓN4 to each x(a,b) ∈ V2 with a ∈ A and b ∈ B, and

– V4 = {z1, . . . , zN}; each node z ∈ V4 has threshold |V3|×N2 and is connected
by a gadget ΓN2 to each node in V3 and by a gadget ΓN to each node in V1.

Theorem 1 follows by showing that any optimal solution U of the MIN REP in-
stance gives rise to a solution U ⊆ V1 to the TWC–TSS problem with input
instance (G, t, λ). Vice versa, if S is a solution to the TWC–TSS istance, then
in polynomial time one can construct a MIN REP solution of size at most 2|S|.

4 Polynomially Solvable Cases of TWC–TSS

We now present exact polynomial time algorithms to solve the TWC–TSS prob-
lem in several classes of graphs.

4.1 Paths

Let Ln = (V,E) be a path on n nodes, with V = {0, . . . , n−1} and E = {(v, v+
1) : 0 ≤ v ≤ n− 2}. Since the threshold of each node cannot exceed its degree,
we have that t(0) = t(n− 1) = 1 and t(v) ∈ {1, 2}, for each v = 1, . . . , n− 2.
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The TWC–TSS problem is trivial to solve in case λ is unbounded. Letting
{vi1 , vi2 , . . . , vik} be the nodes of Ln having threshold equal to 2, one can see
that {vi1 , vi3 , . . . , vik−2

, vik} is an optimal solution when k is odd, whereas the
subset {vi1 , vi3 , . . . , vik−1

, vik} is optimal when k is even. In case λ has some
fixed value, the situation is much more complicated. Indeed, because of the time
window constraint, one must judiciously choose the initial target set in such a
way that, for every node with threshold 2 that does not belong to the initial
target set, its two neighbors become influenced at the correct times.

To avoid trivialities, we assume that Ln has at least two nodes with threshold
equal to 2. Should it be otherwise, for instance all nodes have threshold 1, then
any subset S of V with |S| = 1 is an optimal solution. If exactly one node, say
v, has threshold 2, then {v} is an optimal solution.

Lemma 1. If � = min{v ∈ V : t(v) = 2} and s = max{v ∈ V : t(v) = 2}, then
there exists an optimal solution S such that

i) S ∩ {0, . . . �− 1} = ∅ = S ∩ {s+ 1, . . . n− 1};
ii) �, s ∈ S.

Lemma 1 implies that we can ignore all nodes in Ln that are to the left of
the lowest numbered node with threshold 2, and to the right of the highest
numbered node with threshold 2. Equivalently, from now on we can assume that
t(0) = t(n− 1) = 2. Define the array D[0 . . . (n− 1)], where D[n− 1] = n− 1 and

D[i] = min{j : i < j ≤ n− 1 and t(j) = 2}, (5)

for i = 0, . . . , n − 2. Since t(n − 1) = 2, value D[i] is always well defined. One
can check that the following algorithm computes an array D satisfying (5).

Algorithm ARRAY(Ln) [ Input: A path Ln with threshold function t(·)]
1. Set D[n− 1] = n− 1 and j = n− 1
2. for i = (n− 2) down to 0 do
3. set D[i] = j
4. if t(i) = 2 then set j = i

For each i = 0, . . . , n− 1, let Ln
i denote the sub-path consisting of the last n− i

nodes {i, i+1, . . . , n− 1} of Ln. We denote by s(i) the minimum size of a TWC
target set for Ln

i that contains both the extreme nodes, that is, i and n− 1. Our
first goal is to compute s(0), the size of an optimal solution for Ln

0 = Ln.

Lemma 2. Fix the time window size λ and consider the family of all TWC
target sets for Ln

i that include both i and n − 1. If i < n − 1, such a family
contains a minimum size TWC target set whose second smallest element is in
{
D[i]

}∪{x : max{D[i]+1, 2D[i]−i−λ+1} ≤ x ≤ min{2D[i]−i+λ−1, D[D[i]]}}. (6)

From Lemma 2, we have s(n− 1) = 1 and, for each i = 0, . . . , n− 2,

s(i) = 1 +min
{
s(D[i]), min

j
s(j)
}

(7)
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where j satisfies max
{
D[i] + 1, 2D[i]− i − λ + 1

}
≤ j ≤ min

{
2D[i]− i + λ −

1, D[D[i]]
}
. The size of an optimal target set for Ln can be computed as s(0).

The actual TWC target set of optimal size s(0) can be constructed using
standard backtracking techniques.

Theorem 3. For any time window size λ, an optimal TWC target set for the
path Ln can be computed in time O(n).

4.2 Rings

We can use Theorem 3 above to design an algorithm for the TWC–TSS problem
on rings. Let Rn denote the ring on n nodes {0, . . . , n − 1} with edges (i, (i +
1) mod n) and thresholds t(i), for i = 0, . . . , n− 1.

We first notice that if all nodes have threshold 2, then an optimal TWC target
set for Rn trivially has size �n/2�, so let us now assume that there exists a node
j that has threshold t(j) = 1. Either j is in an optimal TWC target set for Rn

or it is not. Consider the path Rn
j,2 obtained by “breaking” the ring Rn at node

j, duplicating node j into j and j′, and assigning threshold 2 to both j and j′

(regardless of the original threshold value t(j) = 1 in Rn). Therefore, the edges of
Rn

j,2 are (j, j+1), (j+1, j+2), . . . , (n−2, n−1), (n−1, 0), . . . (j−2, j−1), (j−1, j′).
The thresholds of Rn

j,2 are

tj,2(i) =

{
t(i) if 0 ≤ i ≤ n− 1 and i �= j

2 if i = j or i = j′.

We can use the algorithm of Section 4.1 to compute the size of an optimal TWC
target set Sj,2 for the path Rn

j,2. Notice that both j and j′ must be in Sj,2, so
Sj,2 − {j′} is a TWC target set for the ring Rn, optimal among all TWC target
sets that include node j.

Now we want to compute a TWC target set for the ring Rn that is optimal
among all TWC target sets that do not include node j. To do this, consider the
path Rn

j,1 that has the same nodes and edges as Rn
j,2 but has thresholds

tj,1(i) =

{
t(i) if 0 ≤ i ≤ n− 1 and i �= j

1 if i = j or i = j′.

In particular, the endpoints of Rn
j,1 have thresholds tj,1(j) = tj,1(j

′) = 1. First,
we apply Lemma 1 to Rn

j,1 and then we use the algorithm of Section 4.1 to
compute (the size of) an optimal TWC target set Sj,1. Since j, j

′ /∈ Sj,1, we have
that Sj,1 is a TWC target set for the ring Rn, optimal among all TWC target
sets that do not include node j.

An optimal solution for the ring Rn is then obtained by choosing the smaller
of Sj,2 − {j′} and Sj,1. In conclusion we have the following result.

Theorem 4. For any value of the time window size λ, an optimal TWC target
set for the ring Rn can be computed in time O(n).

4.3 Trees

Let T = (V,E) be a tree with threshold function t : V −→ N, and let λ ≥ 1
be a fixed value of the time window size. We consider T to be rooted at some



148 L. Gargano et al.

arbitrary node p ∈ V . For each node v ∈ V , we denote by Tv = (Vv , Ev) the
subtree of T rooted at v. Moreover, we denote by Ch(v) the set of all children of
node v in Tv.

Definition 1. Given node v ∈ V and integers t, r, with t ∈ {t(v), t(v)− 1} and
r ≥ 0, we denote by s(v, t, r) the minimum size of a TWC target set S ⊆ Vv

for subtree Tv that influences node v in round r (that is, v ∈ Influenced[S, r] \
Influenced[S, r − 1]), under the assumption that v has threshold t in Tv. The
threshold of each other node w �= v in Tv is the original one t(w).

The size of an optimal TWC target set for the tree T can be computed as

min
r

s(p, t(p), r), (8)

where r ranges between 0 and the maximum possible number of rounds needed to
complete the influence diffusion process. The number of rounds is always upper
bounded by the number of nodes in the graph (since at least one new node
must be influenced in each round before the diffusion process stops). However,
for a tree T , this value is upper bounded by the length of the longest path in
T . In other words, the parameter r in Definition 1 is bounded by the diameter
diam(T ) of T .

We use a dynamic programming approach to compute the value in (8). Then,
the corresponding optimal TWC target set S can be built using standard back-
tracking techniques. In our dynamic programming algorithm we compute all of
the values

s(v, t, r) for each v ∈ V , t ∈ {t(v), t(v)− 1} and r = 0, . . . , diam(T ),
and the computation is performed according to a breadth-first search (BFS)
reverse ordering of the nodes of T , so that each node v is considered only when
all of the values s(·, ·, ·) for all of its children are known. The rationale behind
the computation of both s(v, t(v), r) and s(v, t(v)− 1, r) is the following:
i) s(v, t(v), r) corresponds to the case of a target set S for tree T such that

– v ∈ Influenced[S, r] \ Influenced[S, r − 1] and
– at least t(v) of v’s children belong to Active[S ∩ Vv, r] ⊆ Active[S, r];

ii) s(v, t(v)− 1, r) is the size of an optimal target set S for T satisfying
– v ∈ Influenced[S, r] \ Influenced[S, r − 1],
– Active[S, r] contains v’s parent in T , and
– at least t(v)− 1 of v’s children belong to Active[S ∩ Vv, r] ⊆ Active[S, r].
In the following, we show how to compute the above values s(·, ·, ·). The

procedure is summarized in algorithm TREE.
First, consider the computation of s(v, t, r) when v is a leaf of T . In this case

we have t(v) = deg(v) = 1.
– If r = 0, v trivially must belong to the target set since v needs to be active at
time 0; hence s(v, t, 0) = 1.
– If r > 0 and t = t(v) = 1, we observe that any TWC target set that influences
leaf v at time exactly r cannot contain v and, therefore, must influence v’s parent
at time r − 1. To do so, we set s(v, 1, r) = ∞ in the algorithm; this forces the
minimum at line 14 or 18 to be reached with threshold t(v)−1 = 0, thus forcing
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v’s parent to be active in round r − 1.
– If r > 0 and t = t(v)− 1 = 0 then, trivially, s(v, 0, r) = 0.

Algorithm TREE(T, p, λ, t)
[Input: Tree T rooted at p, time window size λ, threshold function t.]

1. For each v ∈ T in reverse order to a BFS of T
2. [We compute s(v, t, r) for each t ∈ {t(v), t(v)− 1} and 0 ≤ r ≤ diam(T )]
3. If v is a leaf then [ here t(v) = 1]
4. For r = 0, . . . , diam(T )

5. Set s(v, 0, r) = 0 and s(v, 1, r) =

{
1 if r = 0

∞ otherwise

6. If v is NOT a leaf in T then

7. For each ( r = 0, . . . , diam(T ) AND t ∈ {t(v), t(v)− 1} (only t = t(v) if v = p) )
8. If r = 0 then
9. Set s(v, t, 0) = 1 +

∑
w∈Ch(v) min {min1≤j≤λ s(w, t(w)− 1, j),minj≥0 s(w, t(w), j)}

10. If r ≥ 1 and t = 0 then
11. Set s(v, 0, r) =

∑
w∈Ch(v) min {minr+1≤j≤r+λ s(w, t(w)− 1, j),minj≥r−1 s(w, t(w), j)}

12. If r ≥ 1 and t = 1 then
13. For each w ∈ Ch(v)
14. Compute m(w) = min {minr+1≤j≤r+λ s(w, t(w)− 1, j),minj≥r−1 s(w, t(w), j)}
15. Set z = argminw∈Ch(v){s(w, t(w), r − 1) −m(w)}
16. Set s(v, 1, r) =

∑
w∈Ch(v)\{z} m(w) + s(z, t(z), r − 1)

17. If r ≥ 1 and t > 1 then
18. Set s(v, t, r) = min

∑
w∈Ch(v) m(w), where

19. m(w) ∈ {s(w, t, j) : (t = t(w) AND j ≥ 0) OR (t = t(w)− 1 AND r < j ≤ r + λ)}
20. |{w : m(w) = s(w, t(w), j), r − λ ≤ j ≤ r − 1}| ≥ t
21. |{w : m(w) = s(w, t(w), j), �− λ ≤ j ≤ �− 1}| < t, ∀� = 1, . . . , r − 1

Now consider an arbitrary internal node v. Since we process nodes in a BFS
reverse order, each child of v has already been processed when the algorithm
processes v. If r = 0, then v must necessarily be in the target set and any
w ∈ Ch(v) can benefit from this. Therefore, the size s(v, t, 0) of an optimal
solution for the subtree Tv is equal to

s(v, t, 0) = 1 +
∑

w∈Ch(v)

min

{
min

1≤j≤λ
s(w, t(w) − 1, j), min

0≤j≤diam(T )
s(w, t(w), j)

}
.

Notice that we have constrained j to be in the range 1, . . . , λ in the formula
above when w’s threshold is t(w) − 1. This is correct since v is active and able
to influence w only in rounds j = 1, . . . , λ.
Now, let us consider the computation of s(v, t, r) with r ≥ 1, that is, when v
is not part of the target set and v is influenced at time r by t of its children
(plus its parent if t = t(v) − 1). To determine the optimal solution, we need to
know the best among the values s(w, τ, j) for each w ∈ Ch(v) and for all possible
values of parameters τ and j, subject to the following two constraints:

1) if τ = t(w)− 1, then r+1 ≤ j ≤ r+λ (indeed v is active and can influence
w only during the λ rounds after it has become influenced, that is, in rounds
j = r + 1, . . . , r + λ),
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2) at least t nodes in Ch(v) are active in round r but at most t− 1 are active
in any previous round j ≤ r − 1 (otherwise v would become influenced before
the required round r).

The special case t = 0 can hold only if t(v) = 1 and t = t(v) − 1; hence node
v must be influenced by its parent at round r and none of its children can be
active before round r.

Lemma 3. The computation at lines 18–21 of the algorithm TREE(T, p, λ) can
be done in polynomial time.

Theorem 5. For any tree T , the optimal TWC target set can be computed in
polynomial time.

4.4 Complete Graphs

Let Kn = (V,E) denote the complete graph on n nodes. The following observa-
tion was made in [35] for target set selection without a time window constraint;
it is easy to see that it also holds in our scenario.

Lemma 4. [35] If the optimal TWC target set for Kn has size k, then there
exists an optimal TWC target set consisting of k nodes with the largest thresholds.

Lemma 4 follows from the observation that in any target set S for Kn, if there
exist v ∈ S and u ∈ V −S with t(v) < t(u), then S \{v}∪{u} is also a target set
for Kn. Lemma 4 implies that we only need to determine the size of an optimal
TWC target set. The following algorithm MAX(n, k) determines the largest
number of nodes that can be influenced using a TWC target set of k nodes. The
algorithm assumes that the thresholds have been sorted in non-decreasing order.
Moreover, it assumes the precomputation of the integer vector A[1..n− 1] such
that A[�] = |{v ∈ V | t(v) ≤ �}|, for � = 1, . . . , n − 1. Notice that both sorting
the thresholds, by counting sort, and computing A can be done in linear time.

Algorithm MAX(n, k) [Input: vector A[1..n-1], parameters λ and k]

1. Set � = k
2. If A[�] > 0 then [at least one node outside the target set can be influenced]
3. For j = 0, . . . , λ− 2
4. Set X [j] = −k
5. Set X [λ− 1] = 0, Set j = 0;
6. Repeat
7. Set y = A[�], � = A[�]−X [j], X [j] = y, j = (j + 1) mod λ
8. Until (A[�]−X [j] ≤ � OR A[�] + k ≥ n)
9. Output min{n, k +A[�]}

We can show that the algorithm MAX(n, k) requires O(n) time to compute the
largest number of nodes that can be influenced in Kn using a TWC target set of
size k. Using a binary search for the optimal value of k we obtain the following
result.

Theorem 6. The optimal TWC target set in a complete graph Kn can be com-
puted in time O(n logn).
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